This invention relates to accessories, and more particularly to an improved clip device for holding shoe laces in a taut condition on a shoe.

A main object of the present invention is to provide a novel and improved shoe lace clip which eliminates the necessity of tying a knot in the shoe laces of a shoe and which provides a secure fastening of the shoe laces and eliminates the possibility of tangling the shoe laces, as frequently occurs where shoe laces are fastened by means of knots, bows, or the like.

A further object of the invention is to provide an improved shoe lace clip which is simple in construction, which is neat in appearance, which is inexpensive to manufacture, and enable the shoe laces to be tightened more rapidly and with equal effectiveness as by the use of ordinary knots.

Further objects and advantages of the invention will become apparent from the following description and claim, and from the accompanying drawing, wherein:

Figure 1 is a perspective view of a shoe provided with an improved shoe lace clip constructed in accordance with the present invention.

Figure 2 is an enlarged perspective view of the shoe lace clip employed in Figure 1.

Figure 3 is a longitudinal vertical cross sectional view taken on line 3—3 of Figure 2.

Figure 4 is a transverse vertical cross sectional view taken on line 4—4 of Figure 2.

Figure 5 is an enlarged cross sectional detail view taken on line 5—5 of Figure 2.

Figure 6 is a longitudinal cross sectional view similar to Figure 3 and showing the manner in which the upwardly yieldably gripping tongues of the clip cooperate to clampingly secure the end portions of the shoe laces.

Referring to the drawings, the improved shoe lace clip is designated generally at 11 and comprises a pair of arcuately curved, relatively flat plate elements 12 and 13 secured together over the one another, as by suitable bonding or cementing material 14 provided at the side edges of the plate members 12 and 13, as shown in Figure 2. As illustrated, a mass of bonding material 14 may be provided adjacent each of the corners of the two-ply body defined by the plate members 12 and 13 at the respective longitudinal side edges of said plate members, whereby the intermediate portion of the plate members are free of bonding material and are thus allowed to flex freely, for a purpose presently to be explained.

As shown in Figures 3 and 6, the plate members 12 and 13 are arcutely curved and are downwardly concave to fit on the top front portion of a shoe overlying the lines thereof.

The plate members 12 and 13 are formed of any suitable sheet material having a substantial amount of stiffness, such as sheet plastic material, the plate members being relatively rigid against flexure from their concave configurations to a flatter configuration but being flexibly responsive to force applied at their opposite edges to deform upwardly to become more bowed, as will be presently explained.

The lower plate member 13 is centrally formed with an aperture 15 large enough to receive the ends 16 of a shoe lace therethrough. The top plate member 12 is formed with a generally H-shaped slot comprising the longitudinal slot elements 17 which are connected at their intermediate portions by a transverse slot portion 18 which overlies the aperture 15. Thus, the H-shaped slot defines a pair of upwardly yieldable tongues 19 extending toward each other from opposite sides of the aperture 15. The longitudinal slot portions 17 are of substantial length and are of a length sufficient so that the tongues 19 will yield upwardly to allow the shoe lace ends 16 to be drawn upwardly therethrough, but are of sufficient stiffness so that the tongues 19 will exert a cooperating clamping force on the shoe lace ends 16 to hold the shoe lace ends after they have been pulled upwardly to tighten the shoe lace and to prevent the ends 16 from slipping downwardly through the aperture 15.

The tongues 19 may be released to allow the shoe lace ends 16 to be drawn downwardly therebetween by flexing the composite body defined by the superimposed plates 12 and 13 in the manner illustrated in Figure 6 from the normal dotted view configuration of the body to the full line view shown, namely, by exerting forces on the opposite ends of the body tending to flex the body upwardly. The upward flexure of the body serves to separate the gripping tongues 19 sufficiently to allow the shoe lace ends 16 to be slipped downwardly therebetween.

Integrally formed on the top plate 12 is a channel shaped clip member 20 which is located adjacent one of the longitudinal edges of plate 12 and at the intermediate portion of said plate adjacent one of the longitudinal slit portions 17 thereof, as shown in Figure 2. The member 20 has a generally circular groove 21 and the generally resilient flange portions 22 which are formed at their top ends to define a relatively narrow slot 23 therebetween leading to the circular groove portion 21.

In using the device, the clip member is placed over the top front portion of the shoe and the shoe lace ends 16, are drawn upwardly through the aperture 15 and between the resilient tongues 19 to a taut condition of the shoe lace. The tongues 19 clampingly cooperating to lock the shoe lace ends 16 in this position, after which the excess portions of the shoe lace ends may be deposited in the channel shaped clip member 20, in the manner illustrated in Figure 1. To release the shoe lace, it is merely necessary to pull the ends 16 out of the channel member 20 and then flex the composite body defined by the superimposed plate members 12 and 13 in the manner illustrated in Figure 6, namely, by applying squeezing pressure to the opposite ends of the superimposed plate members, whereby tongue elements 19 separate and allow the shoe lace holding clip device 11 to be pulled upwardly and to be disengaged from the shoe lace ends.

While a specific embodiment of an improved shoe lace clip has been disclosed in the foregoing description, it will be understood that various modifications within the spirit of the invention may occur to those skilled in the art. Therefore it is intended that no limitations be placed on the invention except as defined by the scope of the appended claim.
the ends of a shoe lace therethrough, and the upper plate element being formed with a pair of longitudinal spaced slits and a straight transverse slit connecting the intermediate portions of said longitudinal slits and normally transversely overlying said aperture to define a pair of opposing resilient tongue elements having adjacent straight thin gripping edges on opposite sides of said aperture, said longitudinal slits being of substantial length, whereby said tongue elements are yieldable upwardly and whereby said straight gripping edges are adapted to grippingly engage the ends of a shoe lace extending through said aperture, whereby to allow the ends of the shoe lace to be pulled upwardly but to prevent the ends of the lace from slipping downwardly through the aperture, and a channel shaped clip on said upper plate element adjacent said slits to receive the ends of a shoe lace.

References Cited in the file of this patent

UNITED STATES PATENTS

421,638 Vitt Feb. 18, 1890
743,106 Rotz Nov. 3, 1903
1,205,595 Currie Nov. 21, 1916
1,220,629 Hawks Mar. 27, 1917
1,235,622 White Aug. 7, 1917
2,460,963 Young Feb. 8, 1949

FOREIGN PATENTS

14,843 Great Britain Aug. 6, 1895
22,436 Great Britain 1910
501,384 Germany July 2, 1930
613,328 France Nov. 15, 1926