7~ A1 O OO0 RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 October 2006 (26.10.2006)

lﬂb A 00T O

(10) International Publication Number

WO 2006/111207 A1l

(51) International Patent Classification:
GOGF 9/42 (2006.01)

(21) International Application Number:
PCT/EP2005/053689

(22) International Filing Date: 28 July 2005 (28.07.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
11/112,967 22 April 2005 (22.04.2005) US
(71) Applicant (for all designated States except US): ES-
MERTEC AG [CH/CH]; Lagerstr. 14, CH-8600

Diibendorf (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LUND, Kasper
[DK/DK]; Holmegaardsvej 67, DK-8270 Hoejbjerg (DK).
BAK, Lars [DK/DK]; Ellevei 2, DK-8310 Tranbjerg J.
(DK). ANDERSEN, Jakob [DK/DK]; Holmegaardsvej
135, DK-8270 Hoejbjerg (DK). GRARUP, Steffen
[DK/DK]; Skaakehoejen 38, DK-8270 Hoejbjerg (DK).

(74) Agent: DENDORFER, Claus; Wichtershduser & Hartz,
Weinstr. 8, 80333 Miinchen (DE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: PROCESS AND APPARATUS FOR SHARING INLINE CACHES

162
4

174
e

172

Cache State

166
e

foo

bar

d (57) Abstract: A technique for dynamic dispatch invo lves adapting a method at a dispatch point to reference a state cache. State
of the state cache may be associated with an object type and a method signature. When a method is adapted at the dispatch point
w= to reference a state cache, the reference is to a state cache associated with a state that matches the method signature and the object
w= type of the object dispatched upon. The state cache may be shared among multiple methods with similar associated states to reduce

~
\©

WO 200

memory requirements.

10

15

20

25

30

WO 2006/111207 PCT/EP2005/053689

PROCESS AND APPARATUS FOR SHARING INLINE CACHES

BACKGROUND

The present invention relates to digital processing systems. More specifically, the

invention relates to dynamic dispatch in digital processing systems.

Objects, in object-oriented systems, are data structures that encapsulate data and methods
that operate on that data. Classes define types of objects. Objects are instances of classes.
Methods define actions the class can perform. Classes can be organized into a hierarchy that
includes a parent class at the root. Children of the parent class may inherit methods and data
from the parent, redefine methods and data, or introduce new methods and data. The hierarchy
can grow to arbitrary complexity. Methods may be distinguished by using a method signature
that includes the combination of the method's name and the number, type, and order of
parameters. The method signature may also include, for example, a visibility modifier (e.g.,
public, private, protected), a return type, a throws clause, or some other value. To invoke a
method, a message is sent to an object, which selects the method to execute. The method
address may be found at runtime through a technique known as dynamic dispatch. Dynamic
dispatching typically entails extracting the data type (class) of the object and mapping the
method signature to a method address. The inheritance property of classes occasionally makes
method-lookup somewhat complicated. If a method-lookup fails, the method-lookup is repeated
at the parent of the object's class, continuing up the class hierarchy until the method-lookup

succeeds or the root of the hierarchy is reached.

In accordance with the inline caching technique, when the method-lookup succeeds, a
direct call to the class's method may be written into computer code at the dispatch point (e.g., the
point from which the method call was made). Subsequent method calls may be more efficient
since method-lookup can be avoided as long as the objects dispatched upon have the same type.

Unfortunately, cache size adversely impacts the memory requirements of programs.

Dynamic dispatching is a process of invoking a method on an object, where the method
address is determined (deterministically) at runtime by the signature of the method and dynamic
type (e.g., class) of the object. Once the method is known, computer code associated with the
called method may be written into the computer code at the dispatch point. Subsequent
invocations of the method are more efficient because the computer code associated with the
method is at the dispatch point (inline caching). However, this efficiency comes at the expense

of increased memory usage.

10

WO 2006/111207 PCT/EP2005/053689

SUMMARY

A technique for optimizing dynamic dispatch in object oriented systems includes inline
caching. In one embodiment of the invention, an inline cache includes an inline reference to a
called method. The inline reference may be direct or indirect. For example, the inline reference
may be directed to a cache state. The cache state may include the called method address and the
prerequisite type used for cache validation. In an alternative embodiment, the cache state may

itself include an inline cache.

The memory requirements of the inline reference and the cache state may not be
significantly less than the memory requirements associated with an inline cache (and could even
be more). However, if multiple cache states share certain characteristics, such as, for example,
identical cached method addresses and prerequisite types, each inline reference can be directed to
the same cache state. Assuming the number of distinct cache states is less than the number of

distinct dispatch points, the use of an inline reference should reduce memory requirements.

10

15

WO 2006/111207 PCT/EP2005/053689

BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the invention are illustrated in the figures. However, the embodiments
and figures are illustrative rather than limiting; they provide examples of the invention.

FIGS. 1A, 1B, and 1C depict diagrams intended to illustrate adapting a method to include

an inline reference to a cache state according to an embodiment;

FIG. 2 depicts a conceptual view of calling methods and called methods according to an

embodiment;

FIGS. 3A and 3B depict diagrams intended to illustrate method validation according to

an embodiment.
FIG. 4 depicts a flowchart of a process according to an embodiment;
FIG. 5 depicts a flowchart of a process according to another embodiment;

FIGS. 6A, 6B, and 6C depict diagrams intended to illustrate adapting a method to include

an inline reference to a cache state according to another embodiment;
FIG. 7 depicts a networked system for use in an embodiment; and

FIG. 8 depicts a computer system for use in the system of FIG. 7.

10

15

20

25

WO 2006/111207 PCT/EP2005/053689

DETAILED DESCRIPTION OF EMBODIMENTS

FIGS. 1A to 1C depict diagrams intended to illustrate adapting a method to include an
inline reference to a cache state according to one embodiment. FIG. 1A depicts a method 162
that includes computer code 164 associated with a method call to a method 166. It should be
noted that this association may be via dynamic dispatch, rather than a fixed call to the method
166. The method 162 is labeled "foo," which is a commonly ascribed name for methods,
functions, procedures, routines, etc. in the art of computer programming. The method 166 is
labeled "bar," which is another commonly ascribed name for methods et al. The computer code
164 associated with the method call to the method 166 may be compiled during compile time
(turning the computer code into, for example, a binary file). The computer code could also be
interpreted at runtime. For the sake of illustrative simplicity, the computer code 164 is referred
to as "computer code" regardless of any compiling, interpreting, or other modifications that may

be taken to change the computer code from one form to another.

In operation, when the method 162 executes commands associated with the computer
code 164 to call the method 166, the point at which the method 162 calls the method 166 may be
referred to as a dispatch point. The dispatch point is represented in FIG. 1A as the beginning
point of the arrow pointing from the method 162 to the method 166. The starting point of the
method 166, represented in FIG. 1A as the ending point of the arrow pointing from the method

162 to the method 166, may be referred to as an enter point.

In operation, the method 166, once called, executes one or more commands. When the
method 166 is done executing, the method 166 passes control back to the calling method 162.
The point at which the method 166 finishes may be referred to as an exit point. The exit point is
represented in FIG. 1A as the beginning point of the arrow pointing from the method 166 to the
method 162. There may be multiple potential exit points in the method 166 (not shown) and

there may be one or more calls to additional methods (not shown).

In an embodiment, a state acquisition engine 168 intercepts the method call from the
method 162 to the method 166. Method-call interception (MCI) is a well-known technique for
facilitating runtime adaptation for object-oriented software systems. Since the technique is well-

known, MCI is not described in detail herein.

10

15

20

25

30

WO 2006/111207 PCT/EP2005/053689

The state acquisition engine 168 determines state information, which may include, for
example, object data, method data, and other data. In an embodiment, the other data may include
data associated with environment variables or other parameters. The state acquisition engine 168
may perform method-lookup using the method signature at the dispatch point 164 and the type of
object dispatched upon to find a method address.

Calls from the method 162 to the method 166 may be local. For example, methods 162
and 166 may be stored locally in non-volatile storage or memory. In an alternative, calls from
the method 162 may extend from a remote computer location to or from, for example, a server

computer across a LAN or other network.

FIG. 1B is intended to illustrate state information 170. For exemplary purposes, the state
information 170 includes object data and method data. The object data may include, for
example, the object type of the object dispatched upon. The method data may include, for
example, the method signature at the dispatch point (e.g., at computer code 164).

While there is no specific requirement as to the format of the state information 170, the
state information should be sufficient to map the method signature for the object type of the
object dispatched upon to a method address. Advantageously, this can make method-lookup
unnecessary for subsequent method calls, so long as the state information remains valid. In an
embodiment, the object type may be referred to as associated with the method 166. The method
166 may or may not be encapsulated within an object having the object type with which the
method 166 is associated. In another embodiment, the method 166 may or may not be inherited
by the object having the object type. In another embodiment, the method 162 could also be
associated with the object type.

FIG. 1C is intended to illustrate how the calling method (method 162) is adapted to take
advantage of the state information. The method 162 is adapted by replacing the computer code
164 with an inline reference 172. The inline reference 172 may be referred to as an inline cache,

but, in an embodiment, the inline cache includes only the inline reference to a cache state 174.

The cache state 174 calls the method 166. After the method 162 is adapted, the inline
reference 172 may be referred to as the dispatch point for the method 162. The enter and exit
points of the method 166 are unchanged. The cache state 174 is interposed between the dispatch
point of the method 162 and the enter point of the method 166.

10

15

20

25

30

WO 2006/111207 PCT/EP2005/053689

Data from the cache state 174 could be incorporated into the method 162 as an inline
cache. However, in an object-oriented system, the number of cache states is typically less than
the total number of dispatch points. Accordingly, if data from each of the cache states is written
into each method at each of the dispatch points, memory resources must be allocated for this
purpose. An inline reference to a shared cache state can ameliorate these memory resource

requirements.

FIG. 2 depicts a conceptual view of calling methods (the methods 162) and called
methods (the methods 166) according to an embodiment. In FIG. 2, dashed boxes represent
objects 176 and 178, which may respectively encapsulate the methods 162 and 166. In an
alternative embodiment, the objects 176 and 178 do not encapsulate the methods 162 and 166.
The dashed boxes are dashed so as to illustrate an association without too strongly implying that

the objects 176 and 178 must actually encapsulate the methods 162 and 166.

In the example of FIG. 2, methods 162 may include inline references that are directed to
an appropriate cache state. Though the methods 166 may or may not initially have identical
method signatures, the inline references 172-1 and 172-2 are different because the state
information, presumably, indicated that the objects dispatched upon were of different types. As
described with reference to FIGS. 1A to 1C, cache states may differ depending upon, for
example, method signature and the type of object dispatched upon.

In the example of FIG. 2, for illustrative purposes, the objects 178-1 and 178-2 are
assumed to be of different types. Accordingly, the inline reference 172-1 is directed to a state
cache 174-1 for an object type associated with the object 178-1. Similarly, the inline reference

172-2 is directed to a state cache 174-2 for an object type associated with the object 178-2.

In operation, when a method 162 reaches the dispatch point, the inline reference directs
the method 162 to the appropriate cache state. Since the computer code at the dispatch point has
already been adapted to direct the method 162 to the appropriate cache state, no method-lookup

is required at the dispatch point.

In an embodiment, the object dispatched upon may change. In this embodiment, some
form of method validation may be conducted before invoking the method 166. Method
validation may, for example, include checking the object dispatched upon to ensure that the
object type is the same as the object type associated with the cache state. If the object type of the
object dispatched upon and the object type associated with the cache state are different, the inline

6

10

15

20

25

30

WO 2006/111207 PCT/EP2005/053689

reference may be changed to reference a more appropriate cache state. If, on the other hand, the
object type of the object dispatched upon and the object type associated with the cache state
match, then the method 166 can be invoked without a method lookup.

FIGS. 3A and 3B depict diagrams intended to illustrate method validation according to
an embodiment. FIG. 3A is similar to FIG. 1C, but a method validation engine 180 and a hash
table 182, which may be a global hash table, are coupled to the cache state 174. In an
embodiment, the state of the object dispatched upon may be different during a first method call
and a second method call. Accordingly, it may be necessary to determine whether state has

changed.

In an embodiment, in operation the method validation engine 180 checks the cache state
174 each time a method call is initiated from the dispatch point of a calling method 162. For
example, the method validation engine 180 may check the object type of the object dispatched
upon and compare the object type to the object type associated with the cache state 174. If the
object types match then, at least in this example, the method is validated and the called method
166 is invoked from the cache state 174. If the object types do not match, then the method call is
not validated.

In this embodiment, when the method validation engine 180 determines that a method
call is not validated, the method validation engine 180 may consult the hash table 182 to find a
cache state that is valid for the method call. Cache states may be represented as entries in the
hash table 182. The hash code of the hash table 182 may be a function of a method signature and
object type. The method validation engine 180 can determine the method signature from, for
example, the method call from the method 162.

In an embodiment, the method validation engine 180 can determine object type from, for
example, the object dispatched upon. Accordingly, the method validation engine 180 can
calculate the hash code and use the hash code to obtain a valid mapping of the method signature
and the object type to a target cache state, if the target cache state exists in the hash table 182. If
the method validation engine 180 cannot determine the target cache state using, for example, the
hash table 182, then a new cache state may be created in a manner similar to that described with
reference to FIGS. 1A to 1C.

When the method validation engine 180 knows a valid cache state by, for example,

finding the valid cache state in the hash table 182 or by creating a new cache state, the inline

7

10

15

20

25

WO 2006/111207 PCT/EP2005/053689

reference 172 can be changed to reference the valid cache state. FIG. 3B is intended to illustrate

the inline reference 172 referencing a new cache state 184.

As illustrated in FIG. 3B, the inline reference 172 is directed to the new cache state 184.
The new cache state 184 is associated with a new method 186. In an embodiment, the method
166 and the new method 186 may be associated with similar object types. In another

embodiment, the method 166 and the new method 186 may be similar methods.

In an embodiment, when a cache state has no methods pointing to it, the cache state may
be deleted. For example, if the inline reference 172 in FIG. 3A was the only pointer to the cache
state 174, when the inline reference 172 is redirected to the cache state 184 in FIG. 3B, a cleanup
procedure may be executed to cleanup or delete the cache state 174. If, on the other hand, other
inline references (not shown) remain pointed toward the cache state 174, the cache state 174
would not, in this embodiment, be deleted. In an alternative, cleanup may include removing

caches that meet certain criteria.

FIG. 4 depicts a flowchart of a process according to an embodiment. The flowchart is
intended to illustrate instantiation of an object and subsequent runtime adaptation of a method
associated with the object. This process and other processes are depicted as serially arranged
modules. However, modules of the processes may be reordered, or arranged for parallel

execution as appropriate.

In this embodiment, the flowchart starts at optional module 202 with instantiating an
object, wherein the instance of the object includes a first method having a dispatch point to a
second method. The object may be instantiated from a class. The class from which the object is
instantiated may determine the object type associated with the object. In an embodiment, the
instantiation of the object is optional. For example, the first method may or may not be included

in an instantiated object.

In the example of FIG. 4, the flowchart continues at module 204 with invoking the first
method and at module 206 with calling the second method at the dispatch point. The flowchart
continues at module 208 with intercepting the method call to the second method and at module
210 with determining state. The method-call interception (MCI) may be for the purposes of

determining state.

10

15

20

25

WO 2006/111207 PCT/EP2005/053689

In an embodiment, state may include an object type associated with the second method.
In another embodiment, the object type may be associated with the object encapsulating the first
method. In another embodiment, the object type may be associated with an object to which a
method call is directed. In another embodiment, the object type may be associated with an object

from which the method call is derived.

In addition, the state may include a method signature associated with the method-call. In
an embodiment, the method signature may be determined from the first method. For example,
the first method may include computer code intended to invoke the second method that includes
a method name, method parameters, and defines types for the parameters. This data may be used

to determine a method signature.

In this embodiment, the flowchart ends at module 212 with adapting the first method to
include at the dispatch point an inline reference to a state cache associated with the determined

state.

FIG. 5 depicts a flowchart of a process according to an embodiment. FIG. 5 is intended
to illustrate invocation of the second method after the first method has been adapted as described,

for example, with reference to FIG. 4.

In this embodiment, the flowchart begins at module 214 with invoking a first method that
includes an inline cache pointing toward a cache state. In an embodiment, the inline cache may
include only an inline reference directed to the cache state. In an alternative embodiment, the

inline cache may include, for example, an inline reference directed to the cache state.

In this embodiment, the flowchart continues at module 216 with following the inline
cache to the cache state. Following the inline cache may involve, for example, following an

inline reference.

In this embodiment, the flowchart continues at module 218 with performing method
validation to ensure that state associated with the cache state is valid. Performing method
validation is not necessary if state does not change. However, it is possible that state will change
between the time the method call is made a first time (and state is cached) and the time the
method call is made a second time. For the purposes of example in FIG. 5, it is assumed that the

cache state is valid.

10

15

20

25

30

WO 2006/111207 PCT/EP2005/053689

In this embodiment, the flowchart ends at module 220 with invoking a second method
from the cache state. The cache state may make a method call to the second method. The cache
state may include a method signature associated with the second method for, for example, an
object type. The object type associated with the cache state may be similar to the object type
associated with the second method. In an embodiment, the object types are associated with

objects instantiated from identical classes.

In another embodiment, the object types are associated with objects instantiated from
related classes. For example, a first class may be a parent that encapsulates the second method
and the second class may be a child that inherits the second method. When object types are
referred to as being "similar," this is intended to mean the object types are associated with either
identical classes or related classes. In an embodiment where the object types are always

associated with identical classes, the object types may still be referred to as similar.

In another embodiment, the cache state may include an inline cache that has computer
code associated with the second method, as described with reference to FIGS. 6A to 6C. FIGS.
6A to 6C depict diagrams intended to illustrate adapting a method to include an inline reference
to a cache state according to an embodiment. FIGS. 6A and 6B are similar to FIGS. 1A and 1B,
described previously, so a description of FIGS. 6A and 6B has been omitted.

FIG. 6C is intended to illustrate how the calling method (method 162) is adapted to take
advantage of the cached state information. The method 162 is adapted by replacing the computer
code 164 with an inline reference 172 to the cache state 174. The cache state 174 includes state
information and an inline cache 190. The inline cache 190 may include computer code
associated with the second method 166. The cache state 174 may invoke the second method 166

by executing the computer code included in the inline cache 190.

The following description of FIGS. 7 and 8 is intended to provide an overview of
computer hardware and other operating components suitable for performing the methods of the
invention described herein, but is not intended to limit the applicable environments. Similarly,
the computer hardware and other operating components may be suitable as part of the
apparatuses of the invention described herein. The invention can be practiced with other
computer system configurations, including hand-held devices, multiprocessor systems,
microprocessor-based or programmable consumer electronics, network PCs, minicomputers,

mainframe computers, and the like. The invention can also be practiced in distributed computing

10

10

15

20

25

30

WO 2006/111207 PCT/EP2005/053689

environments where tasks are performed by remote processing devices that are linked through a

communications network.

FIG. 7 depicts a networked system 700 that includes several computer systems coupled
together through a network 702, such as the Internet. The term "Internet" as used herein refers to
a network of networks which uses certain protocols, such as the TCP/IP protocol, and possibly
other protocols such as the hypertext transfer protocol (HTTP) for hypertext markup language
(HTML) documents that make up the World Wide Web (the web). The physical connections of
the Internet and the protocols and communication procedures of the Internet are well known to

those of skill in the art.

The web server 704 is typically at least one computer system which operates as a server
computer system and is configured to operate with the protocols of the world wide web and is
coupled to the Internet. The web server system 704 can be a conventional server computer
system. Optionally, the web server 704 can be part of an ISP which provides access to the
Internet for client systems. The web server 704 is shown coupled to the server computer system
706 which itself is coupled to web content 708, which can be considered a form of a media
database. While two computer systems 704 and 706 are shown in FIG. 7, the web server system
704 and the server computer system 706 can be one computer system having different software
components providing the web server functionality and the server functionality provided by the

server computer system 706, which will be described further below.

Access to the network 702 is typically provided by Internet service providers (ISPs), such
as the ISPs 710 and 716. Users on client systems, such as client computer systems 712, 718,
722, and 726 obtain access to the Internet through the ISPs 710 and 716. Access to the Internet
allows users of the client computer systems to exchange information, receive and send e-mails,
and view documents, such as documents which have been prepared in the HTML format. These
documents are often provided by web servers, such as web server 704, which are referred to as
being "on" the Internet. Often these web servers are provided by the ISPs, such as ISP 710,
although a computer system can be set up and connected to the Internet without that system also

being an ISP.

Client computer systems 712, 718, 722, and 726 can each, with the appropriate web
browsing software, view HTML pages provided by the web server 704. The ISP 710 provides

Internet connectivity to the client computer system 712 through the modem interface 714, which

11

10

15

20

25

30

WO 2006/111207 PCT/EP2005/053689

can be considered part of the client computer system 712. The client computer system can be a
personal computer system, a network computer, a web TV system, or other computer system.

While FIG. 7 shows the modem interface 714 generically as a "modem," the interface can be an
analog modem, isdn modem, cable modem, satellite transmission interface (e.g. "DirecPC"), or

other interface for coupling a computer system to other computer systems.

Similar to the ISP 714, the ISP 716 provides Internet connectivity for client systems 718,
722, and 726, although as shown in FIG. 7, the connections are not the same for these three
computer systems. Client computer system 718 is coupled through a modem interface 720 while

client computer systems 722 and 726 are part of a LAN 730.

Client computer systems 722 and 726 are coupled to the LAN 730 through network
interfaces 724 and 728, which can be ethernet network or other network interfaces. The LAN
730 is also coupled to a gateway computer system 732 which can provide firewall and other
Internet-related services for the local area network. This gateway computer system 732 is
coupled to the ISP 716 to provide Internet connectivity to the client computer systems 722 and

726. The gateway computer system 732 can be a conventional server computer system.

Alternatively, a server computer system 734 can be directly coupled to the LAN 730
through a network interface 736 to provide files 738 and other services to the clients 722 and

726, without the need to connect to the Internet through the gateway system 732.

FIG. 8 depicts a computer system 740 for use in the system 700 (FIG. 7). The computer
system 740 may be a conventional computer system that can be used as a client computer system
or a server computer system or as a web server system. Such a computer system can be used to

perform many of the functions of an Internet service provider, such as ISP 710 (FIG. 7).

In the example of FIG. 8, the computer system 740 includes a computer 742, I/O devices
744, and a display device 746. The computer 742 includes a processor 748, a communications
interface 750, memory 752, display controller 754, non-volatile storage 756, and I/O controller
758. The computer system 740 may be couple to or include the I/O devices 744 and display
device 746.

The computer 742 interfaces to external systems through the communications interface
750, which may include a modem or network interface. It will be appreciated that the

communications interface 750 can be considered to be part of the computer system 740 or a part

12

10

15

20

25

30

WO 2006/111207 PCT/EP2005/053689

of the computer 742. The communications interface can be an analog modem, isdn modem,
cable modem, token ring interface, satellite transmission interface (e.g. "DirecPC"), or other

interfaces for coupling a computer system to other computer systems.

The processor 748 may be, for example, a conventional microprocessor such as an Intel
Pentium microprocessor or Motorola power PC microprocessor. The memory 752 is coupled to
the processor 748 by a bus 760. The memory 752 can be dynamic random access memory
(dram) and can also include static ram (sram). The bus 760 couples the processor 748 to the
memory 752, also to the non-volatile storage 756, to the display controller 754, and to the I/O
controller 758.

The I/0O devices 744 can include a keyboard, disk drives, printers, a scanner, and other
input and output devices, including a mouse or other pointing device. The display controller 754
may control in the conventional manner a display on the display device 746, which can be, for
example, a cathode ray tube (CRT) or liquid crystal display (LCD). The display controller 754

and the I/O controller 758 can be implemented with conventional well known technology.

The non-volatile storage 756 is often a magnetic hard disk, an optical disk, or another
form of storage for large amounts of data. Some of this data is often written, by a direct memory
access process, into memory 752 during execution of software in the computer 742. One of skill
in the art will immediately recognize that the terms "machine-readable medium" or "computer-
readable medium" includes any type of storage device that is accessible by the processor 748 and

also encompasses a carrier wave that encodes a data signal.

Objects, methods, inline caches, cache states and other object-oriented components may
be stored in the non-volatile storage 756, or written into memory 752 during execution of, for
example, an object-oriented software program. In this way, the components illustrated in, for

example, FIGS. 1-3 and 6 can be instantiated on the computer system 740.

The computer system 740 is one example of many possible computer systems which have
different architectures. For example, personal computers based on an Intel microprocessor often
have multiple buses, one of which can be an I/O bus for the peripherals and one that directly
connects the processor 748 and the memory 752 (often referred to as a memory bus). The buses
are connected together through bridge components that perform any necessary translation due to

differing bus protocols.

13

10

15

20

25

30

WO 2006/111207 PCT/EP2005/053689

Network computers are another type of computer system that can be used with the
present invention. Network computers do not usually include a hard disk or other mass storage,
and the executable programs are loaded from a network connection into the memory 752 for
execution by the processor 748. A Web TV system, which is known in the art, is also considered
to be a computer system according to the present invention, but it may lack some of the features
shown in FIG. 8, such as certain input or output devices. A typical computer system will usually

include at least a processor, memory, and a bus coupling the memory to the processor.

In addition, the computer system 740 is controlled by operating system software which
includes a file management system, such as a disk operating system, which is part of the
operating system software. One example of an operating system software with its associated file
management system software is the family of operating systems known as Windows® from
Microsoft Corporation of Redmond, Washington, and their associated file management systems.
Another example of operating system software with its associated file management system
software is the Linux operating system and its associated file management system. The file
management system is typically stored in the non-volatile storage 756 and causes the processor
748 to execute the various acts required by the operating system to input and output data and to

store data in memory, including storing files on the non-volatile storage 756.

Some portions of the detailed description are presented in terms of algorithms and
symbolic representations of operations on data bits within a computer memory. These
algorithmic descriptions and representations are the means used by those skilled in the data
processing arts to most effectively convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-consistent sequence of operations
leading to a desired result. The operations are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally for reasons of common usage, to

refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as apparent from the following discussion,

it is appreciated that throughout the description, discussions utilizing terms such as "processing"

14

10

15

20

25

WO 2006/111207 PCT/EP2005/053689

or "computing" or "calculating" or "determining" or "displaying" or the like, refer to the action
and processes of a computer system, or similar electronic computing device, that manipulates
and transforms data represented as physical (electronic) quantities within the computer system's
registers and memories into other data similarly represented as physical quantities within the
computer system memories or registers or other such information storage, transmission or

display devices.

The present invention, in some embodiments, also relates to apparatus for performing the
operations herein. This apparatus may be specially constructed for the required purposes, or it
may comprise a general purpose computer selectively activated or reconfigured by a computer
program stored in the computer. Such a computer program may be stored in a computer readable
storage medium, such as, but is not limited to, any type of disk including floppy disks, optical
disks, CD-roms, and magnetic-optical disks, read-only memories (ROMs), random access
memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media

suitable for storing electronic instructions, and each coupled to a computer system bus.

The algorithms and displays presented herein are not inherently related to any particular
computer or other apparatus. Various general purpose systems may be used with programs in
accordance with the teachings herein, or it may prove convenient to construct more specialized
apparatus to perform the methods of some embodiments. The required structure for a variety of
these systems will appear from the description below. In addition, the present invention is not
described with reference to any particular programming language, and various embodiments may

thus be implemented using a variety of programming languages.

While this invention has been described by way of example in terms of certain
embodiments, it will be appreciated by those skilled in the art that certain modifications,
permutations and equivalents thereof are within the inventive scope of the present invention. It
is therefore intended that the following appended claims include all such modifications,
permutations and equivalents as fall within the true spirit and scope of the present invention; the

invention is limited only by the claims.

15

10

15

20

WO 2006/111207 PCT/EP2005/053689

CLAIMS
What is claimed is:

1. A system, comprising:
an object, including a first method with an inline reference;
a state cache configured to invoke a second method, wherein when the first method is

invoked the inline reference references the state cache, which invokes the second method.

2. The system of claim 1, said object further comprising an inline cache, wherein the inline

cache includes the inline reference.

3. The system of claim 1, said state cache further comprising an inline cache having

computer code associated with the second method.
4, The system of claim 1, further comprising a hash table of existing cache states.

5. The system of claim 4, wherein the hash table has a hash function of a class type and a

signature of a method.

6. The system of claim 4, wherein the object is a first object, further comprising a second
object without an inline reference, wherein the hash table is used to speed up dynamic dispatches

for the second object.

7. The system of claim 1, wherein the object is a first object, further comprising a second
object without an inline reference, wherein the second object invokes methods on objects of

variable types.

8. The system of claim 1, further comprising a plurality of state caches, including the state
cache, and a plurality of objects, including the object, wherein the number of cache states is less

than the number of inline references.

16

10

15

20

WO 2006/111207 PCT/EP2005/053689

9. A system comprising:

a state cache, associated with an object type;

a plurality of methods with respective inline references to the state cache, wherein when a
calling method of the plurality of methods is invoked, the calling method uses the inline

reference to reference the state cache, which invokes a called method associated with the object

type.

10. A process, comprising:

instantiating an object, wherein the instance of the object includes a first method having a
dispatch point to a second method;

invoking the first method;

calling the second method at the dispatch point;

intercepting the method call to the second method;

determining state;

adapting the first method to include at the dispatch point an inline reference to a state

cache associated with said state.

11. The process of claim 10, wherein said state is associated with an object type and a
method signature, and wherein said object has the object type and the first method has the
method signature.

12. The process of claim 10, further comprising:
creating the state cache; and

associating the state cache with the second method.

13. The process of claim 10, further comprising:
searching existing state caches for the state cache, wherein each of the existing state

caches is associated with a different state.

17

10

15

20

WO 2006/111207 PCT/EP2005/053689

14. A process, comprising:
invoking a first method that includes an inline cache pointing toward a cache state;
following the inline cache to the cache state;

invoking a second method from the cache state.

15. The process of claim 14, wherein the inline cache includes only a reference to the cache

state.

16. The process of claim 14, further comprising performing method validation to ensure that

state associated with the cache state is valid.

17. The process of claim 14, wherein the inline cache is a first inline cache, further
comprising:

invoking a third method that includes a second inline cache pointing toward said cache
state;

following the second inline cache to the cache state;

calling the second method from the cache state.

18. The process of claim 14, further comprising initializing the first method by including the

inline cache.

19. The process of claim 14, wherein the inline cache is at a dispatch point, further

comprising returning to the first method after the dispatch point.

20. The process of claim 14, wherein the cache state is a first cache state, further comprising:
determining state; and
updating the inline cache to point toward a second cache state according to the

determined state.

18

WO 2006/111207 PCT/EP2005/053689
1/8

162 168
s e

166
/

164

bar

foo

FIG. 1A

State Information
Object Data 170
Method Data /-

FIG. 1B

174
(162 e

166
f

Cache State

bar

foo

FIG. 1C

PCT/EP2005/053689

WO 2006/111207

2/8

ccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccc

178-1

ccccccccccccccccccccccccccccc

ccccccccccccccccccccccccccccc

Cache State

cc

L L T N et « e L L T TR

—»| Cache State

cccccccc .- .
3R] ’
2 - M
‘e . .
o b
e s
L] .
« e .
<o .
.o .
[.
L] .
0 .
e .
[.
I .
« .
P
[.

" w . o - L]

« . .
P

o .
v

[.
.. .
. .
[.
T .
T .
[.
e »
o .
e .
. .
o .
[»
L) vovwst

FIG. 2

WO 2006/111207

162
f

3/8

174
4

172

Cache State

/ 180

foo

162
f'

Method Validation
Engine

PCT/EP2005/053689

166
e

bar

182
/_

FIG. 3A

174
-

172

Cache State

184
f—

FIG. 3B

Hash Table

Cache State pP——————»

166
f

186
f

WO 2006/111207 PCT/EP2005/053689
4/8

D

2
i /-02

Instantiating an object, wherein the instance of the object includes a first method
having a dispatch point to a second method (optional)

! / 204

Invoking the first method

‘ /« 206

Calling the second method at the dispatch point

] f- 208

Intercepting the method call to the second method

210
Y /-

Determining state

212
f

Adapting the first method to include at the dispatch point an inline reference to a state
cache associated with the determined state

(End)

FIG. 4

WO 2006/111207 PCT/EP2005/053689
5/8

C Start)
214
4 r

Invoking a first method that includes an inline cache pointing toward a cache state

216
] -

Following the inline cache to the cache state

218
\ -

Performing method validation to ensure that state associated with the cache state is
valid -

220
F

Invoking a second method from the cache state, using state information at the cache
state in lieu of method-lookup

(End)

FIG. 5

WO 2006/111207 PCT/EP2005/053689
6/8

/- 162 f 168

r 1 166
| l L

164

FIG. 6A

State Information
Object Data 170
Method Data (

FIG. 6B

[162 Cache Statef 174

190

FIG.6C

WO 2006/111207 PCT/EP2005/053689
7/8
Web
Content »— 700
708
Server
Computer Network 702
e Modem Co ter
interface mpu
714 2
Web Server
704
Modem
'7812 Interface CO';\,F; ter
720
Gateway
Computer
732
[LAN 730
Network Network Network
Interface - interface Interface
736 724 728
Server Computer Computer
Computer 722 726
734

Files
738

FIG. 7

WO 2006/111207 PCT/EP2005/053689

8/8
740 —4
Computer 742 m
rocessor
748
Comm
Interface
750
Memory 752
760
/‘
Display
Control 754
NV Storage
756
{/O Control
758
Display 746
1/O Devices
744

FIG. 8

INTERNATIONAL SEARCH

REPORT

International application No

PCT/EP2005/053689

.A-CLAS&HCANONO?}UBJECTMATTER
G06F9/42

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that

such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the iniernational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X HOELZLE U ET AL: "OPTIMIZING
DYNAMICALLY-TYPED OBJECT-ORIENTE
LANGUAGES WITH POLYMORPHIC INLIN
ECOOP. EUROPEAN CONFERENCE ON
OBJECT-ORIENTED PROGRAMMING,

15 July 1991 (1991-07-15), pages
XP000828032

page 24, Tine 5 - line 25

page 25, Tine 24 — 1ine 25

page 26, line 1 - line 3

figures 2,3

X EP 0 908 815 A (SUN MICROSYSTEMS
14 April 1999 (1999-04-14)

the whole document

1-20
D
E CACHES™"

21-38,

INC) 1-20

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or after the international
filing date

*L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0O" document refetring to an oral disclosure, use, exhibition or
other means

'P* document published prior to the international filing date but
later than the priority date claimed

T later document published after the internationalfiling date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

*X" document of partjcular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu~
_m%r:ts. such combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

14 March 2006

Date of mailing of the intemational search report

20/03/2006

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 3402040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Mihlenbrock, M

Form PCT/ISA/210 (second sheet) (April 2008)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2005/053689

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

26 February 2004 (2004-02-26)
the whole document

Category* | Gitation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5 983 021 A (MITROVIC ET AL)

9 November 1999 (1999-11-09)

the whole document
A US 2004/040029 Al (DEBBABI MOURAD ET AL)

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2005/053689
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0908815 A 14-04-1999 CN 1237737 A 08-12-1999
DE 69810056 D1 23-01-2003
DE 69810056 T2 30-04-2003
JP 2000003280 A 07-01-2000
US 2004244009 Al 02-12-2004
us - 6317796 Bl 13-11-2001
US 5983021 A 09-11-1999 AT 234484 T 15-03-2003
AU 4203499 A 13-12-1999
DE 69905875 D1 17-04-2003
DE 69905875 T2 24-12-2003
EP 1080405 A2 07-03-2001
JP 2002517033 T 11-06-2002
WO 9961979 A2 02-12-1999
US 2004040029 Al 26—-02-2004 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

