a9 United States
a2 Patent Application Publication o) Pub. No.: US 2001/0044902 A1

S 20010044902A

Shavit (43) Pub. Date: Nov. 22, 2001
(54) SECURE SOFTWARE SYSTEM AND 57 ABSTRACT
RELATED TECHNIQUES
(76) Inventor: Nir N. Shavit, Cambridge, MA (US) A secure software system includes a transformation proces-
sor for transforming an original program capable of being
Correspondence Address: executed on a lessee site into a vendor server program, a first
ggﬁ% f(ﬁOWLEY & MOFFORD, LLP program intended to be executed at the lessee site which
275 TURNPIKE STREET lacks some of the functionality of the origi.nal program and
CANTON, MA 02021-2310 (US) a second program. The first program provides some of the
computation of the original program but is unable to provide
(21) Appl. No.: 09/845,658 all of the functionality of the Original Program and requires
29) Filed: Abr. 30. 2001 cooperation with the second program which corresponds to
(22) Filed: pr 5%, an excised portion of the original program to provide the
Related U.S. Application Data functionality of original program. The excised program is
executed or otherwise utilized by a vendor server program
(63) Continuation of application No. 09/476,557, filed on which, in one embodiment, is generated by the transforma-
Jan. 3, 2000. tion processor. With this arrangement, the lessee obtains the
Publication Classification total functional.it}./ of the original program WiFhout having
access to the original program code and the excised program
(51) Int. CL7 oo GO6F 11/30 is selected such that it would be relatively difficult to
(52) US. Cli vvcecreccretrevnenecenesenses 713/200 recreate the total functionality of the original program.
10
LESSOR (VENDOR) SITE
|~ 14
CPU L -~16 MEMORY | ~18
20
NETWORK o
26a 26b - 26n
AN N Z
LESSEE LESSEE LESSEE
SITE #1 SITE #2 SITE #N
//283 //28b //28n
cPU CPU CPU

/ 30a / 30b

MEMORY MEMORY

/ 30n

MEMORY

US 2001/0044902 A1

Patent Application Publication Nov. 22,2001 Sheet 1 of 8

L @4nbi

AHOW3INW

AHOWIN

woe/

q0e \

— AHOW3W

e0¢ \

Ndd ndo ndo
uge / qasz / egz \
N# 31IS) Z# 3LIS L# 311S
33SS31 338S31 338S31
7 ... < <
ugz aez B9z
0z~ MHOML3N
81 _ AHOWIW _ 91 ndod
pL 7 ‘
of 311S (HOAN3A) HOSS3T

Patent Application Publication Nov. 22,2001 Sheet 2 of 8 US 2001/0044902 A1

BEGIN

50
PROVIDE ORIGINAL PROGRAM &t
4
APPLY A TRANSFORMATION (C) TO THE 58
ORIGINAL PROGRAM 1 TO CREATE
VENDOR SERVER PROGRAM A,
PROGRAM T, AND PROGRAM 1,
Y 62
TRANSFER PROGRAM ft, TO LESSEE SITE
66

STORE PROGRAM 7, AT LESSEE SITE

<D

Figure 2

US 2001/0044902 A1

Patent Application Publication Nov. 22,2001 Sheet 3 of 8

£ ainbi4
31IS 33Ss31
uog \
HOSS300Hd T
v
uge \ upg | B¢ u e /
— \ N HOLVHINID
o | Bu _ I a33S WOANVY
s_éMoE < \. - l_ _
. |
Y3AH3S By8 | "OSS3O0Hd
HOSS3IO0Hd _
< IVNIDIHO
HOONIA ¢ 7| Nowovuixa | | NOLLVOIGOW | WYH9O0Hd
uog ug u 3400 IL 3000 | on\
7 T | wnowdo |
€08 ¥ eg (e, ——— - —— - »—- 1, SNOLLONYLSNI
HOSS300Hd \| @/ i y o/ o1/ NOLLVWHOASNYYL
“er e HOSSIO0Hd NOLLYWHOISNVHL /
u v/ — 89
341S 3383 311S HOANIA L
awm\ 148 \

US 2001/0044902 A1

Patent Application Publication Nov. 22,2001 Sheet 4 of 8

3118 338sSIAN

:—.:

ugg

WYHDO0Hd

voz/ -

NP:

A

WYHDO0Hd

3LIS 33SsAN

B S«\

ow\(

egg

ve ainbi4
Nn/
v (o s
WVHDOHd | HOLVHINID
YIAHIS ! | a33S WOANVY
* yoanaa IJ _
|
HOSS3ID0Hd] HO0SS3DO0Hd I
[4: \ NOLLOVHLXT | NOILVOIJIGOW , WVYHOOHd TYNIDIHO
3000 - 3009 | /
t _ 0L
| TYNOLLO
7 T T - SNOILONYLSNI
97 NOILVIWHOJSNVHL
HOSSIO0Hd NOILYWHOASNVYHL 09 \
v’/
J11S HOAN3A

v_.\

Patent Application Publication Nov. 22,2001 Sheet 5 of 8 US 2001/0044902 A1

BEGIN

100
PROVIDE ORIGINAL PROGRAM Tt /

104

4

PROVIDE VENDOR SERVER PROGRAM A
AT VENDOR SITE

y

SELECT A SUBSET OF INPUTS TO THE | —108
ORIGINAL PROGRAM &t

4 112

IDENTIFY IN THE ORIGINAL PROGRAM
CODE VARIABLES AND/OR
STATEMENTS INFLUENCED BY THE
SELECTED SUBSET OF INPUTS

116

y
REWRITE THE CODE OF AT LEAST ONE OF THE IDENTIFIED
INFLUENCED VARIABLES AND/OR STATEMENTS INTO AN
ABSTRACT OBJECT CLASS O, AND PROVIDE PROGRAM ﬁz
INCLUDING AT LEAST ONE ABSTRACT OBJECT CLASS O,

-

GENERATE PROGRAM T, BY MODIFYING THE ORIGINAL PROGRAM 1t |- 120
TO USE AT LEAST ONE ABSTRACT OBJECT CLASS O, IN PLACE OF
THE IDENTIFIED INFLUENCED VARIABLES AND/OR STATEMENTS,
REMOVING THE CODE FOR THE IDENTIFIED INFLUENCED VARIABLES
AND/OR STATEMENTS AND REPLACING THE REMOVED CODE WITH
COMMUNICATION CODE TO COMMUNICATE WITH THE VENDOR SITE

<> Figure 4

Patent Application Publication Nov. 22,2001 Sheet 6 of 8 US 2001/0044902 A1

BEGIN

ADD ARBITRARY INPUT REQUESTS
TO AN ORIGINAL PROGRAM 1t

150
./

y

PROVIDE VENDOR SERVER PROGRAM A | —1°2
AT VENDOR SITE

4

MODIFY THE ORIGINAL PROGRAM TO OPERATE 154
ON NEW VALUES WHICH ARE A FUNCTION OF
EXISTING PROGRAM VALUES AND VALUES
INPUT IN RESPONSE TO ARBITRARY INPUT
REQUESTS
4 /158

IDENTIFY ONE OR MORE NEW VALUES

A

REWRITE THE CODE OF AT LEAST ONE OF THE IDENTIFIED

NEW VALUE(S) INTO AN ABSTRACT OBJECTS AN ABSTRACT | 162

OBJECT CLASS O, AND PROVIDE PROGRAM fi, INCLUDING
AT LEAST ONE ABSTRACT OBJECT CLASS 0,

GENERATE PROGRAM T’E‘ BY MODIFYING THE ORIGINAL PROGRAM TO
USE AT LEAST ONE ABSTRACT OBJECT CLASS O, IN PLACE OF THE | -166
IDENTIFIED INFLUENCED VARIABLES AND/OR STATEMENTS AND
REPLACING THE REMOVED CODE WITH COMMUNICATION CODE TO
COMMUNICATE WITH THE VENDOR SITE

END

Figure 5

US 2001/0044902 A1

Patent Application Publication Nov. 22,2001 Sheet 7 of 8

SNOILONNS HIgW3w
9 81nbi4
E—/ JYNLONYLS Vivd
SSV19 123rg0 1ovyisay
" // IR _
1 llllllll “‘k.ﬂ.. lllllllll Do e e — o s e - e —— o ——— — — — ——
. > ==
Ww
YEL ¢ iw T
A b
z z . z .
N I 2 dW L AW
L L 3
NEL) zdW (AW

SNOLLONNS H3gW3an SNOILONNS HIgWaW

S3IHNLONYLS viva S3HNLONYLS viva
N# SSVT1D 103rg0 ¢# SSVTD 103ra0
NLLL \ qill \
0Ly

SNOILONNd HISW3N

S3HUNLONYLS v1iva
b SSV10 103r80

Patent Application Publication Nov.

180

L2:

L4:

L2:

e

Li:

\

AN
~

L4:

L3:

22,2001 Sheet 8 of 8

S\ - 182e

184a

/182b

.~ 5/1841::
é Figure 7

/1 82c

190

_182b f

192a
CALL TO PROGRAM A

Ve 182a

¥e

//1826

192b
ALL TO PROGRAM A

Figure 7A

US 2001/0044902 A1

US 2001/0044902 A1

SECURE SOFTWARE SYSTEM AND RELATED
TECHNIQUES

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims benefit under 35 U.S.C. §
120 of U.S. application Ser. No. 09/476,557, filed Jan. 3,
2000.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

[0002] Not applicable.

BACKGROUND OF THE INVENTION

[0003] As is known in the art, there is a trend to couple
computers including personal computers (PCs) to computer
networks such as the internet, for example. There is also a
trend for software providers or vendors to deliver software
to software users over computer networks. The ease of
transporting software over networks makes illegal or other-
wise unauthorized copying, use, and distribution of com-
puter code relatively easy.

[0004] While a variety of different techniques exist for
protecting software against unlawful copying, use and dis-
tribution, those systems which are considered relatively
secure include specialized hardware attached to or embed-
ded in a processor of a computer executing the software.
Such specialized hardware can be customized to operate
with a specific software program or can be implemented in
a general manner to operate with any software program
executed by the processing system which executes the
software and includes the specialized hardware. One system
which employs such a hardware approach to securing soft-
ware is described in U.S. Pat. No. 5,234,045 entitled Com-
prehensive Software Protection System issued to Goldriech,
et al. This patent describes a system which includes hard-
ware to execute encrypted portions of computer code in a
way that prevents the encrypted portions from being
revealed.

[0005] Unfortunately, it is possible to reverse engineer
such specialized hardware, thereby allowing an unautho-
rized third party to decode the missing parts of the computer
code. Moreover, once a third party has decoded the com-
puter code, the unauthorized user can pose as a legal vendor
of the computer code by encrypting the unauthorized version
of the software using the accepted hardware based protec-
tion standard. The unauthorized user can then distribute the
software. Furthermore, it is relatively difficult to detect such
unauthorized use and copying, since to demonstrate that
computer code is an illegal copy, one would have to decrypt
the missing parts of the computer code.

[0006] Given the current rate of progress in assuring
reliability and availability of communication over computer
networks, it will soon become effective and acceptable to
rely on a network to guarantee fast response time to mes-
sages sent over the network to a specialized server site. It
would, therefore, be desirable to provide a technique for
securely distributing over a network software executable on
a client processing system but which cannot be easily copied
for unauthorized use.

SUMMARY OF THE INVENTION

[0007] In accordance with the present invention, a pro-
cessing system includes a code extraction processor to

Nov. 22, 2001

receive an original software program and to parse the
original software program to provide a first program and a
second program, a first storage device having the first
program stored therein, a second storage device having
stored therein a server program which utilizes the second
program and an execution processor coupled to the first and
second storage devices to execute the server program and
the second program. With this particular arrangement, a
processing system for use in a secure software system is
provided.

[0008] The code extraction processor operates on the
original program and extracts at least a portion of the
original program. The remaining portions of the original
program correspond to the first program which is intended to
be transmitted to a client or lessee site over a network. The
lessee site includes a processing system appropriate for
executing the first program. The second program includes
the excised portion of the original program code.

[0009] In a preferred embodiment, the excised program
portion corresponds to a relatively small portion of the
original program and, taken alone, does not constitute an
executable computer program. Rather, the excised program
portion is utilized by a server program which provides
communication and responses to queries provided thereto by
the first program executing at the lessee site. The first
program transmitted to the lessee site for execution includes
substantially all of the original program.

[0010] In one particular embodiment, the code extraction
processor generates a plurality of different first programs
each intended to be transmitted to a different lessee site and
a corresponding plurality of excised program portions. A
server program executes or otherwise utilizes a particular
excised code portion associated with a particular first pro-
gram executing at a lessee site. In a preferred embodiment,
the code extraction processor concurrently generates the first
and second programs as well as one or more server programs
which cooperate with respective ones of the second pro-
grams. Preferably, the second program includes one or more
portions of the original program selected to render it difficult
to recreate the functionality of the original program from
information stored at or otherwise available at the lessee site.

[0011] Tt is economically viable and in many cases pref-
erable for a software vendor to lease rather than sell software
to interested parties, as can be achieved with the present
invention. This gives both the software vendor and the
software customer more flexibility since the customer can
elect to pay for the software on a per-use basis thereby
avoiding the need to purchase a new copy of the software in
the event the software is updated. Moreover, the software
user can retrieve the latest version of the software from the
software vendor over a network. For the vendor, leasing the
software provides an opportunity to market the software to
software users who would not otherwise purchase a particu-
lar software program. Moreover, the software vendor can
advertise the software program relatively easily by allowing
users to lease the software without fee or at a reduced fee for
limited time periods, charging fees only after the customer
has become accustomed to the software. Furthermore, the
vendor can maintain control over those parties able to use
the software. Given the growing concern over limiting
access to software that may be rated as adult material, the
system of the present invention allows the vendor to control

US 2001/0044902 A1

distribution and thus prevent possible liability without
requiring a software user to purchase or include specialized
hardware in the user’s processing system.

[0012] In accordance with a further aspect of the present
invention, a method for securing a computer program to be
distributed over a network includes the steps of providing an
original program, identifying selected inputs to the original
program and extracting program code portions from the
original program in response to the selected inputs to
provide a first program to be transmitted and executed at a
lessee site. The method further includes the steps of includ-
ing the excised code portions in a second program, storing
the second program in a storage device located at a vendor
site and providing a server program which executes on a
processor at the vendor site, wherein the server program
utilizes the second program and the vendor site includes a
communication mechanism between the first and second
programs. With this particular technique, a method of gen-
erating a secure computer program is provided. In a pre-
ferred embodiment, the program code portions extracted
from the original program to provide the second program
correspond to one or more portions of the program code
which represent a relatively small percentage of the total
functionality of the original program but which are neces-
sary for complete execution of the first program. The first
program may be transmitted to a lessee site and executed on
a lessee’s computer. However, the first program executed at
the lessee site does not include all of the functionality of the
original program and thus, requires one or more inputs
transmitted thereto over the network from the vendor site.
Such inputs are provided by the cooperative execution of the
vendor server program and the second program.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The foregoing features of this invention, as well as
the invention itself, may be more fully understood from the
following detailed description of the drawings in which:

[0014] FIG. 1 illustrates a computer architecture on which
the secure software system of the present invention operates.

[0015] FIG. 2 is a flow diagram illustrating a method for
providing a secure software system in accordance with the
invention.

[0016] FIG. 3 is a block diagram illustrating creation of a
secure software system in accordance with the invention.

[0017] FIG. 3A is a block diagram illustrating operation
of the secure software system of FIG. 3.

[0018] FIG. 4 is a flow diagram illustrating one embodi-
ment for providing the secure software system of FIG. 3.

[0019] FIG. 5 is a flow diagram illustrating an alternate
embodiment for providing the secure software system of
FIG. 3.

[0020] FIG. 6 illustrates the structure of an exemplary
abstract object class formed in the methods of FIGS. 4 and
5.

[0021] FIG. 7 illustrates a graph of a sequential program
code fragment; and

[0022] FIG. 7A illustrates a graph of a non-sequential
program code fragment.

Nov. 22, 2001

DETAILED DESCRIPTION OF THE
INVENTION

[0023] Referring to FIG. 1, a block diagram of an illus-
trative computer architecture 10 on which the secure soft-
ware system of the present invention operates is shown. A
lessor, or vendor site 14, including a central processor unit
(CPU) 16 and a memory 18, is coupled to a communication
path, or network 20. For simplicity and ease of explanation,
a single CPU is here shown. It will be appreciated by those
of ordinary skill in the art, however, that the CPU 16 can
comprise a single CPU or multiple individual CPUs oper-
ating independently or in communication. Such communi-
cation may in some embodiments occur over a local bus
while in other embodiments such communication between
multiple CPUs 16 may occur over a vendor network (not
shown). Further, the network 20 may be of various physical
forms, such as a local area network or a wide area network,
and implement any conventional communication protocol.
In one embodiment, the network 20 represents the internet.

[0024] A plurality of lessee sites 26a, 26b, . . . 26n are
coupled to the network 20 and seek authorized use of a
computer program, referred to herein as the Original Pro-
gram g, residing at the vendor site 14. Each of the lessee
sites 26a-26n includes a CPU 284-28# and a memory
30a-30#, respectfully, as shown. It will be appreciated that
the lessee CPU 284-28n may comprise one or multiple
CPUs operating independently or in communication over a
local bus or a lessee network (not shown).

[0025] The Original Program mcan be characterized as a
“stand-alone” program in that it is capable of being executed
at one or more lessee sites 26a-26x, regardless of whether
the program communicates with the vendor site or any other
site. Typically, the Original Program zis an application
program, such as a word processing program, a spreadsheet
program or a graphics program. In this regard, the vendor
site 14 can be considered to be a “server”, with the lessee
sites 26a-26n, or even the individual users of the lessee sites
26a-26n, being its “clients”. Preferably, the Original Pro-
gram grequires external data to be input and/or execution of
the Original Program nrequires data from a previous execu-
tion (i.e., requires data to be “re-used”).

[0026] In accordance with the invention, the Original
Program sxresiding at the vendor site 14 is “leased” or
provided to one or more of the lessee sites 26a-26x for use
in a way that prevents unauthorized use and/or copying of
the Original Program. As will become apparent, the “lease”
can be further “narrowed” to one or more individual users of
a lessee site. For example, the authorized lessee site may
represent a Management Information System (MIS) depart-
ment of a company or specific company employees and the
present invention permits a vendor to control use by all
lessees. The “lease™ is achieved by providing one or more
lessees with a Local Program &,to be executed at the lessee
site 26a-26n. The Local Program #provides some of the
computation of the Original Program gbut is unable to
provide all of the functionality of the Original Program zand
requires cooperation with a Program #,which corresponds to
an excised portion of the Original Program xto provide the
functionality of Original Program x. Excised Program Por-
tion #,is executed or otherwise utilized by a Vendor Server

Program A executed on a processor at the vendor site 14, as
will be described.

US 2001/0044902 A1

[0027] With this arrangement, the lessee obtains the total
functionality of the Original Program gwithout having
access to the Original Program code, thereby preventing any
unauthorized use of the Original Program. Furthermore, the
Excised Program Portion #,is selected such that it would be
relatively difficult to recreate the total functionality of the
Original Program . Thus, an operator or user of the Local
Program #,at a lessee site would be unable to provide the
missing functionality without a relatively large expenditure
of time, money and/or processing resources.

[0028] Referring also to FIG. 2, a process for generating
the secure software system is shown. It will be appreciated
by those of ordinary skill in the art that the particular
sequence of steps described is illustrative only and can be
varied without departing from the spirit of the invention.
Processing begins in step 50, with the Original Program
abeing provided. Recall that the Original Program =is
capable of being executed on a lessee site 26a-26n either
independently or in communication with another site. Ini-
tially however, the Original Program gresides at the vendor
site 14 and the vendor desires to allow one or more lessee
sites 26a-26n to have authorized use of the Original Program
upon certain terms and conditions. In order to ensure that the
lessee does not exceed these terms and conditions, the
vendor “transforms” the Original Program minto the Vendor

Server Program A, the Local Program #and the Excised
Program portion #t,and provides the lessee with access to

only the Local Program #,. The Local Program # performs
at least some of the computation associated with the Original
Program. However, without access to at least the results
provided by execution of the Program #,by the Vendor
Server Program A, the Local Program lacks functionality of
the Original Program, as will be described.

[0029] In step 58, a transformation “C” is applied to the
Original Program zin order to create the Vendor Server

Program A, the Program #,and the Program ,. It is the Local

Program #;that is downloaded from the vendor site 14 to the
one or more lessee sites 26a-267 for local execution at the
lessee sites, while the Program ,is stored at the vendor site
14 for use or execution by the Vendor Server Program A at
the vendor site 14. Thus, Program #,is not provided to the
lessee sites 26a-26n. The transformation C may be per-
formed in response to loading the Original Program code on
the vendor site 14. Alternatively, the transformation C may
be performed in response to a request for use of the Original
Program gtransmitted by one or more lessee sites 26a-26xn
and received at vendor site 14. It will be appreciated by those

of ordinary skill in the art that the Program fmay be
provided to the lessee sites 26a-26n by means other than
being downloaded over the network 20. For example, the
Program fmay be in the form of a “shrink wrapped”
software product provided to the lessees.

[0030] The transformation C performed on the Original
Program zcan take various forms, as will be described
further in conjunction with FIG. 3 below. At a minimum, the
transformation C includes the extraction of at least one
portion of the Original Program xin order to generate the
Local Program #,which thus lacks the functionality of the
extracted portion. The transformation C further includes
placement of the extracted portion or at least the function-

Nov. 22, 2001

ality of the extracted portion into the corresponding Excised

Program Portion &, It will be appreciated by those of
ordinary skill in the art that code extraction encompasses
actual extraction or an equivalent. For example, a portion of
the Original Program code could be encrypted and the
encrypted version left in the program upon the generation of
the Local Program. Additionally, the transformation C may
include adding code to the Original Program xin order to

generate the Local Program #and/or modifying at least a
portion of the Original Program code based on a some

function in order to generate the Local Program #,. In one
embodiment, it is preferable to extract portions of the code
necessary for operation of the Original Program .

[0031] The extracted portion of code can be characterized
as “necessary” in the sense that, in its absence, the Local

Program #;lacks at least some of the functionality of the
Original Program . The portion of the Original Program
code that is extracted can be selected based on various
criteria. For example, program variables and/or statements
which are influenced by a particular input, or set of inputs,
can be selected for removal, as described in conjunction with
the embodiment of FIG. 4. Alternatively, the execution
paths of the Original Program zcan be traced and one or
more such paths selected for removal, such as on the basis
of path length and/or the number of inputs influencing the
path, for example.

[0032] Preferably, the portion of code selected to be
removed from the Original Program zin generating the
Local Program #,will render it difficult to recreate the
functionality of the Original Program rfrom information to
which the lessee has access. More particularly, even if an
unauthorized user is able to read and modify the code of the
Local Program #,, repeatedly execute the Local Program
#jin communication with the Vendor Server Program A

executing the corresponding Excised Program Portion #,,
and access some details of the transformation C (e.g., with
the exception of some random seed given as input to the
transformation processor), it should be at least financially
infeasible, and preferably also computationally infeasible, to
recreate the functionality of the Original Program x. That is,
the cost of reverse-engineering the functionality of the
Original Program should approach or exceed the cost of
purchasing the program or the expected financial gain from
reverse-engineering.

[0033] Other considerations in determining the portion of
the Original Program code to be extracted are the amount of
communication between the Vendor Server Program A and
the lessee sites 26a-26x necessary to provide the lessee with
the functionality of the Original Program gand the speed of
the network 20. Generally, if the network 20 is relatively
slow, relatively little communication should be required
between the vendor site 14 and the lessee site in order to
prevent performance degradation at the lessee site. How-
ever, a balance is required between the level of security
provided and any execution delays since, in some cases, the
less communication required, the easier it would be for an
adversary to reverse-engineer the functionality of the Origi-
nal Program =.

[0034] Preferably, the execution time of Local Program
#,is not substantially slower than the execution time of the

US 2001/0044902 A1

Original Program rand the Vendor Server Program A sup-
plies to Local Program m,a relatively small percentage of the
total functionality of the Original Program . Thus, as long
as there are no significant delays in communication between
the vendor site 14 and the lessee sites 26a-26n, the latencies
involved in executing the distributed program (&, A) will be

similar to those of executing the Local Program #;and hence,
to those of Original Program x.

[0035] In the illustrative embodiment, application of the
transformation C to the Original Program gmresults in the
concurrent generation of the Vendor Server Program A
Program #and Program #,at the vendor site 14. Alterna-
tively however, the Program A may be generated with or
without knowledge of the transform C by a person, such as
a software developer.

[0036] The Vendor Server Program A may include various
degrees of functionality. At a minimum however, the Vendor
Server Program A is suitable for utilizing the Excised

Program Portion #,and for communicating with the Local

Program fexecuting at one or more lessee sites 26a-26n.
For example, in one embodiment, Vendor Server Program A

executes the Excised Program Portion #,.

[0037] The Vendor Server Program A may additionally
include lessee tracking functionality and additional security
mechanisms. More particularly, the Vendor Server Program
A may monitor the use of one or more lessee sites 26a-26n
of the leased Local Program s,in order to ensure that the
agreed upon terms and conditions are not exceeded. Further,
the Program A may implement certain “rules” which control
access of the lessee sites 26a-26x to the necessary informa-
tion required to obtain the functionality of the Original
Program x, as will be described.

[0038] The Vendor Server Program A may be compiled

along with the Excised Program Portion f,and thus, be
specific to a particular lessee site. Alternatively, the Vendor
Server Program A may be “universal” in the sense that it is
suitable for use with different Excised Program Portions
#yassociated with different lessee sites 26a-26m. Alterna-
tively still, the Vendor Server Program A may be “generic”
in the sense that it is generated in response to more than one
different Original Program.

[0039] The Vendor Server Program A is executed by the
CPU 16 at the vendor site 14 in conjunction with execution
of the Local Program #,at one or more of the lessee sites
26a-26n. The Vendor Server Program A communicates with
the lessee sites 26a-26n to supply the functionality necessary
to provide the lessee with the total functionality of the
Original Program z. The combination of the Vendor Server
Program A and the Local Program #;may be characterized as
a distributed program (&, A) since, both programs in com-
munication, yields the equivalent functionality of the Origi-
nal Program x. In one embodiment, the Vendor Server
Program A acts as an oracle program providing information
to Local Program #,in response to information requests
generated by Local Program #,and communicated to Vendor
Server Program A.

[0040] In step 62, the Local Program #;is transferred to
one or more lessee sites 26a-26n for execution, or storage

Nov. 22, 2001

and subsequent execution. This transfer occurs in response
to a request by the lessee sites for access to a particular
application program zresiding at the vendor site 14. In step
66, the Program Portion #i,is stored in memory 18 at the
vendor site 14.

[0041] Referring also to FIG. 3, a block diagram illus-
trating creation of the secure software system is shown in
conjunction with lessee sites 26a-26n in communication
with the vendor site 14 via the network 20. Some or all of
the communication software and hardware may be provided
by the processing platforms at the vendor and lessee sites 14,
26. At the vendor site 14, the Original Program xis processed
by a transformation processor 74 which performs the trans-
formation C on the program 70. The transformation proces-
sor 74 may be responsive to transformation instructions 68
containing instructions regarding the particular transforma-
tion C and a random seed generator 72 for providing a
random set of bits for use in performing the transformation
C. The transformation processor 74 may generate the Vendor
Server Program A, as noted above. In this regard, the
transformation processor 74 may be referred to as an appli-
cation generator.

[0042] The transformation processor 74 includes a code
extraction processor 76 which operates to extract at least a
portion of the Original Program xin order to generate a
Local Program #,,-#,,for each of the lessee sites 26a-26x,
respectively. In the illustrative embodiment, the Local Pro-
grams #,,-#,,are coupled to the respective lessee sites 26a-
26n via the Vendor Server Program A and respective com-
munication paths 80a-80n of the network 20, as shown.

Alternatively however, the Local Programs #,-#;,may be
coupled directly from the transformation processor 74 to the
lessee sites 26a-26n. That is, while the Vendor Server
Program A manages the communication between the Local
Program and the Excised Program Portions during opera-
tion, but may or may not manage transmission of the Local
Programs to the lessee sites.

[0043] The code extraction processor 76 further generates
Program Portions f,,-#,,, with each of the Program Portions

fipy -Tipgincluding the portion of the Original Program code
extracted in order to generate the respective Local Program.
The Program Portions #,,-fi,,are coupled to the Vendor
Server Program A 82 via respective communication paths
84a-84n, as shown. Thus, following the creation of the
secure software system, each lessee site 26a-26n has a
respective Local Program #,,-#,,residing thereon and the
Vendor Server Program A 82 has access to the corresponding

Program Portions z,,-,,.

[0044] The Local Programs #,,-#;,generated by the code
extraction processor 76 for each lessee site 26a-26n may or
may not lack the same excised portion of the Original
Program. Preferably, there will be at least some distinction
between the different Local Programs #,,-#;,and thus, also

the respective Program Portions #,,-f,,, in order to enable
the vendor to monitor program usage by each lessee.

[0045] The transformation processor 74 may optionally
include a code modification processor 78. Processor 78
generates and adds additional code to the Original Program
rmand/or modifies the code of the Original Program sfor
further processing by the code extraction processor 76.

US 2001/0044902 A1

Modification of the Original Program gmay include a pre-
determined or mapping process as specified by transforma-
tion instructions 68 or a random mapping process in
response to input from the random seed from generator 72,
as examples. With this arrangement, the code extraction
processor 76 is responsive either to the Original Program
mor to some modified version, or versions thereof as pro-
cessed by the optional processor 78.

[0046] Use of the processor 78 to add to, or otherwise
modify, the Original Program code serves to further render
it difficult for adversaries to recreate the functionality of the

Original Program gfrom the Local Program #,. Stated dif-
ferently, the extent of the transformation C should be tai-
lored to the efforts an adversary is likely to invest in
reverse-engineering the software.

[0047] Referring also to FIG. 3A, use of the established
secure software system will be described. Note that FIG. 3A
differs from FIG. 3 in that the communication paths 802-80#
from the code extraction processor 76 to the Vendor Server
Program A and further to the lessee sites 26a-26n are
removed since, following establishment of the system, a
Local Program #,-#,,resides at each lessee site 26a-26n.
Also removed from FIG. 3A are the communication paths
84a-84n since the Vendor Server Program A no longer
requires communication with transformation processor 74.
Likewise, Original Program sneed not be provided to trans-
formation processor 74 after processor 74 provides Pro-
grams f,,-;,and the respective Excised Program Portions

iy -fipy- Further, FIG. 3A includes communication paths
86a-86n between the Vendor Server Program A and each of
the lessee sites 26a-26n for permitting communication
between the Local Programs #,,-#,,and the respective

Excised Program Portions #,,-#,,via the Vendor Server
Program 82.

[0048] More Local

Programs #,,-#,, include or have access to means for com-
municating with the Vendor Server Program A 82 such that,
during execution of the Local Programs at lessee sites 26, if
information is required from the Vendor Server Program A
82, such information can be generated in response to the
Vendor Server Program A executing or otherwise interacting

particularly, the

with the respective one of the Excised Program Portions #,, -
. For example, when lessee site 26a runs Local Program

T a .
722, Local Program #,,queries Vendor Server Program A for

information. Vendor Server Program A generates such infor-
mation in response to queries generated by Local Program

#i,,by executing or otherwise interacting with Program Por-

tion #,,. With this arrangement, the functionality of the
Original Program xis achieved at each lessee site 26a-267

by the combination of execution of the Local Program #,,-
at the lessee site, execution of the Program Portions x,, -

. L
by the Vendor Server Program A, and communication
fherebetween.

[0049] 1t will be appreciated by those of ordinary skill in
the art that the relative timing of execution of the Local

Program x,,at the lessee site 26a and the execution of the

corresponding Program Portions #,,by the Vendor Server
Program A can be varied. For example, in one embodiment,

Nov. 22, 2001

the Vendor Server Program A executes the Program Portion

.10 response to receipt of a query from the corresponding
lessee site 26a.

[0050] Before proceeding with a discussion of FIGS. 4-6,
certain terminology is explained. The Vendor Server Pro-

gram A, the Local Program #;, and the Excised Program

Portion(s) #,0f the present invention may be implemented
using “object-oriented” computer programming techniques.
Object-oriented computer programming techniques involve
the definition, creation, use and destruction of software
entities referred to as “objects.” Each object is an indepen-
dent software entity comprised of data generally referred to
as “attributes” and software routines generally referred to as
“member functions” or “methods” which manipulate the
data.

[0051] One characteristic of an object is that only methods
of that object can change the data contained in the object.
The term “encapsulation” describes the concept of packag-
ing the data and methods together in an object. Objects are
thus said to encapsulate or hide the data and methods
included as part of the object. Encapsulation protects an
object’s data from arbitrary and unintended use by other
objects and therefore prevents an object’s data from corrup-
tion.

[0052] To write an object-oriented computer program, a
computer programmer conceives and writes computer code
which defines a set of “object classes” or more simply
“classes.” Each of these classes serves as a template which
defines a data structure for holding the attributes and pro-
gram instructions which perform the method of an object.
Each class also includes a means for instantiating or creating
an object from the class template. The means for creating is
a method referred to as a “constructor.” Similarly, each class
also includes a means for destroying an object once it has
been instantiated. The means for destroying is a method
referred to as a “destructor.”

[0053] An abstract object class refers to any incomplete
class that cannot therefore be used to instantiate semanti-
cally meaningful objects. An abstract class is used as a base
class to provide common features, provide a minimum
protocol for polymorphic substitution or declare missing
common features that its derived class must supply prior to
instantiation of an object.

[0054] When a processor of a computer executes an
object-oriented computer program, the processor generates
objects from the class information using the constructor
methods. During program execution, one object is con-
structed, which object may then construct other objects
which may, in turn, construct other objects. Thus, a collec-
tion of objects which are constructed from one or more
classes form the executing computer program.

[0055] Inheritance refers to a characteristic of object ori-
ented programming techniques which allows software
developers to re-use pre-existing computer code for classes.
The inheritance characteristic allows software developers to
avoid writing computer code from scratch. Rather, through
inheritance, software developers can derive so-called sub-
classes from a base class. The subclasses inherit behaviors
from base classes. The software developer can then custom-
ize the data attributes and methods of the subclasses to meet
particular needs.

US 2001/0044902 A1

[0056] With a base-class/sub-class relationship, a first
method having a particular name may be implemented in the
base-class and a second different method with the same
name may be implemented differently in the sub-class.
When the program is executing, the first or second method
may be called by means of a statement having a parameter
which represents an object. The particular method which is
called depends upon whether the object was created from the
class or the sub-class. This concept is referred to as poly-
morphism.

[0057] For example, assume a computer program includes
a class called Employee. Further assume that class
Employee includes a member function which defines a
series of method steps to be carried out when a worker
retires from the company. In an object-oriented implemen-
tation, the retire method is automatically inherited by sub-
classes of class Employee. Thus, if a class called Executive
is a sub-class of the class called Employee, then class
Executive automatically inherits the retire method which is
a member function of the class Employee.

[0058] A company or organization, however, may have
different methods for retiring an employee who is an execu-
tive and an employee who is not an executive. In this case,
the sub-class Executive could include its own retire method
which is performed when retiring an employee who is an
executive. In this situation, the method for retiring executive
employees contained in the Executive class overrides the
method for retiring employees in general contained in the
Employee class. With this base class/sub-class arrangement
another object may include a method which invokes a
retirement method. The actual retirement method which is
invoked depends upon the object type used in the latter call.
If an Executive object type is used in the call, the overriding
retirement method is used. Otherwise, the retirement method
in the base-class is used. The example is polymorphic
because the retire operation has a different method of
implementation depending upon whether the object used in
the call is created from the Employee class or the Executive
class and this is not determined until the program runs.

[0059] Since the implementation and manner in which
data attributes and member functions within an object are
hidden, a method call can be made without knowing which
particular method should be invoked. Polymorphism thus
extends the concept of encapsulation.

[0060] Object-oriented computer programming tech-
niques allow computer programs to be constructed of objects
that have a specified behavior. Several different objects can
be combined in a particular manner to construct a computer
program which performs a particular function or provides a
particular result. Each of the objects can be built out of other
objects that, in turn, can be built out of other objects. This
resembles complex machinery being built out of assemblies,
subassemblies and so on.

[0061] For example, a circuit designer would not design
and fabricate a video cassette recorder (VCR) transistor by
transistor. Rather, the circuit designer would use circuit
components such as amplifiers, active filters and the like,
each of which may contain hundreds or thousands of tran-
sistors. Each circuit component can be analogized to an
object which performs a specific operation. Each circuit
component has specific structural and functional character-
istics and communicates with other circuit components in a

Nov. 22, 2001

particular manner. The circuit designer uses a bill of mate-
rials which lists each of the different types of circuit com-
ponents which must be assembled to provide the VCR.
Similarly, computer programs can be assembled from dif-
ferent types of objects each having specific structural and
functional characteristics.

[0062] The term “client object,” or more simply “client,”
refers to any object that uses the resources of another object
which is typically referred to as the “server object” or
“server.” The term “framework™ can refer to a collection of
inter-related classes that can provide a set of services (e.g.,
services for network communication) for a particular type of
application program. Alternatively, a framework can refer to
a set of interrelated classes that provide a set of services for
a wide variety of application programs (e.g., foundation
class libraries for providing a graphical user interface for a
Windows system). A framework thus provides a plurality of
individual classes and mechanisms which clients can use or
adapt.

[0063] An application framework refers to a set of classes
which are typically compiled, linked and loaded with one
particular application program and which are used by the
particular application program to implement certain func-
tions in the particular application program. A system frame-
work, on the other hand, is provided as part of a computer
operating system program. Thus, a system framework is not
compiled, lined and loaded with one particular application
program. Rather, a system framework provides a set of
classes which are available to every application program
being executed by the computer system which interacts with
the computer operating system.

[0064] Referring now to FIG. 4, an illustrative embodi-
ment for establishing the software security system will be
described in conjunction with generating exemplary Pro-

gram Portion ,, and the corresponding Local Program #,,for
execution at lessee site 26a. In this example, the optional
code addition and modification processor 78 is not opera-
tive. It will be appreciated by those of ordinary skill in the
art that the particular sequence of steps described is illus-
trative only and can be varied.

[0065] Processing commences in step 100, with the Origi-
nal Program gbeing provided at the vendor site 14. In this
embodiment, the Original Program nis dependent on at least
one input. The Vendor Server Program A is provided at the
vendor site 14 in step 104, as described above in conjunction
with step 58 of FIG. 2.

[0066] In step 108, a subset of the program inputs is
selected in accordance with a predetermined criteria. For
example, a random subset of the program inputs may be
selected in accordance with a random seed provided by
generator 72 (FIGS. 3 and 3A). As another example, the
program code may be traced into paths and the selected
subset of inputs may be those which affect a particular one
or more paths, such as the longest or shortest path or the path
having the most or least input dependencies.

[0067] Once the subset of program inputs is selected, the
variables and/or statements in the Original Program code
which are influenced by the selected subset of inputs are
identified in step 112. A variable or statement is influenced
by an input if changing the input changes the value stored in
the variable or the outcome of executing the statement.

US 2001/0044902 A1

[0068] In step 116, the program code associated with at
least one of the influenced variables and/or statements is
rewritten into a corresponding abstract object class O;. Thus,
where a plurality of the influenced variables and/or state-
ments are rewritten, the result is the set of one or more
abstract object classes {O,, . . ., O.}. This step can be
achieved using standard object-oriented programming tech-
niques that can be applied to any program code. If the
programming language in which the Original Program is
written does not allow such a modification, then the Original
Program can be converted to a language that does such
modification.

[0069] Also in step 116, the Program Portion #,,is gener-
ated and includes at least one of the abstract object classes
{04, ..., 0.}. The abstract object class, or classes provided
in the Excised Program Portion are selected in accordance
with the desired level of difficulty in recreating the func-
tionality of the Original Program x. That is, a proper choice
of the variables and/or statements or class member functions
to be included in one or more abstract object classes and
provided in the Excised Program Portion can make deter-
mining the functionality of the remotely executed object(s)
infeasible to an adversary.

[0070] In step 120, the Local Program #,,is generated by
modifying the Original Program =to use the at least one
abstract object class {O,, . . ., O, } included in the Excised

Program Portion 4,,in place of at least one of the identified
influenced variables and/or statements, removing the code
for the identified influenced variables and/or statements and
replacing the removed code with communication code to
permit communication to the vendor site 14. The commu-
nication code may take various forms. For example, one or
more queries, or Request Messages, can be embedded into

the Local Program m,,which require responses, or Reply
Messages, from the Vendor Server Program A for successful
execution.

[0071] The Vendor Server Program A may include certain
“rules” that will render it difficult to determine the behavior

of Program Portion #,,and thus, to replicate, a particular

abstract object class included in Program Portion #,,simply
by repeatedly sending Request Messages and analyzing the
resulting Reply Messages. For example, the Vendor Server
Program A may include rules which ensure that Request
Messages from the Local Program are answered only if the
order of the Request Messages corresponds to a predeter-
mined valid order. As another example, the Vendor Server
Program A may require that the lessee site 26a-26n “prove”

that it has authorization to run the Local Program #,,prior to
responding to any Request Messages. For example, a pass-
word scheme might be used in order to prevent unauthorized
use of the software by certain users, such as children, even
at an authorize lessee site. Alternatively, a digital ID based
on public key cryptography scheme could be implemented
where a dynamic challenge identification test would be

based on messages exchanged between Program #,and Pro-
gram A. Other techniques could also be used.

[0072]

,and the Vendor Server Program A are implemented using
object-oriented programming techniques to ensure that each
program’s execution is a sequence of operations on abstract
object classes. Each object’s state consists of a collection of

In one particular embodiment, the Local Program

Nov. 22, 2001

memory locations and there is a set of operations that are the
only means of manipulating the object’s state. Each opera-
tion OP; on an object O; has corresponding inputs and
outputs. The relation between the Local Program and the
Vendor Server Program A is thus that for some

subset {O, . .., O} of the objects in the Local Program 4,
the memory addresses and code for executing the operations
on the objects are missing. The code and memory locations
are part of the Vendor Server Program A. That is, one or
more abstract objects are removed from the Original Pro-
gram to generate the Local Program in the sense that the
code associated with the object is removed and the memory
locations associated with that object at run time are on the
vendor site 14.

[0073] The complete distributed program (&, A), in its
simplest form, has the lessee locally execute the Local
Program #,,. Every operation OP; on an object O; that is
missing from the Local Program, is replaced by a Request
Message (OP;, inputs) sent by the Local Program #,,from the
lessee site 26a to the vendor 14. The Vendor Server Program
A receives Request Message (OP,, inputs), runs the proce-
dure corresponding to the operation OP; with inputs on
object O; which is part of the corresponding Program Portion
f,,, and sends a Reply Message (OP;, outputs) with the
outputs being the results returned by the object O,.

[0074] Referring to the flow diagram of FIG. 5, the secure
software system is also suitable for securing an Original
Program that is not input dependent. In this case, additional
process steps are provided in order to effectively convert the
program into an input dependent Original Program. To this
end, processing commences in step 150, in which one or
more Arbitrary Input Requests are inserted into the Original
Program. In step 152, the Vendor Server Program A is
provided at the vendor site 14, as described above.

[0075] In step 154, the program code is modified to
operate on values, referred to as New Values, which are a
function of existing program values and values input in
response to the one or more Arbitrary Input Requests. In step
158, at least one of the New Values is identified for gener-
ating a corresponding abstract object class O; and in step
162, the code associated with the identified New Values is
rewritten into the corresponding abstract object class {O;-

O,}. The Program Portion #,,is generated in step 162 by
forming a program containing at least one abstract object
class from the set of generated abstract object classes
10,-0.}.

[0076] The corresponding Local Program #,,is generated
in step 166 by modifying the Original Program to use at least
one abstract object class {O;, . . . O} comprising the
Program Portion #,,in place of the identified New Values,
removing the code for the identified New Values and replac-
ing the removed code with communication code to permit
communication with the vendor site 14 as discussed above
in conjunction with step 120 of FIG. 4.

[0077] 1t will be appreciated by those of ordinary skill in
the art that the process described in conjunction with FIG.
5 of inserting arbitrary input requests and modifying the
program to operate on New Values associated with such
requests may be implemented even on an original program
which is dependent on one or more inputs. Such an insertion

US 2001/0044902 A1

of additional input dependencies may provide a useful
additional safety measure against unauthorized program use
in certain applications.

[0078] Referring also to FIG. 6, an object-oriented com-
puter program 170 includes a plurality of object classes
171a-171N. Each of the object classes 171a-17IN may
include one or more data structure definitions and/or one or
more member functions MF,; MF,, MF,MF, and MF,-MF_,
respectively. To secure the computer program 170, one or
more of the data structure definitions or the member func-
tions are excised from the computer program 170 and
included as part of an abstract object class 174. The abstract
object class 174 is utilized by a server program of the type
described above in conjunction with FIGS. 3 and 3A.

[0079] By removing portions of the code from object
classes 171, computer program 170 is unable to function in
its intended manner. The code removed from the object
classes 171 is replaced by code which enables the program
170 to communicate with the server program. Thus, com-
puter program 170 is effectively transformed, by the removal
(or an equivalent function thereof) and addition of certain
computer code into a lessee program.

[0080] The resultant lessee program may be transmitted
over a communication path and stored at a lessee site for
execution by a processor at the lessee site. Upon execution
of the lessee program at the lessee site, the lessee program
communicates with the Vendor Server Program via any
conventional communication technique. For example, lessee
program may communicate with the Vendor Server Program
via using a remote procedure call or a message passing
technique.

[0081] Considering, for example, a 3-D rendering/model-
ling program of the type used by architects and engineers.
Such programs are relatively complex, computationally
intensive, and are relatively expensive to purchase. Due at
least in part to the relatively high price of such programs,
many architectural and engineering firms do not purchase
the programs when they are required only for specific
projects. One way to make the program available to potential
users is to lease the program to the users on a temporary
basis, with costs that do not introduce a significant startup
overhead.

[0082] Because of the computational intensity, 3-D ren-
dering programs are designed for use on the client’s
machine. Even with improved network bandwidth and
latency, supporting the concurrent execution of multiple
copies of such a program off a remote server would require
a significant investment in hardware and support on the part
of the program vendor.

[0083] One solution to such a problem, as described above
in conjunction with FIGS. 1-6, is to allow the users to run the
program on their local machines, but maintain control over
how long and by whom the program is used. This is
accomplished by transforming the original program as
described above.

[0084] A first alternative transform includes the removal
of predefined program code lines or objects. In this
approach, the program developer inserts markers in the
program specifying which sets of operations/memory loca-
tions are hardest to determine from the program ;. These
operations/memory locations are thus good candidates for
removal.

Nov. 22, 2001

[0085] Asecond alternative transform includes removal of
entire objects. Removing an object means removal of the
code and the actual memory locations associated with the
object and at run time allocating those variables on the
server machine running Program A. If necessary, Program A
will retain these allocated memory locations from one

execution of the specific subprogram #,to the next until the
lessee terminates the lease/rental of the program (and pos-
sibly even after that following special request). In this
example, such data could be some crucial subset of infor-
mation about the details of the design of buildings being
rendered. For example, a set of objects that are called
infrequently and that are influenced by the inputs can be
selected for removal of their entire functionality. In this
approach, each object class in the program has a set of
operations ml . . . mk that are the means of invoking
operations on an object O instantiated from the object class.
Actable of all sets of operations and the inputs that influence
them should be established. All objects can be examined and
a subset can be randomly selected.

[0086] Referring now to FIGS. 7 and 7A, a particular
example of yet another technique for transforming program
code is shown. An original program gwritten in a high level
language such as C or C++ is compiled or otherwise
processed to provide a series of sequential code statements.
Most programs can be transformed into such a representa-
tion. A fragment of program code from such a series of
sequential statements is shown in Table 1.

TABLE 1

L1: X:=y+ 2z

z: = sqrt (w + x)/2;

yi=y+L;
13: read (z);
C1: if (x +y) = z mod w then goto L1;

else go to L.2;

12: Xi=y+2z

z: = 2y;
C2: if (w/2 < 5) then go to L3;

L4:

[0087] In the case of an object-oriented program, all
objects and object calls are unwrapped to provide such a
sequence of code statements. The fragment of program code
in Table 1 can be diagrammatically illustrated as a graph 180
shown in FIG. 7. Graph 180 includes a plurality of edges
182a-182¢ which represent variables/statements in the code
fragment shown in Table 1. Graph 180 also includes con-
dition nodes 184a, 184b which represent condition state-
ments labelled as C1, C2 in the code fragment of Table 1.
The resulting code is thus a collection of sequences of
operations on variables (edges) 182a-182¢ cach ending on a
conditional branch instructions (nodes) 184a, 184b. The
edge-node pairs are sequenced in a particular order.

[0088] In the above-described 3-D program, for example,
depending on inputs defining the dimensions of the rendered
buildings and computer screen size, one would need to have
a sequence of instructions for scaling images and branch
instructions based on tests that evaluate how to best apply
the sequences to scale displayed 3-D objects for viewing.

[0089] Next, a processor generates a table of the condi-
tional branch tests and the variables/instructions upon which
the branch tests depend. One can also include (based on

US 2001/0044902 A1

analyzing the original high level object oriented code) per
each such test a list of objects/operations that influence these
variables as described above in conjunction with the second
transform alternative.

[0090] Considering the program code in terms of the graph
shown in FIG. 7, the edges 182a-182¢ are laid out sequen-
tially in memory in some order (i.e., the program is a
sequence of instructions stored one after the other on a
diskette or in a region of computer memory).

[0091] Next, the order in which the edges are laid out may
be permuted to provide graph 190 as shown in FIG. 7A. As
pictorially illustrated in graph 190, the order of the edges
182a-182c¢ has been changed from the original order illus-
trated in graph 180 (FIG: 7). Additionally the conditional
nodes 184a, 184b have been removed and replaced by
program call nodes 1924, 192b.

[0092] A mixed order graph 190 may be generated by
selecting a random set (or possibly the most influenced set
in terms of number of affected objects/operations to the
number of inputs influencing the variable that the branch
depends on) of conditional branch tests and their related

code from #,(one can actually remove complete sequences
of operations on the related high level object in which each
chosen branch occurs) and replacing the selected conditional

branch tests and related code from #,with calls to a new
remote object in the program #, The remote object in

program #,will, among other things, return the location in
the code from which one must continue. This removal
effectively means that complete sections of the code are
scattered in arbitrary places in the sequential program
description and there is no information available regarding
the continuation of a given sequence of instructions which
exists in the code. In order to determine such information,
one must receive the response to the appropriate call to the
program A which will run the missing test relating to that
conditional branch operation and return the location in the
program from which to continue. In a complicated program
it would be relatively difficult to determine the function
provide by the program A since it would be necessary for a
user at the lessee site to obtain large numbers of responses
to each removed branch condition. Furthermore, the user at
the lessee site would have to try large number of inputs to
insure that all conditional branch instructions were in fact
investigated.

[0093] Permuting the program code fragment presented in
Table 1 in the above described manner can result in the
permuted program code fragment shown in Table 2.

TABLE 2
Xi=y+2z
z: =2y
Al: v: = call (‘line 285’, x, y, z, W);
go to v;
L1: X:=y+2z
z: = sqrt (W + x)/2;
yi=y+L;
L3: read (z);
A2: v: = call (‘line 291", x, y, z, W);
goto v,

[0094] As can be seen from Table 2, the conditional
statements C1, C2 in the program code fragment of Table 1

Nov. 22, 2001

have been replaced by call statements Al, A2 and corre-
sponding “goto” statements in the program code of Table 2.
In the call statements, values of variables x, y, z, w are
provided to program A and program A returns the location of
a particular line of code which should next be executed in

Program #,. Thus, the “goto” statements replace the test
conditions of conditional statements C1, C2 (Table 2) and
the call statements Al, A2 provided the next executable line
of program code. Also, the optional step of hashing the code
fragments has been implemented on the code fragments.
That is, the order in which the code fragments appear in
Table 1 is different than the order in Table 2. In this manner,

the program #,can be prevented from executing properly
without input from Program A.

[0095] Selecting only a subset of the conditional branch
instructions to replace with “go to” statement and hashing
code fragments to remove sequentiality of the program code
renders it relatively difficult to replace the functionality
provided by Program A. In other embodiments, blank con-
dition statements and corresponding “go to” statements can
be inserted into the program.

[0096] Note that there is an interesting tradeoff, the larger
and more complicated the program, the more it is worth-
while to break it, but at the same time, it is more likely to
have a relatively large number of conditional branch opera-
tions and thus the transformations will be harder to reverse
engineer.

[0097] In all of the above transformations it is possible to
include in the code the digital-id/public-key cryptographic
protocols to support correct identification of users so that
each program copy can be executed only by its authorized
lessee. Thus identification can be done dynamically by
requiring, for example, that the lessees dynamically sign the
messages sent to A. It should also be noted that in some
applications it may be desirable to utilize a different varia-
tion of the above transformations per individual user. The
tradeoff with such an approach is the cost of such an
approach with respect to the need to generate additional
copies of the code.

[0098] The above transformations can be used in combi-
nation to make the effort and hence the cost of determining
the missing functionality relatively high. On the other hand,

most of the computation of zis performed by the lessee in #;.

[0099] Having described the preferred embodiments of the
invention, it will now become apparent to one of skill in the
art that other embodiments incorporating their concepts may
be used. It is felt therefore that these embodiments should
not be limited to disclosed embodiments but rather should be
limited only by the spirit and scope of the appended claims.

What is claimed is:

1. Aprocessing system for executing an original computer
program with a first portion of the original computer pro-
gram executing in a first processor located at a first process-
ing site and a second portion of the original computer
program executing in a second different processor located at
a second different processing site wherein the first and
second processing sites are physically separate and adapted
to communicate over a network, the second processor at the
second processing site comprising:

US 2001/0044902 A1

(2) a code extraction processor to receive the original
computer program and to parse the original computer
program to provide a first program for execution at the
first processing site and an associated second program
for execution at the second processing site, wherein
said code extraction processor provides the second
program such that the second program does not by
itself constitute an executable computer program and
wherein the second program includes portions of the
original computer program selected to render it difficult
to re-create the functionality of the original computer
program from information stored at or otherwise avail-
able at the first processing site;

(b) a storage device having stored therein a server pro-
gram which utilizes the second program and wherein in
response to communications provided thereto by the
first program executing at the first processing site, the
server program provides information over the network
to the first processing site which allows the first pro-
gram executing at the first processing site to re-create
the functionality of the original computer program at
the first processing site; and

(c) an execution processor to execute the server program
and the second program at the second processing site.
2. The system of claim 1 wherein: said code extraction
processor processes the original computer program to
extract a plurality of different second programs from the
original computer program to provide a like plurality of
different first programs with each of the plurality of first
programs intended to be transmitted to a different one of a
plurality of first processing sites and each of the second
program portions intended to be utilized by the server
program and executed by the execution processor at the
second processing site, wherein the server program provides
information to each particular one of the plurality of first
processing sites utilizing the second program associated
with the particular first program executing at the particular
one of the plurality of first processing sites and said system
further comprises:

a plurality of communication paths, each of the commu-
nication paths coupled between a particular one of the
plurality of first processing sites and the particular
server program utilizing the associated second program
portion and wherein the server program manages the
communication between the first program and the sec-
ond program associated with the particular first pro-
gram during execution of the first program.

3. A processing system for executing an original software

program, the processing system comprising:

(a) a first processor located at the first processing site, to
execute a first program which corresponds to a first
portion of an original software program;

(b) a second processor located at the second processing
site which is physically separated from the first pro-
cessing site, the second processor for executing a
second program which corresponds to a second portion
of the original software program where the first and
second programs combined correspond to the entire
original software program,

(¢) a communications network coupled between the first
and second processing sites and through which said
first processor communicates with said second proces-
sor; and

10

Nov. 22, 2001

(d) means for transmitting information between said first
processor and said second processor over said commu-
nications network.

4. The system of claim 3 further comprising a processor
for executing a vendor server program which utilizes the
second program and communicates with the first program.

5. The system of claim 4 wherein:

the first processing site corresponds to a first lessee site
with the first lessee site corresponding to a first one of
a plurality of lessee sites, each of the plurality of lessee
sites having a first program adapted to execute thereon;

the second processing site corresponds to a vendor site;
and

the vendor server program communicates with the first
program in each of the plurality of lessee sites.

6. The system of claim 3 wherein said second processing
site comprises means for controlling the first program
executing at the first processing site by stopping and starting
communications between the first and second programs.

7. The system of claim 6 wherein said means for control-
ling the first program executing at the first processing site
comprises means for halting the execution of the first
program at the first processing site by not providing the
functionality necessary for the first program to execute.

8. The system of claim 3 wherein communication between
the first program and the second program across said com-
munications network is input dependent.

9. A processing system for executing an original software
program, the processing system comprising:

(a) a first processor located at the first processing site, to
execute a first program which corresponds to a first
portion of an original software program, said first
processor having a bus operating at a first bus speed;

(b) a second processor located at the second processing
site which is physically separated from the first pro-
cessing site, the second processor for executing a
second program which corresponds to a second portion
of the original software program where the first and
second programs combined correspond to the entire
original software program, said first processor having a
bus operating at a second bus speed;

(c) a communications network coupled between the first
and second processing sites and through which said
first processor communicates with said second proces-
sor, said communications network operating at a third
speed wherein the third speed is slower than the speed
at which the fist and second buses operate; and

(d) means for transmitting information between said first
processor and said second processor over said commu-
nications network.

10. The system of claim 9 wherein said second processing
site comprises means for controlling the first program
executing at the first processing site by stopping and starting
communications between the first and second programs.

US 2001/0044902 A1

11. The system of claim 10 wherein said means for
controlling the first program executing at the first processing
site comprises means for halting the execution of the first
program at the first processing site.

12. The system of claim 10 wherein communication
between the first program and the second program across
said communications network is input dependent.

13. The system of claim 10 further comprising a code
extraction processor to receive the original software pro-
gram and to parse the original software program to provide
the first program and the second program.

14. The system of claim 10 further comprising a processor
for executing a vendor server program which utilizes the
second program and communicates with the first program.

Nov. 22, 2001

15. The system of claim 14 wherein:

the first processing site corresponds to a first lessee site
with the first lessee site corresponding to a first one of
a plurality of lessee sites, each of the plurality of lessee
sites having a first program adapted to execute thereon;

the second processing site corresponds to a vendor site;
and

the vendor server program communicates with the first
program in each of the plurality of lessee sites.

