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(57) Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for blockchain-
based cross-entity authentication are provided. One of the methods includes: obtaining, from a blockchain, a blockchain transaction
comprising an authentication request by a first entity for authenticating a user, wherein the authentication request comprises a decen-
tralized identifier (DID) of the user; in response to determining that the first entity is permitted to access authentication information
of the user endorsed by a second entity, obtaining an authentication result of the user by the second entity in response to the obtained
blockchain transaction, wherein the authentication result is associated with the DID, generating a different blockchain transaction com-
prising the authentication result; and transmitting the different blockchain transaction to a blockchain node for adding to the blockchain.
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SYSTEM AND METHOD FOR BLOCKCHAIN-BASED CROSS-ENTITY
AUTHENTICATION

CROSS REFERENCE TO RELATED APPLICATIONS

[1] This application claims priority to and benefits of International Application No.
PCT/CN2019/095299 and International Application No. PCT/CN2019/095303, both of
which filed with the State Intellectual Property Office (SIPO) of the People’s Republic of
China on July 9, 2019. Both of the above two applications claim priority to and benefits of
International Application No. PCT/CN2019/094396, filed with the State Intellectual Property
Office (SIPO) of the People’s Republic of China on July 2, 2019. The entire contents of all of

the above-identified applications are incorporated herein by reference.

TECHNICAL FIELD
[2] This application generally relates to methods and devices for blockchain-based
cross-entity authentication.
BACKGROUND
[3] Traditional identity management systems are based on centralized authorities such

as corporate directory services, certificate authorities, or domain name registries. Each of the
centralized authorities may serve as a root of trust that provides credibility to the identity it
endorses. For such systems, data associated with the identities is often stored in centralized
databases, if not traditional information storage media. The maintenance of identity of each
person or entity is under the control of the centralized authorities. Given its nature, traditional
identity management systems are subject to security risks suffered by each of the centralized
authorities and provide inefficient mechanisms for the aggregation of identities or credentials
provided by different centralized authorities. In such systems, individual entities or identity
owners are often neither free to choose the root of trust nor in control over their own
identities or credentials. Authentication and verification of their identities often prove to be

inefficient.

[4] Cross-entity  authentication  presents  additional challenges. Cross-entity
authentication requires different authorities to share user identity information. For example,
to allow a first authority to authenticate a user based on the user’s registration with a second

authority, the second authority may need to share the user’s identity and authentication



WO 2021/000419 PCT/CN2019/103758

information to the first authority. Traditional cross-authentication systems are often exposed
to issues such as security vulnerabilities, privacy leakage, user-unfriendliness, complicated
notification and authorization, workflow inefficiency, etc. In most cases, different authorities
often find the lack of a common protocol to interface with each other for cross-authenticating
users. For example, user authentication information may be spread outside a secure
environment risking the user for identity theft. For another example, non-essential user
information may be provided with essential information to other authorities for cross-entity
authentication giving away user privacy. For yet another example, authorities and users have
to undergo numerous layers of authorizations and security checks which makes the system

inconvenient and unscalable.

[5] Blockchain technology provides an opportunity to establish a trustworthy
decentralized system that does not require trust in each member of the system. Blockchain
provides data storage in a decentralized fashion by keeping the data in a series of data blocks
having precedence relationship between each other. The chain of blocks is maintained and
updated by a network of blockchain nodes, which are also responsible for validating data
under a consensus scheme. The stored data may include many data types, such as financial

transactions among parties, historical access information, etc.

[6] Many blockchains (e.g., the Ethereum blockchain) have enabled blockchain
contracts (also referred to as smart contracts) that are executed through blockchain
transactions. Blockchain transactions are signed messages originated by externally owned
accounts (e.g., blockchain accounts), transmitted by the blockchain network, and recorded in
the blockchain. The blockchain contracts may be written to achieve various functions, such as
adding data to blockchain accounts, changing data in the blockchain, etc. Thus, the

blockchain can be maintained and updated by executing various blockchain transactions.

[7] Blockchain technology provides the means for managing a root of trust without
centralized authority. However, identity management systems built based on blockchain often
present substantive technical barriers for average users by requiring storage of a blockchain
ledger, capabilities to create and execute blockchain transactions and contracts, or
participation in the consensus scheme of the blockchain. Such identity management systems
also likely require frequent access to and interaction with the blockchain network, which may
be costly and resource consuming. For business entities with the needs to manage identities

for a large number of users, such identity management systems often prove to be inefficient
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and user-unfriendly. Mapping between identities managed by such an identity management
system and accounts or service IDs kept by business entities are often difficult to maintain.
Finally, the identity management systems may often allow anonymous and arbitrary creation
of decentralized identities and provide little means to authenticate the real-world identities of

the individuals behind the decentralized identities.

SUMMARY

8] Various embodiments of the specification include, but are not limited to, systems,
methods, and non-transitory computer readable media for blockchain-based cross-entity

authentication.

[9] According to some embodiments, a computer-implemented method for blockchain-
based cross-entity authentication comprises: obtaining, from a blockchain, a blockchain
transaction comprising an authentication request by a first entity for authenticating a user,
wherein the authentication request comprises a decentralized identifier (DID) of the user; in
response to determining that the first entity is permitted to access authentication information
of the user endorsed by a second entity, obtaining an authentication result of the user by the
second entity in response to the obtained blockchain transaction, wherein the authentication
result is associated with the DID; generating a different blockchain transaction comprising
the authentication result; and transmitting the different blockchain transaction to a blockchain

node for adding to the blockchain.

[10] In some embodiments, before obtaining the blockchain transaction, the method
further comprises: obtaining the authentication request by the first entity for authenticating a
user; generating the blockchain transaction for obtaining the authentication result of the user
by the second entity; and transmitting the blockchain transaction to a blockchain node for

adding to the blockchain.

[11] In some embodiments, the method further comprises: obtaining the different
blockchain transaction from the blockchain, the different blockchain transaction comprising
the authentication result of the user by the second entity, wherein the authentication result
indicates that the authentication succeeded; and transmitting the authentication result to the

first entity for granting the user access to the first entity.
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[12] In some embodiments, the method further comprises: obtaining the different
blockchain transaction from the blockchain, the different blockchain transaction comprising
the authentication result of the user by the second entity, wherein the authentication result
indicates that the authentication failed; and transmitting the authentication result to the first

entity for denying the user access to the first entity.

[13] In some embodiments, the user is registered with the second entity; and the user is

not registered with the first entity.

[14] In some embodiments, the obtained blockchain transaction comprises an
authorization encrypted with a private key of the user for permitting the first entity to access
the authentication information of the user endorsed by the second entity; the encrypted
authorization comprises the DID of the user; the encrypted authorization comprises a digital
signature on the authentication request based on a private key of the first entity. After
obtaining the blockchain transaction and before obtaining the authentication result, the
method further comprises: obtaining a public key of the user; decrypting the encrypted
authorization with the public key of the user to verify that the authorization is signed by the
user and to obtain the digital signature; obtaining a public key of the first entity from the
blockchain; decrypting the digital signature with the obtained public key of the first entity;
and comparing the decrypted digital signature with a hash value of the authentication request

to verify that the authentication request is signed by the first entity.

[15] In some embodiments, the authentication information of the user endorsed by the
second entity comprises information associated with a verifiable claim (VC) indicating that

the user is a registered user of the second entity; and the VC is associated with the DID.

[16] In some embodiments, the VC comprises a permission configured by the second
entity or the user for permitting the first entity to access the VC; and after obtaining the
blockchain transaction and before obtaining the authentication result, the method further
comprises: verifying based on the permission that the first entity is permitted to access the

VC.

[17] In some embodiments, a hash value of the VC is stored in the blockchain; the VC is
stored in a data store; and the data store comprises one or more of the following: a local data
store maintained by the second entity, a public data store accessible to the second entity, and

a data store maintained by a platform for the second entity.
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[18] In some embodiments, obtaining the authentication result in response to the obtained
blockchain transaction comprises: querying the data store to obtain the VC associated with
the DID; verifying whether the user is the registered user of the second entity based on the
obtained VC to generate an unencrypted authentication result; and encrypting the
unencrypted authentication result with a private key of the second entity to generate the

authentication result.

[19] In some embodiments, before obtaining the blockchain transaction, the method
further comprises: obtaining, from a computing device associated with the second entity, a
VC creation request for creating the VC indicating that the user is a registered user of the
second entity; obtaining a digital signature associated with the second entity; and creating the

VC based on the obtained VC creation request and the obtained digital signature.

[20] In some embodiments, before obtaining the VC creation request, the method further
comprises: obtaining, from the second entity, a DID creation request for creating the DID
associated with an account identifier of the user; obtaining a public key of a cryptographic
key pair; obtaining the DID based on the public key; and storing a mapping relationship

between the account identifier and the obtained DID.

[21] In some embodiments, the DID is a secondary DID associated with a primary DID
of the user; the primary DID is associated with privacy information of the user; and the

privacy information is untraceable based on the secondary DID.

[22] In some embodiments, the secondary DID is a temporary DID for the user to access
the first entity.
[23] According to other embodiments, a system for blockchain-based cross-entity

authentication comprises one or more processors and one or more computer-readable
memories coupled to the one or more processors and having instructions stored thereon that
are executable by the one or more processors to perform the method of any of the preceding

embodiments.

[24] According to yet other embodiments, a non-transitory computer-readable storage
medium is configured with instructions executable by one or more processors to cause the

one or more processors to perform the method of any of the preceding embodiments.
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[25] According to still other embodiments, an apparatus for blockchain-based cross-
entity authentication comprises a plurality of modules for performing the method of any of

the preceding embodiments.

[26] According to some embodiments, a system for blockchain-based cross-entity
authentication comprises one or more processors and one or more computer-readable
memories coupled to the one or more processors and having instructions stored thereon that
are executable by the one or more processors to perform operations comprising: obtaining,
from a blockchain, a blockchain transaction comprising an authentication request by a first
entity for authenticating a user, wherein the authentication request comprises a decentralized
identifier (DID) of the user; in response to determining that the first entity is permitted to
access authentication information of the user endorsed by a second entity, obtaining an
authentication result of the user by the second entity in response to the obtained blockchain
transaction, wherein the authentication result is associated with the DID; generating a
different blockchain transaction comprising the authentication result; and transmitting the

different blockchain transaction to a blockchain node for adding to the blockchain.

[27] According to other embodiments, a non-transitory computer-readable storage
medium is configured with instructions executable by one or more processors to cause the
one or more processors to perform operations comprising: obtaining, from a blockchain, a
blockchain transaction comprising an authentication request by a first entity for
authenticating a user, wherein the authentication request comprises a decentralized identifier
(DID) of the user; in response to determining that the first entity is permitted to access
authentication information of the user endorsed by a second entity, obtaining an
authentication result of the user by the second entity in response to the obtained blockchain
transaction, wherein the authentication result is associated with the DID; generating a
different blockchain transaction comprising the authentication result; and transmitting the

different blockchain transaction to a blockchain node for adding to the blockchain.

[28] According to yet other embodiments, an apparatus for blockchain-based cross-entity
authentication comprises a first obtaining module for obtaining, from a blockchain, a
blockchain transaction comprising an authentication request by a first entity for
authenticating a user, wherein the authentication request comprises a decentralized identifier
(DID) of the user; a second obtaining module for, in response to determining that the first

entity is permitted to access authentication information of the user endorsed by a second
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entity, obtaining an authentication result of the user by the second entity in response to the
obtained blockchain transaction, wherein the authentication result is associated with the DID;
a generating module for generating a different blockchain transaction comprising the
authentication result; and a transmitting module for transmitting the different blockchain

transaction to a blockchain node for adding to the blockchain.

[29] Embodiments disclosed herein have one or more technical effects. In some
embodiments, an online platform provides online services for blockchain-based cross-entity
authentication. The complexity for cross-entity communication, authorization, and
notification is significantly reduced. In one embodiment, this allows control of operations
related to decentralized identity (DID) management using programming languages or
protocols other than those required by the blockchain. In one embodiment, this reduces
security risks around users’ independent creation and storage of important identity credentials.
In one embodiment, this facilitates creation of a large number of decentralized identifiers or
verifiable claims using simplified control actions as well as effective cross-reference of
different identities for a single person or entity. In some embodiments, the online platform
may be manifested as an integrated service and makes such online service accessible to users
via API interfaces. This allows the users to conveniently access the online service and request
access to one entity based on their authentication information previously registered with
another entity. In some embodiments, the online platform may be manifested as a distributed
and decentralized service. This allows large entities to conveniently join the service, for
example, by becoming a blockchain node of the blockchain. With user authorizations, the
large entities can correspondingly authenticate registered users for their requested access to
other entities. In some embodiments, the cross-entity authentication is initiated based on a
user’s request to access an entity based on the user’s DID and the user’s authorization for the
entity to access the user’s authentication information registered with a different entity for
authenticating the user. This allows swift, targeted, and secure query through the blockchain
to obtain authentication of the user from the different entity, minimizing security risks to the
authentication information of the user. In some embodiments, the user may use a temporary
DID just for the purpose of accessing the entity based on the user’s authentication
information registered with the different entity. This protect privacy and enhances security,
because the temporary DID can be stripped off non-essential user information and/or be
limited in its validity. In some embodiments, the entities can conveniently manage their users

and DIDs, through interactions with the blockchain. In some embodiments, the duplicated
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authentication information is reduced across the entities, as user registration at one entity can

be cross-used at other entities. Thus, power and storage consumption is reduced.

[30] These and other features of the systems, methods, and non-transitory computer
readable media disclosed herein, as well as the methods of operation and functions of the
related elements of structure and the combination of parts and economies of manufacture,
will become more apparent upon consideration of the following description and the appended
claims with reference to the accompanying drawings, all of which form a part of this
specification, wherein like reference numerals designate corresponding parts in the various
figures. It is to be expressly understood, however, that the drawings are for purposes of

illustration and description only and are not intended as limiting.

BRIEF DESCRIPTION OF THE DRAWINGS

[31] FIG. 1 illustrates a network environment associated with a blockchain in accordance

with some embodiments.

[32] FIG. 2 illustrates a framework for implementing blockchain transactions in

accordance with some embodiments.

[33] FIG. 3 illustrates a network environment associated with a system for blockchain-

based cross-entity authentication in accordance with some embodiments.

[34] FIG. 4 illustrates an architecture associated with a system for blockchain-based

cross-entity authentication in accordance with some embodiments.

[35] FIG. 5 illustrates a network environment associated with a system for implementing
various examples of functionalities associated with decentralized identifiers and verifiable

claims in accordance with some embodiments.

[36] FIGs. 6A and 6B illustrate methods for creating a decentralized identifier in

accordance with some embodiments.

[37] FIG. 7 illustrates a method for authenticating a decentralized identifier using DID

authentication services in accordance with some embodiments.

[38] FIG. 8 illustrates a method for authenticating a decentralized identifier using an

identity management application in accordance with some embodiments.
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[39] FIG. 9 illustrates a method for issuing a verifiable claim in accordance with some

embodiments.

[40] FIG. 10 illustrates a method for verifying a verifiable claim in accordance with some

embodiments.

[41] FIG. 11 illustrates a method for creating a decentralized identifier using an agent

service in accordance with some embodiments.

[42] FIG. 12 illustrates a method for authenticating a decentralized identifier using an

agent service in accordance with some embodiments.

[43] FIG. 13 illustrates a method for authenticating a decentralized identifier on behalf of

a verifier or an owner in accordance with some embodiments.

[44] FIG. 14 illustrates a method for issuing a verifiable claim using an agent service in

accordance with some embodiments.

[45] FIG. 15 illustrates a method for verifying a verifiable claim using an agent service in

accordance with some embodiments.

[46] FIG. 16 illustrates a method for blockchain-based cross-entity authentication in

accordance with some embodiments.

[47] FIG. 17A illustrates a flowchart of a method for blockchain-based cross-entity

authentication in accordance with some embodiments.

[48] FIG. 17B illustrates a flowchart of a method for blockchain-based cross-entity

authentication in accordance with some embodiments.

[49] FIG. 18A illustrates a block diagram of a computer system for blockchain-based

cross-entity authentication in accordance with some embodiments.

[50] FIG. 18B illustrates a block diagram of a computer system for blockchain-based

cross-entity authentication in accordance with some embodiments.

[51] FIG. 19 illustrates a block diagram of a computer system in which any of the

embodiments described herein may be implemented.
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DETAILED DESCRIPTION

[52] Embodiments described herein provide methods, systems, and apparatus associated
with an ecosystem for decentralized identity management that may provide unique and
verifiable identities to entities. A decentralized identifier (DID) for an entity may allow the
entity to obtain full control over its identity as well as information associated with the identity.
For example, the entity may be a business entity having many users or be one of the users.
Verifiable claims (VCs) may allow for authorizations, endorsements, and acknowledgements
among different entities. In a business setting, a service or product provider may use its
customers’ DIDs and VCs to identify and authenticate the customers and to provide services

or products accordingly.

[53] In some embodiments, a DID may be a unique identifier indicating a mapping
relationship between a real-world entity and an online identity. The DID may comprise a
URL scheme identifier, an identifier for a DID method, and a DID method-specific identifier.
Each DID may point to a corresponding DID document. The DID document may comprise
descriptive text in a preset format (e.g., JSON-LD) about the DID and the owner of the DID.
The DID may serve as a uniform resource identifier (URI) for locating the DID document.
The DID document may comprise various properties such as contexts, DID subject, public
keys, authentication, authorization and delegation, service endpoints, creation, control,
updates, proof, extensibility, other suitable properties, or any combination thereof. These
properties may be manifested as parameters of the DID document associated with a DID of
an owner. For example, for the controller parameter, a DID document of a first DID may log
a second DID for controlling the first DID (e.g., an owner of the second DID being an entity
entrusted to manage the first DID as a controller). For another example, for the creator
parameter, a DID document of a first DID may log a second DID that created the first DID
(e.g., an owner of the second DID being an entity that created the first DID on behalf of the
owner of the first DID). The DID document may define or point to resources defining a

plurality of operations that can be performed with respect to the DID.

[54] In some embodiments, a VC may provide verifiable online information about an
entity’s qualities, characteristics, relationships, and other relevant information. A VC may
comprise descriptive text in a preset format (e.g., JSON-LD) that describes one or more
declarations regarding a DID (e.g., age of the owner of the DID, educational background of

the owner of the DID) and an endorsement of an entity for the declaration. A VC may

10



WO 2021/000419 PCT/CN2019/103758

comprise various properties such as contexts, identifiers, types, credential subject, issuer,
issuance date, proofs, expiration, status, presentations, other suitable properties, or any
combination thereof. The VC may specify a type of its claim, which may indicate a structure

of the claim. This may facilitate automatic processing by the VC issuer and VC verifiers.

[55] Owners of DIDs may participate in the identity management system in different
roles. For example, an individual may desire to use the services provided by a business entity,
which requires proof that the individual is over 18 years of age. The individual may be an
owner of a DID and may request a VC issued by a government agency that provides
verification of citizens’ ages. The business entity may verify the VC to ascertain that the
individual meets the age requirement. In this scenario, the individual may be a DID owner
and a VC holder; the government agency may be a VC issuer, and the business entity may be
a VC verifier. As another example, a user may issue a VC to a first business allowing the first
business to use the user’s data stored by a second business. In this case, the user may act as a
VC issuer; the first business may act as a DID owner and VC holder; the second business

may act as a VC verifier.

[56] Some embodiments integrate various components, such as blockchain networks,
cloud applications, agent services, resolver services, user applications, application
programing interface (API) services, key management systems (KMS), identity
authentication systems and other suitable components, to enable functionalities such as
creation and authentication of DIDs and issuance and verification of VCs. In some
embodiments, an online platform integrating one or more of these components may facilitate
a business entity in smoothly creating DIDs and issuing VCs for its users. The business entity
may interact with the online platform via one or more API interfaces and trust a plurality of
cryptographic keys to the online platform. The online platform may offer agent services that
perform various operations related to DIDs and VCs on behalf of the business entity and/or
its users. Alternatively, the online platform may provide software development kits (SDKs)
that can be integrated into applications of the business entity for directly performing
operations related to DIDs and VCs. The online platform may also facilitate the business
entity’s management of relationships between DIDs, accounts maintained by the business

entity, and identities of real-world individuals corresponding to the DIDs and accounts.

[57] FIG. 1 illustrates a network environment associated with a blockchain in accordance

with some embodiments. As shown, in the environment 100, a client-side computing device
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111 may couple to a server end 118, and the server end 118 and a Node B may couple to a
blockchain system 112 through various communication networks. Similarly, the server end
118 may optionally couple to more blockchain systems similar to the blockchain system 112
such as blockchain system 113, blockchain system 114, etc. Each blockchain system may

maintain one or more blockchains.

[58] In some embodiments, the client-side computing device 111 may comprise one or
more servers (e.g., Node C) and one or more other computing devices (e.g., Node Al, Node
A2, Node A3). Node Al, Node A2, and Node A3 may couple to Node C. In some
embodiments, Node C may be implemented by an entity (e.g., website, mobile phone
Application, organization, company, enterprise), which has various local accounts (e.g., local
accounts assessed from Node Al, Node A2, Node A3). For example, a mobile phone
Application may have millions of end-users accessing the Application’s server from
respective user accounts. The Application’s server may correspondingly store millions of user
accounts. The components of the client-side computing device 111 and their arrangement

may have many other configurations.

[59] In some embodiments, the blockchain system 112 may comprise a plurality of
blockchain nodes (e.g., Blockchain Node 1, Blockchain Node 2, Blockchain Node 3,
Blockchain Node 4, Blockchain Node i, etc.) that maintain one or more blockchains (e.g.,
public blockchain, private blockchain, consortium blockchain, etc.). Other blockchain
systems (e.g., blockchain system 113, etc.) may comprise a similar arrangement of
blockchain nodes maintaining another blockchain. Each blockchain node may be found in
one or more blockchain systems. The blockchain nodes may include full nodes. Full nodes
may download every block and blockchain transaction and check them against the
blockchain’s consensus rules. The blockchain nodes may form a network with one
blockchain node communicating with another. The order and the number of the blockchain
nodes as shown are merely examples for illustration. The blockchain nodes may be
implemented in servers, computers, etc. For example, each blockchain node may be
implemented in a server or a cluster of servers. The cluster of servers may employ load
balancing. Each blockchain node may correspond to one or more physical hardware devices
or virtual devices coupled together via various types of communication methods such as
TCP/IP. Depending on the classifications, the blockchain nodes may also be referred to as

full nodes, Geth nodes, consensus nodes, etc.
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[60] In some embodiments, Node B may include a lightweight node. A lightweight node
may not download the complete blockchain, but may instead just download the block headers
to validate the authenticity of the blockchain transactions. Lightweight nodes may be served
by and effectively dependent on full nodes (e.g., blockchain nodes in the blockchain system
112) to access more functions of the blockchain. The lightweight nodes may be implemented
in electronic devices such as laptops, mobile phones, and the like by installing an appropriate
software. In one embodiment, Node B may send a blockchain transaction to the blockchain

system 112 for adding to the blockchain.

[61] In some embodiments, there may be many more client-side computing devices
coupled to the server end 118 similar to client-side computing device 111. The server end 118
may provide Blockchain-as-a-Service (BaaS) and be referred to as a BaaS cloud. In one
embodiment, BaaS is a cloud service model in which clients or developers outsource behind-
the-scenes aspects of a web or mobile application. BaaS may provide pre-written software for
activities that take place on blockchains, such as user authentication, database management,
and remote updating. The BaaS cloud may be implemented in a server, server cluster, or
other devices. In one embodiment, the BaaS cloud provides an enterprise-level platform
service based on blockchain technologies. This service may help clients to build a secure and
stable blockchain environment as well as manage the deployment, operation, maintenance,
and development of blockchain easily. The service features high security, high stability, ease-
of-use, and openness and sharing. Based on the abundant security strategies and multi-tenant
isolation of cloud, the BaaS cloud can provide advanced security protection using chip
encryption technologies. Based on highly reliable data storage, this service provides end-to-
end and highly available services that can scale up quickly without interruption. The BaaS
cloud can provide enhanced administrative functions to help clients to build an enterprise-
level blockchain network environment. The BaaS cloud can provide native support for
standard blockchain applications and data, support mainstream open-source blockchain
technologies like Hyperledger Fabric and Enterprise Ethereum - Quorum, to build an open

and inclusive technology ecosystem.

[62] In the environment 100, each of the systems, nodes, and devices may be installed
with appropriate software (e.g., application program interface) and/or hardware (e.g., wires,
wireless connections) to access other devices of the environment 100. In general, the systems,

nodes, and devices may be able to communicate with one another through one or more wired
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or wireless networks (e.g., the Internet) through which data can be communicated. Each of
the systems, nodes, and devices may include one or more processors and one or more
memories coupled to the one or more processors. The memories may be non-transitory and
computer-readable and configured with instructions executable by one or more processors to
cause the one or more processors to perform operations described herein. The instructions
may be stored in the memories or downloaded over a communications network without
necessarily being stored in the memories. Although the systems, nodes, and devices are
shown as separate components in this figure, it will be appreciated that these nodes and
devices can be implemented as single devices or multiple devices coupled together. For

example, Node B may be alternatively integrated into Blockchain Node 2.

[63] The devices such as Node Al, Node A2, Node A3, Node B, and Node C may be
installed with an appropriate blockchain software for initiating, forwarding, or accessing
blockchain transactions. The term “blockchain transaction” may refer to a unit of task
executed in a blockchain system and recorded in the blockchain upon verification. In some
embodiments, the server end 118 may construct a blockchain contract based on information
obtained from Node A1, A2, or A3. The server end 118 may add the blockchain contract in a
blockchain transaction. After the server end 118 submits the blockchain transaction to the
blockchain system, the blockchain nodes may verify the blockchain transaction for adding to
the blockchain. If the blockchain transaction is added to the blockchain, the blockchain
contract is deployed on the blockchain and initiated at a certain state. Through one or more
additional blockchain transactions, the deployed blockchain contract may be invoked to

update the certain state.

[64] Blockchain transactions may be verified according to a consensus rule. For example,
a POW (proof-of-work) consensus process is provided below. Notwithstanding, other types
of consensus processes such as POS (proof-of-stake), DPOS (delegate-proof-of-stake), and
PBFT (practical Byzantine Fault Tolerance) may be similarly applied to the disclosed

systems and methods.

[65] In some embodiments with respect to blockchain transaction verification, after
receiving a blockchain transaction request of an unconfirmed blockchain transaction, a
recipient blockchain node may perform some preliminary verification of the blockchain
transaction. For example, Blockchain Node 1 may perform the preliminary verification after

receiving a blockchain transaction from Node C. Once verified, the blockchain transaction
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may be stored in a database of the recipient blockchain node (e.g., Blockchain Node 1),
which may also forward the blockchain transaction to one or more other blockchain nodes
(e.g., Blockchain Node 3, Blockchain Node 4). Similarly, the each blockchain node may
comprise or couple to a memory storing a database. The database may store a plurality of
unconfirmed blockchain transactions. After receiving the blockchain transaction, the one or
more other blockchain nodes may repeat the preliminary verification and broadcasting

process done by the recipient blockchain node.

[66] For verification, each blockchain node may select some of the blockchain
transactions from the database according to its preference and form them into a proposed new
block for the blockchain. The blockchain node may perform “mining” of the proposed new
block by devoting computing power to solve complex mathematical problems. If the
blockchain transaction involves a blockchain contract, the blockchain nodes may execute the
blockchain contract locally in respective virtual machines (VMs). To handle the blockchain
contracts, each blockchain node of the blockchain network runs a corresponding VM and
executes the same instructions in the blockchain contract. A VM is a software emulation of a
computer system based on computer architectures and provides functionality of a physical
computer. VM in the blockchain context can be understood as a system designed to operate

as a runtime environment for blockchain contracts.

[67] A certain blockchain node that successfully mines the proposed new block of
blockchain transactions in accordance with consensus rules may pack the new block into its
local copy of the blockchain and multicast the results to other blockchain nodes. The certain
blockchain node may be a blockchain node that has first successfully completed the
verification, that has obtained a verification privilege, that has been chosen based on another
consensus rule, etc. Then, the other blockchain nodes may follow the same order of execution
performed by the certain blockchain node to locally execute the blockchain transactions in
the new block, verify the execution results with one another (e.g., by performing hash
calculations), and synchronize their copies of the blockchain with that of the certain
blockchain node. By updating their local copies of the blockchain, the other blockchain nodes
may similarly write such information in the blockchain transaction into respective local
memories. As such, the blockchain contract can be deployed on the blockchain. If the

verification fails at some point, the blockchain transaction is rejected.
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[68] The deployed blockchain contract may have an address, according to which the
deployed contract can be accessed. A blockchain node may invoke the deployed blockchain
contract by inputting certain parameters to the blockchain contract. In one embodiment, a
deployed blockchain contract may be invoked to add or update certain information in the
blockchain contract, thereby updating one or more states in the blockchain contract. In one
embodiment, the one or more states of the blockchain contract may be retrieved from the
blockchain by inquiring a corresponding blockchain transaction added to the blockchain. The
most updated state may be reflected in the most recent relevant blockchain transaction.
Notwithstanding the above, other types of blockchain systems and associated consensus rules

may be applied to the disclosed devices and methods.

[69] FIG. 2 illustrates a framework for implementing blockchain transactions in
accordance with some embodiments. In some embodiments, the client-side computing device
111 may transmit information to the server end 118. The information may be for creating a
blockchain account, performing an action based on blockchain contract, etc. The blockchain
may be maintained by the blockchain system 112. The server end 118 may construct a
blockchain contract based on the information obtained from the client-side computing device
111. The server end 118 may add the blockchain contract in a blockchain transaction A. The
server end 118 may sign the blockchain transaction on behalf of a user associated with the
client-side computing device 111. For example, the blockchain transaction A may comprise
information such as nonce (e.g., transaction serial number), from (e.g., a blockchain address
of the user), to (e.g., empty if deploying a blockchain contract), transaction fee, signature
(e.g., signature of the server end 118, signature of the user managed by the server end 118),
value (e.g., transaction amount), data (e.g., the blockchain contract), etc. Then, the server end
118 may submit the blockchain transaction A to one or more blockchain nodes of the

blockchain system 112 for adding to the blockchain.

[70] After the blockchain transaction is added to the blockchain, the blockchain contract
is deployed on the blockchain and initiated at a certain state. Through one or more additional
blockchain transactions, the deployed blockchain contract may be invoked to update the
certain state. In some embodiments, Node B may construct a signed blockchain transaction B
and transmit it to the blockchain system 112 for execution. In one embodiment, the
blockchain transaction B may be executed to invoke the deployed blockchain contract to

update a state. In some embodiments, the blockchain transaction B may be programmed in
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source code at a user-end application 221. For example, a user or machine may program the
blockchain transaction B. Node B may compile the source code using a corresponding
compiler, which converts the source code into bytecode. The blockchain transaction B may
comprise information such as nonce, from, to, transaction fee, value, signature, data, etc.
Node B may send the blockchain transaction B to one or more blockchain nodes of the
blockchain system 112 through a remote procedure call (RPC) interface 223 for execution.
RPC is a protocol that a first program (e.g., user-end application) can use to request a service
from a second program located in another computer on a network (e.g., blockchain node)
without having to understand the network’s details. When the first program causes a
procedure to execute in a different address space, it is as if a normal (local) procedure call,

without the programmer explicitly coding the details for the remote interaction.

[71] In some embodiments, on receiving the blockchain transaction (e.g., blockchain
transaction A or B), the recipient blockchain node may verify if the blockchain transaction is
valid. For example, the signature and other formats may be verified. If the verification
succeeds, the recipient blockchain node may broadcast the received blockchain transaction to
the blockchain network including various other blockchain nodes. Some blockchain nodes
may participate in the mining process of the blockchain transaction. The blockchain
transaction may be chosen by a certain node for consensus verification to pack into a new
block. If the blockchain transaction involves deploying a blockchain contract, the certain
node may create a contract account for the blockchain contract in association with a contract
account address. If the blockchain transaction involves invoking a deployed blockchain
contract, the certain node may trigger its local VM to execute the received blockchain
transaction, thereby invoking the deployed blockchain contract from its local copy of the
blockchain and updating the states in the deployed blockchain contract. If the certain node
succeeds in mining a new block, the certain node may broadcast the new block to other

blockchain nodes.

[72] Upon receiving the new block, the other blockchain nodes may perform verifications.
If a consensus is reached that the new block is valid, the new block is respectively packed to
the local copies of the blockchain maintained by the blockchain nodes. The blockchain nodes
may similarly trigger their local VMs (e.g., local VM 1, local VM 1, local VM 2) to execute
the blockchain transactions in the new block, thus invoking local copies of the blockchain

(e.g., local blockchain copy 1, local blockchain copy i, local blockchain copy 2) and making
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corresponding updates. The hardware machine of each blockchain node may have access to
one or more virtual machines, which may be a part of or couple to the corresponding
blockchain node. Each time, a corresponding local VM may be triggered to execute the
blockchain transaction. Likewise, all other blockchain transactions in the new block will be

executed. Lightweight nodes may also synchronize to the updated blockchain.

[73] FIG. 3 illustrates a network environment associated with a system for blockchain-
based cross-entity authentication in accordance with some embodiments. In some
embodiments, a user-side system 310 may correspond to an entity. The entity may be a
business entity that provides one or more products or services to a plurality of users. The
entity may also be an individual user, a group of users, an organization, other suitable entities,
or any combination thereof. The use-side system 310 may comprise a plurality of computer
systems, data stores, cloud services, mobile applications, other suitable components, or any
combination thereof. The user-side system 310 may comprise a server 311 and a database
313. The database 313 may store data associated with a plurality of user accounts of the users
of the entity. The entity corresponding to the user-side system 310 may desire to create and
manage DIDs and VCs for itself as well as its users. It may comprise one or more software
development kits (SDKs) 312 for managing creation and authentication of DIDs or issuance

and verification of VCs.

[74] In some embodiments, to implement functionalities associated with DIDs and VCs,
the user-side system 310 may interface with a service-side system 320. In some embodiments,
the service-side system 320 as illustrated in FIG. 3 may be equivalent to, be part of, or
comprise one or more components of the server end 118 as illustrated in FIGs. 1 and 2. The
service-side system 320 may comprise one or more messengers 325, one or more agents 321,
one or more resolvers 322, one or more key management systems 323, one or more clouds
324, other suitable components or any combination thereof. The agent 321 may provide
various services or applications related to DIDs or VCs and maintain databases mapping
account information or other business data from the user-side system 310 to DIDs, VCs, or
other information or data stored on one or more blockchains. The agent 321 may provide one
or more application programming interfaces (APIs), which may be used by the user-side
system 310 to directly submit requests related to DIDs or VCs. The agent 321 may manage

communications between the user-side system 310 and the resolver 322 and the cloud 324.
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The messenger 325 may provide notifications related to DIDs, VCs, or other information or

data stored on one or more blockchains for the user-side system 310.

[75] In some embodiments, the agent 321 may be coupled to a key management system
(KMS) 323. The KMS 323 may generate, distribute, and manage cryptographic keys for
devices and applications. It may cover security aspects {from secure generation of keys over
the secure exchange of keys to secure key handling and storage. The functionalities of the
KMS 323 may include key generation, distribution, and replacement as well as key injection,
storing, and management. The KMS 323 may comprise or be coupled to a trusted execution
environment (TEE). The TEE may be an isolated area on the main processor of a device that
is separate from the main operating system. The TEE may provide an isolated execution
environment offering security features such as isolated execution, integrity of applications
executing with the TEE, along with confidentiality of their assets. It may guarantee code and
data loaded inside to be protected with respect to confidentiality and integrity. In some
embodiments, the KMS 323 may generate one or more cryptographic key pairs in the TEE.
Before outputting the cryptographic key pair, the TEE may encrypt the private key. The
encryption of the private key can be based on various methods or standards, such as Data
Encryption Standard (DES), TripleDES, RSA, Advanced Encryption Standard (AES),
Twofish, etc. The KMS 323 may store the encrypted private key in association with the
public key. To use the private key, the KMS 323 may feed the encrypted private key to the
TEE for decryption and processing.

[76] In some embodiments, the agent 321 may be coupled to a resolver 322, which may
comprise software applications for managing interactions between the agent and a blockchain
330 in transactions related to DIDs or VCs (e.g., correspondence between a DID and a DID
document). Herein, depending on the context, the blockchain 330 may refer to a blockchain
system that comprises a decentralized network of nodes that store a ledger of records and
participate in a consensus process for adding data to the ledger of records or the ledger of
records stored, maintained, or updated by the decentralized network of nodes. When referring
to a blockchain system, the blockchain 330 may comprise, be part of, or be embodied in one
or more of the blockchain systems 112, 113, and 114 illustrated in FIGs. 1 and 2. The
resolver 322 may be part of or coupled to the one or more cloud-based services. The one or
more cloud-based services may be associated with a blockchain-as-a-service (BaaS) cloud

324 or other suitable cloud services. The BaaS cloud 324 may constitute a platform that
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offers various interfaces to one or more blockchains 330. It may receive inputs from an
external application and facilitate the creation and execution of operations such as blockchain
transaction deployment, blockchain contract creation and execution, blockchain account
creation based on the inputs. The BaaS cloud 324 may also obtain information and data from
one or more blockchains 330 and feed the information and data to one or more other systems
using the BaaS cloud 324. In some embodiments, the agent 321 may be directly coupled to
the cloud 324 to use its services. In some embodiments, one or more of the agent 321, the
resolver 322, and the KMS 323 may be integrated as part of the BaaS cloud 324 or another

suitable online platform.

[77] In some embodiments, the resolver 322 and cloud 324 may be coupled to a
blockchain 330. The blockchain 330 may comprise one or more blockchain contracts 331.
One or more of the blockchain contracts 331 may be configured to be executed by a virtual
machine associated with the blockchain 300 to perform one or more operations associated
with DIDs and VCs. The operations may comprise creating a new DID, storing a DID
document, updating a DID document, identifying a DID document based on a DID, storing
information associated with a VC, retrieving information associated with a VC, other suitable
operations, or any combination thereof. The resolver 322 and cloud 324 may be configured to
deploy one or more transactions on the blockchain 330 that invoke one or more of the
blockchain contracts 331. The transactions may trigger one or more operations related to

DIDs and VCs.

[78] In some embodiments, the messenger 325 may be coupled to the agent 321, the
resolver 322, and the user-side system 310. The messenger 325 may obtain notifications from

the resolver 322, and provide the notifications to the user-side system 310.

[79] In some embodiments, the network environment may comprise an identity
authentication system 340. The identity authentication system 340 may be used to establish
mapping relationships between DIDs and real-world identities. The identity authentication
system 340 may be associated with an entity performing identity authentication for
individuals or entities. The identity authentication may be performed based on documents,
photos, or other suitable materials provided by an individual or entity. The identity
authentication may also be performed based on data that is collected directly, such as photos,
fingerprints, password inputs, other suitable data, or any combination thereof. The identity

authentication system 340 may be coupled to the user-side system 310 and/or the service-side
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system 320. The identity authentication system 340 may receive one or more requests from
the user-side system 310 or the service-side system 320 for proofs of identity authentication.
In response, the identity authentication system 340 may perform any necessary identity
authentication and send the proofs of identity authentication back to the requester. The proofs
of identity authentication may comprise, for example, a confirmation message, a security key,
a unique identification code, other suitable proofs, or any combination thereof. In some
embodiments, the identity authentication system 340 may be coupled to a blockchain system.
The blockchain system connected to by the identity authentication system 340 may be the
blockchain system 330 that is coupled to the service-side system 320. Alternatively, although
FIG. 3 illustrates the identity authentication system 340 to be coupled to the blockchain
system 330, this disclosure contemplates the scenario in which the identity authentication
system 340 is coupled to a different blockchain system. The identity authentication system
340 may have access to the blockchain 330 or another suitable blockchain directly or via an

intermediate system (e.g., the BaaS cloud 324).

[80] The identity authentication system 340 may comprise an identity service 341, which
may be implemented on one or more servers or cloud platforms. In some embodiments, the
identity service 341 may be implemented as part of the service-side system 320 (e.g., the
cloud 324). In other embodiments, the identity service 341 may be implemented on a system
separate from the service-side system 320. The identity service 341 may be configured to
process requests for identity authentication, to control a client-side application 342 to collect
identity data, to generate proofs of identity authentication, to store or access identity
information in a database 343, to perform one or more operations on the blockchain 330 (e.g.,
obtain identity information, store proof of identity authentication). In some embodiments, the
identity authentication system 340 may comprise a client-side application 342 that is
connected to the identity service 341 via a network. The client-side application 342 may be
dedicated to identity authentication or may incorporate identity authentication as one of its
functions along with one or more other functions. The client-side application 342 may be
configured to collect data associated with a user. The client-side application 342 may further
be configured to compare collected data with pre-stored data corresponding to a purported
identity of a user to authenticate the identity of the user. In some embodiments, the identity
authentication system 340 may comprise a database 343 connected to the identity service 341.
The database 343 may store identity information associated with a plurality of individuals or

entities. The identity information may comprise, for example, a proof of identity
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authentication, visual features of a person, voice features of a person, a fingerprint of a person,
a signature of a person, a password associated with an identity, other suitable identity

information, or any combination thereof.

[81] FIG. 4 illustrates an architecture associated with a system for blockchain-based
cross-entity authentication in accordance with some embodiments. In some embodiments, the
system may comprise three main components, one or more agent services 321, one or more
resolver services 322, one or more messenger services 325, and one or more blockchain
contracts 331. The one or more agent services 321 may be configured to process requests
related to DIDs and VCs that are received from users. The one or more agent services 321
may manage mapping relationships between account information on user-side systems 310
and DIDs of the owners of the accounts. The agent services 321 may comprise a DID agent
service API 410 for receiving DID-related requests from user-side systems 310. Depending
on the nature of a request, it may be fed to a user agent 411 for performing operations such as
creation and authentication of DIDs or an issue agent 412 for performing operations such as
issuance of VCs. The requests from a party desiring to verify a VC may be fed to the verifier
agent 413. The one or more agent services 321 may also provide a verifiable claim repository
414 for storing one or more VCs. The agent services 321 may also use one or more memories
415 and one or more databases 416. The agent services 321 may be coupled to a KMS 323

and a BaaS Cloud 324. The agent services 321 may be coupled to the resolver services 322.

[82] In some embodiments, one or more agents of the agent services 321 may send one or
more requests to a DID resolver API 420 associated with the resolver services 322. The
resolver services 322 may be configured to process interactions between the agent services
321 and the blockchain 330. The resolver services 322 may perform operations such as
obtaining data from the blockchain 300, adding data to the blockchain 330, creating
blockchain contracts 331, deploying transaction to the blockchain 330 to invoke blockchain
contracts 331, other suitable operations, or any combination thereof. The resolver services
322 may comprise a DID resolver 421 configured to manage DIDs and DID documents
stored on the blockchain 330 and a VC resolver 422 configured to manage VCs for DIDs
created based on the blockchain 330. The resolver services 322 may also comprise a listener
424 for obtaining data from the blockchain 331. The listener 424 may store obtained data to a
database 423. The data may be used by the DID resolver 421 and the VC resolver 422. The
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DID resolver 421, VC resolver 422, and listener 424 may be coupled to a BaaS cloud 324 for

interactions with the blockchain 330.

[83] In some embodiments, the messenger services 325 may comprise a messenger
service API 430 for receiving queries from the user-side system 310 and for providing
notifications to the user-side system 310. The messenger service API 430 may obtain
notifications placed in a message queue by the DID resolver API 420. The message queue
may be stored in a database 452. The messenger service API 430 may filter and categorize

the obtained notifications and store in a memory 451.

[84] In some embodiments, the blockchain 330 may comprise one or more blockchain
contracts (331a, 331b, 331c) for managing DIDs and DID documents and comprise one or
more contracts (331d, 331e, 331f) for managing VCs. The contracts may be executed by one
or more virtual machines associated with the blockchain 330 to perform operations such as
creating DIDs, storing DID documents, updating DID documents, storing information

associated with VCs, other suitable operations, or any combination thereof.

[85] FIG. 5 illustrates a network environment associated with a system for implementing
various examples of functionalities associated with decentralized identifiers and verifiable
claims in accordance with some embodiments. Components of the network environment may
be categorized into three layers 510, 520, and 530. In some embodiments, the bottom or core
layer 510 may comprise one or more blockchains 330, which may comprise one or more
blockchain contracts (331g, 331h, 3311) that can be executed to perform operations related to
DIDs and VCs. The blockchain 330 may store a plurality of DIDs and a plurality of DID
documents corresponding to the DIDs. The blockchain contracts (331g, 331h, 3311) may be
configured to manage mapping relationships between DIDs and DID documents, as well as
creation and changes to DID documents. The blockchains 330 may be accessible to one or
more resolvers (322a, 322b) for operations related to DIDs and VCs. The resolvers (322a,
322b) may be configured to provide to an external system services such as searching for DID
documents or data contained in DID documents based on inputted DIDs. One or more
method libraries 511 may also be available for external systems to adopt to interact with the

blockchain 330.

[86] In some embodiments, the middle or enhancement layer 520 may comprise one or

more user agents 411, one or more issuer agents 412, or one or more verifier agents 413. The
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middle or enhancement layer 520 may further comprise a messenger 325 coupled to a
memory 451 and a database 452. In some embodiments, the blockchain 330 may comprise a
consortium blockchain, which may or may not be directly accessible to users that are not
consensus nodes of the consortium blockchain. A user agent 411 may provide an interface for
an ordinary user to interact with the blockchain. In some embodiments, the user agent 411
may be configured to create one or more DIDs, authenticate one or more DIDs, interact with
one or more verifiable data registry 521 or one or more DID hubs 522, send notifications to
an owner of a DID, perform other suitable functionalities, or any combination thereof. Here, a
DID hub 522 may comprise a system in which an owner of a DID stores its sensitive data.
The owner may grant certain other entities (e.g., institutions issuing verifiable claims) access
to data stored in the DID hub 522. A verifiable data registry 521 may comprise a VC
repository for storing and managing the VCs issued to an owner of a DID. An issuer agent
412 may comprise one or more APIs (e.g., REST API) or SDKs. The issuer agent 412 may be
configured to issue one or more verifiable claims, withdraw one or more verifiable claims,
check and inspect an existing verifiable claim, publish a template for verifiable claims,
maintain a template for verifiable claims, perform other suitable operations, or any
combination thereof. A verifier agent 413 may comprise one or more APIs (e.g., REST API)
or SDKs and be configured to verify a verifiable claim or perform one or more other suitable
operations. In some embodiments, the layer 520 may also comprise one or more code
libraries (e.g., DID resolve library 523, DID authentication library 524) that can be adopted
and used to interact with the DID resolvers 322 or directly with the blockchain 330. The code
libraries may be packaged into one or more SDKs and be used to perform functionalities such
as DID authentication, interactions with the blockchain 300, or interfacing with blockchain
contracts 331. The issuer agent 412 and verifier agent 413 may be used by key participants in
the network environment associated with DIDs and VCs such as entities able to perform
know-your-customer (KYC) authentication or endorsement for users or to issue or verify
verifiable claims (e.g., government institutions, banks, financial service providers). The key
participants may provide third-party services that can be integrated via connections with the
issuer agent 412, the verifiable agent 413, or other suitable components of the network

environment.

[87] In some embodiments, the upper or extension layer 530 may comprise one or more
external services or applications related to DIDs and VCs. The services or applications may

comprise one or more issuer applications 531, one or more verifier applications 532, an
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identity management application 533, a service application 534, one or more other suitable
services or applications, or any combination thereof. An issuer application 531 may
correspond to an entity (e.g., government institution, banks, credit agency) issuing verifiable
claims signed or endorsed by the entity for users. The issuer application 531 may operate on a
user-side system 310. The issuer application 531 may comprise an issuer verifiable claim
manager service which may allow an issuer to manage issued VCs, maintain their status (e.g.,
validity), or perform other suitable operations. The issuer application 531 may interact with
the layers 510 and 520 via a connection or interface with the issuer agent 412 or one or more
code libraries 523 and 524. A verifier application 532 may correspond to an entity (e.g.,
service provider, credit issuer) needing to verify verifiable claims to ascertain a user’s
information (e.g., identity, age, credit score). The verifier application 532 may operate on a
user-side system 310. The verifier application 532 may interact with layers 510 and 520 via a
connection or interface with the verifier agent 413 or one or more code libraries 523 and 524.
The identity management application 533 may be installed on a client device or terminal
associated with a user. The user may be a DID owner, which may be an individual, a business,
an organization, an application, or any other suitable entity. The identity management
application 533 may allow a user to manage cryptographic key pairs associated with DIDs,
original data, or VCs, to receive notifications from a user agent 411, to authenticate a DID, to
grant access to data, to use a VC, to perform other suitable operations, or any combination
thereof. The identity management application 533 may interact with the layers 510 and 520
via a connection or interface with the user agent 411. The service application 534 may also be
coupled to the user agent 411 and be configured to manage functions related to DIDs or VCs
for one or more users or accounts. The service application 534 may also be coupled to the
messenger 325 and be configured to send queries for one or more DIDs and to obtain

corresponding notifications.

[88] FIGs. 6-10 illustrate example operations associated with DIDs or VCs performed by
one or more user-side systems 310, one or more service-side systems 320, one or more
resolvers 322, one or more clouds 324, one or more messengers 325, or one or more
blockchain systems 330. In some embodiments, a user-side system 310 may manage one or
more DIDs or one or more VCs by interfacing with a service-side system 320 (e.g.,
comprising, e.g., a DID resolver 322) and a blockchain 330 storing DIDs and DID documents.
The user-side system 310 may use one or more SDKs 312 for managing DIDs that are

compatible with methods associated with the DIDs. The SDKs 312 may be integrated with
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one or more applications used by the user-side system 310. The user-side system 310 may
also interface with one or more service endpoints for storing verifiable claims, one or more
service endpoints for storing status information for verifiable claims, one or more service

endpoints for authentication of DIDs, other suitable systems, or any combination thereof.

[89] FIGs. 6A and 6B illustrate methods for creating a decentralized identifier in
accordance with some embodiments. The operations of the methods presented below are
intended to be illustrative. Depending on the implementation, the methods may include
additional, fewer, or alternative steps performed in various orders or in parallel. Furthermore,
one or more steps performed in either of methods 6A and 6B may be replaced with one or
more suitable steps performed in the other method. The devices or systems performing
certain steps as illustrated in FIGs. 6A and 6B may also be substituted by other suitable
devices or systems to perform the same steps. The suitable devices or systems may comprise
sub-systems, parent systems, or counterpart systems with similar functionalities. As an
example, one or more steps performed by the user-side system 310 in FIG. 6A may be
performed by the identity management application 533 in FIG. 6B and vice versa. As another
example, one or more steps performed by the service-side system 320 may be performed by
the resolver 322, which may be a sub-system of the service-side system 320. Although this
specification describes particular devices or systems performing particular steps, this
specification contemplates any suitable devices or systems performing any suitable steps for

creating a decentralized identifier.

[90] In some embodiments, as illustrated in FIG. 6A, the user-side system 310 may
create a DID for each of one or more of its users. The user-side system 310 may control the
cryptographic key pair associated with the DID and use the cryptographic key pair to perform
various operations related to the DID including, for example, signing blockchain transactions,
signing verifiable claims, or authentication of the DID. The user-side system 310 may
comprise an SDK 312 for performing the various operations. The SDK 312 may also manage
various interactions between the user-side system 310 and various interfaces provided by the
service-side system 320. The interfaces may comprise an interface for assignment of DIDs,
an interface for creation of DID documents, an interface for adding DID documents to the
blockchain 330, an interface for searching DID documents, other suitable interfaces, or any
combination thereof. The interfaces may be provided by way of, for example, software

programs and network ports. In response to requests received at the interfaces, the service-
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side system 320 may perform corresponding operations and return results via the interfaces to
appropriate external systems. The method illustrated in FIG. 6A may start at step 602, in
which a server 311 of a user-side system 310 may obtain identity authentication of a user for
whom it is going to obtain a DID. The identity authentication may have been performed by
the identity authentication system 340 or another suitable system. In other embodiments, the
user-side system 310 may have obtained a proof of identity authentication for the user from
an identity authentication system 340. The proof of identity authentication for the user may
comprise a proof of real-name authentication (e.g., based on government-issued identity
documents), a proof of real-person authentication (e.g., based on a photo of the user taken
based on instructions of the identity authentication system 340), a proof of other identity
authentication, or any combination thereof. The user-side system 310 may also generate or
retrieve a cryptographic key pair including a public key and a private key for use to create the

DID.

[91] At step 604, the server 311 may invoke a functionality of an SDK 312 for creating a
new DID. The server 311 may provide various information to the SDK 312 for invoking the
functionality. The information may comprise an account identifier for the user corresponding
to the to-be-created DID, a public key or private key of the cryptographic key pair generated
for the DID, specification of one or more services associated with the to-be-created DID, a
callback network address associated with the server 311 for return of confirmations or other
communications, other suitable information, or any combination thereof. The account
identifier may correspond to a business or service account of the user with an entity
associated with the user-side system 310. At step 606, the user-side system 310 may send a
request for creating a new DID to the service-side system 320 using the SDK 312. The
service-side system 320 may thereby obtain the request for creating a DID. The request may
comprise a public key of a cryptographic key pair, which may have been generated by the
user-side system 310. FIG. 6A illustrates a scenario where the request for creating the DID is
received from a computing device associated with a first entity (e.g., user-side system 310)
for creating the DID on behalf of a second entity (e.g., user). The request may further
comprise, in addition to the public key, an account identifier associated with the second entity
(e.g., user), profile information associated with the second entity (e.g., user), information
about one or more services associated with the DID, a callback address associated with the
first entity (e.g., user-side system 310) or the second entity (e.g., user), other suitable

information, or any combination thereof. An alternative scenario is illustrated in FIG. 6B

27



WO 2021/000419 PCT/CN2019/103758

where the request for creating the DID is received directly from a computing device
associated with an entity to own the DID. In some embodiments, the request may be in the
form of an application programming interface (API) message to one or more of the interfaces

provided by the service-side system.

[92] In response to the request obtained from the user-side system 310, the service-side
system 320 may create, based on the public key in the request, a blockchain account
associated with a blockchain 330. At step 608, the service-side system 320 may send a
request to the blockchain system 330 for creating a new blockchain account. Here, the request
may be directly sent to one or more blockchain nodes of the blockchain 330 in the form of
one or more blockchain transactions or be sent via a BaaS Cloud 324 or other suitable
interface systems associated with the blockchain 330. After sending the request, at step 610,
the service-side system 320 may obtain an indication from blockchain 330 that a new
blockchain account has been created. The blockchain account may be associated with an
address on the blockchain 330. The service-side system 320 may obtain information

associated with the newly-created blockchain address.

[93] Then, the service-side system 320 may create a DID based on information
associated with the blockchain account. At step 612, the service-side system 320 may assign
a DID to the user based on the blockchain account. The service-side system 320 may assure
that the assigned DID is unique by determining that the DID is not duplicative of any existing
DID associated with the blockchain 330. According to this embodiment, the DID may be
assigned and determined to be unique prior to the construction or upload of a DID document
corresponding to the DID. This may effectively prevent potential failed attempts to upload
the DID document due to duplication of the DID, and thus save processing and computation
efforts in creating and uploading the DID document. The service-side system 320 may
associate the DID with the user’s account with the user-side system 310 by storing a mapping
relationship between the account identifier and the created DID. The service-side system 320
may further store a status of the DID. As an example and not by way of limitation, the status
of the DID may indicate whether the DID has been registered to the blockchain 330 or
whether a corresponding DID document has been stored in the blockchain 330. At step 614,
the service-side system 320 may send a message back to the SDK 312 associated with the
user-side system 310. The message may comprise information associated with the newly

created DID.
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[94] At step 616, the user-side system 310 may use the SDK 312 to create a DID
document associated with the DID. The DID document may comprise information associated
with the DID such as the public key associated with the DID, authentication information
associated with the DID (e.g., one or more authentication methods), authorization
information associated with the DID (e.g., a DID associated with a controller), delegation
information associated with the DID (e.g., one or more delegation methods), one or more
services associated with the DID (e.g., one or more types of services such as credential
repository service and agent service), one or more service endpoints associated with the DID
(e.g., URI for each of one or more service endpoints), other suitable information, or any
combination thereof. The SDK 312 may create the DID document based on information
received from the server 311 when the server 311 invokes the SDK 312 at step 604. The user-
side system 310 may further use the SDK 312 to create a blockchain transaction for adding
the DID document to the blockchain 330. The blockchain transaction created at this stage
may or may not be complete and valid. In some embodiments, the blockchain transaction
created by the user-side system 310 may lack information associated with the blockchain 330,
one or more blockchain contracts associated with the blockchain 330, a digital signature,

other suitable information, or any combination thereof.

[95] At step 618, the SDK 312 may send the DID document to service-side system 320.
If the SDK 312 has created a blockchain transaction, it may send the blockchain transaction
to the service-side system 320, which may comprise the DID document. At this step, the SDK
312 may request the service-side system 320 to provide a hash value associated with a
completed but unsigned blockchain transaction for adding the DID document to the
blockchain 330. After obtaining the DID document corresponding to the DID from the user-
side system 310, the service-side system 320 may generate or complete a blockchain
transaction for adding the DID document to the blockchain 330. The blockchain transaction
may invoke a blockchain contract 331 previously deployed on the blockchain 330 for
managing relationships between DIDs and corresponding DID documents. The blockchain
contract 331 invoked may comprise one or more interfaces, such as an interface for adding
one or more DID documents to the blockchain 330. The one or more interfaces of the
blockchain contract 331 may comprise executable code corresponding to one or more
executable functions of the blockchain contract 331.To generate the blockchain transaction,
the service-side system 320 may include one or more information items in the blockchain

transaction. The one or more information items may comprise an address associated with the
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blockchain 330, an identifier of a blockchain contract 331 associated with the blockchain
transaction, version information of the blockchain contract 331 associated with the
blockchain transaction, information of one or more interfaces of the blockchain contract 331
associated with the blockchain transaction, other suitable information, or any combination
thereof. The information added by the service-side system 320 to the blockchain transaction
may comprise public or other suitable information associated with the blockchain system 330,
blockchain contracts on the blockchain 330, or other information necessary for creating a
valid blockchain transaction. The service-side system 320 may automatically populate such
information and relieve the user-side system 310 of the burden of keeping track of such
information. This may reduce the technical capabilities required for the user-side system 310

to add a DID document to the blockchain 330.

[96] The blockchain transaction generated by the service-side system 320 based on the
DID document received from the user-side system 310 may be unsigned at this stage. The
service-side system 320 may determine a hash value of the unsigned blockchain transaction
according to a hash function acceptable to the blockchain system 330. At step 620, the
service-side system 320 may send the hash value of the unsigned blockchain transaction to
the user-side system 310. Then, at step 622, the SDK 312 associated with the user-side
system 310 may create a digital signature on the hash value. As an example, the digital
signature may be created by encrypting the hash value using the private key of the
cryptographic key pair associated with the owner of the DID that is received from the server
311. At step 624, the SDK 312 may return the digital signature to the service-side system 320,
thereby authorizing the blockchain transaction. After receiving the digital signature from the
user-side system 310 at step 624, the service-side system 320 may add the digital signature to
the unsigned blockchain transaction to generate or complete the blockchain transaction for
adding the DID document to the blockchain. Then, at step 626, the service-side system 320
may send the blockchain transaction to one or more blockchain nodes associated with the
blockchain 330 for adding to the blockchain. At step 628, the service-side system 320 may
obtain information from the blockchain 330 confirming successful storage of the DID
document in the blockchain 330. At step 630, the service-side system 320 may return a
confirmation message to the SDK 312. The confirmation message may comprise the DID and
DID document that have been created. Then, at step 632, the SDK 312 may provide the DID
and DID document to the server 311. Here, the SDK 312 may send information associated

with the DID and the DID document based on information associated with the callback
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address received from the server 311. At step 634, the server 311 may send the user a

notification confirming successful creation of the DID and the corresponding DID document.

[97] In some embodiments, as illustrated in FIG. 6B, a user may create a DID for itself
using one or more interfaces provided by the service-side system 320 and without using a
service provided by a user-side system 310. The user may comprise an individual, a business,
an organization, another suitable entity, or any combination thereof. As an example, the user
may use an identity management application 533 or another suitable software or hardware
system to interact with the service-side system 320. The identity management application 533
may be developed by an entity associated with the service-side system 320 and provided for
installation on a client device associated with the user. The identity management application
533 may be configured to manage interactions with various interfaces provided by the
service-side system 320. The method illustrated in FIG. 6B may start at step 642, the user
may provide one or more inputs to the identity management application 533 in order to
request creation of a DID for the user. The identity management application 533 may request
inputs from the user verifying the real-world identity of the user. Alternatively, the identity
management application 533 may have obtained identity authentication information
associated with the user previously and may be configured to retrieve such information, for

example, when the user logs in the identity management application 533.

[98] At step 644, the identity management application 533 may generate a cryptographic
key pair for the user. The cryptographic key pair may comprise a public key and a private key
to be used to create the DID associated with the user. At step 646, the identity management
application 533 may send a request for creating a new DID to the service-side system 320. At
step 648, the service-side system 320 may send a request to a blockchain system 330 for
creating a new blockchain account. Here, the request may be directly sent to one or more
blockchain nodes of the blockchain 330 in the form of one or more blockchain transactions or
be sent via a BaaS Cloud 324 or other suitable interface systems associated with the
blockchain 330. Then, at step 650, the service-side system 320 may obtain from the
blockchain 330 information indicating that a new blockchain account has been created. The
blockchain account may be associated with an address on the blockchain 330. The
information obtained by the service-side system 330 may comprise information associated
with the newly-created blockchain address. It may comprise information sufficient to create

the DID. At step 652, the service-side system 320 may assign a unique DID to the user
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according to information associated with the blockchain account. At step 654, the service-
side system 320 may send a message back to the identity management application 533. The

message may comprise information associated with the newly created DID.

[99] In some embodiments, a DID document may be created and stored on the
blockchain 330. At step 656, the identity management application 533 may generate a DID
document and add the public key associated with the newly-created DID and other suitable
information (e.g., authentication information) to the DID document. The identity
management application 533 may add information associated with one or more service
endpoints (e.g., information associated with an authentication service endpoint, information
associated with a verifiable claim repository) to the DID document. The authentication
service endpoint and the verifiable claim repository may be provided as part of the service-
side system 320 or be provided by third-party systems. Then, at step 658, the identity
management application 533 may generate one or more blockchain transactions for adding
the DID document to the blockchain 330. The identity management application 533 may
generate a hash value of the blockchain transaction and generate a digital signature for the
transaction using the private key associated with the DID at step 660. Alternatively, the
identity management application 533 may interact with the service-side system 320 in a
manner similar to the interactions between the user-side system 310 and the service-side
system 320 as illustrated by steps 618, 620, and 622 of FIG. 6A in order to generate and sign
the blockchain transaction. At step 662, the identity management application 533 may send
the DID document as well as the blockchain transaction to the service-side system 320 for
sending to the blockchain system 330. At step 664, the service-side system 320 may send the
one or more transactions to the blockchain system 330. The one or more transactions may
invoke a blockchain contract 331 for managing DIDs and DID documents on the blockchain
330. At step 666, the service-side system 320 may obtain information from the blockchain
330 indicating that the DID document has been successfully stored. At step 668, the service-
side system 320 may forward a confirmation to the identity management application 533. At
step 670, the identity management application 533 may provide a notification comprising

information associated with the created DID and DID document for display to the user.

[100] FIG. 7 illustrates a method for authenticating a decentralized identifier using DID
authentication services in accordance with some embodiments. The operations of the method

presented below are intended to be illustrative. Depending on the implementation, the method
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may include additional, fewer, or alternative steps performed in various orders or in parallel.
In some embodiments, a user owning a DID may use DID authentication services provided
by a business entity to achieve authentication of its ownership of the DID. The owner may
trust a public-private key pair corresponding to the DID to the business entity for storage. The
owner may provide a network location (e.g., identified by a URL) of the DID authentication
services as a service endpoint for authentication of the DID. The location identifier of the
DID authentication services may be included in a “service” field of the DID document

associated with the DID.

[101] In some embodiments, a verifier 532 (e.g., a service provider needing to verify
information of a customer) may initiate a DID authentication process using an SDK 312. At
step 702, the verifier 532 may obtain the DID provided by a purported owner. At step 704,
the verifier 532 may call the SDK 312 to create a DID authentication challenge. The verifier
532 may input to the SDK 312 the DID to be authenticated and a network address (e.g., a
URL) to which a response to the challenge is to be sent. At step 706, the SDK 312 may send
a query to a resolver 322 for the DID document associated with the DID to be authenticated.
At step 708, the resolver 322 may formulate a blockchain transaction invoking a blockchain
contract 331 for managing DIDs and send the blockchain transaction to one or more
blockchain nodes associated with the blockchain 330 for execution. As a result, the resolver
322 may obtain the DID document corresponding to the DID at step 710 and forward it to the
SDK 312 at step 712. At step 714, the verifier 532 may use the SDK 312 to create a DID
authentication challenge based on the obtained DID document. In some embodiments, the
DID authentication challenge may comprise a ciphertext created by encrypting original text
using a public key associated with the DID that is recorded in the DID document. The
challenge may also comprise a network address to which a response is to be sent. At step 716,
the verifier 532 may obtain information associated with the authentication service endpoint
for the DID from the DID document. At step 718, the verifier 532 may use the SDK 312 to

send the challenge to the DID authentication services associated with the DID.

[102] In some embodiments, after obtaining the DID authentication challenge from the
verifier 532, the DID authentication services may obtain consent from the owner for such
authentication request at step 720. If the owner provides consent or permission for the
identity authentication, the DID authentication services may call its version of the SDK 312

to create a response to the DID authentication challenge at step 722. In some embodiments,
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the response to the DID authentication challenge may comprise plaintext that is the result of
decrypting the ciphertext in the challenge using the private key associated with the DID. The
SDK 312 may return the response to the DID authentication services at step 724, which may
then send the response to the network address provided by the verifier 432 at step 726. Upon
receiving the response to the DID authentication challenge, the verifier 532 may call its SDK
312 at step 728 to check the response. At step 730, the SDK 312 may determine whether the
response proves that the user providing the DID is the owner of the DID. In some
embodiments, the SDK 312 may check the response by comparing decrypted text in the
response with the original text that was used to create the DID authentication challenge. If the
response is determined to be correct, the SDK 312 may return a message to the verifier 532
indicating the DID is a valid proof of identity of the user at step 732. At step 734, the verifier
532 may notify the user as to the validity of the DID.

[103] FIG. 8 illustrates a method for authenticating a decentralized identifier using an
identity management application in accordance with some embodiments. The operations of
the method presented below are intended to be illustrative. Depending on the implementation,
the method may include additional, fewer, or alternative steps performed in various orders or
in parallel. In some embodiments, a user may use a terminal for managing DIDs, which may
comprise an identity management application or another suitable application. The application
may comprise a version of the SDK 312. In this example, the user may need services from a
service provider (i.e., verifier), which requires verification that the user owns a particular
DID in order to provide its services. The user may send a service request to the verifier. The

service request may be in the form of an HTTP request.

[104] At step 802, the user may call the identity management application 533 to provide
authentication information for the service request. The user may provide the original service
request as an input to the SDK 312 included in the identity management application 533. At
step 804, the SDK 312 may sign the content of the original service request using a private key
of a cryptographic key pair associated with the DID. The SDK 312 may be used to add the
DID and a digital signature for the original service request to the original service request to
create a signed service request. In case the original service request is a HTTP request, the
SDK 312 may add the DID and the digital signature to a header of the HTTP request. At step
806, the SDK 312 may send the signed service request to the verifier 532.
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[105] In some embodiments, the verifier 532 may call its version of an SDK 312 to
authenticate the DID included in the signed service request at step 808. At step 810, the SDK
312 may obtain the DID and the digital signature included in the signed service request. In
case the signed service request is an HTTP request, the DID and the digital signature may be
obtained from the header of the HTTP request. At step 812, the SDK 312 may send a query to
a resolver 322 for the DID document associated with the DID to be authenticated. At step 814,
the resolver 322 may formulate a transaction invoking a blockchain contract 331 for
managing DIDs and send the transaction to one or more blockchain nodes associated with the
blockchain 330 for execution. As a result, the resolver 322 may obtain the DID document
corresponding to the DID at step 816 and forward it to the SDK 312 at step 818. At step 820,
the SDK 312 associated with the verifier 532 may check the signed service request to
determine whether it is from the owner of the DID based on the obtained DID document. In
some embodiments, the SDK 312 may decrypt the digital signature using a public key
obtained from DID document, and check the decryption result against a hash value of the
original service request to determine if the public key is associated with the key used to create
the digital signature in the signed service request. If so, the SDK 312 may determine that the
service request from the user is valid. It may then send it to the verifier 532 for processing at
step 822. The verifier 532 may process the service request and provide appropriate services to
the user at step 824. Then, the verifier 532 may send a response to the user at step 826 to

confirm completion of the requested services.

[106] FIG. 9 illustrates a method for issuing a verifiable claim in accordance with some
embodiments. The operations of the method presented below are intended to be illustrative.
Depending on the implementation, the method may include additional, fewer, or alternative
steps performed in various orders or in parallel. In some embodiments, an issuer 531 may
issue a VC to a user. The VC may be used as a proof of certain facts or characteristics of the

user as endorsed by the issuer 531.

[107] At step 902, the issuer 531 may obtain a DID associated with the user and a proof of
the fact to be included in the VC. Here, the proof of the fact to be included in the VC may be
based on materials submitted by the user to the issuer 531, information or data obtained by
the issuer 531 from third-party systems, in-person verification of the facts, other suitable
sources of proof, or any combination thereof. After obtaining the DID and the proof, the

issuer 531 may call an SDK 312 associated with creation of VCs to initiate a process for
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creating the VC at step 904. The message from the issuer 531 may comprise a statement of
the proven fact or a claim about the user. The SDK 312 may create a VC document including
the statement using a cryptographic key pair associated with the issuer 531 at step 906. In
some embodiments, the VC may include a digital signature created based on a private key
associated with the issuer 531. At step 908, the SDK 312 may update a locally-stored status
of the VC.

[108] At step 910, the SDK 312 may send a query to a resolver 322 for the DID document
associated with the DID for which the VC is issued. At step 912, the resolver 322 may
formulate a transaction invoking a blockchain contract 331 for managing DIDs and send the
transaction to one or more blockchain nodes associated with the blockchain 330 for execution.
As a result, the resolver 322 may obtain the DID document corresponding to the DID at step
914 and forward it to the SDK 312 at step 916. At step 918, the SDK 312 may identify a VC
service endpoint associated with the DID of the user for storing VCs. The VC service
endpoint may correspond to a VC repository 414 used by the user or the owner of the DID.
Then at step 920, the issuer may use the SDK 312 to send the VC to the VC repository 414
for storage. The VC may also include information associated with a VC status service
endpoint, which may store and provide status information for the VC. In some embodiments,
the information may comprise a network address (e.g., URL) for an issue agent service used
by the issuer 531 to keep status of VCs. The VC status service endpoint may or may not be
associated with the VC repository 414. The SDK 312 may provide the current status of the
newly generated VC to the VC status service endpoint for storing. The status of the VC may

be stored on a blockchain.

[109] FIG. 10 illustrates a method for verifying a verifiable claim in accordance with
some embodiments. The operations of the method presented below are intended to be
illustrative. Depending on the implementation, the method may include additional, fewer, or
alternative steps performed in various orders or in parallel. In some embodiments, a user may
provide a VC to another party (e.g., a verifier 532) to prove a fact stated in the VC. The VC
may be provided after the verifier 532 has verified that the user is the owner of a DID

associated with the VC.

[110] At step 1002, the verifier 532 may call an SDK 312 comprising code libraries
associated with VC verification to verify the VC. The SDK 312 may identify from the VC

(e.g., in a “credential status” field) information associated with a VC status service endpoint
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for the VC. The VC status service endpoint may be associated with an issuer 531. At step
1004, the SDK 312 may send a query to the issuer 531 for the status of the VC. In response,
at step 1006, the issuer 531 may call an SDK 312 to obtain the status of the VC. The SDK
531 may obtain the status of the VC. As an example, the SDK 312 may determine that the
VC has a valid status and may return the information to the issuer 531 at step 1008. Then, at
step 1010, the issuer may return the valid status information to the SDK 312 associated with

the verifier 532.

[111] The verifier 532 may obtain an identifier associated with the issuer 531 of the VC.
For example, the identifier may be a DID of the issuer 531. At step 1012, the SDK 312 may
send a query to a resolver 322 for a public key associated with the DID of the issuer 531 of
the VC. At step 1014, the resolver 322 may formulate a transaction invoking a blockchain
contract 331 for managing DIDs and send the transaction to one or more blockchain nodes
associated with the blockchain 330 for execution. As a result, the resolver 322 may obtain the
public key corresponding to the DID at step 1016 and forward it to the SDK 312 associated
with the verifier 532 at step 1018. At step 1020, the SDK 312 associated with the verifier 532
may verify the VC based on a digital signature included therein and the public key associated
with the issuer 531 of the VC. If the VC is verified, the SDK 312 may send a confirmation to
the verifier 532 at step 1022.

[112]  FIGs. 11-15 illustrate example operations associated with DIDs or VCs performed
by one or more user-side systems 310, one or more service-side systems 320, one or more
agents 321, one or more resolvers 322, one or more clouds 324, one or more blockchain
systems 330, one or more KMSs, or other suitable systems, applications, services. In some
embodiments, a user-side system 310 may manage one or more DIDs or VCs by interacting
with an online platform integrating one or more of the aforementioned components via one or
more API interfaces (e.g., REST API). The user-side system 310 may trust confidential

information such as cryptographic key pairs to the online platform for secure keeping.

[113] FIG. 11 illustrates a method for creating a decentralized identifier using an agent
service in accordance with some embodiments. The operations of the method presented
below are intended to be illustrative. Depending on the implementation, the method may
include additional, fewer, or alternative steps performed in various orders or in parallel. In
some embodiments, a user-side system 310 associated with an entity may use one or more

agent services 321 to create one or more DIDs for one or more users of the entity and
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correlate the DIDs with internal accounts or identifications (e.g., service IDs) maintained by
the entity. In order to create DIDs for its users, the entity may have been authenticated by the
online platform as a trusted entity and may have made a commitment to provide truthful
information. In some embodiments, the entity may have been issued a VC by a bootstrap
issuer DID to certify that it is authenticated by an authoritative entity. The entity may be
required to authenticate the identities of its users. The user-side system 310 may use one or
more KMSs 323 and the secure environment (e.g., TEE) that they provide to manage
cryptographic keys associated with the created DIDs and to map the cryptographic keys to the
internal accounts or identifications maintained by the entity. With the help of the agent
services 321, the user-side system 310 may use services associated with DIDs without
keeping a record of the DIDs. Instead, it may simply provide its internal account information
or identification information for identification of the DIDs via one or more interfaces

associated with the agent services 321.

[114] In some embodiments, an online platform for managing DIDs may receive a request
for creating a DID. The request may be from a first entity on behalf of a second entity for
creating the DID for the second entity. In the example illustrated by FIG. 11, an entity (e.g.,
first entity) may create a DID for a user (e.g., second entity), who may have an account with
the business entity. In some embodiments, the entity may authenticate the identity of a user
before creating a DID for the user. For example, at step 1102 of FIG. 11, a server 311 of a
user-side system 310 associated with the entity may perform identity authentication or
otherwise obtain identity authentication information for the user. The entity may have
authenticated the identity of the user earlier and may maintain such information in a database.
At step 1104, the server 311 may retrieve such information. Then, the server 311 may send
the request for creating the DID to an agent service API 410 associated with a user agent 411
associated with the online platform. The request may comprise an account identifier
corresponding to the user. The request may take the form of an API message. At step 1006,

the agent service API 410 may send a request to a user agent 411 for creating the DID.

[115] At step 1108, the user agent 411 may check the request for required information. In
some embodiments, to create a DID for a user, the entity may be required to have an existing
DID for itself. The user agent 411 may check the request to determine that the sender of the
request has an existing DID and to determine the DID associated with the sender. In some

embodiments, the entity may be required to provide a proof of identity authentication for the
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user. The proof of identity authentication may comprise a proof of real-person authentication,
a proof of real-name authentication, another suitable proof of authentication, or any
combination thereof. For example, a proof of real-name authentication may be based on a
user’s office identification (e.g., government-issued ID). An example proof may, for example,
be a number created by applying a hash function (e.g., SHA-256) to a combination of an ID
type, ID number, and a number of the user. Such a proof may ensure unique correspondence

with a particular user while maintaining sensitive information of the user confidential.

[116] In some embodiments, the user agent 411 may determine whether the request for
creating a DID comprises a proof of identity authentication. The proof of identity
authentication may comprise a proof of real-name authentication, a proof of real-person
authentication, proofs of other suitable methods of identity authentication, or any
combination thereof. If the user agent 411 determines that the request does comprise the
proof of identity authentication, the user agent 411 may accept the request based on the
determination. If the user agent 411 determines that the request for creating a DID does not
comprise a proof of identity authentication, the user agent 411 may reject the request.
Alternatively, the user agent 411 may send to the server 311 a request for the proof of identity
authentication. The user agent 411 may then receive the required proof of identity
authentication from the server 311. The user agent 411 may also use other methods to obtain

identity authentication of the user.

[117] At step 1109, the user agent 411 may obtain the proof of identity authentication for
the user corresponding to the DID to be created. In some embodiments, the user agent 411
may directly obtain the proof of identity authentication based on the received request or other
information received from the server 311. The user-side system 310 may have obtained the
proof by performing identity authentication or by using an identity service 341. The user-side
system 310 may include a proof of identity authentication in the request for creating the DID
or include means to obtain the proof (e.g., a link). In some embodiments, the user-side system
310 may delegate the function of sending requests for creating DIDs to an identity service
341. The server 311 may send information associated with one or more users, for whom it
intends to create DIDs, to the identity service 341. The identity service 341 may perform
identity authentication on the users or confirm that identity authentication on the users has
been successfully completed. The identity service 341 may create one or more requests for

creating DIDs based on the information received from the server 311, the requests including
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proofs of identity authentication for the users. In some embodiments, DID documents created
in response to requests from the identity service 341 may comprise a field (e.g., a “creator”
field) indicating that the DID is created based on identity authentication by the identity
service 341. In some embodiments, after the DID is created based on identity authentication
by identity service 341, the identity service 341 may issue a VC to the DID certifying the
real-world identity of the owner of the DID. In some embodiments, before another issuer
issues a VC to the owner of the DID, this other issuer may require the VC issued by the

identity service 341 as a proof of identity authentication of the DID owner.

[118] In some embodiments, the user agent 411 may obtain the proof of identity
authentication independently by using an identity service 341. In some embodiments, the
identity service 341 may correspond to an entity trusted by the service-side system 320. The
entity may perform identity authentication on users (e.g., real-name authentication, real-
person authentication). The identity authentication may comprise collecting various identity
information (e.g., name, date of birth, address, appearance features, fingerprint) associated
with an individual that corresponds to an identity and compare the collected information with
information maintained by authoritative sources (e.g., government agencies). After successful
authentication of an individual’s identity, the identity service 341 may store a record of the
successful authentication (e.g., a proof of identity authentication) and identity information
associated with the individual in association with identifiers of the individual, such as an
account or a service ID. The identity service 341 may store identity information and proofs of
identity authentication in a database 343. Alternatively, the identity service 341 may store
identity information and proofs of identity authentication in a blockchain 330. In some
embodiments, the identity service 341 may create one or more blockchain transactions for
saving the identity information in the blockchain 330 and send the one or more blockchain
transactions to one or more blockchain nodes associated with the blockchain 330.
Alternatively, the identity service 341 may interact with the blockchain 330 via, for example,
the BaaS cloud 324. The identity service 341 may send the BaaS cloud 324 a request to store
the identity information and proof of identity authentication on the blockchain 330. The user
agent 411 may send a request to the identity service 341 for a proof of identity authentication
of a user. The user may correspond to a request for creating a DID. The identity service 341

may send back the requested proof of identity authentication.
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[119] In some embodiments, the user agent 411 may obtain a DID in response to a request
without obtaining the proof of identity verification. The DID created in this manner may be
assigned a status of “authentication pending.” It may be mapped to a dummy account
identifier. The status may be represented in the DID document corresponding to the DID,
saved in a system storing status information for DIDs, or be saved by the user agent 411. The
operations that can be performed in relation to a DID with such a status may be limited. For
example, the owner of the DID may be prohibited from issuing VCs or being issued VCs.
The status of “authentication pending” may be removed after a proof of identity
authentication is provided to the user agent 411. The identity service 341 may send the user
agent 411 the proof of identity authentication proactively, or upon request by the user-side
system 310 or the user agent 411. After receiving the proof, the user agent 411 may update
status information stored in association with the DID. Furthermore, the user agent 411 may
store a mapping relationship between the DID and an account identifier associated with the
user whose identity has been authenticated. Further details about identity authentication are

described in relation to FIGs. 15-18.

[120]  After obtaining the proof of identity authentication, the user agent 411 may create a
key alias corresponding to the proof of identity authentication for the user at step 1110. In
some embodiments, the user agent 411 may obtain, in response to receiving the request, a
public key of a cryptographic key pair. The public key may later be used as a basis for
creating the DID. In some embodiments, the user agent 411 may obtain the public key from
the KMS 323. At step 1112, the user agent 411 may send a request to the KMS 323 for
generating and storing a cryptographic key pair. The KMS 323 may generate a cryptographic
key pair. In some embodiments, the KMS 323 may cause the cryptographic key pair to be
generated in a TEE associated with the KMS 323. After the key pair is generated, the KMS
323 may obtain a public key and an encrypted private key from the TEE. At step 1114, the
KMS 323 may send the public key to the user agent 411.

[121] In some embodiments, the online platform may obtain the DID based on the public
key. At step 1116, the user agent 411 may send a request for creating a new DID to the
resolver 322 The request may comprise the public key. In response, the resolver 322 may
generate, based on the public key, one or more blockchain transactions for creating the DID
and adding a DID document associated with the DID to a blockchain. Alternatively, the DID

resolver may send a request to the BaaS cloud 324 for generation of such transactions. For
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example, at step 1118, the resolver 322 may send a request to a blockchain system 330 for
creating a new blockchain account. Here, the request may be directly sent to one or more
blockchain nodes of the blockchain 330 in the form of one or more blockchain transactions or
be sent to a BaaS Cloud 324 or other suitable interface systems associated with a blockchain
330. The blockchain transactions may invoke one or more blockchain contracts configured
for managing DIDs. In response to the request from the resolver 322, at step 1120, the DID
resolver may obtain an indication from the blockchain 330 or the cloud 324 that a new
blockchain account is successfully created. The blockchain account may be associated with
an address on the blockchain 330. Information obtained by the resolver 322 may comprise
information associated with the newly-created blockchain address. It may directly comprise a
newly-created DID or at least information sufficient to construct the DID. At step 1122, the
resolver 322 may send a message back to the user agent 411. The message may comprise

information associated with the newly created DID.

[122] In some embodiments, a DID document may be created and stored in the blockchain
330. At step 1124, the user agent 411 may generate a DID document and add the public key
associated with the newly-created DID and authentication information to the DID document.
At step 1126, the user agent 411 may add information associated with one or more service
endpoints (e.g., information associated with an authentication service endpoint, information
associated with a verifiable claim repository) to the DID document. The authentication
service endpoint and the verifiable claim repository 414 may be provided as part of the online
platform. The DID document may comprise one or more public keys associated with the
obtained DID, authentication information associated with the obtained DID, authorization
information associated with the obtained DID, delegation information associated with the
obtained DID, one or more services associated with the obtained DID, one or more service
endpoints associated with the obtained DID, a DID of a creator of the obtained DID, other
suitable information, or any combination thereof. In some embodiments, the DID document
may comprise a “creator” field containing identification information (e.g., DID) of the entity
that sent the request for creating the DID on behalf of the user. The “creator” field may serve
as a record of the entity that authenticated of the identity of or endorsed the owner of the DID.
Then, at step 1128, the user agent 411 may generate one or more blockchain transactions for
storing the DID document to the blockchain 330. The user agent 411 may also generate one

or more hash values of the blockchain transactions.
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[123] In some embodiments, for the one or more blockchain transactions to be executed by
one or more nodes of the blockchain 330, they are required to be signed using the private key
associated with the DID. The user agent 411 may obtain such a digital signature from the
KMS 323. At step 1130, the user agent 411 may send a request to the KMS 323 for signing a
blockchain transaction using the private key of the cryptographic key pair associated with the
DID. The request may comprise the hash value of the transaction and a public key associated
with the DID. The KMS 323 may create a digital signature for the transaction. In some
embodiments, the digital signature may be generated in a TEE associated with the KMS 323.
The KMS 323 may identify an encrypted private key associated with the public key and feed
the encrypted private key to the TEE. The encrypted private key may be decrypted within the
TEE and used to generate the digital signature for the transaction. The digital signature may
then be fed back to the KMS 323. At step 1132, the user agent 411 may receive from the

KMS a signed version of the blockchain transaction.

[124] At step 1134, the user agent 411 may send the DID document as well as the signed
blockchain transaction to the resolver 322 for sending to the blockchain system. At step 1136,
the resolver 322 may send one or more transactions to the blockchain system (e.g., one or
more blockchain nodes, a BaaS Cloud 324). The transactions may invoke a blockchain
contract 331 for managing DIDs and DID documents on the blockchain 330. At step 1138,
the resolver 322 may obtain information from the blockchain 330 indicating that the DID
document has been successfully stored. At step 1140, the resolver 322 may forward a

confirmation to user agent 411.

[125] At step 1142, after a DID and its corresponding DID document have been created,
the user agent 411 may update the database 416 to store a mapping relationship among the
DID, an account identifier of the user, a proof of identity authentication of the user, a service
ID of the user, a public key associated with the DID, a key alias associated with the user or
the proof of identity authentication, other suitable information, or any combination thereof. In
some embodiments, the mapping relationship may be stored in an encrypted form. To store
the mapping relationship, the user agent 411 may calculate a hash value for a combination the
DID and one or more items of the other identification information. In some embodiments,
such a hash value may be stored as part of the DID document. The stored mapping
relationship may allow the user agent 441 to identify the DID based on information received

from the user-side system 310. In some embodiments, the user agent 411 may receive a
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request associated with the obtained DID, wherein the request comprises the account
identifier and then identify the obtained DID based on the mapping relationship between the
account identifier and the obtained DID. In other embodiments, the user agent 441 may
receive a request for a proof of identity authentication, wherein the request comprises a DID
and then locate the proof of identity authentication based on the mapping relationship
between the proof of identity authentication and the DID. In some embodiments, the user
agent 411 may store a recovery key for recovering the private key corresponding to the DID
in association with identification information of the user. In this manner, the user agent 411
may allow the user to take control over the DID using the recovery key. Then, at step 1144,
the user agent 411 may send information associated with the DID to the server 311, which
may send a notification to the user at step 1146 to inform the user of the successful creation

of the DID.

[126] FIG. 12 illustrates a method for authenticating a decentralized identifier using an
agent service in accordance with some embodiments. The operations of the method presented
below are intended to be illustrative. Depending on the implementation, the method may
include additional, fewer, or alternative steps performed in various orders or in parallel. In
some embodiments, a party (e.g., verifier) may desire to authenticate that another party (e.g.,
purported owner of DID) is the true owner of a DID. The authentication process may be

facilitated by agent services 321 available to both parties.

[127] In some embodiments, at step 1202, the verifier 532 may obtain a DID provided by
a purported owner. At step 1204, the verifier 532 may send a request to an agent service API
410 for creating a DID authentication challenge. The request may comprise the DID to be
authenticated and a network address (e.g., a URL) to which a response to the challenge is to
be sent. The network address may be accessible to the verifier 532. At step 1206, the request
may be forwarded from the agent service API 410 to a verifier agent 413 configured to
perform operations related to authentication of DIDs. At step 1208, the verifier agent 413
may send a query to a resolver 322 for the DID document associated with the DID to be
authenticated. At step 1210, the resolver 322 may formulate a transaction invoking a
blockchain contract 331 for managing DIDs and send the transaction to one or more
blockchain nodes associated with the blockchain 330 for execution. As a result, the resolver
322 may obtain the DID document corresponding to the DID at step 1212 and forward it to
the verifier agent 413 at step 1214. At step 1216, the verifier agent 413 may create a DID
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authentication challenge based on the obtained DID document. In some embodiments, the
DID authentication challenge may comprise a ciphertext created by encrypting original text
using a public key associated with the DID that is recorded in the DID document. The
challenge may also comprise the network address associated with the verifier, to which a
response is to be sent. At step 1218, the verifier agent 413 may obtain information associated
with the authentication service endpoint for the DID from the DID document. At step 1220,
the verifier agent 413 may store an identifier of the challenge in relation to information
associated with the challenge in a memory using a key-value structure. For example, the
verifier agent 413 may store a challenge ID associated with the challenge in association with
the DID to be authenticated, a plaintext used to create the cyphertext, and the network
address for sending the response to the challenge. At step 1222, the verifier agent 413 may
send the challenge to the DID authentication services associated with the DID based on

information from the DID document.

[128] In some embodiments, after obtaining the DID authentication challenge from the
verifier agent 413, the DID authentication services may obtain consent from the owner of the
DID for responding to such a challenge at step 1224. If the owner provides consent or
permission for the identity authentication, the DID authentication services may send a request
to an agent service API 410 associated with a user agent 411 for a response to the DID
authentication challenge at step 1226. At step 1228, the agent service API 410 may call a
corresponding functionality of the user agent 411 for creation of a response to the challenge.
The response to the challenge may require restoration of the plaintext used to create the
ciphertext included in the challenge using a private key associated with the DID to be
authenticated. At step 1230, the user agent 411 may send the cyphertext from the challenge to
the KMS 323 for decryption along with identification information associated with the DID
that is recognized by the KMS 323. The KMS 323 may store a plurality of public-private key
pairs in association with identification information for accounts or DIDs corresponding to the
key pairs. Based on the identification information received from the user agent 411, the KMS
323 may identify the public-private key pair associated with the DID. In some embodiments,
the KMS 323 may store the public key and an encrypted version of the private key. It may
send the encrypted private key to a TEE associated with the KMS 323 for decryption. The
private key may then be used to decrypt the ciphertext within the TEE. At step 1232, the user
agent 411 may obtain the decrypted plaintext from the KMS 323.
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[129] At step 1234, the user agent 411 may generate a response to the challenge using the
plaintext and send the response back to the DID authentication services. The response may
comprise a challenge identifier that was contained in the original challenge. At step 1236, the
DID authentication services may send the response to the network address provided by the
verifier 532. Then, at step 1238, the verifier 532 may forward the response to the verifier
agent 413 for checking. The verifier agent 413 may first compare the challenge identifier in
the response with one or more challenge identifiers stored in the memory 415 to identify
information associated with the challenge corresponding to the response at step 1240. Then at
step 1242, the verifier agent 413 may determine if the purported owner of the DID is the
actual owner. In some embodiments, the verifier agent may determine if the plaintext
contained in the response is identical to the plaintext used to create the ciphertext in the
challenge. If so, the verifier agent 413 may determine that authentication is success. The
verifier agent 413 may send a confirmation message to the verifier at step 1244, which may

forward the confirmation message to the owner of the DID at step 1246.

[130] FIG. 13 illustrates a method for authenticating a decentralized identifier on behalf of
a verifier or an owner in accordance with some embodiments. The operations of the methods
presented below are intended to be illustrative. Depending on the implementation, the
methods may include additional, fewer, or alternative steps performed in various orders or in
parallel. Furthermore, one or more steps performed in any of the methods illustrated in FIG.
13 may be replaced with one or more suitable steps performed in another one of the methods.
The devices or systems performing certain steps as illustrated in FIG. 13 may also be
substituted by other suitable devices or systems to perform the same steps. The suitable
devices or systems may comprise sub-systems, parent systems, or counterpart systems with
similar functionalities. As an example, one or more steps performed by the user-side system
310 may be performed by the identity management application 533 and vice versa. As
another example, one or more steps performed by the service-side system 320 may be
performed by the resolver 322 or agent 321, which may be a sub-system of the service-side
system 320. Although this specification describes particular devices or systems performing
particular steps, this specification contemplates any suitable devices or systems performing

any suitable steps for authenticating decentralized identifiers.

[131] In some embodiments, one party (e.g., verifier 532) may desire to authenticate that

another party (e.g., purported owner of DID) is the true owner of a DID. The service-side
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system 320 may provide one or more services and interfaces to either or both of the parties to
facilitate the parties in completing one or more steps of an authentication process. The
methods illustrated by FIG. 13 may comprise one or more steps that are replaceable with or

can be used to replace one or more steps of the method illustrated in FIG. 12.

[132] In some embodiments, as illustrated in FIG. 13, a purported DID owner may
interact with the service-side system 320 through a user-side system 310a associated with a
first entity. A verifier 532 of the DID may interact with the service-side system 320 through a
user-side system 310b associated with a second entity. The first entity and the second entity
may or may not be the same entity. As an example and not by way of limitation, the
purported DID owner may correspond to an individual user, and the verifier 532 may
correspond to a service provider needing to authenticate an identity of the user before
providing a service to the user. It may be the case that neither the purported DID owner nor
the verifier 532 has the technical capabilities or needs to directly manage DID-related
operations. They may rely on the user-side systems 310a and 310b to interface with the
service-side system 320 in order to perform DID-related operations. For example, the user-
side system 310a may be authorized to control one or more operations associated with the

DID on behalf of the owner of the DID.

[133] The method illustrated in FIG. 13 may start at step 1311, where the purported DID
owner may provide a DID to the verifier 532. In response to obtaining the DID, the verifier
532 may begin the authentication process for the DID. At step 1312, the verifier 532 may
provide to the purported DID owner a DID authentication challenge. In some embodiments,
the DID authentication challenge may comprise a plaintext (e.g., a piece of text selected by
the DID verifier). In order to prove its ownership of the DID, the purported DID owner may
need to provide a digital signature on the plaintext using a private key of a cryptographic key
pair associated with the DID. At step 1313, the purported DID owner may forward the DID
authentication challenge to the user-side system 310a. In this scenario, the purported DID
owner and the user-side system 310a may have entrusted the management of the
cryptographic key pair associated with the DID to the service-side system 320. At step 1314,
the user-side system 310a may send a request to the service-side system 320 (e.g., to the user
agent 411 in the service-side system 320) for a digital signature on the plaintext included in
the DID authentication challenge. The request may comprise the DID to be authenticated and
the plaintext.
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[134]  The service-side system 320 may obtain the request for creating the digital signature
from the user-side system 310a. From the request, the service-side system 320 may obtain the
plaintext and information associated with the DID. At step 1315, the service-side system 320
may obtain one or more permissions associated with a sender of the request for creating the
digital signature, and may determine, based on the obtained one or more permissions and the
information associated with the DID, whether the sender of the request for creating the digital
signature is authorized to control one or more operations associated with the DID. The
service-side system 320 may ascertain the identity of the sender of the request based on
encrypted or other secure communication with the sender. For example, the service-side
system 320 may check and determine whether the sender of the request is the owner of the
DID, a controller or creator of the DID, or a user-side system 310 that is authorized to
manage one or more operations associated with the DID. If it is determined that the sender of
the request for creating the digital signature is authorized to control the one or more
operations associated with the DID, the service-side system 320 may create the digital
signature per the request. Otherwise the service-side system 320 may reject the request. In
some embodiments, the service-side system 320 may additionally check a status of the DID.
For example, the service-side system 320 may determine whether the DID has been
registered on the blockchain 330 or whether a DID document associated with the DID has
been stored on the blockchain 330. In some embodiments, the service-side system 320 may
only proceed with providing the digital signature if the DID has been registered on the

blockchain 330 and is in a fully functional status.

[135] If the service-side system 320 accepts the request for creating the digital signature, it
may proceed to step 1316. At step 1316, the service-side system 320 may identify a
blockchain account associated with the DID. The service-side system 320 may query the
blockchain 330 for such blockchain account information and obtain such information at step
1317. The service-side system 320 may use an identifier of the blockchain account
corresponding to the DID to identify a cryptographic key pair associated with the DID. For
example, the service-side system 320 may obtain a key identifier based on the identifier of
the blockchain account and access the cryptographic key pair based on the key identifier.
Then, at step 1318, the service-side system 320 may create the digital signature on the
plaintext based on the request for creating the digital signature. The digital signature may be
created by encrypting a hash value of the plaintext using a private key associated with the

DID. In some embodiments, the service-side system 320 may use the KMS 323 to generate
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the digital signature. The service-side system 320 may send instructions to the KMS 323 for
signing the plaintext using the private key associated with the DID. Then, the service-side
system 320 may obtain the digital signature from the KMS 323. For example, the service-side
system 320 may identify a blockchain account associated with the DID, determine an
identifier for the private key associated with the DID based on the identified blockchain
account associated with the DID, and include the identifier for the private key associated with
the DID in the instructions. In some embodiments, the digital signature obtained from the

KMS 323 may have been generated in a TEE.

[136] At step 1319, the service-side system 320 may return the digital signature on the
plaintext to the user-side system 310a. The user-side system 310a may generate a response to
the DID authentication challenge based on the digital signature and send the response to the
purported DID owner at step 1320. The response may comprise information associated with
the DID (e.g., the DID), information associated with the DID authentication challenge (e.g.,
an identifier of the DID authentication challenge), the plaintext included in the DID
authentication challenge, the digital signature, other suitable information, or any combination
thereof. Then, at step 1321, the purported DID owner may provide the response to the verifier
532.

[137]  After receiving the response to the DID authentication challenge from the purported
DID owner, the verifier 532 may initiate a process for authenticating the ownership of the
DID based on the response. At step 1322, the verifier 532 may provide the response to the
user-side system 310b. At step 1323, the user-side system 310b may forward the response to
the service-side system 320 (e.g., to the verifier agent 413 in the service-side system 320) as
part of a request for authenticating the DID. The request may comprise the DID, the plaintext
associated with the DID authentication challenge, the digital signature on the plaintext, other
suitable information, or any combination thereof. In some embodiments, the request may
comprise the response to the DID authentication challenge, which may comprise part or the
entirety of the information included in the request. The service-side system 320 may initiate a
process for authenticating the DID in response to obtaining the request for authenticating the
DID. In some embodiments, the service-side system 320 may check for satisfaction of one or
more criteria before initiating the process. For example, the service-side system 320 may
check whether a creator of the DID authentication challenge (e.g., the verifier 532) owns a

DID managed by the service-side system 320, whether the DID to be authenticated has a
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valid status (e.g., whether the DID has been registered on the blockchain 330), whether
another suitable criterion is satisfied, or any combination thereof. If all the required criteria, if

any, are satisfied, the service-side system 320 may initiate the process for authenticating the

DID.

[138] In some embodiments, the service-side system 320 may obtain a public key
associated with the DID. In some embodiments, the service-side system 320 may identify a
blockchain 330 associated with the DID and obtain the public key from the identified
blockchain. At step 1324, the service-side system 320 may query the blockchain 330 for the
public key associated with the DID. Then, at step 1325, the service-side system 320 may
obtain the public key from the blockchain 330. For example, the service-side system 320 may
send a blockchain transaction to one or more blockchain nodes of the blockchain 330 to
retrieve a DID document corresponding to the DID. The blockchain transaction may
comprise information associated with the DID and may invoke a blockchain contract for
managing relationships between DIDs and corresponding DID documents. For example, the
blockchain transaction may call an interface of the blockchain contract that is executable to
retrieve information associated with one or more DID documents corresponding to one or
more DIDs. The service-side system 320 may obtain the DID document from the blockchain

330 and retrieve the public key from the DID document.

[139] At step 1326, the service-side system 320 may verify the digital signature based on
the plaintext and the public key. In one embodiment, the service-side system 320 may
determine, based on the obtained public key and the plaintext, whether the digital signature
on the plaintext is created based on a private key corresponding to the DID. For example, the
service-side system 320 may calculate a hash value of the plaintext and decrypt the digital
signature using the public key to obtain a decrypted value. The service-side system 320 may
compare the calculated hash value and the decrypted value to determine whether they are the
same. If so, the service-side system 320 may determine that the digital signature is created
based on the private key corresponding to the public key. At step 1327, the service-side
system 320 may return a result of authentication to the user-side system 310b (the sender of
the request for authenticating the DID). If the service-side system 320 determines that the
digital signature on the plaintext is created based on the private key corresponding to the DID,
the service-side system 320 may generate and send a message confirming authentication of

the DID. This confirms that the purported DID owner is the actual owner of the DID.
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Otherwise, the service-side system 320 may generate and send a message indicating that the
authentication of the DID has failed. At step 1328, the user-side system 310b may forward
the result to the verifier 532, the creator of the DID authentication challenge. Alternatively,
the service-side system 320 may directly return the result to the verifier 532, the creator of

the DID authentication challenge.

[140] FIG. 14 illustrates a method for issuing a verifiable claim using an agent service in
accordance with some embodiments. The operations of the method presented below are
intended to be illustrative. Depending on the implementation, the method may include
additional, fewer, or alternative steps performed in various orders or in parallel. In some
embodiments, a first entity (e.g., an issuer) may desire to issue a VC for a second entity (e.g.,
a user) to testify as to a fact related to the second entity. The first entity may be referred to as
an issuer of the verifiable claim, and the second entity may be referred to as a subject of the
verifiable claim. The process of issuing the VC may be facilitated by agent services 321

available to the entities.

[141] In some embodiments, an agent service APl 410 may receive, from the issuer 531, a
request for creating an unsigned VC for a DID associated with the user at step 1402. At step
1404, the agent service API 410 may call the issuer agent 412 to execute operations to
generate a new VC. At step 1406, the issuer agent 412 may create a VC based on the request
received from the issuer 531. The VC may comprise a message that is included in the request.
In some embodiments, the VC may comprise an encrypted version of the message for
confidentiality reasons. The message may comprise a claim or statement regarding the user or
other suitable information or data that may be conveyed to a party with access to the VC. In
some embodiments, the VC may comprise a claim corresponding to identity authentication of
the user (e.g., real-name authentication, real-person authentication). The request may
comprise a DID of the user. The issuer agent 412 may directly create the VC based on the
DID. Alternatively, the request may comprise an account identifier associated with the user
(e.g., the user’s account with the entity issuing the VC). In this case, the issuer agent 412 may
obtain an account identifier associated with the user from the request and identify a DID
based on a pre-stored mapping relationship between the account identifier and the DID. The
issuer agent 412 may then create the unsigned VC based on the identified DID. The issuer

agent 412 may also calculate a hash value of the content of the unsigned VC.
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[142] In some embodiments, the issuer agent 412 may obtain, in response to receiving the
request, a digital signature associated with the issuer. In some embodiments, the digital
signature may be obtained from the KMS 323. The issuer agent 412 may determine a key
alias associated with the issuer 531 at step 1408. At step 1410, the issuer agent 412 may send
a request to the KMS 323 for a digital signature associated with the issuer 531 on the VC.
The request may comprise the key alias, which may be used for identification of the
cryptographic keys associated with the issuer 531. The request may also comprise the hash
value of the unsigned VC created by the issuer agent 412. The KMS 323 may store a plurality
of public-private key pairs in association with key aliases for entities or users. Based on the
key alias received from the issuer agent 412, the KMS 323 may identify the public-private
key pair associated with the issuer 531. In some embodiments, the KMS 323 may store the
public key and an encrypted version of the private key. It may send the encrypted private key
to a TEE associated with the KMS 323 for decryption. The private key may then be used to
create a digital signature of the issuer on the VC. The digital signature may be created by
encrypting the hash value of the unsigned VC using the private key. At step 1412, the digital
signature may be sent back to the issuer agent 412. Then, the issuer agent 412 may combine
the unsigned VC with the digital signature to compose a signed VC at step 1414. In this
manner, the signed VC is generated based on the request received from the issuer 531 and the

digital signature.

[143] In some embodiments, the issuer agent 412 may upload the VC to a service endpoint
associated with the DID of the user or the holder of the VC. The issuer agent 412 may
identify the service endpoint based on the DID document associated with the DID. At step
1416, the issuer agent 412 may send a query to a resolver 322 for the DID document
associated with the DID for which the VC is issued. At step 1418, the resolver 322 may
formulate a transaction invoking a blockchain contract 331 for managing DIDs and send the
transaction to one or more blockchain nodes associated with the blockchain 330 for execution.
The transaction may comprise information associated with the DID and may be for retrieving
a DID document corresponding to the DID. As a result, the resolver 322 may obtain the DID
document corresponding to the DID at step 1420 and forward it to the SDK 312 at step 1422.
Based on the DID document, the issuer agent 412 may obtain information (e.g., a network
address) associated with a service endpoint (e.g., a VC repository 414) for the DID from the
DID document. At step 1424, the issuer agent 412 may upload the VC to the service endpoint.
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[144] In some embodiments, the issuer agent 412 may store a status of the VC. The status
of the VC may be stored in a blockchain 330. In some embodiments, the blockchain 330 may
be used by a service endpoint associated with the issuer 531 of the VC. At step 1426, the
issuer agent 412 may send a status (e.g., valid, invalid) of the VC and a hash value of the VC
to the resolver 322 for storing in the blockchain 330. At step 1428, the resolver 322 may
generate and send to a blockchain node of the blockchain 330 associated with the service
endpoint, a blockchain transaction for adding information associated with the VC to the
blockchain. The information may comprise the status and the hash value of the VC. In some
embodiments, the blockchain transaction may invoke a blockchain contract 331 for managing
VCs. After sending the transaction to the blockchain node, the resolver 322 may determine
that the hash value and status of the VC have been successfully stored at step 1430 and may
send a confirmation to the issuer agent 412 at step 1432. In some embodiments, the status of
the VC may also be stored locally. At step 1434, the issuer agent 412 may store the VC and
its status at a database 416. The issuer agent 412 may receive a confirmation of successful
storage at step 1436, send a confirmation to the agent service API 410 at step 1438, which
may then send a confirmation to the issuer 531 indicating that the VC has been successfully
created at step 1440. The confirmation to the issue may comprise the VC that has been

created.

[145] In some embodiments, the VC may be provided to the user or the holder of the VC.
At step 1442, the issuer agent 412 may send the VC and/or a status of the VC to an agent
service API 410 associated with a user agent 411 for the holder of the VC. The agent service
API 410 may call the user agent 411 to upload the VC at step 1444. Here, the user agent 411
may serve as a service endpoint for the DID of the holder of the VC. The user agent 411 may
be implemented on the same physical system as the issuer agent 412. The user agent 411 may
save the VC to a database 416 at step 1446. After successful saving of the VC, the database
416 may return a success confirmation to the user agent 411 at step 1448. The user agent 411
may send a confirmation to the agent service API 410 at step 1450, which may forward a

confirmation to the issuer agent 412 at step 1452.

[146] FIG. 15 illustrates a method for verifying a verifiable claim using an agent service
in accordance with some embodiments. The operations of the method presented below are
intended to be illustrative. Depending on the implementation, the method may include

additional, fewer, or alternative steps performed in various orders or in parallel. In some
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embodiments, a holder of a VC (or a subject of the VC) may present to a first entity (e.g.,
verifier) a VC issued by a second entity (e.g., issuer of the VC). The verifier may verify the

VC with the aid of agent services 321.

[147] In some embodiments, an agent service API 410 may receive from a verifier 532 a
request to verify a VC at step 1502. The VC may comprise a digital signature associated with
an issuer of the VC. At step 1504, the agent service API 410 may call a function of the
verifier agent 413 for verifying the VC. In some embodiments, the verifier 532 may have
directly obtained the VC from the holder of the VC. Alternatively, the verifier 532 may only
have received an account identifier associated with a subject of the VC. The verifier 532 may
obtain the VC by obtaining a DID associated with the subject of the VC based on a pre-stored
mapping relationship between the account identifier and the DID, obtaining a DID document
associated with the DID, obtaining information associated with a service endpoint for

managing VCs from the DID document, and obtaining the VC from the service endpoint.

[148] In some embodiments, the verifier agent 413 may verify a status of the VC. The
verifier agent 413 may obtain and verify the status using either steps 1506a, 1508a, 1510a,
and 1512a or steps 1506b, 1508b, 1510b, and 1512b. In some embodiments, the verifier agent
413 may obtain the status of the VC from a blockchain storing information associated with a
plurality of VCs. At step 1506a, the verifier agent 413 may send to a resolver 322 a query for
a status of the VC. The query may comprise an identifier of the VC. At step 1508a, the
resolver 322 may create a blockchain transaction for retrieving a hash value and a status of
the VC and send it to one or more blockchain nodes associated with a blockchain 300. The
blockchain transaction may comprise a DID of the subject of the VC and may invoke a
blockchain contract 331 for managing VCs. At step 1510a, the resolver 322 may obtain a
status of the VC as well as a hash value associated with the VC from the blockchain 330. The
resolver 322 may then send the hash value and status to the verifier agent 413 at step 1512a
for verification. The verifier agent 413 may calculate a hash value by applying a hash
function on the VC that was provided by the holder. The verifier agent 413 may authenticate
the received status of the VC by comparing the hash value received from the blockchain 330
with the calculated hash value. If they are identical, the verifier agent 413 may determine that
the received status does correspond to the VC. If the status indicates that the VC is valid, the

verifier agent 413 may complete this step of the verification.
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[149] In some embodiments, the verifier agent 413 may obtain the status of the VC from a
service endpoint associated with the VC. In some embodiments, the service endpoint may
correspond to an issuer agent 412 associated with the issuer. At step 1506b, the verifier agent
413 may send a query to the issuer agent 412 for status of the VC. The issuer agent 412 may
query the database 416 for the status of the VC at step 1508b and obtain a status and a
corresponding hash value of the VC at step 1510b. The issuer agent 412 may send the hash
value and the status to the verifier agent 413 at step 1512b. The verifier agent 413 may

authenticate the status and verify that the VC is valid in the manner discussed above.

[150] In some embodiments, the verifier agent 413 may determine that the VC is issued by
the issuer identified on the VC. The verifier agent 413 may obtain, based on the VC, a public
key associated with the issuer. The verifier agent 413 may identify the issuer based on an
identifier in the VC. In some embodiments, the identifier may comprise a DID of the issuer.
The public key may be obtained from the blockchain 330 based on the DID of the issuer. At
step 1514, the verifier agent 413 may send a request to the resolver 322 for the public key
associated with the issuer. The request may comprise the DID of the issuer. At step 1516, the
resolver 322 may create a blockchain transaction invoking a blockchain contract 331 for
retrieving a public key or a DID document based on a DID and send the blockchain
transaction to a blockchain node of the blockchain 330. The resolver 322 may obtain the
public key (e.g., by retrieving from the DID document) at step 1518 and forward the public
key to the verifier agent 413 at step 1520. Then, at step 1522, the verifier agent 413 may
verify the VC using the public key by determining that the digital signature is created based
on a private key associated with the public key. In some embodiments, the verifier agent 413
may verify one or more other facts about the VC. For example, the verifier agent 413 may
obtain, from the VC, an issuance date of the VC and validate the obtained issuance date based
on a comparison between the obtained issuance date and a current date. As another example,
the verifier agent 413 may obtain, from the VC, an expiration date of the VC and validate that
the VC has not expired based on the expiration date and a current date. If verification of the
VC is successful, the verifier agent may send a confirmation to the agent service API 410 at
step 1524. The agent service API 410 may send a message to the verifier 532 confirming that
the VC is verified at step 1526.

[151] FIG. 16 illustrates a method for blockchain-based cross-entity authentication in

accordance with some embodiments. The operations of the method presented below are
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intended to be illustrative. Depending on the implementation, the method may include

additional, fewer, or alternative steps performed in various orders or in parallel.

[152] In some embodiments, from a simplified overview, the steps described with
reference to FIG. 16 may allow a user with a computing device 1607 (e.g., computer, mobile
phone, pad, wearable computing device, etc.) to access a first entity 1601 based on the user’s
authentication information registered with a second entity 1602. Various steps below may be
performed with reference to the computing device 1607, the first entity 1601, the second
entity 1602, a first data store 1611, a second data store 1612, a DIS (decentralized identity
service) 1603a, a DIS 1603b, a blockchain 330, or their equivalents. In some embodiments,
the first entity 1601, the second entity 1602, and their users may be each associated a DID.
The first entity 1601 and the second entity 1602 may each provide access to users based on
their authentications. For example, the first entity 1601 and the second entity 1602 may host
websites, provide mobile phone applications, maintain organizations (e.g., company, union,
etc.), and the like. When referred below, the first entity 1601 and the second entity 1602 may
represent the associated computing systems or devices (e.g., server or computer clusters
providing online services) or the provided services (e.g.,, websites, applications). The first
entity 1601 and the second entity 1602 may respectively correspond to the user-side systems
310, and the first data store 1611 and the second data store 1612 may respectively correspond
to the databases 313. The first entity 1601 and the second entity 1602 may collect user
authentication. For example, as an employer company, the entity may collect user
authentication for its employees. A user may request to access a subsidiary company’s
platform based on the user’s authentication information registered with a parent company.
The first entity 1601 and the second entity 1602 may require user authentication to grant
access one or more accounts or functions such as database access, building access, payroll
search, ticket ordering, messaging, on-line banking, etc. For example, a user may request to
access a meal-ordering website based on the user’s authentication registered with a bank’s

software application or with the user’s employer.

[153] In some embodiments, the first entity 1601 may be associated with the first data
store 1611, and the second entity 1602 may be associated with the second data store 1612 for
information storage. The first data store 1611 and the second data store 1612 may each
comprise a local data store maintained by the corresponding entity (e.g., a local data store for

use by the corresponding entity), a public data store accessible to the corresponding entity
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(e.g., a public data store shared by various entities for storing information respectively
encrypted by the entities), a data store maintained by a platform for the corresponding entity
(e.g., a persistent storage maintained by the DIS 1603a or 1603b), etc. Each data store may

provide secure storage and security features for privacy protection.

[154] In some embodiments, the DIS 1603a and the DIS 1603b may correspond to the
service-side system 320. The DIS 1603a and the DIS 1603b may, collectively or individually,
include the various structures, components, and functions and perform corresponding
methods described herein with respect to the service-side system 320. The DIS 1603a and the
DIS 1603b may be implemented as an integrated service or as distributed decentralized
services. Although the DIS 1603a and the DIS 1603b are shown in separate blocks in FIG. 16,
they may be implemented in a single physical system or in separate physical systems. The
first entity 1601 and the second entity 1602 may comprise one or more SDKSs for providing
such online services accessible to users via API interfaces. For example, as an integrated
service, the DIS 1603a and the DIS 1603b may correspond to an online platform providing
services to various users. For another example, as distributed decentralized services, the DIS
1603a and the DIS 1603b may respectively correspond to blockchain nodes of the blockchain
330, and may be respectively associated with the first entity 1601 and the second entity 1602.
As a part of or a component associated with a blockchain node, the DIS may contribute to
consensus verification, perform storage related to blockchain data, or perform other actions
related to the blockchain 330. In one embodiment, the first entity 1601, the DIS 1603a, and/or
the first data store 1611 may be integrated together; and the second entity 1602, the
DIS1803b, and/or the second data store 1612 may be integrated together. In one embodiment,
the DIS 1603a may manage credential information (e.g., private keys, DIDs, VCs) for the
first entity 1601 and/or its registered users, and the DIS 1603b may manage credential
information (e.g., private keys, DIDs, VCs) for the second entity 1602 and/or its registered

users.

[155] In some embodiments, at step 1621, a user may send a DID creation request to the
second entity 1602, for example, through the computing device 1607. The second entity 1602
may forward the request to the DIS 1603b. The DIS 1603b may obtain, from the second
entity 1602, the DID creation request for creating a DID associated with an account identifier
of the user. The DIS 1603b may perform DID creation for the user, for example, according to

the methods described with reference to FIG. 6A, 6B, or 11. For example, the DIS 1603b
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may obtain a public key of a cryptographic key pair, obtain the DID based on the public key,
and store a mapping relationship between the account identifier and the obtained DID.
Further details for DID creation can be referred to the descriptions above. The created DID

may be stored in the blockchain 330.

[156] In some embodiments, a DID for the user may be designed as a primary DID. The
DIS 1603b may create one or more secondary DIDs associated with the primary DID for the
user. The secondary DID may be more limited in associated user information and its function
than the primary DID. The secondary DID may be used for accessing the first entity 1601
(e.g., for a one-time access, for limited-time access, for entity-specific access), while the
primary DID may be used for long-term identification of the user. To this end, the secondary
DID may be associated with a corresponding status (e.g., expiring time, expiring number of
use) limiting the validity of the secondary DID, and the status may be stored in a DID
document associated with the secondary DID. In one embodiment, the secondary DID is a
temporary DID for the user to access the first entity 1601. Thus, the use of secondary DID
minimizes the risk of identity theft, because even if the secondary DID is exposed in the
blockchain or otherwise made available to third-parties, the secondary DID cannot be used
for purposes beyond its limited validity. Further, the primary DID may be associated with
privacy information of the user, which is not associated with the secondary DID, and the
privacy information is untraceable based on the secondary DID. Thus, user privacy is
protected, because non-essential private information is not used and not exposed in the cross-

entity authentication process.

[157] In some embodiments, at step 1622, a result of the created DID may be returned by
the DIS 1603b to the second entity 1602, which may then notify the computing device 1607
accordingly. By creating the DID, the user may use the DID as authentication information to
access services provided by the second entity 1602. Alternatively, other types of registration
with the second entity 1602 may be requested and performed for the user to obtain

authentication information for the user.

[158] In some embodiments, at step 1623, the user or the second entity 1602 may request
creation of a VC certifying that the user is a registered user of the second entity 1602. For
example, the DIS 1603b may obtain, from a computing device associated with the second
entity 1602, a VC creation request for creating the VC indicating that the user is a registered

user of the second entity 1602. Thus, authentication information of the user endorsed by the
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second entity may include information associated with the VC indicating that the user is a
registered user of the second entity. At step 1624, the DIS 1603b may obtain a digital
signature associated with the second entity 1602 and create the VC based on the obtained VC
creation request and the obtained digital signature. The DIS 1603b may perform the VC
creation, for example, according to the methods described with reference to FIG. 9 or 14.
Details can be referred to corresponding descriptions. At step 1625, the DIS 1603b may store
the created VC in the second data store 1612.

[159] In some embodiments, at step 1626, the user may send an access request to the first
entity 1601, for example, by attempting to log onto the first entity 1601 through the
computing device 1607. In some embodiments, the user is registered with the second entity
1602 and not registered with the first entity 1601. At step 1627, in response to the access
request, the first entity 1601 may forward an authentication request to the DIS 1603a to
request the second entity 1602 to authenticate the user for the first entity 1601, thus achieving
cross-entity authentication. The DIS 1603a may obtain the authentication request by the first
entity 1601 for authenticating the user, and the authentication request may comprise a DID

(e.g., the primary DID, the secondary DID) of the user.

[160] In some embodiments, at step 1628, the DIS 1603a may obtain a public key of the
user from the blockchain 303 based on the DID, and verify that the user owns the DID based
at least on the obtained public key of the user. The DIS 1603a may perform the DID
authentication, for example, according to the methods described with reference to FIG. 7, 8,

12, or 13. Details can be referred to corresponding descriptions.

[161] In some embodiments, at step 1628, the DIS 1603a may determine if the first entity
1601 is authorized to access authentication information (e.g., VC) stored with the second
entity 1602 to authenticate the user or otherwise authenticate the user through the second
entity 1602. For example, the user may include the authorization in the access request 1626 to
grant the authorization before sending the access request 1626, or grant the authorization after
sending the access request 1626 and before the step 1628. By this authorization, the first
entity 1601 may be permitted to access authentication information of the user endorsed by a
second entity (e.g., the VC), and the user is registered with the second entity 1602 and not
with the first entity 1601. In one embodiment, the authorization may be associated with a
digital signature of the user or be encrypted by the user’s private key to prove endorsement

by the user.
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[162] In some embodiments, at step 1629, the DIS 1603a may generate a digital signature
on the obtained authentication request with a private key of the first entity 1601, and obtain
an authorization encrypted with a private key of the user for permitting the first entity 1601 to
access the authentication information of the user endorsed by the second entity 1602. For
example, the DIS1803a may obtain a digital signature signing the authentication request with
the private key of the first entity 1601, and then the user may encrypt the authentication
request in plaintext and the digital signature with a private key of the user through the
computing device 1607. The authentication request may include the user’s DID and request
the second entity 1602 to authenticate the user for the first entity 1601. Thus, the encrypted
authorization comprises the DID of the user and the authentication request. Further, the
encrypted authorization manifests two layers of endorsement: a digital signature by the first
entity 1601 showing that the authentication request is for granting access to the first entity
1601 and an authentication result should be addressed to the first entity 1601, and an
encryption by the user’s private key showing that the authentication request is confirmed by

the user and the first entity 1601 did not tamper with the authentication request.

[163] In some embodiments, at step 1629, the DIS 1603a may, in response to determining
that the first entity 1601 is permitted to access authentication information of the user
endorsed by the second entity 1602, generate a blockchain transaction for obtaining an
authentication result of the user by the second entity 1602. The generated blockchain
transaction comprises the encrypted authorization. The authentication result is associated
with the DID. Further, the DIS 1603a may transmit the blockchain transaction to a blockchain
node for adding to the blockchain 330.

[164] In some embodiments, at step 1630, the DIS 1603b may obtain, from the blockchain
330, the blockchain transaction comprising the authentication request by the first entity 1601
for authenticating the user. The authentication request comprises the DID of the user. For
example, the DIS 1603b may monitor the blockchain 330 for events of various DIDs such as
the second entity’s DID, the second entity’s users’ DIDs, etc. Since the blockchain
transaction added to the blockchain 330 comprises the user’s DID, the DIS 1603b may
receive notification (e.g., through a message queue) and thus obtain the blockchain

transaction.

[165] In some embodiments, the obtained blockchain transaction comprises an

authorization encrypted with a private key of the user for permitting the second entity 1602 to
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share the authentication information of the user with the first entity 1601 (e.g., allowing the
first entity 1601 to access VC showing that the user is a registered with the second entity
1602 and thus to grant the user access to the first entity 1601 through sharing of user
authentication across the entities). The encrypted authorization comprises the DID of the user.
The encrypted authorization comprises a digital signature on the authentication request based

on a private key of the first entity 1601.

[166] In some embodiments, at step 1631, the DIS 1603b may obtain a public key of the
user (e.g., from the blockchain 330) and decrypt the encrypted authorization with the public
key of the user to verify that the authorization is endorsed by the user and to obtain the digital
signature. The DIS 1603b may further obtain a public key of the first entity 1601 from the
blockchain, decrypt the digital signature with the obtained public key of the first entity 1601,
and compare the decrypted digital signature with a hash value of the authentication request
(in plaintext) to verify that the authentication request is signed by the first entity 1601. If all
verifications succeed, it shows that the user authorizes the second entity 1602 to share the

authentication information of the user with the first entity 1601.

[167] In some embodiments, at step 1632, the DIS 1603b may, in response to determining
that the first entity 1601 is permitted to access authentication information of the user
endorsed by the second entity 1602, obtain an authentication result of the user by the second
entity 1602 in response to the obtained blockchain transaction. To this end, the DIS 1603b
may search the second data store 1612 for any VC that certifies that the user (as represented
by the DID) is a registered user of the second entity or otherwise obtain a corresponding
search result. If the search returns a positive result, the authentication result is obtained as
associated with the DID. The authentication result comprises information associated with the
VC indicating that the user is a registered user of the second entity 1602, and the VC is
associated with the DID.

[168] In some embodiments, a hash value of the VC is stored in the blockchain, and the
VC is stored in a data store (e.g., the second data store 1612). As described earlier, the data
store may comprise one or more of the following: a local data store maintained by the second
entity, a public data store accessible to the second entity, and a data store maintained by a
platform for the second entity. The VC comprises a permission configured by the second
entity 1602 or the user for permitting the first entity 1601 to access the VC. For example, as

described above, the successful verifications at step 1631 may indicate that the user
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authorizes the second entity 1602 to share the authentication information of the user with the
first entity 1601, thus permitting the first entity 1601 to access the VC. Alternatively, the
second entity 1602 may grant such permission and share the VC with the first entity 1601.
Thus, step 1631 may include verifying based on the permission that the first entity is

permitted to access the VC.

[169] In some embodiments, at step 1632, to obtain the authentication result in response
to the obtained blockchain transaction, the DIS 1603b may query the data store to obtain the
VC associated with the DID, verify whether the user is the registered user of the second
entity 1602 based on the obtained VC to generate an unencrypted authentication result (e.g.,
the user is or is not registered with the second entity 1602), and encrypt the unencrypted
authentication result with a private key of the second entity 1602 to generate the

authentication result.

[170] In some embodiments, at step 1633, the DIS 1603b may generate a different
blockchain transaction comprising the authentication result. In some embodiments, at step
1634, the DIS 1603b may transmit the different blockchain transaction to a blockchain node
for adding to the blockchain 330.

[171] In some embodiments, at step 1634, the DIS 1603a may obtain the different
blockchain transaction from the blockchain 330. The blockchain transaction obtaining
process may be similar to the step 1630. The different blockchain transaction comprises the
authentication result of the user by the second entity. In one embodiment, the authentication
result indicates that the authentication succeeded (e.g., the second entity 1602 has issued a
VC certifying that the user is registered with the second entity 1602), and at step 1635 the
DIS 1603a may transmit the authentication result to the first entity 1601 for granting the user
access to the first entity 1601. Thus, for users that have registered with the second entity 1602,
they do not have to register with the first entity 1601 and can access the first entity 1601
based on their authentication information (e.g., DID) registered with the second entity 1602.
In one embodiment, the authentication result indicates that the authentication failed (e.g., the
second entity 1602 has not issued a VC certifying that the user is registered with the second
entity 1602), and at step 1635 the DIS 1603a may transmit the authentication result to the
first entity 1601 for denying the user access to the first entity 1601. Thus, for users that never
registered with the second entity 1602 or did not register in a way that led to the VC for

cross-authentication, they will still be denied access to the first entity 1601.
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[172] In some embodiments, at step 1636, the first entity 1601 may carry out further
actions based on the authentication result. The first entity 1601 may cache the authentication
result to facilitate access by the user for a limited future time period (if the temporary DID

was used), or store for long-term future access (if the primary DID was used).

[173] FIG. 17A illustrates a flowchart of a method 1700 for blockchain-based cross-entity
authentication in accordance with some embodiments. The method 1700 may be performed
by a device, apparatus, or system for blockchain-based cross-entity authentication. The
method 1700 may be performed by one or more components of the environment or system
illustrated by FIGs. 1-5, such as one or more components of the service-side system 320 (e.g.,
the DIS 1603a, the DIS 1603a and 1603b). Depending on the implementation, the method
1700 may include additional, fewer, or alternative steps performed in various orders or in

parallel.

[174] Block 1710 includes obtaining an authentication request by a first entity for
authenticating a user, wherein the authentication request comprises a decentralized identifier
(DID) of the user. In some embodiments, the DID is a secondary DID associated with a
primary DID of the user; the primary DID is associated with privacy information of the user;
and the privacy information is untraceable based on the secondary DID. In some

embodiments, the secondary DID is a temporary DID for the user to access the first entity.

[175] In some embodiments, before generating the blockchain transaction for obtaining
the authentication result of the user by the second entity at block 1720, the method further
comprises: obtaining a public key of the user from the blockchain based on the DID; and

verifying that the user owns the DID based at least on the obtained public key of the user.

[176] In some embodiments, before generating the blockchain transaction for obtaining
the authentication result of the user by the second entity, the method further comprises:
generating a digital signature on the obtained authentication request with a private key of the
first entity, and obtaining an authorization encrypted with a private key of the user for
permitting the first entity to access the authentication information of the user endorsed by the
second entity. The encrypted authorization comprises the digital signature; the encrypted
authorization comprises the DID of the user; and the generated blockchain transaction

comprises the encrypted authorization.
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[177] Block 1720 includes, in response to determining that the first entity is permitted to
access authentication information of the user endorsed by a second entity, generating a
blockchain transaction for obtaining an authentication result of the user by the second entity,
wherein the authentication result is associated with the DID. In some embodiments, the user

is registered with the second entity; and the user is not registered with the first entity.

[178] Block 1730 includes transmitting the blockchain transaction to a blockchain node
for adding to a blockchain. In some embodiments, the authentication information of the user
endorsed by the second entity comprises information associated with a verifiable claim (VC)
indicating that the user is a registered user of the second entity; and the VC is associated with
the DID. In some embodiments, a hash value of the VC is stored in the blockchain; the VC is
stored in a data store; and the data store comprises one or more of the following: a local data
store maintained by the second entity, a public data store accessible to the second entity, and
a data store maintained by a platform for the second entity. In some embodiments, the VC
comprises a permission configured by the second entity or the user for permitting the first

entity to access the VC.

[179] In some embodiments, the method further comprises: obtaining, from the blockchain,
the blockchain transaction for obtaining the authentication result of the user; obtaining an
authentication result associated with the DID in response to the obtained blockchain
transaction; generating a different blockchain transaction comprising the authentication result;
and transmitting the different blockchain transaction to a blockchain node for adding to the

blockchain.

[180] In some embodiments, the method further comprises: obtaining a different
blockchain transaction from the blockchain, the different blockchain transaction comprising
the authentication result of the user by the second entity, wherein the authentication result
indicates that the authentication succeeded; and transmitting the authentication result to the

first entity for granting the user access to the first entity.

[181] In some embodiments, the method further comprises: obtaining a different
blockchain transaction from the blockchain, the different blockchain transaction comprising
the authentication result of the user by the second entity, wherein the authentication result
indicates that the authentication failed; and transmitting the authentication result to the first

entity for denying the user access to the first entity.
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[182] FIG. 17B illustrates a flowchart of a method 1701 for blockchain-based cross-entity
authentication in accordance with some embodiments. The method 1701 may be performed
by a device, apparatus, or system for blockchain-based cross-entity authentication. The
method 1701 may be performed by one or more components of the environment or system
illustrated by FIGs. 1-5, such as one or more components of the service-side system 320 (e.g.,
the DIS 1603b, the DIS 1603a and 1603b). Depending on the implementation, the method
1701 may include additional, fewer, or alternative steps performed in various orders or in

parallel.

[183] Block 1711 includes obtaining, from a blockchain, a blockchain transaction
comprising an authentication request by a first entity for authenticating a user, wherein the
authentication request comprises a decentralized identifier (DID) of the user. In some
embodiments, the user is registered with the second entity; and the user is not registered with
the first entity. In some embodiments, the DID is a secondary DID associated with a primary
DID of the user; the primary DID is associated with privacy information of the user; and the
privacy information is untraceable based on the secondary DID. In some embodiments, the

secondary DID is a temporary DID for the user to access the first entity.

[184] In some embodiments, before obtaining the blockchain transaction at block 1711,
the method further comprises: obtaining, from a computing device associated with the second
entity, a VC creation request for creating the VC indicating that the user is a registered user
of the second entity; obtaining a digital signature associated with the second entity; and
creating the VC based on the obtained VC creation request and the obtained digital signature.
In some embodiments, before obtaining the VC creation request, the method further
comprises: obtaining, from the second entity, a DID creation request for creating the DID
associated with an account identifier of the user; obtaining a public key of a cryptographic
key pair; obtaining the DID based on the public key; and storing a mapping relationship

between the account identifier and the obtained DID.

[185] In some embodiments, the obtained blockchain transaction comprises an
authorization encrypted with a private key of the user for permitting the first entity to access
the authentication information of the user endorsed by the second entity; the encrypted
authorization comprises the DID of the user; the encrypted authorization comprises a digital
signature on the authentication request based on a private key of the first entity. After

obtaining the blockchain transaction at block 1711 and before obtaining the authentication
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result at block 1721, the method further comprises: obtaining a public key of the user;
decrypting the encrypted authorization with the public key of the user to verify that the
authorization is signed by the user and to obtain the digital signature; obtaining a public key
of the first entity from the blockchain; decrypting the digital signature with the obtained
public key of the first entity; and comparing the decrypted digital signature with a hash value
of the authentication request to verify that the authentication request is signed by the first

entity.

[186] In some embodiments, the authentication information of the user endorsed by the
second entity comprises information associated with a verifiable claim (VC) indicating that
the user is a registered user of the second entity ; and the VC is associated with the DID. In
some embodiments, the VC comprises a permission configured by the second entity or the
user for permitting the first entity to access the VC; and after obtaining the blockchain
transaction at block 1711 and before obtaining the authentication result at block 1721, the
method further comprises: verifying based on the permission that the first entity is permitted

to access the VC.

[187] Block 1721 includes, in response to determining that the first entity is permitted to
access authentication information of the user endorsed by a second entity, obtaining an
authentication result of the user by the second entity in response to the obtained blockchain

transaction, wherein the authentication result is associated with the DID.

[188] In some embodiments, a hash value of the VC is stored in the blockchain; the VC is
stored in a data store; and the data store comprises one or more of the following: a local data
store maintained by the second entity, a public data store accessible to the second entity, and
a data store maintained by a platform for the second entity. In some embodiments, obtaining
the authentication result in response to the obtained blockchain transaction comprises:
querying the data store to obtain the VC associated with the DID; verifying whether the user
is the registered user of the second entity based on the obtained VC to generate an
unencrypted authentication result; and encrypting the unencrypted authentication result with a

private key of the second entity to generate the authentication result.

[189] Block 1731 includes generating a different blockchain transaction comprising the

authentication result.
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[190] Block 1741 includes transmitting the different blockchain transaction to a
blockchain node for adding to the blockchain.

[191] In some embodiments, before obtaining the blockchain transaction, the method
further comprises: obtaining the authentication request by the first entity for authenticating a
user; generating the blockchain transaction for obtaining the authentication result of the user
by the second entity; and transmitting the blockchain transaction to a blockchain node for

adding to the blockchain.

[192] 1In some embodiments, the method further comprises: obtaining the different
blockchain transaction from the blockchain, the different blockchain transaction comprising
the authentication result of the user by the second entity, wherein the authentication result
indicates that the authentication succeeded; and transmitting the authentication result to the

first entity for granting the user access to the first entity.

[193] In some embodiments, the method further comprises: obtaining the different
blockchain transaction from the blockchain, the different blockchain transaction comprising
the authentication result of the user by the second entity, wherein the authentication result
indicates that the authentication failed; and transmitting the authentication result to the first

entity for denying the user access to the first entity.

[194] FIG. 18A illustrates a block diagram of a computer system 1800 for blockchain-
based cross-entity authentication in accordance with some embodiments. The system 1800
may be an example of an implementation of one or more components of the service-side
system 320 of FIG. 3 or one or more other components illustrated in FIGs. 1-5 and 16 (e.g.,
the DIS 1603a). The method 1900 may be implemented by the computer system 1800. The
computer system 1800 may comprise one or more processors and one or more non-transitory
computer-readable storage media (e.g., one or more memories) coupled to the one or more
processors and configured with instructions executable by the one or more processors to
cause the system or device (e.g., the processor) to perform the above-described method, e.g.,
the method 1900. The computer system 1800 may comprise various units/modules
corresponding to the instructions (e.g., software instructions). In some embodiments, the
computer system 1800 may be referred to as an apparatus for blockchain-based cross-entity
authentication. The apparatus may comprise an obtaining module 1810 for obtaining an

authentication request by a first entity for authenticating a user, wherein the authentication
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request comprises a decentralized identifier (DID) of the user; a generating module 1820 for,
in response to determining that the first entity is permitted to access authentication
information of the user endorsed by a second entity, generating a blockchain transaction for
obtaining an authentication result of the user by the second entity, wherein the authentication
result is associated with the DID; and a transmitting module 1830 for transmitting the

blockchain transaction to a blockchain node for adding to a blockchain.

[195] FIG. 18B illustrates a block diagram of a computer system 1801 for blockchain-
based cross-entity authentication in accordance with some embodiments. The system 1801
may be an example of an implementation of one or more components of the service-side
system 320 of FIG. 3 or one or more other components illustrated in FIGs. 1-5 and 16 (e.g.,
the DIS 1603b). The method 1901 may be implemented by the computer system 1801. The
computer system 1801 may comprise one or more processors and one or more non-transitory
computer-readable storage media (e.g., one or more memories) coupled to the one or more
processors and configured with instructions executable by the one or more processors to
cause the system or device (e.g., the processor) to perform the above-described method, e.g.,
the method 1901. The computer system 1801 may comprise various units/modules
corresponding to the instructions (e.g., software instructions). In some embodiments, the
computer system 1801 may be referred to as an apparatus for blockchain-based cross-entity
authentication. The apparatus may comprise a first obtaining module 1811 for obtaining,
from a blockchain, a blockchain transaction comprising an authentication request by a first
entity for authenticating a user, wherein the authentication request comprises a decentralized
identifier (DID) of the user; a second obtaining module 1821 for, in response to determining
that the first entity is permitted to access authentication information of the user endorsed by a
second entity, obtaining an authentication result of the user by the second entity in response
to the obtained blockchain transaction, wherein the authentication result is associated with the
DID; a generating module 1831 for generating a different blockchain transaction comprising
the authentication result; and a transmitting module 1841 for transmitting the different

blockchain transaction to a blockchain node for adding to the blockchain.

[196] The techniques described herein may be implemented by one or more special-
purpose computing devices. The special-purpose computing devices may be desktop
computer systems, server computer systems, portable computer systems, handheld devices,

networking devices or any other device or combination of devices that incorporate hard-wired
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and/or program logic to implement the techniques. The special-purpose computing devices
may be implemented as personal computers, laptops, cellular phones, camera phones, smart
phones, personal digital assistants, media players, navigation devices, email devices, game
consoles, tablet computers, wearable devices, or a combination thereof. Computing device(s)
may be generally controlled and coordinated by operating system software. Conventional
operating systems control and schedule computer processes for execution, perform memory
management, provide file system, networking, I/O services, and provide a user interface
functionality, such as a graphical user interface (“GUI”), among other things. The various
systems, apparatuses, storage media, modules, and units described herein may be
implemented in the special-purpose computing devices, or one or more computing chips of
the one or more special-purpose computing devices. In some embodiments, the instructions
described herein may be implemented in a virtual machine on the special-purpose computing
device. When executed, the instructions may cause the special-purpose computing device to
perform various methods described herein. The virtual machine may include a software,

hardware, or a combination thereof.

[197] FIG. 19 illustrates a block diagram of a computer system in which any of the
embodiments described herein may be implemented. The system 1900 may be implemented
in any of the components of the environments or systems illustrated in FIGs. 1-5. The
software applications or services illustrated in FIGs. 1-5 may be implemented and operated
on the system 1900. One or more of the example methods illustrated by FIGs. 6-16 may be

performed by one or more implementations of the computer system 1900.

[198] The computer system 1900 may include a bus 1902 or other communication
mechanism for communicating information, one or more hardware processor(s) 1904 coupled
with bus 1902 for processing information. Hardware processor(s) 1904 may be, for example,

one or more general purpose microprocessors.

[199] The computer system 1900 may also include a main memory 1906, such as a
random access memory (RAM), cache and/or other dynamic storage devices, coupled to bus
1902 for storing information and instructions executable by processor(s) 1904. Main memory
1906 also may be used for storing temporary variables or other intermediate information
during execution of instructions executable by processor(s) 1904. Such instructions, when
stored in storage media accessible to processor(s) 1904, render computer system 1900 into a

special-purpose machine that is customized to perform the operations specified in the
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instructions. The computer system 1900 may further include a read only memory (ROM)
1908 or other static storage device coupled to bus 1902 for storing static information and
instructions for processor(s) 1904. A storage device 1910, such as a magnetic disk, optical
disk, or USB thumb drive (Flash drive), etc., may be provided and coupled to bus 1902 for

storing information and instructions.

[200] The computer system 1900 may implement the techniques described herein using
customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or programs computer system 1900 to
be a special-purpose machine. According to one embodiment, the operations, methods, and
processes described herein are performed by computer system 1900 in response to
processor(s) 1904 executing one or more sequences of one or more instructions contained in
main memory 1906. Such instructions may be read into main memory 1906 from another
storage medium, such as storage device 1910. Execution of the sequences of instructions
contained in main memory 1906 may cause processor(s) 1904 to perform the process steps
described herein. In alternative embodiments, hard-wired circuitry may be used in place of or

in combination with software instructions.

[201] The main memory 1906, the ROM 1908, and/or the storage device 1910 may
include non-transitory storage media. The term “non-transitory media,” and similar terms, as
used herein refers to media that store data and/or instructions that cause a machine to operate
in a specific fashion, the media excludes transitory signals. Such non-transitory media may
comprise non-volatile media and/or volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 1910. Volatile media includes dynamic
memory, such as main memory 1906. Common forms of non-transitory media include, for
example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any
other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any
physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM,

NVRAM, any other memory chip or cartridge, and networked versions of the same.

[202] The computer system 1900 may include a network interface 1918 coupled to bus
1902. Network interface 1918 may provide a two-way data communication coupling to one
or more network links that are connected to one or more local networks. For example,
network interface 1918 may be an integrated services digital network (ISDN) card, cable

modem, satellite modem, or a modem to provide a data communication connection to a
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corresponding type of telephone line. As another example, network interface 1918 may be a
local area network (LAN) card to provide a data communication connection to a compatible
LAN (or WAN component to communicated with a WAN). Wireless links may also be
implemented. In any such implementation, network interface 1918 may send and receive
electrical, electromagnetic or optical signals that carry digital data streams representing

various types of information.

[203] The computer system 1900 can send messages and receive data, including program
code, through the network(s), network link and network interface 1918. In the Internet
example, a server might transmit a requested code for an application program through the

Internet, the ISP, the local network and the network interface 1918.

[204] The received code may be executed by processor(s) 1904 as it is received, and/or

stored in storage device 1910, or other non-volatile storage for later execution.

[205] Each of the processes, methods, and algorithms described in the preceding sections
may be embodied in, and fully or partially automated by, code modules executed by one or
more computer systems or computer processors comprising computer hardware. The
processes and algorithms may be implemented partially or wholly in application-specific

circuitry.

[206] The various features and processes described above may be used independently of
one another or may be combined in various ways. All possible combinations and sub-
combinations are intended to fall within the scope of this specification. In addition, certain
method or process blocks may be omitted in some implementations. The methods and
processes described herein are also not limited to any particular sequence, and the blocks or
states relating thereto can be performed in other sequences that are appropriate. For example,
described blocks or states may be performed in an order other than that specifically disclosed,
or multiple blocks or states may be combined in a single block or state. The examples of
blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or
states may be added to or removed from the disclosed embodiments. The examples of
systems and components described herein may be configured differently than described. For
example, elements may be added to, removed from, or rearranged compared to the disclosed

embodiments.
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[207] The various operations of methods described herein may be performed, at least
partially, by one or more processors that are temporarily configured (e.g., by software) or
permanently configured to perform the relevant operations. Whether temporarily or
permanently configured, such processors may constitute processor-implemented engines that

operate to perform one or more operations or functions described herein.

[208] Similarly, the methods described herein may be at least partially processor-
implemented, with a particular processor or processors being an example of hardware. For
example, at least some of the operations of a method may be performed by one or more
processors or processor-implemented engines. Moreover, the one or more processors may
also operate to support performance of the relevant operations in a “cloud computing”
environment or as a “software as a service” (SaaS). For example, at least some of the
operations may be performed by a group of computers (as examples of machines including
processors), with these operations being accessible via a network (e.g., the Internet) and via

one or more appropriate interfaces (e.g., an Application Program Interface (API)).

[209] The performance of certain of the operations may be distributed among the
processors, not only residing within a single machine, but deployed across a number of
machines. In some embodiments, the processors or processor-implemented engines may be
located in a single geographic location (e.g., within a home environment, an office
environment, or a server farm). In other embodiments, the processors or processor-

implemented engines may be distributed across a number of geographic locations.

[210] Throughout this specification, plural instances may implement components,
operations, or structures described as a single instance. Although individual operations of one
or more methods are illustrated and described as separate operations, one or more of the
individual operations may be performed concurrently, and nothing requires that the
operations be performed in the order illustrated. Structures and functionality presented as
separate components in configurations may be implemented as a combined structure or
component. Similarly, structures and functionality presented as a single component may be
implemented as separate components. These and other variations, modifications, additions,

and improvements fall within the scope of the subject matter herein.

[211]  Although an overview of the subject matter has been described with reference to

specific embodiments, various modifications and changes may be made to these
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embodiments without departing from the broader scope of embodiments of the specification.
The Detailed Description should not to be taken in a limiting sense, and the scope of various
embodiments is defined only by the appended claims, along with the full range of equivalents

2

to which such claims are entitled. Furthermore, related terms (such as “first,” “second,”

“third,” etc.) used herein do not denote any order, height, or importance, but rather are used

(13 29 LC 29

to distinguish one element from another element. Furthermore, the terms “a,” “an,” and
“plurality” do not denote a limitation of quantity herein, but rather denote the presence of at
least one of the articles mentioned. In addition, herein, “or” is inclusive and not exclusive,
unless expressly indicated otherwise or indicated otherwise by context. Therefore, herein, “A
or B” means “A, B, or both,” unless expressly indicated otherwise or indicated otherwise by
context. Moreover, “and” is both joint and several, unless expressly indicated otherwise or
indicated otherwise by context. Therefore, herein, “A and B” means “A and B, jointly or

severally,” unless expressly indicated otherwise or indicated otherwise by context.
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CLAIMS

1. A computer-implemented method for blockchain-based cross-entity authentication,
comprising:

obtaining, from a blockchain, a blockchain transaction comprising an authentication
request by a first entity for authenticating a user, wherein the authentication request
comprises a decentralized identifier (DID) of the user;

in response to determining that the first entity is permitted to access authentication
information of the user endorsed by a second entity, obtaining an authentication result of the
user by the second entity in response to the obtained blockchain transaction, wherein the
authentication result is associated with the DID;

generating a different blockchain transaction comprising the authentication result; and

transmitting the different blockchain transaction to a blockchain node for adding to

the blockchain.

2. The method of claim 1, before obtaining the blockchain transaction, further
comprising:

obtaining the authentication request by the first entity for authenticating a user;

generating the blockchain transaction for obtaining the authentication result of the
user by the second entity; and

transmitting the blockchain transaction to a blockchain node for adding to the

blockchain.

3. The method of any of claims 1-2, further comprising:

obtaining the different blockchain transaction from the blockchain, the different
blockchain transaction comprising the authentication result of the user by the second entity,
wherein the authentication result indicates that the authentication succeeded; and

transmitting the authentication result to the first entity for granting the user access to

the first entity.

4. The method of any of claims 1-2, further comprising:
obtaining the different blockchain transaction from the blockchain, the different
blockchain transaction comprising the authentication result of the user by the second entity,

wherein the authentication result indicates that the authentication failed; and
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transmitting the authentication result to the first entity for denying the user access to

the first entity.

5. The method of any of claims 1-4, wherein:
the user is registered with the second entity; and

the user is not registered with the first entity.

6. The method of any of claims 1-5, wherein:
the obtained blockchain transaction comprises an authorization encrypted with a
private key of the user for permitting the first entity to access the authentication information
of the user endorsed by the second entity;
the encrypted authorization comprises the DID of the user;
the encrypted authorization comprises a digital signature on the authentication request
based on a private key of the first entity; and
after obtaining the blockchain transaction and before obtaining the authentication
result, the method further comprises:
obtaining a public key of the user;
decrypting the encrypted authorization with the public key of the user to verify
that the authorization is signed by the user and to obtain the digital signature;
obtaining a public key of the first entity from the blockchain;
decrypting the digital signature with the obtained public key of the first entity;
and
comparing the decrypted digital signature with a hash value of the

authentication request to verify that the authentication request is signed by the first entity.

7. The method of any of claims 1-6, wherein:

the authentication information of the user endorsed by the second entity comprises
information associated with a verifiable claim (VC) indicating that the user is a registered
user of the second entity; and

the VC is associated with the DID.

8. The method of claim 7, wherein:
the VC comprises a permission configured by the second entity or the user for

permitting the first entity to access the VC; and
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after obtaining the blockchain transaction and before obtaining the authentication
result, the method further comprises: verifying based on the permission that the first entity is

permitted to access the VC.

9. The method of any of claims 7-8, wherein:

a hash value of the VC is stored in the blockchain;

the VC is stored in a data store; and

the data store comprises one or more of the following: a local data store maintained
by the second entity, a public data store accessible to the second entity, and a data store

maintained by a platform for the second entity.

10. The method of claim 9, wherein obtaining the authentication result in response to
the obtained blockchain transaction comprises:

querying the data store to obtain the VC associated with the DID;

verifying whether the user is the registered user of the second entity based on the
obtained VC to generate an unencrypted authentication result; and

encrypting the unencrypted authentication result with a private key of the second

entity to generate the authentication result.

11. The method of any of claims 7-10, before obtaining the blockchain transaction,
further comprising:

obtaining, from a computing device associated with the second entity, a VC creation
request for creating the VC indicating that the user is a registered user of the second entity;

obtaining a digital signature associated with the second entity; and

creating the VC based on the obtained VC creation request and the obtained digital

signature.

12. The method of claim 11, before obtaining the VC creation request, further
comprising:

obtaining, from the second entity, a DID creation request for creating the DID
associated with an account identifier of the user;

obtaining a public key of a cryptographic key pair;

obtaining the DID based on the public key; and

storing a mapping relationship between the account identifier and the obtained DID.
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13. The method of any of claims 1-12, wherein:
the DID is a secondary DID associated with a primary DID of the user;
the primary DID is associated with privacy information of the user; and

the privacy information is untraceable based on the secondary DID.

14. The method of claim 13, wherein:

the secondary DID is a temporary DID for the user to access the first entity.

15. A system for blockchain-based cross-entity authentication, comprising:

one or more processors; and

one or more computer-readable memories coupled to the one or more processors and
having instructions stored thereon that are executable by the one or more processors to

perform the method of any of claims 1 to 14.

16. An apparatus for blockchain-based cross-entity authentication comprising a

plurality of modules for performing the method of any of claims 1 to 14.
17. A non-transitory computer-readable storage medium configured with instructions

executable by one or more processors to cause the one or more processors to perform the

method of any of claims 1 to 14.
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1710: obtaining an authentication request by a first entity for authenticating a user, wherein
the authentication request comprises a decentralized identifier (DID) of the user

'

1720Q: in response to determining that the first entity is permitted to access authentication
information of the user endorsed by a second entity, generating a blockchain transaction for
obtaining an authentication result of the user by the second entity, wherein the
authentication result is associated with the DID

:

1730: transmitting the blockchain transaction to a blockchain node for adding to a
blockchain

FIG. 17A
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1701

1711: obtaining, from a blockchain, a blockchain transaction comprising an authentication
request by a first entity for authenticating a user, wherein the authentication request
comprises a decentralized identifier (DID) of the user

1721: in response to determining that the first entity is permitted to access authentication
information of the user endorsed by a second entity, obtaining an authentication result of the

user by the second entity in response to the obtained blockchain transaction, wherein the
authentication result is associated with the DID

:

1731: generating a different blockchain transaction comprising the authentication result

'

1741: transmitting the different blockchain transaction to a blockchain node for adding to
the blockchain

FIG. 17B
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