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RECONFIGURABLE PROCESSING
Field of the Invention

This invention relates to the accomplishment of moderately complex computer
applications by a combination of hardware and software, and more particularly to methods of
optimizing the implementation of portions of such computer applications in hardware,

hardware thus produced, and to the resultant combination of hardware and software.
Cross-Reference to Related Applications

This application claims priority from provisional patent application Serial No.
60/445,339 filed February 5, 2003 in the name of Aravind R. Dasu et al. entitled
"Reconfigurable Processing," provisional patent application Serial No. 60/490,162 filed July
24, 2003 in the name of Aravind R. Dasu et al. entitled " Algorithm Design for Zone Pattern
Matching to Generate Cluster Modules and Control Data Flow Based Task Scheduling of the
Modules," provisional patent application Serial No. 60/493,132 filed August 6, 2003 in the
name of Aravind R. Dasu et al. entitled "Heterogeneous Hierarchical Routing Architecture,"”
and provisional patent application Serial No. 60/523,462 filed November 18, 2003 in the
name of Aravind R. Dasu et al. entitled "Methodology to Design a Dynamically

Reconfigurable Processor," all of which are incorporated herein by reference.
Background

A number of techniques have been proposed for improving the speed and cost of
moderately complex computer program applications. By moderately complex computer
programming is meant programming of about the same general level of complexity as
multimedia processing.

Multimedia processing is becoming increasingly important with wide variety of
applications ranging from multimedia cell phones to high definition interactive television.
Media processing involves the capture, storage, manipulation and transmission of
multimedia objects such as text, handwritten data, audio objects, still images, 2D/3D
graphics, animation and full-motion video. A number of implementation strategies have
been proposed for processing multimedia data. These approaches can be broadly classified
based on the evolution of processing architectures and the functionality of the processors.

In order to provide media processing solutions to different consumer markets, designers
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have combined some of the classical features from both the functional and evolution based
classifications resulting in many hybrid solutions.

Multimedia and graphics applications are computationally intensive and have
been traditionally solved in 3 different ways. One is through the use of a high speed
general purpose processor with accelerator support, which is essentially a sequential
machine with enhanced instruction set architecture. Here the overlaying software
bears the burden of interpreting the application in terms of the limited tasks that the
processor can execute (instructions) and schedule these instructions to avoid resource
and data dependencies. The second is through the use of an Application Specific
Integrated Circuit (ASIC) which is a completely hardware oriented approach, spatially
exploiting parallelism to the maximum extent possible. The former, although slower,
offers the benefit of hardware reuse for executing other applications. The latter, albeit
faster and more power, area and time efficient for a specific application, offers poor
hardware reutilization for other applications. The third is through specialized
programmable processors such as DSPs and media processors. These attempt to
incorporate the programmability of general purpose processors and provide some
amount of spatial parallelism in their hardware architectures.

The complexity, variety of techniques and tools, and the high computation, storage
and I/O bandwidths associated with multimedia processing presents opportunities for
reconfigurable processing to enables features such as scalability, maximal resource utilization
and real-time implementation. The relatively new domain of reconfigurable solutions lies in
the region of computing space that offers the advantages of these approaches while
minimizing their drawbacks. Field Programmable Gate Arrays (FPGAs) were the first
attempts in this direction. But poor on-chip network architectures lead to high reconfiguration
times and power consumptions. Improvements over this design using Hierarchical Network
architectures with RAM style configuration loading have lead to a factor of two to four times
reduction in individual configuration loading times. But the amount of redundant and
repetitive configurations still remains high. This is one of the important factors that leads to
the large overall configuration times and high power consumption compared to ASIC or
embedded processor solutions.

A variety of media processing techniques are typically used in multimedia
processing environments to capture, store, manipulate and transmit multimedia objects such
as text, handwritten data, audio objects, still images, 2D/3D graphics, animation and full-

motion video. Example techniques include speech analysis and synthesis, character
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recognition, audio compression, graphics animation, 3D rendering, image enhancement and
restoration, image/video analysis and editing, and video transmission. Multimedia
computing presents challenges from the perspectives of both hardware and software. For
example, multimedia standards such as MPEG-1, MPEG-2, MPEG-4, MPEG-7, H.263 and
JPEG 2000 involve execution of complex media processing tasks in real-time. The need for
real-time processing of complex algorithms is further accentuated by the increasing interest
in 3-D image and stereoscopic video processing. Each media in a multimedia environment
requires different processes, techniques, algorithms and hardware. The complexity, variety
of techniques and tools, and the high computation, storage and UO bandwidths associated
with processing at this level of complexity presents opportunities for reconfigurable
processing to enables features such as scalability, maximal resource utilization and real-
time implementation.

To demonstrate the potential for reconfiguration in multimedia computations, the
inventors have performed a detailed complexity analysis of the recent multimedia standard
MPEG-4. The results show that there are significant variations in the computational
complexity among the various modes/operations of MPEG-4. This points to the po@ential for
extensive opportunities for exploiting reconfigurable implementations of multimedia/
graphics algorithms.

The availability of large, fast, FPGAs (field programmable gate arrays) is
making possible reconfigurable implementations for a variety of applications. FPGAs
consist of arrays of Configurable Logic Blocks (CLBs) that implement various logical
functions. The latest FPGAs from vendors like Xilinx and Altera can be partially
configured and run at several megahertz. Ultimately, computing devices may be able to
adapt the underlying hardware dynamically in response to changes in the input data or
processing environment and process real time applications. Thus FPGAs have
established a point in the computing space which lies in between the dominant extremes
of computing, ASICS and software programmable/ instruction set based architectures.

There are three dominant features that differentiate reconfigurable architectures from
instruction set based programmable computing architectures and ASICs: (i) spatial
implementation of instructions through a network of processing elements with the
absence of explicit instruction fetch-decode model (ii) flexible interconnects which
support task dependent data flow between operations (iii) ability to change the
Arithmetic and Logic functionality of the processing elements. The reprogrammable

space is characterized by the allocation and structure of these resources. Computational
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tasks can be implemented on a reconfigurable device with intermediate data flowing
from the generating function to the receiving function. The salient features of
reconfigurable machines are:

o [Instructions are implemented through locally configured processing elements,
thus allowing the reconfigurable device to effectively process more instructions into
active silicon in each cycle.

o Intermediate values are routed in parallel from producing functions to
consuming functions (as space permits) rather than forcing all communication to take
place through a central resource bottleneck.

¢ Memory and interconnect resources are distributed and are deployed based on
need rather than being centralized, hence presenting opportunities to extract parallelism
at various levels.

The networks connecting the Configuration Logic Blocks or Units (CLBs) or
processing elements can range from full connectivity crossbar to neighbor only connecting
mesh networks. The best characterization to date which empirically measures the growth in
the interconnection requirements with respect to the number of Look-Up Tables (LUTs) is

the Rent’s rule which is given as follows:

N°=CN® gages

where N'° corresponds to the number of interconnections (in/out lines) in a region
containing Nayes. C and p are empirical constants. For logical functions typically p ranges
from 0.5<p<0.7.

It has been shown [1] (by building the FPGA based on Rent’s model and using a
hierarchical approach) that the configuration instruction sizes in traditional FPGAs are higher
than necessary, by at least a factor of two to four. Therefore for rapid configuration, off-chip
context loading becomes slow due to the large amount of configuration data that must be
transferred across a limited bandwidth 1/O path. It is also shown that greater word widths
increase wiring requirements, while decreasing switching requirements. In addition, larger
granularity data paths can be used to reduce instruction overheads. The utility of this
optimization largely depends on the granularity of the data which needs to be processed.
However, if the architectural granularity is larger than the task granularity, the device’s
computational power will be under utilized. Another promising development in efforts to

reduce configuration time is shown in [2].



10

15

20

25

30

WO 2004/072796 PCT/US2004/003609

Most of the current approaches towards building a reconfigurable processor are
targeted towards performance in terms of speed and are not tuned for power awareness or
configuration time optimization. Therefore certain problems have surfaced that need to be
addressed at the pre-processing phase.

First, the granularity or the processing ability of the Configurable Logic Units (CLUs)
must be driven by the set of applications that are intended to be ported onto the processing
platform. Some research groups have taken the approach of visual inspection [3], while
others have adopted algorithms of exponential complexity [4,5] to identify regions in the
application’s Data Flow Graphs (DFGs) that qualify for CLUs. None of the current
approaches attempt to identify the regions through an automated low complexity approach
that deals with Control Data Flow Graphs (CDFGs).

Secondly, the number of levels in hierarchical network architecture must be
influenced by the number of processing elements or CLUs needed to complete the task /
application. This in turn depends on the amount of parallelism that can be extracted from the
algorithm and the percentage of resource utilization. To the best of our knowledge no
research group in the area of reconfigurable computing has dealt with this problem.

Thirdly, the complex network on the chip, makes dynamic scheduling expensive as it
adds to the primary burden of power dissipation through routing resource utilization.
Therefore there is a need for a reconfiguration aware scheduling strategy. Most research
groups have adopted dynamic scheduling for a reconfigurable accelerator unit through a
scheduler that resides on a host processor [6,7].

The increasing demand for fast processing, high flexibility and reduced power
consumption naturally demand the design and development of a low configuration time
aware-dynamically reconfigurable processor.

It is an object, therefore, to provide a low area, low power consuming and fast
reconfigurable processor.

Task scheduling [1] is an essential part of the design cycle of hardware
implementation for a given application. By definition, scheduling refers to the ordering of
sub-tasks belonging to an application and the allocation of resources to these tasks. Two
types of scheduling techniques are static and dynamic scheduling. Any application can be
modeled as a Control-Data Flow Graph. Most of the current applications provide a large
amount of variations to users and hence are control-dominated. To arrive at an optimal static
schedule for such an application would involve a highly complex scheduling algorithm.

Branch and Bound is an example of such an algorithm with exponential complexity. Several
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researchers have addressed task scheduling and one group has also addressed scheduling for
conditional tasks.

Any given application can be modeled as a CDFG G(V,E). V is the set of all nodes of
the graph. Theses nodes represent the various tasks of the CDFG. E is the set of all
communication edges. These edges can be either conditional or unconditional. There are two
possible methods of s'cheduling this CDFG which have been listed below.

Static scheduling of tasks is done at compile time. It is assumed that lifetimes of all
the nodes are known at compile time. The final schedule is stored on-chip. During run-time,
if there is a mistake in the assumption of lifetime of any node, then the schedule information
needs to be updated. Advantage of this method is that worst-case execution time is
guaranteed. But, a static schedule is always worse than a dynamic schedule in terms of
optimality. Some of the existing solutions for static scheduling are stated here.

Chekuri [2] discusses the earliest branch node retirement scheme. This is applicable
for trees and s-graphs. An s-graph is a graph where only one path has weighted nodes. In this
case, it is a collection of Directed Acyclic Graphs (DAGs) representing basic blocks which
all end in branch nodes, and the options at the branch nodes are: exit from the whole graph or
exit to another branch node. The problem with this approach is that it is applicable only to
small graphs and also restricted to S-graphs and trees. It also does not consider nodes mapped
to specific processing elements.

Pop [3] tackles control task scheduling in 2 ways. The first is partial critical path
based scheduling. But they do not assume that the value of the conditional controller is
known prior to the evaluation of the branch operation. They also propose the use of a branch
and bound technique for finding a schedule for every possible branch outcome. This is quite
exhaustive, but it provides an optimal schedule. Once all possible schedules have been
obtained, the schedules are merged. The advantages are that it is optimal, but it has the
drawback of being quite complex. It also does not consider loop structures. Scheduling of
tasks is done during run-time. Main advantage of such an approach is that there is no need for
a schedule to be stored on-chip. Moreover, the schedule obtained is optimal. But, a major
limiting factor is that the schedule information needs to be communicated to all the
processing elements on the chip at all time. This is a degrading factor in an architecture
where interconnects occupy 70% of total area.

Jha [4] addresses scheduling of loops with conditional paths inside them. Thisis a
good approach as it exploits parallelism to a large extent and uses loop unrolling. But the

drawback is that the control mechanism for having knowledge of each iteration and the
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resource handling that iteration is very complicated. This is useful for one or two levels of
loop unrolling. It is quite useful where the processing units can afford to communicate quite
often with each other and the scheduler. But in our case, the network occupies about 70% of
the chip area [6] and hence cannot afford to communicate with each other too often.
Moreover the granularity level of operation between processing elements is beyond a basic
block level and hence this method is not practical.

Mooney [5] discusses a path based edge activation scheme. This means that if for a
group of nodes (which must be scheduled onto the same processing unit and whose schedules
are affected by branch paths occurring at a later stage) one knows ahead of time the branch
controlling values, then one can at run time prepare all possible optimized list schedules for
every possible set of branch controller values. This method is very similar to the partial
critical path based method proposed by Pop discussed above. It involves the use of a
hardware scheduler which is an overhead.

Existing research work on scheduling applications for reconfigurable devices has been
focused on context-scheduling. A context is the bit-level information that is used to configure
any particular circuit to do a given task. A brief survey of research done in this area is given
here.

Noguera [7] proposes a dynamic scheduler and four possible scheduling algorithms to
schedule contexts. These contexts are used to configure the Dynamic Reconfiguration Logic
(DRL) blocks. This is well-suited for applications which have non-deterministic execution
times.

Schmidt [8] aims to dynamically schedule tasks for FPGAs. Initially, all the tasks are
allocated as they come till the entire real estate is used up. Schmidt proposes methods to
reduce the waiting time of the tasks arriving next. A proper rearrangement of tasks currently
executing on the FPGA is done in order to place the new task. A major limitation of this
method is that it requires knowing the target architecture while designing the rearrangement
techniques.

Fernandez [9] discusses a scheduling strategy that aims to allocate tasks belonging to
a DFG to the proposed MorphoSys architecture. All the tasks are initially scheduled using a
heuristic-based method which minimizes the total execution time of the DFG. Context
loading and data transfers are scheduled on top of the initial schedule. Fernandez tries to hide
context loading and data transfers behind the computation time of kernels. A main drawback

is that this method does not apply for CDFG scheduling.
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Bhatia [10] proposes a methodology to do temporal partitioning of a DFG and then
scheduling the various partitions. The scheduler makes sure that the data dependence between
the various partitions is maintained. This method is not suited for our purpose which needs
real-time performance.

Memik [11] describes super-scheduler to schedule DFGs for reconfigurable
architectures. He initially allocates the resources to the most critical path of the DFG. Then
the second most critical path is scheduled and so on. Scheduling of paths is done using Non-
crossing Bipartite matching. Though the complexity of this algorithm is less, the schedule is
nowhere near optimal.

Jack Liu [12] proposes Variable Instruction Set Computer (VISC) architecture.
Scheduling is done at the basic block level. An optimal schedule to order the instructions
within a basic block has been proposed. This order of instructions is used to determine the
hardware clusters.

An analysis of the existing work on scheduling techniques for reconfigurable
architectures has shown that there is not enough work done on static scheduling techniques
for CDFGs. This shows the need for a novel method to do the same.

The VLSI chip design cycle includes the steps of system specification,
functional design, logic design, circuit design, physical design, fabrication and
packaging. The physical desigﬁ automatic of FPGA involves three steps which include
partitioning, placement and routing.

Despite advances in VLSI design automation, the time it takes to market for a chip is
unacceptable for many applications. The key problem is time taken due to fabrication of
chips and therefore there is a need to find new technologies, which minimize the fabrication
time. Gate Arrays use less time in fabrication as compared to full custom chips since only
routing layers are fabricated on top of pre-fabricated wafer. However fabrication time for gate
arrays is still unacceptable for several applications. In order to reduce the time to fabricate
interconnects; programmable devices have been introduced which allow users to program the
devices as well as interconnect.

FPGA is a new approach to ASIC design that can dramatically reduce manufacturing
turn around time and cost. In its simplest form an FPGA consists of regular array of
programmable logic blocks interconnected by a programmable routing network. A
programmable logic block is a RAM and can be programmed by the user to act as a small

logic module. The key advantage of FPGA is re-programmability.
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The VLSI chip design cycle includes the steps of system specification, functional
design, logic design, circuit design, physical design, fabrication and packaging. Physical
design includes partitioning, floor planning, placement, routing and compaction.

The physical design automation of FPGAs involves three steps, which include
partitioning, placement, and routing. Partitioning in FPGAs is significantly different than the
partitioning s in other design styles. This problem depends on the architecture in which the
circuit has to be implemented. Placement in FPGAs is very similar to the gate array
placement. Routing in FPGAs is to find a connection path and program the appropriate
interconnection points. In this step the circuit representation of each component is converted
into a geometric representation. This representation is a set of geometric patterns, which
perform the intended logic function of the corresponding component. Connections between
different components are also expressed as geometric patterns. Physical design is a very
complex process and therefore it is usually broken into various subsets.

The input to the physical design cycle is the circuit diagram and the output is the
layout of the circuit. This is accomplished in several stages such as partitioning, floor
planning, placement, routing and compaction.

A chip may contain several transistors. Layout of the entire circuit cannot be handled
due to the limitation of memory space as well as computation power available. Therefore it is
normally partitioned by grouping the components into blocks. The actual partitioning process
considers many factors such as the size of the blocks, number of blocks, and the number of
interconnections between the blocks. The set of interconnections required is referred as a net
list. In large circuits the partitioning process is hierarchical and at the topmost level a chip
may have 5 to 25 blocks. Each block is then partitioned recursively into smaller blocks.

This step is concerned with selecting good layout alternatives for each block as well
as the entire chip. The area of each block can be estimated after partitioning and is based
approximately on the number and type of commonness in that block. In addition interconnect
area required within the block must also be considered. Very often the task of floor plan
layout is done by a design engineer rather than a CAD tool due to the fact that human is
better at visualizing the entire floor plan and take into account the information flow. In
addition certain components are often required to be located at specific positions on the chip.
During placement the blocks are exactly positioned on the chip. The goal of placement is to
find minimum area arrangement for the blocks that allows completion of interconnections
between the blocks while meeting the performance constraints. Placement is usually done in

two phases. In the first phase initial placement is done. In the second phase the initial
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placement is evaluated and iterative improvements are made until layout has minimum area
or best performance.

The quality of placement will not be clear until the routing phase has been completed.
Placement may lead to un-routable design. In that case another iteration of placement is
necessary. To limit the number of iterations of the placement algorithm an estimate of the
required routing space is used during the placement process. A good routing and circuit
performance heavily depend on a good placement algorithm. This is due to the fact that once
the position of the block is fixed; there is not much to do to improve the routing and the
circuit performance.

The objective of routing is to complete the interconnection between the blocks
according to the specified net list. First the space that is not occupied by the blocks (routing
space) is partitioned into rectangular regions called channels and switchboxes. This includes
the space between the blocks. The goal of the router is to complete all circuit connections
using the shortest possible wire length and using only the channel and switch boxes. This is
usually done in two phases referred as global routing and detailed routing phases. In global
routing connections are completed between the proper blocks disregarding the exact
geometric details of each wire. For each wire global router finds a list of channels and
switchboxes to be used as passageway for that wire. Detailed routing that completes point-to-
point connections follows global routing. Global routing is converted into exact routing by
specifying the geometric information such as location and spacing of wires. Routing is a very
well defined studied problem. Since almost all routing problems are computationally hard the
researchers have focused on heuristic algorithms.

Compaction is the task of compressing the layout in all directions such that the total
area is reduced. By making the chip smaller wire lengths are reduced which in turn reduces
the signal delay.

Generally approaches to global routing are classified as sequential and concurrent
approaches.

In one approach nets are routed one by one. If a net is routed it may block other nets
which are to be routed. As a result this approach is very sensitive to the order of the nets that
are considered for routing. Usually the nets are ordered with respect to their criticality. The
criticality of a net is determined by the importance of the net. For example a clock net may
determine the performance of the circuit so it is considered highly critical. However
sequencing techniques don’t solve the net ordering problem satisfactorily. An improvement

phase is used to remove blockages when further routing is not feasible. This may also not
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solve the net ordering problem so in addition to that 'rip-up and reroute’ technique [Bol79,
DK82] and 'shove-aside' techniques are used. In rip-up and reroute the interfering wires are
ripped up and rerouted to allow routing of affected nets. Whereas in shove aside technique
wires that allow completion of failed connections are moved aside without breaking the
existing connection. Another approach [De86] is to first route simple nets consisting of only
two or three terminals since there are few choices for routing such nets. After the simple nets
are routed, a Steiner Tree algorithm is used to route intermediate nets. Finally a maze routing
algorithm is used to route the remaining multi-terminal nets that are not too numerous.

To match the needs of the future moderately complex applications, provided is the
first of a series of tools intended to help in the design and development of a dynamically

reconfigurable multimedia processor.
Brief Summary

In accordance with this invention, designing processing elements based on identifying
correlated compute intensive regions within each application and between applications results
in large amounts of processing in localized regions of the chip. This reduces the amount of
reconfigurations and hence faster application switching. This also reduces the amount of on-
chip communication, which in turn helps reduce power consumption. Since applications can
be represented as Control Data Flow Graphs (CDFGs) such a pre-processing analysis lies in
the area of pattern matching, specifically graph matching. In this context a reduced
complexity, yet exhaustive enough graph matching algorithm is provided. The amount of on-
chip communication is reduced by adopting reconfiguration aware static scheduling to
manage task and resource dependencies oﬂ the processor. This is complemented by a divide
and conquer approach which helps in the allocation of an appropriate number of processing
units aimed towards achieving uniform resource utilization.

In accordance with one aspect of the present invention a control data flow graph is
produced from source code for an application having complexity approximating that of
MPEG-4 multimedia applications. From the control data flow graph are extracted basic
blocks of code represented by the paths between branch points of the graph. Intermediate
data flow graphs then are developed that represent the basic blocks of code. Clusters of
operations common to the intermediate data flow graphs are identified. The largest common

subgraph is determined from among the clusters for implementation in hardware.
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Efficiency is enhanced by ASAP scheduling of the largest common subgraph. The
ASAP scheduled largest common subgraph then is applied to the intermediate flow graphs to
which the largest common subgraph is common. The intermediate flow graphs then are
scheduled for reduction of time of operation. This scheduling produces data patches
representing the operations and timing of the scheduled intermediate flow graphs having the
ASAP scheduled largest common subgraph therein. The data patches are then combined to
include the operations and timing of the largest common subgraph and the operations and
timing of each of the intermediate flow graphs that contain the largest common subgraph.

At this point, it will be appreciated, the utilization of the hardware that represents the
ASAP-scheduled largest common subgraph by the operations of each implicated intermediate
flow graph needs scheduling. Bearing in mind duration of use of the hardware representing
the largest common subgraph by the operations of each of the implicated intermediate flow
graphs, hardware usage is scheduled for fastest completion of the combined software and
hardware of operations of all affected intermediate flow graph as represented in the combined
data patches. Method of scheduling according to the present invention treats reconfiguration
edges in the same way as communication edges and includes the reconfiguration overhead
while determining critical paths. This enables employment of the best CDFG scheduling
technique and incorporation of the reconfiguration edges.

Our target architecture is a reconfigurable architecture. This adds a new dimension to
the CDFG discussed above. A new type of edge between any two nodes of the CDFG that
will be implemented on the same processor is possible. Let us call this a “Reconfiguration
edge”. A reconfiguration time can be associated with this edge. This information must be
accounted for while scheduling this modified CDFG.

To realize the largest common flow graph in hardware, processor component layout
and interconnections by ~ connective fabric needs to be addressed.

In accordance with the invention, a tool set that will aid the design of a dynamically
reconfigurable processor through the use of a set of analysis and design tools is provided. A
part of the tool set is a heterogeneous hierarchical routing architecture. Compared to
hierarchical and symmetrical FPGA approaches building blocks are of variable size. This
results in heterogeneity between groups of building blocks at the same hierarchy level as
opposed to classical H-FPGA approach. Also in accordance with this invention a
methodology for the design and implementation of the proposed architecture, which involves

packing, hierarchy formation, placement, network scheduler tools, is provided.
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The steps of component layout and interconnectivity involve (1) partitioning - cluster
recognition and extraction, (2) placement - the location of components in the available area
on a chip, and (3) routing - the interconnection of components via conductors and switches
with the goal of maximum speed and minimum power consumption.

Detailed Description

Turning to Fig. 1, source code in C or C++ for an MPEG4 multimedia application that
includes a pair of its operations "Affine Transform," and " Perspective," are input to a Lance
compiler utility 101 running its "Show CFG" operation. This outputs Control Flow Graphs
(DFGs). Control Flow Graphs for the Affine Transform and Perspective are shown in Fig. 2.
As seen in the Affine CFG of Fig. 2, the Affine Transform Control Flow Graph is composed
of a series of basic blocks 106, 108, 110, 112 and 114. The CFG of the multimedia
component Perspective is similarly composed of basic blocks. CFGs output by the Lance
compiler utility 101 are actually more textual than their depictions in Fig. 2, but are readily
understood to describe basic blocks and their interconnections. The Affine Transform has a
number of its blocks 108, 110, 112 arranged in loops. Whereas block 106 is a preloop listing.

Visually, at present, the many CFGs of the multimedia application are inspected for
similarity among large control blocks. How big the candidate blocks should be is a
judgement call. Similar blocks of more than 50 lines in two or more CFGs are good
candidates for development of a Largest Common Flow Graph among them whose operations
are to be shared as described below. Smaller basic blocks can similarly be subjected to the
development of largest common flow graphs as described below, but at some point the
exercise returns insignificant time and cost savings. The Affine Transform preloop basic
block has 70 instructions. The Perspective preloop basic block 118 has 85 instructions.

Those instructions are as follows:
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Affine preloop basic block 106

t541 =g 178/ 2,

t348 =2 *i0_166;

t349 =348 + du0_172;
t350 = t541 * t349;
t352 =2 *j0 167,

t353 =t352 + dv0_173;
t354 — 1541 * 353;
t356 =2 *il_168;
t357 =t356 + dul 174,
t358 =357 + du0_172;
1359 =541 * 1358;
t361 =2 *j1 169,
1362 =1361 + dvl_175;
t363 =1362 + dv0_173;
t364 =t541 * t363;
1366 =2 *i2_170;
1367 =1366 + du2_176;
t368 =t367 + du0_172
1369 =t541 * 1368,
t371=2%j2 171,
1372 =t371 + dv2_177,
t373 =1372 4+ dv0_173;
t374 =t541 * t373;
t542 = 256;

t375 =10_166 + t542;
t376 =16 * t375;

t543 =r 179 *t359;
t544 =16 * i1 _168;

t21 = 1543 — t544;

t381 =-80 * {21,

t385 =542 * {21,

t386 =381 + 385;
t545 =176;

t387 =386 / t545;
t388 =376 + 1387,
t546 =16 * j0_167,
t547 =1_179 * t354;
122 = 1547 — t546;

1394 = -80 * 122;

t395 =1 179 * 1364,
t396 =16 *j1_169;
t397 =395 — t396;
t398 =542 * t397;
t399 =394 + 398,
t400 = t399 / 1545,

t401 = t546 + t400;
t548 =16 *i0_166;
t404 =1 179 * 350,

14
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1406 = 1404 — t548;
1407 = -112 * t406;
408 =1_179 * 1369
409 = 16 * i2_170;
t410 = t408 — t409;
t411 = t542 * t410;
t412 = t407 + t411;
£549 = 144;

t413 = t412 / t549;
t414 = 1548 + t413;
t415 =jO_167 + t542;
t416 = 16 * t415;
421 = -112 * £22;
422 =1 179 * t374;
423 =16 * j2_171;
1424 = 1422 ~ t423;
1425 = t542 * t424;
t426 = t421 + t425;
t427 = 1426 / t549;
1428 = t416 + t427;
i 185=0;

Perspective preloop basic block 118

t744 =5 221/2,

t542 =2 *i0_205;

t543 =t542 + du0 213;
t544 = 1744 * £543,;
t546 =2 * jO_206;

t547 = 1546 + dv0_214;
t548 = t744 * t547,
t550 =2 *il1_207;
t551=t550 + dul_215;
t552 =1t551 + du0_213;
t553 = t744 * 1552;
t555 =2 *j1_208,;

t556 =t555 + dvl_216;
t557 =556 + dv0_214;
t558 = 1744 * t557,
t560 =2 *i2_209;

t561 =560 + du2_217,
t562 =561 + du0 213;
t563 = t744 * t562;
t565 =2 *j2_210;
t566 = t565 + dv2_218;
t567 =566 + dv0 214,
t568 = 1744 * 1567,
t570 =2 *i3 211,

t571 =570 + du3 219,
t572 =1571 + du2 217,
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t573 =t572 + dul_215;
t574 =1t573 — du0_213;
t575 = 1744 * t574;
t577=2%j3 212;

t578 = t577 + dv3_220;
t579 =578 + dv2_218;
t580 =579 + dv1_216;
t581 =580 + dv0_214;
t582 = t744 * t581;
t745 = 1544 — t553;

128 = 1745 — t563;

t34 =128 + t575;

t746 = t568 — t582;
t587 =134 * t746;

t747 = t563 —t575;
t748 = t548 — t558;

t29 — 1748 — t568;

t35 =129 + t582;

t592 = t747 * t35;

t593 = t587 — t592;
t749 = 144;

£594 = t593 * t749;
t750 =553 —t575;
t599 = t35 * t750;

t751 =558 — t582;
t604 =751 * t34;

t605 = 1599 — t604;
t752 = 176;

t606 = t605 * t752;
t609 = t750 * t746;
t612 = t747 * {751;
t613 =609 — t612;
t614 = t553 — t544;
t615 =613 * t614;
t616 =t615 * t749;
t617 = t594 * t553;
t618 =t 616 +t617;
619 = 563 — t544;
£620 = t613 * t619;
t621 = t620 * t752;
t622 = t606 * t563;
t623 = 1621 + t622;
1624 = t613 * t544;
1625 = 1624 * 1752;
t626 = t625 * t749;
627 = 1558 — 1548;
t628 =613 * 1627,
t629 = 1628 * t749;
t630 = t594 * t558;
t631 =1629 + t630;
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1632 =568 — t548;

t633 =t613 * t632;

t634 =633 * t752;

1635 =t606 * t568;

t636 = 1634 + t635;

t637 =t613 * t548;

t638 =637 * 1752;

t639 =1638 * t749;

1 228 =0;

At 120 in Fig. 1 the basic blocks are extracted from the CFGs 103 and 104 (Fig. 2)

developed by the Lance utility 101. The exemplary Affine and Perspective basic blocks are
shown in Fig. 1 being input to the Lance compiler utility running its "Show DFG" operation
to develop an Affine data flow graph and a perspective data flow graph at outputs 122 and
123. The extraction of the basic blocks at 120 in Fig. 1 may be effected manually or by a
simple program discarding low instruction count basic blocks prior to passing them along to
the Lance compiler 101 for the production of the data flow graphs. The data flow graphs out
of the Lance compiler are input to an operation by which pairs of data flow graphs are
selected as candidates for development of a largest common subgraph.

Remembering that many data flow graphs may have been produced from the
multimedia application initially input to the Lance compiler utility 101, it is at this point that
a selection process identifies the Affine and Perspective as good candidates for pairing to
develop the desired largest common subgraph. That selection process is indicated at 124 in
Fig. 1. Data flow graphs of the kind selected are shown in Figs. 4 (a) and (b). These are
directed acyclic graphs (DAGs). This is to say, as indicated by the arrows in Figs. 4 (a) and
(b), the operations move in a single direction from top to bottom and do not loop back. The
rectangles of Fig. 4 (a) represent the instructions of the Affine preloop basic block 106 and
the rectangles of Fig. 4 (b) represent the instructions of the Perspective preloop basic block
118.

Again visually, as currently implemented, these data flow graphs are compared for
similarity and two or more are chosen. Again a simple program may be implemented for the
same purpose as will be apparent. Individual comparison, like elements of the data flow
graph are identically colored. The instructions contained in the individual rectangles of the
data flow graphs of Figs. 4 (a) and 4 (b) are add (+), divide (/), multiply (*), subtract (-) and
memory transaction (not shown). To make it visually easier to identify similarities, then, in
the present, visual implementation, each type of instruction is color-coded blue, red, green,
etc. In the example of Fig. 1, the data flow graphs for the Affine and Perspective preloop

basic blocks have been chosen and are
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input at 126 and 127 to a routine 129 to identify the Largest Common Subgraph (LCSG)
shared by the two data flow graphs. One approach to development of the LCSG is discussed
below under "Proposed Approach."

Description of LCSG Development

Fig. 5 illustrates the largest common subgraph developed from the Affine and
Perspective preloop basic blocks. At 131 and 133, ASAP scheduling of the LCSG takes
place in known fashion iteratively with the LCSG individually and with the LCSG inserted
into the Data Flow Graphs until the most efficient scheduling of the Data Flow Graphs is
realized at block 133.

ASAP scheduling is a known technique. In the LCSG of Fig. 5 is accomplished by
moving elements representing instructions upward where possible to permit their use more
quickly and perhaps more quickly freeing a circuit component that effects that instruction for
a further use. From the LCSG of Fig. 5 it will be seen that 33 instructions from each of the
Affine and Perspective codes have now been identified to be implemented in hardware and
shared by the two multimedia operations represented by the Affine and Perspective CFGs
originally developed at 101. The same will be done for other Control Flow Graphs
representing other portions of the multimedia application introduced at the compiler 101.
Instructions not covered by a LCSG will be accomplished by general purpose processing
LUTs on the ultimate chip. The output from the ASAP scheduling that occurs at 131 is an
intermediate result or graph. Affine and Perspective DAGs with ASAP scheduling and the
inclusion of the common LCSG are shown in Figs. 6 (2) and 6 (b). In Fig. 6 (a), for example,
it will be seen that the instruction A1 has been moved up from line 2 in Fig. 5's unscheduled
LCSG to the same line (line 1) as the instruction V. Likewise the instruction A 3 has been
moved up so that there are now four like instructions in the first line of the LCSG portion of
the Fig. 6 (a) Affine DAG requiring four processing elements. In the second line instruction
A2 and A4 have been moved up and are now at the same line as instruction U and
instruction X. These are all like instructions, so four like processing elements will be
required to simultaneously run the four instructions. However, in Fig. 5, the LCSG,
originally included ten circuit elements of a kind in a single line beginning with the element
designated e, whereas now the largest number of such elements in a line of the LCSG in Fig.
6 (a) is only six. The resistors Ry, R,... in Figs. 6 (a) and 6 (b) are inserted delays between

executions of instructions.
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Output from the block 133 are the scheduled Affine and Perspective graphs of Figs. 6
(2) and 6 (b). At blocks 135 and 136 data paths are defined for each of these and at block 138
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data paths are combined to produce the code for the circuit Z in VHDL. , That code for the
combined preloop basic blocks of Affine and Perspective follows.
p P P ; G 2 ,</ Y w—oq 7.
preloop _common.vhd
library ieee;
use ieee.std_logic 1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;

entity preloop_common_datapath is

port(

-- inputs

ip_1,ip _2,ip_3,ip_4,ip_5,ip_6,ip 7, ip_8,ip_9,ip_10,ip 11 :instd logic vector(15
downto 0);

~-- constant inputs

constant_1, constant_2, constant_3, constant_4, constant_5, constant_6, constant_7,
constant_8, constant 9, constant_10, constant_11, constant 12, constant 13, constant 14,
constant_15, constant 16,

constant_17, constant_18, constant_19, constant_20, constant 21, constant 22 : in
std_logic_vector(15 downto 0);

-- 2 input mux select lines
sel_1,sel _2,sel_11,sel 12, sel 21, sel_22, sel_23, sel 24, sel 25, sel 26,
sel 27, sel_28, sel_29, sel 30 :in std logic;

-- 3 input mux select lines
sel_3, sel 4, sel 5, sel_6, sel 7, sel_8, sel_9, sel_10, sel_13, sel_14, sel 15,
sel 16, sel_17, sel 18, sel 19, sel_20: in std_logic_vector(1 downto 0);

-- enable signals for tri-state buffers at output of muxs

en_l,en 2,en 3,en 4,en 5,en 6,en 7,en 8,en 9,en 10,en_11,en 12,en 13, en 14,
en_ 15,

en_16,en_17,en_18,en 19,en 20, en 21, en 22,en 23, en 24, en 25, en 26, en 27,
Cn_2§», -

en_29, en_30:in std_logic;

-- output signals
op_l, 0p_2, op_3, op_4, op_5, op_6 : out std_logic_vector(15 downto 0);

clk : in std_logic ;
rst :in std_logic

);

end preloop_common_datapath ;
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architecture arch_preloop_common_datapath of preloop_common_datapath is
component xcv2_mult16x16s is

Port (

a:instd logic_vector(15 downto 0);

b :instd_logic_vector(15 downto 0);

clk : in std_logic;

prod : out std_logic_vector(31 downto 0)

)

end component;

-- these muxs are those controlling inputs to adders and multipliers

signal mux_lout, mux_2out, mux_3out, mux_4out, mux_5out, mux_6out : std_logic_vector(
15 downto 0);

signal mux_7out, mux_8out, mux_9out, mux_10out, mux_11lout, mux_12out:
std_logic_vector( 15 downto 0);

signal mux_13out, mux_14out, mux_15out, mux_16out, mux_17out,
mux_18out:std logic_vector( 15 downto 0);

signal mux_19out, mux_20out : std_logic_vector( 15 downto 0);

-- these muxs are those controlling register delay paths that differentiate

-- affine and perspective transform configurations

signal mux_21lout, mux_22out, mux_23out, mux_24out, mux_25out, mux_26out,
mux_27out, mux_28out, mux_29out, mux_30out : std_logic_vector(15 downto 0);

-- these signals capture the 32 bit outputs from multipliers and are

-- fed to filters that remove the 31 - 16 MSBs

signal temp_1, temp_2, temp_3, temp_4, temp_35, temp_6, temp_7, temp_8, temp 9,
temp_10: std_logic_vector(31 downto 0);

-- these signals get the 16 bit outputs from the temp signals and feed to register inputs
signal input reg_1, input_reg_ 12, input_reg 14, input_reg 19, input_reg_ 25, input_reg 28,
input_reg 39, input_reg 41, input_reg_6, input_reg 33, input_reg 20, input_reg_15,
input_reg_26, input_reg_29, input_reg_22 : std_logic_vector(15 downto 0);

-- these signals are the outputs of tri_state buffers present after the muxs

-- which control the exit points of the adjusted delayed paths

signal tri_state21, tri_state22, tri_state23, tri_state24, tri_state25, tri_state26, tri_state27,
tri_state28, tri_state29, tri_state30 : std_logic_vector(15 downto 0);

signal reg_1,reg 2, reg 3, reg 4,reg 5,reg 6,reg 7,reg 8,reg 9,reg 10,
reg_12,reg 14,reg 15,reg 19, reg 20,

reg 22,reg 23, reg 24,reg 25,reg 26, reg 28, reg 29, reg 33,

reg_34,reg 35,reg 36, reg 37, reg 39,

reg 41, reg_42, reg 43, reg_44,reg 45,reg 46, reg 47,reg 48, reg 49, reg 50,
reg 51,reg 52, reg_53, reg_54,reg 55,reg 56,reg 57,reg 58, reg 59, reg 60,
reg 61, reg_62,reg 63, reg 64, reg_65, reg 66, reg_67, reg 68, reg 69, reg_70,
reg_71,reg 72, reg 73,reg_74,reg 75,reg 76, reg_77,reg 78, reg 79, reg 80,
reg_81 : std_logic_vector(15 downto 0);

begin
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-- the following are the multiplexers controlling the inputs to multipliers

mux_lout <=reg 20 when sel 1="0'else tri_state22;

mux_2out <=reg 24 when sel_2="0' else constant 2;

with sel_3 select mux_3out <=
ip_3 when "00",
reg 15 when "01",
tri_state23 when "10",
(others =>'Z") when others;

with sel_4 select mux_4out <=
constant 3 when "00",
reg_24 when "01",
constant 4 when "10",
(others =>'Z") when others;

with sel 5 select mux_Sout <=
ip_4 when "00",
reg 20 when "01",
tri_state24 when "10",
(others =>'Z") when others;

with sel_6 select mux_6out <=
constant_5 when "00",
reg 23 when "01",
constant_6 when "10",
(others =>'Z") when others;

with sel_7 select mux_7out <=
ip_6 when "00",
reg 23 when "01",
tri_state25 when "10",
(others =>'Z") when others;

with sel_8 select mux_8out <=
constant_7 when "00",
reg 23 when "01",
constant_8 when "10",
(others =>'Z") when others;

with sel_9 select mux_9out <=
ip_7 when "00",
reg 24 when "01",
tri_state26 when "10",
(others =>'Z') when others;

with sel_10 select mux_10out <=
constant 9 when "00",
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reg 29 when "01",
constant 10 when "10",
(others =>'Z') when others;

mux_llout <=reg_24 when sel _11="0'else tri_state27;

mux_12out <=reg_26 when sel_12="0"else constant 11;

-- the following are the multiplexers controlling the input to adders

with sel_13 select mux_13out <=
reg 19 when "00",
ip_10 when "01",
tri_state21 when "10",
(others =>'Z") when others;

with sel 14 select mux_14out <=
constant_15 when "00",
constant_16 when "01",
reg 12 when "10",
(others =>'Z") when others;

with sel_15 select mux_150ut <=
reg_14 when "00",
reg_15 when "01",
tri_state29 when "10",
(others =>'Z') when others;

with sel_16 select mux_16out <=
constant 17 when "00",
constant_18 when "01",
reg_14 when "10",
(others =>'Z") when others;

with sel_17 select mux_17out <=
reg_25 when "00",
ip_11 when "01",
reg_39 when "10",
(others =>'Z") when others;

with sel_18 select mux_18out <=
constant 19 when "00",
constant 20 when "01",
tri_state28 when "10",
(others =>'Z') when others;

with sel_19 select mux_19out <=

reg_28 when "00",
reg 29 when "01",

22

PCT/US2004/003609



10

15

20

25

30

35

40

45

50

WO 2004/072796

reg_28 when "10",
(others =>'Z") when others;

with sel 20 select mux_20out <=
constant 21 when "00",
constant 22 when "01",
tri_state30 when "10",
(others =>'Z') when others;

-- the following are the statements implementing the multipliers

multp instl : xcv2_mult16x16s
port map (ip_1, constant 1, clk, temp 1);
input reg 1 <=temp_1(15 downto 0);

multp_inst2 : xcv2_mult16x16s
port map ( mux_1lout, mux_2out, clk, temp_2);
input_reg 12 <=temp 2(15 downto 0);

multp_inst3 : xcv2_mult16x16s
port map ( mux_3out, mux_4out, clk, temp_3);
input_reg_ 14 <=temp_3(15 downto 0);

multp_inst4 : xcv2_mult16x16s
port map ( mux_5Sout, mux_o6out, clk, temp_4);
input_reg 19 <=temp 4(15 downto 0);

multp_inst5 : xcv2_multl16x16s
port map ( mux_7out, mux_8out, clk, temp_5);
input_reg 25 <=temp 5(15 downto 0);

multp_inst6 : xcv2 multl16x16s
port map ( mux_9out, mux_10out, clk, temp_6);
input_reg 28 <=temp 6(15 downto 0);

multp_inst7 : xcv2 mult16x16s
port map ( mux_11lout, mux_12out, clk, temp_7);
input_reg 39 <=temp_ 7(15 downto 0),

multp_inst8 : xcv2 mult16x16s
port map (ip_9, constant 12, clk, temp_8);
input_reg 41 <=temp_ 8(15 downto 0);

multp_inst9 : xev2_multl16x16s
port map (ip_2, constant 13, clk, temp_9);
input_reg 6 <=temp_ 9(15 downto 0);

multp_instl0: xcv2 multl6x16s

port map (ip_8, constant 14, clk, temp_10);
input_reg 33 <=temp 10(15 downto 0);
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-- the following are the statements implementing the adders
input_reg 20 <=mux_13out + mux_14out;

input reg 15 <=mux_150out + mux_16out;

input reg 26 <=mux_17out + mux_18out;

input_reg 29 <=mux_19out + mux_20out;

-- the following are the statements implementing the divide / shifter

--input_reg 22 <=ip_5and "0011111111111111"; -- performing srl by 2
input reg 22 <="00" & ip_5(15 downto 2); --SRL 3 ; -- performing srl by 2

-- the following are the statements implementing register transfers

-- sel line here being '1' represents state machine for Perspective Transform

-- enable line of the tristate buffers here is '1' when either Affine or Perspective State machine
-- selects the associated mux.

mux_2lout <=reg_1 when sel_21="1"else reg_5;
tri_state21 <= mux_21out when en_21 ='1" else (others => 'Z);

mux_22out <=reg 12 when sel 22 ="1"'else reg_51;
tri_state22 <= mux_22out when en_22 ='1" else (others =>'Z");

mux_23out <=reg 14 when sel_23 ="1"else reg_57;
tri_state23 <= mux_23out when en_23 ="'1" else (others =>'Z");

mux_24out <=reg_19 when sel 24 ="'1' else reg_63;
tri_state24 <= mux_24out when en_24 = '1" else (others =>'Z');

mux_25out <=reg 25 when sel_25="1"else reg_069;
tri_state25 <= mux_25out when en_25 ='1" else (others =>'Z');

mux_26out <=reg 28 when sel_26 ="1"else reg_75;
tri_state26 <= mux_26out when en_26 ='1' else (others =>'Z");

mux_27out <=reg_39 when sel 27 ="1"else reg_81;
tri_state27 <= mux_27out when en_27 = '1" else (others => 'Z'); "

mux_28out <=reg 41 when sel 28 ='0' else reg_45;
tri_state28 <= mux_28out when en_28 = '1" else (others => 'Z");

mux_29out <=reg_6 when sel_29 ="'0' else reg_10;
tri_state29 <=mux_29%ut when en_29 ="1' else (others =>'Z"),

mux_30out <=reg 33 when sel_30="0"elsereg 37,
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tri_state30 <=mux_30out when en_30 ='1" else (others =>'Z");

reg_pr :process (clk

Jstreg 80,input_reg 1,reg_lreg 2,reg 3,reg_4,input reg 12,reg 12,re g 46,reg 52,reg 53

reg 54,

reg_47,reg 48,reg 49,reg 50,input_reg_l4,reg_l4,reg 55reg 5 6,input_reg 19,

PCT/US2004/003609

reg_19,reg_58,reg 59,reg 60,reg 61,reg 62,input reg 25reg 25.re g 64,

reg_65,reg 66,reg 67,reg 68,input_reg 28,reg_28,reg 70,reg 71,re g 72,

reg_73,reg_74,input_reg 39,reg_39,reg 76,reg 77,reg 78,reg 79,

input_reg_41,reg_41,reg_42,reg_43,reg_44,input_reg 6,re g 6,

reg_7,reg 8,reg 9,input reg 33,reg 33,reg 34,reg 35reg 36,

input_reg_15,input_reg_20,input_reg_22,input_reg_26,input_re g 29,

begin

if (rst="1") then

reg_l<=(others =>'0");,

reg_2<=(others =>'0") ;
reg_3<=(others =>'0") ;
reg_4<=(others =>'0") ;
reg_S5<=(others=>'0") ;
reg_6<=(others =>'0") ;
reg_7<=(others =>'0");
reg_8<=(others =>'0") ;
reg_9<=(others =>'0") ;
reg_10<=(others =>'0") ;
reg_12<=(others =>'0") ;
reg 14<=(others =>'0") ;
reg_15<=(others =>'0") ;
reg_19<=(others =>'0");
reg_20<=(others =>'0") ;
reg_22<=(others =>'0") ;
reg_23<=(others=>'0") ;
reg_24<=(others =>'0") ;
reg_25<=(others =>'0");
reg_26<=(others =>'0") ;
reg_28<=(others =>'0") ;
reg_29<=(others=>'0") ;
reg_33<=(others =>'0") ;
reg_34<=(others =>'0") ;
reg_35<=(others=>'0") ;
reg_36<=(others =>'0") ;
reg_37<=(others =>'0");
reg_39<=(others =>'0") ;

25
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reg_41<=(others=>'0") ;
reg_42<=(others =>'0") ;

reg_43<=(others =>'0");

reg_44<=(others =>'0") ;
reg_45<=(others =>'0") ;
reg_46<=(others =>'0") ;
reg_47<=(others=>'0") ;
reg_48<=(others =>'0") ;
reg_49<=(others =>'0"),
reg_50<=(others =>'0") ;
reg_S51<=(others =>'0") ;
reg_52<=(others =>'0") ;
reg_53<=(others=>'0") ;
reg_S54<=(others =>'0") ;
reg_55<=(others =>'0");
reg_56<=(others =>'0") ;
reg_S57<=(others =>'0") ;
reg_58<=(others =>'0") ;
reg_59<=(others=>'0") ;
reg_60<=(others =>'0") ;
reg_61<=(others =>'0");
reg_62<=(others =>'0") ;
reg_63<=(others =>'0") ;
reg_64<=(others =>'0") ;
reg_65<=(others=>'0") ;
reg_66<=(others =>'0") ;
reg_67<=(others =>'0");
reg_68<=(others =>'0") ;
reg_69<=(others =>'0") ;
reg_70<=(others =>'0") ;
reg_71<=(others=>'0") ;
reg_72<=(others =>'0") ;
reg_73<=(others =>'0") ;
reg_74<=(others =>'0");
reg_75<=(others =>'0") ;
reg_76<=(others =>'0") ;
reg_77<=(others =>'0") ;
reg_78<=(others=>'0") ;
reg_79<=(others =>'0") ;
reg_80<=(others =>'0"),
reg_81<=(others =>'0") ;

elsif (rising_edge(clk))then

reg_1 <=input reg 1;

reg 2 <=reg 1;
reg 3 <=reg 2,
reg_4 <=reg 3;
reg 5 <=reg 4,
reg_12 <=input_reg 12;
reg_46 <=reg 12;
reg_47 <=reg_46,

26

PCT/US2004/003609



10

15

20

25

30

35

40

45

50

WO 2004/072796

reg_48 <=reg 47,

reg 49 <=reg 48;
reg_50 <=reg 49;

reg 51 <=reg_50;
reg_14 <=input reg 14,
reg_ 52 <=reg 14,

reg 53 <=reg 52,
reg_54 <=reg 53;

reg 55 <=reg_54;

reg 56 <=reg_55;
reg 57 <=reg 56,
reg_19 <=input reg 19,
reg_58 <=reg 19;

reg 59 <=reg 58;

reg 60 <=reg 59;
reg_61 <=reg 60;
reg_62 <=reg 61;

reg 63 <=reg 62;

reg 25 <=input_reg 25,
reg 64 <=reg 25;
reg_65 <=reg 64,
reg_66 <=reg 65;
reg 67 <=reg 66;
reg_68 <=reg 67;
reg_69 <=reg 68;

reg 28 <=input reg 28;
reg_70 <=reg 28,
reg 71 <=reg 70;

reg 72 <=reg 71,
reg_73 <=reg 72,
reg_74 <=reg 73,

reg 75 <=reg 74,
reg_39 <=input reg 39;
reg_76 <=reg_ 39;

reg 77 <=reg 76,
reg_78 <=reg 77,

reg 79 <=reg 78,

reg 80 <=reg 79;
reg 81 <=reg_80;
reg 41 <=input_reg 41,
reg 42 <=reg 41;

reg 43 <=reg 42;
reg_44 <=reg 43;

reg 45 <=reg 44;
reg 6 <=input reg_6;
reg_ 7 <=reg 6;

reg 8 <=reg 7,

reg 9 <=reg_8§;

reg_10 <=reg 9,

reg_33 <=input_reg 33;
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reg 34 <=reg 33,
reg 35 <=reg 34,
reg 36 <=reg_35;
reg 37 <=reg 36;
reg_20 <=input reg 20;
reg_15 <=input reg 15;
reg_26 <=input reg_26;
reg_29 <=input reg 29;
reg_22 <=input reg 22;
reg 23 <=reg 22,
reg 24 <=reg 23;
end if ;
end process reg_pr;

op_3 <=reg 19;
op_4 <=reg 25;
op_1 <=reg 20;
op_2 <=reg_15;
op_6 <=reg 26;
op_5 <=reg 29,

end architecture;

Returning to LCSG development, in the following approaches, an exemplary
preferred embodiment of the invention starts with CDFGs representing the entire application
and which have been subjected to zone identification, parallelization and loop unrolling. The
zones / Control Points Embedded Zones (CPEZ) that can be suitable candidates for
reconfiguration will be tested for configurable components through the following approaches.
Note: Each Zone / CPEZ will be represented as a graph.

Proposed Approach

Seed selection:

This approach is to find seed basic blocks and proceed on the CFG to grow these
seeds. Note that all basic blocks which have outgoing edges whose destination basic block’s
first instruction line number is less than or equal to the line number of the first instruction of
the source basic block, then those outgoing edges are loop back edges.

For example, if, in Fig. 7, basic block Ys first instruction line number (as extracted
from the *.ir.c file) is <= equivalent line numbers of basic blocks X or Y, then that edgeisa
loop-back edge (e,.x) and BBx will be the start of the loop and BBy will be the seed. Since
C/C++ are sequential languages the Lance compiler does not build loop in any other manner

that is erroneous.
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In this approach, the seed is a basic block that lies inside a loop because theloop is
done over and over. This process can result in 3 types of loops:

(1) A single nested level loop with only 1 basic block as shown in Fig. 8,

(i1) A single nested level loop with > 1 basic block as shown in Figs. 9 (2) and (b), Z

is not considered a loop in Fig. 9 (a), and

(iii) Multi-level nested loop as shown in Fig. 10.

To proceed further we will consider as seeds only basic blocks of class X as in types
(ii) and (iii) are considered as seeds. This step is a simple construct to start off and yet allows
the growth of the constructs to include multiple level nested loops, without one growing
construct overlapping another growing construct/cluster.

The next step is to identify all basic blocks that come under the control umbrella of X
and Y. All such basic blocks lie between the linked list entries of V i.e. G(E,V) of X and Y.
These blocks are classified into 3 categories (i) Decision (ii) Merge (iii) Pass as shown for
example in Fig. 11.

The same block might be included in both Decision and Merge classes. Therefore
the number of blocks in this umbrella under (a, j) <= (Decision + Merge + Pass). This feature
vector is one of the vectors used to quickly estimate the similarity of clusters.

Another feature vector will be the vector of operation type count for blocks in the

Decision, Merge and Pass classes.

Example:

Merge (¢, €, j) + ok /
c= 532 ....1

e= 201 ....0

j= 030 ........ 0

Total= (7,6,3, ...., 1)

These steps should be used to form candidate clusters from the CFG that can be
classified as similar / reconfigurable. This result could vary based on programmer’s skill.
Highly skilled programmers could lead to faster grouping because of encompassing repeated
versions of a complex construct into a function and perform repeated function calls.

Finer comparisons for performing the extraction of the largest common sub-graph, is
carried out on this group.

Identifying the Largest Common Sub-graph or Common set of Sub-graphs between

two candidate Data Flow Graphs representing a Basic Block each.
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Each edge in a DFG is represented by a pair of nodes (Source and
Destination). Each node represents an operation such as add (+), multiply (*), divide (/) etc.
All the edges are represented by a doubly linked list as part of the graph representation
G(V,E). These edges are now sorted based on the following criteria into several bins.

The criteria for sorting is based on the fact that an edge consists of two basic
elements (Source Operation, Destination Operation). In the example shown, source operation
‘a’ has a lower rank than ‘b’ and ‘c’. If the SO of the edges are the same, then their DO are
compared. The same rule applies: the DO with the lower rank, is placed to the left. In this
manner, the string is sorted. Say for example a sorted string is:

aa, aa, ac, ba, ba, bb, bc, cb, cc

Now these pairs of alphabets will be placed into bins. In order to place them

the first or the left most pair (aa in our example) is assumed to be the head of

the queue. It is placed in the first bin. Then all the following elements in the
queue are compared with the head, till a mismatch is obtained. If a match
occurs then, that pair is placed in the same bin as the head. Now the first
mismatched pair is designated as new head of the queue. This is now placed in
anew bin and the process is followed till all elements are in a set of bins as

shown in the following Figure 12.

The next step is to perform a similar but not exactly the same process for the graph
that needs to be compared with the candidate graph, graph number 1. Consider a second
graph, graph number 2 as shown in Figure 13. (In Graph 2 flow is left to right rather than top
to bottom.)

This graph is converted to a string format in the same manner as graph #1 and this
string, as shown below needs to be placed into a new set of bins.

aa, ab, ab, ba, ba, bb, bb, bc, cb, cc

This is done by assigning the leftmost element in the queue to be the head. It is first
compared to the element type in the first bin of the old set(aa) [This is termed as the reference
bin]. If it checks to be the same, then the first bin of the new set is created and all elements
upto the first mismatch are placed in this bin. Then the reference bin is termed as checked.
Now the new head type is compared to the first unchecked bin of the reference set. If there is
a mismatch, then the comparison is done with the next unchecked bin and so on, until the SO
of the element type is different from the SO of the element type in the reference bin. At this
point, a comparison of all successive element pairs in the current queue are compared with

the head, till a mismatch is met. Then the matched elements are eliminated.
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But in case, a match is found between the head of queue and a reference bin, then a

new bin in the current set is created and suitably populated. The corresponding reference bin

is checked and all previously / predecessor unchecked reference set bins are eliminated.

By this approach, we are eliminating comparison between unnecessary edges in the

graphs. Now a new set of bins for graph 2 is obtained as shown (Fig. 13 (a)).

Thus the edges in a Data Flow Graph, representing a Basic Block, are arranged into
bins as described above. Only note that when it said that a bin should be eliminated
if it’s corresponding type is not found in the previous pair, then what is meant is that
the bin should be marked for elimination. Thus one will have a pair of bin
sequences, in which some bins might have been marked as ‘eliminated’ type.
Consider any such bin and track all edges connected to edges in that bin. If any of
these connected edges are isolated edges (i.e. all their connected edges =>
predecessors + siblings + companions + successors are marked as ‘eliminated’ type)
then mark them as ‘eliminated’ type. This is illustrated in Fig. 14.

Now for all the remaining ‘un-eliminated’ edges, quadruple associativity

information is obtained (Predecessor, Siblings, Companions, and Successors). At this

point measure the associativity counts for all edges in a bin pair.

For example, if we have 3 bins in each graph, say Add-Divide, Divide-Multiply and

Add-Multiply, then redistribute edges in each bin of each graph, into the corresponding

associativity columns. This will result in the tables (called Associativity-Bin matrix) shown

below, where ‘x’ represents edges belonging to a particular associativity number in a bin.

Associativity G1 Associativity G2
5 4 3 2 1 G2 |5 4 3 2 1
¥/ Z |A + B |Q
/* |P T /* R 8]
+* E |F +# S X

The following pseudo code in C describes the matching or the discovery of the largest

common sub-graph or sets of common subgraphs between the two candidate DAGs using the

Associativity-Bin Matrices.

**************************Pseudo C code
begin*****************************

**************************Comment
begin**********************************
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Given 2 sorted Directed Acyclic Graphs Gl and G2 the matrix form such
that

height of both matrixes = height, and

width of graph 1 = width G1

width of graph 2 = width G2
As an example,

Graphl Graph2
Associativity Count
* | x x| * 4 |x |

* % | % x ‘ * % } X X ]

+/ | X | +/ | X X |

(g = To T SC ¢ B =
'
!
i
I
I
'
f
1
1
1
1
1
1
1
!
!
|
1
)
1
{
|
I
!
{
1

width of Graphl = 4 width of Graph2 = 5

here x marks those row, column intersections where edges of the graph are
distributed into and an x represents a Primary Group of Edges (PGE) or
Secondary Group of Edges (SGE)

ThkkkkkkkAR AR R AR R AR R * XX ¥k **Comment
end**hhkkkkkh Rk hhhhhhhhd kb bk bk hhhdk

main ()

{
initialize 1 = height;
initialize k = width_G2;

for (j = width G2; j<= 1 OR G1(i,3j)==Null; j--)

{

for (i = height; 4i<= 1 OR G1(i,j)==Null; i--)

{

while (@2(i,k)==Null)

{

k++;
if (k>width_G2)
exit and goto LOC_1;

}

/* function call*/
compare (Gl(i,j).edges, G2(i, k) .edges);
reset value of k to width_G2;

label: LOC_1

}

reset value of i to height;

void compare (group_of_ edgesl, group_of_ edges2)

if (group of edgesl.fof_edges > group_of edges2.f#of_edges)
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group_of_edgesl is Primary Group of Edges or PGE;
group_of_edges2 is Secondary Group_of_ Edges of SGE;
}
else
the other way around;

**************************Comment
begin***v\'********'k*********************

Assuming that a group of edges (PGE / SGE) is arranged in the data
structure

that looks like this:

Here a, g, etc... are Nodes.

and a-g, a-k , etc... are Edges.

Edges of type div2mul

columnl Column2 Column3 Column4
C E Predecesors Siblings Companions Succesors Ad
rowl edge#l slot(*2/) | & | slot(/2%) a-65 | slot(+2%) f-g slot (*2%*) b-c 7
slot (/2/) d a-g | slot(/2%) ) slot(*2/) o}
slot (+2/) | @ a-k | slot(*2%) ) slot (*24) o)
a-o
a-067
slot (/2+) o)
slot(/2/) i)
row2 | edge#2

Note that edges in each slot are divided into 2 baskets:
1) uncovered basket
2) covered basket

Initially when the graph comparison begins all Associated Edges
(Predecessors, Siblings, Companions, Successors) in all slots will be in
the respective uncovered baskets.

But as we begin covering edges, those Associated Edges will start filling
thelr respective covered baskets !!

For reasons of simplicity the above example assumes all the Associated
Edges are in their respective uncovered baskets.

FEREKRF KRR R KRR F R K FRERF K%K %k *Comment
end*kkdd bk hdh ko kR bk F AR Ak h kAR R AR R LA

/* outer for loop */
for (prow = 1; prow <= PGE.#of_edges; prow++)

/* inner for loop */

for(srow = 1; srow <= SGE.#of_edges; srow++)

{
/* function call*/ ‘
Result = Test_for_ compatibility (PGE (prow), SGE (srow)) ;
if (Result == fail)

{
}

prow -~-;
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else /* if Result == pass */
{
/* function call */
cover (PGE (prow) , SGE (srow)) ;
exit(1); /* this should exit the inner for loop and
continue with the outer for loop */
!
!
/* inner for loop */
]
/* outer for loop */
return () ;

int Test_for compatibility (PGE (prow), SGE (srow))
{
if (PGE (prow) .candidate_edge.covered flag ==
SGE (srow) .candidate_edge.covered_flag)
{
if (PGE (prow) .candidate_edge.Source node.touched flag ==
SGE (srow) .candidate_edge.Source_node.touched flag)
{

1f (PGE (prow) .candidate_edge.Destination_node.touched flag

SGE (srow) .candidate_edge.Destination_node.touched flag)

{
if (PGE (prow) .covered_count ==
SGE (srow) .covered_count)

{

for(column = 1; column <= 4; column++)
{
for(slot = 1; slot <=3 AND
PGE (prow,column, slot) != null AND
SGE (srow, column, slot) != null; slot++)
{
if(PGE(prow,column,slot).covered_
count ==
SGE(srow,column,slot).covered_Cou
nt)
{
return pass;
/* this indicates a
potential for covering to
be peformed*/

else
return fail;

}

else
return fail;

}

else
return fail;

}

else
return fail;
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}

else
return fail;

}

void cover (PGE (prow), SGE (srow))

{

1f (PGE (prow) .candidate_edge.covered flag != 1)

{

PGE (prow) .candidate_edge.covered flag
SGE (srow) .candidate_edge.covered flag = 1;

It
=

update_flags_and_counts (PGE (prow) .candidate_edge,
SGE (srow) .candidate edge) ;

}

for(column = 1; column <= 4, column ++)

{

for(slot = 1; slot <=3 AND PGE (prow,column,slot) != null AND
SGE (srow, column,slot) != null AND

PGE (prow, column, slot) .uncovered_count != null AND

SGE (srow, column, slot) .uncovered count != null; slot++)

{

/* outer for loop */
for(pedge = 1; pedge <=
PGE(prow,column,slot).uncovered_count; pedge++)
{
/* inner for loop */
for(sedge = 1; sedge <=
SGE(srow,column,slot).uncovered_count; sedge++)
{
if(PGE(prow,column,slot,uncovered_basket[pedg
e]) .Source_node.touched_flag ==
SGE(srow,column,slot,uncovered_basket[sedge])
.Source_node.touched flag
AND
PGE(prow,column,slot,uncovered_basket[pedge])
.Destination node.touched_flag ==
SGE(srow,column,slot,uncovered_basket[sedge})
.Destination_node.touched_flag)
{
push_this_edge_into_covered_basket
(PGE(prow,column,slot,uncovered_basket[
pedgel),
SGE(srow,column,slot,uncovered_basket[s
edgel)) ;
update_flags_and counts
(PGE(prow,column,slot,uncovered_basket[
pedgel ),
SGE (srow, column, slot,uncovered_basket [s
edgel ) ) ;
exit (1);
/* this should exit the inner for loop
and continue with the outer for loop */
}
} .
/*inner for loop */

}

/* outer for loop */
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return ();

}

void push_this_edge into_covered basket (pedge, sedge)

{

/* this does a transfer of the covered edge from the uncovered basket
of a slot to the covered basket of a slot */

}

void update_flags_and counts (edge_from PGE, edge from SGE)

{

/* this does an update on all covered flags of edges
and on all touched flags of nodes
and on covered and uncovered counts of all slots
and the total count for candidate edges

*/

khkkdkkdkdhhdhdddrddrdrvd**Pgeudo C code
end*****************************

The complexity of this algorithm is estimated to be of the order O (N°), where N
represents the number of edges in the smaller of the 2 candidate graphs.

Although this complexity is high, yet when compared to the O (P*N%) complexity
algorithm proposed by Cicirello at Drexel University, the differences are:

a. Cicirello’s algorithm delivers a large enough common sub-graph, which is
an approximate result.

b. The proposed algorithm not only derives the largest common sub-graph or
a large-common sub-graph but also E)otentially derives other common-sub-
graphs. All such common sub-graphs result in potential savings when
implemented as an ASIC computation unit.

c. Cicirello’s algorithms relies on a random number of attempts (P) to start
the initial mapping. In the worst case, if all possible mappings are tried,
then the solution becomes exponential.

Therefore after subjecting the CFG to the above set of processes, 2 types of entities
are obtained: (i) Basic Blocks with Large Common Sub-graphs & (ii) Basic Blocks without
any common sub-graphs. For the purpose of scheduling, Basic Blocks that share common
sub-graphs will be termed as ‘Processes’ or nodes in the CFGs that share resources.

As an example 2 DAGs (affine and perspective preloop) were analyzed for common

sub-graphs. The common sub-graph obtained is that shown in the Fig. 5.

Architectures of Common Sub-graphs:
For a common-sub-graph, an ASAP schedule is performed. Although many other
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types of scheduling are possible, in this research effort the focus is placed primarily on
extracting maximal parallelism and hence speeds of execution. The earliest start times of
individual nodes, are determined by the constraint imposed by the ASAP schedule of the
parent graph in which the common sub-graph is being embedded / extracted.

Since the schedule depends on the parent graph, the same sub-graph has different
schedules based on the parent graph (affine transform preloop DAG / perspective transform
preloop DAG). In order to derive a single architecture that can be used with minimal changes
in both instantiations of the common sub-graph, the sharing of resources is performed based
on the instance that requires the larger number of resources. This policy is applied to each
resource type, individually. For example, the sharing of multiplier nodes in instance 1 (affine)
can be formed as:

elj,b,c|v,g h|Al, A5,A6]|A3,A7,A8|y,k 1|n,0,p|r

and the sharing of multiplier nodes in instance 2 (perspective) can be formed as:

e|lb,c|v,g h|Al, A5,A6|A3,A7,A8]y,k,1]o,p|r|j|n]

Since the instance 2, requires a greater number of resources, the resource sharing in

instance 1 is modified to match that of instance 2.

The same process is followed for the adder nodes and a common sharing is obtained:

A2,f,d|u,t,i]|Ad,s,q|x, w,m|

Implementing an architecture for each instance with the common resource sharing

distribution results in 2 similar architectures (shown in figures below), which differ

in the number of delays present on certain paths.
This problem is overcome by adding multiplexers along paths that have different delays
while connecting the same source and destination(s). This is shown in figure below.

In this research effort, the common architectures are implemented as ASICS in
VHDL. The regions of the DAGs that are not covered by common architectures are left for
generic LUT style implementation. For the above example of complex warping applications,
we have synthesized the common architectures and obtained gate counts based on Xilin’s
estimates using the Xilinx Synthesis Tool. We have further translated this architecture onto
LUTs on a Xilinx Spartan 2E FPGA. Based on well accepted procedures gate count and bit
stream estimates for the translated architecture have been obtained [refer Trenz Electronic
paper]. These results show the potential savings that can be achieved in 2 modes of
implementation: (i) A completely LUT based architecture with flexible partial
reconfigurability and (ii) An ASIC — LUT based architecture. In type (i) the savings are

expressed in terms of time taken to perform the redundant reconfiguration (assuming that the
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configuration is performed at the peak possible level of 8 bits in parallel at 50 MHz), over
one run / execution of the preloop basic block and over an expected run of 30 iterations per
second (since there are 30 frames per second of video, and the preloop basic block is
executed for every frame). In type (i) the savings are expressed in terms of number of gates
required to represent the architecture in an ASIC versus the number of gates required to
represent the architecture in an LUT format of the Spartan 2E processor.

In both types, significant savings are obtained.

Scheduling

Once the number of processing units has been chosen, the CDFGs have to be mapped
onto these units. This involves scheduling, i.e. allocating of tasks to the processing units in
order to complete execution of all possible paths in the graphs with the least wastage of
resources but avoiding conflicts due to data and resource dependencies.

In the graph matching, one can include branch operations to reduce the number of
graphs. This can be done, if one of the paths of a branch operation leads to a very large graph
compared to the other path, or is a subset of the other path. This still leaves us with the
problem of conditional task scheduling with loops involved. Since scheduling is applicable to
many diverse areas of research, in this section all the work done in scheduling is not
discussed. Instead this focuses on those that are relevant to mapping data flow graphs on
processors, proposes a method most suitable for the purpose of reconfiguration, and compares
it with contemporary methods. Several researchers have addressed task scheduling and one
group has also addressed loop scheduling with conditional tasks [57]. A detailed survey of
data and control dominated scheduling approaches can be found in [58], [59] and [60]. Jha
[57] addresses scheduling of loops with conditional paths inside them. This is a good
approach as it exploits parallelism to a large extent and uses loop unrolling. But the drawback
is that the control mechanism for having knowledge of ‘which iterétion’s data is being
processed by which resource’ is very complicated. This is useful for one or two levels of loop
unrolling. It is quite useful where the processing units can afford to communicate quite often
with each other and the scheduler. In the present case, the network occupies about 70% of the
chip area [1] and hence cannot afford to communicate with each other too often. Moreover
the granularity level of operation between processing elements is beyond a basic block level
and hence this method is not practical. And within a processing element, since the
reconfiguration distance (edit distance) is more important, fine scale scheduling is
compromised because the benefits with the use of very fine grain processing units is lost due

to high configuration load time. [68] paper discusses a ‘path based edge activation’ scheme.
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This basically means, if for a group of nodes (which must be scheduled onto the same
processing unit and whose schedules are affected by branch paths occurring at a later stage)
one knows ahead of time the branch coﬁtrolling values, then one can at run time prepare all
possible optimized list schedules for every possible set of branch controller values. In the
following simple example shown in Fig. 15, the nodes in gray need to be scheduled on the
same processing unit. The branch controlling variable is b which can take values of 0 or 1. In
case it takes a 0, the branch path in red is taken, else the path in green is taken. In the case
where one can know at run time, yet ahead of time of occurrence of the branch paths, the
value of ‘b’, one can prepare schedules for the 3 grey nodes and launch either one, the
moment b’s value is known.

This method is very similar to the partial critical path based method proposed by [69].
It involves the use of a hardware scheduler and is quite well suited for our application. But
one needs to add another constraint to the scheduling: the amount of reconfiguration or the
edit distance. In [69] the authors tackles control task scheduling in 2 ways. The first is partial
critical path based scheduling, which is discussed above. Although they do not assume that
the value of the conditional controller is known prior to the evaluation of the branch
operation. They also propose the use of a branch and bound technique for finding a schedule
for every possible branch outcome. This is quite exhaustive, but it provides an optimal
schedule. Once all possible schedules have been obtained, the schedules are merged. The
advantages are that it is optimal, but its has the drawback of being quite complex. It also does
not consider loop structures. Other papers that discuss scheduling onto multiprocessor
systems include [70], [71] and [72]. Among other works carried out on static scheduling by
([73] and [74]) involve linearization of the data flow graphs. Some others have also taken
fuzzy approaches [75] and [76].
Proposed approach

Given a control-data flow graph, one needs to arrive at an optimal schedule for the
entire device. A method is provided to obtain near optimal schedules, This involves a brief
discussion of the PCP scheduling strategy followed by an enhancement to the current
approach to arrive at a more optimal schedule. In addition the scheduling involves
reconfiguration time as additional edges in the CDFG. Ways to handle loops embedded with
mutually exclusive paths and loops with unknown execution cycles are dealt with as well.

A directed cyclic graph developed by the Lance compiler 101 from source code has

been used to model the entire application. It is a polar graph with both source and sink nodes.

The graph can be denoted by G (V, E). V is the list of all processes that need to be scheduled.
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E is the list of all possible interactions between the processes. The processes can be of three
types: Data, communication and reconfiguration. The edges can be of three types:
unconditional, conditional and reconfiguration. A simple example with no reconfiguration
and no loops is shown in Fig. 13X.

In the graph of Fig. 13X, each of the circles represents a process. Sufficient resources
are assumed for communication purposes. All the processes have an execution time
associated with them, which has been shown alongside each circle. If any process is a
control-based process, then the various values to which the condition evaluates are shown on
the edges emanating from that process circle (e.g. P11 evaluates to D, or D . The method
may be summarized as follows:

i.  Use known Partial Critical Path (PCP) scheduling to determine the delays for each
possible path of the CDFG and arrange the list of paths in descending order of the
delays.

ii.  Perform branch and bound based scheduling (which need not be done for every
path to reduce the complexity).
iii.  Once the final list of all schedules is ready, merge all the schedules by respecting
data and resource dependencies.
This example demonstrates the initialization strategy. It describes how the CDFG is split into
individual DFGs. Moreover, it also shows the various fields required for each node and edge.
For the CDFG of Fig. 13X, initialization of CDFG data structure and Branching tree proceeds
as follows:
Var_indices: var[0] = D; var[1] = C; var[2] =K
Assume number of processing elements of type = 1
Branching tree paths: DCK, DCK ,DCK,DC K, DCK, DCK,DCK,DCK
Branching tree paths not possible: DCK, DCK, D CK, D C K
Removing K we get: DC, D C
Final Branching tree paths: DCK, DCK ,DCK,DC K, DC, D C.

Tables XX and YY are the node and edge lists, respectively, for the CDFG of Fig.
13X. Figs. 14X - 19X are the individual Data Flow Graphs (DGSs) of the CDFG of Fig.
13X.

Table XX:
Node list for the CDFG
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#
Node index exec_time pe_index is_true_var_index frue_or_false is_true_var_indices
1 3 1 [1 [] 0
2 4 1 [1 [] 0
3 12 2 [] [ 0
4 5 1 [11 [0] 1
5 3 2 1] [0] 1
6 5 1 [1] [1] 1
7 3 2 1] [0] 1
8 4 3 [1] 1] 1
9 5 1 [1] M 1
10 5 1 i1 i1 0
11 6 2 1 [1 0
12 6 3 [0] 11 1
13 8 1 [0] [0] 1
14 2 2 [0 2] [11] 2
15 6 2 [02) [10] 2
16 4 3 [0} 1] 1
17 2 2 [1 [1 0
Table YY:
Edge list for the CDFG:
Edge_index parent_node_id child_node_id is_control variable_index
1 1 2 0
2 1 3 0
3 2 4 1 1
4 2 5 1 1
5 2 6 1 1
6 3 6 0
7 4 5 0
8 4 7 0
9 6 8 0
10 6 9 0
11 7 10 0
12 8 10 0
13 9 10 0
14 11 12 1 0
15 11 13 1 0
16 3 14 0
17 12 14 1 2
18 12 15 1 2
19 12 16 0
20 13 17 0
21 14 17 0
22 15 17 0
23 16 17 0

PCP scheduling is a modified list-based scheduling algorithm. The basic concept in a
partial Critical Path based scheduling algorithm is that if, as shown in Fig. 20X, Processing

Elements Pa, Pg, Px, Py are all to be mapped onto the same resource say Processor Type 1.
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P, and Py are in the ready list and a decision needs to be taken as to which will be scheduled
first. \s and \g are times of execution for processes in the paths of P4 and Pg respectively,
but which are not allocated on the Processors of type 1 and also do not share the same type of
resource.

If P, is assigned first, then the longest time of execution is decided by theMax (T +
M, Ta+ T+ Ag).

If Py is assigned first, then the longest time of execution is decided by the
Max (Tg + Mg, Tg + Ta+ M)

The best schedule is the minimum of the two quantities. This is called the partial
critical path method because it focuses on the path time of the processes beyond those in the
ready list. Therefore if N4 is larger than A, a better schedule is obtained if Process A is
scheduled first. But this does not consider the resource sharing possibility between the
processes in the path beyond those in the ready list. A simple example (Fig. 21X) shows that
if Ta=3, Tg=2, M\ =7, \g = 5, where in processes in the M and Ag sections share the same
resource, say Processor type 2, then scheduling Process A first gives a time of 15 and
scheduling B first gives a time of 14. But both the critical path and PCP as proposed by Pop
suggest scheduling A first.

The difference is because, if the resource constraint of the post ready list processes is

considered, the best schedule is a min of 2 max quantities:
Max (Ts, M) & Max (Ta, Na).

Pop [69] uses the heuristic obtained from PCP scheduling to bound the schedules in a
typical branch and bound algorithm to get to the optimal schedule. But branch and bound
algorithm is an exponentially complex algorithm in the worst-case. So there is a need for a
less complex algorithm that can produce near-optimal schedules. From a higher view point of
scheduling one needs to limit the need for branch and bound scheduling as much as possible.

Initially, the control variables in the CDFG are extracted. Let c1, ¢2,....... ,cn be the
control variables. Then there will be at most 2" possible data-flow paths of execution for each
combination of these control variables from the given CDFG. An ideal aim is to get the
optimal schedule at compile time for each of these paths. Since the control information is not
available at compile time, one needs to arrive at an optimal solution for each path with every
other path in mind. This optimal schedule is arrived at in two stages. First the optimal
individual schedule for each path is determined. Then each of these optimal schedules is

modified with the help of other schedules.
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Stage I: There are m=2" possible Data Flow Graphs (DFG’s). For each DFG, the PCP
scheduling is done. Then, the DFG’s are ordered in the decreasing order of their total delays.
An optimal solution can be obtained by doing branch and bound scheduling for each of these
PCP scheduled DFG’s. But branch and bouﬁd is a highly complex algorithm with exponential
complexity. In this case, this complex operation needs to be done 2" times, where n is the
number of control variables. This increases the complexity way beyond control. Hence
branch and bound is done only when it is essential to do so. Then branch and bound |
scheduling is done for DFG1, which has the largest delay. For DFG2, the PCP delay is
compared with the branch and bound delay of DFGL. If the PCP delay is smaller, then the
PCP scheduling is taken as the optimal schedule for that path. If not, then the branch and
bound scheduling is done to get the optimal schedule. It is reasonable to do this, as the final
delay of each DFG after modification is going to be close to the delay of the worst delay path.
In the same way, the optimal schedule is arrived at for each of the DFG.

Stage 2: Once the optimal schedule is arrived at, a schedule table is initialized with the
processes on the rows and the various combinations of control variables on the column. A
branching tree is also generated, which shows the various control paths. This contains only
the control information of the CDFG. There exists a column in the schedule table
corresponding to each path in this branching tree. The branching tree is shown in Fig. 20X.
The path corresponding to the maximum delay is taken and the schedule for that
corresponding path is taken as the template (DCK”). Now the DCK path is taken and the
schedule is modified according to that of DCK’. This is done for all the paths. The final
schedule table obtained will be the table that resides on the processor.

The pseudo code of this process is summarized here.
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Algorithm:

Task schedule (G(V,E), CTRL_VARS[N], PE = {PEl,PE2.....PEM})
For each combination of CTRL VARS do

{
Generate a DFG Gsub(V,E,CTIRL_VARS[I]) which is a sub-graph of G(V,E). Only the
nodes and edges in the control flow corresponding to the current combination of
CTRL_VARS are included in this sub-graph.
Generate the PCP schedule of Gi. Let the schedule be PCP_sched[I] and the delay be
PCP _delay[1].

/

Sort PCP_sched and PCP_delay and Gsub in decreasing order of PCP_delay/[]].

Generate the Branch and bound schedule for Gsub[0], the sub-graph with the worst
PCP_delay. Let the schedule be BB_sched[I=0] and the delay be BB_delay[I=0].
Initialize worst_bb_delay = BB_delay[0]

For all the other sub-graphs do
{
if (PCP_delay[I] < worst_bb_delay) then
BB_sched[I] = PCP_sched[l],
BB _delay[l] = PCP_delay[T];
else
Generate BB_sched(I] and BB_delay[I];
If (BB_delay[I] > worst_bb_delay[I]) then
Worst_bb_delay = BB_delay[I];
/

Generate the branching tree with the help of the G(V,E). In this branching tree, the edge
represents the choices (K and K’) and the node represents the variable (K)

Initialize the current path to the one leading from the top to the leaf in such a way that the
DFG corresponding to this path gives the worst_bb_delay. The path is nothing but a list
of edges tracing from the top node till the leaf.

Processes with large execution times have a greater impact on the schedule than the

shorter processes. Hence, large processes are scheduled in a special way. The shorter
processes can be scheduled using the PCP scheduling algorithm. Since PCP scheduling is
done for most of the processes, the complexity stays closer to O(N), where N is the number
of processes to be scheduled.

a) Identify the first set of processes that need to be scheduled onto the same processor
which are computationally complex. Let’s call them MP1, MP2....(Macro process 1
etc.)

b) Schedule all the processes till these macro processes in the data flow graph using PCP
scheduling.
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c) Calculate the estimated execution time of the smaller processes to find the start time
of each of the macro process.
d) Determine the next set of such macro processes in the DFG. Let’s call them MP_subl,

MP_sub2...

e) For processes amidst these two sets of macro processes, PCP scheduling is used.

f) For processes occurring after the second set of macro processes, the execution times
are added up to get the total execution time.

g) Now, determine the order of execution of these processes by estimating the worst-
case execution time in each case and selecting the best amongst them.

h) After this scheduling, the block after the second set of macro processes is taken as the
current DFG and steps a-g re implemented.

1) Step h is repeated till the end of DFG is reached.

Schedule merging:

In the schedule table there are some columns representing paths that are complete and
some that are not. The incomplete paths can be now referred to as parent paths of possible
complete paths.

In the example shown in Fig. 13X, for earliest evaluation of all conditional variables
(viz. D, C, K) it is necessary to evaluate D first, then C and then K. Therefore the tree of
possible paths is as shown in Fig. 22X. Now, while creating the schedule table, initially only
considered are the full possible paths i.e. , the 6 paths listed in Fig. 22S. Scheduling is
performed by the suggested algorithm. This will fill these columns. Then the remaining
column of partial paths (i.e., D, D C, ...etc) is created. These are now just empty columns.
Now if a process has the same start times in multiple columns, it is pushed into the parent
empty column.

For example, from the Figure 4 of Pop's paper "scheduling of conditional process
graphs for the synthesis of embedded systems" one sees that processes P1, P2, P6, P9, P10,
P11, Pe and so on have the same time of occurrences in both paths. Therefore one can push
them into the parent column, of D C because it means that these processes can be scheduled
for execution (not necessarily executed) by the logic schedule manager after C has been
evaluated.

This approach tries to obtain the worst case delay and merge all paths to that timeline.
Since the DCK path had the worst case optimal delay, all other full paths were adjusted to

match this path. But it is also necessary to consider the probability of the occurrence of all the
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full paths (6 of them). Then preferably the bottom 10% of the paths are pruned out. That is,
one disregards those full paths whose probability of occurrence is less than a threshold value
when compared to the path with most probable occurrence.

Then a path is selected from the remaining ones, whose probability of occurrence is
the highest. This will be the new reference to which all the remaining paths will adjust. Now
it is likely that these chosen full paths and the disregarded full paths, share certain partial
paths (parent paths). Therefore, while allocating the start times for the processes that fall
under these shared partial paths, one must allocate them based on the worst (most delay
consuming) disregarded path which needs (shares) these processes. While performing
schedule merging, all data dependencies must be respected.

Example: Modified PCP for the DFG[1] corresponding to the branching tree path
DCK’

This shows how the modified PCP approach of this invention out-performs the

conventional PCP algorithm. Decision taken at each schedule step has been illustrated.

Current time =1
Ready List: 1, 11
Schedule 1>PE2 (next schedule time = 4) 11->PE3 (Next schedule time = 8)

Current_time = 4

Ready list: 2,3

There is a conflict;

one needs to determine the next possible conflict between the remaining tasks dependent on
2,3.

Possible conflicts on the conflict table:

Processing
Node_index List of possible conflicts Element

7 [9] 1

9 {71 1

10 [] 1

5 [17] 2

17 [5] 2

6 [1 3

8 [1 3
Case 1:7,9
Case 2: 5,17

Table __, Conflict Table

ASAP and ALAP times are used to determine the amount of conflict for each case. For this

example, Case 1 has more conflict. Hence, consider case 1.
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Now, possible orders of execution: [2,3,7,9], [2,3,9,7],13,2,7,9,[3,2,9,7].
Determine the worst-case execution time for each of these paths and select the order with
minimum worst-case execution time.

Worst-case execution times:

[2,3,7,9] = 34

[2,3,9,7] 2 36

[3,2,7,9] = 38

[3,2,9,7] > 32

Hence, the best execution order is [3,2,9,7].
Schedule 3->PE1 (next schedule time = §)

Current time = 8 (min(next schedule times not yet used as current time))
Ready list: 12,2,14,6

Schedule 14>PEx (nst=10) 2 = PE1 (nst=13)

There now is a conflict between 6 and 12.

There are no conflicts between the remaining tasks dependent on 6,12. Therefore the only
possible orders of execution are: 6,12 and 12,6

Worst-case execution times:

[6,12] > 22

[12,6] = 25

Therefore, [6,16] is a better choice.

Schedule 6->PE3 (nst = 16)

Current time = 13
Ready list: 5
Schedule 52>PE2 (nst = 23)

Current time = 16

Ready list: 12, 8, 9

Schedule 9 - PE1 (nst = 22)

There is now a conflict between 8 and 12.
There are no conflicts between the remaining tasks dependent on 8,12. Therefore the only
possible orders of execution are: 8,12 and 12,8
Worst-case execution times:

[8,12] > 18

[12,8] > 15

Therefore, [12,8] is a better choice.

Schedule 12->PE3 (nst = 22)

Current time =22

Ready list: 16,8

There is now a conflict between 8 and 16.

There are no conflicts between the remaining tasks dependent on 8,16. Therefore the only
possible orders of execution are: 8,16 and 16,8

Worst-case execution times:

[8,16] = 10

[16,8] = 13

Therefore, [8.16] is a better choice.

Schedule 8>PE3 (nst = 26)
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Current time = 23

Ready list: 15,
Schedule 15 = PE2 (nst =28) 7 = PE1 (nst =31)

7

Current time = 26

Ready list: 16

Schedule 16 = PE3 (nst = 30)

Current time = 30

Ready list: 17

Schedule 17 = PE2 (nst = 32)
Current time = 31

Ready list: 10

Schedule 10 = PE1 (nst = 36)

Schedule table entry for DFG[1] for our method and PCP method

Process
1

O©CoONOOTA,WDN

Exec. Time

Table __ , Schedule Table for DFG (1)

Qur

DCK
1
8
4

13

8
23
22
16
31

1
16

8
23
26
30

35

PCP
DCK

1

9

9
14
19
22
27
33

1

8

25
19
26
30

37
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Similarly, Schedule table entries can be generated for the remaining DFGs

Our PCP _ L
Process DCK DCK  DCK DCK DCK D¢ DC

1 1 1 1 1 1 1 1
2 8 4 8 4 4 8 4
3 4 9 4 9 9 4 9
4 9 9 9
5 13 9 13 13
6 8 14 8 13 13 8 13
7 23 19 23 14 14 23 21
8 22 22 22 21 21 16 21
9 16 27 16 22 22 16 29
10 31 33 31 28 28 31 35
11 1 1 1 1 1 1 1
12 16 8 16 8 8
13 13 13
14 8 25 22 13 13 8 13
15 23 19 19
16 26 26 26 25 25
17 30 30 30 29 29 21 21
Exec. T 35 37 35 32 32 35 39
Table __, Schedule Table for Remaining DFGs

Branch and Bound scheduling
Arranging the DFG in the decreasing order of their MPCP_delay (Exec T in the tables), one
gets

DFG[0] > DC MPCP_delay[0] =39

DFG[1] 2DCK  MPCP_delay[1] =35

DFG[2] > DCK MPCP_delay[2] =35

DFG[3]> DC  MPCP_delay[3] =35

DFG[4] > DCK MPCP_delay[4] =32

DFG[5] > DCK MPCP_delay[5] = 32

Now, one needs to determine the Branch and Bound Schedule for DFG[0]. Branch and
Bound gives the optimal schedule. Here, the schedule produced by the modified PCP
approach of the invention was the optimal schedule in this case. Hence, branch and bound
also produces the same schedule. Since, the remaining delays are all lesser than the branch

and bound delay produced, there is no need to do branch and bound scheduling for the

remaining DFGs.
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Schedule Merging:

Schedule merging gives the optimal schedule for the entire CDFG. Optimal schedule should
take care of the fact that the common processes have the same schedule. If the common
processes have different schedules, one modifies the schedule with lesser delay.

Schedule merging for (DCK, DCK ) to give the optimal schedule for DC is done here.
Processes common: 1,2,3,5,6,7,8,9,10,11,12,14,16,17

From the schedule table, it can be observed that only 14 has a different schedule time. To

make it equal, we push 14 down the schedule. The modified table is shown below

pck DCK
Process DCK before after
1 1 1 1
2 8 8
3 4 4 4
4
5 13 13 13
6 8 8 8
7 23 23 23
8 22 22 22
9 16 16 16
10 31 31 31
11 1 1 1
12 16 16 16
13 .
14 22 8 22
15 23 23
16 26 26 26
17 30 30 30
Exec.
Time 35 35 35

Table _, Modified Schedule Table for D CKand DCK

Schedule merging for DC K and DC K to obtain optimal schedule for D C
Processes common: 1,2,3,4,6,7,8,9,10,11,12,14,16,17

Here, all the processes have the same schedule. Hence, there is no need to do schedule
merging.

Schedule merging for DC and D C to obtain optimal schedule for D

Processes common: 1,2,3,6,7,8,9,10,11,12,14,16,17

Here, 2,3,6,8,9,10,14,16 have different schedules.

Hence, one needs to modify the schedules of D CK as it has a lesser delay

E.g. Interchange schedules of 2 and 3.
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Process DC

1 1
2 8
3 4
4
5 13
6 8
7 23
8 22
9 16
10 31
11 1
12 16
13
14 22
15 23
16 26
17 30

Exec.

Time 35

Table __, Modified Schedule Table for DC and D C .

Schedule merging for D C and DC to obtain optimal schedule for D
Processes common: 1,2,3,6,7,8,9,10,11,13,14,17

Here, 2,3,6,7,8,9,10,14 have different schedules.

DC
before

13

25
29

32

DK
after

22

26
30

35

PCT/US2004/003609

Hence, one needs to modify the schedules of D C as it has a lesser delay
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Process
1

O ~NOoO A WN

9
10
11
12
13
14
15
16
17

Exec. Time

Table __, Modified Schedule Table for D Cand D C

DC

[Co i (o S

21
21
29
35

13
13

21

39

Dc

before

1
8
4

13

8
23
16
16
31

1

13
8

21

35

DcC
after

1

9

13
13
21
21
29
35

1

13

13

21

39
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Schedule merging for D and D’ to obtain optimal schedule for ‘true’ condition

Processes common: 1,2,3,6,7,8,9,10,11,14,17
Here, 2,3,6,7,8,9,10,14,17 have different schedules.

Hence, one needs to modify the schedules of D as it has a lesser delay

Process
1

O ~NO O WN

9
10
11
12
13
14
15
16
17

Exec.
Time

Table __, Modified Schedule Table for D and D

D
1

9

13
13
21
21
29
35

1

13
22

35

39

D

before

22

26
30

35

D after

22

31
35

39
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Here, schedule for D also needed to be modified without changing the total delay.

Sometimes, the delay could be worsened due to schedule merging.

Process DCK DCK DCK DCK DcC DC
1 1 1 1 1 1 1
2 4 4 4 4 4 4
3 9 9 9 9 9 9
4 9 9 9
5 13 13 13
6 13 13 13 13 13 13
7 21 21 21 21 21 21
8 21 21 21 21 21 21
9 29 29 29 29 29 29
10 35 35 35 35 35 35
11 1 1 1 1 1 1
12 16 16 16 16
13 ’ 13 13
14 22 22 22 22 22 22
15 23 19
16 26 26 26 26
17 35 35 35 35 35 35
Exec. T 39 39 39 39 39 39

Table _ , Final Schedule Table.
Reconfiguration

Reconfiguration times have not been taken into account in the scheduling of CDFGs.
An example shows how this time can influence the tightness of a schedule. Consider the
following task graph (Fig. 23X ). X, V and Z are processes performed by the same
processing element.

In the task graph, say ‘a’ is a variable that influences the decision on which of the two
mutually exclusive paths (dash-dotted or dotted) will be taken, and a is known during run
time but much earlier than ‘m’ and ‘z’ have started. Let x, v, z and A be the times taken by
processes in the event that ‘a’ happens to force the dash-dotted path to be taken. Let 6, 6, 5
be the reconfiguration times for swapping between the processes on the unit. Given these
circumstances, if run time scheduling according to [68] is applied, it neglects the
reconfiguration times and provides a schedule of five cycles as shown on the left hand side.
But if reconfiguration time were to have been considered, a schedule more like the one on the
right hand side is tighter with 4 clock cycles. This example shows the importance of
considering reconfiguration time in a reconfigurable processor, if fast swaps of tasks on the
processing units need to be performed. ‘

Therefore incorporating Reconfiguration time into Control flow graphs involves the

following steps:
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i.  Special edges are added onto the control flow graphs between a similar set of
processes, which will be executed on the same processor with or without
reconfiguration. In other words, these additional edges are inserted and the
modified PCT scheduling as above is carried out with these in place.

ii.  Reconfiguration times affect the worst-case execution time of loopy codes. So this
has to be taken care of, when loopy codes are being scheduled.
iii.  Care needs to be taken to schedule the transfer of reconfiguration bit-stream from
the main memory to the processor memory.
Loop-based scheduling

In static scheduling, loops whose itération counts are not known at compile time
impose scheduling problems on tasks which are data dependent on them, and those tasks that
have resource dependency on their processing unit. Therefore, this preferred, exemplary
embodiment takes into account cases which are likely to impact the scheduling to the largest
extent and provided solutions. ’

Case 1: Solitary loops with unknown execution time. Here, the problem is the execution
time of the process is known only after it has finished executing in the processor.“So static
scheduling is not possible.

Solution: (Assumption) Once a unit generates an output, this data is stored at the consuming
/ target unit’s input buffer. Referring to the scheduled chart of Fig. 24X, each row represents
processes scheduled on a unique type of unit (Processing Element). Let P1 be the loopy
process.

From Fig. 24X we see that

P3 depends on P1 and P4,

P2 depends on P1,

P6 depends on P2 and P5.

If P1’s lifetime exceeds the assumed lifetime (most probable lifetime or a unit
iteration), then all dependents of P1 and their dependents (both resource and data) should be
notified and the respective Network Schedule Manager (NSM) and Logic Schedule Manager
(LSM), of Fig. 27X, should be delayed. Of course, this implies that while preparing the
schedule tables, 2 assumptions are made.

1) The lifetimes of solitary loops with unknown execution times are taken as per
the most probable case obtained from prior trace file statistics (if available and

applicable). Otherwise unitary iteration is considered.
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2) All processes that are dependent on such solitary loop processes are scheduled
with a small buffer at their start times. This is to provide time for notification
through communication channels about any deviation from assumption 1 at
run time.

If assumption 1 goes wrong, the penalty paid is:

Consider the example in Fig. 21X where two processes in the ready list are being
scheduled based on PCP. Now by PCP method if Ay > A and P1 and P2 do not share the
same resource, then PA is scheduled earlier than PB. It has been assumed that A, is due to
most probable execution time of Loop P1. But at runtime if Loop P1 executes a lesser
number of times than predicted and therefore resulting in Ay being < Ag, then the schedule of
PA earlier than PB results in a mistake.

The time difference between both possible schedules is calculated. It is not, at this point,
proposed to repair the schedule because all processes before P1 have already been executed.
And trying to fit another schedule at run time, requires intelligence on the communication
network which is a burden. But on the brighter side, if at run time Loop P1 executes a greater
number of times than predicted, then Ay will still be > Ng. Therefore the assumed schedule
holds true.

Case 2: A combination of two loops with one loop feeding data to the other in an iterative
manner.

Solution: Consider a processing element, PA, feeding data to a processing element, PB, in
such a manner. For doing static scheduling, if one loop unrolls them and treats it in a manner
of smaller individual processes, then it is not possible to assume an unpredictable number of
iterations. Therefore if an unpredictable number of iterations is assumed in both loops, then
the memory foot-print could become a serious issue. But an exception can be made. If both
loops at all times run for the same number of iterations, then the schedule table must initially
assume either the most probable number of iterations or one iteration each and schedule
PA,PB,PA,PB and so on in a particular column. In case the prediction is exceeded or fallen
short off, then the NSM and LSMs must do 2 tasks:

1) Ifthe iterations exceed expectations, then all further dependent processes
(data and resource) must be notified for postponement and notified for
scheduling upon the iterations completion with an appropriate difference in
expected and obtained at run time, schedule times. If the iterations fall short of

expectations, then all further schedules must only be preponed (moved up).
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2) Since the processes PA and PB should denote single iteration in the table,
their entries should be continuously incremented at run time by the NSM and
the LSMs. The increment for one process of course happens for a
predetermined number of times, triggered off by the schedule or execution of
the other process. For example in Fig. 25X, we see that PA = 10 cycles, PB =
20 cycles and hence if both loops run for five times, then the enﬁy in the
column increments as shown.

Only in such a situation can there be preparedness for unpredictable loop iteration
counts.

Case 3: A loop in the macro level i.e. containing more than a single process.

Solution: In this case, there are some control nodes inside a loop. Hence the execution time
of the loop changes with each iteration. This is a much more complicated case than the
previous options. Here lets consider a situation where there is a loop covering two mutually
exclusive paths, each path consisting of two processes (A,B and C,D) with (3,7 and 15,5)
cycle times. In the schedule table there will be a column to indicate an entry into the loop and
two columns to indicate the paths inside the loop. Optimality in scheduling inside the loop
can be achieved, but in the global scheme of scheduling, the solution is non-optimal. But this
cannot be helped because to obtain a globally optimal solution, all possible paths have to be
unrolled and statically scheduled. This results in a table explosion and is not feasible in
situations where infinite number of entries in table are not possible. Hence, from a global
viewpoint the loop and all its entries are considered as one entity with the most probable
number of iterations considered and the most expensive path in each iteration is assumed to
be taken. For example in the above case, path C,D is assumed to be taken all the time.

Now, a schedule is prepared for each path and hence entered into the table under two
columns. When one schedule is being implemented, the entries for both columns in the next
loop iteration is predicted by adding the completion time of the current path to both column
entries (of course while doing this care should be taken not to overwrite the entries of the
current path while they are still being used). Then when the current iteration is completed and
a fresh one is started, the path is realized and the appropriate (updated / predicted) table
column is chosen to be loaded from the NSM to the LSMs.

Network architecture

In order to coordinate the mapping of portions of the schedule table onto

corresponding CLUs, we propose the following architecture. In Fig. 26X, the interfacing of

the Reconfigurable unit with the host processor and other I/O and memory modules is shown.
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The Network Schedule Manager (Fig. 27X) has access to a set of tables, one for each
processor. A table consists of possible tentative schedules for processes or tasks that must be
mapped onto the corresponding processor subject to evaluation of certain conditional control
variables. The Logic Schedule manager schedules and loads the configurations for the
processes that need to be scheduled on the corresponding Processor ie. all processes that
come in the same column (a particular condition) in the schedule table. In PCP scheduling,
since the scheduling of the processes in the ready list depends only on the part of the paths
following those processes, the execution time of the processes shall initially conveniently
include the configuration time.

Once a particular process is scheduled and hence removed from the ready list, another
process is chosen to be scheduled based on the PCP criteria again. But this time the execution
time of that process is changed or rather reduced by using the reconfiguration time, instead of
the configuration time. Essentially, for the first process that is scheduled in a column,

the completion time = execution time + configuration time.

For the next or successive processes,
completion time = predecessor’s completion time + execution time + reconfiguration time.

Assuming that once a configuration has been loaded into the CM, the process of
putting in place the configuration is instantaneous, it is always advantageous to load
successive configurations into the CM ahead of time. This will mean a useful latency hiding
for loading a successive configuration.

The reconfiguration time is dependent on two factors:

1) How much configuration data needs to be loaded into the CM (Application
dependent)

2) How many wires are there to carry this info from the LSM to the CM (Architecture
dependent)

The Network Schedule Manager should accept control parameters from all LSMs. It
should have a set of address decoders, because to send the configuration bits to the Network
fabric consisting of a variety of switch boxes, it needs to identify their location. Therefore for
every column in the table, the NSM needs to know the route apriori. One must not try to find
a shortest path at run time. For a given set of processors communicating, there should be a
fixed route. If this is not done, then the communication time of the edges n the CDFG cannot
be used as constants while scheduling the graph.

For any edge the,

communication time = q constant and uniform configuration time -+ data transaction time.

57



10

15

20

30

WO 2004/072796 PCT/US2004/003609

The Network architecture consists of switch boxes and interconnection wires. The
architecture will be based on the architecture described in [1]. This will be modeled as a
combination of “Behavioral” and “Structural” style VHDL. Modifications that will be made
are:

a. The Processing Elements derived in section 3 will be used instead of the four

input LUTs that were used in Andre’s model.

b. RAM style address access will be used to select a module or a switch box on the
circuit.

c. Switch connections that are determined to be fixed for an application will be
configured only once (at the start of that application).

d. Switch connections that are determined to be fixed for all applications will be
shorted and the RC model for power consumption for that particular connection
will be ignored for power consumption calculations.

e. The number of hierarchy levels will be determined by the application that has the

‘ maximum number of modules, because there is a fixed number of modules that
can be connected

There will be one Network Schedule Manager (NSM) modeled in “Behavioral” and
“Structural” style VHDL. It will store the static schedule table for the currently running
application. The NSM collects the evaluated Boolean values of all conditional variables from
every module.

For placing modules on the network two simple criteria are used. These are based on
the assumption that the network consists of Groups of four Processing Unit Slots (G4PUS)
connected in a hierarchical manner.

Note: A loop could include 0 or more number of CGPEs.

Therefore the following priority will be used for mapping modules onto the G4Pus:

a. A collection of one to four modules which are encompassed inside a loop shall be
mapped to a G4PUS.

1. If there are more than four modules inside a loop, then the next batch of four
modules are mapped to the next (neighboring) G4PUS.
il. If the number of CGPEs in a loop =2, then they will have greater priority over
any FGPEs in that loop for a slot in the G4PUS.

b. For all other modules:

i, CGPE Modules with more than one Fan-in from other CGPEs will be
mapped into a G4PUS.
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iv. CGPE Modules with more than one Fan-in from other FGPEs will be mapped
into a G4PUS. ‘

Note: The priorities are based on the importance for amount of communication
between modules. Both Fan-ins and Fan-outs can be considered, for simplicity, Fan-ins to
CGPEs are considered here only.

Testing Methodology

In this research effort, one focuses mainly on reducing the number of reconfigurations
that need to be made for running an application and then running other applications on the
same processor. One also aims to reduce the time required to load these configurations from
memory in terms of the number of configuration bits corresponding to the number of
switches.

Time to execute an application for a given area-(area estimate models of XILINX
FPGAs and Hierarchical architectures can be used for only the routing portion of the circuit.)
and a given clock frequency can be measured by simulation in VHDL.

The time taken to swap clusters within an application and swap applications
(reconfigure the circuit from implementing one application to another) is dependent on the
similarity between the successor and predecessor circuits. The time to make a swap will be
measured in terms of number of bits required for loading a new configuration. Since a RAM
style loading of configuration bits will be used, it is proven [2] to be faster than serial loading
(used in Xilinx FPGAs). Speed above the RAM style is expected for two reasons:

a) The address decoder can only access one switch box at a time. So the greater the
granularity of the modules, the fewer the number of switches used and hence configured.

b) Compared to peer architectures which have only LUTs or a mixture of LUTs and
CPGEs with low granularity (MAC units), CGPEs are expected to be of moderate granularity
for abstract control-data flow structures in addition to FGPEs. Since these CPGEs are derived
from the target applications, their granularity to be the best possible choice for a
reconfigurable purpose is expected. They are modeled in “Behavioral” VHDL and are
targeted to be implemented as ASICs. This inherently would lead to a reduced amount of
configurations.

| The time taken to execute each application individually will be compared to available
estimates obtained for matching area and clock specifications from work carried out by other
researchers. This will be in terms of number of configurations per application, number of bits
per configuration, number of configurations for a given set of applications and hence time in

seconds for loading a set of configurations.
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Regarding power consumption, sources of Power consumption for a given application
can be classified into four parts:

a. Network power consumption due to configurations with an application. This is
due to the Effective Load Capacitance on a wire for a given data transfer from one module to
another for a particular configuration of switches.

Note: The more closed switches a signal has to pass through, the more the
effective load capacitance and resistance. Shorted switches are not considered to contribute to
this power.

b. Data transfer into and out of the Processor

Note: This can have a significant impact on the total power in media rich or
communication dominated applications ported onto any processing platform.

c. Processing of data inside a module.

Note: This will require synthesizable VHDL modules. But since the focus
here is on reducing power due to reconfiguration, this is presently left for future work.

d. The Clock distribution of the processor.

Note: This can be measured if the all parts of the circuit are synthesizable. But
the focus here is on a modeling aspect and this measurement is not presently considered.

At the level of modeling a circuit in VHDL, it is possible to only approximately
determine the power consumptions. One can use the RC models of XILINX FPGAs and [1]
architectures to get approximate power estimates. Power aware scheduling and routing
architecture design are complex areas of research in themselves and are not the focus here.
Here the focus is on reducing the amount of reconfigurations, which directly impacts the
speed of the processor and indirectly impacts the power consumption to a certain extent.

Overall Architecture

Tool Set: Profiling, Partitioning, Placement and Routing

One aspect of the present invention aids the design, the circuitry or architecture of a
dynamically reconfigurable processor through the use of a set of analysis and design tools.
These will help hardware and system designers arrive at optimal hardware software co-
designs for applications of a given class, moderately complex programmed applications such
as multimedia applications. The reconfigurable computing devices thus designed are able to
adapt the underlying hardware dynamically in response to changes in the input data or
processing environment. The methodology for designing a reconfigurable media processor
involves hardware-software co-design based on a set of three analysis and design

tools[AKO02]. The first tool handles cluster recognition, extraction and a probabilistic model
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for ranking the clusters. The second tool, provides placement rules and feasible routing
architecture. The third tool provides rules for data path, control units and memory‘ design
based on the clusters and their interaction. With the use of all three tools, it becomes possible
to design media(or other) processors that can dynamically adapt at both the hardware and
software levels in embedded applications. The input to the first tool is a compiled version of
the application source code. Regions of the data flow graph obtained from the source code,
which are devoid of branch conditions, are identified as zones.Clusters are identified in the
zones, by representing candidate instructions as data points in a multidimensional vector
space. Properties of an instruction, such as location in a sequence, number of memory
accesses, floating or fixed-point computation etc., constitute the various dimensions. As
shown in Ali Fig. 1, clusters obtained from the previous tool are placed and routed by Tool
number 2, according to spatial and temporal constraints (Ali Fig. 2). The processor (of the
compiler) can be any general purpose embedded computing core such as an ARM core or a
MIPS processor These are RISC cores and hence are similar to general purpose machines
such as UltraSPARC The output of the tool is a library of clusters and their interaction. (A
Cluster comprises of sequential but not necessarily contiguous assembly level instructions).
The clusters represent those groups or patterns of instructions that occur frequently and hence
qualify for hardware implementation. To maximize the use of reconfigurability amongst
clusters, possible parallelism and speculative execution possibilities must be exploited.
Referring to Ali Fig. 1, the methodology for designing a reconfigurable media
processor involves hardware-software co-design based on the set of three analysis and design
tools [ 83,84]. The first tool is the profiling and partitioning step that handles cluster
recognition, extraction and a probabilistic model for ranking the clusters. The second tool,
provides placement rules and a feasible routing architecture. The third tool provides rules for
task scheduling, data path, control units and memory design based on the clusters and their
interaction. Tool-three generates all possible execution paths and corresponding scheduling
tables for each. Following that it maps the tasks into the reconfigurable area. As a
modification, the proposed approach, instead of using compiled version of the MPEG4
decoder source code, intermediate three-address code is generated from the high level C
code. Machine independence and control flow information are still kept as is with this
approach. Partitioning tool analyzes the intermediate code and extracts the control-data flow
graph (CDFG). Each bulk of pure data dependent code in between the control structures is
defined as a zone. Then the partitioning tool runs a longest common subsequence type of

algorithm to find the recurring patterns between potential zones to run on hardware. Building
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blocks represent those groups or patterns of instructions that occur frequently and hence
qualify for hardware implementation. By pattern one means a building block that consists of
a control flow structure. A pattern may also include a group of building blocks that are only
data dependent. Control structure may be a combination of ifelse and loop statements with
nested cases. Output of the partitioning tool is a library of building blocks and their
interaction. Interaction information includes how many times two building blocks exchange
data and size of the data exchanged. The tool also provides number of clock cycles required
to execute each building block. In addition, input output pins and area information for each
building block are also provided. With this information an interconnection pattern can be
determined prior to execution. That helps to exploit the locality to thereby simplify the
interconnection structure and reduce the usage of global buses, fan-ins and fan-outs. The
placement tool places the building blocks that are exchanging data more frequently close
together. Clusters obtained from Tool 1 are placed and routed by Tool 2, according to spatial
and temporal constraints as diagrammatically illustrated in Ali Fig. 2. To maximize the use
of reconfigurability amongst clusters, possible parallelism and speculative execution
possibilities are exploited.
Heterogeneous Hierarchical Architecture

Aggarwal [85] says that hierarchical FPGAs (H-FPGAs) can implement circuits with
fewer routing switches in total compared to symmetrical FPGAs. According to Li [86], for
H-FPGAs the amount of routing resources required is greatly reduced while maintaining a
good routability. It has been proved that the total number of switches in an H-FPGA is less
than in a conventional FPGA under equivalent routability [87]. Having fewer switches to
route a net in H-FPGAs reduces the total capacitance of the network. Therefore it can
implement much faster logic with much less routing resources compared to standard FPGA.
H-FPGAs also offer advantages of more predictable routing with lower delays. Hence the
density of H-FPGAs can be higher than conventional FPGAs. In the case of the present
invention, compared to hierarchical and symmetrical FPGA approaches, building blocks are
of variable size. Classical horizontal, vertical channel will not result in an area efficient
solution Consistent chaﬁnel capacity at each hierarchy level will not work because of the
variable traffic between the building blocks even at the same hierarchy. Due to variable
traffic among clusters and non-symmetric characteristics, different types of switches are
needed at each hierarchy level. All these factors result in heterogeneity between groups of

building blocks at the same hierarchy level as opposed to classical H-FPGA approach.
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Therefore a heterogeneous hierarchical routing architecture that makes use of the
communication characteristics is essential to implement power and time efficient solution.
Proposed Architecture

The network scheduler, building blocks, switches and wires form the reconfigurable
unit of present invention. A profiling and partitioning tool lists building blocks such as
B={B,, B, Bx} where B;eB. Based on data dependency between the building blocks, disjoint
subsets of B are grouped together to form clusters. A building block should appear only in
one cluster.

In Ali Fig. 4(a), at time t=t; , B receives (a,b) and (c,d) from memory. If multiple
copies of By are available, then without a resource conflict both will run at the same time.
However that would work against the definition of a reconfigurable solution. In second
scenario (Ali Fig. 4(b)), B; processes data of the most critical path first, (B3 B2 or B5 B4)
while the second path is waiting. For such resource or scheduling conflicts we introduce
network scheduler module, which is a controller unit over the reconfigurable area. Handling
dynamic reconfiguration and context switching are the major tasks of this unit. Most critical
path is initially loaded into network scheduler. At run time, if a path that is not on the critical
path needs to be executed, it is the network scheduler’s job to do context switching and
loading the schedule for that new path. The network scheduler offers control mechanism over
data transmission between building blocks as well. Buffering is needed when receiver needs
to process bulks of data at a time. For a given context if consumer demands data in a block
manner then the receiver should rearrange the incoming data format. Both sender and
receiver should be context aware. Buffers are only kept at the receiver side. A producer
simply dumps the data to the bus as soon as it is available. The receiver should be aware of
the context of each request and make a decision based on the priority in order to prevent
collision. If the receiver needs to get data from more than one sender, then those senders,
which are in the ok list, are allowed to transmit data whereas other requests should be denied.
This is again handled by the collusion prevention mechanism. The connection service
mechanism brings a control overhead cost however it provides controlled router service,
efficient resource usage and parallelism.

As shown in Ali Fig. 5, clusters of building blocks form level-1 (M) modules.
Similarly clusters of M modules form level-2 (C) modules. One defines two types of
switches: local (LS) and gateway switches (GS). Local switches function within level-1 and

level-2 modules. Gateway switches allow moving from one hierarchy level to another.
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Depending on the place of LS or GS, there may be multiple LSs needed for LS to LS
connections. Connection between the building blocks of the same level-2 module is handled
through only local switches. For all other connections gateway switches distribute the traffic
as shown in Ali Fig. 6. Building block uses local global bus to connect to gateway switch of
the module that building block belongs to. Bus capacity and gateway switch complexity
increase as the hierarchy increases and switches are variable in flexibility even at the same
hierarchy level.

Level-1 blocks use local global bus to connect to the gateway switch of the cluster
that the building block belongs to. If a block in module 2 of cluster 1 sends data to a block in
module 1 of cluster 2, data goes through the global buses only following Source Block, GS in
C1, GS in Level3, GS in C2 and finally reaching the Destination Block Ali Fig. 6. Dashed
lines represent the local connection through local switches.

Methodology

As indicated in Ali Fig. 7, the methodology in accordance with this invention,
involves implementation of packing, hierarchy formation, placement, network scheduling and
routing tools. New cost function metrics are generated for the routability driven packing
algorithm. The cost function takes into account each possible execution path of the
application obtained from a given CDFG, library of variable size building blocks, building
block timing and dependency analysis. The cost function will simplify the complexity of the
placement and routing steps since constraints of these steps are evaluated as early as at the
packing step.

Packing

Several time or area driven packing with bottom-up or top-down approaches have
been proposed. As shown in Ali Fig. 7, the present methodology is a bottom-up approach. In
Lookup Table (LUT) based, or building block based reconfigurable solutions, increasing the
complexity of the processing element increases functionality and hence decreases the total
number of logic blocks used by the application and the number of logic blocks on the critical
path. For a fine-grained approach, more logic blocks will be required to implement the
circuit. The routing area then may become excessive. In coarse-grained logic, much of the
logic functionality may be unused wasting area. There is a tradeoff between the complexity
of logic blocks and area efficiency. A cost function is needed to make the decision of
inserting a building into one of the candidate clusters. [93] uses a sequential packing
algorithm with a cost function depending on the number of intersecting nets between a

candidate cluster and building block. As a modification to this approach [94] uses time driven
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packing tha1i has the objective of minimizing the connection between the clusters on critical
path. Building blocks are packed sequentially along the critical path. [95] and [96] are
routability driven packing approaches that incorporate routability metric such as density of
high fan out nets, traffic in and out of the logic block , number of nets and connectivity into
packing cost function. All of these approaches are based on fixed K input LUT and N number
of LUTs in a cluster. In addition to having variable size building blocks, the present approach
takes into account the control data flow graph of each possible execution path to be handled
by the reconfigurable unit.

For an if-else statement, at compile time one doesn't know if or the else part of the
statement will be executed. Similarly one may not know how many times a loop will execute.
Packing of building blocks should be in favor of all possible execution paths. Given that
configuration is based on the if part of a control statement, when else part of the path is to be
executed, the network scheduler should do least amount of reconfigurations. Ali Fig. 8(a)
shows a simple if-else statement with building blocks inside the control structure. As shown
in Ali Fig. 8(b), since two paths can’t execute at the same time, clustering tool groups the
building blocks that are within the same statement (if or else) as shown in Ali Fig. 7. If a
building block that is appearing in the else part happens to occur on the path of Path 1 then
the network scheduler handles the connection between the two clusters through global
switches. Since the architecture needs to reconfigure at run time, the present approach
prioritizes time over the area constraint. Possible waste of area during clustering because of
irregular building block or irregular cluster shapes at higher hierarchy level is ignored as long
as the time constraint is satisfied. In addition to the metrics defined in [91, 92], the present
invention incorporates the scheduling information into its cost function. Cost of adding a
building block into a cluster depends on how timing of the circuit is affected at different
possible execution paths. At the packing step the tasks of placement and routing are
simplified. A set of building blocks, a CDFG for each possible execution scenario, the input,
output pins of each building block, the number of cycles required by each building block, the
scheduling information for all possible execution scenarios are used by the packing tool. The
inventors have encountered no work that has been done on packing variable size building
blocks into variable size clusters using CDFG, execution path and scheduling analysis
information.

The packing tool groups the building blocks into level-1 type clusters. Then those
clusters are grouped together to form level-two and higher levels. At each hierarchy level,

existing clusters and their interaction information are used to form higher-level clusters one
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step at a time. As seen in the example, in the hierarchy formation step (Ali Fig. 7), the
process continues recursively until level-three is reached.
Placement

For a level-one cluster, let n be the number of building blocks, C;; be the number of
occurrences of a direct link between building blocks B; and Bj; Dj; be the amount of data
traffic in terms of number of bits transferred between the blocks B; and B; through direct links

where 1<i<n,1< j<n. Then cost of data exchange between the two library modules B; and

Bjis defined as:

Cost;=Cy* Dy

Pre-Placement: building blocks are virtually placed on a grid style to specify if a
block should be placed to north, south, east or west of another block. This is established by
using the dependency information. Then placement algorithm uses modified simulated
annealing method by incorporating the orientation information obtained in this step, which
helps making intelligent placement decisions. The objective of pre-placement is to place the
pairs of building blocks that have the most costly data exchange closest to each other. As the
cost of the link decreases the algorithm tolerates to have a Manhattan distance of more than
one hop between the pairs of building blocks. This phase guarantees area allocation
improvement because building blocks are placed based on their dependency leading to usage
of less number of switches or shorter wires to establish a connection between them. Integer
programming technique is used to make the decision of the orientation of the building blocks
with respect to each other. Given that there are n numbers of building blocks, in the worst-
case scenario, if the blocks are placed diagonally on a grid (assuming that each block is unit
size of one) then the placement is done on an nxn matrix. Let Pi(x,y) denote the (x,y)
coordinates of the building block B; and no other building block have the same (x,y)
coordinates. The objective function is:

min(i S e y)J Where

=1 j=i+l

£ =P - | +|P,0)- P, Cost,)

Ali Fig. 9(a) shows the cost matrix of given six blocks (A,B,C,D,E,F). Those six
nodes are treated as points to be placed on a 6x6 matrix. The output of pre-placement is
shown in Ali Fig. 9(b).

Since scheduling, CDFG and timing constraints have already been incorporated in the

packing algorithm, the placement problem is made simpler. After completing virtual
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placement for each level-one cluster, the same process continues recursively for level-two
and higher levels of clusters.

Implementation Results:
Target Device : x2s200e
Mapper Version : spartan2e -- $Revision: 1.16 $

1 Resource 2 Bits
1) Configuration file size 1,442,016
2) Block RAM bits 57,344

3) bits used for logic 1,384,672 (1-2)
Bits /Slice ~588
Resource Bits
Configuration Storage

588 bits/slice * 4 gates/bit 2352
Behavior

588 bits/slice * 1 gate/bit 588

Total gates /slice 2940

The common part of the Affine-Perspective loop / pre-loop:
Total number of slices used = 893 / 1590 slices

Number of bits = 893 / 1590 slices x 588 bits/slice
= 525,084 /1,419,870 bits of configuration

Number of gates = 2940 gates/slice * 893 / 1590 slices
= 2,625,420/ 4,674,600

Number of equivalent gates (ASIC) as given by Xilinx map report = 23,760 / 32,548
(Actual gate counts are accepted to be exaggerated by a factor of 5 by Xilinx)

Therefore a better estimate of the equivalent gate count = 4752/ 6509
Configuration:
Configuration speed for Xilinx Spartan 2E chip = 400Mb per sec (approx.)
Time to configure pre-loop bits= 3.549 ms (1,419,870 divided by 400Mb per sec)
Time to configure loop bits = 1.312 ms (525,084 divided by 400Mb per sec)...... (A)

Max. Clock frequency for loop / pre-loop = 58.727 / 52.059 Mhz
Clock period  =17.028/19.2089 18 .....oevvivirinininiiiiiii e, (B)
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Therefore number of clocks saved in using ASIC for the loop = A divided by B
= 77,000 clock cycles (approx.)

Therefore number of clocks saved in using ASIC for the pre-loop = A divide by B
= 184,000 clock cycles (approx.)

Although preferred embodiments of the invention have been described in detail, it
will be readily appreciated by those skilled in the art that further modifications, alterations
and additions to the invention embodiments disclosed may be made without departure from

the spirit and scope of the invention as set forth in the appended claims.
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A Control Data Flow Graph consists of both data flow and control flow portions. In
compiler terminology, all regions in a code that lie in between branch points are referred
to as Basic Blocks. Those basic blocks which have additional code due to code
movement, shall be referred to these as zones because. Also under certain conditions,
decision making control points can be integrated into the basic block regions. These
blocks should be explored for any type of data level parallelism they have to offer.
Therefore for simplicity in the following description, basic blocks are referred to as
zones. The methodology remains the same when modified basic blocks and abstract
structures such as nested loops and hammock structures etc are considered as zones.

High level ASNI C code of the target application is first converted to an assembly code
(UltraSPARC). Since the programming style is user dependent, the assembly code needs
to be expanded in terms of all functions calls. To handle the expanded code, a suitable
data structure that has a low memory footprint is utilized. Assembly instructions that act
as delimiters to zones must then be identified. The data structure is then modified to lend
itself to a more convenient form for extracting zone level parallelism.

The following are the steps involved in extracting zone level parallelism.

Step-1: Parsing the assembly files

In this step for each assembly (.s) file a doubly linked list is created where each node
stores one instruction with operands and each node has pointers to the previous and
next instructions in the assembly code. Parser ignores all commented out lines, lines
without instructions except the labels such as

Main:

.LL3:

Each label starting with .LL is replaced with a unique number (unique over all

functions)

Step-2: Expansion

Each assembly file that has been parsed is stored in a separate linked list. In this step
the expander moves through the nodes of linked list that stores main.s. If a function
call is detected that function is searched through all linked lists. When it is found, that
function from the beginning to the end, is copied and inserted into the place where it
is called. Then the expander continues moving through the nodes from where it
stopped. Expansion continues until the end of main.s is reached. Note that if an
inserted function is also calling some other function expander also expands it until
every called function is inserted to the right place.

In the sample code (Appendix B), main() function is calling the findsum() function
twice and findsum() function is calling the findsub() function. The expanded code
(after considering individual assembly codes (Appendix C) is shown in Appendix-D.

Step-3: Create Control Flow Linked List

Once the main.s function has been expanded and stored in a doubly linked list, the
next step is to create another doubly linked list (control flow linked list) that stores
the control flow information. This will be used to analyze the control flow structure of
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the application code, to detect the starting and ending points of functions and control
structures (loops, if..else statements, etc.).

As the expanded linked list is scanned, nodes are checked if they belong to a:

e Label or

e Function or

o Conditional or

¢ unconditional branch

In which case, a new node is created to be appended to the control flow linked list by
setting the member pointers as defined below.

If the current node is a

o function label

A pointer to the expanded list pointing to the function label node

A pointer to the expanded list pointing to the beginning of the function (the next node
of the function label node)

A pointer to the expanded list pointing to the end of the function

And node type is set to “function”.

e label

A pointer to the expanded list pointing to the function label node

A pointer to the expanded list pointing to the beginning of the label (the next node of the label
node)

And node type is set to “square”.

o unconditional branch (b)

A pointer to the expanded list pointing to the branch node

A pointer to the control flow linked list pointing to the node that stores the matching
target label of the branch instruction.

And node type is set to “dot”

¢ conditional branch (bne, ble, bge, ...etc)

A pointer to the expanded list pointing to the branch node

A pointer to the control flow linked list pointing to the node that stores the matching
target label of the branch instruction.

And node type is set to “circle”.

The control flow linked list output for the findsum.s function is shown in Appendix D.

Step 4: Modification of Control Structure

The control structure linked list (which essentially represents the control flow graph

of the candidate algorithm) is then modified as follows.

e The pointers from unconditional branch nodes (also called “dot” nodes) to the
next node in the list need to be disconnected and made NULL. Hence for the “dot”
node:
node— next = NULL
for the following node:
node— previous = NULL
{Exception: if the next node of the “dot” node is itself the target node !}

e The target nodes of the unconditional branches need to be marked as “Possible Exit”
nodes. These “Exit” classes of nodes are a subset of the regular “Target” or “Square”
nodes.
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If unconditional branch node’s rank is higher than target node’s rank (indicating a
feed back or loop), disconnect the link and mark as NULL.

Hence for the “dot” node:

node— to_target = NULL

But before disconnecting, mark target— next (which should be a circle) as “loop
node”.

In a special case, if an unconditional branch and a square share the same node,
then the target of that unconditional branch is declared as an exit square with a
loop type (because, instructions following this square, comprise the meat of the
do-while loop). This exit square, will not have its next-> pointing to a circle. The
circle is accessed through the dot node using the previous— pointer. Then it is
marked off as type loop.

If a “Possible Exit” node has 2 valid input pointers, and rank of both source
pointers is lesser than the node in consideration, then it is an “Exit” node and,
disconnect the link to the corresponding “dot” node, and hence also mark that
“dot” node’s target pointer to NULL. In other words, if the node— previous
pointer of the “square/target” node of the “dot” node does not point to the “dot”
node, then it has 2 valid pointers.

Hence for the “dot” node:

node— to_target = NULL

For a sample high level code in the Figure 1 below, following which is the
expanded assembly file. The control flow linked list is as shown in Figure 2. After
modifications to this linked list a structure as indicated in figure 3 is obtained.

#include<stdio.h>

. . else
void main()
L 1=10;
mt m=n+r;
i=0,j=0,k=0,1=0,m=0,0=0,p=0,r=0; )
L . k=k-14;
for(i=1;i<10;i++) k=7-8%p;
while(i<p)
p=p-8 {
p=p*T7; p=p *20;

b p=p-7;

=it while(k = 8)

ifli==) ;

{ p=pt+17;
n= 9; i=i%* D;
if (k>0) ]

=p-23;
p=19; p=p
} m=m-+5;
else n=n+4:
{ b
r=23; } ;
}

Figure 1: An Example Program

The gee (version 2.95.2) compiled code for the UltraSPARC architecture with node
labeling is as follows:
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file "loop_patternd.c"

gee2_compiled.:

.global .umul

.section " text"

main:

LL3:

LL6:

LL5:

LLA4:

.align 4

.global main

type main#function
.proc 020

I#PROLOGUE# 0
save  %osp, -144, %sp
'#PROLOGUE# 1

st %g0, [%1p-20] ground
st %g0, [Y%fp-24]
st %g0, [%fp-28]
st %g0, [%fp-32]
st %g0, [%fp-36]
st %g0, [Yofp-40]
st %g0, [Yofp-44]
st %g0, [Yofp-48]
mov 1, %00

st %00, [%fp-20]

1d [%fp-20], %00 ’ square 3
cmp %00, 9

ble LL6 circle 6
nop

b LL4 dot 4
nop

1d [%fp-44], %00 square 6

add %00, -8, %ol

st %o1, [%fp-44]
1d [%fp-44], %00
mov %00, %o1

sll %o01, 3, %02
sub %02, %00, %00
st %00, [%fp-44]

1d [%fp-20], %00 square 5
add %00, 1, %ol
st %o01, [%fp-20]

b LL3 dot 3
nop
1d [%%fp-20], %00 square 4

add %00, 1, %ol

st %o01, [%fp-20]
1d [%fp-20], %00
1d [Y%fp-24], %01
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cmp

bne

nop

mov

st

1d

cmp

ble

nop

mov

st

b

nop

LLS:

mov

st
LL9:

mov

st

nop
LL7:
mov
st
1d
1d
add
st
LL10:
1d
add
st
1d
mov
sll
mov
sub
st
LLI11:
1d
1d
cmp
bl
nop

nop
LIL13:
1d
mov
sll

%00, %01
LL7

9, %00

%00, [%1p-40]
[%1p-28], %00
%00, 0

LL8

19, %00
%00, [Yofp-44]
LL9

23, %00
%00, [%fp-48]

25, %00
%00, [%fp-40]
LL10

10, %00

%00, [%fp-32]
[%fp-40], %00
[%fp-48], %ol
%00, %01, %00
%00, [%fp-36]

[Y0fp-28], %00
%00, -14, %o1
%01, [%ofp-28]
[%1p-44], %00
%00, %o1

%o01, 3, %00

7, %01

%01, %00, %00
%00, [Yfp-28]

[%£p-20], %00
[Yofp-44], %ol
%00, %o1
LLI13

LL12
[Yofp-44], %00

%00, %02
%02, 2, %01
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circle 7

circle 8

dot 9

square 8

square 9

dot 10

square 7

square 10

square 11

circle 13
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add
sl
st
1d
add
st
LL14:
1d

cmp

be
nop
b

nop

LL16:
1d
add
st
1d
1d
call

nop

st

nop

LL15:
1d
add
st
b

nop

JLL12:
1d
add
st
1d
add
st
LL2:
ret

restore

LLfel:

.size

%01, %00, %01
%01, 2, %00
%00, [%fp-44]
[%fp-44], %00
%00, -7, %ol
%01, [%fp-44]

[%£p-28], %00
%00, 8
LL16

LL15

[%fp-44], %00
%00, 17, %ol
%01, [Yfp-44]
[%1p-20], %00
[%fp-44], %o1
aumul, 0

%00, [%fp-20]
LL14

[Y%ofp-44], %00
%00, -23, %01
%01, [Yofp-44]
JLIL11

[%fp-36], %00
%00, 5, %ol
%o01, [%fp-36]
[%fp-40], %00
%00, 4, %ol
%o01, [Y%fp-40]

main,.LLfel-main

square 14
circle 16

dot 15

square 16

dot 14

square 15

dot 11

square 12

square 2

ddent "GCC: (GNU) 2.95.2 19991024 (release)"
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Figure 2: Control Flow Linked List

3
\

\

loop 6 t
i

I

I

]

Figure 3: Modified Structure obtained from the Control Flow Linked List
Step 5: Creation of Zones
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To extract all possibilities of parallelism and reconfiguration, zones are identified in
the modified structure. But to identify such sections, delimiters are needed. A
delimiter can be any of the following types of nodes:

(1) Circle

(i) Dot

(iii)  Exit square
(iv)  Square

™) Power

(vi)  Ground.

A “Circle’ can indicate the start of a new zone or the end of a zone. A ‘Dot’ can only
indicate the end of a zone or a break in a zone. An ‘Exit square’ can indicate the start
of a new zone or the end of a zone. A ‘Square’ can only indicate the continuation of a
break in the current zone. A ‘Power’ can only indicate the beginning of the first zone.
A ‘Ground’ can only indicate the end of a zone.

Figure 4 shows example zones to illustrate the use of delimiters. Three zones, 1, 2,
and 3 all share a common node, ‘Circle 6°. This node is the end of Zone 1 and the
start of zones 2 and 3. Zone 1 has the ‘Power’ node as its start, while Zone 6 has
‘Ground’ node as its end. The ‘Dot 3’ in Zone 3 indicates the end of that zone while
‘Dot 4’ indicates a break in Zone 2. This break is continued by ‘Square 4°. In Zone 4,
‘Square 9’ indicates the end of the zone while it marks the start of Zone 5.

This function identifies zones in the structure, which is analogous to the numbering
system in the chapter page of a book. Zones can have sibling zones (to identify if/else
conditions, where in only one of the two possible paths can be taken {Zones 4 and 7
in Figure 1}) or child zones (to identify nested control structures {Zone 10 being child
of zone 8 in Figure 1}). Zone types can be either simple or loopy in nature (to identify
iterative loop structures). The tree is scanned node by node and decisions are taken to
start a new zone or end an existing zone at key points such as circles, dots and exit
squares. By default, when a circle is visited for the first time, the branch taken path is
followed. But this node along with the newly started zone is stored in a queue for a
later visit along the branch not taken path. When the structure has been traversed
along the “branch taken” paths, the nodes with associated zones are popped out from
the stack and traversed along their “branch not taken” paths. This is done till all nodes
have been scanned and stack is empty.
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Figure 4: Zones in the Modified Structure

The Pseudo code for the above process is given below:

Global variables: pop flag = 0, tree_empty = 0;
Zonise (node) /* input into the function is the current node, a starting node */

{
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while (free_empty == 0) /* this loop goes on node by node in the tree till all

node

{

have been scanned */

if (node — type = circle)

{

first

as a

}

if (pop_flag !=set) /* pop flag is set when a pop operation is done */

}

/* an entry here means that the circle was encountered for the

time */
/* so set the node— visited flag */
/* close the zone */
/* since u r entering a virgin circle, u cant create the new zone

sibling to the one u just closed */
/* if the zone u just closed, has a valid Anchor Point and if its
of
type Loop and if its visited flag is set, then u cannot create a
child zone */
/* accordingly create a new zone */
/* set child as current zone*/
/* push this zone and the node into the queue */
/* take the taken path for the node, i.e node = node— taken */

if (pop_flag = set)

{

value

*

Zone

/* an entry here means, that we r visiting a node and its
associated
zone, that have just been popped out form the queue, hence
revisiting an old node */
/* since this node has its visited flag as set, change that flag

to -1, so as to avoid any erroneous visit in the future */
/* if node is of type Non Loop, then spawn a new sibling zone
/* if node is of type Loop, then spawn new zone as laterparent

and mark zone type as loop*/
/* choose the not taken path for the node */

else if (node— type = exit square)

{

NULL,

/* close the zone */
/* if the closed zone has a parent, i.e zone—> parent pointer is not
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then create a new zone with link to the parent zone as type next zone

*/
/* if the closed zone does not have a parent, then spawn a new zone
that is
next to the closed zone */
/* choose the not taken path for the node */
}
else if (node— type is dot and node-> taken = NULL)
{
/* close zone */
/* choose node to be considered next by popping out from the queue */
/* in case the queue is empty, all nodes in tree have been scanned */
/* set pop flag */
}
else if (node— type = dot and node—> taken != NULL)
{
/* this is just a break in the current zone */
/* create temp stopl and tempstart] pointers*/
/* choose node— taken path */
}

}/* end of the first while loop */
}

Once the zones have been identified in the structure, certain relationships can be
observed among them. These form the basis of extraction of parallelism at the level of
zones. A zone inside a control structure is the ‘later child’ of the zone outside the
structure. Hence the zone outside a control structure and occurring before (in code
sequence) the zone inside a control structure is a ‘former parent’ of the zone present
inside. But, the zone outside a control structure and occurring after (in code sequence)
the zone inside the structure is referred to as the ‘later parent’. Similarly the child in
this case would be a ‘former child’. A zone occurring after another zone and not
related through a control structure is the ‘next’ of the earlier one. After parsing
through the structure thru the zonal relationship as shown in Figure 5 is obtained.
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° n @

le P lc lc

S: sibling relationship

LC: later child relationship

Lp: later parent relationship

In all types, destination zone is (Ic¢/s/lp) of source zone
The shaded zones are Loop types.

Figure 5: Initial Zone Structure obtained

This is referred to as the ‘initial zone structure’. The term initial, is used because,
some links need to be created and some existing ones, need to be removed. This
process is explained in the section below.

Step 6: Further Modification of the ‘initial zone structure’

Some of the relationships that were discussed in the previous step cannot exist with
the existing set of links and others are redundant. For example in in Figure5, we see
that Z1 can be connect to Z2 thru ‘n’

Z12 can be connected to Z13 thru ‘Ip’

Z13 can be connected to Z6 thru ‘n’

Z8 can be connected to Z9 thru ‘n’

Z4 can be connected to Z5 thru ‘Ip’

Z5 can be connected to Z13 thru ‘Ip’

Z77 can be connected to Z5 thru ‘lp’

But Z8’s relationship to Z6 thru ‘Ip’ is false, coz no node can have both ‘n’ and ‘Ip’

links.

In such a case, the ‘Ip’ link should be removed.

Therefore some rules need to be followed to establish ‘n’ and ‘lp’ type links, if they
don’t exist. '

To form an ‘n’ link:

If a zone (1) has an ‘Ic’ link to zone (2), and if that zone (2) has a ‘Ip’ link to a zone
(3), then an ‘n’ link can be established between 1 and 3. This means that if zone (1) is
of type ‘loop’, then zone (3) will now be classified as type ‘loop’ also.
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To form an ‘Ip’ type links if it doesn’t exist:

If a zone (1) has an “fp’ link to zone (2), and if that zone (2) has an ‘n’ link to a zone
(3), then an ‘Ip’ link can be established between 1 and 3

If a zone (1) has an ‘Ip’ link to zone (2), and also has an ‘n’ link to zone (3), then first,
remove the ‘Ip’ link ‘to zone (2)’ from zone (1) and then, place an ‘Ip’ link from zone
(3) to zone (2).

This provides the ‘comprehensive zone structure’ as shown in Figure 6 (with
cancelled links) and in Figure 7 (with all cancelled links removed).

Figure 6:

Figure 7: Comprehensive Zone structure with cancelled links removed
To identify parallelism and hence compulsorily sequential paths of execution, the
following approach is adopted. Firstly, the comprehensive zone structure obtained, is
ordered sequentially by starting at the first zone and traversing along an ‘lc — Ip’ path.
If a Sibling link is encountered it is given a parallel path. The resulting structure is
shown in Figure 8.
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loop number = 0

Lp, loop ends, logpritimber -- => 1

o0p ends, loop number -- => 0

Figure 8: Sequentially Ordered Zones

To establish parallelism between a zone (1) of loop count A and its upper zone (2) of
loop count B, where A < B, check for data dependency between zone 1 and all zones
above it upto and including the zone with the same loop count as zone 2..

In the example above, to establish parallelism b/w zone 6 and zone 9, check for
dependencies b/w zone 6 and 9, 10, 8. If there is no dependency then zone 6 is parallel
to zone §.

To establish parallelism between a zone (1) of loop count A and its upper zone (2) of
loop count B, where A = B, direct dependency check needs to be performed.
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To establish parallelism between a zone (1) of loop count A and its upper zone (2) of '
loop count B, where A > B, direct dependency check needs to be performed. Then,
the zone (1) will now have to have an iteration count of (its own iteration count *
zone (2)’s iteration count).

When a zone rises like a bubble and is parallel with another zone in the primary path,
and reaches a dependency, it is placed in a secondary path. No bubble in the
secondary path is subjected to dependency testing.

After a bubble has reached its highest potential, and stays put in a place in the
secondary path, the lowest bubble in the primary path is checked for dependency on
its upper fellow.

If the upper bubble happens to have a different loop count number, then as described
earlier, testing is carried out. In case a parallelism cannot be obtained, then this
bubble, is clubbed with the set of bubbles ranging from its upper fellow, till and
inclusive of the bubble up the chain with the same loop count as its upper fellow. A
global i/o parameter set is created for this new coalition. Now this coalition will
attempt to find dependencies with its upper fellow.

The loop count for this coalition will be bounding zone’s loop count. Any increase in
the iteration count of this coalition will reflect on all zones inside it. In case a bubble
wants to rise above another one which has a sibling/ reverse sibling link, there will be
speculative parallelism.

The algorithm should start at multiple points, one by one. These points can be
obtained by starting from the top zone and traversing down, till a sibling split is
reached. Then this zone should be remembered, and one of the paths taken. This
procedure is similar to the stack saving scheme used earlier in the zonise function.
Another Pre-processing step is used that loop unrolls every iterative segment of a
CDFG that does not have conditional branch instructions inside it and whose iterative
count is known at compile time.

Appendix B

#include<stdio.h>

vold main ()

{

}

int i,3.,k,1;

10;
1* 4;

if (j > 5 )

k=findsum (i, j) ;

1 = 4+k;
}
else
{
k findsum (i, J);

}

1 k*10;
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int findsum(int a,int b)

{

int i,j.k;

k=4;
for (1=0;

1<10;i++)

k =%k + 1;

j = findsub(k,a);

return j;

}

int findsub(int x,int y)

{

int t;
t = x-y;
return(t) ;
1
Appendix C
Main.s
.file "main.c"
gcc2_compiled. :
.section ".text"
.align 4

.global main

.type
.proc
main:

main, #function
020

| #PROLOGUE# 0

save

%sp, -128, %sp

| #PROLOGUE# 1

mov
st
mov
st
1d
cmp
ble
nop
1d
1ld
call
nop
st
1d
add
st
b

10, %00

%00, [%¥fp-20]
4, %00

%00, [%fp-241]
[$fp-241, %00
%00, 5

.LL3

[¥fp-20], %00
[¢fp-24], %ol
findsum, 0

%00, [%fp-28]
[$fp-28], %00
%00, 4, %ol
%0l, [%fp-32]
.LL4
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nop

.LL3:
14 [$fp-20]1, %00
ld [$fp-24]1, %ol
call findsum, O
nop
st %00, [%fp-28]
1d [$fp-28], %00
mov %00, %02
sll %02, 2, %ol
add %0l, %00, %ol
sll %ol, 1, %00
st %00, [%fp-32]

.LL4;

LLL2:
ret
restore

.LLfel:
.size main,.LLfel-main
.ident

Findsum.s

"GCC: (GNU) 2.95.2 19991024

.file "findsum.c"
gce2_compiled. :
.section ".text"

.align 4

.global findsum

.type findsum, #function

.proc 04
findsum:

| #PROLOGUE# 0

save %sp,

-128, %sp

I #PROLOGUE# 1

st %$io, [%fp+68]
st %i1, [%fp+72]
mov 4, %00
st %00, [%fp-28]
st %90, [%¥fp-20]
.LL3:
1d [$fp-20], %00
cmp %00, 9
ble .LL6
nop
b .LL4
nop
.LL6:
1d [¥fp-28], %00
add %00, 1, %ol
st %0l, [%fp-28]
.LL5:
1d [$fp-20], %00
add %00, 1, %ol
st %0l, [%fp-20]
b .LL3
nop
.LL4 .
14 [$fp-28], %00
14 [$fp+68], %ol
call findsub, 0
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nop
st %00, [%fp-24]
1d [$fp-24], %00
mov %00, %10
b .LL2
nop
LLL2:
ret
restore
.LLfel:
.size findsum, .LLfel-findsum
.ldent "GCC: (GNU) 2.95.2 19991024 (release)™
Findsub.s

.file "findsub.c"
gcc2_compiled. :
.section ".text™"

.align 4

.global findsub

.type findsub, #function

.proc 04
findsub:

! #PROLOGUE# 0

save %sp, -120, %sp

| #PROLOGUE# 1

st %10, [%fp+68]
st %i1, [%fp+72]
1d [¥fp+68], %00
14 [$fp+72], %ol
sub %00, %o0l, %00
st %00, [%fp-20]
1d [3fp-20], %00
mov %00, %io0
b .LL2
nop
.LL2:
ret
restore
.LLfel:
.size findsub, .LLfel-findsub
.ident "GCC: (GNU) 2.95.2 19991024 (release)™"
Appendix D

Expanded main funetion

Function main BEGINS here

save %sp -128 %sp
mov 10 %o0

st %00 [%fp-20]
mov 4 %00

st %00 [%fp-24]
1d [%fp-24] %00
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cmp %00 5

ble 0

nop

1d [%fp-20] %00
1ld [%£fp-24] %ol

Function findsum BEGINS here

save %sp -128 %sp
st %10 [%fp+68]
st %11 [%fp+72]
mov 4 %o0

st %00 [%fp-28]
st %90 [%fp-20]
4

1d [%£fp-20] %00
cmp %00 9

ble 5

nop

b 6

nop

5

1d [%fp-28] %00
add %00 1 %ol
st %ol [%fp-28]
7

1d [%fp-20] %00
add %00 1 %ol
st %ol [%fp-20]
b 4

nop

6

1d [%fp-28] %00
1d [%fp+68] %ol

Function findsub BEGINS here

save %sp -120 %sp
st %i0 [%fp+68]
st %11 [%fp+72]
1d [%fp+68]1 %00
1d [%fp+72] %ol
sb %00 %0l %00

st %00 [%fp-20]
1d [%fp-20] %00
mov %00 %i0

b 10

nop

10

ret

restore

11

Function findsub ENDS here
findsub .LLfel-findsub
nop

st %00 [%fp-24]
1d [%fp-24] %00
mov %00 %i0

b 8

nop

8

ret

restore

&9

PCT/US2004/003609



10

15

20

25

30

35

40

45

50

55

60

WO 2004/072796

9

Function findsum ENDS here
findsum .LLfel-findsum

nop

st %00 [%fp-28]

1d [%fp-28] %00

add %00 4 %ol

st %ol [%fp-32]

b 1

nop

0

ld [%fp-20] %00

1d [%fp-24] %ol

Function findsum BEGINS here

save %sp -128 %sp
st %10 [%fp+68]
st %il [%fp+72]
mov 4 %00

st %00 [%fp-28]
st %g0 [%fp-20]
4

1d [%fp-20] %00
cmp %00 9

ble 5

nop

b 6

nop

5

1ld [%fp-28] %00
add %o0 1 %ol
st %ol [%fp-28]
7

1d [%£p-20] %00
add %00 1 %ol
st %ol [%$fp-20]
b 4

nop

6

1d [%£fp-28] %00
la [%fp+68] %ol
Function findsub BEGINS here

save %sp -120 %sp

st %10 [%fp+68]

st %1l [%fp+72]

1d [%fp+68] %00

1d [%fp+72] %ol

sb %00 %0l %00

st %00 [%fp-20]

1d [%fp-20] %00

mov %00 %io

b 10

nop

10

ret

restore

11

Function findsub ENDS here
findsub .LLfel-findsub
nop

90
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st %00 [%fp-24]

1d [%fp-24] %00

mov %00 %10

b 8

nop

8

ret

restore

]

Function findsum ENDS here
findsum .LLfel-findsum
nop

st %00 ([%fp-28]

1ld [%fp-28] %00

mov %00 %02

sll %02 2 %ol

add %ol %00 %ol

sll %ol 1 %00

st %o0 [%fp-32]

1

2

ret

restore

3

Function main ENDS here

91
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Appendix E

Control flow linked list Main linked list

to_main —
to_target .
begins ™ :
ends .
5 2 $fp-
¢ f &it 250 [3fp 2o<]

to main | ™N1d  [%fp-20] %00
cmp %00 9
\Ible 5

™ to target
begins
indST
to main =5
[ to_target =1d [%fp-28] %00
begins add %00 1 %ol
ends st %ol [%fp-28]
ld [%fp-20] %00
1 ¢ ? add %c0 1 %ol
st %0l [%fp-20]

Vv
5 o3
3 9

to main N

to target b 4

begins / &IQOP

ends >1d  [%fp-28] %00

¢ f 1d [%fp+68] %ol

— > Function findsub BEGINS here
:EO Inamt ) save %sp ~-120 %sp
0_targe st %10 [$fp+68]
\——|_begins st %1l [$fp+72]

ends 1d [%fp+68]1 %00

¢ ? 1d [%fp+72] %ol
sb %00 %ol %00

to main st %00 [%fp-20]

to target J ret

begins / T restore

ends i Function findsub ENDS here

15 ¢ T findsub .LLfel-findsub

nop

to main 7 st %00 [%fp-24]

to target :

begins

ends

3 Appendix F
20
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In this section the pseudo ANSI C codes for the test-bench algorithms are presented.

Note: For an indepth-analysis and explanation on all graphics algorithms, please refer to the
book: “Computer Graphics: Principles and Practise” Second edition in C, by Foley, van
Dam, Feiner and Hughes. \

Cohen Sutherland Line Clipping

typedef unsigned int outcode;
enum {TOP=0x1, BOTTOM=0x2, RIGHT=0x4, LEFT=0x8};

void CohenSutherlandLineClipAndDraw (
double x0, double y0, double x1, double y1, double xmin, double xmax,
double ymin, double ymax, int value)
/* Cohen-sutherland clipping algorithm for line PO = (x0,y0) to P1 = (x1,yl) and */
/* clip rectangle with diagonal from (xmin,ymin) to (xmax,ymax) */

{
/* Outcodes for PO, P1 and whatever point lies outside the clip rectangle */
outcode outcode0, outcodel, outcodeOut;
boolean aacept = FALSE, done = FALSE,;
outcode0 = CompOutCode (x0,y0,xmin,xmax,ymin,ymax);
outcodel = CompOutCode (x1,yl,xmin,xmax,ymin,ymax);
do {
if (!(outcode0 | outcodel)) {
accept = TRUE; done = TRUE,;
} else if (outcode0 & outcodel)
done = TRUE;
else {
double x,y;
outcodeOut = outcode0?outcode0:outcodel;
if (outcodeOut & TOP) {
x =x0 + (x1 - x0)*(ymax - y0) / (y1 - y0);
y = ymax;
} else if (outcodeOut & BOTTOM) {
x =x0 + (x1- x0)*(ymin - y0) / (y1 - y0);
y = ymin;
} else if (outcodeOut & RIGHT) {
y=vy0 + (y1- y0O)*(xmax - x0) / (x1 - x0);
X = Xmax;
} else {
y=y0 + (yl- y0)*(xmin - x0) / (x1 - x0);
X = Xmin;
}
if (outcodeOut == outcode0) {
xX0 = x;, y0O = 'y, outcode0 = CompOutCode
(x0,y0,xmin,xmax,ymin,ymax);
} else {
x1 = x5 yl =y, outcodel = CompOutCode

(x1,yl,xmin,xmax,ymin,ymax);
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}
}
} while (done == FALSE);

if(accept)
MidpointLineReal (x0,yo0,x1,yl,value);
}

outcode CompQutode (
double x, double y, double xmin, double xmax, double ymin, double ymax)
{

outcode code = 0;
if (y<ymax)

code |= TOP;
else if (y<ymin)

code |= BOTTOM,;
if (x>xmax)

code |= RIGHT;
else if (x<xmin)

code |= LEFT,
return code;

}

void MidpointLineReal (double x0,double yo,double x1,double y1,double value)
{

double dx =x1 - x0;

double dy = y1 - y0;

double d = 2*dy - dx;

double incrE = 2*dy;

double incrNE = 2*(dy - dx);

double x = x0;

double y = y0;

WritePixel (x,y,value);

while (x<x1) {
if (d<=0) {
d +=incrE;
x++;
} else
d +=incrNE;
X+

y+

}
WritePixel (x,y,value);

}

Mid-point Ellipse Scan Conversion
void MidpointEllipse (int a, int b, int value)
/* Assumes center of ellipse is at the origin. Note that overflow may occur */
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/* for 16-bit integers because oft the squares */
{

double d2;

int x=0;

inty=b;

double d1 = b? - (a?b) + (0.252%);

PCT/US2004/003609

EllipsePoints (x,y,value); /* The 4-way symmetrical WritePixel */

while (a%(y - 0.5) > b*(x + 1)) {
if (d1 < 0)
dl += b2(2x +3);

else {
dl +=b*(2x + 3) + a*(-2y + 2);
¥--3

3

X++;

[
}
d2 =b*(x + 0.5)* + a(y - 1)* - a’b%;
while (y > 0) {
if (d2<0){
d2 +=1*(2x + 2) + a*(-2y + 3);
X+

EllipsePoints(x,y,value);

H

} else

d2 += a*(-2y + 3);
¥--;
EllipsePoints(x,y,value);

}

The bitBlock Transfer Algorithm

typedef struct {
point topLeft, bottomRight;
}rectangle;

typedef struct {
cha *base;
int width;
rectangle rect;
} bitmap;

typedef struct {
unsigned int bits:32;
} texture;

typedef struct {
char *worldptr;
int bit;
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} bitPointer;

void bitBlIt(

bitmap mapl;
point pointl;
texture tex;
bitmap map?2;
rectangle rect2;
writeMode mode)

int width;
int height;
bitPointer p1,p2;

clip x_values;
clip y-values;

width = rect2.bottomRight.x - rect2.topLeft.x;
height = rect2.bottomRight.y - rect2.topLeft.y;

if (width < 0 || height < 0)
return;

pl.wordptr = map1.base;
pl.bit = mapl.rect.topLeft.x % 32;

/* And the first bin in the bitmap is a few bits further in */

/* Increment p1 umitl it points to the specified point in the first bitmap */

IncrementPointer (p1,pointl.x - mapl.rect.topLeft.x + mapl.width *
(pointl.y - mapl.rect.topLeft.y));

/* Same for p2 - it points to the origin of the destination rectangle */
p2.worldptr = map?2.base;
p2.bit = map2.rect.topLeft.x % 32;
IncrementPointer (p2,rect2.topLeft.x - map2.rect.topLeft.x +
map2.widrh * (rect2.topLeft.y -

map2.rect.topLeft.y));

dl

if(pl <p2) {
/* The pointer p1 comes before p2 in memory; if they are in the same bitmap

/* the origin of the source rectangle is either above the origin for the */
/* above destaination or, if at the same level, to the left of it */

IncrementPointer (p1, height * mapl.width + width);

/* Now p1 points to the lower right word of the rectangle */
IncrementPointer (p2, height * mapl.width + width);

/* Same for p2, but the destination rectangle */

pointl.x += width;

pointl.y +=height;
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/* Thios point is now just beyond the lower right in the rectangle */

while (height-- > 0){
/* Copy rows from the source to the target bottom to top, right to left */
DecrementPointer (p1, map1l.width);
DecrementPointer (p2, map2.width);
temp_y = pointl.y % 32; /* used to index into texture */
temp_x = pointl.x % 32;
/* Now do the real bitBIt from bottom right to top left */
RowBltNegative (pl, p2, width, BitRotate(tex[temp y],temp_x),

mode);
} /* while */
}else { /*if pl >=p2 */

while (height-- > 0) {
/* Copy rows fro source to destaination, top to bottom, left to right */
/* Do the real bitBlt, from topleft tpo bottom right */
RowBltPositive (same arguments as before);
increment pointers;

} /* while */

} /* else */
} /* bitBIt */

void Clip Values (bitmap *map1, bitmap *map2, point *pointl, rectangle *rect2)
{
if (*pointl not inside *map1){
adjust *point] to be inside *map1;
adjust origin of *rect2 by the same amount;

if (originof *rect2 not inside *map2){
adjust origin of *rect2 to be inside *map?2;
adjust *pointl by the same amount;

}

if (opposite corner of *rect2 not inside *map2)
adjust opposite corner of *rect2 to be inside;

if (opposite corner of corresponding rectangle in *map1 not insode *map1)
adjust opposite corner of rectangle;

} /*ClipValues */

void RowBltPositive(
bitPtr p1, bitPtr p2; /* Source and destination pointers */
int n; /* How many bits to copy */
char tword; /* Texture word */
writeMode mode) /* Mode to blt pixels */

{

/* Copy n bits from position p1 to position p2 according to the mode */
while (n-->0) {
if (BitIsSet (tword,32))/* If texture says it is OK to copy..*/
MoveBit (p1,p2,mode); /* then copy the bit */
IncrementPointer (p1);
IncrementPointer (p2);
RotateLeft (tword); /* Rotate bits in tword to the left */

97



5

10

15

20

25

30

35

40

45

50

55

60

WO 2004/072796 PCT/US2004/003609

} /* while */
} /RowBItPositive */

Phong Shading

double dbl=2.5,db2=65535.,pi;

int colors[]={3,6,10,13,6,3,10,13,6,3,13,10},
dl]l={640,350,1},
i,k,
palette[]={OO0,010,001,011,020, 002,022,077,

040,004,044,060,006,066,007,077},

x,y,x_min,x _max,y_min,y max;

int min, sec;

unsigned short random;

main ()

{
double a,b,c,10,11,12,1n,1nl,n0,nl,n2,p,q,r=128,s,t,vI[12] [3];
int n;

int graphdriver = DETECT, graphmode;
int color;

initgraph (&graphdriver, &graphmode, "");

/* for (n=0;n<l6;n++) */

#ifdef Intel

printf ("\n\t\t 80387 Phong Shading Demonstration Program\n");
#else

printf ("\n\t\t\t Phong Shading Demonstration\n") ;
#endif

/*  printf ("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n");
start=clock(); */

/* Pixel aspect ratio. Original value is 1.3 whic works with EGA*/

/* This is hence the version for my - ThL - EIZO VGA Card */
a=1.0;

/* Screen center coordinates */

b=0.5*(d[0]-1); /* x-position */

c=0.5*(d[1]1-1); /* y-position #*/

/* Unit length light source vector */
10=-1/sqgrt(3.);
1l1=10;
12=-10;
/* Ratio circumference to diameter of a circle */
pi=4*atan(1.);
/* A dozen vertices evenly spread over a unit sphere */
v[0] [0]=0;
v[0] [1]=0;
v[o] [2]=1;
s=sqrt(5.);
for (i=1;i<11;i++) {
p=pi*i/5;
v{i] [0]=2*cos (p)/s;
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v[i] [1]1=2*sin(p)/s;
vii] [2]=(1.-1%2%*2)/s;

vI[1i1] [0]=0;
vI[11] [1]1=0;
v[11] [2]=-1;

/* Loop to Phong shade each pixel */
Y_max=c+r;
Yy _min=2*c-y max;
for (y=y min;y<=sy max;y++) {
s=y-c;
nl=s/r;
lnl=11*nl;
s=r*r-g*g;
x_max=b+a*sqgrt (s) ;
x_min=2*b-x_max;
for (x=x_min;x<=x_max;xX++) {
t=(x-b)/a;
no=t/r;
t=sqgrt (s-t*t);
n2=t/r;
/* Compute dot product and clamp to positive value */
In=10*n0+1lnl+l2#*n2;
if (1n<0) 1n=0;
/* cos(e.r)**27 */
t=1n*n2;
t+=t-12;
tx=t*t;
t¥*=t*t;
t*=t*t;
/* Nearest vertex to normal yields max dot product */
/* Get its color */
for (i=0,p=0;i<11;i++)
if (p<(g=n0*v[i] [0}+nl*v[i] [1]+n2*v[i] [2])) {
b=q;
k=colors[i];
}/*end for+*/
/* Aggregate ambient, diffuse, and spectacular intensities
do dither */
random=37*random+1;
i=k-dbl+dbl*1ln+t+random/db2;
/* Clamp values outside range of three color level to black or white
*
/
if (1 < (k-2)) i=0;
else
if (1 > k) 1=15;
putpixel (x,vy,1);
}/*end for*/
}/*end for*/

exit:
delay (5000) ;
closegraph () ;

}/*end main*/

4 Appendix G
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Algorithm:
Task schedule (G(V,E), CIRL_VARS/N], PE = {PE1,PE2.....PEM})
For each combination of CTRL_VARS do

/
Generate a DFG Gsub(V,E,CTRL_VARS[I]) which is a sub-graph of G(V,E). Only the
nodes and edges in the control flow corresponding to the current combination of
CTRL _VARS are included in this sub-graph.

Generate the PCP schedule of Gi. Let the schedule be PCP_sched[l] and the delay be
PCP _delay[1].
/

Sort PCP_sched and PCP_delay and Gsub in decreasing order of PCP_delay[I].

Generate the Branch and bound schedule for Gsub[0], the sub-graph with the worst
PCP _delay. Let the schedule be BB_sched[I=0] and the delay be BB_delay[I=0)].
Initialize worst_bb_delay = BB_delay[0]

For all the other sub-graphs do
{
if (PCP_delay[I] < worst_bb_delay) then
BB _sched[I] = PCP_sched[I];
BB _delay[I] = PCP_delay[I],
else
Generate BB_sched[I] and BB _delay[I];
If (BB_delay[I] > worst_bb_delay[I]) then
Worst_bb_delay = BB _delay[I];
}

Generate the branching tree with the help of the G(V,E). In this branching tree, the edge
represents the choices (K and K’) and the node represents the variable (K)

Initialize the current path to the one leading from the top to the leaf in such a way that the
DFG corresponding to this path gives the worst_bb_delay. The path is nothing but a list
of edges tracing from the top node till the leaf.
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We claim:

1. A method of fabricating a reconfigurable processor for running moderately
complex programming applications comprising:

(2) providing source code for a programming application,

(b) entering the source code in a control flow graph generating compiler
to produce a control data flow graph of data flow control flow and branch points,

(©) extracting form the control flow graph basic blocks of code lying
between branch points,

(d) from the code lying between the branch points generating
intermediate data flow graphs,

(e) identifying clusters shared among dfgs at the highest level of
granularity,

® from the identified clusters determine the largest common subgraph
shared among the dfgs,

(g)  scheduling the largest common subgraph for fast accomplishment of
operations in the lcsg,

(h) apply the scheduled lcsg to the intermediate flow graphs replacing the
unscheduled Icsg therein,

1) scheduling the intermediate flow graphs containing the lcsg's for fast
accomplishment of operations in the intermediate flow graphs to derive data patches having
operations and timings of each intermediate flow graph,

()] combining the data patches to include operations and timing of the
lcsg with operations and timings of each intermediate subgraph that are outside the lcsg,

(k)  from the combined data patches scheduling for process time
reduction multiple uses of the lcsg operations and timings necessary to accomplish
operations and timings of all intermediate subgraph employing the lcsg , and

) implementing in hardware having mixed granularities the operations
and timing of the lcsg including:

(i)  partitioning,
(i)  placing, and

(iii)  interconnection routing.
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2. In a method of making an integrated circuit for use as a hardware
implemented part of a programmed operation irﬁplemented in software and hardware; the
improvement comprising identifying hardware circuit elements for execution of a largest
common subgraph common among a set of flow graphs representing the programmed
operation; partitioning into blocks the circuit elements; arranging the blocks on an area
representative of an available area of a surface of a substrate on which the circuit elements
are to be formed; routing interconnections among the blocks; partitioning into sub-blocks
the circuit elements of each block; arranging each sub-block on an area representative of
the block form which it has been partitioned routing interconnections among the sub-blocks
and iteratively partitioning and routing among lesser sub-blocks until the individual circuit

elements have been placed and routed.

3. The method according to claim 2, wherein the steps of routing comprise
locating conductors and switches for interconnections among blocks, sub-blocks and circuit

elements.

4. The method according to claim 3, wherein locating conductors and switches
further comprises locating variable switches to effect variable conductive paths among the

blocks, sub-blocks and circuit elements.

5. A method of scheduling process elements of hardware implementing a
software application, comprising:

(a) de\'/eloping a control data flow graph from the software;

(b)  using a first, non-exhaustive scheduling algorithm to relatively
quickly arrive at a first scheduling of the process elements;

(©) using a second more exhaustive scheduling algorithm for at least one
and less than all selected paths of the control data flow graph to reduce the time of
execution thereof; and

(d) once all paths of the control data flow graph have been scheduled,
including all of the second more exhaustive scheduling, merge all of schedules, respecting

data and resource dependencies.

6. The method of scheduling according to claim 5, wherein step (a) comprises

PCP scheduling.
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7. The method of scheduling according to either claim 5 or 6, wherein step (b)

comprises branch and bound based scheduling.

8. A dedicated integrated circuit for performing the software operation having

processing elements scheduled according to claim 5.

9. A dedicated integrated circuit for performing the software operation having

processing elements scheduled according to claim 6.

10. A dedicated integrated circuit for performing the software operation having

processing elements scheduled according to claim 7.

1. The method of forming an application specific reconfigurable circuit,

comprising:

(a) providing source code for an application to be run b the circuit,

(b)  deriving flow graphs representing separate portions of the
application,

() identifying at least one largest common flow graph from at least two
of the separate portions of the application; and

(d) configuring in hardware circuitry to be shared by the separate

portions of the application.
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Cr? This example demonstrates pu}ginitialization strategy. It describes how the CDFG is split

into individual DFGs. Moreover, it also shows the various fields required for each node
and edge.

-A-Initial- EDFG

O Source and Sink nodes

Processor type 1 (PE:O

o @ Processor type 2 (Pt‘ Z\>

e 135

ﬁvf,u,wf‘\u., CD( : 7 ‘c;);_sm/
B’ Inltlallzatlon of CDFG data structure and Branching tree pre=2=<l.

Ll éa @2{’!‘3&/4.} :

Var_indices: var[0] = D; var[1] = C; var[2] = K;
Assume number of processing elements of type = 1
Branching tree paths: DCK, DCK’, DC'K, DC’K’, D’CK, D’CK’, D’C’K, D’C’K’
Branching tree paths not possible: D’CK, D’CK’, D’C’K, D’C’'K’
Removing K we get: D’C, D’C’
Final Branching tree paths: DCK, DCK’, DC’K, DC’K’, D’C, D’C’.
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C. List of individual DFGs:
DFG[0] = DCK

O Source and Sink nodes

Processor type 2

Processor type 3

Processor type 1
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DFG[1] = DCK’

O Source and Sink nodes

Q Processor type 2

Processor type 1

Y Processor type 3
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DFG[2] = DC'K

O Source and Sink nodes e O
Processor type 2

Processor type 1
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DFG[4] = D’C

O Source and Sink nodes

Q Processor type 2

Processor type 3

TN

Processor type 1

t
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Er g :ﬁi‘?" PR
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DFEG[5] = D'C’

O Source and Sink nodes

@ Processor type 2

Processor type 3

Processor type 1
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Figure +5: PCP Scheduling with Resource Dependencies in the Partial Path Region
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Figure 14 PCP based Scheduling
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Figure }6: Branching Tree
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Figure 177 Influence of Reconfiguration time on Scheduling
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Process A 0
Process B 10
Expression ¢ | Expression 8 | Expression § | Expression vy
Process A 30
Process B 40
¢and SO On.

Figure 197 Dynamic Entry Updates in the NSM and LSMs
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CLU = Configurable Logic Unit; LU = Logic Units; SN = Switching Network
CM = Configuration Memory; LSM = Logic Schedule Manager

Al
Figure 2%: The Internals of the Reconfigurable Unit
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