

US 20070292930A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0292930 A1

(10) Pub. No.: US 2007/0292930 A1 (43) Pub. Date: Dec. 20, 2007

Shu et al.

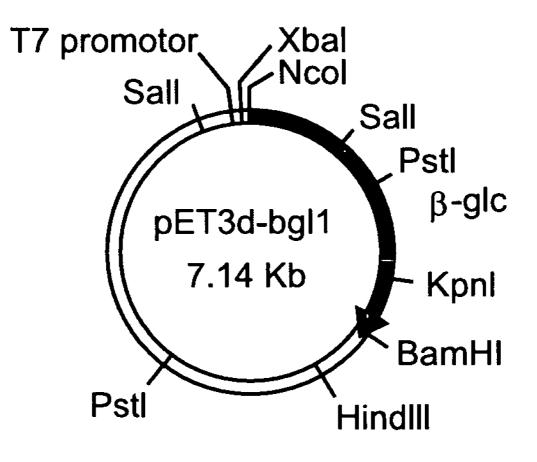
(54) METHOD OF PRODUCING RECOMBINANT ASPERGILLUS NIGER BETA-GLUCOSIDASE AND AN AROMA SPREADING PLANT

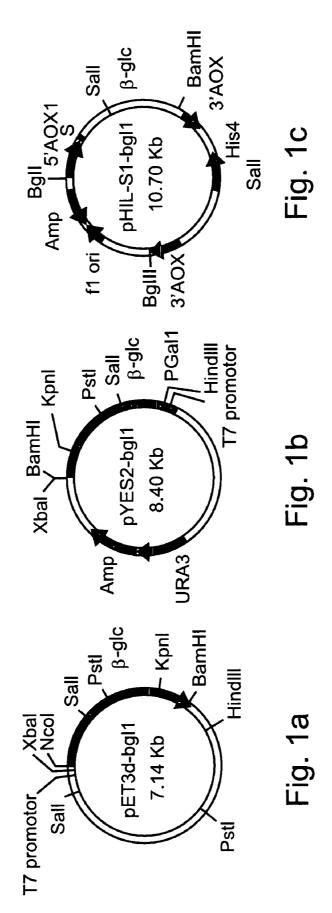
 (75) Inventors: Wei Shu, Saskatoon (CA); Daniel L.
 Siegel, Rechovot (IL); Ira Marton, Rechovot (IL); Ben-Ami Bravdo, Rehovot (IL); Mara Dekel, Rechovot (IL); Oded Shoseyov, Karmei Yosef (IL)

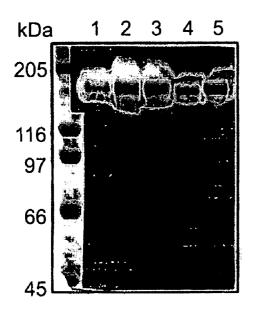
> Correspondence Address: Martin D. Moynihan PRTSI, Inc. P.O. BOX 16446 Arlington, VA 22215 (US)

- (73) Assignee: Yissum Research Development Company of the Hebrew University of Jerusalem, Jerusalem (IL)
- (21) Appl. No.: 11/785,365
- (22) Filed: Apr. 17, 2007

Related U.S. Application Data


(63) Continuation of application No. 10/130,150, filed on May 16, 2002, now Pat. No. 7,223,902, filed as 371 of international application No. PCT/IL00/00758, filed on Nov. 15, 2000, which is a continuation of application No. 09/443,338, filed on Nov. 19, 1999, now abandoned.


Publication Classification


- (51) Int. Cl. *C12P* 7/10 (2006.01) *C12P* 7/06 (2006.01) (52) H.S. Cl.
- (52) U.S. Cl. 435/165; 435/161

(57) ABSTRACT

A polypeptide having β -glucosidase enzymatic activity, a polynucleotide encoding the polypeptide, a nucleic acid constructs carrying the polynucleotide, transformed or infected cells, such as yeast cells, and transgenic organisms expressing the polynucleotide and various uses of the polypeptide, the polynucleotide, cells and/or organisms, including, producing a recombinant polypeptide having the β -glucosidase enzymatic activity, increasing the level of aroma compounds in alcoholic beverages, as well as other fermentation products of plant material, hydrolyzing cellobiose and thus increasing the level of fermentable glucose, increasing the production of alcohol, such as ethanol from plant material, increasing the aroma released from a plant or a plant product, and hydrolysis or transglycosylation of glycosides.

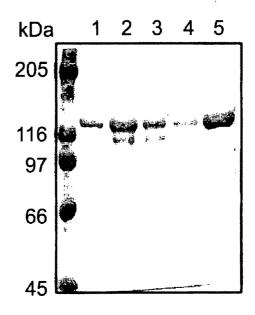


Figure 2B

Figure 2A

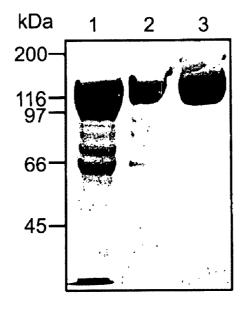


Fig. 3

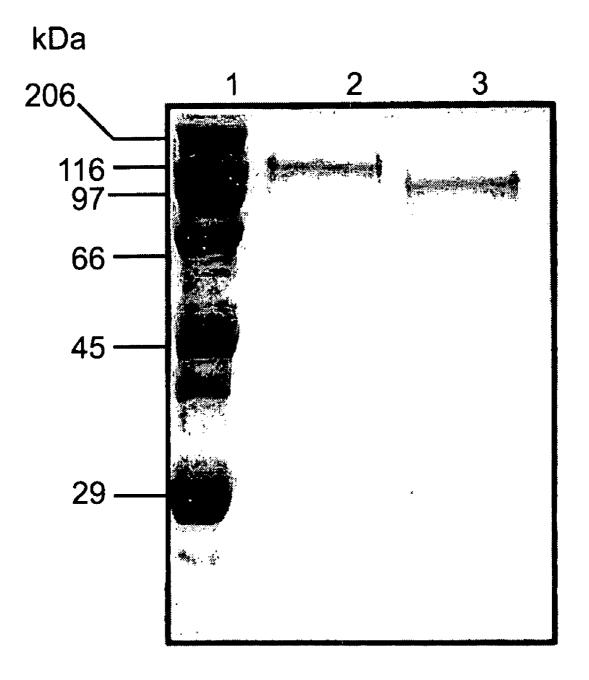


Fig. 4

Patent Application Publication Dec. 20, 2007 Sheet 4 of 12 US 2007/0292930 A1

1	TCCATTCGCCCATGCTTAGCGTGTCTTTTCTTTGAACACTGCATGCGGGACTGTGAATTG	60
61	CATGAGTGGGTAGCTTTGCGGAGACAGCTGCACTGGCATACATCATCGTTGGGTTCCTCA	120
121	ATTCGCATGCCGTGGCGGACGGTCACTTTGTGGCGCTCAAACTATTTAATATGGCCCAGC	180
181	TCCCCTTTCTCTCGCTGTTTTCGTTTCTGTCCTCCCTAAACCTCCAGTCTCTCCATTGGA	240
241	CAGGTGTTGCACGGTTGCTCACCTGGTTTGTTTTGCTCCCCCTTTGGGCGACCTTGCCAT	300
301	CATGAGGTTCACTTTGATCGAGGCGGTGGCTCTGACTGCCGTCTCGCTGGCCAGCGCT <u>GT</u> MetArgPheThrLeuIleGluAlaValAlaLeuThrAlaValSerLeuAlaSerAla Signal Peptide	360
361	ACGTGCCGTTACTTTGTCCTGAGAATTGCAATTGTGCTTAATTAGATTCATTTGTTTG	420
421	<u>TCATCATCGCTGACAATGGTCTTTTCATAG</u> GATGAATTGGCCTACTCCCCACCGTATTAC <u>AspGluLeuAlaTyrSerProProTyrTyr</u>	480
481	CCATCCCCTTGGGCCAATGGCCAGGGCGACTGGGCGCAGGCATACCAGCGCGCGC	540
541	ATTGTCTCGCAAATGACATTGGATGAGAAGGTCAATCTGACCACAGGAACTGGG <u>TAGGGC</u> IleValSerGlnMetThrLeuAspGluLysValAsnLeuThrThrGlyThrGly	600
601	TTACATGGCGCAATCTGTATGCTCCGGCTAACAACTTCTACATGGGAATTGGAACTATGT Intron#2 TrpGluLeuGluLeuCys	660
661	GTTGGTCAGACTGGCGGTGTTCCCCCGG <u>TAGGTTTGAAAATATTGTCGAGACAGGGGACAT</u> ValGlyGlnThrGlyGlyValProArg Intron#3	720
721	<u>TATTGATTAACGGTGACAGA</u> TTGGGAGTTCCGGGAATGTGTTTACAGGATAGCCCTCTGG LeuGlyValProGlyMetCysLeuGlnAspSerProLeuG	780
781	GCGTTCGCGACT <u>GTAAGCCATCTGCTGTTGTTAGGCTTCGATGCTCTTACTGACACGGCG</u> lyVålArgAspS Intron#4	840
841	<u>CAG</u> CCGACTACAACTCTGCTTTCCCTGCCGGCATGAACGTGGCTGCAACCTGGGACAAGA erAspTyrAsnSerAlaPheProAlaGlyMetAsnValAlaAlaThrTrpAspLysA	900
901	ATCTGGCATACCTTCGCGGCAAGGCTATGGGTCAGGAATTTAGTGACAAGGGTGCCGATA snLeuAlaTyrLeuArgGlyLysAlaMetGlyGlnGluPheSerAspLysGlyAlaAspI	960
961	TCCAATTGGGTCCAGCTGCCGGCCCTCTCGGTAGAAGTCCCGACGGTGGTCGTAACTGGG leGlnLeuGlyProAlaAlaGlyProLeuGlyArgSerProAspGlyGlyArgAsnTrpG	1020
1021	AGGGCTTCTCCCCAGACCCTGCCCTAAGTGGTGTGCTCTTTGCCGAGACCATCAAGGGTA luGlyPheSerProAspProAlaLeuSerGlyValLeuPheAlaGluThrIleLysGlyI.	1080
1081	TCCAAGATGCTGGTGGGTGGGTGCGACGGCTAAGCACTACATTGCTTACGAGCAAGAGCATT leGlnAspAlaGlyValValAlaThrAlaLysHisTyrIleAlaTyrGluGlnGluHisP	1140
1141	TCCGTCAGGCGCCTGAAGCCCAAGGTTTTGGATTTAATATTTCCGAGAGTGGAAGTGCGA heArgGlnAlaProGluAlaGlnGlyPheGlyPheAsnIleSerGluSerGlySerAlaA	1200
1201	ACCTCGACGATAAGACTATGCACGAGCTGTACCTCTGGCCCTTCGCGGATGCCATCCGTG snLeuAspAspLysTbrMetHisGluLeuTyrLeuTrpProPheAlaAspAlaIleArgA	1260
1261	CAGGTGCTGGCGCTGTGATGTGCTCCTACAACCAGATCAACAGTTATGGCTGCCAGA laGlyAlaGlyAlaValMetCysSerTyrAsnGlnIleAsnAsnSerTyrGlyCysGlnA	1320
1321	ACAGCTACACTCTGAACAAGCTGCTCCAGGCCGAGCTGGGCTTCCAGGGCTTTGTCATGA snSerTyrThrLeuAsnLysLeuLeuLysAlaGluLeuGlyPheGlnGlyPheValMetS	1380

Fig. 5a

1381	GTGATTGGGCTGCTCACCATGCTGGTGTGAGTGGTGCTTTGGCAGGATTGGATATGTCTA erAspTrpAlaAlaHisHisAlaGlyValSerGlyAlaLeuAlaGlyLeuAspMetSerM	1440
1441	TGCCAGGAGACGTCGACTACGACAGTGGTACGTCTTACTGGGGTACAAACTTGACCATTA etProGlyAspValAspTyrAspSerGlyThrSerTyrTrpGlyThrAsnLeuThrIleS	1500
1501	GCGTGCTCAACGGAACGGTGCCCCCAATGGCGTGTTGATGACATGGCTGTCCGCATCATGG erValLeuAsnGlyThrValProGlnTrpArgValAspAspMetAlaValArgIleMetA	1560
1561	CCGCCTACTACAAGGTCGGCCGTGACCGTCTGTGGACTCCTCCCAACTTCAGCTCATGGA laAlaTyrTyrLysValGlyArgAspArgLeuTrpThrProProAsnPheSerSerTrpT	1620
1621	CCAGAGATGAATACGGCTACAAGTACTACTACGTGTCGGAGGGACCGTACGAGAAGGTCA hrArgAspGluTyrGlyTyrLysTyrTyrValSerGluGlyProTyrGluLysValA	1680
1681	ACCAGTACGTGAATGTGCAACGCAACCACAGCGAACTGATTCGCCGCATTGGAGCGGACA snGlnTyrValAsnValGlnArgAsnHisSerGluLeuIleArgArgIleGlyAlaAspS	1740
1741	GCACGGTGCTCCTCAAGAACGACGGCGCTCTGCCTTTGACTGGTAAGGAGCGCCTGGTCG erThrValLeuLeuLysAsnAspGlyAlaLeuProLeuThrGlyLysGluArgLeuValA	1800
1801	CGCTTATCGGAGAAGATGCGGGCTCCAACCCTTATGGTGCCAACGGCTGCAGTGACCGTG laLeuIleGlyGluAspAlaGlySerAsnProTyrGlyAlaAsnGlyCysSerAspArgG	1860
1861	eq:gatgcgatggatggatgggatgggatgggatgggatggg	1920
1921	TGGTGACCCCCGAGCAGGCCATCTCAAACGAGGTGCTTAAGCACAAGAATGGTGTATTCA euValThrProGluGlnAlaIleSerAsnGlu <u>ValLeuLysHisLysAsnGlyValPheT</u>	1980
1981	CCGCCACCGATAACTGGGCTATCGATCAGATTGAGGCGCTTGCTAAGACCGCCAGG <u>TAAG</u> hrAlaThrAspAsnTrpAlaIleAspGlnIleGluAlaLeuAlaLysThrAlaArg	2040
	AAGATCCCCGATTCTTTTCCTTCTTGTGCAATGGATGCTGACAACATGCTAGTGTCTCTC Intron#5 ValSerL	2100
2103	TTGTCTTTGTCAACGCCGACTCTGGTGAGGGTTACATCAATGTGGACGGAAACCTGGGTG euValPheValAsnAlaAspSerGlyGluGlyTyrIleAsnValAspGlyAsnLeuGlyA	2160
2161	ACCGCAGGAACCTGACCCTGTGGAGGAACCGCGATAATGTGATCAAGGCTGCTGCTAGCA spArgArgAsnLeuThrLeuTrpArgAsnArgAspAsnVallleLysAlaAlaAlaSerA	2220
2283	ACCACAACCCCAATGTTACCGCTATCCTCTGGGGTGGTTTGCCCGGTCAGGAGTCTGGCA snHisAsnProAsnValThrAlaIleLeuTrpGlyGlyLeuProGlyGlnGluSerGlyA	2340
2341	1 ACTCTCTTGCCGACGTCCTCTATGGCCGTGTCAACCCCGGTGCCAAGTCGCCCTTTACCT snSerLeuAlaAspValLeuTyrGlyArgValAsnProGlyAlaLysSerProPheThrT	2400
2403	l GGGGCAAGACTCGTGAGGCCTACCAAGACTACTTGGTCACCGAGCCCCAACAACGGCAACG rpGlyLysThrArgGluAlaTyrGlnAspTyrLeuValThrGluProAsnAsnGlyAsnG	2460
246	1 GAGCCCCTCAGGAAGACTTTGTCGAGGGGCGTCTTCATTGACTACCGTGGATTTGACAAGC lyAlaProGlnGluAspPheValGluGlyValPheIleAspTyrArgGlyPheAspLysA	2520
252	<pre>1 GCAACGAGACCCCGATCTACGAGTTCGGCTATGGTCTGAGCTACGCCACTTTCAACTACT rgAsnGluThrProIleTyrGluPheGlyTyrGlyLeuSerTyrAlaThrPheAsnTyrS</pre>	2580
258	1 CGAACCTTGAGGTGCAGGTGCTGAGCGCCCCCTGCATACGAGCCTGCTTCGGGTGAGACCG erAsnLeuGluValGlnValLeuSerAlaProAlaTyrGluProAlaSerGlyGluThrG	2640
270	1 TGCAGAGAATTACCAAGTTCATCTACCCCTGGCTCAACGGTACCGATCTCGAGGCATCTT luGlnArglleThrLysPheIleTyrProTrpLeuAsnGlyThrAspLeuGluAlaSerS	2760
276	1 CCGGGGATGCTAGCTACGGGCAGGACTCCTCCGACTATCTTCCCGAGGGAGCCACCGATG erGlyAspAlaSerTyrGlyGlnAspSerSerAspTyrLeuProGluGlyAlaThrAspG	2820
	Fig. 5a (continued)	

3885

- 2821 GCTCTGCGCAACCGATCCTGCCGGTGGCGGTGCCGGCGGCAACCCTCGCCTGTACG 2880 <u>lySerAlaGlnProIleLeuProAlaGlyGlyGlyProGlyGlyAsnPro</u>ArgLeuTyrA
- 2881 ACGAGCTCATCCGCGTGTCAGTGACCATCAAGAACACCGGCAAGGTTGCTGGTGATGAAG 2940 spGluLeuIleArgValSerValThrIleLysAsnThrGlyLysValAlaGlyAspGluV
- 2941 TTCCCCAACTGGTAAGTAAACATGAGGTCCGAACGAGGTTGAACAAAGCTAATCAGTCGC 3000 alProGlnLeu Intron#6
- 3001 AGTATGTTTCCCTTGGCGGTCCCAATGAGCCCCAAGATCGTGCTGCGTCAATTCGAGCGCA 3060 TyrValSerLeuGlyGlyProAsnGluProLysIleValLeuArgGlnPheGluArgI
- 3061 TCACGCTGCAGCCGTCGGAGGAGGAGACGAAGTGGAGCACGACTCTGACGCGCCGTGACCTTG 3120 leThrLeuGlnProSerGluGluThrLysTrpSerThrThrLeuThrArgArgAspLeuA
- 3121 CAAACTGGAATGTTGAGAAGCAGGACTGGGAGATTACGTCGTATCCCAAGATGGTGTTTG 3180 laAsnTrpAsnValGluLysGlnAspTrpGluIleThrSerTyrProLysMetValPheV
- 3181 TCGGAAGCTCCTCGCGGAAGCTGCCGCTCCGGGCGTCTCTGCCTACTGTTCACTAAATAG 3240 alGlySerSerSerArgLysLeuProLeuArgAlaSerLeuProThrValHis***
- 3241 CTCTCAAATGGTATACCATGATGGCCGTGGTATATGAATTAATGATTTATGCCAACAGCA 3300
- 3301 AGACCACTGTAGATGTAGATGTAGAATGAGTATGAGTATGCGTAGTAGCGTGTAGATGATGATGATAC 3360
- 3361 AAGCGATCCGACACATGGTAGGAAGAGTGGCGCTAGTTGGGGCGGAAACCAAGCGACGTC 3420
- 3421 ATCCGCTGCCGACTTCGCCAGTCTTTCTTTTTTCCTCTTCAGCCTTCTTCCTCCGCTTA 3480
- 3481 ATCCAGCAACCATTGCCAATTGCCTCTACAACAACTAATTGCCATAATACTCTACTCCTA 3540
- 3541 TTCAATATATACACCACAATCTCGACATAATCACACAAGCCTGAACACCAGAGCAACCAT 3600
- 3601 GCCCTCTCCCGATCCTCCAGCCCCAGCGATACGACCCTTCCAACCACCACCATAACAGCGCT 3660
- 3661 CCTCATCTACCCAGCGACCCTAATCGTGGGATCACTCTTCTCCGTCCTCTCCCACCGC 3720
- 3781 GTCCATCGCGTCAGACCTCAACCTCTECTTTCCTCCGCCGCGCCCCGTCAACTACTTCGC 3840
- 3841 TCGCAAAGACAACATCTTCAATCTATATTCGTCAAAGTCGGC

Fig. 5a (continued)

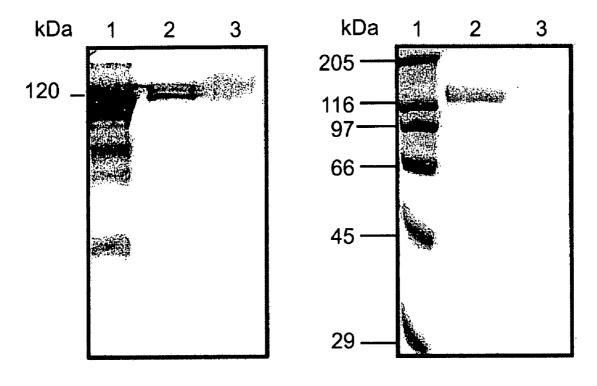


Figure 6B

Figure 6A

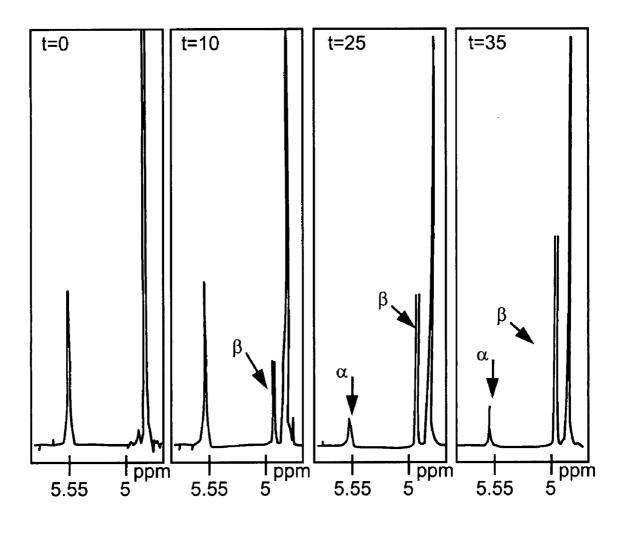
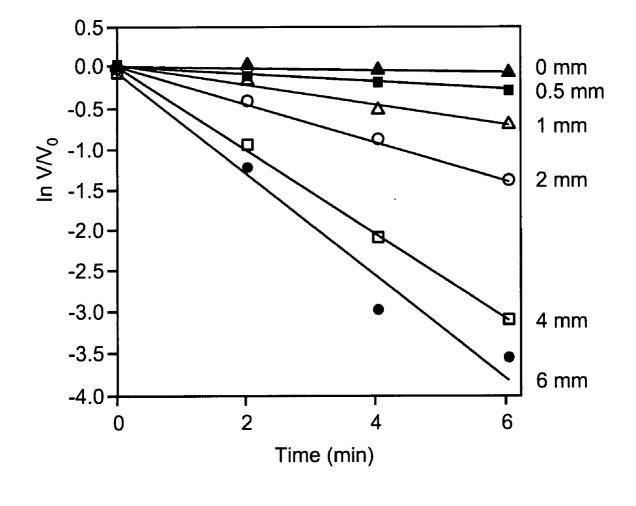


Fig. 7



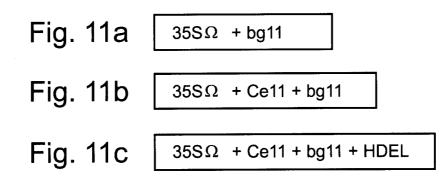
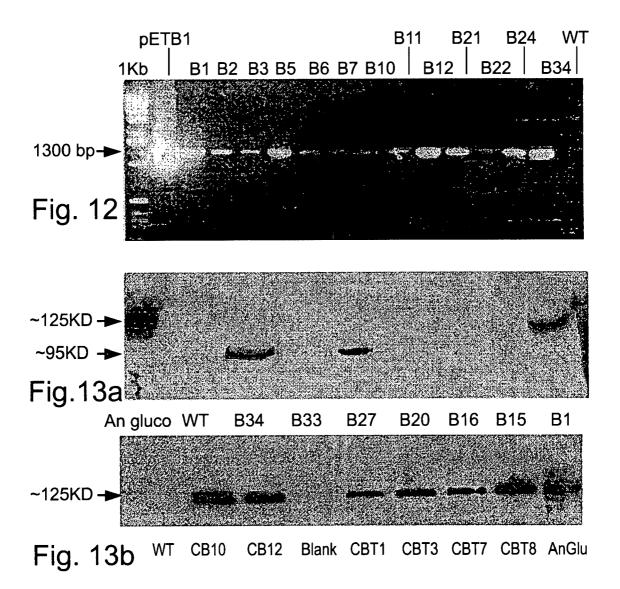
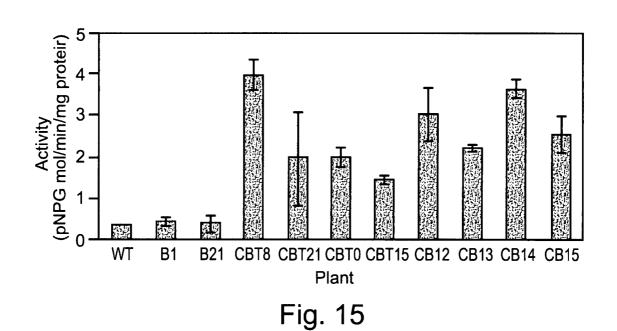



Fig. 8



WT CB10 CB11 CBT3 CBT8 CBT15 B1 B34 An Glu

Fig. 14

METHOD OF PRODUCING RECOMBINANT ASPERGILLUS NIGER BETA-GLUCOSIDASE AND AN AROMA SPREADING PLANT

RELATED APPLICATIONS

[0001] This application is a continuation of pending U.S. patent application Ser. No. 10/130,150 filed May 16, 2002, which is a U.S. National Phase of PCT Patent Application No. PCT/IL00/00758 filed Nov. 15, 2000, which is a continuation of U.S. patent application Ser. No. 09/443,338 filed Nov. 19, 1999, now abandoned. The contents of the above Applications are incorporated herein by reference.

FIELD AND BACKGROUND OF THE INVENTION

[0002] The present invention relates to a polypeptide having β -glucosidase enzymatic activity, to a polynucleotide encoding the polypeptide, to nucleic acid constructs carrying the polynucleotide, to transformed or infected cells, such as yeast cells, and organisms expressing the polynucleotide and to various uses of the polypeptide, the polynucleotide, cells and/or organisms, including, but not limited to, producing a recombinant polypeptide having β -glucosidase enzymatic activity, increasing the level of aroma compounds in alcoholic beverages, as well as other fermentation products of plant material, hydrolyzing cellobiose and thus increasing the level of fermentable glucose, to increase production of alcohol, such as ethanol from plant material, increasing the aroma released from a plant or a plant product, and hydrolysis or transglycosylation of glycosides.

[0003] Abbreviations used herein include: BGL1—*Aspergillus niger* B1 β -glucosidase; bgl1—a cDNA encoding same; 2FGlcF—2-deoxy-2-fluoro β -glucosyl fluoride; DNP—2,4-dinitrophenol; DNPGlc—2,4-dinitrophenyl β -D-glucopyranoside; pNP—p-nitrophenol; pNPGlc—p-nitrophenyl β -D-glucopyranoside; MUGlc—4-methylumbe-liferyl- β -D-glucopyranoside; YNB—yeast nitrogen base without amino acids; and X-glu—5-bromo-4-chloro-3-in-dolyl β -D-glucopyranoside.

[0004] β -Glucosidases (EC 3.2.1.21; β -D-glucoside glucohydrolase) play a number of different important roles in biology, including the degradation of cellulosic biomass by fungi and bacteria, degradation of glycolipids in mammalian lysosomes and the cleavage of glucosylated flavonoids in plants. These enzymes are therefore of considerable industrial interest, not only as constituents of cellulose-degrading systems, but also in the food industry (2, 3).

[0005] Aspergillus species are known as a useful source of β -glucosidases (4-6), and Aspergillus niger is by far the most efficient producer of β -glucosidase among the microorganisms investigated (4). Shoseyov et al. (7) have previously described a β -glucosidase from Aspergillus niger B1 (CMI CC 324626) which is active at low pHs, as well as in the presence of high ethanol concentrations. This enzyme effectively hydrolyzes flavor-compound glycosides in certain low-pH products, such as wine and passion fruit juice, thereby enhancing their flavor (8-12), and is particularly attractive for use in the food industry, as *A. niger* is considered non-toxic (3). In addition, β -glucosidase was found useful in enzymatic synthesis of glycosides (13-15). Other *A. niger* β -glucosidases have also been purified (16-18), however, differences in their properties have been reported,

including ranges of molecular weights (116-137 kDa), isoelectric points (pI values of 3.8-4) and pH optima (3.4-4.5). Indeed, at least two β -glucosidases, with distinct substrate specificities, have been identified in commercial *A. niger* β -glucosidase preparations (19). Attempts to clear this confusion by cloning and expression of a functional *A. niger* α -glucosidase gene in *S. cerevisiae* has been previously reported (20), however the protein was not characterized, and the sequence was not published.

[0006] Glycosidases have been assigned to families on the basis of sequence similarities, there now being some 77 different such families defined containing over 2,000 different enzymes (21, see also the CAZy (Carbohydrate Active EnZymes) website, at the Architecture of Fonction de Macromolecules Biologiques of the Centre National de la Recherche Scientifique website. With the exception of the glucosylceramidases (Family 30), all simple β -glucosidases belong to either Family 1 or 3. Family 1 contains enzymes from bacteria, plants and mammals, including also 6-phospho-glucosidases and thioglucosidases. Furthermore, most Family 1 enzymes also have significant galactosidase activity. Family 3 contains β -glucosidases and hexosaminidases of fungal, bacterial and plant origin. Enzymes of both families hydrolyze their substrates with net retention of anomeric configuration, presumably via a two-step, doubledisplacement mechanism, involving two key active site carboxylic acid residues (for reviews of mechanism, see 22-24). In the first step, one of the carboxylic acids (the nucleophile) attacks at the substrate anomeric center, while the other (the acid/base catalyst) protonates the glycosidic oxygen, thereby assisting the departure of the aglycone. This results in the formation of a covalent α -glycosyl-enzyme intermediate. In a second step this intermediate is hydrolyzed by general base-catalyzed attack of water at the anomeric center of the glycosyl-enzyme, to release the β-glucose product and regenerate free enzyme. Both the formation and the hydrolysis of this intermediate proceed via transition states with substantial oxocarbenium ion character.

[0007] Given that Family 3 contains fungal enzymes of similar mass, including those from other Aspergillus sp., it is likely that the Aspergillus niger β -glucosidase would be a member of this family. Mechanistic information on this family is relatively sparse: the best characterized being the glycosylated 170 kDa β-glucosidase from Aspergillus wentii. By labeling the active site with conducitol B-epoxide, this enzyme was shown to carry out hydrolysis, with net retention of anomeric configuration. This study has demonstrated that the labeled aspartic acid residue was the same as that derivatized by the slow substrate D-glucal (1, 25). Furthermore, it was shown that the 2-deoxyglucosyl-enzyme, trapped by use of D-glucal, was kinetically identical to that formed during the hydrolysis of PNP-2-deoxy-β-Dglucopyranoside (26). Further detailed kinetic analysis of the enzyme was performed by Legler et al. (27), including measurement of Hammett relationships, kinetic isotope effects and studies of the binding of potent reversible inhibitors, such as gluconolactone and nojirimycin.

[0008] While reducing the present invention to practice, the β -glucosidase protein was isolated from *Aspergillus niger*, purified, cloned, sequenced, expressed in yeast host cells and its enzymatic function characterized. In addition, the protein as well as signal peptide fused thereto and

optionally an endoplasmic reticulum retaining peptide fused thereto were expressed in transgenic plants and the release of aroma substances therefrom following homogenization monitored. The enzyme encoded by the isolated gene, as described above, is of known usefulness in plant and/or plant products, as well as in biotechnological processes, including the food industry. Several unexpected advantages were uncovered, including, but not limited to, pH and temperature stability of the β -glucosidase from *Aspergillus niger*, requirement for a signal peptide for obtaining catalytic activity when expressed in plants. Advantage for an endoplasmic retaining peptide or for a lack thereof when expressed in plants, depending on the application.

SUMMARY OF THE INVENTION

[0009] According to one aspect of the present invention there is provided an isolated nucleic acid comprising a genomic, complementary or composite polynucleotide preferably being derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide.

[0010] According to another aspect of the present invention there is provided a recombinant protein comprising a polypeptide having a β -glucosidase catalytic activity, the polypeptide is preferably derived from *Aspergillus niger* and it preferably fused to a signal peptide and optionally also to an endoplasmic reticulum retaining peptide.

[0011] According to yet another aspect of the present invention there is provided a nucleic acid construct comprising the isolated nucleic acid described herein.

[0012] According to still another aspect of the present invention there is provided host cell or an organism, such as a plant, comprising the nucleic acid or nucleic acid construct described herein.

[0013] According to further features in preferred embodiments of the invention described below, the polynucleotide is as set forth in SEQ ID NOs:1, 3 or a portion thereof.

[0014] According to still further features in the described preferred embodiments, the nucleic acid construct further comprising at least one cis acting control element for regulating expression of the polynucleotide.

[0015] According to still further features in the described preferred embodiments, the host cell is selected from the group consisting of a prokaryotic cell and a eukaryotic cell.

[0016] According to still further features in the described preferred embodiments the prokaryotic cell is *E. coli*.

[0017] According to still further features in the described preferred embodiments the eukaryotic cell is selected from the group consisting of a yeast cell, a fungous cell, a plant cell and an animal cell.

[0018] According to still further features in the described preferred embodiments the polypeptide is as set forth in SEQ ID NO: 2 or a portion thereof having the β -glucosidase catalytic activity.

[0019] According to an additional aspect of the present invention there is provided a method of producing recombinant β -glucosidase, the method comprising the step of introducing, in an expressible form, a nucleic acid construct

into a host cell, the nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide.

[0020] According to further features in preferred embodiments of the invention described below, the method further comprising the step of extracting the polypeptide having the β -glucosidase catalytic activity.

[0021] According to yet an additional aspect of the present invention there is provided a method of producing a recombinant β -glucosidase overexpressing cell, the method comprising the step of introducing, in an overexpressible form, a nucleic acid construct into a host cell, the nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide.

[0022] According to still an additional aspect of the present invention there is provided a method of increasing a level of at least one fermentation substance in a fermentation product, the method comprising the step of fermenting a glucose containing fermentation starting material by a yeast cell overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide being preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide, thereby increasing the level of the at least one fermentation substance in the fermentation product.

[0023] According to a further aspect of the present invention there is provided a method of increasing a level of at least one fermentation substance in a fermentation product, the method comprising the step of fermenting a plant derived glucose containing fermentation starting material by a yeast cell, the plant overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide, thereby increasing the level of the at least one fermentation substance in the fermentation product.

[0024] According to a further aspect of the present invention there is provided a method of increasing a level of at least one aroma substance in a plant derived product, the method comprising the step of incubating a glucose containing plant starting material with a yeast cell overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide, thereby increasing the level of the at least one aroma substance in the plant derived product.

[0025] According to yet a further aspect of the present invention there is provided a method of increasing a level of at least one aroma substance in a plant derived product, the

method comprising the step of incubating a glucose containing plant starting material with a yeast cell, said plant overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide, thereby increasing the level of the at least one aroma substance in the plant derived product.

[0026] According to still further features in the described preferred embodiments the plant derived product is a fermentation product, such as, but not limited to, an alcoholic beverage.

[0027] According to still a further aspect of the present invention there is provided a method of increasing a level of free glucose in a glucose containing fermentation starting material, the method comprising the step of fermenting the glucose containing fermentation starting material by a cell overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide, thereby increasing the level of the free glucose in the glucose containing fermentation starting material.

[0028] According to another aspect of the present invention there is provided a method of increasing a level of free glucose in a plant derived glucose containing fermentation starting material, the method comprising the step of fermenting the plant derived glucose containing fermentation starting material by a cell, the plant overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide, thereby increasing the level of the free glucose in the plant.

[0029] According to yet another aspect of the present invention there is provided a method of increasing a level of free glucose in a plant, the method comprising the step of overexpressing in the plant a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide, thereby increasing the level of the free glucose in the plant.

[0030] According to still another aspect of the present invention there is provided a method of producing an alcohol, the method comprising the step of fermenting a glucose containing fermentation starting material by a cell overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide, and extracting the alcohol therefrom.

[0031] According to an additional aspect of the present invention there is provided a method of producing an

alcohol, the method comprising the step of fermenting a plant derived glucose containing fermentation starting material by a cell, the plant overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide, and extracting the alcohol therefrom.

[0032] According to an additional aspect of the present invention there is provided a method of producing an aroma spreading plant, the method comprising the step of overexpressing in the plant a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity and preferably further encoding, in frame, a signal peptide and an endoplasmic reticulum retaining peptide, thereby increasing aroma spread from the plant.

[0033] According to further features in preferred embodiments of the invention described below, overexpressing the nucleic acid construct is performed in a tissue specific manner.

[0034] According to still further features in the described preferred embodiments overexpressing the nucleic acid construct is limited to at least one tissue selected from the group consisting of flower, fruit, seed, root, stem, pollen and leaves.

[0035] The present invention successfully addresses the shortcomings of the presently known configurations by providing a polypeptide having β-glucosidase enzymatic activity, a polynucleotide encoding the polypeptide, a nucleic acid constructs carrying the polynucleotide, transformed or infected cells, such as yeast cells, and organisms expressing the polynucleotide and various uses of the polypeptide, the polynucleotide, cells and/or organisms, including, but not limited to, producing a recombinant polypeptide having β-glucosidase enzymatic activity, increasing the level of aroma compounds in alcoholic beverages, as well as other fermentation products of plant material, hydrolyzing cellobiose and thus increasing the level of fermentable and/or free glucose, to increase production of a fermentation product, such as ethanol from plant material, increasing the aroma released from a plant or a plant product, and hydrolysis or transglycosylation of glycosides.

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.

[0037] In the drawings:

[0038] FIGS. 1*a-c* demonstrate plasmid maps employed as expression vectors for bgl1 cDNA. FIG. 1*a*—*E. coli* expression vector containing bgl1 cDNA, inserted into the Ncol/ BamHI sites of pET3d. FIG. 1*b*—*S. cerevisiae* expression vector containing bgl1 cDNA, inserted into the HindIII/ BamHI sites of pYES2-bgl1 plasmid. FIG. 1*c*—*P. pastoris* expression vector containing bgl1 cDNA, inserted into the EcoRI/BamHI sites of pHIL-S1.

[0039] FIGS. 2*a*-*b* demonstrates SDS-PAGE analysis of active protein samples eluted from a MONO-QTM (Amersham Biosciences Inc, Piscatawy, N.J.) anion exchange column, stained with coomassie blue (FIG. 2*a*), or β -glucosidase zymogram (FIG. 2*b*) using MUGIc as a substrate. Lanes (for both FIGS. 2*a* and 2*b*): 1—Electroeluted band of BGL1 from preparative PAGE-SDS gel stabs; 2, 3, 4, 5—acetone precipitates from MONO-QTM (Amersham Biosciences Inc, Piscatawy, N.J.) anion exchange column separation of BGL1.

[0040] FIG. **3** demonstrates SDS-PAGE analysis of purified β -glucosidase by MONO-QTM (Amersham Biosciences Inc, Piscatawy, N.J.) anion exchange and RESOURCE-STM (Amersham Biosciences Inc, Piscatawy, N.J.) cation exchange columns. Lanes: 1—crude (27.5 µg protein); 2—active fraction after MONO-QTM (Amersham Biosciences Inc, Piscatawy, N.J.) anion exchange (7 µg protein); and 3—active fraction after RESOURCE-STM (Amersham Biosciences Inc, Piscatawy, N.J.) cation exchange column (10 µg protein).

[0041] FIG. 4 demonstrates SDS-PAGE analysis of β -glucosidase deglycosylated by N-glycosidase-F. Lanes: 1—molecular weight marker; 2—native β -glucosidase; and 3—deglycosylated protein.

[0042] FIG. 5*a* demonstrates the DNA (SEQ ID NO: 3) and amino acid (SEQ ID NO: 2) sequences of bgl1. Amino acid sequences determined by Edman degradation are underlined. DNA sequences of introns are underlined. Signal peptide is indicated by italic letters.

[0043] FIG. 5*b*. demonstrates bgl1 gene organization. Exons (E1-7) are indicated by filled boxes, introns by solid lines, restriction sites and the stop codon by arrows.

[0044] FIG. **6***a* demonstrates a Western blot analysis of recombinant BGL1 expressed in S. cerevisiae. Lanes: 1—native BGL1 (positive control); 2—total protein extract of *S. cerevisiae* expressing recombinant BGL1; 3—total protein extract of *S. cerevisiae* without the bgl1 expression vector (negative control).

[0045] FIG. **6***b* demonstrates a Western blot analysis of recombinant BGL1 secreted from *P. pastoris*. Lanes: 1—molecular weight marker; 2—medium supernatant of *P. pastoris* expressing recombinant BGL1; 3—medium supernatant of *P. pastoris* host without the vector (negative control).

[0046] FIG. **7** demonstrates proton-NMR spectra, illustrating the stereochemical course of pNPGlc hydrolysis by *A. niger* β -glucosidase. Spectra are for the anomeric proton region of the substrate at different time intervals relative to addition of the enzyme.

[0047] FIG. 8 demonstrates inactivation of recombinant BGL1 by 2FGlcF. Pure enzyme was incubated in the presence of various concentrations of the inactivator, and residual enzyme activity was determined at different time intervals. Residual activity is presented, semilogarithmically, versus time, in the presence of the indicated concentrations of inactivator.

[0048] FIG. **9** demonstrates reactivation of 2-deoxy-2-fluoroglucosyl-recombinant BGL 1 by linamarin. Activity is plotted versus incubation time in the presence of the indicated concentrations of linamarin.

[0049] FIG. **10** demonstrates the stability of recombinant *A. niger* β -glucosidase at various temperatures. Activity is calculated as percent of a recombinant enzyme solution kept at 4° C.

[0050] FIGS. **11***a*-*c* show schematic depictions of expression cassettes used for expression of *A. niger* β -glucosidase in tobacco plants. FIG. **11***a*—a cassette encoding BGL1 without a signal peptide (see, SEQ ID NO:13 for the nucleotide sequence and SEQ ID NO:14 for the amino acid sequence); FIG. **11***b*—a cassette encoding a BGL1 fused to a Cell signal peptide for secretion into the apoplast (see, SEQ ID NO:16 for the amino acid sequence); and FIG. **11***c*—a cassette encoding a BGL1 fused to Cell signal peptide as in FIG. **11***b* and in addition to HDEL (SEQ ID NO:17) ERretaining peptide at the C-terminus for accumulation in the ER (see, SEQ ID NO:18 for the nucleotide sequence and SEQ ID NO:19 for the amino acid sequence).

[0051] FIG. 12 demonstrate PCR amplification results of bgl1 cDNA indicating the presence of bgl1 cDNA in transgenic plants. CB10 and CB11—transgenic plants transformed with bg1 and Cel1 signal peptide without HDEL, SEQ ID NO:17 ER retaining peptide. CBT3, CBT8 and CBT15—different transgenic lines transformed with bgl1, Cel1 signal peptide and HDEL, SEQ ID NO:17. B1—a transgenic plants transformed with bgl1. 1 kb-1 kb DNA marker. WT—wild type non transgenic plant. pETB1-bgl1 plasmid DNA.

[0052] FIGS. 13*a-b* show Western blot analyses of transgenic plants containing BGL1 without signal peptide (13a), and BGL1 with Cell signal peptide (13b), with and without HDEL, SEQ ID NO:17 ER retaining peptide. An glucopurified *A. niger* beta-glucosidase. WT—nontransgenic control plant. B1, B15, B16, B20, B27, B33 and B34—different transgenic lines transformed with bgl1. CBT1, CBT 3, CBT 7 and CBT 8—different transgenic lines transformed with bgl1, Cell signal peptide and HDEL, SEQ ID NO:17. CB10 and CB12—transgenic plants transformed with bgl1 and Cell signal peptide without HDEL, SEQ ID NO:17 ER retaining peptide.

[0053] FIG. 14 show activity gel analysis of transgenic tobacco plant extracts in SDS-PAGE incubated with MUGlu. WT—non-transgenic control plant. CB10 and CB11—two independent lines of transgenic plants expressing BGL1 fused to Cel1 signal peptide (without HDEL, SEQ ID NO:17). CBT3, CBT8 and CBT15—independent lines of transgenic plants expressing BGL1 fused to Cel1 signal peptide at the N terminus and HDEL, SEQ ID NO:17 ER retaining peptide at the C terminus. B1 and B34—transgenic plant expressing BGL1 without signal peptide or HDEL, SEQ ID NO:17 ER retaining peptide at the C terminus peptide and which were positive for BGL1 protein in Western blot analysis. An Glu-control *A. niger* native beta-glucosidase.

[0054] FIG. 15 demonstrates level of BGL1 activity in different transgenic plants. WT—non-transgenic control plant. B1 and B21—transgenic plants expressing BGL1 without signal peptide or HDEL, SEQ ID NO:17 ER retaining peptide and which were positive for BGL1 in Western blot analysis. CBT8, CBT21, CBT0 and CBT15—independent lines of transgenic plants expressing BGL1 fused to Cel1 signal peptide at the N terminus and HDEL, SEQ ID NO:17 ER retaining peptide at the C terminus. CB12, CB13, CB14 and CB15—four independent lines of transgenic plants expressing BGL1 fused to Cel1 signal peptide (without HDEL, SEQ ID NO:17).

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0055] The present invention is of a polypeptide having β -glucosidase enzymatic activity, a polynucleotide encoding the polypeptide, a nucleic acid constructs carrying the polynucleotide, transformed or infected cells, such as yeast cells, and organisms expressing the polynucleotide and various uses of the polypeptide, the polynucleotide, cells and/or organisms, including, but not limited to, producing a recombinant polypeptide having the β -glucosidase enzymatic activity, increasing the level of aroma compounds in alcoholic beverages, as well as other fermentation products of plant material, hydrolyzing cellobiose and thus increasing the level of fermentable glucose, increasing the production

of alcohol, such as ethanol from plant material, increasing the aroma released from a plant or a plant product, and hydrolysis or transglycosylation of glycosides.

[0056] The principles and operation of the present invention may be better understood with reference to the drawings and accompanying descriptions.

[0057] Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of the components set forth in the following description or exemplified in the examples that follow. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.

[0058] According to one aspect of the present invention there is provided an isolated nucleic acid comprising a genomic, complementary or composite polynucleotide encoding a polypeptide having a β -glucosidase catalytic activity. Preferably the polynucleotide is derived from *Aspergillus niger*, however other sources are applicable. These include all isolated polynucleotides encoding polypeptide having β -glucosidase catalytic activity. Such polynucleotides and polypeptides identified by their Gen-Bank Accession Nos. are listed in Table 1 below, all of which can be used while implementing the present invention.

TABLE 1

	Accession numbers of cDNA an encoded beta-glucosidases (EC.3.	
Organism	SWISS-PROT	EMBL
Acetobacter xylinus	O24749	AB003689; AB010645
Agrobacterium sp.	P12614	M19033; AAA22085.1
Agrobacterium tumefaciens	P27034	M59852; AAA22082.1
Arabidopsis thaliana	082772, 024433, 023656	AF082157; AF082158; AC009327; U72153; U72155
		AC020665; AC066691
Aspergillus aculeatus	P48825	D64088, BAA10968.1
Aspergillus kawachi	P87076	AB003470
Aspergillus niger B1		AJ132386; CAB75696.1
Aspergillus niger AMS1	O9P456	AF268911
Avena sativa	Q38786, Q9ZP27	X78433; AF082991
Azospirillum irakense		AF090429; AAF21798.1
Bacillus circulans	Q03506	M96979; AAA22266.1
Bacillus sp. GL1	Q9ZNN7	AB009411; BAA36161.1; AB009410
Bacillus polymyxa	P22073, P22505	M60210; M60211
Bacillus subtilis	P40740	Z34526; CAA84287.1
Bacillus subtilis	P42403	D30762; BAA06429.1
Bacteroides fragilis	O31356	AF006658; AAB62870.1
Bifidobacterium breve	P94248, O08487	D84489: D88311
Botryotinia fuckeliana	17 12 10, 000 107	AJ130890; CAB61489.1
Brassica napus	Q42618	X82577
Brassica nigra	024434	U72154
Butyrivibrio fibrisolvens	P16084	M31120; AAA23008.1
Caldocellum saccharolyticum	P10482	X12575; CAA31087.1
Caldicellulosiruptor sp. 14B	Q9ZEN0	AJ131346
Candida wickerhamii	Q12601	U13672
Cavia porcellus	P97265	U50545
Cellulomonas biazotea	O51843	AF005277; AAC38196.1
Cellulomonas fimi	Q46043	M94865
Cellvibrio gilvus	P96316	D14068; BAA03152.1
Chryseobacterium	O30713	AF015915
meningosepticum		
Clostridium stercorarium	O08331	Z94045
Clostridium thermocellum	P26208	X60268; CAA42814.1
Clostridium thermocellum	P14002	X15644; CAA33665.1

	cession numbers of cDN oded beta-glucosidases (I	
Organism	SWISS-PROT	EMBL
Coccidioides immitis	O14424	U87805; AF022893
Costus speciosus	Q42707	D83177
Dalbergia cochinchinensis	Q9SPK3	AF163097
Dictyostelium discoideum	Q23892 Q9ZPB6	L21014 AJ133406
Digitalis lanata Erwinia chrysanthemi	Q46684	U08606; AAA80156.1
Erwinia herbicola	Q59437	X79911; CAA56282.1
Escherichia coli	P33363	U15049; AAB38487.1
scherichia coli K12/MG1655	E65074, Q46829	U28375; AE000373
Glycine max		AF000378; AAD09291.1
Hansenula anomala	P06835	X02903; CAA26662.1
Homo sapiens		AJ278964; CAC08178.1
Hordeum vulgare	Q40025	L41869
Humicola grisea var. thermoidea	O93784	AB003109
Kluyveromyces marxianus	P07337	X05918; CAA29353.1
Lactobacillus plantarum	O86291	Y15954; AJ250202; CAB71149.1
Manihot esculenta	Q40283	X94986
Microbispora bispora	P38645	M97265; AAA25311.1
Nicotiana tabacum	O82151	AB017502; BAA33065.1
Orpinomyces sp. PC-2	042075	AF016864; AAD45834.1
Oryza sativa Paavihaaillus polymyra	Q42975 P22073	U28047 M60210: A A A 22263 1
Paenibacillus polymyxa Paenibacillus polymyxa	P22505	M60210; AAA22263.1 M60211; AAA22264.1
Paenibacillus polymyxa Phaeosphaeria avenaria	r 22303	AJ276675; CAB82861.1
Phanerochaete chrysosporium	O74203	AF036872; AF036873
Pichia anomala (Candida	P06835	X02903
pelliculosa)	100035	1102903
Pinus contorta		AF072736; AAC696.1
Polygonum tinctorium		AB003089; BAA78708.1
Prunus avium	Q43014	U39228
Prunus serotina	Q43073, Q40984	U50201; U26025
Prevotella albensis M384		AJ276021; CAC07184.1
Prevotella ruminicola	Q59716	U35425
Pyrococcus furiosus	Q51723	AF013169; U37557
Ruminococcus albus	P15885 O66050	X15415; CAA33461.1 U92808
Saccharomycopsis fibuligera	P22506	M22475; AAA34314.1
Saccharomycopsis fibuligera	P22507	M22476; AAA34315.1
Saccharopolyspora erythraea	O70021	Y14327
Salmonella typhimurium	Q56078	D86507; BAA13102.1
Schizophyllum commune	P29091	M27313; AAA33925.1
Schizosaccharomyces pombe		AL355920; CAB91163.1
Secale cereale	000224	AF293849; AAG00614.1
Septoria lycopersici Sorghum bicolor	Q99324 Q41290	U24701; U35462 U33817
Sorgnum Ucolor Spodoptera frugiperda	Q41290 O61594	AF052729
Streptomyces coelicolor A3(2)	001554	AL121596; CAB56653.1
Streptomyces reticuli	Q9X9R4	AJ009797
Streptomyces rochei A2	Q55000	X74291
Streptomyces sp. QM-B814	Q59976	Z29625
Thermoanaerobacter brockii	P96090, Q60026	Z56279; Z56279
Thermobifida fusca ER1	/	AF086819; AAF37727.1
Thermococcus sp.	O08324	Z70242
Thermotoga maritima	Q08638	X74163; CAA52276.1
Thermotoga neapolitana	O33843, Q60038	Z97212; Z77856; CAB10165.1
Thermus sp. Z-1	Q9RA58	AB034947
Thermus thermophilus	Q9X9D4	Y16753
Trichoderma reesei (Hypocrea	Q12715,	U09580; AAA18473.1,
Jecorina)	O93785	AB003110
Trifolium repens	P26204	X56734; CAA40058.1
Trifolium repens	P26205	X56733; CAA40057.1
Tropaeolum majus	O82074	AJ006501; CAA07070.1
Zea mays	P49235, Q41761	X74217, U25157; CAA52293.1
Unidentified heat-	060055	U33816, U44087, U44773
Unidentified bacterium	Q60055	U12011

TABLE 1-continued

[0059] As used herein in the specification and in the claims section that follows, the term "isolated" refers to a biological component (such as a nucleic acid or protein or organelle) that has been substantially separated or purified

away from other biological components in the cell of the organism in which the component naturally occurs, i.e., other chromosomal and extra-chromosomal DNA and RNA, proteins and organelles. Nucleic acids and proteins that have been "isolated" include nucleic acids and proteins purified by standard purification methods. The term also embraces nucleic acids and proteins prepared by recombinant expression in a host cell as well as chemically synthesized nucleic acids.

[0060] As used herein and in the claims section that follows the terms and phrases "polynucleotide" and "polynucleotide sequence" are used interchangeably and refer to a nucleotide sequence which can be DNA or RNA of, for example, genomic or synthetic origin, which may be singleor double-stranded, and which may represent the sense or antisense strand. Similarly, the terms "polypeptide" and "polypeptide sequence" are interchangeably used herein and refer to an amino acid sequence of any length.

[0061] As used herein in the specification and in the claims section that follows, the phrase "complementary polynucleotide sequence" includes sequences, which originally result from reverse transcription of messenger RNA using a reverse transcriptase or any other RNA dependent DNA polymerase. Such sequences can be subsequently amplified in vivo or in vitro using a DNA dependent DNA polymerase.

[0062] As used herein in the specification and in the claims section that follows, the phrase "genomic polynucleotide sequence" includes sequences which originally derive from a chromosome and reflect a contiguous portion of a chromosome.

[0063] As used herein in the specification and in the claims section that follows, the phrase "composite polynucleotide sequence" includes sequences which are at least partially complementary and at least partially genomic. A composite sequence can include some exonal sequences required to encode the polypeptide having the β -glucosidase catalytic activity, as well as some intronic sequences interposing therebetween. The intronic sequences can be of any source, including of other genes, and typically will include conserved splicing signal sequences. Such intronic sequences may further include cis acting expression regulatory elements, as hereinbelow described.

[0064] As used herein in the specification and in the claims section that follows, the phrase "having a β -glucosidase catalytic activity" refers to a polypeptide sequence, protein or fragments thereof capable of serving as catalysts to a chemical reaction involving hydrolysis of the O-glycosidic bond of glucosides, the result of which is the release of a β -D-glucose residue(s), or an aglycon, in addition to the β -D-glucose residue. Specifically, hydrolysis by retaining enzymes is performed while maintaining the β -configuration of the anomeric center of the carbohydrate. A wide specificity for β -glucosides exists, thus, some examples also hydrolyze one or more of the following: β -D-glucosides, α -L-arabinosides, β -D-xylosides, and β -D-fucosides.

[0065] As used herein the term "catalyst" refers to a substance that accelerates a chemical reaction, but is not consumed or changed permanently thereby.

[0066] As used herein the term "glucoside" refers to a compound of at least two monomers, at least one of which is a glucose, including a glycoside bond. Examples of glucosides include, but are not limited to, glucose containing backbones, such as the diglucose cellobiose, and the glucose polymer, cellulose.

[0067] According to preferred embodiments, the polynucleotide according to this aspect of the present invention encodes a polypeptide as set forth in SEQ ID NO:2 or a portion thereof which retains β -glucosidase catalytic activity.

[0068] Alternatively or additionally, the polynucleotide according to this aspect of the present invention is as set forth in SEQ ID NO:1, 3 or a portion thereof, the portion encodes a polypeptide retaining β -glucosidase catalytic activity.

[0069] In a broader aspect the polynucleotides according to the present invention encode a polypeptide which is at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or more, say 95%-100% homologous to SEQ ID NO:2 as determined using the BestFit software of the Wisconsin sequence analysis package, utilizing the Smith and Waterman algorithm, where gap creation penalty equals 8 and gap extension penalty equals 2.

[0070] According to preferred embodiments, the polynucleotides according to the broader aspect of the present invention encodes a polypeptide as set forth in SEQ ID NOs:1 or 3 or a portion thereof which retains activity.

[0071] Alternatively or additionally, the polynucleotides according to this broader aspect of the present invention are hybridizable with SEQ ID NOs: 1 or 3.

[0072] Hybridization for long nucleic acids (e.g., above 200 bp in length) is effected according to preferred embodiments of the present invention by stringent or moderate hybridization, wherein stringent hybridization is effected by a hybridization solution containing 10% dextrane sulfate, 1 M NaCl, 1% SDS and 5×10^6 cpm ³²P labeled probe, at 65° C, with a final wash solution of 0.2×SSC and 0.1% SDS and final wash at 65° C; whereas moderate hybridization is effected by a hybridization solution containing 10% dextrane sulfate, 1 M NaCl, 1% SDS and 5×10^6 cpm ³²P labeled probe, at 65° C, with a final wash solution of 0.2×SSC and 0.1% SDS and final wash at 65° C., with a final wash solution containing 10% dextrane sulfate, 1 M NaCl, 1% SDS and 5×10^6 cpm ³²P labeled probe, at 65° C., with a final wash solution of 1×SSC and 0.1% SDS and final wash at 50° C.

[0073] Yet alternatively or additionally, the polynucleotides according to this broad aspect of the present invention is preferably at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or more, say 95%-100%, identical with SEQ ID NOs: 1 or 3 as determined using the BestFit software of the Wisconsin sequence analysis package, utilizing the Smith and Waterman algorithm, where gap weight equals 50, length weight equals 3, average match equals 10 and average mismatch equals -9.

[0074] Thus, this broad aspect of the present invention encompasses (i) polynucleotides as set forth in SEQ ID NOs:1 or 3; (ii) fragments thereof; (iii) sequences hybridizable therewith; (iv) sequences homologous thereto; (v) sequences encoding similar polypeptides with different codon usage; (vi) altered sequences characterized by mutations, such as deletion, insertion or substitution of one or more nucleotides, either naturally occurring or man induced, either randomly or in a targeted fashion.

[0075] According to another aspect of the present invention there is provided a nucleic acid construct comprising the isolated nucleic acid described herein.

[0076] According to a preferred embodiment, the nucleic acid construct according to this aspect of the present inven-

tion further comprising at least one cis acting control (regulatory) element for regulating the expression of the isolated nucleic acid. Such cis acting regulatory elements include, for example, promoters, which are known to be sequence elements required for transcription, as they serve to bind DNA dependent RNA polymerase, which transcribes sequences present downstream thereof. Further details relating to various regulatory elements are described hereinbelow.

[0077] While the isolated nucleic acid described herein is an essential element of the invention, it is modular and can be used in different contexts. The promoter of choice that is used in conjunction with this invention is of secondary importance, and will comprise any suitable promoter. It will be appreciated by one skilled in the art, however, that it is necessary to make sure that the transcription start site(s) will be located upstream of an open reading frame. In a preferred embodiment of the present invention, the promoter that is selected comprises an element that is active in the particular host cells of interest. These elements may be selected from transcriptional regulators that activate the transcription of genes essential for the survival of these cells in conditions of stress or starvation, including the heat shock proteins.

[0078] A construct according to the present invention preferably further includes an appropriate selectable marker. In a more preferred embodiment according to the present invention the construct further includes an origin of replication. In another most preferred embodiment according to the present invention the construct is a shuttle vector, which can propagate both in *E. coli* (wherein the construct comprises an appropriate selectable marker and origin of replication) and be compatible for propagation in cells, or integration in the genome, of an organism of choice, such as a plant. The construct according to this aspect of the present invention can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome.

[0079] According to an additional aspect of the present invention there is provided a recombinant protein comprising a polypeptide having a β -glucosidase catalytic activity. The polypeptide is preferably derived from an *Aspergillus niger* and preferably includes a signal peptide and optionally an endoplasmic reticulum retaining peptide.

[0080] According to preferred embodiments, the polypeptide according to this aspect of the present invention is as set forth in SEQ ID NO:2 or a portion thereof which retains β -glucosidase catalytic activity.

[0081] SEQ ID NO:2 of *A. niger* β -glucosidase is similar to the amino acid sequence of the β -glucosidase of *A. kawachii.* However, while the former is highly stable at wide range of temperatures and pH treatments, the latter is relatively unstable, and thus has certain disadvantages, rendering its use for the purpose of the present invention as is further detailed and described hereinunder, unfeasible and/ or much less attractive.

[0082] Recently, Iwashita and coworkers have published the sequence of a β -glucosidase (GenBank/EMBL AB003470) obtained from *Aspergillus kawachii* strain: IF04308. Sequence comparison between *Aspergillus kawachii* β -glucosidase and *A. niger* β -glucosidase revealed that the two share 98% homology. **[0083]** Enzymes of the two *Aspergillus* sp. contain seven cysteine residues and identical number of glycosylation sites, while differing in their degree of glycosylation (35).

[0084] The physical and kinetic properties of three β -glucosidases from *Aspergillus kawachii* were described (35), and the three were shown to be products of the same gene, differing solely by the degree of glycosylation. The three purified *A. kawachii* β -glucosidases were readily inactivated, even at moderate pH and temperature conditions. In sharp distinction, while examining the stability of the recombinant *A. niger* β -glucosidase according to the present invention under conditions identical to those described by Iwashita et al. and as described hereinbelow in the Examples section, revealed that the enzyme is highly stable, retaining majority of the enzymatic activity even after 1 hour incubation at 60° C. (68% activity, as defined by percent activity of an enzyme kept at 4° C.).

[0085] Thus, despite the similarity between the *A*. *kawachii* and *A. niger* β -glucosidases, the *A. niger* enzyme unexpectedly exhibits significantly higher thermal and pH stability.

[0086] According to yet another aspect of the present invention there is provided a host cell comprising a nucleic acid construct as described herein. The term "host cell" refers to a recipient of a heterologous nucleic acid, which host cell can be either a prokaryotic cell, such as *E. coli*, or a eukaryotic cell, such as a yeast cell, a filamentous fungus cell, a plant cell or an animal cell. Examples for a yeast cell include, but not limited to, *Pichia* sp. such as *P. pastoris*, and *Saccharomyces* sp. such as *S. cervisiae*.

[0087] As used herein and in the claims section which follows, the term "heterologous" when used in context of a nucleic acid sequence or a protein found within a plant, plant derived tissue or plant cells, or alternatively, within a eukaryotic cell, such as yeast, or a prokaryotic cell such as bacteria, refers to nucleic acid or amino acid sequences typically not native to the plant, plant derived tissue or plant cells, or alternatively, to the eukaryotic cell, such as yeast, or the prokaryotic cell, such as bacteria. Interchangeably, nucleic acid or amino acid sequences typically not native to the plant, plant derived tissue or plant cells, or alternatively, to the eukaryotic cell, such as yeast, or the prokaryotic cell, such as bacteria, are referred to by "recombinant nucleic acid" and "recombinant protein", respectively. Thus, a recombinant nucleic acid is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques.

[0088] As used herein in the specification and in the claims section that follows, the term "eukaryotic cell" refers to a cell containing a diploid genome through at least a portion of its life cycle, having membrane-bound nucleus with chromosomes made of DNA, with cell division involving a form of mitosis in which spindles are involved. Possession of a eukaryote type of cell characterizes the four kingdoms, Protoctista, Fungi, Plantae and Animalia.

[0089] As used herein in the specification and in the claims section that follows, the term "prokaryotic cell"

refers to various bacteria and blue-green algae, characterized by the absence of the nuclear organization, mitotic capacities and complex organelles that typify the eukaryote superkingdom. Examples of prokaryotic cell according to the present invention are bacteria, such as, but not limited to, *E. coli*.

[0090] According to still another aspect of the present invention there is provided an organism comprising a nucleic acid construct as described herein, such as, but not limited to, a plant. Such an organism is said to be transformed or virally infected.

[0091] As used herein the term "transformed" and its conjugations such as transformation, transforming and transform, all relate to the process of introducing heterologous nucleic acid sequences into a cell or an organism, which nucleic acid sequences are propagatable to the offspring. The term thus reads on, for example, "genetically modified", "transgenic" and "transfected", which may be used herein to further describe and/or claim the present invention. The term relates both to introduction of a heterologous nucleic acid sequence into the genome of an organism and/or into the genome of a nucleic acid containing organelle thereof, such as into a genome of chloroplast or a mitochondrion.

[0092] As used herein the phrase "viral infected" includes infection by a virus carrying a heterologous nucleic acid sequence. Such infection typically results in transient expression of the nucleic acid sequence, which nucleic acid sequence is typically not integrated into a genome and therefore not propagatable to offspring, unless further infection of such offspring is experienced.

[0093] There are various methods of introducing foreign genes into both monocotyledonous and dicotyledenous plants (Potrykus, I., Annu. Rev. Plant. Physiol., Plant. Mol. Biol. (1991) 42:205-225; Shimamoto et al., Nature (1989) 338:274-276). The principle methods of causing stable integration of exogenous DNA into plant genomic DNA include two main approaches:

[0094] (i) *Agrobacterium*-mediated gene transfer: Klee et al. (1987) Annu. Rev. Plant Physiol. 38:467-486; Klee and Rogers in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes, eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 2-25; Gatenby, in Plant Biotechnology, eds. Kung, S, and Arntzen, C. J., Butterworth Publishers, Boston, Mass. (1989) p. 93-112.

[0095] (ii) direct DNA uptake: Paszkowski et al., in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 52-68; including methods for direct uptake of DNA into protoplasts, Toriyama, K. et al. (1988) Bio/Technology 6:1072-1074. DNA uptake induced by brief electric shock of plant cells: Zhang et al. Plant Cell Rep. (1988) 7:379-384. From et al. Nature (1986) 319:791-793. DNA injection into plant cells or tissues by particle bombardment, Klein et al. Bio/Technology (1988) 6:559-563; McCabe et al. Bio/Technology (1988) 6:923-926; Sanford, Physiol. Plant. (1990) 79:206-209; by the use of micropipette systems: Neuhaus et al., Theor. Appl. Genet. (1987) 75:30-36; Neuhaus and Spangenberg, Physiol. Plant. (1990) 79:213-217; or by the direct incubation of DNA with germinating pollen, DeWet et al. in Experimental Manipulation of Ovule Tissue, eds. Chapman, G. P. and Mantell, S. H. and Daniels, W. Longman, London, (1985) p. 197-209; and Ohta, Proc. Natl. Acad. Sci. USA (1986) 83:715-719.

[0096] The *Agrobacterium* system includes the use of plasmid vectors that contain defined DNA segments that integrate into the plant genomic DNA. Methods of inoculation of the plant tissue vary depending upon the plant species and the *Agrobacterium* delivery system. A widely used approach is the leaf disc procedure, which can be performed with any tissue explant that provides a good source for initiation of whole plant differentiation. Horsch et al. in Plant Molecular Biology Manual A5, Kluwer Academic Publishers, Dordrecht (1988) p. 1-9. A supplementary approach employs the *Agrobacterium* delivery system in combination with vacuum infiltration. The *Agrobacterium* system is especially viable in the creation of transgenic dicotyledenous plants.

[0097] There are various methods of direct DNA transfer into plant cells. In electroporation, the protoplasts are briefly exposed to a strong electric field. In microinjection, the DNA is mechanically injected directly into the cells using very small micropipettes. In microparticle bombardment, the DNA is adsorbed on microprojectiles such as magnesium sulfate crystals or tungsten particles, and the microprojectiles are physically accelerated into cells or plant tissues.

[0098] Following transformation plant propagation is exercised. The most common method of plant propagation is by seed. Regeneration by seed propagation, however, has the deficiency that due to heterozygosity there is a lack of uniformity in the crop, since seeds are produced by plants according to the genetic variances governed by Mendelian rules. Basically, each seed is genetically different and each will grow with its own specific traits. Therefore, it is preferred that the transformed plant be produced such that the regenerated plant has the identical traits and characteristics of the parent transgenic plant. Therefore, it is preferred that the transformed plant be regenerated by micropropagation, which provides a rapid, consistent reproduction of the transformed plants.

[0099] Micropropagation is a process of growing new generation plants from a single piece of tissue that has been excised from a selected parent plant or cultivar. This process permits the mass reproduction of plants having the preferred tissue expressing the protein. The new generation plants, which are produced, are genetically identical to, and have all of the characteristics of, the original plant. Micropropagation allows mass production of quality plant material in a short period of time and offers a rapid multiplication of selected cultivars in the preservation of the characteristics of the original transgenic or transformed plant. The advantages of cloning plants are the speed of plant multiplication and the quality and uniformity of plants produced.

[0100] Micropropagation is a multi-stage procedure that requires alteration of culture medium or growth conditions between stages. Thus, the micropropagation process involves four basic stages: Stage one, initial tissue culturing; stage two, tissue culture multiplication; stage three, differentiation and plant formation; and stage four, greenhouse culturing and hardening. During stage one, initial tissue culturing, the tissue culture is established and certified contaminant-free. During stage two, the initial tissue culture

is multiplied until a sufficient number of tissue samples are produced to meet production goals. During stage three, the tissue samples grown in stage two are divided and grown into individual plantlets. At stage four, the transformed plantlets are transferred to a greenhouse for hardening where the plants' tolerance to light is gradually increased so that it can be grown in the natural environment.

[0101] Sequences suitable for permitting integration of the heterologous sequence into the plant genome are recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome.

[0102] Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

[0103] The constructs of the subject invention will include an expression cassette for expression of the protein of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous sequence one or more of the following sequence elements, a promoter region, plant 5' untranslated sequences which can include regulatory elements, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a preexisting vector.

[0104] As used herein, the phrase "regulatory element" refers to a nucleotide sequence which are typically included within an expression cassette and function in regulating (i.e., enhancing or depressing) the expression of a coding sequence therefrom. This regulation can be effected either at the transcription or the translation stages. Examples of regulatory elements include, but are not limited to, enhancers, suppressers and transcription terminators.

[0105] As used herein the term "promoter" refers to a nucleotide sequence, which can direct gene expression in cells. Such a promoter can be derived from a plant, a plant virus, or from any other living organism including bacteria and animals.

[0106] A plant promoter can be a constitutive promoter, such as, but not limited to, CaMV35S and CaMV19S promoters, FMV34S promoter, sugarcane bacilliform badnavirus promoter, CsVMV promoter, *Arabidopsis* ACT2/ ACT8 actin promoter, *Arabidopsis* ubiquitin UBQ1 promoter, barley leaf thionin BTH6 promoter, and rice actin promoter.

[0107] The promoter can alternatively be a tissue specific promoter. Examples of plant tissue specific promoters include, without being limited to, bean phaseolin storage protein promoter, DLEC promoter, PHS β promoter, zein stprotein promoter, conglutin gamma promoter from soybean, AT2S1 gene promoter, ACT11 actin promoter from *Arabidopsis*, napA promoter from *Brassica napus*, potato patatin gene promoter and the Tob promoter.

[0108] The promoter may also be a promoter which is active in a specific developmental stage of a plant's life

cycle, for example, a promoter active in late embryogenesis, such as: the LEA promoter; Endosperm-specific expression promoter (the seed storage prolamin from rice is expressed in tobacco seed at the developmental stage about 20 days after flowering) or the promoter controlling the FbL2A gene during fiber wall synthesis stages.

[0109] In case of a tissue-specific promoter, it ensures that the heterologous protein is expressed only in the desired tissue, for example, only in the flower, the fruit, the root, the seed, etc.

[0110] Both the tissue-specific and the non-specific promoters may be constitutive, i.e., may cause continuous expression of the heterologous protein.

[0111] The promoter may also be an inducible promoter, i.e., a promoter which is activated by the presence of an inducing agent, and only upon said activation, causes expression of the heterologous protein. An inducing agent can be for example, light, chemicals, drought, high salinity, osmotic shock, oxidant conditions or in case of pathogenicity and include, without being limited to, the light-inducible promoter derived from the pea rbcS gene, the promoter from the alfalfa rbcS gene, the promoters DRE, MYC and MYB active in drought; the promoters INT, INPS, prxEa, Ha hsp17.7G4 and RD21 active in high salinity and osmotic stress, the promoters hsr303J and str246C active in pathogenic stress, the copper-controllable gene expression system and the steroid-inducible gene system

[0112] Alternatively, an inducing agent may be an endogenous agent which is normally present in only certain tissues of the plant, or is produced only at certain time periods of the plant's life cycle, such as ethylene or steroids. By using such an endogenous tissue-specific inducing agent, it is possible to control the expression from such inducible promoters only in those specific tissues. By using an inducing agent produced only during a specific period of the life cycle, it is possible to control the expression from an inducible promoters onter to the specific phase in the life-cycle in which the inducing agent is produced.

[0113] Bacterial and yeast derived promoters are well known in the art.

[0114] Viruses are a unique class of infectious agents whose distinctive features are their simple organization and their mechanism of replication. In fact, a complete viral particle, or virion, may be regarded mainly as a block of genetic material (either DNA or RNA) capable of autonomous replication, surrounded by a protein coat and sometimes by an additional membranous envelope such as in the case of alpha viruses. The coat protects the virus from the environment and serves as a vehicle for transmission from one host cell to another.

[0115] Viruses that have been shown to be useful for the transformation of plant hosts include CaV, TMV and BV. Transformation of plants using plant viruses is described in U.S. Pat. No. 4,855,237 (BGV), EP-A 67,553 (TMV), Japanese Published Application No. 63-14693 (TMV), EPA 194,809 (BV), EPA 278,667 (BV); and Gluzman, Y. et al., Communications in Molecular Biology: Viral Vectors, Cold Spring Harbor Laboratory, New York, pp. 172-189 (1988). Pseudovirus particles for use in expressing foreign DNA in many hosts, including plants, is described in WO 87/06261.

[0116] Construction of plant RNA viruses for the introduction and expression of non-viral foreign genes in plants is demonstrated by the above references as well as by Dawson, W. O. et al., Virology (1989) 172:285-292; Takamatsu et al. EMBO J. (1987) 6:307-311; French et al. Science (1986) 231:1294-1297; and Takamatsu et al. FEBS Letters (1990) 269:73-76.

[0117] When the virus is a DNA virus, the constructions can be made to the virus itself. Alternatively, the virus can first be cloned into a bacterial plasmid for ease of constructing the desired viral vector with the foreign DNA. The virus n then be excised from the plasmid. If the virus is a DNA virus, a bacterial origin of replication can be attached to the viral DNA, which is then replicated by the bacteria. Transcription and translation of this DNA will produce the coat protein which will encapsidate the viral DNA. If the virus is an RNA virus, the virus is generally cloned as a cDNA and inserted into a plasmid. The plasmid is then used to make all of the constructions. The RNA virus is then produced by transcribing the viral sequence of the plasmid and translation of the viral genes to produce the coat protein(s) which encapsidate the viral RNA.

[0118] Construction of plant RNA viruses for the introduction and expression of non-viral foreign genes in plants is demonstrated by the above references as wellasin U.S. Pat. No. 5,316,931.

[0119] In one embodiment, a plant viral nucleic acid is provided in which the native coat protein coding sequence has been deleted from a viral nucleic acid, a non-native plant viral coat protein coding sequence and a non promoter, preferably the subgenomic promoter of the non-native coat protein coding sequence, capable of expression in the plant host, packaging of the recombinant plant viral nucleic acid, and ensuring a systemic infection of the host by the recombinant plant viral nucleic acid, has been inserted. Alternatively, the coat protein gene may be inactivated by insertion of the non-native nucleic acid sequence within it, such that a protein is produced. The recombinant plant viral nucleic acid may contain one or more additional non-native subgenomic promoters. Each non-native subgenomic promoter is capable of transcribing or expressing adjacent genes or nucleic acid sequences in the plant host and incapable of recombination with each other and with native subgenomic promoters. Non-native (foreign) nucleic acid sequences may be inserted adjacent the native plant viral subgenomic promoter or the native and a non-native plant viral subgenomic promoters if more than one nucleic acid sequence is included. The non-native nucleic acid sequences are transcribed or expressed in the host plant under control of the subgenomic promoter to produce the desired products.

[0120] In a second embodiment, a recombinant plant viral nucleic acid is provided as in the first embodiment except that the native coat protein coding sequence is placed adjacent one of the non-native coat protein subgenomic promoters instead of a non-native coat protein coding sequence.

[0121] In a third embodiment, a recombinant plant viral nucleic acid is provided in which the native coat protein gene is adjacent its subgenomic promoter and one or more non-native subgenomic promoters have been inserted into the viral nucleic acid. The inserted non-native subgenomic promoters are capable of transcribing or expressing adjacent

genes in a plant host and are incapable of recombination with each other and with native subgenomic promoters. Non-native nucleic acid sequences may be inserted adjacent the non-native subgenomic plant viral promoters such that said sequences are transcribed or expressed in the host plant under control of the subgenomic promoters to produce the desired product.

[0122] In a fourth embodiment, a recombinant plant viral nucleic acid is provided as in the third embodiment except that the native coat protein coding sequence is replaced by a non-native coat protein coding sequence.

[0123] The viral vectors are encapsidated by the coat proteins encoded by the recombinant plant viral nucleic acid to produce a recombinant plant virus. The recombinant plant virus is used to infect appropriate host plants. The recombinant plant viral nucleic acid is capable of replication in the host, systemic spread in the host, and transcription or expression of foreign gene(s) in the host to produce the desired protein.

[0124] In many instances it is desired to target the expression of a recombinant protein. Such targeting can be into a cellular organelle or outside of the cell. This can be effected, as is well known in the art, by appropriate signal peptides, which are fused to the polypeptide to be targeted, typically at the N terminus.

[0125] Thus, as used herein and in the claims section which follows, the phrase "signal peptide" refers to a stretch of amino acids which is effective in targeting a protein expressed in a cell into a target location. Different signal peptides, which are known in the art, are effective in secreting a protein from bacteria, yeast, plant and animal cells.

[0126] It should be noted in this respect that signal peptides serve the function of translocation of produced protein across the endoplasmic reticulum membrane. Similarly, transmembrane segments halt translocation and provide anchoring of the protein to the plasma membrane, see, Johnson et al. The Plant Cell (1990) 2:525-532; Sauer et al. EMBO J. (1990) 9:3045-3050; Mueckler et al. Science (1985) 229:941-945. Mitochondrial, nuclear, chloroplast, or vacuolar signals target expressed protein correctly into the corresponding organelle through the secretory pathway, see, Von Heijne, Eur. J. Biochem. (1983) 133:17-21; Yon Heijne, J. Mol. Biol. (1986) 189:239-242; Iturriaga et al. The Plant Cell (1989) 1:381-390; McKnight et al., Nucl. Acid Res. (1990) 18:4939-4943; Matsuoka and Nakamura, Proc. Natl. Acad. Sci. USA (1991) 88:834-838. A recent book by Cunningham and Porter (Recombinant proteins from plants, Eds. C. Cunningham and A. J. R. Porter, 1998 Humana Press Totowa, N.J.) describe methods for the production of recombinant proteins in plants and methods for targeting the proteins to different compartments in the plant cell. In particular, two chapters therein (14 and 15) describe different methods to introduce targeting sequences that results in accumulation of recombinant proteins in compartments such as ER, vacuole, plastid, nucleus and cytoplasm. The book by Cunningham and Porter is incorporated herein by reference. Presently, the preferred site of accumulation of the fusion protein according to the present invention is the ER using signal peptide such as Cel 1 or the rice amylase signal peptide at the N-terminus and an ER retaining peptide (HDEL, SEQ ID NO:17; or KDEL, SEQ ID NO:24) at the C-terminus.

[0127] According to an additional aspect of the present invention there is provided a method of producing recombinant β -glucosidase. The method according to this aspect of the present invention is effected by introducing, in an expressible or overexpressible form, a nucleic acid construct into a host cell. The nucleic acid construct includes a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger* and encoding a polypeptide having a β -glucosidase catalytic activity. The polynucleotide preferably further encodes a signal peptide in frame with the polypeptide. Still preferably, the polynucleotide preferably in frame with the polypeptide.

[0128] As used herein the term "introducing" refers both to transforming and to virally infecting, as these terms are further defined hereinabove. As used herein the terms "expressible form" and "overexpressible form" refers to a recombinant form which includes the required regulatory elements to effect expression or over expression of a coding region, all as is further detailed hereinabove.

[0129] According to a preferred embodiment of this aspect of the present invention, after sufficient expression has been detected, the polypeptide having the β -glucosidase catalytic activity is extracted from the expressing host cell.

[0130] Thus host cells, expressing the polypeptide according to the present invention, provide an immediate, easy and indefinite source of the polypeptide.

[0131] Any number of well-known liquid or solid culture media may be used for appropriately culturing host cells of the present invention, although growth on liquid media is preferred as the secretion of the polypeptide into the media results in simplification of polypeptide recovery. As is further detailed hereinabove, such secretion can be effected by the incorporation of a suitable signal peptide. The β -glucosidase may be isolated or separated or purified from host cell preparations using techniques well known in the art, such as, but not limited to, centrifugation filtration, chromatography, electrophoresis and dialysis. Further concentration and/or purification of the β-glucosidase may be effected by use of conventional techniques, including, but not limited to, ultrafiltration, further dialysis, ion-exchange chromatography, HPLC, size-exclusion chromatography, cellobiose-sepharose affinity chromatography, and electrophoresis, such as polyacrylamide-gel-electrophoresis (PAGE). Using these techniques, β -glucosidase may be recovered in pure or substantially pure form.

[0132] According to an additional aspect of the present invention there is provided a method of increasing a level of at least one fermentation substance in a fermentation product. The method according to this aspect of the present invention is effected by fermenting a glucose containing fermentation starting material by a yeast cell overexpressing a nucleic acid construct which includes a genomic, complementary or composite polynucleotide preferably derived from Aspergillus niger and which encodes a polypeptide having a β -glucosidase catalytic activity, thereby increasing the level of the at least one fermentation substance in the fermentation product. The polynucleotide preferably further encodes a signal peptide in frame with the polypeptide. Still preferably, the polynucleotide further encodes an endoplasmic reticulum retaining peptide in frame with the polypeptide.

[0133] According an alternative aspect of the present invention there is provided a method of increasing a level of at least one fermentation substance in a fermentation product. The method according to this aspect of the present invention is effected by fermenting a plant derived glucose containing fermentation starting material by a yeast cell, the plant overexpressing a nucleic acid construct which includes a genomic, complementary or composite polynucleotide preferably derived from Aspergillus niger and which encodes a polypeptide having a β-glucosidase catalytic activity, thereby increasing the level of the at least one fermentation substance in the fermentation product. The polynucleotide preferably further encodes a signal peptide in frame with the polypeptide. Still preferably, the polynucleotide further encodes an endoplasmic reticulum retaining peptide in frame with the polypeptide.

[0134] As used herein in the specification and in the claims section that follows, the term "fermentation" refers to a chemical change induced in a complex organic compound by the action of an enzyme, whereby the substance is split into simpler compounds. Specifically, the term "fermentation" includes the anaerobic dissimilation of substrates with the production of energy and reduced compounds, the final products thereof are organic acids, alcohols, such as ethanol, isopropanol, butanol, etc., and CO_2 . Such products, are typically secreted and each of which is referred to herein as a "fermentation substance", i.e., any known fermentation resultant of either microbial or yeast fermentation.

[0135] As used herein in the specification and in the claims section that follows, the phrase "fermentation product" refers to the resultant material of a fermentation process. Examples include, but are not limited to, alcohol containing fermentation medium and alcoholic beverages, such a, but not limited to, fruit-based alcohol-containing beverages, wines and beers.

[0136] When used in conjunction with, for example, a β -glucanase, the β -glucosidase is effective for hydrolyzing a variety of cellulose containing materials to glucose. The glucose produced by enzymatic hydrolysis of the cellulose and other glucose containing saccharides, may be recovered and stored, or it may be subsequently fermented to ethanol using conventional techniques. Many processes for the fermentation of glucose generated from cellulose are well known, and are suitable for use herein. Briefly, the hydrolyzate containing the glucose from the enzymatic reaction is contacted with an appropriate microorganism under conditions effective for the fermentation of the glucose to ethanol. This fermentation may be separate from and follow the enzymatic hydrolysis of the cellulose (sequentially processed), or the hydrolysis and fermentation may be concurrent and conducted in the same vessel (simultaneously processed). Details of the various fermentation techniques, conditions, and suitable microorganisms have been described, for example, by Wyman (1994, Bioresource Technol., 50:3-16) or Olsson and Hahn-Hagerdal (1996, Enzyme Microbial Technol., 18:312-331), the content of each of which is incorporated herein by reference. Following the completion of a fermentation, the alcohol may be recovered by extraction, and optionally purified e.g., by distillation.

[0137] Thus, according to still another aspect of the present invention there is provided a method of producing an

alcohol. The method according to this aspect of the present invention is effected by fermenting a glucose containing fermentation starting material by a cell overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity, and extracting the alcohol therefrom. The polynucleotide preferably further encodes a signal peptide in frame with the polypeptide. Still preferably, the polynucleotide further encodes an endoplasmic reticulum retaining peptide in frame with the polypeptide.

[0138] According to an additional aspect of the present invention there is provided a method of producing an alcohol. The method according to this aspect of the present invention is effected by fermenting a plant derived glucose containing fermentation starting material by a cell, the plant overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, encoding a polypeptide having a β -glucosidase catalytic activity, and extracting the alcohol therefrom. The polynucleotide preferably further encodes a signal peptide in frame with the polypeptide. Still preferably, the polynucleotide further encodes an endoplasmic reticulum retaining peptide in frame with the polypeptide.

[0139] Plants contain aroma and flavor compounds of glycosidic nature, their inherent aroma property can be released by degrading enzymes, turning a non-volatile aroma compound into its volatile form. Thus, for example, α -L-arabinofuranosidases, assist in the liberation of aroma compounds from substrates such as juices or wines, as described by Gunata et al. (European Patent Application No. 332.281, 1989; and "purification and some properties of an alpha-L-arabinofuranosidase from A. niger action on grape monoterpenyl arabinofuranosylglucosides. J. Agric. Food Chem. 38: 772-776, 1990). This outcome is achieved, for example, in a two step process wherein the first step comprises the use of an α -L-arabinofuranosidase, to catalyze the release of arabinose residues from monoterpenyl a-L-arabinofuranosyl glucosides contained in, for example, the fruit or vegetable juice via the cleavage of the $(1 \rightarrow 6)$ linkage between a terminal arabinofuranosyl unit and the intermediate glucose of a monoterpenyl α -L-arabinofuranosylglucoside. The α -L-arabinofuranosidase is preferably in a purified form so as to avoid the undesirable degradation of other components of the juice which may be detrimental to its ultimate quality. In the second step, β -glucosidase is required to yield the free terpenol from the resulting desarabinosylated monoterpenyl glucoside. If desired, both reaction steps may be performed in the same reaction vessel without the need to isolate the intermediate product (Gunata et al. (1989), supra). Thus, β -glucosidase is an essential contributor when the liberation of these aroma compounds for improving the flavor of the juice or wine is desired. Moreover, in the case of wine, the control of the liberation of aroma compounds provides wines with a more consistent flavor, thus reducing or eliminating the undesirable effect of "poor vintage years". Additional information is contained in: "Cloning and expression of DNA molecules encoding arabinan degrading enzyme of fungal origin", U.S. Pat. No. 5,863,783; Y. Gueguen, et al. "A Very Efficient β-Glucosidase Catalyst for the Hydrolysis of Flavor Precursors of

Wines and Fruit Juices", J. Agric. Food Chem. 44:2336-2340, 1996, each of which is incorporated herein by reference.

[0140] Thus, according to a further aspect of the present invention there is provided a method of increasing a level of at least one aroma substance in a plant derived product, such as, but not limited to, an alcoholic beverage. The method according to this aspect of the present invention is effected by incubating a glucose containing plant starting material with a yeast cell overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from Aspergillus niger which encodes a polypeptide having a β -glucosidase catalytic activity, thereby increasing the level of the at least one aroma substance in the plant derived product. The polynucleotide preferably further encodes a signal peptide in frame with the polypeptide. Still preferably, the polynucleotide further encodes an endoplasmic reticulum retaining peptide in frame with the polypeptide.

[0141] While reducing the present invention to practice it was discovered that in order to obtain activity of a β -glucosidase in a transgenic plant, the expression construct should include a signal peptide. In addition, it was found that retaining the enzyme in the endoplasmic reticulum results in higher release of aroma compounds following homogenization and incubation. It is assumed that compartmentalization of the enzyme in for example the ER prevents it from interacting with its substrates which are mainly outside the cells, limiting such interaction following homogenization. Indeed, directing the enzyme to the apoplast resulted in increased release of aroma in vivo. Thus, depending on the specific application, one can chose weather to include in the construct an endoplasmic reticulum retaining peptide or not.

[0142] According to yet a further aspect of the present invention there is provided a method of increasing a level of at least one aroma substance in a plant derived product, such as, but not limited to, an alcoholic beverage. The method according to this aspect of the present invention is effected by incubating a glucose containing plant starting material with a yeast cell, said plant overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from Aspergillus niger which encodes a polypeptide having a β-glucosidase catalytic activity, thereby increasing the level of the at least one aroma substance in the plant derived product. The polynucleotide preferably further encodes a signal peptide in frame with the polypeptide. Still preferably, the polynucleotide further encodes an endoplasmic reticulum retaining peptide in frame with the polypeptide.

[0143] As used herein in the specification and in the claims section that follows, the phrase "glucose containing starting material" refers to any source of energy, in the form of glucose containing compounds, other than free glucose, including, but not limited to, crushed, minced, diced or extracted plant material, plant, or portions thereof, such as fruits, examples thereof are tropical fruits and grapes.

[0144] According to an additional aspect of the present invention there is provided a method of producing an aroma spreading plant. As used herein in the specification and in the claims section that follows, the phrase "aroma spreading plant" refers to substantially any part of a plant, in which volatile compounds are generated by the catalytic activity of

the β -glucosidase polypeptide of the present invention, release of volatile compounds therefrom is perceived by the olfactory system of an organism, such as a human.

[0145] The method according to this aspect of the present invention is effected by overexpressing in the plant a nucleic acid construct including a genomic, complementary or composite polynucleotide derived from Aspergillus niger, which encodes a polypeptide having a β-glucosidase catalytic activity, thereby increasing aroma spread from the plant. Such overexpression is preferably performed in a tissue specific manner by, for example, employing a tissue specific promoter, as hereinabove described, to thereby overexpress a heterologous protein in a selected portion of the plant. The tissue in which such overexpression is effected is selected according to the availability of glucose containing nonvolatile aroma substrates therein. Thus, such an overexpression will cause the release of a volatile and aroma constituent of the substrate. Thus, according to preferred embodiments overexpressing the nucleic acid construct is limited to at least one tissue, such as a flower, a fruit, a seed, a root, a stem, pollen and leaves.

[0146] According to still a further aspect of the present invention there is provided a method of increasing a level of free glucose in a glucose containing fermentation starting material. The method according to this aspect of the present invention is effected by fermenting the glucose containing fermentation starting material by a cell overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from Aspergillus niger, which encodes a polypeptide having a glucosidase catalytic activity, thereby increasing the level of the free glucose in the glucose containing fermentation starting material. The polynucleotide preferably further encodes a signal peptide in frame with the polypeptide. Still preferably, the polynucleotide further encodes an endoplasmic reticulum retaining peptide in frame with the polypeptide.

[0147] According to another aspect of the present invention there is provided a method of increasing a level of free glucose in a plant derived glucose containing fermentation starting material. The method according to this aspect of the present invention is effected by fermenting the plant derived glucose containing fermentation starting material by a cell, the plant overexpressing a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, which encodes a polypeptide having a β -glucosidase catalytic activity, thereby increasing the level of the free glucose in the plant. The polynucleotide preferably further encodes a signal peptide in frame with the polypeptide. Still preferably, the polynucleotide in frame with the polypeptide.

[0148] As used herein in the specification and in the claims section that follows, the term "free glucose" refers to glucose residues in the form of a monosaccharide, the levels of which are increased by the catalytic activity of β -glucosidase.

[0149] As used herein in the specification and in the claims section that follows, the phrase "glucose containing fermentation starting material" refers to any source of energy, in the form of glucose containing compounds, other than free glucose, including, but not limited to, crushed,

minced, diced or extracted plant material, plant, or portions thereof, used in industrial fermentation processes.

[0150] According to yet another aspect of the present invention there is provided a method of increasing a level of extra- or intracellular free glucose in a plant. The method according to this aspect of the present invention is effected by overexpressing in the plant a nucleic acid construct including a genomic, complementary or composite polynucleotide preferably derived from *Aspergillus niger*, which encodes a polypeptide having a β -glucosidase catalytic activity, thereby increasing the level of the free glucose in the plant. Thus, sweeter fruits can be produced. The polynucleotide preferably further encodes a signal peptide in frame with the polypeptide. Still preferably, the polynucleotide in frame with the polypeptide.

[0151] Glycosidases, including β -glucosidase, catalyze reactions involving the hydrolysis of O-glycosidic bond of glycosides, and synthesize oligosaccharides when the reaction is run in reverse from the normal direction, a result achieved by, for example, site directed mutagenesis, and Km reversal. As described in the Background section hereinabove, the hydrolysis reaction mechanism of glycosidases involves two catalytic steps, the second of which involves a base catalyzed H₂O attack, resulting in the regeneration of the enzyme, and the release of the saccharide residue. Thus, in addition, oligosaccharide synthesis can be achieved by adding a second saccharide to the reaction mixture, which competes with the H₂O molecule, and reacts in its place with the first saccharide in, what is known as, a transglycosylation reaction. Hence, as glycosidases are generally available and easy to handle, these enzymes have the potential to catalyze the production of many different products using inexpensive substrates. For further detail see U.S. Pat. No. 5,716,812, which is incorporated herein by reference.

[0152] Thus, according to yet an additional aspect of the present invention there is provided a method of synthesizing oligosaccharides. The method according to this aspect of the present invention is effected by mixing a polypeptide having a β -glucosidase catalytic activity with first and second saccharide molecules to thereby join the first and second saccharide molecules into an oligosaccharide.

[0153] Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.

EXAMPLES

[0154] Reference is now made to the following examples, which together with the above descriptions, illustrate the invention in a non limiting fashion.

[0155] Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, "Molecular Cloning: A laboratory Manual" Sambrook et al., (1989);

"Current Protocols in Molecular Biology" Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., "Current Protocols in Molecular Biology", John Wiley and Sons, Balti-more, Md. (1989); Perbal, "A Practical Guide to Molecular Cloning", John Wiley & Sons, New York (1988); Watson et al., "Recombinant DNA", Scientific American Books, New York; Birren et al. (eds) "Genome Analysis: A Laboratory Manual Series", Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; "Cell Biology: A Laboratory Handbook", Volumes I-III Cellis, J. E., ed. (1994); "Current Protocols in" Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), "Basic and Clinical Immunology" (8th Edition), Appleton & Lange, Norwalk, Conn. (1994); Mishell and Shiigi (eds), "Selected Methods in Cellular Immunology", W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific liter, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850, 752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901, 654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098, 876; 4,879,219; 5,011,771 and 5,281,521; "Oligonucleotide Synthesis" Gait, M. J., ed. (1984); "Nucleic Acid Hybridization" Hames, B. D., and Higgins S. J., eds. (1985); "Transcription and Translation" Hames, B. D., and Higgins S. J., eds. (1984); "Animal Cell Culture" Freshney, R. I., ed. (1986); "Immobilized Cells and Enzymes" IRL Press, (1986); "A Practical Guide to Molecular Cloning" Perbal, B., (1984) and "Methods in Enzymology" Vol. 1-317, Academic Press; "PCR Protocols: A Guide To Methods And Application", Academic Press, San Diego, Calif. (1990); Marshak et al., "Strategies for Protein Purification and Characterization-A Laboratory Course Manual" CSHL Press (1996); all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.

MATERIALS AND EXPERIMENTAL METHODS

[0156] Purification of *A. niger* β -glucosidase:

[0157] A crude preparation of A. niger B1 (CMI CC 324626) β -glucosidase was obtained from Shaligal Ltd. (Tel-Aviv, Israel). A sample (10 ml) of the crude enzyme (140 Units/ml) was first diafiltered through a 50 kDa cut-off AMICONTM size filtration membrane (Amicon Corp., Danvers, Mass.), with 20 mM citrate buffer pH=5. The proteins were then separated on an FPLC equipped with a MONO-Q[™] anion exchange RH 5/5 column (Amersham Pharmacia Biotech AB, Uppsala, Sweden), equilibrated with the same buffer. The enzyme was eluted with a linear gradient of 0 to 350 mM NaCl. Active fractions (see below, enzyme assays) were monitored and pooled (between 80-110 mM NaCl). The partially purified enzyme was dialyzed against 20 mM citrate buffer pH=3.5, applied to a RESOURCE-S™ (Amersham Biosciences Inc, Piscatawy, N.J.) cation exchange column equilibrated with the same buffer, and eluted with a gradient of 0-1 M NaCl. The purified enzyme (eluted at 155 mM NaCl) was concentrated by ultrafiltration (50 kDa cut-off membrane, Amicon).

[0158] Enzyme Assays:

[0159] β -glucosidase enzyme activity was monitored using a plate assay as follows. 4-methylumbelife β -D-

glucopyranoside (MUGlc, Sigma Chemical Inc. St. Louis, Mo.) to a final concentration of 0.5 mM, was dissolved in PC buffer (50 mM phosphate, 12 mM citric acid, pH=3.4) at 45° C. The solution was mixed with 3% agar in water, previously boiled and then cooled to 45° C. The resulting solution (20 ml) was poured into a petri dish and after solidification, 10 μ l enzyme samples were spotted. The plate was incubated at 50° C. for one hour, and then illuminated with long UV. An intense fluorescence was indicative of β -glucosidase activity.

[0160] Detection of β -glucosidase in polyacrylamide gels was carried out by washing the SDS-polyacrylamide gel with 1:1 isopropanol:PC buffer to remove SDS and renature the enzyme. The gel was washed once in PC buffer and incubated in a thin layer of a solution of 0.5 mM MUG1c. After incubation at 50° C. for one hour, the active protein band was visualized by UV light.

[0161] Quantitative assays were performed using pNPGlc as a substrate according to Shoseyov (7).

[0162] Determination of Thermal Stability of *A. niger* β -Glucosidase:

[0163] Recombinant enzyme (40 μ g/ml) was dissolved in 20 mM citrate phosphate buffer, pH=5. Each tested sample (811) was covered by 1511 mineral oil. The activity was determined by the standard pNPGlc assay (7).

[0164] Deglycosylation of *A. niger* β -Glucosidase by N-Glycosidase-F:

[0165] A N-glycosidase-F (Boehringer Mannheim, Mannheim, Germany) reaction mixture, containing 0.125 μ g pure β -glucosidase (previously denatured by boiling for 3 minutes in 1% SDS and 5% β -mercaptoethanol), 0.2 units of the N-glycosidase-F, sodium phosphate buffer (50 mM, pH=7.5), EDTA (25 mM), 1% Triton X-100 and 0.02% sodium azide, in a total volume of 12.5 μ l, was incubated for 4 hours at 37° C. Reaction was stopped by addition of PAGE sample application buffer followed by 3 minutes of boiling.

[0166] Proteolysis and N-Terminal Sequences of *A. niger* B1 β -Glucosidase:

[0167] Partial enzymatic proteolysis with *Staphylococcus* aureus V8 protease was carried out as described by Cleveland (28). Briefly, FPLC-purified β -glucosidase (5 µg), was concentrated by acetone precipitation. The protein was separated on a preparative 10% SDS-PAGE. The gel was stained with coomassie blue, destained and rinsed with cold water, and the β-glucosidase protein band was excised. The resulting gel slice was applied to a second SDS-PAGE gel (15% acrylamide) and overlaid with Staphylococcus aurous V8 protease. Digestion was carried out within the stacking gel by turning off the current for 30 min. As the bromophenol blue dye neared the bottom of the stacking gel, the current was restored. The electrophoresed cleavage products were electroblotted to PVDF membranes. The native protein was transferred to PVDF in parallel. The N-terminal sequence of the native protein and two of the numerous cleavage products were analyzed by Edman degradation using a gas-phase protein sequencer (Applied Biosystems model 475A microsequencer).

[0168] Cloning of bgl1 cDNA and Genomic Gene:

[0169] Total RNA isolation: Total RNA was isolated from *Aspergillus niger* B1 as follows: *A. niger* B1 was grown in

liquid culture consisting of mineral media (NH₄)₂SO₄.3H₂O (0.5 g/l), KH₂PO₄ (0.2 g/l), MgSO₄ (0.2 g/l), CaCl₂.H₂O (0.1 g/l), FeSO₄.6H₂O (0.001 g/l), ZnSO₄.7H₂O (0.001 g/l), and 2 mM citric acid, at pH=3.5 with 1% w/v bran as a carbon source. The medium was autoclaved, cooled and inoculated with A. niger B1 (10⁶ spores/ml). Baffled flasks were used with constant shaking (200 RPM) at 37° C. The appearance of β -glucosidase activity was monitored by placing 5 µl of growth medium on 1% agar plates containing 0.5 mM MUGlc, as described above. Activity was detected following 15 hours incubation. The mycelium was harvested following 24 hours growth period, and the medium removed by filtering through GFATM glass microfibre (Whatman Inter. Ltd., Maidstone, England). The mycelium was then frozen with liquid nitrogen and ground to fine powder with mortar and pestle. Total RNA was produced from this powder by the Guanidine thiocyanate (TRIREAGENT[™]) method (Molecular Research Center, Inc.).

[0170] RNA reverse-transcription reaction: cDNA was obtained by reverse transcribing total RNA (10 μ g) using Stratagene RT-PCR kit (Stratagene, La Jolla, Calif.). The reaction mixture (50 μ l) additionally consisted of: Oligo dT18 (1 μ g), RNase Block Ribonuclease Inhibitor (20 units), 1× buffer (50 mM Tris-HCl, pH=8.3, 75 mM KCl, 10 mM DTT, 3 mM MgCl₂), dNTPs (500 μ M each) and reverse transcriptase (300 units). Total RNA was initially denatured at 70° C., allowed to cool to room temperature (for primers annealing), and added to the reaction mixture. The reaction mixture was incubated for 1 hour at 37° C., followed by heating (95° C., 5 minutes) and stored at -70° C. until further use.

[0171] DNA amplification: Degenerate primers for DNA amplification reaction by PCR methods were synthesized, based on part of the amino acid N-terminal sequence and an internal sequence, as determined by the Edman degradation, following V8 proteolysis (hereinbelow, experimental results). The partial sequence from β -glucosidase N-terminal derived amino acid sequence was Ser-Pro-Pro-Tyr-Tyr-Pro (SEQ ID NO:4), yielding the following primer: 5'-(C/G)(A/C/G/T)CC(A/C/G/T) CC(A/C/G/T)TA(C/T)TA(C/T)CC-3' (SEQ ID NO:5). The partial sequence from E2 internal cleavage product amino acid sequence was Gln-Pro-Ile-Leu-Pro-Ala-Gly-Gly (SEQ ID NO:6), yielding the following primer: 5'-TCCIGC(T/G/C/A)GG(TG/C/A)A(G/A) (T/G/A)AT(T/G/C/A)GG(T/C)TG-3' (SEQ ID NO: 7).

[0172] DNA amplification reaction mixture (2511) contained: reverse transcriptase reaction product (1 µl), 10×PCR buffer (2.5 µl, Promega Corp., Madison, Wis.), dNTPs (250 µM each), MgCl₂ (2.0 mM), degenerate primers (250 pmol each), DNA polymerase (3 units, Stratagene, La Jolla, Calif.) and overlaid with mineral oil (25 µl). The reaction was performed in an automated heating block (Programmable thermal controller-MJ Research, Inc.). PCR cycling conditions were 30 seconds denaturing at 94° C., 60 seconds annealing at 50° C., and 150 seconds elongation at 72° C., repeated 36 times. The resulting amplified product was electrophoresed on a 1.2% (w/v) agarose/TBE gel, resulting in a 2.2 kb cDNA gene fragment, which was further isolated using Gel Extraction Kit (QIAGEN, Hilden, Germany) and cloned directly into the single 3'-T PCR insertion site of pGEM-T cloning vector (Promega Corp., Madison, Wis.).

[0173] Probe preparation: The 2.2 kb partial cDNA was digested with PstI to produce a 1.2 kb fragment DNA probe.

A sample (25 ng) of the fragment was labeled with [³²P] dCTP, using the random sequence nanonucleotide REDIPRIME[™] DNA labeling system (Amersham Pharmacia Biotech AB, Buckinghamshire, England).

[0174] Preparation of genomic DNA plasmid library: An A. niger B1 genomic library was constructed in the pYEAUra3 yeast/E. coli shuttle vector (Clontech Lab. Inc. Palo Alto, Calif.). A. niger B1 was grown in liquid culture as described above, the mycelium harvested following 48 hours of growth, frozen in liquid nitrogen and grounded. The mycelium ground was used to produce genomic DNA by the CTAB method of Murray and Thompson (29). The library was constructed from partially digested Sau3A genomic DNA, cloned into the BamHI site of the pYEUra3 yeast shuttle vector (Clontech Lab. Inc. Palo Alto, Calif.). pYEAUra3 yeast/E. coli shuttle vector was digested with BamHI and dephosphorylated with CIP to prevent self ligation. The partially digested genomic DNA was cloned into the shuttle vector with T4 ligase and used to transform TOP10 E. coli electro-competent cells, which were then plated on LB-agar containing ampicillin (50 µg/ml). A total of 4×10⁴ colonies were grown on LB-agar plates, blotted to HYBOND-N™ membranes (Amersham Pharmacia Biotech AB, Buckinghamshire, England) and screened using the above described 1.2 kb probe. Positive clones were subcloned in pUC18 and sequenced (Biological Services, The Weizmann Institute of Science, Rehovot, Israel).

[0175] Expression of bgl1 cDNA in *E. coli*:

[0176] Two specific primers were designed according to the 5' and the 3' sequences, corresponding to the N-terminal and C-terminal region of the mature protein: sense primer: 5'-' (SEQ ID NO:8). Antisense primer: 5'-AAAGGATCCT-TAGTGAACAGTAGGCAGAGACGC-3' (SEQ ID NO:9). The isolated cDNA was digested with NcoI and BamHI and cloned into a pET3d expression vector (FIG. 1A, Novagen Inc., Madison, Wis.). Positive *E. coli* BL21 (DE3) pLysS colonies, containing the bgl1 cDNA, were confirmed by enzyme restriction and sequence analysis. Recombinant BGL1 was expressed according to the manufacturer's protocol.

[0177] Expression of bgl1 cDNA in *Saccharomyces cerevisiae* and *Pichia pastoris:*

[0178] The pYES2 vector (Invitrogen Inc., San Diego, Calif.) was used to successfully clone the bgl1 cDNA gene into the HindIII/BamHI of pYES2-bgl1 plasmid (FIG. 1b), and transform Saccharomyces cerevisiae using the lithium acetate method (30). The BGL1 was expressed by inducing the Gall promoter according to the manufacturer's protocol. Saccharomyces cerevisiae strain INVSc2 (MATa, his3-D200, ura3-167) was used as the host. Pichia pastoris strain GS115 (his4 mutant) was used as the host for shuttle and expression vector plasmid pHIL-S1 (Invitrogen Inc., San Diego, Calif.). The bgl1 cDNA was cloned into the EcoRI/ BamHI sites of pHIL-S1, yielding the pHIL-S1-bgl1 expression and secretion vector (FIG. 1c). Expression in P. pastoris was carried out according to the manufacturer's protocol. Screening of β-glucosidase-expressing clones was facilitated by top-agar, containing 50 mg X-Glc, 30 ml methanol and 1% agar per liter. Blue color indicated a colony producing active β -glucosidase.

[0179] Western Blot Analysis:

[0180] Antibodies were produced from rabbit serum 36 days following a second injection of 100 μ g purified protein and adjuvant (AniLab Biological Services, Tal-Sachar, Israel). High molecular weight ladder was from Sigma Chemical Inc. St. Louis, Mo. Western blot conditions were as described in reference 36.

[0181] Determination of the Stereochemical Course of Hydrolysis:

[0182] The method was essentially as described by Wong et al. (31). PNPGlc (10 μ mols) was dissolved in 0.5 ml of 25 mM acetate buffer pH=3.5 in D₂O in an NMR tube. β -Glucosidase was lyophilized and redissolved in 100 μ l D₂O (35 units/ml). The ¹H-NMR spectrum of the substrate was recorded, enzyme added (10 μ l), and spectra recorded at specified time intervals on a Bruker AMX400 at 25° C.

[0183] Inactivation and Reactivation Studies:

[0184] Pure *A. niger* β -Glucosidase enzyme (0.47 mg/ml) was incubated in the presence of various concentrations of 2-deoxy-2-fluoro- β -glucosyl fluoride (2FGlcF, 0.5-6 mM) in 30 mM citrate buffer pH=4.8 at 50° C. Residual enzyme activity was determined at different time intervals by addition of an aliquot (10 µl) of the inactivation mixture, to a solution containing citrate buffer (30 mM, pH=4.8), BSA (8 µg) and 2,4-dinitrophenyl β -D-glucopyranoside (DNPGlc, 0.625 mM, 830 µl). Release of DNP was determined spectrophotometrically by measuring the absorbance at 400 nm one minute after the addition of the substrate.

[0185] Reactivation rates were determined as follows: pure *A. niger* β -glucosidase (0.34 mg/ml) was preincubated with 2FGlcF (5 mM) for 15 min, after which the excess of the inactivator was diafiltered by 20-kDa nominal molecular mass cutoff centrifugal concentrators (Sartorius Inc., Goettingen, Germany). Samples of the purified, inactivated enzyme were incubated in the presence linamarin (0-16 mM) in citrate buffer (30 mM, pH=4.8) at 50° C. for 0, 10, 20 and 30 minutes, and the activity of each sample was determined using p-nitrophenyl β -D-glucopyranoside (pNPGlc) as a substrate.

[0186] Expression of bgl1 cDNA in Tobacco Plants:

[0187] Genetic Constructs:

[0188] Bgl1 cDNA was cloned in pETBI (37). pJD330 and pBINPlus (38) were used as an intermediate and binary vector, respectively. Cell signal sequence as well as 35S plus Ω fragment were retrieved from pB21, modified pBLUESCRIPT® SK (39). *Nicotiana tabacum* cv. Samson was used as a model plant for gene transformation. Three gene constructs were employed (FIGS. **11***a*-*c*): (i) bgl1 without any signal peptide which served for cytoplasmic expression (FIG. **11***a*, plasmid pJDB1); (ii) bgl1 including a cell signal peptide at the N terminus for secretion into the apoplast (FIG. **11***b*, plasmid pJDCB1); and (iii) bgl1 including the cell signal peptide at the C-terminus for accumulation in the ER (FIG. **11***c*, plasmid pJDCB1T).

[0189] To this end, bgl1 cDNA (2.5 kb) was released from pETB1 (37) with NcoI and BamHI and inserted into pJD330 between the 35S promoter Ω fragment and the nos terminator, eliminating the gus gene, resulting in plasmid pJDB1.

Endoplasmic reticulum retaining signal tetrapeptide HDEL (SEQ ID NO:17) was synthesized and fused with bgl1 at the C-terminal in pJDB1 by a fidelity PCR reaction with the following pair of primers: Forward primer (23 mer), starting from nucleotide 1248 of bgl1 cDNA 5'-(1248)-CAGTGAC-CGTGGATGCGACAATG-(1270')-3' (SEQ ID NO:20); Reverse primer (40 mer), starting at nucleotide 2506 of bgl1 cDNA encoding also for the HDEL (SEQ ID NO:17) peptide 5'-(2506)-AGAGACGGATGACAAGTACTACT-

TGAAATTGGGCCCAAAA-3' (SEQ ID NO:21). For pJDCB1T (35S Ω +Cel1+bgl1+HDEL, SEQ ID NO:17), the 35S Ω fragment of pJDB1 was replaced by a 35S Ω +Cel1 fragment digested from pB21 with BamHI and XbaI. For pJDCB1 (35S Ω +Cel1+bgl1), the fragment containing 35S Ω and Cel1 as well as part of bgl1 was cut from pJDCB1T with HindIII and NruI and ligated with the vector of pJDB1 digested with the same pair of restriction enzymes. The nucleotide sequence of all of the genetic constructs was confirmed by DNA sequencing.

[0190] Gene cassettes in the intermediate vectors of pJDB1, pJDCB1 and pJDCB1T were further isolated with HindIII and EcoRI and inserted into multiple cloning sites of the binary vector pBINPlus. Disarmed *Agrobaterium* LB4404 was transformed with pBINPlus containing bgl1 gene cassettes.

[0191] Tobacco Plant Transformation:

[0192] The young leaves of in vitro grown plantlets were excised and cut into 0.5 cm^2 pieces and then immersed for 5 minutes in an overnight grown culture of *Agrobacterium*. After blotted with sterile Whatman filter paper, the infected leaves were co-cultured for 2 days with *Agrobacterium* on MS medium plus 2.0 mg/L of Zeatin and 0.1 mg/L of IAA as well as 0.35% (w/v) phytagel and then transferred to the same medium but with 300 mg/L kanamycin and 300 mg/L carbenicillin. Regenerates were then transferred to the rooting media, containing only MS salts, vitamins and the same antibiotics. Rooted plants were transferred to greenhouse after PCR screening.

[0193] Screening for Transgenic Plants:

[0194] DNA and protein of plants were extracted according to Nagy et al. (40). PCR verification of gene insertion into plant genome was done with the following pairs of primers, which cover the DNA fragment from position 1248 to the end of bgl1: 5'-CAGTGACCGTGGATGCGA-CAATG-3' (SEQ ID NO:22) and 5'-AAAGGATCCTTAGT-GAACAGTAGGCAGAGACGC-3' (SEQ ID NO:23).

[0195] Identifying Transgenic Plants Expressing BGL1 Protein and Activity:

[0196] Western blot (40) and SDS-PAGE activity gel staining (37) were employed to screen successful transgenic lines, using the purified *A. niger* BGL1 protein as positive controls and non-transgenic plant as negative control.

[0197] SPMI-GC/MS Analysis:

[0198] The effect of bgl1 on flavor compound evolution and composition was studied. Fresh leaves of transgenic plants and of wild type control plants were excised and ground in liquid nitrogen. Ice-cold extraction buffer, containing 10 mM EDTA, 4 mM DTT in 50 mM phosphate buffer, pH 4.3, was added in a ratio of 1:3 w/w. The mixture was then shaken for 0.5 hours. 0.75 ml of supernatant from each of the centrifuged mixtures was taken into a glass vial. All manipulations were at 4° C. After 9 hours of incubation at 37° C., the volatiles in the vial were analyzed according to Clark et al. (41) using a Saturn Varian 3800 SPMI-GC-MS apparatus, equipped with a DB-5 capillary column. The temperature of splitless injections was 250° C. and the transfer line was maintained at 280° C. Helium was used as a carrier gas. The oven was programmed as follows: 1 minute at 40° C. with gradually heating to 250° C. at a rate of 5° C/minute.

Experimental Results

[0199] Purification of Wild Type *A. niger* β -glucosidase:

[0200] A. niger β -glucosidase enzyme preparation was purified by MONO-Q[™] (Amersham Biosciences Inc, Piasctawy, N.J.) FPLC. Active protein samples eluted from the MONO-Q[™] (Amersham Biosciences Inc, Piscatawy, N.J.) anion exchange column were separated on a 10% SDS-PAGE gel, stained with coomassie blue, and incubated in the presence of MUGlc to demonstrate activity of the enzyme. At this stage of purification, a discrete band, having an apparent molecular mass of approximately 160 kDa and β -glucosidase activity could be detected (FIG. 2*b*, lanes 1-5: 1-electroeluted band of BGL1 from preparative PAGE-SDS gel stabs; 2-5—acetone precipitates from MONO-Q[™] (Amersham Biosciences Inc, Piscatawy, N.J.) anion exchange separation of BGL1). However, the apparent mass of the denatured enzyme (boiled for 10 min in the presence of β -mercaptoethanol), was shown to be 120 kDa on 10% SDS-PAGE (FIG. 2a). The enzyme was designated BGL1 was further purified to homogeneity on a RESOURCE-S™ (Amersham Biosciences Inc, Piscatawy, N.J.) cation exchange column (FIG. 3). Deglycosylation of A. niger β-glucosidase was performed by N-glycosidase-F. As demonstrated in FIG. 4, SDS-PAGE analysis indicated that approximately 20 kDa of the A. niger β -glucosidase mass can be attributed to N-linked carbohydrates.

[0201] Proteolysis and N-Terminal Sequences of BGL1:

[0202] Partial enzymatic proteolysis with *Staphylococcus aureus* V8 protease of purified BGL1 was conducted. The undigested protein and cleavage products were separated by SDS-PAGE, followed by electroblotting onto PVDF membranes and determination of the N-terminal sequence of the native protein and two of the cleavage products. Amino acid sequences obtained were as follows:

[0203] N-terminal native protein: Asp-Glu-Leu-Ala-Tyr-Ser-Pro-Pro-Tyr-Tyr-Pro-Ser-Pro-Trp-Ala-Asn-Gly-Gln-Gly-Asp (SEQ ID NO:10). Underlined portion represents SEQ ID NO:4.

[0204] Internal cleavage product—E1 polypeptide: Val-Leu-Lys-His-Lys-Asn-Gly-Val-Phe-Thr-Ala-Thr-Asp-Asn-Trp-Ala-Ile-Asp-Gln-Ile-Glu-Ala-Leu-Ala-Lys (SEQ ID NO: 11).

[0205] Internal cleavage product—E2 polypeptide: Gly-Ala-Thr-Asp-Gly-Ser-Ala-Gln-Pro-Ile-Leu-Pro-Ala-Gly-Gly-Gly-Pro-Gly-Gly-Asn-Pro (SEQ ID NO:12). Underlined portion represents SEQ ID NO:6.

[0206] FastA analysis (32) indicated that the N-terminal sequence, as well as the internal sequences, have sequence similarity with sequences of β -glucosidase from the yeast *Saccharomycopsis fibuligera* which belonging to Family 3 of the glycosyl hydrolases.

[0207] Isolation and Characterization of bgl1 cDNA and Genomic DNA:

[0208] In order to clone the A. niger β -glucosidase gene, degenerate primers were designed according to the sequence of digest fragments of the polypeptide. These oligonucleotides were used to amplify a cDNA fragment of the β-glucosidase gene by RT-PCR. A 1.2 kb probe was excised from the resultant 2.2 kb amplification product and was used to screen a genomic library, constructed in pYEUra3 yeast/ E. coli shuttle vector. Positive clones were successfully subcloned and sequenced, resulting in full length bgl1 genomic sequence (SEQ ID NO:3, FIG. 5a). Amplification primers were then generated, according to the genomic DNA sequence, corresponding to the N- and C-terminal of the mature protein. RT-PCR was thereafter used for amplifying the full length β-glucosidase cDNA sequence (SEQ ID NO:1, FIG. 5a, GenBank Accession No. AJ132386). The cDNA sequence perfectly matched the DNA sequence of the combined exons. The open reading frame was found to encode a polypeptide with a predicted molecular weight of 92 kDa. The gene includes 7 exons intercepted by 6 introns (FIG. 5b). Analysis of the DNA sequence upstream to the sequence encoding for the mature protein revealed a putative leader sequence, intercepted by an 82 bp intron.

[0209] Production of rBGL1 in E. coli:

[0210] Recombinant BGL1 was overexpressed in *E. coli*. No apparent β -glucosidase activity could be detected in the *E. coli* extracts, however SDS-PAGE analysis revealed a relatively intense protein band expressed at the expected molecular weight. Western blot analysis using rabbit polyclonal anti-native BGL1 antibodies (AniLab Biological Services, Tal-Sachar, Israel), positively identified the 90 kDa protein band (not shown). Further analysis revealed that the protein was accumulated in inclusion bodies. Several refolding experiments were conducted, however, these efforts to produce active protein from *E. coli* failed (not shown).

[0211] Expression of Recombinant BGL1 in *S. cerevisiae* and *P. pastoris:*

[0212] Recombinant BGL1 was successfully expressed both in S. cerevisiae and P. pastoris. In S. cerevisiae a relatively low level of expression was found. The recombinant protein was detected by a Western blot analysis (FIG. 6a). The total protein extract of S. cerevisiae expressing bgl1 cDNA had a β -glucosidase activity of 1.9 units/mg protein. No β-glucosidase activity was detected in control S. cerevisiae, transformed with vector only, under the same assay conditions. However, no protein band corresponding to recombinant BGL1 could be detected by coomassie blue staining. P. pastoris transformed with bgl1 secreted relatively high levels of recombinant BGL1 to the medium (about 0.5 g/l) appearing as an almost pure protein in the culture supernatant (FIG. 6b). This recombinant enzyme was highly active (124 units/mg protein) and without further purification, yielded specific activity similar to that of the pure native enzyme.

[0213] ¹H-NMR Determination of Stereochemical Outcome:

[0214] ¹H-NMR spectra of a reaction mixture containing pNPGlc and BGL1 revealed that the beta anomer of glucose was formed first (H-1=4.95 ppm), with delayed appearance of the alpha anomer (H-15.59 ppm), the consequence of

mutarotation (FIG. 7). BGL1 is indeed, therefore, a retaining glycosidase, as has been observed for other family members (33, 34).

[0215] Inactivation and Reactivation of *A. niger* β -glucosidase:

[0216] Enzyme was incubated in the presence of various concentrations of 2FGlcF and residual enzyme activity was monitored at different time intervals. Enzyme activity decreased in a time-dependent manner, according to pseudo-first order kinetics, allowing the determination of pseudo-first order rate constants: K_i =4.5 min⁻¹ and K_i =35.4 mM, for inactivation at each inactivator concentration (0, 0.5, 1, 2, 4, and 6 mM, FIG. 8).

[0217] Rates of reactivation of 2-deoxy-2-fluoroglucosyl-BGL1 were determined in the presence of different concentrations of linamarin by monitoring activity regain after 0, 10, 20 and 30 min (FIG. 9). The regain of activity followed a first order process at each linamarin concentration.

[0218] Thermal stability of *A. niger* β -glucosidase:

[0219] Thermal stability of the recombinant enzyme was evaluated at different temperatures, presented as percent enzymatic activity relative to an enzyme solution kept at 4° C. Results obtained are summarized in Table 2 and illustrated in FIG. **10**. The purified enzyme exhibits high thermal stability, as majority (above 50%) of the activity is maintained at a temperature ranging from 4-60° C.

TABLE 2

Temp. ° C.	% activity	
4	100	
50	91.5	
50 55 60	83.5	
60	68	
65	17.8	

[0220] Expression of BGL1 in Tobacco Plants:

[0221] Agrobacterium mediated leaf disc transformation resulted in transgenic tobacco plants as was proved by PCR (FIG. 12) for the presence of the transgene, Western blotting (FIGS. 13*a-b*) for presence of the protein and activity assays (FIGS. 14 and 15) for presence of protein activity. Table 3 below summarizes the results.

TABLE 3

		Gene construct	
	BGL1	Cell + BGL1 + HDEL,	Cell + BGL1
Number of Regenerates	33	14	27
PCR positive	29	9	23
Western Blot positive	4	9	18
Activity gel positive	0	9	18

[0222] Of the 29 PCR positive regenerates transformed with cDNA encoding BGL1, which fails to encode a signal peptide, only in 4 the BGL1 protein was detectable via Western blotting, however no BGL1 activity was measur-

able in any of which. The BGL1 was found smaller in molecular weight compared to wild type *A. niger* beta-glucosidase and of processed recombinant BGL1 containing a signal peptide. Its apparent size of about 95 kDa is very close to 92 kDa which is the calculated molecular weight of the un-glycosylated *A. niger* beta-glucosidase. This result coincides with the fact that a protein with no signal peptide is expected to be released from the ribosomes and remain in the cytoplast (42) un-glycosylated, as protein glycosylation is conducted in the lumen of the endoplasmic reticulum (43).

[0223] Of the 9 PCR positive regenerates transformed with a cDNA encoding the BGL1 and a Cel1 signal peptide and in addition encodes the HDEL, ER retaining peptide, all plants expressed detectable amounts of BGL1 protein and activity.

[0224] Of the 23 PCR positive regenerates transformed with a cDNA which encodes the BGL1 protein and the Cel1 signal peptide but not the HDEL, ER retaining peptide, 18 plants expressed detectable amounts of BGL1 protein and activity.

[0225] The Effect of BGL1 on Flavor Compound Evolution and Composition in Transgenic Tobacco Plants:

[0226] Extracts of transgenic plants (CB14 and CBT21 containing similar BGL1 activity, see FIG. 15) were incubated for 9 hours at 37° C., and flavor compounds were analyzed by SPMI-GC/MS. The results, which are summarized in Table 4 below, show that with the exception of olevl alcohol, the concentration of different flavor compounds is increased in transgenic plants expressing active BGL1 compared with the control. Furthermore, it seems that compartmentalization of BGL1 in the ER (or for that matter, any other subcellular organelle), rather then its secretion to the apoplast, results in higher release of flavor compounds. It is likely that this is resulted from the localization many flavor compounds in the apoplast, thus, secretion of BGL1 to the apoplast cause in vivo release of flavor compounds, while compartmentalization of BGL1 in the ER results in release of flavor compounds only in the event of cell disruption and decompartmentalization.

TABLE 4

Retention Time (minutes)	Scan	Name	CB14	CBT 21
3.917	419	Hexanal	_a	
4.749		3-methyl-pentanoic acid		_
4.863		2-Hexenal	_	+ ^b
5.167	552			+
6.564		1-Heptanol	_	т
7.1	752		+	- ++ ^d
			+	
8.085		2-ethyl-1-pexanol	-	+
8.132	870	Limonene	++	+
8.194	877	2-methyl-phenol	-	+
10.653	1139	Menthol	+	+
11.757	1258	Nerol	-	+
12.039	1288	6-Quinolinol	_	+
12.1	1294	2-butyl-1-octanol	-	+
13.0	1458	?	-	+
13.7	1466	?	-	+
14.091	1507	Vitispirane	_	+
14.094		4-[2,6,6-trimethyl-1-cyclohexen-1-yl]	+	++
		3-Buten-1-one		

TABLE 4-continued

Retention Time (minutes)	Scan Name	CB14 CBT 21
15.985 19.327	1710 ? 2069 Oleyl alcohol	

CB14 - transgenic plant containing Cel1 signal peptide + BGL1;

CBT 21 - transgenic plant containing Cel1 signal peptide + BGL1 +

HDEL, ER retaining peptide. a"-" means no significant difference in concentration compared with wild

type. b"+" means significant increase compared with the wild type.

"--" means significant decrease compared with the wild type

d"++" means significant increase compared with a respective mark "+".

? - unknown compound.

[0227] Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents, patent applications and sequences identified by GenBank accession numbers mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent, patent application or sequence was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.

REFERENCES

- [0228] 1. Bause, E., and Legler, G. (1974) Hoppe-Seyler's Z. Physiol. Chem. 355, 438-442.
- [0229] 2. Beguin, P., and Aubert, J. P. (1994) FEMS Microbiol. Rev. 13, 25-58.
- [0230] 3. Rombouts, F. M. and Pilnik, W. (1978), Proc. Biochem. 8, 9-13.
- [0231] 4. Sternberg, D., Vijayakumar, P. and Reese, E. T. (1977), Can. J. Microbiol. 23, 139-147.
- [0232] 5. Woodward, J. and Wiseman, A. (1982), Enz. Microbiol. Technol. 4, 73-79.
- [0233] 6. Kems, G., Dalchow, E., Klappach, G. and Meyer, D. (1986), Acta. Biotechnol. 6(4), 355-359.
- [0234] 7. Shoseyov, O., Bravdo, B., Ikan, R. and Chet, I. (1988), Phytochem. 27(7), 1973-1976.
- [0235] 8. Shoseyov, O., Bravdo, B., Siegel, D., Goldman, A., Cohen, S, and Shoseyov, L. (1990), J. Agric. Food. Chem. 39, 1387-1390.
- [0236] 9. Dekker, R. F. H. (1986), Biotechnol. Bioengin. 26, 1438-1442.
- [0237] 10. Kitpreechavanich, V. M., Hayashi, M. and Nagai, S. (1986), Agric. Biol. Chem. 50, 1703-1711.
- [0238] 11. Yeoh, H. H., Tan, T. K. and Koh, S. K. (1986), Appl. Microbiol. Biotechnol. 25, 25-28.

- [0239] 12. Crouzet, J. and Chassagne, D. (1999) in Naturally Occurring Glycosides (Ikan. R., ed.) pp. 225-274, Wiley Press.
- [0240] 13. Prade, H., L. F. Mackenzie and S. G. Withers (1998) Carbohyd. Res. 305, 371-381.
- [0241] 14. Zarevucka M., Vacek, M., Wimmer, Z., Demnerova, K. and Mackova, M. (1998) Chirality 10, 676-68.
- [0242] 15. Yi, Q., Sarney, D. B., Khan, J. A. and Vulfson, E. N. (1998) Biotechnol. Bioeng. 60, 385-390.
- [0243] 16. McCleary, B. V. and Harrington, J. (1988), Methods Enzymology, 160, 575-583.
- [0244] 17. Watanabe, T., Sato, T., Yoshioka, S., Koshijima, T. and Kuwahara, M. (1992), Eur. J. Biochem. 209, 651-659.
- [0245] 18. Unno, T., Ide, K., Yazaki, T., Tanaka, Y., Nakakuki, T. and Okada, G. (1993), Biosci. Biotech. Biochem. 57(12), 2172-2173.
- [0246] 19. Le Traon, M. M. P., and Pellerin P., (1998) Enz. Micro. Technol., 22 (5) 374-382.
- [0247] 20. Penttila, M. E., Nevalainen, H. K. M., Raynal, A., and Knowles, J. K. C., (1984), Mol. Gen. Genet. 194, 494-499.
- [0248] 21. Henrissat, B., and Bairoch, A. (1996) Biochem. J. Lett. 316, 695-696
- [0249] 22. Sinnott, M. L. (1990) Chem. Rev. 90, 1171-1202
- [0250] 23. McCarter, J., and Withers, S. G. (1994) Curr. Opin. Struct. Biol. 4, 885-892.
- [0251] 24. Davies, G., Sinnott, M. L., and Withers, S. G. (1998) in CBiological Catalysis (Sinnott, M. L., ed.) Vol. 1, pp. 119-208, Academic Press.
- [0252] 25. Legler, G., Roeser, K. R., and Illig, H. K. (1979) Eur. J. Biochem. 101, 85-92.
- [0253] 26. Roeser, K. R., and Legler, G. (1981) Biochem. Biophys. Acta. 657, 321-333.
- [0254] 27. Legler, G., Sinnott, M. L., and Withers, S. G. (1980) J. Chem. Soc., Perkin Trans. II, 1376-1383.
- [0255] 28. Cleveland, D. W., Fischer, S. G., Kirschner, M. W. and Laemmli, U. K. (1977), J. Biol. Chem. 252(3), 1102-1106.
- [0256] 29. Murray, M. G. and Thompson, W. F. (1980), Nucl. Acids Res. 8, 4321-4325.
- [0257] 30. Ito, H., Fukuda, Y., Murata, K. and Kimura, A. (1983), J. Bacteriol. 153(1), 163-168.
- [0258] 31. Wong, A. W., He, S., Grubb, J. H., Sly, W. S, and Withers S. G. (1998), J. Biol. Chem. 273, 34057-34062.
- [0259] 32. Lipman, D. J. and Pearson, W. R. (1985) Science, 227, 1435-1441.
- [0260] 33. Legler, G. (1968) Hoppe-Zeyler's Z. Physiol. Chem. 349, 767-774.
- [0261] 34. Hrmova, M. and Fincher, G. B. (1996) J. Biol. Chem. 271, 5277-5286.

- [**0262**] 35. Iwashita K., Todoroki, M., Kimura, H., Shimoi, H. and Ito, K. (1998) Biosci. Biotechnol. and Biochem. 62 (10), 1938-1946.
- **[0263]** 36. Rlow E. and Lane D. (1988) Antibodies, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- [0264] 37. Siegel D., Marton I., Dekel M., Bravdo B. A., He S. M., Wither S. G., Shoseyov. O., 2000, Cloning, expression, characterization, and nucleophile identification of family 3, *Aspergillus niger* beta-glucosidase. J. Biol. Chem. 275(7), 4973-4980.
- [0265] 38. Engelen F. A. V., Molthoff J. W., Conner A. J., Nap J. P., Pereira A and Stiekema W., 1995, pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res. 4, 288-290.
- [0266] 39. Shani Z., Dekel M., Tsabary G., Shoseyov., 1997, Cloning and characterization of elongation specific

endo-1,4-beta-glucanase (Cel1) from *Arabidopsis thaliana*, Plant Molecular Biol. 34: 837-842.

- [0267] 40. Nagy F., Kay S. A. K., Chua N. H., 1989, Analysis of gene expression in transgenic plants. In Plant Molecular Biology: manual edited by Gelvin et al., Kluwer Academic Publishers.
- [0268] 41. Clark T. J., Bunch J. E., 1997, Qualitative and quantitative analysis of flavor additives on tobacco products using SPME-GC-Mass Spectroscopy. J. Aagric. Food Chem. 45 (3), 844-849.
- [0269] 42. Lewin B., 1994, The apparatus for protein localization, In Gene V, Oxford University Press. Pp: 279-314.
- **[0270]** 43. Prodi J. A., 2000, The role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem. J., 348, 1-13.

SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 24 <210> SEQ ID NO 1 <211> LENGTH: 2583 <212> TYPE: DNA <213> ORGANISM: Aspergillus niger <400> SEOUENCE: 1 60 atgaggttca ctttgatcga ggcggtggct ctgactgccg tctcgctggc cagcgctgat gaattqqcct actccccacc gtattaccca tccccttqqq ccaatqqcca qqqcqactqq 120 gcgcaggcat accagcgcgc tgttgatatt gtctcgcaaa tgacattgga tgagaaggtc 180 aatctgacca caggaactgg atgggaattg gaactatgtg ttggtcagac tggcggtgtt 240 ccccgattgg gagttccggg aatgtgttta caggatagcc ctctgggcgt tcgcgactcc 300 gactacaact ctgctttccc tgccggcatg aacgtggctg cgacctggga caagaatctg 360 gcataccttc gcggcaaggc tatgggtcag gaatttagtg acaagggtgc cgatatccaa 420 ttgggtccag ctgccggccc tctcggtaga agtcccgacg gtggtcgtaa ctgggagggc 480 ttctcccccag accctgccct aagtggtgtg ctctttgccg agaccatcaa gggtatccaa 540 gatgctggtg tggttgcgac ggctaagcac tacattgctt acgagcaaga gcatttccgt 600 caggcgcctg aagcccaagg ttttggattt aatatttccg agagtggaag tgcgaacctc 660 gatgataaga ctatgcacga gctgtacctc tggcccttcg cggatgccat ccgtgcaggt 720 gctggcgctg tgatgtgctc ctacaaccag atcaacaaca gttatggctg ccagaacagc 780 tacactctga acaagctgct caaggccgag ctgggcttcc agggctttgt catgagtgat 840 tgggctgctc accatgctgg tgtgagtggt gctttggcag gattggatat gtctatgcca 900 ggagacgtcg actacgacag tggtacgtct tactggggta caaacttgac cattagcgtg 960 ctcaacggaa cggtgcccca atggcgtgtt gatgacatgg ctgtccgcat catggccgcc 1020 1080 tactacaaqq tcqqccqtqa ccqtctqtqq actcctccca acttcaqctc atqqaccaqa gatgaatacg gctacaagta ctactacgtg tcggagggac cgtacgagaa ggtcaaccag 1140 1200 tacgtgaatg tgcaacgcaa ccacagcgaa ctgattcgcc gcattggagc ggacagcacg

-continued

gtgctcctca agaacgacgg cgctctgcct ttgactggta aggagcgcct ggtcgcgctt	1260
atcggagaag atgcgggctc caacccttat ggtgccaacg gctgcagtga ccgtggatgc	1320
gacaatggaa cattggcgat gggctgggga agtggtactg ccaacttccc atacctggtg	1380
acccccgagc aggccatctc aaacgaggtg cttaagcaca agaatggtgt attcaccgcc	1440
accgataact gggctatcga tcaaattgag gcgcttgcta agaccgccag tgtctctctt	1500
gtctttgtca acgccgactc tggtgagggt tacatcaatg tggacggaaa cctgggtgac	1560
cgcaggaacc tgaccctgtg gaggaacggc gataatgtga tcaaggctgc tgctagcaac	1620
tgcaacaaca caatcgttgt cattcactct gtcggaccag tcttggttaa cgagtggtac	1680
gacaacccca atgttaccgc tatcctctgg ggtggtttgc ccggtcagga gtctggcaac	1740
totottgccg acgtootota tggcogtgto aaccooggtg coaagtogoo otttacotgg	1800
ggcaagactc gtgaggccta ccaagactac ttggtcaccg agcccaacaa cggcaacgga	1860
gcccctcagg aagactttgt cgagggcgtc ttcattgact accgtggatt tgacaagcgc	1920
aacgagaccc cgatctacga gttcggctat ggtctgagct acaccacttt caactactcg	1980
aaccttgagg tgcaggtgct gagcgcccct gcatacgagc ctgcttcggg tgagaccgag	2040
gcagcgccaa ccttcggaga ggttggaaat gcgtcggatt acctctaccc cagcggattg	2100
ctgagaatta ccaagttcat ctacccctgg ctcaacggta ccgatctcga ggcatcttcc	2160
ggggatgcta gctacgggca ggactcctcc gactatcttc ccgagggagc caccgatggc	2220
tetgegeaae egateetgee tgeeggtgge ggteetggeg geaaceeteg eetgtaegae	2280
gageteatee gegtgteagt gaceateaag aacaeeggea aggttgetgg tgatgaagtt	2340
ccccaactgt atgtttccct tggcggtccc aatgagccca agatcgtgct gcgtcaattc	2400
gagegeatea egetgeagee gteggaggag aegaagtgga geaegaetet gaegegeegt	2460
gaccttgcaa actggaatgt tgagaagcag gactgggaga ttacgtcgta tcccaagatg	2520
gtgtttgtcg gaageteete geggaagetg eegeteeggg egtetetgee taetgtteae	2580
taa	2583
<210> SEQ ID NO 2 <211> LENGTH: 860 <212> TYPE: PRT <213> ORGANISM: Aspergillus niger	
<400> SEQUENCE: 2	
Met Arg Phe Thr Leu Ile Glu Ala Val Ala Leu Thr Ala Val Ser Leu 1 5 10 15	
Ala Ser Ala Asp Glu Leu Ala Tyr Ser Pro Pro Tyr Tyr Pro Ser Pro 20 25 30	
Trp Ala Asn Gly Gln Gly Asp Trp Ala Gln Ala Tyr Gln Arg Ala Val 35 40 45	
Asp Ile Val Ser Gln Met Thr Leu Asp Glu Lys Val Asn Leu Thr Thr 50 55 60	
Gly Thr Gly Trp Glu Leu Glu Leu Cys Val Gly Gln Thr Gly Gly Val65707580	
Pro Arg Leu Gly Val Pro Gly Met Cys Leu Gln Asp Ser Pro Leu Gly 85 90 95	
Val Arg Asp Ser Asp Tyr Asn Ser Ala Phe Pro Ala Gly Met Asn Val	

22

-continued

	-continued								ued						
			100					105					110		
Ala	Ala	Thr 115	Trp	Asp	Lys	Asn	Leu 120	Ala	Tyr	Leu	Arg	Gl y 125	Lys	Ala	Met
Gly	Gln 130	Glu	Phe	Ser	Asp	L y s 135	_	Ala	Asp	Ile	Gln 140	Leu	Gly	Pro	Ala
Ala 145	Gly	Pro	Leu	Gly	Arg 150	Ser	Pro	Asp	Gly	Gly 155	Arg	Asn	Trp	Glu	Gl y 160
Phe	Ser	Pro	Asp	Pro 165	Ala	Leu	Ser	Gly	Val 170	Leu	Phe	Ala	Glu	Thr 175	Ile
Lys	Gly	Ile	Gln 180	Asp	Ala	Gly	Val	Val 185	Ala	Thr	Ala	Lys	His 190	Tyr	Ile
Ala	Tyr	Glu 195	Gln	Glu	His	Phe	Arg 200	Gln	Ala	Pro	Glu	Ala 205	Gln	Gly	Phe
Gly	Phe 210	Asn	Ile	Ser	Glu	Ser 215		Ser	Ala	Asn	Leu 220	Asp	Asp	Lys	Thr
Met 225	His	Glu	Leu	Tyr	Leu 230	Trp	Pro	Phe	Ala	Asp 235	Ala	Ile	Arg	Ala	Gly 240
Ala	Gly	Ala	Val	Met 245	Cys	Ser	Tyr	Asn	Gln 250	Ile	Asn	Asn	Ser	Ty r 255	Gly
Cys	Gln	Asn	Ser 260	Tyr	Thr	Leu	Asn	L y s 265	Leu	Leu	Lys	Ala	Glu 270	Leu	Gly
Phe	Gln	Gly 275	Phe	Val	Met	Ser	Asp 280	Trp	Ala	Ala	His	His 285	Ala	Gly	Val
Ser	Gly 290	Ala	Leu	Ala	Gly	Leu 295	Asp	Met	Ser	Met	Pro 300	Gly	Asp	Val	Asp
Ty r 305	Asp	Ser	Gly	Thr	Ser 310	Tyr	Trp	Gly	Thr	Asn 315	Leu	Thr	Ile	Ser	Val 320
Leu	Asn	Gly	Thr	Val 325	Pro	Gln	Trp	Arg	Val 330	Asp	Asp	Met	Ala	Val 335	Arg
Ile	Met	Ala	Ala 340	Tyr	Tyr	Lys	Val	Gly 345	Arg	Asp	Arg	Leu	Trp 350	Thr	Pro
Pro	Asn	Phe 355	Ser	Ser	Trp	Thr	Arg 360	Asp	Glu	Tyr	Gly	Ty r 365	Lys	Tyr	Tyr
Tyr	Val 370	Ser	Glu	Gly	Pro	Ty r 375	Glu	Lys	Val	Asn	Gln 380	Tyr	Val	Asn	Val
Gln 385	Arg	Asn	His	Ser	Glu 390	Leu	Ile	Arg	Arg	Ile 395	Gly	Ala	Asp	Ser	Thr 400
Val	Leu	Leu	Lys	Asn 405		Gly	Ala	Leu	Pro 410	Leu	Thr	Gly	Lys	Glu 415	Arg
Leu	Val	Ala	Leu 420	Ile	Gly	Glu	Asp	Ala 425	Gly	Ser	Asn	Pro	Ty r 430	Gly	Ala
Asn	Gly	Cys 435	Ser	Asp	Arg	Gly	Cys 440	Asp	Asn	Gly	Thr	Leu 445	Ala	Met	Gly
Trp	Gly 450	Ser	Gly	Thr	Ala	Asn 455	Phe	Pro	Tyr	Leu	Val 460	Thr	Pro	Glu	Gln
Ala 465	Ile	Ser	Asn	Glu	Val 470	Leu	Lys	His	Lys	Asn 475	Gly	Val	Phe	Thr	Ala 480
Thr	Asp	Asn	Trp	Ala 485	Ile	Asp	Gln	Ile	Glu 490	Ala	Leu	Ala	Lys	Thr 495	Ala
Ser	Val	Ser	Leu 500	Val	Phe	Val	Asn	Ala 505	Asp	Ser	Gly	Glu	Gly 510	Tyr	Ile

-continued

60

Asn	Val	Asp 515	Gly	Asn	Leu	Gly	Asp 520	Arg	Arg	Asn	Leu	Thr 525	Leu	Trp	Arg
Asn	Gly 530	Asp	Asn	Val	Ile	L y s 535	Ala	Ala	Ala	Ser	Asn 540	Cys	Asn	Asn	Thr
Ile 545	Val	Val	Ile	His	Ser 550	Val	Gly	Pro	Val	Leu 555	Val	Asn	Glu	Trp	Ty r 560
Asp	Asn	Pro	Asn	Val 565	Thr	Ala	Ile	Leu	T rp 570	Gly	Gly	Leu	Pro	Gly 575	Gln
Glu	Ser	Gly	Asn 580	Ser	Leu	Ala	Asp	Val 585	Leu	Tyr	Gly	Arg	Val 590	Asn	Pro
Gly	Ala	L y s 595	Ser	Pro	Phe	Thr	T rp 600	Gly	Lys	Thr	Arg	Glu 605	Ala	Tyr	Gln
Asp	Ty r 610	Leu	Val	Thr	Glu	Pro 615	Asn	Asn	Gly	Asn	Gly 620	Ala	Pro	Gln	Glu
Asp 625	Phe	Val	Glu	Gly	Val 630	Phe	Ile	Asp	Tyr	Arg 635	Gly	Phe	Asp	Lys	Arg 640
Asn	Glu	Thr	Pro	Ile 645	Tyr	Glu	Phe	Gly	Ty r 650	Gly	Leu	Ser	Tyr	Thr 655	Thr
Phe	Asn	Tyr	Ser 660	Asn	Leu	Glu	Val	Gln 665	Val	Leu	Ser	Ala	Pro 670	Ala	Tyr
Glu	Pro	Ala 675	Ser	Gly	Glu	Thr	Glu 680	Ala	Ala	Pro	Thr	Phe 685	Gly	Glu	Val
Gly	Asn 690	Ala	Ser	Asp	Tyr	Leu 695	Tyr	Pro	Ser	Gly	Leu 700	Leu	Arg	Ile	Thr
L y s 705	Phe	Ile	Tyr	Pro	T rp 710	Leu	Asn	Gly	Thr	Asp 715	Leu	Glu	Ala	Ser	Ser 720
Gly	Asp	Ala	Ser	Ty r 725	Gly	Gln	Asp	Ser	Ser 730	Asp	Tyr	Leu	Pro	Glu 735	Gly
Ala	Thr	Asp	Gly 740	Ser	Ala	Gln	Pro	Ile 745	Leu	Pro	Ala	Gly	Gl y 750	Gly	Pro
Gly	Gly	Asn 755	Pro	Arg	Leu	Tyr	Asp 760	Glu	Leu	Ile	Arg	Val 765	Ser	Val	Thr
Ile	L y s 770	Asn	Thr	Gly	Lys	Val 775	Ala	Gly	Asp	Glu	Val 780	Pro	Gln	Leu	Tyr
Val 785	Ser	Leu	Gly	Gly	Pro 790	Asn	Glu	Pro	Lys	Ile 795	Val	Leu	Arg	Gln	Phe 800
Glu	Arg	Ile	Thr	Leu 805	Gln	Pro	Ser	Glu	Glu 810	Thr	Lys	Trp	Ser	T hr 815	Thr
Leu	Thr	Arg	Arg 820	Asp	Leu	Ala	Asn	T rp 825	Asn	Val	Glu	Lys	Gln 830	Asp	Trp
Glu	Ile	Thr 835	Ser	Tyr	Pro	Lys	Met 840	Val	Phe	Val	Gly	Ser 845	Ser	Ser	Arg
Lys	Leu 850	Pro	Leu	Arg	Ala	Ser 855	Leu	Pro	Thr	Val	His 860				
		Q II NGTH													
<212	2> TY	PE:	DNA												
				Aspe	ergil	Llus	nige	er							
<400)> SE	QUEN	ICE :	3											

						Î
tagctttgcg	gagacagctg	cactggcata	catcatcgtt	gggttcctca	120	
cgtggcggac	ggtcactttg	tggcgctcaa	actatttaat	atggcccagc	180	
ctcgctgttt	tcgtttctgt	cctccctaaa	cctccagtct	ctccattgga	240	
acggttgctc	acctggtttg	ttttgctccc	cctttgggcg	accttgccat	300	
actttgatcg	aggcggtggc	tctgactgcc	gtctcgctgg	ccagcgctgt	360	
actttgtcct	gagaattgca	attgtgctta	attagattca	tttgtttgtt	420	
tgacaatggt	cttttcatag	gatgaattgg	cctactcccc	accgtattac	480	
gggccaatgg	ccagggcgac	tgggcgcagg	cataccagcg	cgctgttgat	540	
aaatgacatt	ggatgagaag	gtcaatctga	ccacaggaac	tgggtagggc	600	
caatctgtat	gctccggcta	acaacttcta	catgggaatt	ggaactatgt	660	
ctggcggtgt	tccccggtag	gtttgaaaat	attgtcgaga	caggggacat	720	
cggtgacaga	ttgggagttc	cgggaatgtg	tttacaggat	agccctctgg	780	
ctgtaagcca	tctgctgttg	ttaggcttcg	atgctcttac	tgacacggcg	840	
caactctgct	ttccctgccg	gcatgaacgt	ggctgcaacc	tgggacaaga	900	
ccttcgcggc	aaggctatgg	gtcaggaatt	tagtgacaag	ggtgccgata	960	
tccagctgcc	ggccctctcg	gtagaagtcc	cgacggtggt	cgtaactggg	1020	
cccagaccct	gccctaagtg	gtgtgctctt	tgccgagacc	atcaagggta	1080	
tggtgtggtt	gcgacggcta	agcactacat	tgcttacgag	caagagcatt	1140	
gcctgaagcc	caaggttttg	gatttaatat	ttccgagagt	ggaagtgcga	1200	
taagactatg	cacgagctgt	acctctggcc	cttcgcggat	gccatccgtg	1260	
cgctgtgatg	tgctcctaca	accagatcaa	caacagttat	ggctgccaga	1320	
tctgaacaag	ctgctcaagg	ccgagctggg	cttccagggc	tttgtcatga	1380	
tgctcaccat	gctggtgtga	gtggtgcttt	ggcaggattg	gatatgtcta	1440	
cgtcgactac	gacagtggta	cgtcttactg	gggtacaaac	ttgaccatta	1500	
cggaacggtg	ccccaatggc	gtgttgatga	catggctgtc	cgcatcatgg	1560	
caaggtcggc	cgtgaccgtc	tgtggactcc	tcccaacttc	agctcatgga	1620	
atacggctac	aagtactact	acgtgtcgga	gggaccgtac	gagaaggtca	1680	
gaatgtgcaa	cgcaaccaca	gcgaactgat	tcgccgcatt	ggagcggaca	1740	
cctcaagaac	gacggcgctc	tgcctttgac	tggtaaggag	cgcctggtcg	1800	
agaagatgcg	ggctccaacc	cttatggtgc	caacggctgc	agtgaccgtg	1860	
tggaacattg	gcgatgggct	ggggaagtgg	tactgccaac	ttcccatacc	1920	
tggaacattg cgagcaggcc					1920 1980	
	atctcaaacg	aggtgcttaa	gcacaagaat	ggtgtattca		
cgagcaggcc	atctcaaacg atcgatcaaa	aggtgcttaa ttgaggcgct	gcacaagaat tgctaagacc	ggtgtattca gccaggtaag	1980	
cgagcaggcc taactgggct	atctcaaacg atcgatcaaa ttcttgtgca	aggtgcttaa ttgaggcgct atggatgctg	gcacaagaat tgctaagacc acaacatgct	ggtgtattca gccaggtaag agtgtctctc	1980 2040	
cgagcaggcc taactgggct attcttttcc	atctcaaacg atcgatcaaa ttcttgtgca tctggtgagg	aggtgcttaa ttgaggcgct atggatgctg gttacatcaa	gcacaagaat tgctaagacc acaacatgct tgtggacgga	ggtgtattca gccaggtaag agtgtctctc aacctgggtg	1980 2040 2100	
cgagcaggcc taactgggct attcttttcc caacgccgac	atctcaaacg atcgatcaaa ttcttgtgca tctggtgagg tggaggaacc	aggtgcttaa ttgaggcgct atggatgctg gttacatcaa gcgataatgt	gcacaagaat tgctaagacc acaacatgct tgtggacgga gatcaaggct	ggtgtattca gccaggtaag agtgtctctc aacctgggtg gctgctagca	1980 2040 2100 2160	
	cgtggcggac acttgatgtt acggtgctc acttgatcg actttgatcg actttgtcct gggccaatgg aaatgacatt caatcgtat cggtgacaga ctgtaagcca caactctgct cccagctgcc cccagaccct tggtgtggtt gcctgaagcc taagactatg cgtgtgaggt cgctgtgatg cccagacct gcctgaacaag cccagaccat gcctgaacaag ccaactagct caactctgct cccagctgc cccagaccct acctagacca caactagct cccagacca caactagct cccagacca caactagct cccagacca caactagct cccagacca acctgaacaag cccagaccaa ccaacaag cccaacaag cccaacaag cccaacaa ccaacaacaag acctaacaag ccaacaacaa ccaacaacaa	cgtggcggacggtcactttgctcgctgttttcgtttctgtacggttgctcacctggttgactttgatcgaggcggtggcactttgtcctgagaattgcatgacaatggtcttttcataggggccaatggccagggcgacaaatgacattggatgagagcaatctgtatgctccggtagcagtgacaagattggaggtgcaatctgtatgctccggtagcaatctgctttccctgccgcaatctgctttccctgccgcaatctgctgccctgcgcaatctgctgccctgcgcaactctgctgccctgcgccaactctgctgcctaaggttccagctgccgaggtttgtccagctgccaaggtttgtggtgtggttgcgacggctagcctgaagcccaaggttgtggtgtgatgtgctcctacatgctgtgatgtgctcctacatgctgacaagctgctgtgagtgctgacaagccaaggtgcgtgaacggtgcccaatggccaaggtcgcgaaggtgtgcaaggtcgcgaaggtgtgcaaggtcgcgcaacatggcaaggtcgcgcaacggtgcaaggtcgccaagtcgccaaggtcgcaagtactactgaatgtgcaagcaaccacagaatgtgcagacggcgctcatacggctagacggcgccaaggtcgcaagtaccacacctcaagaacgcaaccacaaaggtcgcaagtaccacacaaaggtcgcaagtaccacacacaaggtcgcaagtaccacacacaaggccacacacagccaccacacacaacgccacacacagccaccacacacacaacgccacacacagccaccacacacacacaacgccacacacacag	cgtggcggacggtcactttgtggcgctcaactcgctgttttcgtttctgtcctccctaaaacggttgctacctggttgtttgctcccactttgatcgaggcggtggctctgactgccactttgtcctgagaattgcaattgtgcttatgacaatggtcttttcataggatgaattgagggccaatggccagggcgactggggcgaagaaatgacattggatgagaggttaaaatcdgtggcggtccccggtaggataattgacdgtggcggtccccggtaggttaaaatcggtgacagattgggagtccgggaatgtgcaactctgctttccctgccggcatgaagacctgcggtgacgcctagggtagaagtccaactctgctttccctgccggtagaagtcccaagctgcggccatagggtagaagtccccagacccgccctaagtggtgtgcttggtgtggttgcgacggtaagcactacagcctgaagccaagttttggattaatattaagactatgccccaaggcaccagaccagtgctgacagatgctcctacaaccagaccaggcctgaacagtgctgtgtgcgaagtggtgctgacagtgctgctacaaccagaccagtgctgacagtgctcctacaaccagaccagtgctgacagtgctgtggtagtgtgctttcgctgaacagccccaatgcgtgtgcttcggaacgggcccaatgcgtgtgctccgaacggtgccccaatgcgtgtgctccgaacggtgccccaatgcgtgtgctccgaacggtgcccaatgcgtgtgctcgaacggtgcccaatgcgtgtgctcgtgaacggcgtgaccatacgtgtggacggaacggcgtgaccatgtgtgctc <td>cgtggcggacggtcactttgtggcgctcaaactatttaatctcgctgtttcgttctgcctccctaaacctccagtgacggttgctacctggttgtttgctcccgctcggggactttgatcgaggcggtggtctgactgcgttgattgaggccaatggctttcataggatgattggcataccagcggggccaatggccagggcgactgggggagcataccagcgaaatgacatggatgagaaggttaaattcatacgaatctggcggtgtccccggtaggttgaaaaattgtcagaactggcggtgtccccggtaggttgaaaatattgtcagaactggcggtgtccccggtaggttgaaaatattgtcagaactgtaagccattgcgggtggcaggaaaggcagaacgactggtggcgaggctatgggtcaggaacgggcggaacgctgtaagccattgcgggtggcaggaaaggcagaacgaccaactcgctttccctgccggcagaagaccgaggggggccaactggcaggctatgggtagaagagcagaagatccagctgcggcctaagtggtgtgcaacgiccagaaccetgccctaagtggtgtgcaacgiggtgtggttgcgacggctaagcactacaiggtgtggttgcgacggctaaccacggtagicctgaacaacacggictgaaccacggagicgtgtgatgigctcctacaaccagaacgigicgtcgaacgcgcggigggcagagigicccaagaccagcaggtggggaacgigicccagaacagcccaaggigicccaagaacicaagactaggcggacggggaacgigicctgaacaagcaggigggaacgigicgtggaacgigicccaagacgicgaacgigicgtgaacgagcgga</td> <td>tagetttigegagacageticactigecalcateatestigggtteetacigggeggaegytacittitiggegeteaaactittiaaatgeecaageacegttigetitegttetigiceteoecaaaceteoeggiacettiggaeacettigateiaggeggggitetigeteeceteiggiacettigeteiactitigateigagaattigeattigeteiattigeteiacettigeteigagecaatigicetticaagigatgaattigicetaecageicegtigaggigagecaatigicecceggaagigatgaattigicetaecageicegtigaggicaatetgaagyatgagaagigetaacatigicaceeggaactiggegaecaatetgaagyatgagaagigetagaattigiattigeteigggacaagicaatetgaagetaecaggaagetagaaaaattigeteigggacaagicagggacaaigetaecaggaagetaecagaatiggagaagiceacaggaacgggecaatigitecceggaagigetagaaaaattigeteiggaacaagigagacaagigetaecaggaagetaecagaatiggagaagiceacagagaacaatetigaatecceggaagigetagaaaaattigeteiggaacaagicaagactaigegegagaagetaggaagigetagaagaaggacaggaagicaagactaigegecagaacgetaggaagigetagaagaagetagaagicaagactaigegecagaacgetaecaaaiteccagaagigetagaagicaagactaigegecagaagetaecaaaigecacacagigeacacaagiggetggagaigeacagagigeacagagigeacagigigeacacaaigitaggacagaigeacagagigeacagagigeacagigi<td>cgtgggggac ggtcacttg tgggggtca actatttaat atggcccage 180 ctegetgtt tegttetg tettegte etecedaa eetectaggg acettgeet 300 acttgateg aggeggtgge tetgaetgee gteegetgg eeagegetgt 360 acttgtee gagaattgea attgtgetta attagattea tttgttgtt 420 tgacaatggt ettteetag gatggaetgg eetaecageg egetgttgat 540 aaatgaeat ggatgagag gteaatetga eeaeggae eggggae egggegae tgggegaeg eeaeggae tgggggae tggggae eeaeggae tgggggae eeaeggae tgggggae eeaeggae tgggggae eeaeggae tgggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tggggae eeaeggae eggggae tggggeeaegg eataecage eggggae eeaeggae eeaeggae tgggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tgggae eeaeggae tgggae eeaeggae tgggae eeaeggae tgggae eeaeggae tgggae eeaeggae eeaeggae eeaeggae eeaeggae eeaeggae eeaeggae tgggae eeaeggae tgggaaet tgggagae tgggagae teggagaet ggae eeagggae eeaggggae eeaeggae eeagggae eeaeggae eeaeggee eeseeeeaegae eeaeggee eeseeeeeeeeee</td></td>	cgtggcggacggtcactttgtggcgctcaaactatttaatctcgctgtttcgttctgcctccctaaacctccagtgacggttgctacctggttgtttgctcccgctcggggactttgatcgaggcggtggtctgactgcgttgattgaggccaatggctttcataggatgattggcataccagcggggccaatggccagggcgactgggggagcataccagcgaaatgacatggatgagaaggttaaattcatacgaatctggcggtgtccccggtaggttgaaaaattgtcagaactggcggtgtccccggtaggttgaaaatattgtcagaactggcggtgtccccggtaggttgaaaatattgtcagaactgtaagccattgcgggtggcaggaaaggcagaacgactggtggcgaggctatgggtcaggaacgggcggaacgctgtaagccattgcgggtggcaggaaaggcagaacgaccaactcgctttccctgccggcagaagaccgaggggggccaactggcaggctatgggtagaagagcagaagatccagctgcggcctaagtggtgtgcaacgiccagaaccetgccctaagtggtgtgcaacgiggtgtggttgcgacggctaagcactacaiggtgtggttgcgacggctaaccacggtagicctgaacaacacggictgaaccacggagicgtgtgatgigctcctacaaccagaacgigicgtcgaacgcgcggigggcagagigicccaagaccagcaggtggggaacgigicccagaacagcccaaggigicccaagaacicaagactaggcggacggggaacgigicctgaacaagcaggigggaacgigicgtggaacgigicccaagacgicgaacgigicgtgaacgagcgga	tagetttigegagacageticactigecalcateatestigggtteetacigggeggaegytacittitiggegeteaaactittiaaatgeecaageacegttigetitegttetigiceteoecaaaceteoeggiacettiggaeacettigateiaggeggggitetigeteeceteiggiacettigeteiactitigateigagaattigeattigeteiattigeteiacettigeteigagecaatigicetticaagigatgaattigicetaecageicegtigaggigagecaatigicecceggaagigatgaattigicetaecageicegtigaggicaatetgaagyatgagaagigetaacatigicaceeggaactiggegaecaatetgaagyatgagaagigetagaattigiattigeteigggacaagicaatetgaagetaecaggaagetagaaaaattigeteigggacaagicagggacaaigetaecaggaagetaecagaatiggagaagiceacaggaacgggecaatigitecceggaagigetagaaaaattigeteiggaacaagigagacaagigetaecaggaagetaecagaatiggagaagiceacagagaacaatetigaatecceggaagigetagaaaaattigeteiggaacaagicaagactaigegegagaagetaggaagigetagaagaaggacaggaagicaagactaigegecagaacgetaggaagigetagaagaagetagaagicaagactaigegecagaacgetaecaaaiteccagaagigetagaagicaagactaigegecagaagetaecaaaigecacacagigeacacaagiggetggagaigeacagagigeacagagigeacagigigeacacaaigitaggacagaigeacagagigeacagagigeacagigi <td>cgtgggggac ggtcacttg tgggggtca actatttaat atggcccage 180 ctegetgtt tegttetg tettegte etecedaa eetectaggg acettgeet 300 acttgateg aggeggtgge tetgaetgee gteegetgg eeagegetgt 360 acttgtee gagaattgea attgtgetta attagattea tttgttgtt 420 tgacaatggt ettteetag gatggaetgg eetaecageg egetgttgat 540 aaatgaeat ggatgagag gteaatetga eeaeggae eggggae egggegae tgggegaeg eeaeggae tgggggae tggggae eeaeggae tgggggae eeaeggae tgggggae eeaeggae tgggggae eeaeggae tgggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tggggae eeaeggae eggggae tggggeeaegg eataecage eggggae eeaeggae eeaeggae tgggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tgggae eeaeggae tgggae eeaeggae tgggae eeaeggae tgggae eeaeggae tgggae eeaeggae eeaeggae eeaeggae eeaeggae eeaeggae eeaeggae tgggae eeaeggae tgggaaet tgggagae tgggagae teggagaet ggae eeagggae eeaggggae eeaeggae eeagggae eeaeggae eeaeggee eeseeeeaegae eeaeggee eeseeeeeeeeee</td>	cgtgggggac ggtcacttg tgggggtca actatttaat atggcccage 180 ctegetgtt tegttetg tettegte etecedaa eetectaggg acettgeet 300 acttgateg aggeggtgge tetgaetgee gteegetgg eeagegetgt 360 acttgtee gagaattgea attgtgetta attagattea tttgttgtt 420 tgacaatggt ettteetag gatggaetgg eetaecageg egetgttgat 540 aaatgaeat ggatgagag gteaatetga eeaeggae eggggae egggegae tgggegaeg eeaeggae tgggggae tggggae eeaeggae tgggggae eeaeggae tgggggae eeaeggae tgggggae eeaeggae tgggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tggggae eeaeggae eggggae tggggeeaegg eataecage eggggae eeaeggae eeaeggae tgggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tggggae eeaeggae tgggae eeaeggae tgggae eeaeggae tgggae eeaeggae tgggae eeaeggae tgggae eeaeggae eeaeggae eeaeggae eeaeggae eeaeggae eeaeggae tgggae eeaeggae tgggaaet tgggagae tgggagae teggagaet ggae eeagggae eeaggggae eeaeggae eeagggae eeaeggae eeaeggee eeseeeeaegae eeaeggee eeseeeeeeeeee

-continued

actctcttgc	cgacgtcctc	tatggccgtg	tcaaccccgg	tgccaagtcg	ccctttacct	2400
ggggcaagac	tcgtgaggcc	taccaagact	acttggtcac	cgagcccaac	aacggcaacg	2460
gagcccctca	ggaagacttt	gtcgagggcg	tcttcattga	ctaccgtgga	tttgacaagc	2520
gcaacgagac	cccgatctac	gagttcggct	atggtctgag	ctacaccact	ttcaactact	2580
cgaaccttga	ggtgcaggtg	ctgagcgccc	ctgcatacga	gcctgcttcg	ggtgagaccg	2640
aggcagcgcc	aaccttcgga	gaggttggaa	atgcgtcgga	ttacctctac	cccagcggat	2700
tgctgagaat	taccaagttc	atctacccct	ggctcaacgg	taccgatctc	gaggcatctt	2760
ccggggatgc	tagctacggg	caggactcct	ccgactatct	tcccgaggga	gccaccgatg	2820
gctctgcgca	accgatcctg	cctgccggtg	gcggtcctgg	cggcaaccct	cgcctgtacg	2880
acgageteat	ccgcgtgtca	gtgaccatca	agaacaccgg	caaggttgct	ggtgatgaag	2940
ttccccaact	ggtaagtaaa	catgaggtcc	gaacgaggtt	gaacaaagct	aatcagtcgc	3000
agtatgtttc	ccttggcggt	cccaatgagc	ccaagatcgt	gctgcgtcaa	ttcgagcgca	3060
tcacgctgca	gccgtcggag	gagacgaagt	ggagcacgac	tctgacgcgc	cgtgaccttg	3120
caaactggaa	tgttgagaag	caggactggg	agattacgtc	gtatcccaag	atggtgtttg	3180
tcggaagctc	ctcgcggaag	ctgccgctcc	gggcgtctct	gcctactgtt	cactaaatag	3240
ctctcaaatg	gtataccatg	atggccgtgg	tatatgaatt	aatgatttat	gccaacagca	3300
agaccactgt	agatgtagat	gtagaatgag	tattgcgtag	tagcgtgtag	atgatgatac	3360
aagcgatccg	acacatggta	ggaagagtgg	cgctagttgg	ggcggaaacc	aagcgacgtc	3420
atccgctgcc	gacttcgcca	gtctttcttc	ttttcctctt	cagccttctt	cctccgctta	3480
atccagcaac	cattgccaat	tgcctctaca	acaactaatt	gccataatac	tctactccta	3540
ttcaatatat	acaccacaat	ctcgacataa	tcacacaagc	ctgaacacac	gagcaaccat	3600
gccctctccc	gatcctccag	ccccagcgat	acgacccttc	caaccaccca	taacagcgct	3660
cctcatctac	ccagcgaccc	taatcgtggg	atcactcttc	tccgtcctct	ctcccaccgc	3720
acaaggcaca	cgcgacgacg	gctccagcac	cctccaccca	cacgtcgagc	ccctagcccc	3780
gtccatcgcg	tcagacctca	acctctcctt	tectecgeeg	cgccccgtca	actacttcgc	3840
tcgcaaagac	aacatcttca	atctatattc	gtcaaagtcg	gctgg		3885
	M: 6 PRT NISM: Asperg	gillus niger	e -			
<400> SEQUE						
Ser Pro Pro 1	5 Tyr Tyr Pi 5					
<pre><220> FEATU <223> OTHER <220> FEATU <221> NAME/ <222> LOCAT</pre>	TH: 16 DNA UISM: Artific URE: NFORMATIC	DN: Single a eature 2)	strand DNA c	bligonucleot	ide	
<220> FEATU			c, y, or t			

<221> NAME/KEY: misc_feature <222> LOCATION: (5)..(5) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (8)..(8) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 5 snccnccnta ytaycc 16 <210> SEQ ID NO 6 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Aspergillus niger <400> SEQUENCE: 6 Gln Pro Ile Leu Pro Ala Gly Gly 1 5 <210> SEQ ID NO 7 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Single strand DNA oligonucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (6)..(6) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (9)..(9) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (15)..(15) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEOUENCE: 7 tccgcnggna rdatnggytg 20 <210> SEQ ID NO 8 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Single strand DNA oligonucleotide <400> SEQUENCE: 8 aaaccatggc tgatgaattg gcatactccc cacc 34 <210> SEQ ID NO 9 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Single strand DNA oligonucleotide <400> SEQUENCE: 9 aaaggateet tagtgaacag taggeagaga ege 33 <210> SEQ ID NO 10 <211> LENGTH: 20 <212> TYPE: PRT <213> ORGANISM: Aspergillus niger

```
-continued
```

<220> FEATURE: <221> NAME/KEY: misc feature <223> OTHER INFORMATION: A peptide derived from partial V8 proteolysis of purified BGL1 <400> SEQUENCE: 10 Asp Glu Leu Ala Tyr Ser Pro Pro Tyr Tyr Pro Ser Pro Trp Ala Asn 1 5 10 15 Gly Gln Gly Asp 20 <210> SEQ ID NO 11 <211> LENGTH: 25 <212> TYPE: PRT <213> ORGANISM: Aspergillus niger <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: A peptide derived from partial V8 proteolysis of purified BGL1 <400> SEQUENCE: 11 Val Leu Lys His Lys Asn Gly Val Phe Thr Ala Thr Asp Asn Trp Ala 1 5 10 15 Ile Asp Gln Ile Glu Ala Leu Ala Lys 20 <210> SEQ ID NO 12 <211> LENGTH: 21 <212> TYPE: PRT <213> ORGANISM: Aspergillus niger <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: A peptide derived from partial V8 proteolysis of purified BGL1 <400> SEQUENCE: 12 Gly Ala Thr Asp Gly Ser Ala Gln Pro Ile Leu Pro Ala Gly Gly Gly 1 5 10 15 Pro Gly Gly Asn Pro 20 <210> SEQ ID NO 13 <211> LENGTH: 3212 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: An expression cassettes used for expression of A. niger beta-glucosidase in tobacco plants <400> SEOUENCE: 13 gaattcccga tcctatctgt cacttcatca aaaggacagt agaaaaggaa ggtggcacta 60 caaatgccat cattgcgata aaggaaaggc tatcgttcaa gatgcctctg ccgacagtgg 120 tcccaaagat ggacccccac ccacgaggag catcgtggaa aaagaagacg ttccaaccac 180 gtcttcaaag caagtggatt gatgtgatat ctccactgac gtaagggatg acgcacaatc 240 300 aggettettg agateettea acaattaeea acaacaacaa acaacaaaca acattaeaat 360 tactatttac aattacagtc gaccatggct gatgaattgg cctactcccc accgtattac 420 480 ccatcccctt qqqccaatqq ccaqqqcqac tqqqcqcaqq cataccaqcq cqctqttqat

attgtctcgc	aaatgacatt	ggatgagaag	gtcaatctga	ccacaggaac	tggatgggaa	540	
ttggaactat	gtgttggtca	gactggcggt	gttccccgat	tgggagttcc	gggaatgtgt	600	
ttacaggata	gccctctggg	cgttcgcgac	tccgactaca	actctgcttt	ccctgccggc	660	
atgaacgtgg	ctgcgacctg	ggacaagaat	ctggcatacc	ttcgcggcaa	ggctatgggt	720	
caggaattta	gtgacaaggg	tgccgatatc	caattgggtc	cagctgccgg	ccctctcggt	780	
agaagtcccg	acggtggtcg	taactgggag	ggcttctccc	cagaccctgc	cctaagtggt	840	
gtgctctttg	ccgagaccat	caagggtatc	caagatgctg	gtgtggttgc	gacggctaag	900	
cactacattg	cttacgagca	agagcatttc	cgtcaggcgc	ctgaagccca	aggttttgga	960	
tttaatattt	ccgagagtgg	aagtgcgaac	ctcgatgata	agactatgca	cgagctgtac	1020	
ctctggccct	tcgcggatgc	catccgtgca	ggtgctggcg	ctgtgatgtg	ctcctacaac	1080	
cagatcaaca	acagttatgg	ctgccagaac	agctacactc	tgaacaagct	gctcaaggcc	1140	
gagctgggct	tccagggctt	tgtcatgagt	gattgggctg	ctcaccatgc	tggtgtgagt	1200	
ggtgctttgg	caggattgga	tatgtctatg	ccaggagacg	tcgactacga	cagtggtacg	1260	
tcttactggg	gtacaaactt	gaccattagc	gtgctcaacg	gaacggtgcc	ccaatggcgt	1320	
gttgatgaca	tggctgtccg	catcatggcc	gcctactaca	aggtcggccg	tgaccgtctg	1380	
tggactcctc	ccaacttcag	ctcatggacc	agagatgaat	acggctacaa	gtactactac	1440	
gtgtcggagg	gaccgtacga	gaaggtcaac	cagtacgtga	atgtgcaacg	caaccacagc	1500	
gaactgattc	gccgcattgg	agcggacagc	acggtgctcc	tcaagaacga	cggcgctctg	1560	
cctttgactg	gtaaggagcg	cctggtcgcg	cttatcggag	aagatgcggg	ctccaaccct	1620	
tatggtgcca	acggctgcag	tgaccgtgga	tgcgacaatg	gaacattggc	gatgggctgg	1680	
ggaagtggta	ctgccaactt	cccatacctg	gtgacccccg	agcaggccat	ctcaaacgag	1740	
gtgcttaagc	acaagaatgg	tgtattcacc	gccaccgata	actgggctat	cgatcaaatt	1800	
gaggcgcttg	ctaagaccgc	cagtgtctct	cttgtctttg	tcaacgccga	ctctggtgag	1860	
ggttacatca	atgtggacgg	aaacctgggt	gaccgcagga	acctgaccct	gtggaggaac	1920	
ggcgataatg	tgatcaaggc	tgctgctagc	aactgcaaca	acacaatcgt	tgtcattcac	1980	
tctgtcggac	cagtcttggt	taacgagtgg	tacgacaacc	ccaatgttac	cgctatcctc	2040	
tggggtggtt	tgcccggtca	ggagtctggc	aactctcttg	ccgacgtcct	ctatggccgt	2100	
gtcaaccccg	gtgccaagtc	gccctttacc	tggggcaaga	ctcgtgaggc	ctaccaagac	2160	
tacttggtca	ccgagcccaa	caacggcaac	ggagcccctc	aggaagactt	tgtcgagggc	2220	
gtcttcattg	actaccgtgg	atttgacaag	cgcaacgaga	ccccgatcta	cgagttcggc	2280	
tatggtctga	gctacaccac	tttcaactac	tcgaaccttg	aggtgcaggt	gctgagcgcc	2340	
cctgcatacg	agcctgcttc	gggtgagacc	gaggcagcgc	caaccttcgg	agaggttgga	2400	
aatgcgtcgg	attacctcta	ccccagcgga	ttgctgagaa	ttaccaagtt	catctacccc	2460	
tggctcaacg	gtaccgatct	cgaggcatct	tccggggatg	ctagctacgg	gcaggactcc	2520	
tccgactatc	ttcccgaggg	agccaccgat	ggctctgcgc	aaccgatcct	gcctgccggt	2580	
ggcggtcctg	gcggcaaccc	tcgcctgtac	gacgagctca	tccgcgtgtc	agtgaccatc	2640	
aagaacaccg	gcaaggttgc	tggtgatgaa	gttccccaac	tgtatgtttc	ccttggcggt	2700	
cccaatgagc	ccaagatcgt	gctgcgtcaa	ttcgagcgca	tcacgctgca	gccgtcggag	2760	

gagacgaagt ggagcacgac tctgacgcgc cgtgaccttg caaactggaa tgttgagaag 2820 caggactggg agattacgtc gtatcccaag atggtgtttg tcggaagctc ctcgcggaag 2880 ctqccqctcc qqqcqtctct qcctactqtt cactaacccq qqcqaqctcq aattqatcqt 2940 tcaaacattt ggcaataaag tttcttaaga ttgaatcctg ttgccggtct tgcgatgatt 3000 atcatataat ttctgttgaa ttacgttaag catgtaataa ttaaacatgt aatgcatgac 3060 gttatttatg agatggggtt tttatgatta agagtccccg caattataca ttttaatacg 3120 cgatagaaaa acaaaatata gcgcccaaac taaggataaa attattcgcg ccgcggggg 3180 gcattctatg gttactagat ctctagaatt cc 3212 <210> SEQ ID NO 14 <211> LENGTH: 841 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: the protein coded by An expression cassettes used for expression of A. niger beta-glucosidase in tobacco plants <400> SEQUENCE: 14 Asp Glu Leu Ala Tyr Ser Pro Pro Tyr Tyr Pro Ser Pro Trp Ala Asm 1 5 10 15 Gly Gln Gly Asp Trp Ala Gln Ala Tyr Gln Arg Ala Val Asp Ile Val 20 25 30 Ser Gln Met Thr Leu Asp Glu Lys Val Asn Leu Thr Thr Gly Thr Gly 40 35 45 Trp Glu Leu Glu Leu Cys Val Gly Gl
n Thr Gly Gly Val Pro Arg Leu 50 55 60 Gly Val Pro Gly Met Cys Leu Gln Asp Ser Pro Leu Gly Val Arg Asp 65 70 75 80 Ser Asp Tyr Asn Ser Ala Phe Pro Ala Gly Met Asn Val Ala Ala Thr 85 90 Trp Asp Lys Asn Leu Ala Tyr Leu Arg Gly Lys Ala Met Gly Gln Glu 100 105 110 Phe Ser Asp Lys Gly Ala Asp Ile Gln Leu Gly Pro Ala Ala Gly Pro 120 125 115 Leu Gly Arg Ser Pro Asp Gly Gly Arg Asn Trp Glu Gly Phe Ser Pro 130 135 140 Asp Pro Ala Leu Ser Gly Val Leu Phe Ala Glu Thr Ile Lys Gly Ile 145 150 155 160 Gln Asp Ala Gly Val Val Ala Thr Ala Lys His Tyr Ile Ala Tyr Glu 165 170 Gln Glu His Phe Arg Gln Ala Pro Glu Ala Gln Gly Phe Gly Phe Asn 185 180 190 Ile Ser Glu Ser Gly Ser Ala Asn Leu Asp Asp Lys Thr Met His Glu 200 195 205 Leu Tyr Leu Trp Pro Phe Ala Asp Ala Ile Arg Ala Gly Ala Gly Ala 210 215 220 Val Met Cys Ser Tyr Asn Gln Ile Asn Asn Ser Tyr Gly Cys Gln Asn 225 230 235 Ser Tyr Thr Leu Asn Lys Leu Leu Lys Ala Glu Leu Gly Phe Gln Gly 250 245 255

-continued

											-	con	tin	ued			
Phe	Val	Met	Ser 260	Asp	Trp	Ala	Ala	His 265	His	Ala	Gly	Val	Ser 270	Gly	Ala		
Leu	Ala	Gly 275	Leu	Asp	Met	Ser	Met 280	Pro	Gly	Asp	Val	A sp 285	Tyr	Asp	Ser		
Gly	Thr 290	Ser	Tyr	Trp	Gly	Thr 295	Asn	Leu	Thr	Ile	Ser 300	Val	Leu	Asn	Gly		
Thr 305		Pro	Gln	Trp	Arg 310	Val	Asp	Asp	Met	Ala 315	Val	Arg	Ile	Met	Ala 320		
Ala	Tyr	Tyr	Lys	Val 325	Gly	Arg	Asp	Arg	Leu 330	Trp	Thr	Pro	Pro	Asn 335	Phe		
Ser	Ser	Trp	Thr 340	Arg	Asp	Glu	Tyr	Gly 345	Tyr	Lys	Tyr	Tyr	Ty r 350	Val	Ser		
Glu	Gly	Pro 355	Tyr	Glu	Lys	Val	Asn 360	Gln	Tyr	Val	Asn	Val 365	Gln	Arg	Asn		
His	Ser 370	Glu	Leu	Ile	Arg	Arg 375	Ile	Gly	Ala	Asp	Ser 380	Thr	Val	Leu	Leu		
Lys 385		Asp	Gly	Ala	Leu 390	Pro	Leu	Thr	Gly	L y s 395	Glu	Arg	Leu	Val	Ala 400		
Leu	Ile	Gly	Glu	Asp 405	Ala	Gly	Ser	Asn	Pro 410	Tyr	Gly	Ala	Asn	Gly 415	Cys		
Ser	Asp	Arg	Gly 420	Cys	Asp	Asn	Gly	Thr 425	Leu	Ala	Met	Gly	Trp 430	Gly	Ser		
Gly	Thr	Ala 435	Asn	Phe	Pro	Tyr	Leu 440	Val	Thr	Pro	Glu	Gln 445	Ala	Ile	Ser		
Asn	Glu 450	Val	Leu	Lys	His	Lys 455	Asn	Gly	Val	Phe	Thr 460	Ala	Thr	Asp	Asn		
Trp 465		Ile	Asp	Gln	Ile 470	Glu	Ala	Leu	Ala	L y s 475	Thr	Ala	Ser	Val	Ser 480		
Leu	Val	Phe	Val	Asn 485	Ala	Asp	Ser	Gly	Glu 490	Gly	Tyr	Ile	Asn	Val 495	Asp		
Gly	Asn	Leu	Gly 500	Asp	Arg	Arg	Asn	Leu 505	Thr	Leu	Trp	Arg	Asn 510	Gly	Asp		
Asn	Val	Ile 515		Ala	Ala	Ala	Ser 520	Asn	Cys	Asn	Asn	Thr 525	Ile	Val	Val		
Ile	His 530	Ser	Val	Gly	Pro	Val 535	Leu	Val	Asn	Glu	Trp 540	Tyr	Asp	Asn	Pro		
Asn 545		Thr	Ala	Ile	Leu 550	Trp	Gly	Gly	Leu	Pro 555	Gly	Gln	Glu	Ser	Gly 560		
Asn	Ser	Leu	Ala	Asp 565	Val	Leu	Tyr	Gly	Arg 570	Val	Asn	Pro	Gly	Ala 575	Lys		
Ser	Pro	Phe	Thr 580	Trp	Gly	Lys	Thr	A rg 585	Glu	Ala	Tyr	Gln	Asp 590	Tyr	Leu		
Val	Thr	Glu 595	Pro	Asn	Asn	Gly	Asn 600	Gly	Ala	Pro	Gln	Glu 605	Asp	Phe	Val		
Glu	Gly 610	Val	Phe	Ile	Asp	Ty r 615	Arg	Gly	Phe	Asp	L y s 620	Arg	Asn	Glu	Thr		
Pro 625		Tyr	Glu	Phe	Gly 630	Tyr	Gly	Leu	Ser	Tyr 635	Thr	Thr	Phe	Asn	Ty r 640		
Ser	Asn	Leu	Glu	Val 645	Gln	Val	Leu	Ser	Ala 650	Pro	Ala	Tyr	Glu	Pro 655	Ala		
Ser	Gly	Glu	Thr	Glu	Ala	Ala	Pro	Thr	Phe	Gly	Glu	Val	Gly	Asn	Ala		

-continued

660 665 670 Ser Asy Tyr Leu Tyr Fro Ser Gly Leu Leu Arg ILe Thr Lyre Phe ILe 655 Tyr Peo Trp Leu Am Gly Thr Asp Leu Glu Als Ser Ser Gly Asp Als 700 Ser Tyr Gly Gln Asp Ser Ser Asy Tyr Leu Pro Glu Gly Ala Thr Asp 720 Oly Ser Als Gln Pro ILe Leu Pro Als Gly Gly Gly Pro Gly Gly Ala Thr Asp 725 Thr Gly Lyr Asp Glu Leu lle Arg Val Ser Val Thr 11e Lyre Ann 725 Thr Gly Lyr Val Ala Gly App Glu Leu lle Arg Val Ser Val Thr 11e Lyre Ann 725 Gly Gly Fro Ann Glu Pro Lyre 11e Val Leu Arg Gln Phe Glu Arg 11e 775 Thr Gly Lyre Val Ala Gly App Clu Utr 11y Try Bern Frh Thr Leu Thr Arg 785 Arg Asp Leu Als Ann Trp Asn Val Glu Lyr Gln Asp Trp Glu ILe Thr 715 Ser Tyr Dry Mee Val Phe Val Gly Ser Ser Ser Arg Lyr Leu Pro 720 Ser Tyr Dry Mee Val Phe Val Gly Ser Ser Ser Arg Lyr Leu Pro 720 Collo Hight App Clu Cattotata anagacagt agaaagga ggtggraata 60 Collo Hight Arg Thron Ash Clu Lyr Gly Gly Glyr Cattotata 60 Collo Hight Arg Thron Ash Clu Cattota anagacagt agaaagga ggtggraata 60 Collo Hight Arg Thron Ash Clu Cattotata anagacagt agaaagga ggtggraata 60 Collo Hight Arg Thron Ash Clu Cattotata anagacagt agaaagga ggtggraata 60 Collo Hight Ash Clu Cattotata anagacagt agaaagga ggtgg	-continued	
675680685Tyr Pro trp Leu Ann Ol Yhr Arp Leu Olu Ala Ser Ser Gly Arp Ala 690500Ser Tyr Oly Gln Arp Ser Ser Arp Tyr Leu Pro Glu Gly Ala Thr Arp 720720Gly Ser Ala Gin Pro Tile Leu Pro Ala Gly Gly Cly Dro Gly Gly Ann 725720Thr Gly Lyw Val Ala Gly Apg Glu Val Ser Val Trr Tie Lyn Ann 740745Thr Gly Dro Arg Gun Ury Arp Glu Leu He Arg Val Ser Val Trr Heu Try Val Ser Leu 750760Thr Gly Dro Arg Gun Ury Lyw Val Ala Gly Apg Glu Val Pro Gln Leu Tyr Val Ser Leu 750760Thr Gly Dro Arn Glu Pro Lyg Tle Val Leu Arg Gln Phe Glu Arg Tle 755780Thr Jeu Cln Pro Ser Glu Glu Thr Lys Trp Ser Thr Thr Leu Thr Arg 810780Arg Arp Leu Ala Arn Trp Ann Val Glu Lys Gln Arp Trp Glu Tle Thr 810810Ser Tyr Pro Lye Net Val Phe Val Gly Ser Ser Arg Lyg Leu Pro 825810Callo Seg Th No 15 42118402210Seg Th No 15 42118402210Seg Thr Thr Glu Her Thr 8108102200Seg Thr Thr Gly Ang 8102200Seg Thr Thr Gly Ang 8102200Seg Thr Thr Seg Thr Thr Leu Thr Arg 8102201Seg Thr The Thr Ang 8102205Seg Thr Thr Ang 8102210Seg Thr The Arg Leu Pro Thr Val Bits2210Seg Thr Thr Seg Thr Thr Leu Thr Arg Leu 8102210Seg Thr Thr Thr Seg Thr Thr Leu Thr Arg 8102210Seg Thr Thr Thr Heu Thr Arg 8102210Seg Thr Thr Thr Thr Thr Leu Thr Arg 8102210Seg Thr	660 665 670	
690 1 695 700 1 A B Ser Ser Asp Tyr Leu Fro Glu Gly Ala Th Asp 720 725 7 Gly Glu An Ser Ser Asp Tyr Leu Fro Glu Gly Ala Th Asp 720 Gly Ser Ala Glu Pro II a Leu Pro Ala Gly Gly Gly Pro Gly Gly Asm 725 Pro Arg Leu Tyr Asp Glu Leu I a Arg Yal Ser Val Thr II a Lya Asm 725 Pro Arg Leu Tyr Asp Glu Leu I a Arg Yal Ser Val Thr II a Lya Asm 725 Thr Gly Lyg Yal Ala Gly Asp Glu Val Pro Gln Leu Tyr Val Ser Leu 765 Thr Gly Lyg Yen Asm Glu Pro Lys II a Val Leu Arg Gln Phe Glu Arg II a 750 Thr Gly Lyg Yen Asm Glu Pro Lys II a Val Leu Arg Gln Phe Glu Arg II a 750 Thr Leu Gln Pro Ser Glu Glu Thr Lys Trp Sor Thr Thr Leu Thr Arg 200 Arg Asp Leu Ala Asm Trp Asm Val Glu Lyg Gln Asp Trp Glu II a Thr 80 Ser Tyr Pro Lyg Net Val Phe Val Gly Ser Ser Ser Arg Lyg Leu Pro 80 820 Arg Asp Leu Ala Asm Trp Asm Val Glu Lyg Gln Asp Trp Glu II a Thr 80 820 Arg Asp Leu Ala Ser Leu Pro Thr Val His 80 820 4210 > SEC DL NO 15 4210 - SEC DL DO		
715 720 Gly Ser Ala Gin Fro Ile Leu Pro Ala Gly Gly Gly Pro Gly Gly Man 735 Pro Arg Leu Tyr Asp Glu Leu Ile Arg Val Ser Val Thr Ile Lys Asn 750 Thr Gly Eyg Val Ala Gly App Glu Val Pro Gln Leu Tyr Val Ser Leu 750 Gly Gly Pro Am Glu Pro Jys Ile Val Leu Arg Gin Phe Glu Arg Ile 750 Thr Gly Eyg Val Ala Gly App Glu Val Leu Arg Gin Phe Glu Arg Ile 750 Thr Leu Gln Pro Ser Glu Glu Thr Lys Trp Ser Thr Thr Leu Thr Arg 800 Arg App Leu Ala Am Trp An Val Glu Lye Gln App Trp Glu Ile Thr 815 Ser Tyr Pro Lys Met Val Phe Val Gly Ser Ser Ser Arg Lys Leu Pro 825 Leu Arg Ala Ser Leu Pro Thr Val His 825 210> SEQ ID No 15 840 211> EEXCURNET 1329 840 212> CTAN INT 323 213> GEQUENCET 15 331 331 332 331 332 332 332 333 333 334 334 335 340 335 340 330 330 331 333 332 334 333 335 334 340		
ProPr		
The Gly Lye Val Ala Gly App Glu Val Pro Gln Leu Tyr Val Ser Leu 760 700 700 Ann Glu Pro Lyg Tle Val Leu Arg Gln Phe Glu Arg Tle 770 700 Ann Glu Pro Lyg Tle Val Leu Arg Gln Phe Glu Arg Tle 770 700 700 Ann Glu Pro Lyg Tle Val Leu Arg Gln Phe Glu Arg Tle 770 700 700 Ann Glu Pro Ser Glu Glu Thr Lys Trp Ser Thr Thr Leu Thr Arg 780 700 700 Ann Glu Pro Ser Glu Glu Thr Lys Trp Ser Thr Thr Leu Thr Arg 780 700 700 Ann Glu Pro Ser Glu Glu Thr Lys Trp Ser Thr Thr Leu Thr Arg 780 700 80		
1 7551 760765Gly Gly Pro Aan Glu Pro Lys ILe Val Leu Arg Gln Phe Glu Arg ILe 770775Thr Leu Gln Pro Ser Glu Glu Thr Lys Trp Ser Thr Thr Leu Thr Arg 800Arg Aap Leu Ala Aan Trp Aan Val Glu Lys Gln Aap Trp Glu The Thr 805Ser Tyr Pro Lys Met Val Phe Val Gly Ser Ser Ser Arg Lys Leu Pro 820-210- SEO ID NO 15 4210-211- SEOURNEN: 8120-2120- SEO UD NO 15 4210-2120- SEO UD NO 15 4210-2120- SEO UD NO 15 4210-2120- SEOURNE: 8120-2120- SEOURNE: 8200-2120- SEOURNE: 8200-2120- TPENURE: 4212- TYPE: NA -2120-210- SEOURNE: 8200-210- SEOURNE: 8200-210- SEOURNE: 8200-211- Contact Cattoria casaged agaagaga agacadt agaaaaggaa ggtggcacta signal peptide for secretion into the apoplast-400- SEQUENCE: 15gaattoccga toctattotgt cacttocat aaaggaacgt taccgtoca signal peptide for secretion agacact caccagaagag gaaggad tacgtgcacaaca gaaggad taccagaaga dagaagaga dagacacaat agaagaaga gaacacaat cattocaaag caagtggatt gatgtgatat ctocactag agacacaaca acattacaaca gaaggatt cattactat tagaagaag tactottat tiggaagaac gaaggatt dagagagt tactottat tiggaagaac gaaggatt dagaagtc atcocacca gataccaca acattacaat gaaggattotta gaattaccat acaactacaa acatacaaca acattaccaat gaaggatt dagaagta gagaaggt actocaccac did gaaggattotta gatagtagt agattagoct atcocacca gattaccac gaagadac tiggaggat agacaccac agacacaca acattacca gaagadac dattotacca cagacacaca cagtaccacc gaagaagac taccacaca acattacca acattaccaat gaagaagac datotaccaca acattaccaat acattaccaca gaagaagac datotaccaca acattaccaat acattaccaca gaagaagac datotaccaca dattaccaca acattaccaat acattaccaca gaagaagac		
770775780The Lew Chi Pro Ser Glu Glu The Lys Trp Ser The The Leu The Arg 800Arg Asp Leu Ala Am Trp Asn Val Glu Lys Gln Asp Trp Glu Ile The 815Ser Tyr Pro Lys Net Val Phe Val Gly Ser Ser Ser Arg Lys Leu Pro 820200SEQ TD NO 15 2112210> SEQ TD NO 15 2112211> DENOTH: 8329220> FEATURE: 840221> OTHER INFORMATION: a cassette encoding a BGL1 fused to a Cell signal peptide for secretion into the apolast400> SEQUENCE: 15gaatteed a cattaceage categagage tateged a aggaasage gtiggacata60 caaatgeed tectatet tiggagage 300gettette a attaceagte gagggatet ateged a acaacaaca acattaceat acattace attaceage cagagage tateged a acaacaaca acattaceat 360actitte a attaceagte gaggggatet ateged a acaacaaca acattaceat acattace gaggggatet ateged a acaacaaca acattaceat acaattace for gaggggate acaged gad acceded a cattaceage acaacacaca acattaceage for acattace acaactaca acaacaaca acattaceat acattace for gaggggatet ateged acacacaca acattaceat acacattace for gagggate acaged gad agged gattaced for gaggetette gaatted attaged gad gad acceded a cattaceage for acattace acaattace acaacaaca acattaceat for acattace for gaggggatet ateged for acceded acattaceat for acattace acaattace acaacaaca acaacaaca acattaceat for acattace for gagggate for acceded a acaactace for a for for acattace for acattace acaacacaa acaacaacaa acattaceat for acattace for acaattace acaacacaa acaacaacaa acattaceat for acattace for acattace acaacacaa acaacaacaa acattaceat fo		
785790795800Arg Asp Leu Ala Asn Trp Asn Val Glu Lys Gln Asp Trp Glu Ile Thr 815Ser Tyr Pro Lys Met Val Phe Val Gly Ser Ser Arg Lys Leu Pro 8202210> SEQ TD N0 152211> LEWRHTH: 33292212> TYPE: DNA 2213> CANDISH: Artificial sequence 2220> FEATURE:2230 OKENCE: 15gaattoccqa toctatoty cocttacta aaaggacagt agaaagga ggtggcacta60caaaggacag cadggaga catogtgga aaaggagga tuccacaat180gttttaaag caattggat gatggact ataggogga aaccocaa cacatacaa acattacaat360attttgttg cogacttg gaggact ggegagga tatoggoga aaccocaa cattaccaat360attttgttg cogactgg ggegactg gegaggact accogagg tatoggta cacagaa gatggagat60gactattgt tigtcaag taggagaagt cattagaca cacaacaa acattacaat360attttgttg cogactag gaggagatt atggogga aaccocaca cacagagga atcocaca cacattacat360tattttgttg cogttttt tittttttg gataggaca cacggagga atcocaca cacagagag cattaggaga400gactattgt gatgtatt citcacatga cacagaga cattaccaca360tattttgttg cogtttttt citttttco cacattac cacacacaa acattacaat360tattttgttg cattaga caggggatt atggoggaa atcocaca cacagagag tittaccacaca360tattttgttg cattaga cagggagatt gatggogga atcocaca cacagagag tittaccacaca360tatttgttg cattaga cagggagatt gatggogga atcocaca cacagagag tittaccaca360tatttgttg cattaga cagggagatt gatggogga cacagaga cacagaga gatggagat360aggettctg gaaattag atggoggagt gatggogga atcocaca cacagagag tittaccaca360tatttata aattacag cagggagatt atggogga atcocaca cacagagag tittaccaca360tatttatta aattacag caggtgatt gatggogaa accocaca cacagagag tittaccaca		
BODBIOBIOBIDBIDSer Tyr Pro Lys Met Val Phe Val Gly Ser Ser Arg Lys Leu Pro B20Leu Arg Ala Ser Leu Pro Thr Val His<210> SEO ID NO 15 <211> LENGTH: 3320<211> ORGANISM: Artificial sequence signal peptide for secretion into the apoplast<220> FEATURE:<220> SEQUENCE: 15gattoccga toctactig cacticatica asaggacagt agasagga ggtgggacata60 cacatggcat cattogata aaggaagge tategtteaa gatgactig cegacagteggttoccaaagt ggacceccac cacegagga categtgaa aaggaagt gtacgacacaa360 taccatacti tegeagace cttoctet ataaggaagt teattocat tiggaggagaaggettetta aattacagte gaggggatt atggtegaa aacacaacaa acattacaat360 tactattte aattacagte gaggggatt atggtegaa aacacaacaa cactatacaataggettetta gatactag cagtggat gatggedat atggeegaa atceccae gtataceega480 gaegettette gtaaattag cagggggatt gatggeegaa accecae gataceegagatttetta aattacagte gaggggatt gatggeegaa accecae cacegagega atcecae gataceega480 gaegettette gtaaattag catggetga gattggeegaa accecae gataceegagatttette gtaaattag catggetga gattggeegaa accecae caggaaceg tigttgata540 teccaaaga tigtegata gatggeega attegeegae accecae gattaceegagatttette gtaaattag catggetgat gattggeegaa accecae caggaacega tigtgeegaa540 tecceatage catggeega ggeegaetgg eesageet accecae egaattaceegagatttette gatacattag catggetgat gattgee accecae caggaacega tigtgeegaetga540 tecceaagae ggeegaetgg eesageet accecae egaattaceegagatttette gataceat gaggegaet ggeegaetgg eesageat accecae cagtataceega540 tecceaagaegtatttette cattatea attaceagte gagegetge gaettegee caggaetgg atteggaetge540 tecceaagaetgeegaetgegatttette gaaagee tigeegaetg eastegaet caggae		
Lew Arg Ala Ser Lew Pro Thr Val His 835 840 <210> SEQ ID NO 15 <211> IENGTH: 3329 <221> TYPE: NNA <212> ORGANISM: Artificial sequence <220> FEATURE: <222> COTHER INFORMATION: a cassette encoding a BGLI fused to a Cell signal peptide for secretion into the apoplast <400> SEQUENCE: 15 gaatteega teetaetega teetaetega taggaaagga ggtggcaeta 60 caaatgeet eetaetega teetaetega taggaagge tategttea gatgeeteg eegaetega 240 cecetaetega teetaetega taggagagg etaetegtgaa aaggaagge gteceaetega 240 cecetaetega caatgegatt gatgtgatt etcecaetga etaaggagt geocaete 240 cecetaete tegeaagae etteeteetega aaggaagge tategtgaa aacaaaaaa acattaetaat 360 taetattae aattaeagte gaggggate atgggega aaceetaat tteeceggga 480 gaegeteete gtaaatetag etgeggega eateegage acceetee gtattaece 340 teecettgg ceaatgeea gggegaetg gagtggeet ateegaega acceetee gtattaece 340 gteeteeaa tateega eaggegagg eateggega aaceetae eattaeeaat 360 taetattae aattaeagte gaggggate atggeega aaceetae eattaeeaa 360 taetattae aattaeagte gaggggate atggeega aaceetae eattaeeaa 360 taetattae aattaeagte gaggggate atggeega aaceetae tteeee 340 geegeteete gtaaatetag eatggeega aateegae eattaeee 340 geegeteete gtaaatetag eatggeega aateegae aggagattg 360 gaetatgg teggeega ggeegaetgg geegagge aateegae aggagattg 360 gaactatgg tiggteaga tggeegatg acceegagg gagteegagg atgggattg 660 gaactatgt gteggeaga tggeegate eeeegagg gagteegagg aatggetta 720 caggatagee etetggeeg tegegaete geedaeteg eatteegeegaege atgggeagg 780 aagtegeete eeeetegeegaeteggeegaeteg geedaeteg eatteegeegaaggeegagge atgggtate 780 aagtegeete eeeeetegga eagaagaeteg geedaeteg eataeette geegaaggee atggetgeag		
 R35 840 R40 R40<!--</td--><td></td><td></td>		
<pre><211> LENGTH: 3229 <212> TYPE: DNA <212> TYPE: DNA <212> CRGANISM: Artificial sequence <220> FEATURE: <40> SEQUENCE: 15 gaattoccga toctatotgt cacttcatca aaaggacagt agaaaaggaa ggtggcacta 60 caaatgccat cattgcgata aaggaaaggc tatcgttcaa gatgcctcg ccgacagtgg 120 toccaaagat ggaccoccac ccacgaggag catcgtggaa aaagaagacg ttccaaccac 180 gtottcaaag caagtggatt gatgtgatat ctccaactgac gtaaggaggac 300 aggcttottg agatcottca acaattacca acaacaacaa acaatcaat 360 tactattac aattacagtc gaggggatt atggcgcaga aatcoctaat tttcccggtg 420 attttgotg ccgttottc cttcctccg ccgattact ccgccggtca cgattaccg 480 gacgctotc gtaaatcag catggcgag ggcgaggat acacgtggac accgcggtg 480 gacgctotc gtaaatcag catggcgag ggcgaggat accgcggac accagcgcg tgttgatat 600 gtctcccaaag tagacatgga tggcgaggt accccac caggaggat accgcgacagg 480 gaccattgg tggcgaca tggcgggtg cacgggagat accgcgg aggagatg 420 atttgotg ccattgga tgagagggt accccac caggaggac accgggaatgg accgcgg atgggaatg 720 cacggatacatgg tggcggcg tggcgggat accgggaa accgcgg aggggaatg 720 cacggatagcc ctctgggggt tccccgattgg gggtccacacc acggaactgg atgggaatg 720 caggatagcc ctctgggggt tcccggactc gactacact ctgcttccc tgccggcag 780 accutggg ccactggg caagaatctg gcataccttg gcggaagg tatgggaagg agggcacag 780 accutggg caactgga caagaatctg gcatacctt gcggcaagg tatgggtacg 780 accutggg caactggg caagaatctg gcatacctt gcggcaagg tatgggtacg 780 accutggg caactggg caactgga caagaatctg gcatacctt gcggcaagg tatgggtacg 780 accutgggct cacctggg caactgga caagaatctg gcatacctt gcggcaagg tatgggtacga </pre>	-	
gaattoocga tootatotgi caottoatoa aaaggacagi agaaaaggaa ggtggcacta 60 caaatgocat cattgogata aaggaaaggo tatogttoaa gatgoototg ocgacagtgg 120 toocaaaagat ggacoccoao coacgaggag catogtggaa aaagaagacg ttooaaccaa 180 gtottoaaag caagtggatt gatgtgatat otocaotgao gtaagggatg acgoacaato 240 coactatoot togcaagaco ottootota ataaggaagt tooattoatt tggagaggac 300 aggottottg agatoottoa acaattacca acaacaacaa acaacaacaa acaattacaat 360 taottattac aattacagto gaggggatot atggoggaa aatcootaat ttoocoggtg 420 attttgotog ocgtottot ottootoog ocgattact ocgocggtaa ogattacog 480 gacgottooc gtaaatotag catggotga gaatggoot accagogoo tgttgatat 600 gactottgg tagaatgta gaggaggto aatcgacca caggaactg atgggaatt 600 gactatggt tggtoaga tggoggtgt occogattag ogagactg atgggaatt 720 caaggatagoo coatggoo tggoggtt coccgattg gagtocgg aatgggaatt 720 caaggatagoo totoggog togogactg gocagaca coggaactg atgggaatt 720 caaggatagoo totoggog togogactg gactacaac caggaactg atgggaatt 720 caaggatagoo totoggog togogactg gactacaac ctgottoco tgocggoot 720 gaactatgt tggtocaga tggogatto gactacaac ctgottoco tgocggoot 720 aactatgt tuggtocaga tgocgattac gactacaac ctgottoco tgocggoot 720 aactatgt tuggtocaga tgocgattac gactacaac ctgottoco tgocggoot 720	<212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: a cassette encoding a BGL1 fused to a Cell signal peptide for secretion into the apoplast	
caaatgccat cattgcgata aaggaaagge tategtteaa gatgeetetg eegacagtgg 120 teeeaaagat ggaeeeeae eeaegagag eategtggaa aaagaagaeg teeaaeeae 180 gtetteaaag eaagtggatt gatgtgatat eteeaetgae gtaagggatg aegeaeaete 240 eeaetateet tegeaagaee etteeteta ataaggaagt teatteett tggagaggae 300 aggettettg agateettea acaattacea acaacaaeaa acaacaaeae acattacaat 360 taetattae aattacagte gaggggatet atggeeggaa aateeetaat tteeeggtg 420 atttigeteg eegteette etteeteete eegegeagee egattaeee gattaeeee 480 gaeegeteete gtaaatetag eatggeetga gaattggeet acteeeeee gattaeeee 540 teeeettggg eeaatggea ggeegaetg geegaggeat aceageegee tgttgatatt 600 gteeegaaa tgaeattgga tgagaaggte eategtae eateggeegga aatgetteet geeggeatge atggegattg 720 eaggatagee etegggegt teeegaetee gaetaeeee eteggegaatgg atgggattg 720 eaggatagee etegggegt teeegaetee geegeaagee tateggteeg 780 aacgtggeetg egacetggga eaagaatetg geetaeette geegeeagge tatgggteeg 840		60
tcccaaagat ggacccccac ccacgaggag catcgtggaa aaagaagacg ttccaaccac 180 gtcttcaaag caagtggatt gatgtgata ctccactgac gtaagggatg acgcacaatc 240 ccactatcet tegcaagace etteetta ataaggaagt teattteatt tggagaggae 300 aggettettg agateettea acaattacea acaacaacaa acaacaaaca acattacaat 360 taetatttae aattaeagte gaggggatet atggegegaa aateeettaat tteeeggtg 420 attttgeteg eegteette etteeteetee eegteeteeteeteeteeteeteeteeteeteeteeteet		
gtcttcaaagcaagtggattgatgtgatatctccactgacgtaaggggggggggggggggggggggggggggggggg		
aggettettg agateettea acaattacea acaacaaa acaacaa acaattacaat 360 taetattae aattaeagte gaggggatet atggeeggaa aateeettaat ttteeeeggtg 420 attttgeteg eegttette etteeteeg eeggtattaet eegeeggeea eggattaeeege 480 gaegetetee gtaaatetag eatggetga gaattggeet acteeeeeee gtattaeeee 540 teeeettggg eeaatggee ggeeggeet geeggegeet aceeggeege tgttgatatt 600 gaeetteggaa tgaeattgga tgagaaggte aatetgaeea eaggaaetgg atgggaattg 660 gaaeetatgtg ttggteagae tggeggtgt eeeegattg gagtteeegg aatggtgtta 720 caggatagee etetgggegt teegegaete geataeeet etgeetteee tgeeggeatg 780 aaegtggeetg egaeetggga eaagaatetg geataeette geeggeaagge tatgggteag 840		240
aggettettg agateettea acaattacea acaacaaa acaacaa acaattacaat 360 taetattae aattaeagte gaggggatet atggeeggaa aateeettaat ttteeeeggtg 420 attttgeteg eegttette etteeteeg eeggtattaet eegeeggeea eggattaeeege 480 gaegetetee gtaaatetag eatggetga gaattggeet acteeeeeee gtattaeeee 540 teeeettggg eeaatggee ggeeggeet geeggegeet aceeggeege tgttgatatt 600 gaeetteggaa tgaeattgga tgagaaggte aatetgaeea eaggaaetgg atgggaattg 660 gaaeetatgtg ttggteagae tggeggtgt eeeegattg gagtteeegg aatggtgtta 720 caggatagee etetgggegt teegegaete geataeeet etgeetteee tgeeggeatg 780 aaegtggeetg egaeetggga eaagaatetg geataeette geeggeaagge tatgggteag 840	ccactatcct tcgcaagacc cttcctctat ataaggaagt tcatttcatt	300
attttgotog ocgittottet etteeteege ocgattaet eegeeggtea egattaeege 480 gaegetetee gtaaatetag eatggetgat gaattggeet aeteeeee 540 teeeettggg eeaatggeea gggegaetgg gegeaggeat aeeagegege tgttgatatt 600 gtetegeaaa tgaeattgga tgagaaggte aatetgaeea eaggaaetgg atgggaattg 660 gaaetatgtg ttggteagae tggeggtgtt eeeegattgg gagtteeggg aatgtgttta 720 eaggatagee etetgggegt tegegaetee gaetaeaet etgetteee tgeeggeatg 780 aaegtggetg egaeetggga eaagaatetg geataeette geggeaagge tatgggteag 840		360
gacgctetee gtaaatetag eatggetgat gaattggeet acteeceace gtattaceea 540 teecettggg ecaatggeea gggegaetgg gegeaggeat aceagegeege tgttgatatt 600 gtetegeaaa tgacattgga tgagaaggte aatetgacea caggaaetgg atgggaattg 660 gaaetatgtg ttggteagae tggeggtgtt eccegattgg gagtteeggg aatgtgttta 720 caggatagee etetgggegt tegegaetee gaetaeaet etgettteee tgeeggeat 780 aaegtggetg egaeetggga caagaatetg geataeette geggeaagge tatgggteag 840	tactatttac aattacagtc gaggggatct atggcgcgaa aatccctaat tttcccggtg	420
tccccttggg ccaatggcca gggcgactgg gcgcaggcat accagcgcgc tgttgatatt 600 gtctcgcaaa tgacattgga tgagaaggtc aatctgacca caggaactgg atgggaattg 660 gaactatgtg ttggtcagac tggcggtgtt ccccgattgg gagttccggg aatgtgttta 720 caggatagcc ctctgggcgt tcgcgactcc gactacaact ctgctttccc tgccggcatg 780 aacgtggctg cgacctggga caagaatctg gcatacettc gcggcaaggc tatgggtcag 840	attttgeteg eegtettet etteteeg eegatttaet eegeeggtea egattaeege	480
gtetegeaaa tgacattgga tgagaaggte aatetgacea caggaaetgg atgggaattg 660 gaaetatgtg ttggteagae tggeggtgtt eccegattgg gagtteegg aatgtgttta 720 caggatagee etetgggegt tegegaetee gaetaeaaet etgettteee tgeeggeatg 780 aaegtggetg egaeetggga eaagaatetg geataeette geggeaagge tatgggteag 840	gacgctctcc gtaaatctag catggctgat gaattggcct actccccacc gtattaccca	540
<pre>gaactatgtg ttggtcagac tggcggtgtt ccccgattgg gagttccggg aatgtgttta 720 caggatagcc ctctgggcgt tcgcgactcc gactacaact ctgctttccc tgccggcatg 780 aacgtggctg cgacctggga caagaatctg gcataccttc gcggcaaggc tatgggtcag 840</pre>	tccccttggg ccaatggcca gggcgactgg gcgcaggcat accagcgcgc tgttgatatt	600
caggatagee etctgggegt tegegaetee gaetacaaet etgettteee tgeeggeatg 780 aaegtggetg egaeetggga caagaatetg geataeette geggeaagge tatgggteag 840	gtctcgcaaa tgacattgga tgagaaggtc aatctgacca caggaactgg atgggaattg	660
aacgtggctg cgacctggga caagaatctg gcataccttc gcggcaaggc tatgggtcag 840	gaactatgtg ttggtcagac tggcggtgtt ccccgattgg gagttccggg aatgtgttta	720
	caggatagee etetgggegt tegegaetee gaetaeaaet etgettteee tgeeggeatg	780
gaatttagtg acaagggtgc cgatatccaa ttgggtccag ctgccggccc tctcggtaga 900	aacgtggctg cgacctggga caagaatctg gcataccttc gcggcaaggc tatgggtcag	840
	gaatttagtg acaagggtgc cgatatccaa ttgggtccag ctgccggccc tctcggtaga	900

continued	
agtcccgacg gtggtcgtaa ctgggagggc ttctccccag accctgccct aagtggtgtg	960
ctctttgccg agaccatcaa gggtatccaa gatgctggtg tggttgcgac ggctaagcac	1020
tacattgctt acgagcaaga gcatttccgt caggcgcctg aagcccaagg ttttggattt	1080
aatatttccg agagtggaag tgcgaacctc gatgataaga ctatgcacga gctgtacctc	1140
tggcccttcg cggatgccat ccgtgcaggt gctggcgctg tgatgtgctc ctacaaccag	1200
atcaacaaca gttatggctg ccagaacagc tacactctga acaagctgct caaggccgag	1260
ctgggcttcc agggctttgt catgagtgat tgggctgctc accatgctgg tgtgagtggt	1320
gctttggcag gattggatat gtctatgcca ggagacgtcg actacgacag tggtacgtct	1380
tactggggta caaacttgac cattagcgtg ctcaacggaa cggtgcccca atggcgtgtt	1440
gatgacatgg ctgtccgcat catggccgcc tactacaagg tcggccgtga ccgtctgtgg	1500
actcctccca acttcagctc atggaccaga gatgaatacg gctacaagta ctactacgtg	1560
tcggagggac cgtacgagaa ggtcaaccag tacgtgaatg tgcaacgcaa ccacagcgaa	1620
ctgattcgcc gcattggagc ggacagcacg gtgctcctca agaacgacgg cgctctgcct	1680
ttgactggta aggagcgcct ggtcgcgctt atcggagaag atgcgggctc caacccttat	1740
ggtgccaacg gctgcagtga ccgtggatgc gacaatggaa cattggcgat gggctgggga	1800
agtggtactg ccaacttccc atacctggtg acccccgagc aggccatctc aaacgaggtg	1860
cttaagcaca agaatggtgt attcaccgcc accgataact gggctatcga tcaaattgag	1920
gcgcttgcta agaccgccag tgtctctctt gtctttgtca acgccgactc tggtgagggt	1980
tacatcaatg tggacggaaa cctgggtgac cgcaggaacc tgaccctgtg gaggaacggc	2040
gataatgtga tcaaggctgc tgctagcaac tgcaacaaca caatcgttgt cattcactct	2100
gtcggaccag tcttggttaa cgagtggtac gacaacccca atgttaccgc tatcctctgg	2160
ggtggtttgc ccggtcagga gtctggcaac tctcttgccg acgtcctcta tggccgtgtc	2220
aaccccggtg ccaagtcgcc ctttacctgg ggcaagactc gtgaggccta ccaagactac	2280
ttggtcaccg agcccaacaa cggcaacgga gcccctcagg aagactttgt cgagggcgtc	2340
ttcattgact accgtggatt tgacaagcgc aacgagaccc cgatctacga gttcggctat	2400
ggtctgagct acaccacttt caactactcg aaccttgagg tgcaggtgct gagcgcccct	2460
gcatacgagc ctgcttcggg tgagaccgag gcagcgccaa ccttcggaga ggttggaaat	2520
gcgtcggatt acctctaccc cagcggattg ctgagaatta ccaagttcat ctacccctgg	2580
ctcaacggta ccgatctcga ggcatcttcc ggggatgcta gctacgggca ggactcctcc	2640
gactatette eegaggage eacegatgge tetgegeaae egateetgee tgeeggtgge	2700
ggtcctggcg gcaaccctcg cctgtacgac gagctcatcc gcgtgtcagt gaccatcaag	2760
aacaccggca aggttgctgg tgatgaagtt ccccaactgt atgtttccct tggcggtccc	2820
aatgagccca agatcgtgct gcgtcaattc gagcgcatca cgctgcagcc gtcggaggag	2880
acgaagtgga gcacgactct gacgcgccgt gaccttgcaa actggaatgt tgagaagcag	2940
gactgggaga ttacgtcgta tcccaagatg gtgtttgtcg gaagctcctc gcggaagctg	3000
ccgctccggg cgtctctgcc tactgttcac taacccgggc gagctcgaat tgatcgttca	3060
aacatttggc aataaagttt cttaagattg aatcctgttg ccggtcttgc gatgattatc	3120
atataatttc tgttgaatta cgttaagcat gtaataatta aacatgtaat gcatgacgtt	3180

											-	con	tin	ued		
att	tatga	aga t	ggg	gttt	tt a	tgat	taaga	a gto	cccc	gcaa	tta	taca	ttt ·	taat	acgcga	3240
tag	aaaa	aca a	aat	atag	cg co	ccaa	acta	a gga	ataa	aatt	atte	cgcg	ccg (cggg	Jgggca	3300
ttc	tatg	gtt a	acta	gatc	tc ta	agaat	ttcc									3329
<21 <21 <21 <22		ENGTH (PE: RGANJ EATUF	I: 88 PRT SM: E: INFO	30 Art: DRMA	FION	BGI	51 fu	ısed	to a	a Cel	11 s	igna	l per	ptide	e for	
<40	0> SI	QUEN	ICE :	16												
Met 1	Ala	Arg	Lys	Ser 5	Leu	Ile	Phe	Pro	Val 10	Ile	Leu	Leu	Ala	Val 15	Leu	
Leu	Phe	Ser	Pro 20	Pro	Ile	Tyr	Ser	Ala 25	Gly	His	Asp	Tyr	Arg 30	Asp	Ala	
Leu	Arg	Lys 35	Ser	Ser	Met	Ala	Asp 40	Glu	Leu	Ala	Tyr	Ser 45	Pro	Pro	Tyr	
Tyr	Pro 50	Ser	Pro	Trp	Ala	Asn 55	Gly	Gln	Gly	Asp	Trp 60	Ala	Gln	Ala	Tyr	
Gln 65	Arg	Ala	Val	Asp	Ile 70	Val	Ser	Gln	Met	Thr 75	Leu	Asp	Glu	Lys	Val 80	
Asn	Leu	Thr	Thr	Gly 85	Thr	Gly	Trp	Glu	Leu 90	Glu	Leu	Cys	Val	Gly 95	Gln	
Thr	Gly	Gly	Val 100	Pro	Arg	Leu	Gly	Val 105	Pro	Gly	Met	Cys	Leu 110	Gln	Asp	
Ser	Pro	Leu 115	Gly	Val	Arg	Asp	Ser 120	Asp	Tyr	Asn	Ser	Ala 125	Phe	Pro	Ala	
Gly	Met 130	Asn	Val	Ala	Ala	Thr 135	Trp	Asp	Lys	Asn	Leu 140	Ala	Tyr	Leu	Arg	
Gly 145	Lys	Ala	Met	Gly	Gln 150	Glu	Phe	Ser	Asp	L y s 155	Gly	Ala	Asp	Ile	Gln 160	
Leu	Gly	Pro	Ala	Ala 165	Gly	Pro	Leu	Gly	A rg 170	Ser	Pro	Asp	Gly	Gly 175	Arg	
Asn	Trp	Glu	Gly 180	Phe	Ser	Pro	Asp	Pro 185	Ala	Leu	Ser	Gly	Val 190	Leu	Phe	
Ala	Glu	Thr 195	Ile	Lys	Gly	Ile	Gln 200	Asp	Ala	Gly	Val	Val 205	Ala	Thr	Ala	
Lys	His 210	Tyr	Ile	Ala	Tyr	Glu 215	Gln	Glu	His	Phe	Arg 220	Gln	Ala	Pro	Glu	
Ala 225	Gln	Gly	Phe	Gly	Phe 230	Asn	Ile	Ser	Glu	Ser 235	Gly	Ser	Ala	Asn	Leu 240	
Asp	Asp	Lys	Thr	Met 245	His	Glu	Leu	Tyr	Leu 250	Trp	Pro	Phe	Ala	As p 255	Ala	
Ile	Arg	Ala	Gly 260	Ala	Gly	Ala	Val	Met 265	Cys	Ser	Tyr	Asn	Gln 270	Ile	Asn	
Asn	Ser	Ty r 275	Gly	Cys	Gln	Asn	Ser 280	Tyr	Thr	Leu	Asn	L ys 285	Leu	Leu	Lys	
Ala	Glu 290	Leu	Gly	Phe	Gln	Gl y 295	Phe	Val	Met	Ser	Asp 300	Trp	Ala	Ala	His	
His 305	Ala	Gly	Val	Ser	Gly 310	Ala	Leu	Ala	Gly	Leu 315	Asp	Met	Ser	Met	Pro 320	

-continued

Gly	Asp	Val	Asp	Ty r 325	Asp	Ser	Gly	Thr	Ser 330	Tyr	Trp	Gly	Thr	Asn 335	Leu
Thr	Ile	Ser	Val 340	Leu	Asn	Gly	Thr	Val 345	Pro	Gln	Trp	Arg	Val 350	Asp	Asp
Met	Ala	Val 355	Arg	Ile	Met	Ala	Ala 360	Tyr	Tyr	Lys	Val	Gly 365	Arg	Asp	Arg
Leu	Trp 370	Thr	Pro	Pro	Asn	Phe 375	Ser	Ser	Trp	Thr	Arg 380	Asp	Glu	Tyr	Gly
Ty r 385	Lys	Tyr	Tyr	Tyr	Val 390	Ser	Glu	Gly	Pro	Ty r 395	Glu	Lys	Val	Asn	Gln 400
Tyr	Val	Asn	Val	Gln 405	Arg	Asn	His	Ser	Glu 410	Leu	Ile	Arg	Arg	Ile 415	Gly
Ala	Asp	Ser	Thr 420	Val	Leu	Leu	Lys	Asn 425	Asp	Gly	Ala	Leu	Pro 430	Leu	Thr
Gly	Lys	Glu 435	Arg	Leu	Val	Ala	Leu 440	Ile	Gly	Glu	Asp	Ala 445	Gly	Ser	Asn
Pro	Tyr 450	Gly	Ala	Asn	Gly	C y s 455	Ser	Asp	Arg	Gly	Cys 460	Asp	Asn	Gly	Thr
Leu 465	Ala	Met	Gly	Trp	Gly 470	Ser	Gly	Thr	Ala	Asn 475	Phe	Pro	Tyr	Leu	Val 480
Thr	Pro	Glu	Gln	Ala 485	Ile	Ser	Asn	Glu	Val 490	Leu	Lys	His	Lys	Asn 495	Gly
Val	Phe	Thr	Ala 500	Thr	Asp	Asn	Trp	Ala 505	Ile	Asp	Gln	Ile	Glu 510	Ala	Leu
Ala	Lys	Thr 515	Ala	Ser	Val	Ser	Leu 520	Val	Phe	Val	Asn	Ala 525	Asp	Ser	Gly
Glu	Gly 530	Tyr	Ile	Asn	Val	Asp 535	Gly	Asn	Leu	Gly	Asp 540	Arg	Arg	Asn	Leu
Thr 545	Leu	Trp	Arg	Asn	Gly 550	Asp	Asn	Val	Ile	L y s 555	Ala	Ala	Ala	Ser	Asn 560
Сув	Asn	Asn	Thr	Ile 565	Val	Val	Ile	His	Ser 570	Val	Gly	Pro	Val	Leu 575	Val
Asn	Glu	Trp	Ty r 580	Asp	Asn	Pro	Asn	Val 585	Thr	Ala	Ile	Leu	Trp 590	Gly	Gly
Leu	Pro	Gly 595	Gln	Glu	Ser	Gly	Asn 600	Ser	Leu	Ala	Asp	Val 605	Leu	Tyr	Gly
Arg	Val 610	Asn	Pro	Gly	Ala	Lys 615	Ser	Pro	Phe	Thr	Trp 620	Gly	Lys	Thr	Arg
Glu 625	Ala	Tyr	Gln	Asp	Ty r 630	Leu	Val	Thr	Glu	Pro 635	Asn	Asn	Gly	Asn	Gly 640
Ala	Pro	Gln	Glu	Asp 645	Phe	Val	Glu	Gly	Val 650	Phe	Ile	Asp	Tyr	Arg 655	Gly
Phe	Asp	Lys	Arg 660	Asn	Glu	Thr	Pro	Ile 665	Tyr	Glu	Phe	Gly	Ty r 670	Gly	Leu
Ser	Tyr	Thr 675	Thr	Phe	Asn	Tyr	Ser 680	Asn	Leu	Glu	Val	Gln 685	Val	Leu	Ser
Ala	Pro 690	Ala	Tyr	Glu	Pro	Ala 695	Ser	Gly	Glu	Thr	Glu 700	Ala	Ala	Pro	Thr
Phe 705	Gly	Glu	Val	Gly	Asn 710	Ala	Ser	Asp	Tyr	Leu 715	Tyr	Pro	Ser	Gly	Leu 720

-continued

-continued	
Leu Arg Ile Thr Lys Phe Ile Tyr Pro Trp Leu Asn Gly Thr Asp Leu 725 730 735	
u Ala Ser Ser Gly Asp Ala Ser Tyr Gly Gln Asp Ser Ser Asp Tyr 740 745 750	
eu Pro Glu Gly Ala Thr Asp Gly Ser Ala Gln Pro Ile Leu Pro Ala 755 760 765	
Gly Gly Gly Pro Gly Gly Asn Pro Arg Leu Tyr Asp Glu Leu Ile Arg 770 775 780	
7al Ser Val Thr Ile Lys Asn Thr Gly Lys Val Ala Gly Asp Glu Val 785 790 795 800	
Pro Gln Leu Tyr Val Ser Leu Gly Gly Pro Asn Glu Pro Lys Ile Val	
805 810 815 Leu Arg Gln Phe Glu Arg Ile Thr Leu Gln Pro Ser Glu Glu Thr Lys	
820 825 830 Trp Ser Thr Thr Leu Thr Arg Arg Asp Leu Ala Asn Trp Asn Val Glu	
835 840 845 Lys Gln Asp Trp Glu Ile Thr Ser Tyr Pro Lys Met Val Phe Val Gly	
850 855 860	
Ser Ser Arg Lys Leu Pro Leu Arg Ala Ser Leu Pro Thr Val His 865 870 875 880	
His Asp Glu Leu 2210> SEQ ID NO 18 2211> LENGTH: 3288 2212> TYPE: DNA 2213> ORGANISM: Artificial sequence 2220> FEATURE:	
223> OTHER INFORMATION: a cassette encoding a BGL1 fused to Cell signal peptide and a HDEL ER-retaining peptide	
:400> SEQUENCE: 18	60
aatteeega teetatetgt eaetteatea aaaggaeagt agaaaaggaa ggtggeaeta aaatgeeat eattgegata aaggaaagge tategtteaa gatgeetetg eegaeagtgg	120
cccaaagat ggacccccac ccacgaggag catcgtggaa aaagaagacg ttccaaccac	180
tetteaaag caagtggatt gatgtgatat etecaetgae gtaagggatg aegeaeaate	240
cactateet tegeaagace etteetetat ataaggaagt teattteatt tggagaggae	300
ggcttcttg agatccttca acaattacca acaacaacaa acaacaaaca	360
actatttac aattacagtc gaggggatct atggcgcgaa aatccctaat tttcccggtg	420
ttttgctcg ccgttcttct cttctctccg ccgatttact ccgccggtca cgattaccgc	480
acgetetee gtaaatetag catggetgat gaattggeet acteeceace gtattaceea	540
ccccttggg ccaatggcca gggcgactgg gcgcaggcat accagcgcgc tgttgatatt	600
tctcgcaaa tgacattgga tgagaaggtc aatctgacca caggaactgg atgggaattg	660

-continued	
gaactatgtg ttggtcagac tggcggtgtt ccccgattgg gagttccggg aatgtgttta	720
caggatagee etetgggegt tegegaetee gaetaeaaet etgettteee tgeeggeatg	780
aacgtggctg cgacctggga caagaatctg gcataccttc gcggcaaggc tatgggtcag	840
gaatttagtg acaagggtgc cgatatccaa ttgggtccag ctgccggccc tctcggtaga	900
agteeegaeg gtggtegtaa etgggaggge tteteeeeag accetgeeet aagtggtgtg	960
ctctttgccg agaccatcaa gggtatccaa gatgctggtg tggttgcgac ggctaagcac	1020
tacattgctt acgagcaaga gcatttccgt caggcgcctg aagcccaagg ttttggattt	1080
aatatttccg agagtggaag tgcgaacctc gatgataaga ctatgcacga gctgtacctc	1140
tggcccttcg cggatgccat ccgtgcaggt gctggcgctg tgatgtgctc ctacaaccag	1200
atcaacaaca gttatggctg ccagaacagc tacactctga acaagctgct caaggccgag	1260
ctgggcttcc agggctttgt catgagtgat tgggctgctc accatgctgg tgtgagtggt	1320
getttggeag gattggatat gtetatgeea ggagaegteg aetaegaeag tggtaegtet	1380
tactggggta caaacttgac cattagcgtg ctcaacggaa cggtgcccca atggcgtgtt	1440
gatgacatgg ctgtccgcat catggccgcc tactacaagg tcggccgtga ccgtctgtgg	1500
actecteeca actteagete atggaceaga gatgaataeg getaeaagta etaetaegtg	1560
toggagggac ogtaogagaa ggtoaacoag taogtgaatg tgoaacgoaa coacagogaa	1620
ctgattcgcc gcattggagc ggacagcacg gtgctcctca agaacgacgg cgctctgcct	1680
ttgactggta aggagcgcct ggtcgcgctt atcggagaag atgcgggctc caacccttat	1740
ggtgccaacg gctgcagtga ccgtggatgc gacaatggaa cattggcgat gggctgggga	1800
agtggtactg ccaacttccc atacctggtg acccccgagc aggccatctc aaacgaggtg	1860
cttaagcaca agaatggtgt attcaccgcc accgataact gggctatcga tcaaattgag	1920
gcgcttgcta agaccgccag tgtctctctt gtctttgtca acgccgactc tggtgagggt	1980
tacatcaatg tggacggaaa cctgggtgac cgcaggaacc tgaccctgtg gaggaacggc	2040
gataatgtga tcaaggctgc tgctagcaac tgcaacaaca caatcgttgt cattcactct	2100
gtcggaccag tcttggttaa cgagtggtac gacaacccca atgttaccgc tatcctctgg	2160
ggtggtttgc ccggtcagga gtctggcaac tctcttgccg acgtcctcta tggccgtgtc	2220
aaccccggtg ccaagtcgcc ctttacctgg ggcaagactc gtgaggccta ccaagactac	2280
ttggtcaccg agcccaacaa cggcaacgga gcccctcagg aagactttgt cgagggcgtc	2340
ttcattgact accgtggatt tgacaagcgc aacgagaccc cgatctacga gttcggctat	2400
ggtctgagct acaccacttt caactactcg aaccttgagg tgcaggtgct gagcgcccct	2460
gcatacgagc ctgcttcggg tgagaccgag gcagcgccaa ccttcggaga ggttggaaat	2520
gcgtcggatt acctctaccc cagcggattg ctgagaatta ccaagttcat ctacccctgg	2580
ctcaacggta ccgatctcga ggcatcttcc ggggatgcta gctacgggca ggactcctcc	2640
gactatette cegagggage cacegatgge tetgegeaae egateetgee tgeeggtgge	2700
ggtcctggcg gcaaccctcg cctgtacgac gagctcatcc gcgtgtcagt gaccatcaag	2760
aacaccggca aggttgctgg tgatgaagtt ccccaactgt atgtttccct tggcggtccc	2820
aatgageeea agategtget gegteaatte gagegeatea egetgeagee gteggaggag	2880
acgaagtgga gcacgactct gacgcgccgt gaccttgcaa actggaatgt tgagaagcag	2940

												con	tin	ued		
gactgg	gaga	ı ti	taco	gtcg	ta to	ccca	agato	g gto	gttto	gtcg	gaa	gata	ctc (gcgg	aagct	zg 3000
ccgctco	cddd	l có	gtct	ctg	cc ta	actg	ttca	: gat	gaad	ttt	aac	ccgg	gcg (agcto	cgaat	t 3060
gatcgti	tcaa	aa	catt	tgg	ca a	taaa	gttto	tta	aagat	tga	gtta	aagca	atg [.]	taata	aatta	aa 3120
acatgta	aato	l ca	atga	acgti	ta t	ttate	gaga	a dd	ggtti	tta	tga	ttaa	gag -	taca	cgcaa	at 3180
tataca	tttt	: aa	atac	cgcga	at a	gaaa	aacaa	a aat	tataq	gcgc	cca	aacta	aag (gata	aaatt	a 3240
ttcgcgd	ccgo	; go	aaaa	lddca	at to	ctate	ggtta	a cta	agato	ctct	aga	atte	c			3288
<210> S <211> I <212> T <213> C <220> E <223> C I	LENG FYPE ORGA FEAT OTHE	TH: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	: 88 PRT 5M: 5: INFC	3 Arti ORMAJ		BGI	-		to C	Cel1	sigr	nal p	pept	ide a	and a	A HDEL
<400> \$	SEQU	ENC	CE :	19												
Met Ala 1	a Ar	g I	Lys	Ser 5	Leu	Ile	Phe	Pro	Val 10	Ile	Leu	Leu	Ala	Val 15	Leu	
Leu Phe	e Se		Pro 20	Pro	Ile	Tyr	Ser	Ala 25	Gly	His	Asp	Tyr	Arg 30	Asp	Ala	
Leu Arg	g Ly 35		Ser	Ser	Met	Ala	Asp 40	Glu	Leu	Ala	Tyr	Ser 45	Pro	Pro	Tyr	
Tyr Pro 50	o Se	er 1	Pro	Trp	Ala	Asn 55	Gly	Gln	Gly	Asp	Trp 60	Ala	Gln	Ala	Tyr	
Gln Arg 65	g Al	.a V	Val	Asp	Ile 70	Val	Ser	Gln	Met	Thr 75	Leu	Asp	Glu	Lys	Val 80	
Asn Leu	u Th	ır :	Thr	Gly 85	Thr	Gly	Trp	Glu	Leu 90	Glu	Leu	Суз	Val	Gly 95	Gln	
Thr Gly	y Gl	_	Val 100	Pro	Arg	Leu	Gly	Val 105	Pro	Gly	Met	Сув	Leu 110	Gln	Asp	
Ser Pro	o Le 11		Gly	Val	Arg	Asp	Ser 120	Asp	Tyr	Asn	Ser	Ala 125	Phe	Pro	Ala	
Gl y Met 130		n V	Val	Ala	Ala	Thr 135	Trp	Asp	Lys	Asn	Leu 140	Ala	Tyr	Leu	Arg	
Gly Ly: 145	s Al	.a I	Met	Gly	Gln 150	Glu	Phe	Ser	Asp	L y s 155	Gly	Ala	Asp	Ile	Gln 160	
Leu Gly	y Pr	:o 2	Ala	Ala 165	Gly	Pro	Leu	Gly	Arg 170	Ser	Pro	Asp	Gly	Gly 175	Arg	
Asn Trj	p Gl		Gly 180	Phe	Ser	Pro	Asp	Pro 185	Ala	Leu	Ser	Gly	Val 190	Leu	Phe	
Ala Glı	u Th 19		Ile	Lys	Gly	Ile	Gln 200	Asp	Ala	Gly	Val	Val 205	Ala	Thr	Ala	
L y s Hi: 21(-	r :	Ile	Ala	Tyr	Glu 215	Gln	Glu	His	Phe	Arg 220	Gln	Ala	Pro	Glu	
Ala Glı 225	n Gl	.y 1	Phe	Gly	Phe 230	Asn	Ile	Ser	Glu	Ser 235	Gly	Ser	Ala	Asn	Leu 240	
Asp Asp	р Цу	75 ⁻ .	Thr	Met 245	His	Glu	Leu	Tyr	Leu 250	Trp	Pro	Phe	Ala	Asp 255	Ala	
Ile Aro	g Al		Gly 260	Ala	Gly	Ala	Val	Met 265	Cys	Ser	Tyr	Asn	Gln 270	Ile	Asn	
Asn Sei	r Ty 27		Gly	Cys	Gln	Asn	Ser 280	Tyr	Thr	Leu	Asn	L y s 285	Leu	Leu	Lys	

-continued

Ala	Glu 290	Leu	Gly	Phe	Gln	Gly 295	Phe	Val	Met	Ser	Asp 300	Trp	Ala	Ala	His
His 305	Ala	Gly	Val	Ser	Gly 310	Ala	Leu	Ala	Gly	Leu 315	Asp	Met	Ser	Met	Pro 320
Gly	Asp	Val	Asp	Ty r 325	Asp	Ser	Gly	Thr	Ser 330	Tyr	Trp	Gly	Thr	Asn 335	Leu
Thr	Ile	Ser	Val 340	Leu	Asn	Gly	Thr	Val 345	Pro	Gln	Trp	Arg	Val 350	Asp	Asp
Met	Ala	Val 355	Arg	Ile	Met	Ala	Ala 360	Tyr	Tyr	Lys	Val	Gly 365	Arg	Asp	Arg
Leu	T rp 370	Thr	Pro	Pro	Asn	Phe 375	Ser	Ser	Trp	Thr	Arg 380	Asp	Glu	Tyr	Gly
Ty r 385	Lys	Tyr	Tyr	Tyr	Val 390	Ser	Glu	Gly	Pro	Ty r 395	Glu	Lys	Val	Asn	Gln 400
Tyr	Val	Asn	Val	Gln 405	Arg	Asn	His	Ser	Glu 410	Leu	Ile	Arg	Arg	Ile 415	Gly
Ala	Asp	Ser	Thr 420	Val	Leu	Leu	Lys	Asn 425	Asp	Gly	Ala	Leu	Pro 430	Leu	Thr
Gly	Lys	Glu 435	Arg	Leu	Val	Ala	Leu 440	Ile	Gly	Glu	Asp	Ala 445	Gly	Ser	Asn
Pro	Ty r 450	Gly	Ala	Asn	Gly	С у в 455	Ser	Asp	Arg	Gly	Cys 460	Asp	Asn	Gly	Thr
Leu 465	Ala	Met	Gly	Trp	Gly 470	Ser	Gly	Thr	Ala	Asn 475	Phe	Pro	Tyr	Leu	Val 480
Thr	Pro	Glu	Gln	Ala 485	Ile	Ser	Asn	Glu	Val 490	Leu	Lys	His	Lys	Asn 495	Gly
Val	Phe	Thr	Ala 500	Thr	Asp	Asn	Trp	Ala 505	Ile	Asp	Gln	Ile	Glu 510	Ala	Leu
Ala	Lys	Thr 515	Ala	Ser	Val	Ser	Leu 520	Val	Phe	Val	Asn	Ala 525	Asp	Ser	Gly
	530	_				535	_				540	-	-	Asn	
Thr 545	Leu	Trp	Arg	Asn	Gly 550	Asp	Asn	Val	Ile	Lys 555	Ala	Ala	Ala	Ser	Asn 560
Суз	Asn	Asn	Thr	Ile 565	Val	Val	Ile	His	Ser 570	Val	Gly	Pro	Val	Leu 575	Val
Asn	Glu	Trp	Ty r 580	Asp	Asn	Pro	Asn	Val 585	Thr	Ala	Ile	Leu	Trp 590	Gly	Gly
		595					600					605		Tyr	
Arg	Val 610	Asn	Pro	Gly	Ala	Lys 615	Ser	Pro	Phe	Thr	Trp 620	Gly	Lys	Thr	Arg
Glu 625	Ala	Tyr	Gln	Asp	Tyr 630	Leu	Val	Thr	Glu	Pro 635	Asn	Asn	Gly	Asn	Gly 640
Ala	Pro	Gln	Glu	Asp 645	Phe	Val	Glu	Gly	Val 650	Phe	Ile	Asp	Tyr	Arg 655	Gly
Phe	Asp	Lys	Arg 660	Asn	Glu	Thr	Pro	Ile 665	Tyr	Glu	Phe	Gly	Ty r 670	Gly	Leu
Ser	Tyr	Thr 675	Thr	Phe	Asn	Tyr	Ser 680	Asn	Leu	Glu	Val	Gln 685	Val	Leu	Ser

-cc	nt	11	าบ	ec
-00	nιυ	- 11	.ıu	e

-continued							
Ala Pro Ala Tyr Glu Pro Ala Ser Gly Glu Thr Glu Ala Ala Pro Thr 690 695 700							
Phe Gly Glu Val Gly Asn Ala Ser Asp Tyr Leu Tyr Pro Ser Gly Leu 705 710 715 720							
Leu Arg Ile Thr Lys Phe Ile Tyr Pro Trp Leu Asn Gly Thr Asp Leu 725 730 735							
Glu Ala Ser Ser Gly Asp Ala Ser Tyr Gly Gln Asp Ser Ser Asp Tyr 740 745 750							
Leu Pro Glu Gly Ala Thr Asp Gly Ser Ala Gln Pro Ile Leu Pro Ala 755 760 765							
Gly Gly Gly Pro Gly Gly Asn Pro Arg Leu Tyr Asp Glu Leu Ile Arg 770 775 780							
Val Ser Val Thr Ile Lys Asn Thr Gly Lys Val Ala Gly Asp Glu Val 785 790 795 800							
Pro Gln Leu Tyr Val Ser Leu Gly Gly Pro Asn Glu Pro Lys Ile Val 805 810 815							
Leu Arg Gln Phe Glu Arg Ile Thr Leu Gln Pro Ser Glu Glu Thr Lys 820 825 830							
Trp Ser Thr Thr Leu Thr Arg Arg Asp Leu Ala Asn Trp Asn Val Glu 835 840 845							
Lys Gln Asp Trp Glu Ile Thr Ser Tyr Pro Lys Met Val Phe Val Gly 850 855 860							
Ser Ser Arg Lys Leu Pro Leu Arg Ala Ser Leu Pro Thr Val His 865 870 875 880							
Asp Glu Leu							
<210> SEQ ID NO 20 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Single strand DNA oligonucleotide							
<400> SEQUENCE: 20 cagtgaccgt ggatgcgaca atg 23							
<210> SEQ ID NO 21 <211> LENGTH: 40 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Single strand DNA oligonucleotide <400> SEQUENCE: 21							
agagacggat gacaagtact acttgaaatt gggcccaaaa 40							
<210> SEQ ID NO 22 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Single strand DNA oligonucleotide <400> SEQUENCE: 22							
cagtgaccgt ggatgcgaca atg 23							
<210> SEQ ID NO 23							

<211>	LENGTH: 33	
<212>	TYPE: DNA	
<213>	ORGANISM: Artificial sequence	
<220>	FEATURE:	
<223>	OTHER INFORMATION: Single strand DNA oligonucleotide	
<400>	SEQUENCE: 23	
aaagga	atoot tagtgaacag taggcagaga ogo	33
<210>	SEQ ID NO 24	
<211>	LENGTH: 4	
<212>	TYPE: PRT	
<213>	ORGANISM: Artificial sequence	
<220>	FEATURE:	
<223>	OTHER INFORMATION: ER retaining signal peptide	
<400>	SEQUENCE: 24	
Lys As 1	sp Glu Leu	

What is claimed is:

1. A method of increasing a level of at least one fermentation substance in a fermentation product, the method comprising the step of fermenting a plant derived glucose containing fermentation starting material by a yeast cell, said plant expressing a nucleic acid construct comprising a polynucleotide encoding a polypeptide having a β -glucosidase catalytic activity and further encoding a signal peptide being in frame with said polypeptide, said plant having greater β -glucosidase catalytic activity as compared to β -glucosidase catalytic activity of a plant not expressing said nucleic acid construct, thereby increasing the level of the at least one fermentation substance in the fermentation product.

2. The method of claim 1, wherein said polynucleotide further encodes an endoplasmic reticulum retaining peptide being in frame with said polypeptide.

3. The method of claim 1, wherein said signal peptide is an apoplast and/or vacuole targeting signal peptide.

4. The method of claim 1, wherein said signal peptide is Cel1.

5. A method of increasing a level of at least one aroma substance in a plant derived product, the method comprising the step of incubating a glucose containing plant starting material with a yeast cell, said plant expressing a nucleic acid construct comprising a polynucleotide encoding a polypeptide having a β -glucosidase catalytic activity and further encoding a signal peptide being in frame with said polypeptide, said plant having greater β -glucosidase catalytic activity of a plant not expressing said nucleic acid construct, thereby increasing the level of the at least one aroma substance in the plant derived product.

6. The method of claim 5, wherein said polynucleotide further encodes an endoplasmic reticulum retaining peptide being in frame with said polypeptide.

7. The method of claim 5, wherein said signal peptide is an apoplast and/or vacuole targeting signal peptide.

8. The method of claim 5, wherein said signal peptide is Cel1.

9. The method of claim 5, wherein said plant derived product is a fermentation product.

10. A method of increasing a level of free glucose in a glucose containing fermentation starting material, the method comprising the step of fermenting the glucose containing fermentation starting material by a cell expressing a nucleic acid construct comprising a polynucleotide encoding a polypeptide having a β -glucosidase catalytic activity and further encoding a signal peptide being in frame with said polypeptide, said cell having greater β -glucosidase catalytic activity of a cell not expressing said nucleic acid construct, thereby increasing the level of the free glucose in the glucose containing fermentation starting material.

11. The method of claim 10, wherein said polynucleotide further encodes an endoplasmic reticulum retaining peptide being in frame with said polypeptide.

12. The method of claim 10, wherein said signal peptide is an apoplast and/or vacuole targeting signal peptide.

13. The method of claim 10, wherein said signal peptide is Cell.

14. A method of increasing a level of free glucose in a plant derived glucose containing fermentation starting material, the method comprising the step of fermenting the plant derived glucose containing fermentation starting material by a cell, said plant expressing a nucleic acid construct comprising a polynucleotide encoding a polypeptide having a β -glucosidase catalytic activity and further encoding a signal peptide being in frame with said polypeptide, said plant having greater β -glucosidase catalytic activity of a plant not expressing said nucleic acid construct, thereby increasing the level of the free glucose in the plant.

15. The method of claim 14, wherein said polynucleotide further encodes an endoplasmic reticulum retaining peptide being in frame with said polypeptide.

16. The method of claim 14, wherein said signal peptide is an apoplast and/or vacuole targeting signal peptide.

17. The method of claim 14, wherein said signal peptide is Cell.

18. A method of producing an alcohol, the method comprising the step of fermenting a glucose containing fermentation starting material by a cell expressing a nucleic acid construct comprising a polynucleotide encoding a polypeptide having a β -glucosidase catalytic activity and further encoding a signal peptide being in frame with said polypeptide, said cell having greater β -glucosidase catalytic activity as compared to β -glucosidase catalytic activity of a cell not expressing said nucleic acid construct and extracting the alcohol therefrom.

19. The method of claim 18, wherein said polynucleotide further encodes an endoplasmic reticulum retaining peptide being in frame with said polypeptide.

20. The method of claim 18, wherein said signal peptide is an apoplast and/or vacuole targeting signal peptide.

21. The method of claim 18, wherein said signal peptide is Cell.

22. A method of producing an alcohol, the method comprising the step of fermenting a plant derived glucose containing fermentation starting material by a cell, said plant expressing a nucleic acid construct comprising a polynucleotide encoding a polypeptide having a β -glucosidase catalytic activity and further encoding a signal peptide being in frame with said polypeptide, said plant having greater β -glucosidase catalytic activity as compared to β -glucosidase catalytic activity of a plant not expressing said nucleic acid construct, and extracting the alcohol therefrom.

23. The method of claim 22, wherein said polynucleotide further encodes an endoplasmic reticulum retaining peptide being in frame with said polypeptide.

24. The method of claim 22, wherein said signal peptide is an apoplast and/or vacuole targeting signal peptide.

25. The method of claim 22, wherein said signal peptide is Cell.

26. A method of producing a plant having increased release of flavor and/or aroma compounds in-vivo, the method comprising the step of expressing in the plant a nucleic acid construct comprising a polynucleotide encoding

a polypeptide having a β -glucosidase catalytic activity and further encoding an apoplast and/or vacuole targeting signal peptide being in frame with said polypeptide and wherein said polypeptide is secreted into the apoplast and/or vacuole, said plant having greater β -glucosidase catalytic activity in the apoplast and/or vacuole as compared to β -glucosidase catalytic activity of the apoplast and/or vacuole of a plant not expressing said nucleic acid construct, thereby increasing in-vivo release of flavor and/or aroma compounds from the plant.

27. The method of claim 26, wherein said signal peptide is Cell.

28. A method of producing a plant having increased release of flavor and/or aroma compounds upon processing of the plant or portion thereof, the method comprising the step of expressing in the plant a nucleic acid construct comprising a polynucleotide encoding a polypeptide having a β-glucosidase catalytic activity and further encoding a signal peptide and an endoplasmic retention peptide being in frame with said polypeptide and wherein said polypeptide accumulates in the endoplasmic reticulum, said plant having greater β -glucosidase catalytic activity in said endoplasmic reticulum as compared to β-glucosidase catalytic activity of said endoplamic reticulum of a plant not expressing said nucleic acid construct, thereby increasing release of flavor and/or aroma compounds from the processing of said plant or portion thereof, and wherein said processing comprises cell disruption and decompartmentalization.

29. The method of claim 28, wherein said signal peptide is an apoplast and/or vacuole targeting signal peptide.

30. The method of claim 28, wherein said signal peptide is Cell.

31. The method of claim 28, wherein said endoplasmic retention peptide is selected from the group consisting of KDEL and HDEL.

* * * * *