(54) 发明名称
一种用微波还原焙烧联合弱磁选分选高磷铁矿石的方法

(57) 摘要
本发明涉及一种复杂难选高磷铁矿石提铁降磷的方法，且是用微波还原焙烧联合弱磁选分选高磷铁铁矿石的方法，属于矿物加工—铁矿石选矿技术领域。以难选高磷铁矿石作为原料，将原矿破碎至粒度小于2mm，配入一定比例的助熔剂和还原剂后，将物料送入微波反应炉中进行还原焙烧，煅烧经过水淬冷却、球磨和湿式磁选后，得到铁精矿。本发明采用微波熔烧使矿石还原，微波还原焙烧时间短，矿石升温快，同时加入助熔剂，协同微波熔烧反应促进脉石软化，改善了难选的矿石结构。通过本工艺分选高磷铁矿石可以得到品位为58.39%以上的铁精矿，磷脱除率达到70.44%以上，为高磷铁矿的分选提供了一个新的技术方法。
1. 一种用微波还原焰烧联合磁选分选高磷铁矿石的方法，其特征在于工艺步骤为：
 (1) 以高磷铁矿石为原料，用破碎机将其破碎细粒状；
 (2) 按一定比例，在破碎后的铁矿石中加入助熔剂和还原剂，并充分搅拌使其混合均匀；
 (3) 将得到的混合物料送入微波反应炉中，调节控温装置运行微波反应炉，控制升温速率为 80 ～ 120℃ /min，使物料升温至 600 ～ 900℃，然后在保温 1 ～ 3min，使混合物料在微波反应炉中进行还原焰烧；
 (4) 将烧后的物料进行水淬，使其快速冷却至室温；
 (5) 将水淬冷却后的带水烧烧矿料送入球磨机中，室温下球磨 2 ～ 5min，得到 80% 以上为 -200 目的细矿矿浆；
 (6) 加水调节矿浆浓度，然后用普通方法进行磁选，使磁性矿物与脉石分离，得到铁精矿和尾矿。

2. 根据权利要求 1 所述的用微波还原焰烧联合磁选分选高磷铁矿石的方法，其特征在于：所述的难选高磷铁矿石是 TFe＞28%，P 含量为 0.8% ～ 1.2% 的高磷铁矿石，破碎粒度为 2 ～ 5mm 以下。

3. 根据权利要求 1 或 2 所述的用微波还原焰烧联合磁选分选高磷铁矿石的方法，其特征在于：助熔剂为纯度大于 85wt% 的氢氧化钠，其加入量为铁矿石质量的 3 ～ 20%，还原剂为固定碳含量大于 60wt% 的无烟煤，其加入量为铁矿石质量的 5 ～ 10%。

4. 根据权利要求 1 ～ 3 任一项所述的用微波还原焰烧联合磁选分选高磷铁矿石的方法，其特征在于：磁选前调节的矿浆浓度为 10 ～ 30%。

5. 根据权利要求 1 ～ 4 任一项所述的用微波还原焰烧联合磁选分选高磷铁矿石的方法，其特征在于：磁选在 CXG 型磁选机中进行，磁选的磁场强度为 79.58 ～ 119.37KA/m。
一种用微波还原熔炼联合弱磁选分选高磷铁矿石的方法

[0001] 技术领域

本发明涉及复杂难选高磷铁矿石提铁降磷的一种选矿方法，特别涉及一种微波熔炼联合弱磁选分选高磷铁矿石的方法，属矿物加工-铁矿石选矿技术领域。

[0002] 背景技术

世界上范围内存在着大量高磷铁矿石。在北美 Superior 地区、Minnesota 地区、北欧、澳大利亚、沙特阿拉伯和我国的长江流域等地区均有大量的含磷弱磁性铁矿石存在。中国高磷铁矿石的储量为 74.5 亿吨，占全国铁资源总量的 14.86%。中国在世界上既是一个钢铁生产大国也是一个消费大国。中国钢产量和消耗量约占全球总量的一半，稳居世界第一位。可是中国是一个优质铁矿石资源匮乏的国家，目前对外购铁矿石的依存度达到 55%，由于进口铁矿石的依赖，严重威胁了我国钢铁工业的经济安全。因此开发先进的选矿技术，来处理国内的难选铁矿，为钢铁工业提供优质的铁矿石原料具有重要的意义。

[0003] 高磷铁矿的特点是矿石品位低，矿石结构复杂，嵌布粒度极细，主要脉石矿物 SiO₂ 多为浸染状或薄膜状分布于铁矿石中，且部分有害元素呈类质同象状态分布于铁矿物中。高磷铁矿石中的铁品位过低增加了冶炼的难度，而且，磷易在晶界上析出，形成高磷脆性纹理损害钢的脆性，造成钢的“冷脆”，降低钢的焊接性和磁性。因此提高铁品位，降低磷含量是处理此高矿石的重要任务。

[0004] 今后高磷铁矿石的分选方法主要有反浮选、高梯度磁选、酸浸、微生物脱磷等。反浮选对于降低矿石中的磷含量有一定效果，但其生产工艺复杂，且浮选药剂消耗较高；高梯度磁选虽能分选低磁性矿物，但由于此矿石嵌布粒度极细，需要细磨才能使矿物单体解离，细磨容易导致精矿夹杂脉石，造成精矿品位低；酸浸是一种有效的降低高磷铁矿石中磷含量的方法，但其酸耗量大，同时大量酸液的使用容易对环境造成污染；微生物浸出是一种低成本的降磷酸法，但浸出速率缓慢，生产效率不高。

[0005] 微波熔炼是近年来出现的一种铁矿石熔炼方法，其具有选择性加热和矿物升温速率快的特点。专利 ZL200710139321.x 公布了“一种赤铁矿粉的微波熔炼干式风磁选的方法”，该方法是赤铁矿粉经过干式球磨机粗磨后加入无烟煤粉，将混合物料放入微波熔炼炉中熔炼，所得产物经过干式风磁选分选选出赤铁矿粉。但该法存在以下缺点：1、主要适用于缺水地区和可选性较好的铁矿石的分选，对于可选性较差的高磷铁矿石等高磷石的分选具有较大的局限性；2、原矿需要经过球磨机球磨后才能进行熔炼，能耗较高；3、采用单纯的微波熔炼，熔炼过程中矿石结构变化小，不利于后续的磁选分离；4、采用干式风磁选，矿物无法达到最佳的分散状态，对于细粒嵌布的铁矿石选别指标不高，磁选操作环境清洁度也有限。专利 ZL200710051415.1 公布了一种“微波还原弱磁性铁矿物制取铁精矿的方法”，该法在含铁物料中加入铁粉作还原剂混匀后置于微波熔炼炉中还原，所得物料用水磁选磁选机分选得到铁精矿。由于铁矿石冶炼的最终产品是金属钛，该方法采用金属铁粉作为还原剂将矿石还原为废铁矿石，不仅形成工艺上的重复，而且需要消耗大量的铁粉，同时也不满足经济环保的要求。
发明内容

本发明的目的是针对以往高磷铁矿选矿方法的不足，提出用微波还原焙烧联合弱磁选分选高磷铁矿石的方法，在焙烧过程中加入一定量助熔剂和还原剂，增强磁选的同时改善矿物的结构，采用湿式磁选的方法分选焙烧，得到高铁品位、低磷含量的铁精矿。

实现本发明技术方案的具体步骤是：

（1）以 TiFe≥28%，P 含量为 0.8% ～ 1.2% 的难选高磷铁矿石为原料，用普通破碎机将原矿破碎至粒度为 2～5mm 以下。

（2）按一定比例，将助熔剂和还原剂加入到破碎后的铁矿石中，并充分搅拌使其混合均匀；助熔剂为纯度大于 85wt% 的氢氧化钠（普通烧碱），其加入量为铁矿石质量的 3～20%；还原剂为覆盖碳含量大于 60wt% 的无烟煤粉，其加入量为铁矿石质量的 5～10%。

（3）将步骤（2）制备得到的混合物料送入微波反应炉中，常压下间歇式加温装置运行微波反应炉，控制升温速率为 80～120°C/min，使物料升温至 500～900°C，然后再保温 1～3min，使混合物料在微波反应炉中进行还原烧结。

（4）将经步骤（3）还原烧结所得的矿物进行水淬，使其快速冷却至室温，防止因物料的二次氧化而使熔烧的磁性降低。

（5）将水淬冷却后的带水烧结后的矿物送入球磨机中，常温下球磨 2～5min，得到 80%以上为 -200 目的细粉。

（6）加水调节矿浆浓度 10～30%（矿料重量比 10～30%，其余为水），然后送入 CXG 型磁选机，用常规方法进行磁选，控制磁选的磁场强度为 79.58～119.37kA/m，使磁性矿物与脉石分离，得到铁精矿和尾矿。

在具体操作中，本发明所涉及的各工艺参数，可根据实际需要在给定范围内选择。

本发明采用具有选择性加热和快速升温的微波焙烧高磷铁矿，利用矿石中脉石中不吸收微波，而铁矿物大量吸收微波而被加热的特性，使矿石内部产生一个温度梯度和内应力，在促进矿石解离的同时，增大了矿石的孔隙度，有利于还原焙烧反应的进行。同时，助熔剂烧碱的加入，协同微波烧结反应过程，促进了铁矿物粒度小得多的脉石的软化，进一步促使了矿物的结构特征发生变化，改善了原有的玻璃状细粒难选的矿物结构，使焙烧后的矿物磁性大大增强，通过湿式弱磁选便可以分选出铁精矿。

与现有难选高磷铁矿分选技术相比，本发明有以下优点：
1. 原矿无需经过球磨机球磨，仅需破碎至粒度小于 2mm，就可以达到烧结的粒度要求，大大降低了焙烧前的磨矿能耗；

2. 经微波焙烧后的矿石变得易磨，球磨仅需 2–3min 便可以使磨矿细度达到 -200 目 80% 以上，比其他工艺中的球磨时间缩短了近一半；

3. 微波焙烧的时间短，仅需 6–8min 就可以完成焙烧过程，且温度可控，能量直接利用为加热矿石，微波停止加热即停止，反应易控制，防止矿石因发生过还原反应，而使熔砂的磁性降低；

4. 焙烧过程中针对高磷铁矿石的性质，加入了助熔剂，能够很好的改善难选的矿石结构，为磁选分离创造了有利条件；

5. 较与干式风磁选，采用湿式磁选能够使矿物达到最佳的分散状态，得到较好的选别指标，更适用于此类细粒嵌布的铁矿石，同时湿式磁选操作环境要比干式风磁选清洁。

附图说明
[0016] 附图为本发明微波还原焙烧联合弱磁选分选高磷铁矿石工艺流程示意图。

具体实施方式
[0017] 下面结合附图和实施例，对本发明作进一步阐述，但本发明的技术实质不限于所述内容。

[0018] 实施例 1：难选高磷铁矿原矿矿石的品位 TFe 为 29.74%，含磷量 1.07%，主要呈浸染状。微波还原焙烧联合弱磁选分选工艺步骤是：

（1）用普通破碎机将原矿破碎至粒度为 2mm 以下；

（2）取 500g 破碎后的原矿，加入 100g 纯度为 98wt% 的市售烧碱和 40g 固定碳含量为 60wt% 的云南无烟煤粉，并充分搅拌混合均匀；

（3）将得到的混合物料送入微波反应炉中，调节控温装置运行微波反应炉，控制升温速率为 100℃/min，使混合物料升温至 700℃后（设定加热温度到 700℃），再保温 3min，对混合物料进行还原焙烧；

（4）将步骤（3）焙烧后所得的矿料进行水淬，使其快速冷却至室温；

（5）将水淬冷却后的带水焙烧矿料送入球磨机中，常温下球磨 3min，得到 80% 为 -200 目的细矿浆；

（6）加水调节矿浆浓度为 20%（矿料重量比 20%，其余为水），然后送入 CXG 型磁选机进行磁选，控制磁选的磁场强度为 79.58KA/m，使磁性矿物与脉石分离，得到铁精矿和尾矿。

[0019] 采用《GB/T 6730.5–2007 铁矿石 全铁含量的测定 三氯化铁还原法》和《GB / T6730, 18–2006 铁矿石 磷含量的测定钼蓝分光光度法》进行检测，所得铁精矿品位为 58.39%，磷脱除率为 70.44%。

[0020] 实施例 2：难选高磷铁矿原矿矿石的品位 TFe 为 28.70%，含磷量 1.05%。微波还原焙烧联合弱磁选分选工艺步骤是：

（1）用普通破碎机将原矿破碎至粒度为 5mm 以下；

（2）取 100g 破碎后的原矿，加入 15g 纯度为 95wt% 的市售烧碱和 10g 固定碳含量为 61wt% 的无烟煤粉，并充分搅拌混合均匀；

5
（3）将得到的混合物料送入微波反应炉中，调节控温装置运行微波反应炉，控制升温速率为 80℃/min，使混合物料升温至 800℃后（设定加热温度到 800℃），再保温 2min，对混合物料进行还原熔烧；

（4）将步骤（3）焙烧后所得的矿料进行水淬，使其快速冷却至室温；

（5）将水淬冷却后的带水焙烧矿料送入球磨机中，常温下球磨 2min，得到 80% 为 -200 目的细矿矿浆；

（6）加水调节矿浆浓度为 30%（矿料重量比 30%，其余为水），然后送入 CXG 型磁选管进行磁选，控制磁选的磁场强度为 90.19KA/m，使磁性矿物与脉石分离，得到品位为 51.37% 的铁精矿，磷的脱除率为 88.27%。

【0021】实施例 3：难选高磷铁矿原矿矿石的品位 TFe 为 28.10%，含磷量 1.2%。微波还原焙烧联合弱磁选分选工艺步骤是：

（1）用普通破碎机将原矿破碎至粒度小于 5mm 以下；

（2）取 1000g 破碎后的原矿，加入 30g 纯度为 85wt% 的烧碱和 60g 和固定碳含量为 63wt% 的无烟煤粉，并充分搅拌混合均匀；

（3）将得到的混合物料送入微波反应炉中，调节控温装置运行微波反应炉，控制升温速率为 100℃/min，使混合物料升温至 600℃后（设定加热温度到 600℃），再保温 2min，对混合物料进行还原熔烧；

（4）将步骤（3）焙烧后所得的矿料进行水淬，使其快速冷却至室温；

（5）将水淬冷却后的带水焙烧矿料送入球磨机中，常温下球磨 5min，得到 85% 以上为 -200 目的细矿矿浆；

（6）加水调节矿浆浓度为 15%（矿料重量比 15%，其余为水），然后送入 CXG 型磁选管进行磁选，控制磁选的磁场强度为 119.37KA/m，使磁性矿物与脉石分离，得到品位为 50.08% 的铁精矿，磷的脱除率为 58.37%。

【0022】实施例 4：难选高磷铁矿原矿矿石的品位 TFe 为 29.30%，含磷量 0.8%。微波还原焙烧联合弱磁选分选工艺步骤是：

（1）用普通破碎机将原矿破碎至粒度小于 3mm 以下；

（2）取 800g 破碎后的原矿，加入 80g 纯度为 90wt% 的烧碱和 40g 固定碳含量为 65wt% 的无烟煤粉，并充分搅拌混合均匀；

（3）将得到的混合物料送入微波反应炉中，调节控温装置运行微波反应炉，控制升温速率为 120℃/min，使混合物料升温至 900℃后（设定加热温度到 900℃），再保温 1min，对混合物料进行还原熔烧；

（4）将步骤（3）焙烧后所得的矿料进行水淬，使其快速冷却至室温；

（5）将水淬冷却后的带水焙烧矿料送入球磨机中，常温下球磨 4min，得到 85% 以上为 -200 目的细矿矿浆；

（6）加水调节矿浆浓度为 10%（矿料重量比 10%，其余为水），然后送入 CXG 型磁选管进行磁选，控制磁选的磁场强度为 105.16KA/m，使磁性矿物与脉石分离，得到品位为 55.28% 的铁精矿，磷的脱除率为 60.07%。
图 1