

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2012/149351 A1

(43) International Publication Date
1 November 2012 (01.11.2012)

WIPO | PCT

(51) International Patent Classification:
C12P 21/04 (2006.01) *G01N 33/00* (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2012/035495

(22) International Filing Date:
27 April 2012 (27.04.2012)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/480,616 29 April 2011 (29.04.2011) US
13/457,064 26 April 2012 (26.04.2012) US
13/457,049 26 April 2012 (26.04.2012) US

(71) Applicant (for all designated States except US): TECH-LAB, INC. [US/US]; 2001 Kraft Drive, Blacksburg, VA 24060 (US).

(72) Inventors: BOONE, James, Hunter; 545 Arrowhead Trail, Christiansburg, VA 24073 (US). LYERLY, David, M.; 204 Macarthur Avenue, Radford, VA 24142 (US). WILKINS, Tracy, D.; 6254 Chestnut Ridge Road, Riner, VA 24149 (US). CARMAN, Robert, J.; 1700 North Fork Road, Christiansburg, VA (US).

(74) Agents: ERICKSON, Alison, L. et al.; Shook, Hardy & Bacon L.L.P., 2555 Grand Boulevard, Kansas City, MO 64108-2613 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: FECAL LACTOFERRIN AS A BIOMARKER FOR DETERMINING DISEASE SEVERITY AND FOR MONITORING INFECTION IN PATIENTS WITH *CLOSTRIDIUM DIFFICILE* DISEASE

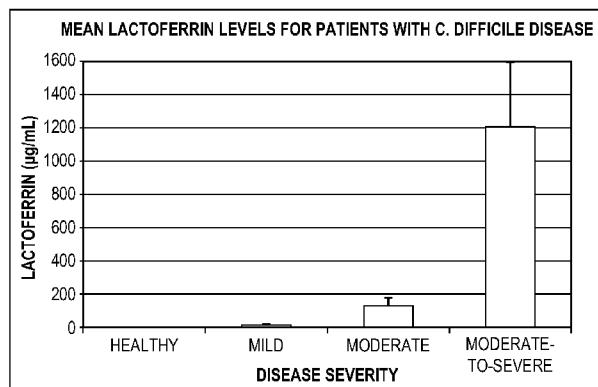


FIG. 1B

(57) Abstract: *Clostridium difficile* disease involves a range of clinical presentations ranging from mild to self-limiting diarrhea to life-threatening pseudomembranous colitis and megacolon. Cases of *C. difficile* are treated differently depending on severity of disease. Mild and moderate cases may be treated with metronidazole while moderate-to-severe and relapsing cases are often treated with vancomycin or fidaxomicin. The presence of *C. difficile* disease is detected using a biomarker panel that includes *C. difficile* antigen (GDH), toxins A and B, and fecal lactoferrin. In patients suspected of *C. difficile* disease, if GDH is detected indicating the presence of *C. difficile*, and then toxins A and/or B are detected to indicate toxigenic *C. difficile* and support a diagnosis of *C. difficile*-associated disease, fecal lactoferrin concentrations are measured to determine severity of the disease by indicating the amount of intestinal inflammation.

WO 2012/149351 A1

**FECAL LACTOFERRIN AS A BIOMARKER FOR DETERMINING DISEASE
SEVERITY AND FOR MONITORING INFECTION IN PATIENTS WITH
CLOSTRIDIUM DIFFICILE DISEASE**

CROSS-REFERENCE TO RELATED APPLICATIONS

5 This application claims priority to U.S. Patent Application Serial No. 13/457,064 filed April 26, 2012 and U.S. Patent Application Serial No. 13/457,049 filed April 26, 2012, both of which claim priority to U.S. Provisional Application Serial No. 61/480,616 filed April 29, 2011, all of which are expressly incorporated by reference herein in their entirety.

10

BACKGROUND OF THE INVENTION

15 *Clostridium difficile* infection (CDI) involves a range of clinical presentations including mild to self-limiting diarrhea to life-threatening pseudomembranous colitis and megacolon. Many healthy persons (e.g., infants) carry *Clostridium difficile* (*C. difficile*), and many patients become asymptomatic carriers after admission to the hospital. Most cases are diagnosed based on clinical evaluations, history of antibiotic use, and the presence of the organism and/or toxins A & B (i.e., TcdA and TcdB, respectively) in the stool. Enzyme-linked immunoassay (EIA) tests are the most frequently used test format for measuring toxin in the stool specimens, with tissue culture combined with specific neutralization being the gold standard for detecting stool toxin. More recently, polymerase chain reaction (PCR) tests

20 are available for determining the presence of *C. difficile* toxin A and B genes (*tcdA* and *tcdB*) and these are used as standalone tests and in combination with the detection of glutamate dehydrogenase (GDH) for ruling out *C. difficile*-negative patients. All of these assays are suitable for detecting the presence of *C. difficile* as an aid to diagnosis but do not provide information about the severity of disease.

25

 The severity of the disease is an important factor to recommending a proper course of treatment. In general, patients with *C. difficile* disease often present with fever, have slightly raised white blood cells (leukocytosis) and experience mild abdominal pain. Mild cases respond well to stopping the inciting antibiotic while moderate and/or moderate-to-severe *C. difficile* disease cases often require antibiotic intervention. Currently, no single lab parameter is routinely used to stratify patients based on severity of CDAD for optimizing medical and/or surgical treatment.

BRIEF DESCRIPTION OF THE DRAWING

Illustrative embodiments of the invention are described in detail below with reference to the attached drawing figures, wherein:

FIG. 1A depicts patient characteristics for patients diagnosed with *C. difficile* disease according to embodiments of the invention;

FIG. 1B depicts mean lactoferrin levels ($\mu\text{g/mL} \pm$ standard error) for patients with clinically defined cases of *C. difficile* disease stratified by severity according to embodiments of the invention;

FIG. 2 depicts mean lactoferrin levels ($\mu\text{g/mL} \pm$ standard error) for patients stratified by ARL 027 versus other ribotype *C. difficile* infections according to embodiments of the invention;

FIG. 3 depicts daily monitoring of lactoferrin levels during and after antibiotic treatment in a patient with *C. difficile* disease according to embodiments of the invention;

FIG. 4A depicts a summary of biomarker results for patients with a clinical cure (no symptoms and no *C. difficile* during and/or after initial treatment) according to embodiments of the invention;

FIG. 4B depicts a summary of biomarker results for patients with bacterial reinfection (return of *C. difficile* in absence of symptoms during and /or after initial treatment) according to embodiments of the invention; and

FIG. 4C depicts a summary of biomarker results for patients with clinical recurrence or no cure (return of symptoms and *C. difficile* during and /or after initial treatment) according to embodiments of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to test methods for aiding in stratifying patients based on severity of *C. difficile* disease. Stratifying patients with disease based on severity using a panel of biomarkers is a new concept that is critically needed because of the increase in incidence and frequent severe presentations and overuse of antibiotics. The emergence of the outbreak strain ribotype ARL 027 that produces more toxin and spores has been linked with more severe *C. difficile* disease and a greater chance of relapse. In addition, newer medications like the antibiotic fidaxomicin (Dificid) offer additional treatment options for *C. difficile* disease. In a study published by L. Kyne et al. 1999, the authors performed a

detailed characterization of disease states for an outbreak of CDAD in Dublin, Ireland. This particular outbreak involved 14 patients that were stool cytotoxin positive but asymptomatic. Of the symptomatic patients, 25% had mild-self-limiting disease with no antibiotic treatment, 35% had moderately severe *C. difficile* disease responding to antibiotic treatment and 40% developed severe disease with prolonged symptoms lasting between eleven to thirty-six days. A total of 8% of the patients with *C. difficile* disease progressed to severe colitis with pseudomembranes and toxic megacolon. The authors noted that physicians should be aware of early indicators of disease severity in order to lower morbidity and mortality for cases of *C. difficile* disease.

A combination of clinical presentations and various lab parameters have been evaluated for stratifying patients by disease activity (e.g., mild, moderate, and moderate-to-severe). White blood cell count (WBC), serum albumin level (indicator of leakage into the bowel), and creatinine level for monitoring kidney failure are the most commonly used lab indicators for disease activity for *C. difficile*. Mild to moderate cases of *C. difficile* usually present with a WBC \leq 15,000/ μ L, normal serum creatinine (< 2.0 mg/dL) and albumin levels (≥ 2.5 g/dL). Symptoms include having less than 10 watery stools without blood per day and mild cramping lasting for up to an average of 4 days. A common treatment for patients with an initial episode of mild to moderate *C. difficile* disease is treatment with a member of the nitroimidazole class of antibiotics. For example, mild to moderate *C. difficile* disease may be treated with 500 mg metronidazole, three times daily for ten days. Most cases resolve with no further complications, but up to 25% of these cases may relapse multiple times and require a second round of antibiotics, which historically has included treatment with a member of the glycopeptide class of antibiotics, such as vancomycin. However, now such second rounds of antibiotics include members of the macrocyclic class of antibiotics, such as fidaxomicin (Dificid).

Patients over the age of sixty-five with multiple co-morbidities are at a higher risk for *C. difficile* disease and more often suffer from more severe disease leading to multiple relapses. Severe fulminant *C. difficile* disease is characterized by having eleven or more liquid stools per day for more than ten days. Stool specimens often contain mucus and may be bloody. Defined lab parameters for fulminant *C. difficile* colitis are WBC $\geq 15,000/\mu$ L, a rising serum creatinine (50% increase and levels ≥ 2.0 mg/dL) indicating poor kidney function and albumin levels dropping below 2.5 g/dL showing loss of protein because of exudation of serum into the bowel. Clinical presentations may involve pseudomembranes on

endoscopy, severe abdominal pain and cramping, and colonic thickening observed by CT scan. Toxic megacolon stemming from ileus may occur causing nausea, vomiting, severe dehydration, and extreme lethargy. Treatment for severe and relapsing cases of *C. difficile* disease usually involves 125 mg vancomycin 4 times per day for 10 days.

5 Identifying disease activity for patients with *C. difficile* infection is imperative for proper treatment and better outcome with decreased morbidity and mortality. An embodiment of the invention provides a diagnostic parameter for assessing severity in *C. difficile* disease by measuring fecal lactoferrin and using the measurement of fecal lactoferrin as an indicator for intestinal inflammation caused by *C. difficile*.

10 *C. difficile* disease is an inflammatory disease involving the infiltration of activated neutrophils across the mucosa into the lumen causing colitis and in severe cases, the formation of pseudomembranes. Human lactoferrin is a glycoprotein that is present in most mucosal secretions and a primary component of the granules of activated neutrophils. During the onset of intestinal inflammation from *C. difficile*, activated neutrophils infiltrate the 15 intestinal lumen causing an increase in fecal lactoferrin.

15 Fecal specimens are routinely collected for *C. difficile* testing (antigen and toxin). Accordingly, additional testing can be done to measure the level of fecal lactoferrin for determining the amount of intestinal inflammation as an indicator of disease severity. In addition, combining the presence of antigen and the levels of toxins A and B with fecal 20 lactoferrin concentrations can help the physician in determining if a patient is a carrier from patients that have true mild to severe infections for optimal medical treatment.

25 In an embodiment of the present invention, a method for assessing disease severity in patients with *C. difficile* disease using fecal lactoferrin levels is provided. Toxin A is a strong chemotactic protein that causes the release of IL-8 and the infiltration of activated neutrophils into the intestinal mucosa. In fact, toxin A concentrations of 100-fold less than that of toxin B have been shown to stimulate the release of IL-8. Toxin A also stimulates other pro-inflammatory cytokines including IL-1 β and tumor necrosis factor alpha (TNF- α). Toxin B is a cytotoxin that causes tissue damage and inflammation that contributes, along with toxin A that causes fluid accumulation, to disease. The combined 30 effects of the enterotoxic and chemotactic toxin A and cytotoxic effects of toxin B strongly contribute to the severity of disease. In a study by Kuehne et al., knockout mutants showed that both A+B- and A-B+ mutants were cytotoxic and caused disease in the hamster model. An interesting finding was that when *tcdB* was inactivated by an insertion, the resulting A+B-

mutant showed increased cytotoxicity of toxin A in cell culture. The increased cytotoxicity was not neutralized completely by anti-toxin A specific antibody. The reason for the increase of cytotoxicity following the inactivation of *tcdB* was not determined but thought to be due to increased expression. The double knockout mutant A-B- did not cause disease in the 5 hamster. These results confirmed that both TcdA and TcdB in combination and independently cause disease. In another study, the analysis of A-B+ isolates showed a variant toxin B that was significantly more lethal in a mouse than normal toxin B. These studies support the role of both toxins in the disease. A method for determining the presence of 10 intestinal inflammation in combination with the presence toxin in stool can offer additional information on disease status for patients with *C. difficile* infection.

An embodiment of the present invention provides for determining the presence of *C. difficile* disease using a biomarker panel that includes, by way of example, *C. difficile* antigen (GDH), toxins A (*tcdA* or TcdA) and B (*tcdB* or TcdB) for determining the presence of toxigenic *C. difficile*. As will be understood, further embodiments of the invention utilize 15 additional biomarkers for *C. difficile* infection. When a diagnosis of *C. difficile* disease is concluded, fecal lactoferrin concentrations may be used to determine disease severity. In patients suspected of infection with *C. difficile*, if GDH is present, indicating the presence of *C. difficile*, then toxins A and/or B (genes and/or protein) are detected to show the presence 20 of toxigenic *C. difficile* followed by measuring fecal lactoferrin levels as an indicator of intestinal inflammation. Knowing whether toxigenic *C. difficile* is present in combination with a lactoferrin concentration will help to determine disease severity to optimize treatment.

In embodiments, serial measurements of biomarkers for *C. difficile* infection are utilized. For example, lactoferrin, GDH, toxin A, and/or toxin B levels may be monitored at regular intervals during analysis and/or treatment. In embodiments, serial analysis of the 25 presence of one or more biomarkers (e.g. GDH, toxins A and/or B) provides an indicator of the bacteria, which may be used to determine a patient's response to treatment.

In embodiments, the level of lactoferrin in fecal samples provides an indication of the severity of *C. difficile*. For example, "mild" *C. difficile* disease may be indicated in samples with less than 7.25 µg/mL lactoferrin. In embodiments, a diagnosis of 30 mild *C. difficile* disease is indicated in samples with less than 7.25 µg/mL lactoferrin, combined with clinical indicators for defining the mild disease. For example, clinical indicators such as the number of unformed stools per day, a presence of fever, abdominal pain, and vomiting may be characterized and/or determined as being indicative of a diagnosis

of mild *C. difficile* disease, and may be analyzed together with a measurement of less than 7.25 $\mu\text{g}/\text{mL}$ lactoferrin, to determine disease severity. In embodiments, clinical indicators for a diagnosis of mild *C. difficile* include having three to five stools per day and a white blood cell count less than or equal to $15,000/\text{mm}^3$. In further embodiments, lab parameters such as

5 C-reactive protein (CRP), white blood cell count (WBC), serum albumin, and/or creatinine, may be combined with a level of lactoferrin, a level of calprotectin, and/or a clinical indicator(s) to determine disease severity in patients diagnosed with mild *C. difficile*.

In another example, “moderate” *C. difficile* disease may be indicated in samples with between 7.25 $\mu\text{g}/\text{mL}$ to 99.99 $\mu\text{g}/\text{mL}$ lactoferrin. In some embodiments, a diagnosis of moderate *C. difficile* disease is indicated in samples with between 7.25 $\mu\text{g}/\text{mL}$ to 99.99 $\mu\text{g}/\text{mL}$ lactoferrin, combined with clinical indicators for defining the moderate disease. For example, clinical indicators such as the number of unformed stools per day, a presence of fever, abdominal pain, and vomiting may be characterized and/or determined as being indicative of a diagnosis of moderate *C. difficile* disease, and may be analyzed together with a measurement between 7.25 $\mu\text{g}/\text{mL}$ to 99.99 $\mu\text{g}/\text{mL}$ lactoferrin, to determine disease severity. In embodiments, clinical indicators for a diagnosis of moderate *C. difficile* include having six to nine stools per day, a white blood cell count from $15,001/\text{mm}^3$ to $20,000/\text{mm}^3$, and moderate abdominal pain. In further embodiments, lab parameters such as C-reactive protein (CRP), white blood cell count (WBC), serum albumin, and/or creatinine, may be combined with a level of lactoferrin, a level of calprotectin, and/or a clinical indicator(s) to determine disease severity in patients diagnosed with moderate *C. difficile*.

In a further example, “moderate-to-severe” *C. difficile* disease may be indicated in samples with 100 $\mu\text{g}/\text{mL}$ or greater lactoferrin. In some embodiments, a diagnosis of moderate-to-severe *C. difficile* disease is indicated in samples with 100 $\mu\text{g}/\text{mL}$ or greater lactoferrin, combined with clinical indicators for defining the moderate-to-severe disease. For example, clinical indicators such as the number of unformed stools per day, a presence of fever, abdominal pain, and vomiting may be characterized and/or determined as being indicative of a diagnosis of moderate-to-severe *C. difficile* disease, and may be analyzed together with a measurement of 100 $\mu\text{g}/\text{mL}$ or greater lactoferrin, to determine disease severity. In embodiments, clinical indicators for a diagnosis of moderate-to-severe *C. difficile* include having ten or greater stools per day, a white blood cell count of $20,001/\text{mm}^3$ or greater, and severe abdominal pain. In further embodiments, lab parameters such as C-reactive protein (CRP), white blood cell count (WBC), serum albumin, and/or creatinine, may

be combined with a level of lactoferrin, a level of calprotectin, and/or a clinical indicator(s) to determine disease severity in patients diagnosed with moderate-to-severe *C. difficile*.

One exemplary method of testing for the presence of the *C. difficile* GDH biomarker is to use the *C. DIFF CHEK*TM - 60 test, which uses antibodies specific for *C. difficile* GDH. The *Microassay Plate* contains immobilized polyclonal antibody against the GDH antigen, while the *Conjugate* consists of a highly specific monoclonal antibody conjugated to horseradish peroxide. If the GDH antigen is present in the specimen, a color is detected due to the enzyme-antibody-antigen complexes that form in the assay.

One exemplary method of testing for the presence of toxin A and toxin B is to use the *C. DIFFICILE TOX A/B II* TM test, which uses antibodies to *C. difficile* toxins A and B. The test utilizes immobilized affinity-purified polyclonal antibody against toxins A and B, and the detecting antibody consists of a mixture of toxin A monoclonal antibody conjugated to horseradish peroxidase and toxin B polyclonal antibody conjugated to horseradish peroxidase. If toxins A and B are present in the specimen, a color is detected due to the enzyme-antibody-antigen complexes that form in the assay.

One exemplary method of testing for the presence of GDH, toxin A and toxin B is to use the *QUIK CHEK COMPLETE*TM test, which uses antibodies specific for GDH and toxins A and B of *C. difficile*. The device contains three vertical lines of immobilized antibodies, the antigen test line contains antibodies against *C. difficile* GDH, and the control line is a dotted line that contains anti-horseradish peroxidase antibodies. The toxins A and B test line contains antibodies against *C. difficile* toxins A and B and the *Conjugate* consists of antibodies to GDH and antibodies to toxins A and B coupled to horseradish peroxidase. The GDH reaction is examined visually for the appearance of a vertical blue line, which indicates a positive test, while a blue line also indicates a positive test for toxin A and toxin B.

One exemplary method of testing for the presence of *C. difficile* toxin is the *C. DIFFICILE TOX-B TEST*TM, which uses a tissue culture format to detect the presence of cytotoxic activity in fecal specimens and confirms the identification of *C. difficile* toxin using specific antitoxin. The test confirms the presence of *C. difficile* toxin by neutralizing the cytotoxic activity with a reagent that is a specific antitoxin. In the assay, if *C. difficile* toxin is present, the cells in the well with PBS will become round, demonstrating the presence of the cytotoxic activity, while the presence of *C. difficile* toxin is confirmed if the cytotoxic activity is neutralized in the well containing antitoxin.

One exemplary method of treating *C. difficile* is through a native flora transplant. This process, also referred to as Fecal (or Faecal) Microbiota Transplantation (FMT), is the restoration of the colonic flora by introducing healthy bacterial flora through infusion of stool, e.g. by enema, obtained from a healthy human donor. A native flora transplant can also be administered as a liquid that the patient drinks.

One aspect of the present invention is directed to a method of treating a patient with *C. difficile* disease. The method comprises administering a therapeutically effective amount of treatment shown to be effective in treating moderate-to-severe *C. difficile* to a patient who has tested positive for an elevated level of one or more of lactoferrin or calprotectin in a fecal sample indicating severe intestinal inflammation. The level of one or more of lactoferrin or calprotectin in the fecal sample is determined through use of a quantitative enzyme immunoassay (EIA). The elevated level of lactoferrin may be 100 ug/mL or greater in the fecal sample. In this case, the therapeutically effective treatment may be one or more of glycopeptide antibiotics or macrocyclic antibiotics. The therapeutically effective treatment may also be a native flora transplant.

Another aspect of the present invention is directed to a method of treating a patient with *C. difficile* disease. The method comprises administering a therapeutically effective amount of treatment shown to be effective in treating moderate *C. difficile* to a patient who has tested positive for an elevated level of one or more of lactoferrin or calprotectin in a fecal sample indicating moderate intestinal inflammation. The level of one or more of lactoferrin or calprotectin in the fecal sample may be determined through use of a quantitative enzyme immunoassay (EIA). The elevated level of lactoferrin may be 7.25 μ g/mL to 99.99 μ g/mL in the fecal sample. The therapeutically effective treatment in this case may be one or more nitroimidazole antibiotics. In addition, the therapeutically effective treatment may be a native flora transplant.

Another aspect of the present invention is directed to a method of diagnosing a patient with a severity of *Clostridium difficile* disease. The method comprises obtaining a fecal sample from a person having been diagnosed with *C. difficile* disease; determining whether an elevated level of one or more of lactoferrin or calprotectin is present in the fecal sample; and upon determining that an elevated level of one or more of lactoferrin or calprotectin is present in the fecal sample, identifying a severity of the *C. difficile* disease based on a level of one or more of lactoferrin or calprotectin present in the fecal sample. The level of one or more of lactoferrin or calprotectin in the fecal sample may be determined

through use of a quantitative enzyme immunoassay (EIA). If the elevated levels of lactoferrin is 100 $\mu\text{g}/\text{mL}$ or greater in the fecal sample then the severity of *C. difficile* disease may be considered moderate-to-severe. In this case, the therapeutically effective treatment may be one or more of glycopeptide antibiotics or macrocyclic antibiotics. The 5 therapeutically effective treatment may be a native flora transplant. If the elevated levels of lactoferrin is 7.25 $\mu\text{g}/\text{mL}$ to 99.99 $\mu\text{g}/\text{mL}$ in the fecal sample then the severity of *C. difficile* disease is considered moderate. In this case, the therapeutically effective treatment may be one or more nitroimidazole antibiotics. If the elevated levels of lactoferrin is less than 7.25 $\mu\text{g}/\text{mL}$ in the fecal sample and the severity of *C. difficile* disease is considered mild, then the 10 therapeutically effective treatment may be no treatment. The level of one or more of lactoferrin or calprotectin used to determine disease severity in patients diagnosed with *C. difficile* may be combined with one or more of the following: clinical symptoms comprising one or more of a number of unformed stools per day, a presence of fever, abdominal pain, and vomiting, and lab parameters comprising one or more of C-reactive protein (CRP), white 15 blood cell count (WBC), serum albumin, and creatinine. The diagnosis of *C. difficile* may be concluded based upon presence of a biomarker that indicates a presence of toxigenic *C. difficile*.

Yet another aspect of the present invention is directed to a method of monitoring a patient with *C. difficile* disease. The method comprises obtaining a first fecal 20 sample from a patient at a first time; obtaining a second fecal sample from the same patient at a second time later than the first time; comparing a first amount of one or more of lactoferrin or calprotectin in the first fecal sample with a second amount of one or more of lactoferrin or calprotectin in the second fecal sample to identify a change in level of one or more of lactoferrin or calprotectin between the first time and the second time; based on a change in 25 level of one or more of lactoferrin or calprotectin, identifying a patient's change in *C. difficile* disease severity; and administering a therapeutically effective amount of a treatment shown to be effective in treating *C. difficile* to the patient based on identifying a patient's change in *C. difficile* disease severity. A therapeutically effective amount of the treatment may be stopping a treatment if the level of lactoferrin has dropped below 7.25 $\mu\text{g}/\text{mL}$ for the second 30 fecal sample of the patient. A therapeutically effective amount of the treatment may be administering a therapeutically effective amount of a treatment shown to be effective in treating moderate *C. difficile* if the level of lactoferrin is between 7.25 $\mu\text{g}/\text{mL}$ and 99.99 $\mu\text{g}/\text{mL}$ for the second fecal sample of the patient. In this case, the treatment shown to be

effective in treating moderate *C. difficile* comprises one or more of nitroimidazole antibiotics. A therapeutically effective amount of the treatment may be administering a therapeutically effective amount of a treatment shown to be effective in treating moderate-to-severe *C. difficile* if the level of lactoferrin is 100 $\mu\text{g}/\text{mL}$ or greater for the second fecal sample of the patient, wherein a level of lactoferrin of 100 $\mu\text{g}/\text{mL}$ or greater indicates severe intestinal inflammation. A treatment shown to be effective in treating moderate-to-severe *C. difficile* comprises treatment with one or more of glycopeptide antibiotics or macrocyclic antibiotics. Another treatment shown to be effective in treating moderate-to-severe *C. difficile* comprises treatment with a native flora transplant.

Still another aspect of the present invention is directed to a method of monitoring a patient with *C. difficile* disease. The method comprises obtaining a first fecal sample from a patient at a first time; obtaining a second fecal sample from the same patient at a second time later than the first time; comparing a first amount of one or more of lactoferrin or calprotectin in the first fecal sample with a second amount of one or more of lactoferrin or calprotectin in the second fecal sample to identify a change in level of one or more of lactoferrin or calprotectin between the first time and the second time; based on the change in level of one or more of lactoferrin or calprotectin, identifying a patient's change in *C. difficile* disease severity; and administering a therapeutically effective amount of a treatment shown to be effective in treating *C. difficile* to the patient after obtaining the second fecal sample, wherein the patient had a mild case of *C. difficile* at the first time and an increased amount of one or more of lactoferrin or calprotectin at the second time, wherein the comparison of the first amount in the first sample and the second amount in the second sample indicates increased intestinal inflammation and worsening of the *C. difficile* disease. A therapeutically effective amount of the treatment may be administering a therapeutically effective amount of a treatment shown to be effective in treating moderate *C. difficile* if the level of lactoferrin is between 7.25 $\mu\text{g}/\text{mL}$ and 99.99 $\mu\text{g}/\text{mL}$ for the second fecal sample of the patient. A treatment shown to be effective in treating moderate *C. difficile* comprises treatment with one or more of nitroimidazole antibiotics. A therapeutically effective amount of the treatment may be administering a therapeutically effective amount of the treatment shown to be effective in treating moderate-to-severe *C. difficile* if the level of lactoferrin is 100 $\mu\text{g}/\text{mL}$ or greater for the second fecal sample of the patient. A treatment shown to be effective in treating moderate-to-severe *C. difficile* comprises treatment with one or more of glycopeptide antibiotics.

antibiotics or macrocyclic antibiotics. A treatment shown to be effective in treating moderate-to-severe *C. difficile* comprises treatment with a native flora transplant.

Another aspect of the present invention is directed to a diagnostic method of determining a presence of *C. difficile* disease and a severity of *C. difficile* disease. The 5 method comprises obtaining a fecal sample from a patient; determining a presence of a first biomarker from the same patient's fecal sample, wherein the presence of the first biomarker indicates the presence of *C. difficile* disease; and determining a level of a second biomarker from the same patient's fecal sample, wherein the level of the second biomarker indicates the severity of the *C. difficile* disease. A first biomarker comprises *C. difficile* glutamate 10 dehydrogenase (GDH). Another first biomarker comprises *C. difficile* toxin A. Another first biomarker comprises *C. difficile* toxin B. The first biomarker may comprise of one or more of *C. difficile* toxin A gene (*tcdA*) or *C. difficile* toxin B gene (*tcdB*). The second biomarker comprises a level of lactoferrin in the patient's fecal sample. The second biomarker may also comprise a level of calprotectin in the patient's fecal sample.

15 The following are examples of procedures which have been utilized to establish the preferred assays according to the present invention. The following examples are merely exemplary and not presented by way of limitation.

Example 1

20 Fecal lactoferrin levels were evaluated in patients with clinically defined *C. difficile* disease ranging from mild to moderate-to-severe disease. Briefly, patients with clinically confirmed *C. difficile* disease presenting with a spectrum of severity were recruited along with fourteen age-sex matched healthy subjects defined as having no intestinal illnesses. Disease activity was defined by physician's assessment and based on symptoms, serum albumin, WBC counts and co-morbidities. Fecal lactoferrin was measured using a 25 quantitative enzyme immunoassay (EIA). *C. difficile* glutamate dehydrogenase (GDH) and toxins A and B in stool were detected using a membrane-based EIA. Toxigenic culture was done using spore enrichment and both isolates and stool specimens were tested by tissue culture assay for cytotoxicity.

Results

30 Thirty-nine clinically confirmed cases of *C. difficile* disease (fifteen moderate-to-severe, twenty-one moderate and three mild) were tested during a six month period. Ages ranged from thirty-two to eighty-nine years and fifty percent were female. The predominant co-morbidities were diabetes (31%), cancer (23%) and renal failure (23%). All patients were

GDH-positive and toxigenic *C. difficile* was isolated from all but four patients. The mean lactoferrin levels ($\mu\text{g/mL} \pm \text{std error}$) were 1198 ± 404 for moderate-to-severe, 132 ± 50 for moderate, 12 ± 5 for mild and 2 ± 0.3 for healthy subjects. Stool toxin was detected by tissue culture in 87% (13/15) of moderate-to-severe, 71% (15/21) of moderate and 33% (1/3) for 5 mild disease. Two of the moderate-to-severe patients with the lowest lactoferrin levels ($\leq 8 \mu\text{g/mL}$) and three of the four lowest with moderate ($\leq 12 \mu\text{g/mL}$) were also tissue culture-negative. Of these patients, both of the severe and two of the four moderate patients had negative stool cultures. All of these patients had co-morbidities that contributed to the 10 clinical assessments. Our conclusion is that in a clinical setting, co-morbidities can complicate the clinical assessment for *C. difficile* infection. Our results show that fecal lactoferrin is useful for indicating disease severity in patients with *C. difficile* infection.

Accordingly, FIG. 1A details the patient characteristics for clinically confirmed cases of *C. difficile* disease. Most patients were >64 years old, experienced pain, had liquid stools and suffered with co-morbidities including diabetes, cancer, renal failure 15 and pneumonia. FIG. 1B shows that lactoferrin levels were significantly higher between mild, moderate, and moderate-to-severe cases of *C. difficile* disease, and trended higher for the moderate-to-severe group.

FIG. 2 shows the mean lactoferrin levels for patients with clinically confirmed 20 *C. difficile* disease grouped by ribotype. Patients infected with ARL 027 had significantly higher levels of lactoferrin than patients infected with other ribotypes. Studies have shown that patients infected with ARL 027 tend to have stool toxin and present with more severe disease.

Example 2

Fecal *C. difficile* GDH, toxins A and B, and human lactoferrin levels were 25 measured in several subjects with *C. difficile* disease during antibiotic treatment. Both subjects with clinically confirmed *C. difficile* disease were monitored for the presence of GDH, toxins A and B and fecal lactoferrin by enzyme-linked immunoassay (EIA). Specimen collection was initiated at the start of antibiotic treatment and was continued on a daily to weekly basis when possible. A symptom log was kept by each patient and all treatments 30 were recorded during the test period. Both patients showed a rapid response to antibiotic treatment with fecal GDH, toxins A and B, and fecal lactoferrin reaching baseline within 24 hours. Antigen, toxin and fecal lactoferrin remained negative during the antibiotic therapy. Following the treatment, both patients experienced a clinical relapse and showed a rapid

increase for all parameters. Following a second course of antibiotics, all parameters returned to baseline. At completion of the second course of antibiotics, all parameters increased rapidly in absence of clinical symptoms. Both GDH and toxin remained present for 3 to 4 weeks but fecal lactoferrin quickly returned to baseline. No antibiotics were administered 5 since there were no clinical symptoms and patients remained healthy.

Results

In this evaluation, it was observed that *C. difficile* GDH, toxin and fecal lactoferrin levels responded quickly to antibiotic therapy by returning to baseline (negative). More interestingly, both GDH and toxin were present without clinical symptoms and with no 10 intestinal inflammation as determined by baseline lactoferrin. These results show a role for fecal lactoferrin in combination with antigen and toxin measurements for determining which cases of *C. difficile* disease may require no further treatment with antibiotics. In addition, our invention provides a role for fecal lactoferrin in monitoring *C. difficile* disease. By determining the amount of intestinal inflammation using lactoferrin in *C. difficile* disease 15 patients along with clinical assessments, the identification of patients for severity of disease may prove useful for optimizing treatment and leading to better patient outcomes.

Treatment may be optimized for *C. difficile* disease since varying levels of severity call for different treatment recommendations. For example, mild cases of *C. difficile* disease often receive no antibiotic treatment. In contrast, a case of moderate severity may 20 call for an antibiotic such as metronidazole while a moderate-to-severe case of *C. difficile* disease may be treated with antibiotics such as vancomycin and fidaxomicin (Dificid).

FIG. 3 illustrates daily lactoferrin levels from the initial episode of *C. difficile* infection, during, and after antibiotic treatment. Lactoferrin was elevated ($\geq 7.25 \mu\text{g/mL}$) during the initial episode and for both periods of relapse. Levels drop rapidly once treatment 25 is started and increased as symptoms return.

Example 3

Patients (pts) with diarrhea and positive stool toxin (TcdA and TcdB) and/or glutamate dehydrogenase (GDH) were recruited with Informed Consent. Stool specimens were collected starting at admission (T=0) to Follow-up (T=F). GDH, toxin, and lactoferrin 30 (LF: median $\mu\text{g/g}$) were measured in stool specimens by immunoassay. Bacterial culture and counts (median CFU#/g) were done using ethanol enrichment and isolates were ribotyped. A total of 18 inpatients were recruited and followed for a median period of 21 days from T=0 to T=F. Median age was 75yr and the male:female ratio was 1:3.5. Pts were stratified into 3

groups (i) pts who were treated and showed no recurrence (N=9). (ii) pts who were treated with complete resolution of symptoms but had CDI (N=5) and (iii) pts that responded initially to treatment but relapsed (N=4).

Results

5 Patients in group (i) went from strongly positive for GDH, toxin and a spore count of 10^4 at T=0 to negative for all biomarkers at T=F. LF fell from 406 to 4 during this period (Table 1a). Four of the 5 pts in group (ii) were positive for GDH, toxin, and had a spore count of 10^4 at T=0. At T=F, 3 of the 5 pts were toxin negative, 3 pts remained GDH-positive and all pts had spores (10^3). LF for these pts dropped from 85 to 2 associated with 10 resolution of symptoms (Table 1b). For group (iii), all 4 pts remained symptomatic and stayed strongly positive for GDH, toxin, and had a spore count of 10^4 . LF levels for this group were similar at both T=0 and T=F (362 and 315, respectively) (Table 1c). A total of 5 (28%) pts had 027 CDI at T=0. In group (ii), 3 of 5 pts were reinfected with 027 as carriers. In group (iii), 1 patient converted to 027. **All of the 027 isolates were fluoroquinolone 15 resistant. In our study, at T=F 50% of pts had no CDI, 28% became carriers and 22% remained ill. GDH, toxin and LF levels all correlated with the presence of clinical disease. *C. difficile* continues to be a complex infection, and accurate diagnosis of disease relies on the clinical history used in conjunction with biomarkers for the organism and for inflammation.

20 FIG. 4A shows the results of CDI biomarkers before and after antibiotic treatment for *C. difficile* disease. All of the patients in this group had a clinical cure meaning no symptoms and no *C. difficile* detected during and after initial antibiotic treatment.

25 FIG. 4B shows the results of CDI biomarkers before and after antibiotic treatment for *C. difficile* disease. All patients in this group had a reinfection of *C. difficile* meaning that the *C. difficile* organism was detected in absence of symptoms during and/or after initial antibiotic treatment.

FIG. 4C shows the results of CDI biomarkers before and after antibiotic treatment for *C. difficile* disease. All patients in this group had a clinical recurrence or no cure meaning that symptoms and the *C. difficile* organism was maintained or returned during and/or after initial antibiotic treatment.

30 In an alternative embodiment, fecal calprotectin may be utilized rather than, or in addition to, fecal lactoferrin as a non-invasive marker for measuring intestinal inflammation. For example, in a person diagnosed with *C. difficile* disease, a quantitative level of fecal calprotectin may be measured and the quantitative level may be associated with

a disease severity including mild, moderate, and moderate-to-severe. Further, fecal calprotectin may be measured subsequent to treatment to monitor a person's response to medical treatment or an activity level of the disease.

5 In summary, the present invention is directed to non-invasive methods for identifying a severity of *C. difficile* disease in persons diagnosed with *C. difficile* disease using lactoferrin. The identified disease severity may be used to recommend a preferred course of treatment for the person. The present invention is further directed to utilizing changes in lactoferrin levels to monitor a person's disease activity and/or response to treatment.

10 The immunoassays of the present invention detect lactoferrin, a stable protein that serves as an indicator of intestinal inflammation, and provide quantitative fecal lactoferrin levels for associating a disease severity to *C. difficile* disease and for monitoring disease activity. The present invention has been described in relation to particular embodiments which are intended in all respects to be illustrative rather than restrictive.

15 Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its scope.

From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects herein above set forth together with other advantages which are obvious and which are inherent to the method. It will be understood that certain features and
20 subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.

CLAIMS

What is claimed is:

1. A method of treating a patient with *C. difficile* disease, the method comprising: administering a therapeutically effective amount of treatment shown to be effective in treating moderate-to-severe *C. difficile* to a patient who has tested positive for an elevated level of one or more of lactoferrin or calprotectin in a fecal sample indicating severe intestinal inflammation.
2. The method of claim 1, wherein the level of one or more of lactoferrin or calprotectin in the fecal sample is determined through use of a quantitative enzyme immunoassay (EIA).
3. The method of claim 1, wherein the elevated level of lactoferrin is 100 µg/mL or greater in the fecal sample.
4. The method of claim 1, wherein the therapeutically effective treatment is one or more of glycopeptide antibiotics or macrocyclic antibiotics.
- 15 5. The method of claim 1, wherein the therapeutic treatment is a native flora transplant.
6. A method of treating a patient with *C. difficile* disease, the method comprising: administering a therapeutically effective amount of treatment shown to be effective in treating moderate *C. difficile* to a patient who has tested positive for an elevated level of one or more of lactoferrin or calprotectin in a fecal sample indicating moderate intestinal inflammation.
- 20 7. The method of claim 6, wherein the level of one or more of lactoferrin or calprotectin in the fecal sample is determined through use of a quantitative enzyme immunoassay (EIA).
- 25 8. The method of claim 6, wherein the elevated level of lactoferrin is 7.25 µg/mL to 99.99 µg/mL in the fecal sample.

9. The method of claim 6, wherein the therapeutically effective treatment is one or more nitroimidazole antibiotics.

10. The method of claim 6, wherein the therapeutically effective treatment is a native flora transplant.

5 11. A method of diagnosing a patient with a severity of *Clostridium difficile* disease, the method comprising: obtaining a fecal sample from a person having been diagnosed with *C. difficile* disease; determining whether an elevated level of one or more of lactoferrin or calprotectin is present in the fecal sample; and upon determining that an elevated level of one or more of lactoferrin or calprotectin is present in the fecal sample,
10 identifying a severity of the *C. difficile* disease based on a level of one or more of lactoferrin or calprotectin present in the fecal sample.

12. The method of claim 11, wherein the level of one or more of lactoferrin or calprotectin in the fecal sample is determined through use of a quantitative enzyme immunoassay (EIA).

15 13. The method of claim 11, wherein the elevated levels of lactoferrin is 100 $\mu\text{g/mL}$ or greater in the fecal sample and the severity of *C. difficile* disease is considered moderate-to-severe.

14. The method of claim 13, wherein the therapeutically effective treatment is one or more of glycopeptide antibiotics or macrocyclic antibiotics.

20 15. The method of claim 13, wherein the therapeutically effective treatment is a native flora transplant.

16. The method of claim 11, wherein the elevated levels of lactoferrin is 7.25 $\mu\text{g/mL}$ to 99.99 $\mu\text{g/mL}$ in the fecal sample and the severity of *C. difficile* disease is considered moderate.

25 17. The method of claim 16, wherein the therapeutically effective treatment is one or more nitroimidazole antibiotics.

18. The method of claim 11, wherein the elevated levels of lactoferrin is less than 7.25 $\mu\text{g}/\text{mL}$ in the fecal sample and the severity of *C. difficile* disease is considered mild, wherein the therapeutically effective treatment is no treatment.

19. The method of claim 11, wherein the level of one or more of lactoferrin or calprotectin used to determine disease severity in patients diagnosed with *C. difficile* is combined with one or more of the following: clinical symptoms comprising one or more of a number of unformed stools per day, a presence of fever, abdominal pain, and vomiting, and lab parameters comprising one or more of C-reactive protein (CRP), white blood cell count (WBC), serum albumin, and creatinine.

10 20. The method of claim 11, wherein the diagnosis of *C. difficile* was concluded based upon presence of a biomarker that indicates a presence of toxigenic *C. difficile*.

15 21. A method of monitoring a patient with *C. difficile* disease, the method comprising: obtaining a first fecal sample from a patient at a first time; obtaining a second fecal sample from the same patient at a second time later than the first time; comparing a first amount of one or more of lactoferrin or calprotectin in the first fecal sample with a second amount of one or more of lactoferrin or calprotectin in the second fecal sample to identify a change in level of one or more of lactoferrin or calprotectin between the first time and the second time; based on a change in level of one or more of lactoferrin or calprotectin, 20 identifying a patient's change in *C. difficile* disease severity; and administering a therapeutically effective amount of a treatment shown to be effective in treating *C. difficile* to the patient based on identifying a patient's change in *C. difficile* disease severity.

22. The method of claim 21, wherein a therapeutically effective amount of the treatment is stopping a treatment if the level of lactoferrin has dropped below 7.25 $\mu\text{g}/\text{mL}$ 25 for the second fecal sample of the patient.

23. The method of claim 21, wherein a therapeutically effective amount of the treatment is administering a therapeutically effective amount of a treatment shown to be effective in treating moderate *C. difficile* if the level of lactoferrin is between 7.25 $\mu\text{g}/\text{mL}$ and 99.99 $\mu\text{g}/\text{mL}$ for the second fecal sample of the patient.

24. The method of claim 23, wherein the treatment shown to be effective in treating moderate *C. difficile* comprises one or more of nitroimidazole antibiotics.

25. The method of claim 21, wherein a therapeutically effective amount of the treatment is administering a therapeutically effective amount of a treatment shown to be effective in treating moderate-to-severe *C. difficile* if the level of lactoferrin is 100 $\mu\text{g}/\text{mL}$ or greater for the second fecal sample of the patient, wherein a level of lactoferrin of 100 $\mu\text{g}/\text{mL}$ or greater indicates severe intestinal inflammation.

26. The method of claim 25, wherein treatment shown to be effective in treating moderate-to-severe *C. difficile* comprises treatment with one or more of glycopeptide antibiotics or macrocyclic antibiotics.

27. The method of claim 25, wherein treatment shown to be effective in treating moderate-to-severe *C. difficile* comprises treatment with a native flora transplant.

28. A method of monitoring a patient with *C. difficile* disease, the method comprising: obtaining a first fecal sample from a patient at a first time; obtaining a second fecal sample from the same patient at a second time later than the first time; comparing a first amount of one or more of lactoferrin or calprotectin in the first fecal sample with a second amount of one or more of lactoferrin or calprotectin in the second fecal sample to identify a change in level of one or more of lactoferrin or calprotectin between the first time and the second time; based on the change in level of one or more of lactoferrin or calprotectin, identifying a patient's change in *C. difficile* disease severity; and administering a therapeutically effective amount of a treatment shown to be effective in treating *C. difficile* to the patient after obtaining the second fecal sample, wherein the patient had a mild case of *C. difficile* at the first time and an increased amount of one or more of lactoferrin or calprotectin at the second time, wherein the comparison of the first amount in the first sample and the second amount in the second sample indicates increased intestinal inflammation and worsening of the *C. difficile* disease.

29. The method of claim 28, wherein a therapeutically effective amount of the treatment is administering a therapeutically effective amount of a treatment shown to be effective in treating moderate *C. difficile* if the level of lactoferrin is between 7.25 $\mu\text{g}/\text{mL}$ and 99.99 $\mu\text{g}/\text{mL}$ for the second fecal sample of the patient.

30. The method of claim 29, wherein the treatment shown to be effective in treating moderate *C. difficile* comprises treatment with one or more of nitroimidazole antibiotics.

31. The method of claim 28, wherein a therapeutically effective amount of 5 the treatment is administering a therapeutically effective amount of the treatment shown to be effective in treating moderate-to-severe *C. difficile* if the level of lactoferrin is 100 µg/mL or greater for the second fecal sample of the patient.

32. The method of claim 31, wherein the treatment shown to be effective in treating moderate-to-severe *C. difficile* comprises treatment with one or more of 10 glycopeptide antibiotics or macrocyclic antibiotics.

33. The method of claim 31, wherein the treatment shown to be effective in treating moderate-to-severe *C. difficile* comprises treatment with a native flora transplant.

34. A diagnostic method of determining a presence of *C. difficile* disease 15 and a severity of *C. difficile* disease, the method comprising: obtaining a fecal sample from a patient; determining a presence of a first biomarker from the same patient's fecal sample, wherein the presence of the first biomarker indicates the presence of *C. difficile* disease; and determining a level of a second biomarker from the same patient's fecal sample, wherein the level of the second biomarker indicates the severity of the *C. difficile* disease.

20 35. The method of claim 34, wherein the first biomarker comprises *C. difficile* glutamate dehydrogenase (GDH).

36. The method of claim 34, wherein the first biomarker comprises *C. difficile* toxin A.

25 37. The method of claim 34, wherein the first biomarker comprises *C. difficile* toxin B.

38. The method of claim 34, wherein the first biomarker comprises one or more of *C. difficile* toxin A gene (*tcdA*) or *C. difficile* toxin B gene (*tcdB*).

39. The method of claim 34, wherein the second biomarker comprises a level of lactoferrin in the patient's fecal sample.

40. The method of claim 34, wherein the second biomarker comprises a level of calprotectin in the patient's fecal sample.

1/3

PATIENT CHARACTERISTICS		PERCENT OF TOTAL N=39	PERCENT OF MOD-TO- SEVERE N=15	PERCENT OF MODERATE N=21	PERCENT OF MILD N=3
GENDER	MALE FEMALE	41 59	60 40	29 71	33 67
AGE	< 65 YR > 64 YR	44 56	40 60	48 52	33 67
PAIN	YES NO	67 33	60 40	71 29	67 33
CO-MORBIDITIES	DIABETES CANCER RENAL FAILURE PNEUMONIA	30 23 23 18	13 13 20 27	29 29 29 10	33 33 33 0
STOOL CONSISTENCY	SOLID SEMI-SOLID LIQUID	3 44 54	0 33 67	5 43 52	0 100 0
CLINICAL ASSESSMENT	SEVERE MODERATE MILD	38 54 8	100 0 0	0 100 0	0 0 100

FIG. 1A

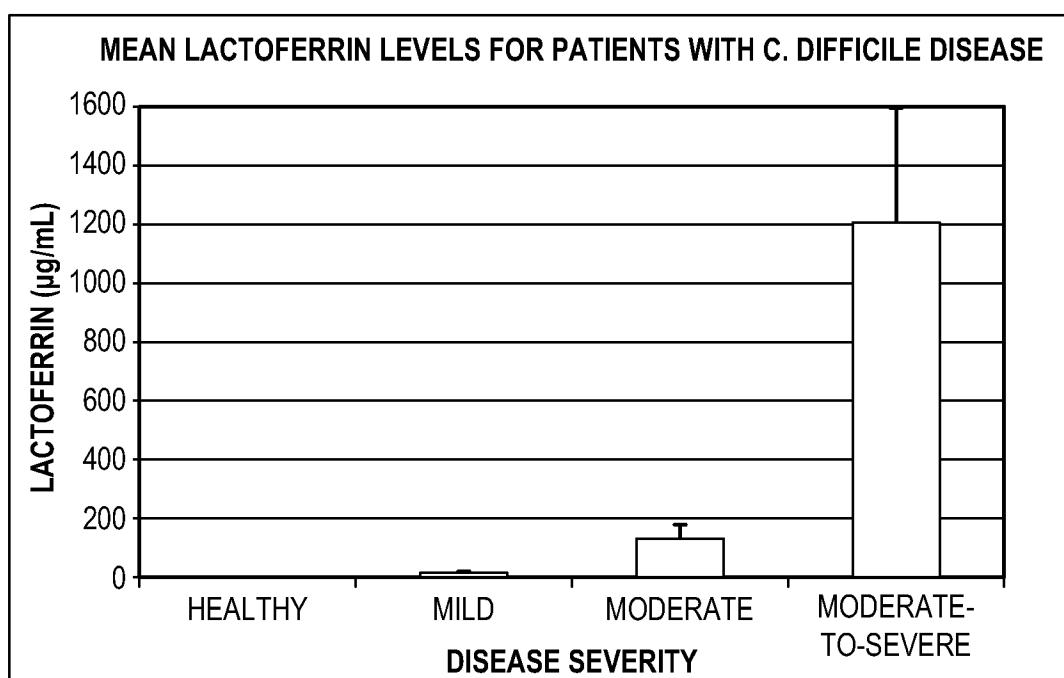


FIG. 1B

2/3

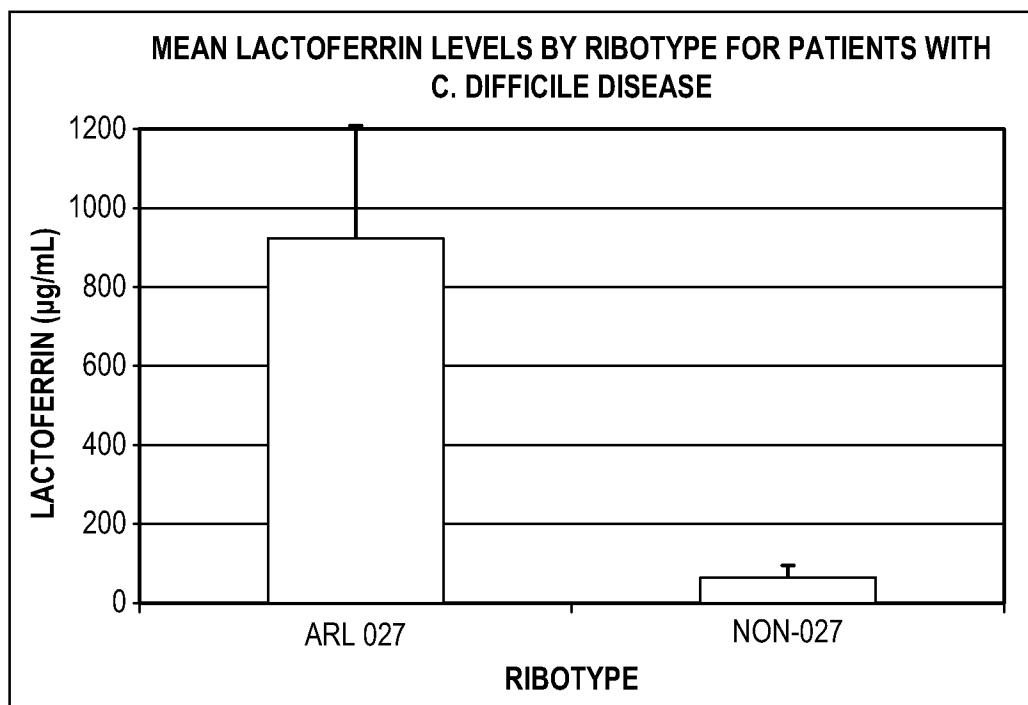


FIG. 2

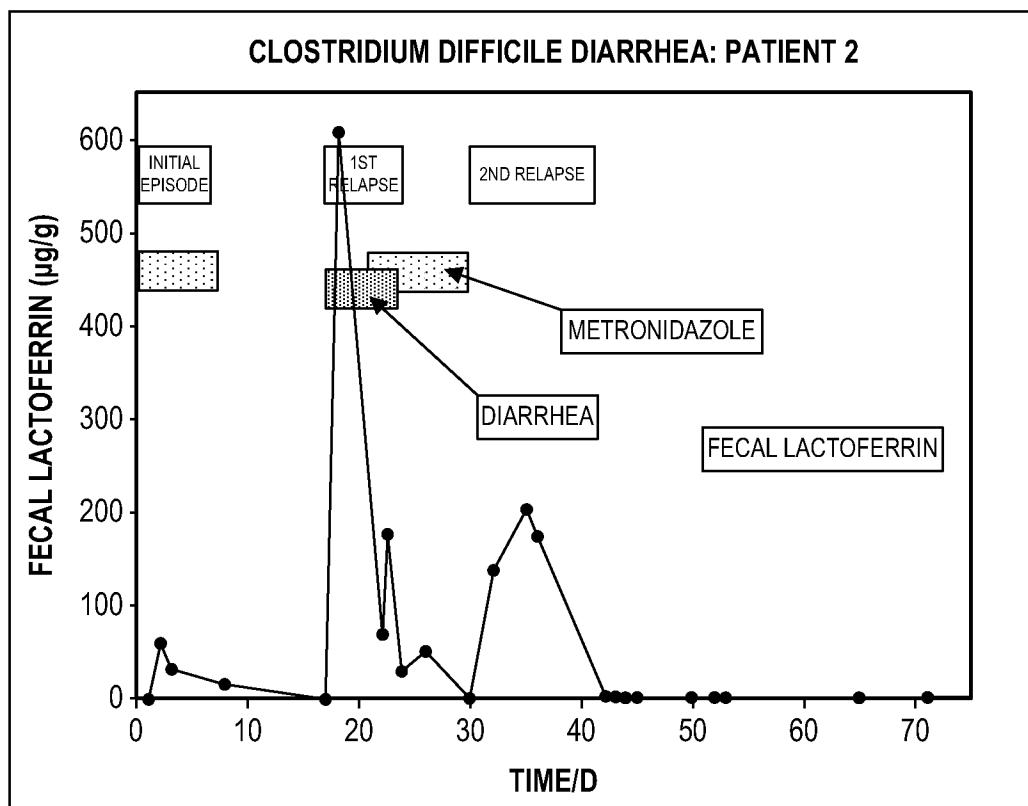


FIG. 3

3/3

T=0									FIRST FOLLOW-UP				
N=9	AGE (YR)	SEX M/F	LAC (ug/g)	GDH	ABII	SPORE COUNTS	PCR RIBOTYPE	LAC (ug/g)	GDH	ABII	SPORE COUNTS	PCR RIBOTYPE	
3	76	F	448	4.144	3.986	1.80E+04	ARL 251	0	0	0	0	N/A	
4	78	M	44	4.342	4.126	5.00E+04	ARL 305	22	0	0	0	N/A	
5	65	F	13	4.197	4.054	4.00E+05	ARL 005	18	0	0	0	N/A	
7	53	M	406	4.307	3.938	1.60E+04	ARL 027	0	0	0	0	N/A	
11	24	F	151	4.101	0.556	7.00E+02	ARL 001	1	0	0	0	N/A	
12	55	M	14	4.487	1.787	4.00E+02	ARL 027	12	0	0	0	N/A	
14	79	F	515	4.327	3.889	3.50E+05	ARL 054	4	0	0	0	N/A	
17	77	F	1291	4.304	4.215	8.00E+03	ARL 059	2	0	0	0	N/A	
19	72	F	1826	4.125	4.110	4.50E+05	ARL 027	72	0.098	0	0	N/A	
MEDIAN	72		406	4.304	3.986	1.80E+04	33% 027	4	0	0	0	N/A	

FIG. 4A

T=0									FIRST FOLLOW-UP				
N=5	AGE (YR)	SEX M/F	LAC (ug/g)	GDH	ABII	SPORE COUNTS	PCR RIBOTYPE	LAC (ug/g)	GDH	ABII	SPORE COUNTS	PCR RIBOTYPE	
2	80	F	73	4.180	3.130	3.20E+03	ARL 027	17	5.000	0.478	4.00E+03	ARL 027	
8	35	F	403	4.225	4.097	1.30E+05	ARL 027	0	0.633	0.943	5.80E+03	ARL 027	
10	79	F	10	0.038	0	3.00E+04	ARL 014	*	2	0	0	1.00E+02	ARL 027
15	82	F	85	4.434	3.696	5.00+03	ARL 126	57	0	0	0	1.00E+02	ARL 126
16	49	F	164	5	1.512	1.90E+05	ARL 056	0.4	4.151	0	0	4.20E+04	ARL 379
MEDIAN	79		85	4.225	3.130	3.00E+04	40% 027	2	0.633	0	0	4.00E+03	60% 027

FIG. 4B

T=0									FIRST FOLLOW-UP				
N=4	AGE (YR)	SEX M/F	LAC (ug/g)	GDH	ABII	SPORE COUNTS	PCR RIBOTYPE	LAC (ug/g)	GDH	ABII	SPORE COUNTS	PCR RIBOTYPE	
1	59	F	11	4.192	0.884	6.20E+04	ARL 054	433	3.89	1.442	1.00E+05	ARL 103	
18	75	M	423	5.000	4.293	1.50E+05	ARL 126	196	3.977	0.798	4.40E+04	ARL 126	
9	75	F	301	4.225	4.076	1.50E+05	ARL 005	**	135	4.153	3.691	2.80E+04	ARL 027
20	86	F	1541	4.503	2.299	1.00E+04	ARL 126	2155	4.157	3.909	2.80E+04	ARL 126	
MEDIAN	75		362	4.364	3.188	1.06E+05	NO 027	315	4.065	2..567	3.60E+04	25% 027	

FIG. 4C

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 12/35495

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(8) - C12P 21/04; G01N 33/00 (2012.01)
 USPC - 435/71.3, 7.92

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 USPC: 435/71.3, 7.92

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 USPC: 435/71.3, 7.92; 424/158.1, 173.1, 239.1 (text search)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 Electronic data bases: PubWEST (USPT, EPAB, JPAB, PGPB); Google Scholar
 Search term: fecal lactoferrin, Clostridium difficile (C. difficile of C. DIFF), disease stratification, inflammatory diarrhea, immunoassay, quantitative immunassay (EIA), treatment regimen, therapeutic, antibiotic, vancomycin, metronidazole, native flora transplantation

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	OPPENHEIM. Scientific Symposium on New Approaches to Clostridium difficile Testing [online] 23 October 2010 [retrieved 6 July 2012]. Available on the internet: <URL: http://www.alere.co.uk/pdf/150411101655-Alere_BarcelonA_FINAL1.pdf>. Especially pg 2 col 2 para 2-4, pg 2 table 2, pg 3 col 1 para 1-3 and col 2 para 1.	34-39
-----		-----
Y	New York-Presbyterian. Guidelines for the Management of Clostridium difficile-Associated Disease (CDAD) in Adult Patients [online] 28 August 2008 [retrieved on 6 July 2012]. Available on the internet: <URL: http://www.id.hscolumbia.edu/documents/Guidelines-Clostridiumdifficile-8-28-08.pdf>. Especially pg 1 para 2, pg 2 table.	1-33, 40
Y	SHASTRI et al. Prospective multicenter study evaluating fecal calprotectin in adult acute bacterial diarrhea. Am J Med December 2008 Vol 121 No 12 Pages 1099-1106. Especially abstract.	1-33
Y	YOON et al. Treatment of Refractory/Recurrent C. difficile-associated Disease by Donated Stool Transplanted Via Colonoscopy. J Clin Gastroenterol September 2010 Vol 44 No 8 Pages 562-566. Especially abstract.	40
Y	US 2009/0253155 A1 (BOONE et al.) 8 October 2009 (08.10.2009). Especially para [0007], claim 8.	5,10,15,27,33
		21-33

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be of particular relevance

“E” earlier application or patent but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

6 July 2012 (06.07.2012)

Date of mailing of the international search report

27 JUL 2012

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
 P.O. Box 1450, Alexandria, Virginia 22313-1450
 Facsimile No. 571-273-3201

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300
 PCT OSP: 571-272-7774