(51) International Patent Classification: A61F
(21) International Application Number: PCT/US02/04971
(22) International Filing Date: 20 February 2002 (20.02.2002)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data: 60/269,900 20 February 2001 (20.02.2001) US
(71) Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION [US/US]; Suite 1-110, 1224 West Main Street, Charlottesville, VA 22903 (US).

Title: OCULAR TEAR GROWTH FACTOR-LIKE PROTEIN

Abstract: The present invention relates to a novel lacrimal gland protein (designated lacritin) and the nucleic acid sequences encoding that protein. Lacritin has activity as a growth factor on both human corneal epithelial cells and on the lacrimal acinar cells that produce it. Accordingly, one embodiment of the present invention is directed to the use of lacritin to treat Dry Eye and other disorders requiring the wetting of the eye.
Published:
without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
Ocular Tear Growth Factor-Like Protein

US Government Rights
This invention was made with United States Government support under Grant No. R01 EY09747 and R01 EY13143, awarded by National Institutes of Health. The United States Government has certain rights in the invention.

Related Application
This application claims priority under 35 USC §199(e) to US Provisional Application Serial No. 60/269,900, filed February 20, 2001, the disclosure of which is incorporated herein.

Field of the Invention
The present invention is directed to a novel ocular protein, designated lacritin, and nucleic acid sequences encoding that protein. In one embodiment of the invention compositions comprising lacritin are used to enhance corneal wound healing, and/or treat patients having deficient tear output.

Background of the Invention
Health of the ocular surface is dependent on tear fluid secretions from the lacrimal gland. The lacrimal acinar cells comprising the lacrimal gland are polarized and highly differentiated tear secreting cells that adhere to a complex perilacinar basement membrane. The bulk of the apical cell cytoplasm contains large secretory granules packed with tear proteins. Known tear proteins include: lysozyme, which plays a prominent bacteriocidal role on the corneal surface; lactoferrin, which functions as both a bacteriocidal agent and as a potential inhibitor of complement activation; secretory component, which regulates the transcellular movement of IgA into acini lumen where it acts on the corneal surface to inhibit bacterial adhesion; and tear lipocalins (tear-specific prealbumin) and growth factors TGFα, TGFβ and EGF the functions of which are not known. In rats, peroxidase is a tear component which has served as a convenient marker in experimental studies. Tears not only have an
important bacteriocidal role, they also keep the cornea clean and lubricated and are important for the well-being of the corneal epithelium.

When lacrimal acinar cell tear output is collectively deficient, 'Dry Eye' (also known as keratoconjunctivitis sicca [KCS]); is the result. Dry Eye is a common ocular manifestation of Sjogren's syndrome, an autoimmune disease with unknown etiology that affects millions of people worldwide. Most commonly affected are postmenopausal women with varying degrees of severity. If untreated, Dry Eye can lead to corneal abrasion, ulceration, bacterial infection and loss of vision. Molecular mechanisms underlying the pathogenic decline of secretory output by the main lacrimal gland are potentially multiple. Lacrimal glands of Sjogren's syndrome patients contain foci of B and T lymphocytes whose pathogenic expansion, possibly due to viral insult, can destroy lacrimal acini. However, acinar volume loss often appears insufficient relative to the theoretical overcapacity of the main lacrimal gland. Estimates suggest a potential secretory output up to ten-fold greater than is required to maintain a normal aqueous tear film layer. Other mechanisms therefore warrant attention, such as aberrant secretion of one or several common cytokines that may directly or indirectly alter lacrimal acinar cell function and/or lead to a decline in neural innervation. Novel autocrine/paracrine factor(s) released by lacrimal acinar cells into the tear film may be required for the health of the lacrimal secretory machinery, ductal system and corneal epithelium. The periacinar basement membrane is also required for normal secretory function, in part via 'BM180' whose apparent synergy with laminin-1 promotes stimulated tear secretion. Alteration of each of these factors, together or independent of hormonal changes, could contribute to decreased secretory capacity.

Existing protocols for treating Dry Eye suffer from several limitations. In particular, topical artificial tear replacement fluids are widely distributed by a number of pharmaceutical companies, but the efficacy is poor and short-lived. This lack of efficacy is due in part to the fact that constituents of natural human tears are only partially known.

The present invention is directed to a novel human extracellular glycoprotein termed 'lacritin' that is remarkably reduced in Sjogren's syndrome. Furthermore lacritin has been found to act in an autocrine manner to enhance
unstimulated (but not stimulated) tear secretion. Lacritin is produced by lacrimal acinar cells and released for the most part into tear fluid - much like acinar cell-expressed TGFβ's. This glycoprotein acts like a growth factor when added in purified recombinant form to cultures of human corneal epithelial cells, and in a feedback mechanism, it also appears to act on the same lacrimal gland cells that produce it. Accordingly in one embodiment of the present invention, lacritin is included as an active agent in artificial tear products.

Summary of the Invention

The present invention is directed to the isolation and characterization of a novel lacrimal gland protein and the nucleic acid sequences encoding that protein. Purified recombinant lacritin has activity as a growth factor on both human corneal epithelial cells and on the lacrimal acinar cells that produce it. Accordingly, in one embodiment of the present invention a method is provided for treating Dry Eye and other disorders requiring the wetting of the eye by administering compositions comprising a lacritin polypeptide. In addition, since the gene promoter regulating lacritin gene expression is the most specific of any previously described lacrimal gland gene, the regulatory elements of this gene could be used to express other gene products in the eye.

Brief Description of the Drawings

Fig. 1 is a graphic representation that shows recombinant lacritin enhances unstimulated secretion by isolated rat lacrimal acinar cells. Enhancement of unstimulated secretion was observed in the presence of increasing amounts of lacritin on lacritin-coated wells.

Fig. 2A and 2B represent lacritin-induced proliferation and tyrosine phosphorylation. Fig. 2A is a graphic representation of the number of human salivary gland (HSG) cells was determined four days after administering various amounts of lacritin (0 to 10 ng/ml of lacritin) to HSG cells in serum-free medium. Fig. 2B is a bar graph representing the proliferation of HSG cells upon administration of BSA (lane 1; 10 ng/ml) or serum (lane 2; 10%) was added for the same period of time. All experiments were performed on laminin-1- (0.05 μM) coated wells.
Detailed Description of the Invention

Definitions

In describing and claiming the invention, the following terminology will be used in accordance with the definitions set forth below.

As used herein, "nucleic acid," "DNA," and similar terms also include nucleic acid analogs, i.e. analogs having other than a phosphodiester backbone. For example, the so-called "peptide nucleic acids," which are known in the art and have peptide bonds instead of phosphodiester bonds in the backbone, are considered within the scope of the present invention.

The term "peptide" encompasses a sequence of 3 or more amino acids wherein the amino acids are naturally occurring or synthetic (non-naturally occurring) amino acids. Peptide mimetics include peptides having one or more of the following modifications:

1. peptides wherein one or more of the peptidyl --C(O)NR-- linkages (bonds) have been replaced by a non-peptidyl linkage such as a --CH2-carbamate linkage (--CH2OC(O)NR--), a phosphonate linkage, a --CH2-sulfonamide (--CH 2--S(O)2NR--) linkage, a urea (--NHC(O)NH--) linkage, a --CH2-secondary amine linkage, or with an alkylated peptidyl linkage (--C(O)NR--) wherein R is C1-C4 alkyl;

2. peptides wherein the N-terminus is derivatized to a --NRR1 group, to a --NRC(O)R group, to a --NRC(O)OR group, to a --NRS(O)2R group, to a --NHC(O)NHR group where R and R1 are hydrogen or C1-C4 alkyl with the proviso that R and R1 are not both hydrogen;

3. peptides wherein the C terminus is derivatized to --C(O)R2 where R 2 is selected from the group consisting of C1-C4 alkoxy, and --NR3R4 where R3 and R4 are independently selected from the group consisting of hydrogen and C1-C4 alkyl.

Naturally occurring amino acid residues in peptides are abbreviated as recommended by the IUPAC-IUB Biochemical Nomenclature Commission as follows: Phenylalanine is Phe or F; Leucine is Leu or L; Isoleucine is Ile or I; Methionine is Met or M; Norleucine is Nle; Valine is Val or V; Serine is Ser or S; Proline is Pro or P; Threonine is Thr or T; Alanine is Ala or A; Tyrosine is Tyr or Y;
Histidine is His or H; Glutamine is Gln or Q; Asparagine is Asn or N; Lysine is Lys or K; Aspartic Acid is Asp or D; Glutamic Acid is Glu or E; Cysteine is Cys or C; Tryptophan is Trp or W; Arginine is Arg or R; Glycine is Gly or G, and X is any amino acid. Other naturally occurring amino acids include, by way of example, 4-hydroxyproline, 5-hydroxylysine, and the like.

Synthetic or non-naturally occurring amino acids refer to amino acids which do not naturally occur in vivo but which, nevertheless, can be incorporated into the peptide structures described herein. The resulting "synthetic peptide" contain amino acids other than the 20 naturally occurring, genetically encoded amino acids at one, two, or more positions of the peptides. For instance, naphthylalanine can be substituted for tryptophan to facilitate synthesis. Other synthetic amino acids that can be substituted into peptides include L-hydroxypropyl, L-3,4-dihydroxyphenylalanl, alpha-amino acids such as L-alpha-hydroxysyl and D-alpha-methylalanl, L-alpha-methylalanl, beta- amino acids, and isoquinolyl. D amino acids and non-naturally occurring synthetic amino acids can also be incorporated into the peptides. Other derivatives include replacement of the naturally occurring side chains of the 20 genetically encoded amino acids (or any L or D amino acid) with other side chains.

As used herein, the term "conservative amino acid substitution" are defined herein as exchanges within one of the following five groups:

I. Small aliphatic, nonpolar or slightly polar residues:
 Ala, Ser, Thr, Pro, Gly;

II. Polar, negatively charged residues and their amides:
 Asp, Asn, Glu, Gln;

III. Polar, positively charged residues:
 His, Arg, Lys;

IV. Large, aliphatic, nonpolar residues:
 Met Leu, Ile, Val, Cys

V. Large, aromatic residues:
 Phe, Tyr, Trp
A "polylinker" is a nucleic acid sequence that comprises a series of three or more different restriction endonuclease recognitions sequences closely spaced to one another (i.e. less than 10 nucleotides between each site).

As used herein, the term "vector" is used in reference to nucleic acid molecules that has the capability of replicating autonomously in a host cell, and optionally may be capable of transferring DNA segment(s) from one cell to another. Vectors can be used to introduce foreign DNA into host cells where it can be replicated (i.e., reproduced) in large quantities. Examples of vectors include plasmids, cosmids, lambda phage vectors, viral vectors (such as retroviral vectors).

As used herein a "gene" refers to the nucleic acid coding sequence as well as the regulatory elements necessary for the DNA sequence to be transcribed into messenger RNA (mRNA) and then translated into a sequence of amino acids characteristic of a specific polypeptide.

A "marker" is an atom or molecule that permits the specific detection of a molecule comprising that marker in the presence of similar molecules without such a marker. Markers include, for example radioactive isotopes, antigenic determinants, nucleic acids available for hybridization, chromophors, fluorophors, chemiluminescent molecules, electrochemically detectable molecules, molecules that provide for altered fluorescence-polarization or altered light-scattering and molecules that allow for enhanced survival of an cell or organism (i.e. a selectable marker). A reporter gene is a gene that encodes for a marker.

A promoter is a DNA sequence that directs the transcription of a DNA sequence, such as the nucleic acid coding sequence of a gene. Typically, a promoter is located in the 5' region of a gene, proximal to the transcriptional start site of a structural gene. Promoters can be inducible (the rate of transcription changes in response to a specific agent), tissue specific (expressed only in some tissues), temporal specific (expressed only at certain times) or constitutive (expressed in all tissues and at a constant rate of transcription).

A core promoter contains essential nucleotide sequences for promoter function, including the TATA box and start of transcription. By this definition, a core promoter may or may not have detectable activity in the absence of specific sequences that enhance the activity or confer tissue specific activity.
An "enhancer" is a DNA regulatory element that can increase the efficiency of transcription, regardless of the distance or orientation of the enhancer relative to the start site of transcription.

As used herein, the terms "complementary" or "complementarity" are used in reference to polynucleotides (i.e., a sequence of nucleotides) related by the base-pairing rules. For example, for the sequence "A-G-T," it is complementary to the sequence "T-C-A."

As used herein, the term "hybridization" is used in reference to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementarity between the nucleic acids, stringency of the conditions involved, the length of the formed hybrid, and the G:C ratio within the nucleic acids.

As used herein, the term "purified" and like terms relate to the isolation of a molecule or compound in a form that is substantially free of contaminants normally associated with the molecule or compound in a native or natural environment.

As used herein, the term "lacritin polypeptide" and like terms refers to peptides comprising the amino acid sequence of SEQ ID NO: 4 and biologically active fragments thereof.

As used herein, the term "biologically active fragments" or "bioactive fragment" of an lacritin polypeptide encompasses natural or synthetic portions of the amino acid sequence MKFTTLLFLAAVAGALVYAEDASSDSTGADPAQEAGTSKPNEEIGSGPAPASPPETTTAQTGTSAAAVQGAKVTSSRQELPALLSIVEKSLTQLAKAGKGMHGGVPQGQFIEGSEFAQKLKKFSLKWP (SEQ ID NO: 4) that are capable of specific binding to at least one of the natural ligands of the native lacritin polypeptide.

"Operably linked" refers to a juxtaposition wherein the components are configured so as to perform their usual function. Thus, control sequences or promoters operably linked to a coding sequence are capable of effecting the expression of the coding sequence.

As used herein, the term "pharmaceutically acceptable carrier" encompasses any of the standard pharmaceutical carriers, such as a phosphate
buffered saline solution, water and emulsions such as an oil/water or water/oil emulsion, and various types of wetting agents.

As used herein, the term "treating" includes alleviating the symptoms associated with a specific disorder or condition and/or preventing or eliminating said symptoms.

The Invention

The present invention is directed to a novel human growth factor-like molecule, 'lacritin' and compositions comprising lacritin. The invention also encompasses the nucleic acid sequences encoding lacritin as well as the nucleic acid regulatory elements controlling the expression of lacritin. The full length 'lacritin' cDNA has been cloned from a human lacrimal gland library (SEQ ID NO:2), and the corresponding genomic gene (SEQ ID NO: 1) has been cloned and sequenced, including 5.2 kb of upstream and 2.8 kb of downstream genomic sequence.

In one embodiment, the present invention is directed to a purified polypeptide comprising the amino acid sequence of SEQ ID NO: 4, SEQ ID NO: 10, a bioactive fragment of SEQ ID NO: 4, or an amino acid sequence that differs from SEQ ID NO: 4 by one or more conservative amino acid substitutions. More preferably, the purified polypeptide comprises an amino acid sequence that differs from SEQ ID NO: 4 by 20 or less conservative amino acid substitutions, and more preferably by 10 or less conservative amino acid substitutions. Alternatively, the polypeptide may comprise an amino acid sequence that differs from SEQ ID NO: 4 by 1 to 5 alterations, wherein the alterations are independently selected from a single amino acid deletion, insertion or substitution. In one preferred embodiment a composition is provided comprising a polypeptide, selected from the group consisting of SEQ ID NO: 4, or SEQ ID NO: 10, and a pharmaceutically acceptable carrier.

Also encompassed in the present invention are ligands that bind to the lacritin polypeptide, including the natural receptor for lacritin, as well as methods for isolating such ligands. In one embodiment the lacritin polypeptide, or bioactive fragments thereof, is used to isolate ligands that bind to the lacritin polypeptide under physiological conditions. The method comprises the steps of contacting the lacritin polypeptide with a mixture of compounds under physiological conditions, removing
unbound and non-specifically bound material, and isolating the compounds that remain bound to the lacritin polypeptides. Typically, the lacritin polypeptide will be bound to a solid support using standard techniques to allow for rapid screening of compounds. The solid support can be selected from any surface that has been used to immobilize biological compounds and includes but is not limited to polystyrene, agarose, silica or nitrocellulose. In one embodiment the solid surface comprises functionalized silica or agarose beads. Screening for such compounds can be accomplished using libraries of pharmaceutical agents and standard techniques known to the skilled practitioner.

In an alternative embodiment a cell based assay is used to detect ligands that bind to lacritin (including lacritin's natural receptor). The method comprises contacting transfected cells with lacritin and isolating the relevant genes from those cells that display lacritin-dependent calcium signaling. More particularly, in one embodiment, previously described pools of orphan G protein coupled receptor cDNA's will be expressed in cell lines such as HEK293T and RH7777 cells, and the transfected cells will be contacted with lacritin. A transfectant that displays lacritin-dependent calcium signaling should be expressing the receptor. If the receptor is not detected in the available pool of orphan G protein coupled receptor cDNA's, cDNA's from a salivary ductal cell library will be transfected into 293T cells, and expressors screened by FACS with fluorescently labeled lacritin. In accordance with one embodiment cells expressing receptors that can be activated by lacritin will be detected using a cell free system. More particularly, receptor activity will be detected via a GTP$[yS]$ binding assay using isolated cell membranes from the transfected cells.

In one aspect of the invention a method for detecting the lacritin receptor is provided. The method comprises the steps of providing a cell that has been transfected with nucleic acid sequences that encode for potential cell receptors, contacting the transfected cells with lacritin and detecting those cells that display lacritin-dependent calcium signaling. If the cells displaying lacritin-dependent calcium signaling were transfected with more than one protein encoding gene sequence, than the nucleic acid sequences encoding for the lacritin receptor will be identified by sequence analysis or other molecular technique. For example, the
introduced recombinant nucleic acids will be isolated from the signaling cells and further subcloned with the resulting subclones used to transfect cells to determine the unique sequence responsible for conferring lacritin-dependent calcium signaling to a cell.

The present invention also encompasses nucleic acid sequences that encode the lacritin polypeptide and derivatives thereof. In particular, the present invention is directed to nucleic acid sequences comprising the sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, or fragments thereof. In one embodiment, purified nucleic acids comprising at least 8 contiguous nucleotides (i.e., a hybridizable portion) that are identical to any 8 contiguous nucleotides of SEQ ID NO: 1 are provided. In other embodiments, the nucleic acids comprises at least 25 (contiguous) nucleotides, 50 nucleotides, 100 nucleotides, 200 nucleotides, or 500 nucleotides of SEQ ID NO: 1. In another embodiment the nucleic acid sequence comprises the sequence of SEQ ID NO: 3 or a 25 bp nucleic acid sequence that is identical to a contiguous 25 bp sequence of SEQ ID NO: 3.

The present invention also includes nucleic acids that hybridize (under conditions defined herein) to all or a portion of the nucleotide sequence represented by SEQ ID NO: 1 or its complement. The hybridizing portion of the hybridizing nucleic acids is typically at least 15 (e.g., 20, 25, 30, or 50) nucleotides in length. Hybridizing nucleic acids of the type described herein can be used, for example, as a cloning probe, a primer (e.g., a PCR primer), or a diagnostic probe. It is anticipated that the DNA sequence of SEQ ID NO: 1, or fragments thereof can be used as probes to detect homologous genes from other vertebrate species.

Nucleic acid duplex or hybrid stability is expressed as the melting temperature or Tm, which is the temperature at which a nucleic acid duplex dissociates into its component single stranded DNAs. This melting temperature is used to define the required stringency conditions. Typically a 1% mismatch results in a 1°C decrease in the Tm, and the temperature of the final wash in the hybridization reaction is reduced accordingly (for example, if two sequences having > 95% identity, the final wash temperature is decreased from the Tm by 5°C). In practice, the change in Tm can be between 0.5°C and 1.5°C per 1% mismatch.
The present invention is directed to the nucleic acid sequence of SEQ ID NO: 1 and nucleic acid sequences that hybridize to that sequence (or fragments thereof) under stringent or highly stringent conditions. In one embodiment the invention is directed to a purified nucleic acid sequence that hybridizes to a 100 nucleotide fragment of SEQ ID NO: 1 or its complement under stringent conditions. In accordance with the present invention highly stringent conditions are defined as conducting the hybridization and wash conditions at no lower than -5°C Tm. Stringent conditions are defined as involve hybridizing at 68°C in 5x SSC/5x Denhardt's solution/1.0% SDS, and washing in 0.2x SSC/0.1% SDS at 68°C.

Moderately stringent conditions include hybridizing at 68°C in 5x SSC/5x Denhardt's solution/1.0% SDS and washing in 3x SSC/0.1% SDS at 42°C. Additional guidance regarding such conditions is readily available in the art, for example, by Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, N.Y.; and Ausubel et al. (eds.), 1995, Current Protocols in Molecular Biology, (John Wiley & Sons, N.Y.) at Unit 2.10.

In another embodiment of the present invention, nucleic acid sequences encoding the lacitin polypeptide can be inserted into expression vectors and used to transfec cells to express recombinant lacitin in the target cells. In accordance with one embodiment, the nucleic acid sequence of SEQ ID NO: 3 are inserted into a eukaryotic expression vector in a manner that operably links the gene sequences to the appropriate regulatory sequences, and lacitin expressed in a eukaryotic host cell. Suitable eukaryotic host cells and vectors are known to those skilled in the art. In particular, nucleic acid sequences encoding lacitin may be added to a cell or cells in vitro or in vivo using delivery mechanisms such as liposomes, viral based vectors, or microinjection. Accordingly, one aspect of the present invention is directed to transgenic cell lines that contain recombinant genes that express the lacitin polypeptide of SEQ ID NO: 4.

The present invention is also directed to nucleic acid constructs for expressing heterologous genes under the control of the lacitin gene promoter. In accordance with one embodiment a nucleic acid construct is provided comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8 operably linked to a heterologous gene. In
accordance with one embodiment the heterologous gene is a reporter gene that encodes for a marker. The marker can be any gene product that produces a detectable signal and includes proteins capable of emitting light such as Green Fluorescent Protein (GFP) (Chalfie et al., 1994, Science 11: 263:802-805) or luciferase (Gould et al., 1988, Anal. Biochem. 15: 175: 5-13), as well as proteins that can catalyze a substrate (e.g., such as β-galactosidase). The marker may also comprise intracellular or cell surface proteins that are detectable by antibodies. Reporter molecules additionally, or alternatively, can be detected by virtue of a unique nucleic acid sequence not normally contained within the cell.

As used herein, "GFP" refers to a member of a family of naturally occurring fluorescent proteins, whose fluorescence is primarily in the green region of the spectrum. The term includes mutant forms of the protein with altered or enhanced spectral properties. Some of these mutant forms are described in Cormack, et al., 1996, Gene 173: 33-38 and Ormo, 1996, Science 273:1392-1395, the entireties of which are incorporated herein by reference. The term also includes polypeptide analogs, fragments or derivatives of GFP polypeptides which differ from naturally occurring forms by the identity or location of one or more amino acid residues, (e.g., by deletion, substitution or insertion) and which share some or all of the properties of the naturally occurring forms so long as they generate detectable signals (e.g., fluorescence). Wild type GFP absorbs maximally at 395 nm and emits at 509 nm. High levels of GFP expression have been obtained in cells ranging from yeast to human cells. The term also includes Blue Fluorescent Protein (BFP), the coding sequence for which is described in Anderson, et al., 1996, Proc. Natl. Acad. Sci. USA 93:16, 8508-8511, incorporated herein by reference.

Another embodiment of the present invention comprises antibodies that are generated against the lacritin polypeptide. These antibodies can be formulated with standard carriers and optionally labeled to prepare therapeutic or diagnostic compositions. Antibodies to lacritin are generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric (i.e "humanized" antibodies), single chain (recombinant), Fab fragments, and fragments produced by a Fab expression library. These antibodies can be used as diagnostic agents for the diagnosis of conditions or diseases characterized
by expression or overexpression of lacritin, or in assays to monitor patients being treated for a conditions or diseases characterized by inappropriate lacritin expression. The antibodies useful for diagnostic purposes may be prepared in the same manner as those described above for therapeutics. The antibodies may be used with or without modification, and may be labeled by joining them, either covalently or non-covalently, with a marker. In accordance with one embodiment an antibody is provided that specifically binds to the protein of SEQ ID NO: 4, and more preferably the antibody is a monoclonal antibody.

The invention also encompasses antibodies, including anti-idiotypic antibodies, antagonists and agonists, as well as compounds or nucleotide constructs that inhibit expression of the lacritin gene (transcription factor inhibitors, antisense and ribozyme molecules, or gene or regulatory sequence replacement constructs), or promote expression of lacritin (e.g., expression constructs wherein the lacritin coding sequences, such as SEQ ID NO: 3 are operatively associated with expression control elements such as promoters, promoter/enhancers, etc.).

The present invention also encompasses antigenic compositions for raising antibodies against lacritin. In one embodiment an antigenic composition is provided comprising the polypeptide of SEQ ID NO: 4 or an antigenic fragment thereof.

Lacritin has mitogenic activity, enhances unstimulated but not stimulated secretion, and promotes signaling in both lacrimal acinar and corneal epithelial cells. Recombinant lacritin prepared in E. coli specifically and rapidly activates both human corneal epithelial cells and mouse & rat lacrimal acinar cells – the latter in an autocrine manner to enhance tear synthesis. Lacritin is active at ng/ml levels, and contaminating bacterial LPS (endotoxin) is not detectable. The activities of purified recombinant lacritin indicate that it acts as a growth factor on both human corneal epithelial cells and on the lacrimal acinar cells that produce it. Importantly, lacritin likely acts as a growth factor only in the eye, and to a lesser extent in the salivary gland. These organ-specific beneficial effects can be used to dramatically increase the efficacy of currently available topically artificial tear products.

Current tear supplements are not popular with patients, in part because the relief obtained from such products is very brief (less than 15 min). Examples of
the tear substitution approach include the use of buffered, isotonic saline solutions, aqueous solutions containing water soluble polymers that render the solutions more viscous and thus less easily shed by the eye. Tear reconstitution is also attempted by providing one or more components of the tear film such as phospholipids and oils. Examples of these treatment approaches are disclosed in U.S. Pat. No. 4,131,651 (Shah et al.), U.S. Pat. No. 4,370,325 (Packman), U.S. Pat. No. 4,409,205 (Shively), U.S. Pat. Nos. 4,744,980 and 4,883,658 (Holly), U.S. Pat. No. 4,914,088 (Gloniek), U.S. Pat. No. 5,075,104 (Gressel et al.) and U.S. Pat. No. 5,294,607 (Gloniek et al.) the disclosures of which are incorporated herein. Existing ophthalmic formulations may also include TGF-beta, corticosteroids or androgens. All are non-specific for the eye and have systemic effects. In contrast, lacritin is highly restricted to the eye and is a natural constituent of human tears and the tear film.

An ophthalmic formulation comprising lacritin (for example, an artificial tear fluids containing lacritin) is highly desirable due to the activity of lacritin and its localized effects. In accordance with one embodiment of the invention, compositions comprising lacritin are used to enhance corneal wound healing, and/or treat patients having deficient tear output. More particularly, lacritin is used in accordance with one embodiment to treat Dry Eye syndromes, including Sjogren’s syndrome and to enhance corneal wound healing by topical application of compositions comprising the lacritin polypeptide. In accordance with one embodiment the composition comprises a pharmaceutically acceptable carrier and a pharmaceutically effective amount of substantially pure polypeptide comprising the amino acid sequence of SEQ ID NO: 4 is used to treat Dry Eye syndromes.

The lacritin compositions of the present invention can be formulated using standard ophthalmic components, and preferably the compositions are formulated as solutions, suspensions and other dosage forms for topical administration. Aqueous solutions are generally preferred, based on ease of formulation, biological compatibility (especially in view of the malady to be treated, e.g., dry eye-type diseases and disorders), as well as a patient’s ability to easily administer such compositions by means of instilling one to two drops of the solutions in the affected eyes. However, the compositions may also be suspensions, viscous or semi-viscous gels, or other types of solid or semi-solid compositions.
The compositions of the present invention may include surfactants, preservative agents, antioxidants, tonicity agents, buffers, preservatives, co-solvents and viscosity building agents. Various surfactants useful in topical ophthalmic formulations may be employed in the present compositions. These surfactants may aid in preventing chemical degradation of lacritin and also prevent the lacritin from binding to the containers in which the compositions are packaged. Examples of surfactants include, but are not limited to: Cremophor.EL, polyoxyl 20 ceto stearyl ether, polyoxyl 40 hydrogenated castor oil, polyoxyl 23 lauryl ether and poloxamer 407 may be used in the compositions. Antioxidants may be added to compositions of the present invention to protect the lacritin polypeptide from oxidation during storage. Examples of such antioxidants include, but are not limited to, vitamin E and analogs thereof, ascorbic acid and derivatives, and butylated hydroxyanisole (BHA).

Existing artificial tears formulations can also be used as pharmaceutically acceptable carriers for the lacritin active agent. Thus in one embodiment, lacritin is used to improve existing artificial tear products for Dry Eye syndromes, as well as develop products to aid corneal wound healing. Examples of artificial tears compositions useful as carriers include, but are not limited to, commercial products, such as Tears Naturale.EL, Tears Naturale II.EL, Tears Naturale Free.EL, and Bion Tears.EL. (Alcon Laboratories, Inc., Fort Worth, Tex.). Examples of other phospholipid carrier formulations include those disclosed in U.S. Pat. No. 4,804,539 (Guo et al.), U.S. Pat. No. 4,883,658 (Holly), U.S. Pat. No. 4,914,088 (Glonke), U.S. Pat. No. 5,075,104 (Gressel et al.), U.S. Pat. No. 5,278,151 (Korb et al.), U.S. Pat. No. 5,294,607 (Glonke et al.), U.S. Pat. No. 5,371,108 (Korb et al.), U.S. Pat. No. 5,578,586 (Glonke et al.); the foregoing patents are incorporated herein by reference to the extent they disclose phospholipid compositions useful as phospholipid carriers of the present invention.

Other compounds may also be added to the ophthalmic compositions of the present invention to increase the viscosity of the carrier. Examples of viscosity enhancing agents include, but are not limited to: polysaccharides, such as hyaluronic acid and its salts, chondroitin sulfate and its salts, dextrans, various polymers of the cellulose family; vinyl polymers; and acrylic acid polymers. In general, the
phospholipid carrier or artificial tears carrier compositions will exhibit a viscosity of 1 to 400 centipoises ("cps"). Preferred compositions containing artificial tears or phospholipid carriers and will exhibit a viscosity of about 25 cps.

Topical ophthalmic products are typically packaged in multidose form. Preservatives are thus required to prevent microbial contamination during use. Suitable preservatives include: benzalkonium chloride, chlorobutanol, benzododecinium bromide, methyl paraben, propyl paraben, phenylethyl alcohol, edetate disodium, sorbic acid, polyquaternium-1, or other agents known to those skilled in the art. Such preservatives are typically employed at a level of from 0.001 to 1.0% w/v. Unit dose compositions of the present invention will be sterile, but typically unpreserved. Such compositions, therefore, generally will not contain preservatives.

In humans, lacritin is produced by the lacrimal gland (large amounts), salivary gland (moderate), the basal cells of the corneal epithelium (based on immunostaining of human cornea by anti-lacritin antibodies; and ELISA detection of lacritin in human corneal epithelial cell cultures) and possibly in the thyroid, but not elsewhere. Lacritin enhances unstimulated but not stimulated secretion, has mitogenic activity and promotes signaling in both lacrimal acinar and corneal epithelial cells. This glycoprotein has a highly restricted glandular distribution, and this highly restricted expression pattern in combination with its functional attributes are evidence for its putative autocrine/paracrine differentiative role in the lacrimal gland and neighboring ocular system. Since the gene promoter regulating lacritin gene expression is the most specific of any previously described lacrimal gland gene, the regulatory elements of this gene could be used to express other gene products in the eye. In particular, the lacritin gene promoter can be operably linked to a wide variety of exogenous genes to regulate the expression of the gene products to the lacrimal gland and/or used as gene therapy to treat Dry Eye syndromes.

Alternatively, recombinant constructs comprising the lacritin promoter can be used to transform host cells in vitro as a means of screening for agonist and antagonist of lacritin function. In accordance with one embodiment the lacritin gene promoter is linked to a heterologous gene and reintroduced into a patient to provide gene therapeutic treatment of Dry Eye syndromes. Simply stated, the promoter could
be used to artificially drive the synthesis and secretion of tear proteins in patients for which the normal gene control of these proteins may have been lost.

Physiological experiments using recombinant lacritin generated by \textit{E. coli} suggests that it is likely a growth factor. Lacritin stimulates calcium signaling in human corneal epithelial cells and in mouse lacrimal acinar cells. It stimulates tyrosine phosphorylation in rat lacrimal acinar and human salivary ductal cells, and it enhances the quantity of tear proteins released from the same acinar cells that produce it.

The full length 'lacritin' cDNA has been cloned from a human lacrimal gland library (SEQ ID NO:2), and the corresponding genomic gene (SEQ ID NO:1) has been cloned and sequenced, including 5.2 kb of upstream and 2.8 kb of downstream genomic sequence. A mouse homologous gene has also been partially RT-PCR cloned, and this isolated mouse lacritin gene sequence has 99% identity to the human sequence. Expression of lacritin is remarkably restricted. Fifty-two different tissue polyA+ or total RNA's were screened and lacritin mRNA was detected only in lacrimal (very abundant), salivary (weak to moderate) and thyroid (weak) glands. A review of the literature suggests that this level of transcriptional control is unmatched by any other known lacrimal protein.

\textbf{Example 1}

\textbf{Isolation of the Lacritin Gene}

cDNA and Genomic Cloning of Lacritin

Duplicate filters containing plaques (5 x 104 per filter) from each of ten sublibraries of a human lacrimal gland cDNA library (Dickinson & Thiesse, 1995) were prehybridized at 42°C for 4 hr in 5 x Denhardt's, 6.76 x SSC, 10 mM sodium phosphate, 1 mM EDTA, 0.5% SDS and 182 μg/ml salmon sperm DNA, and then hybridized overnight at 42°C with one of two overlapping 23-mer oligonucleotides ('S1' [AGCTGGGGCAGGGCCACACGCAC; SEQ ID NO: 11] and 'S2' [GGGGTTCTGGGGCTGCTGCTGG; SEQ ID NO: 12]) that had been end-labeled with [32P]gATP 7000 Ci/m mole (ICN, Irvine CA) and purified. Final wash conditions were 2 x SSC (45°C), corresponding to 29.5°C less than the S1 or S2 Tm (74.5°C in 2 x SSC for both). Plaques positive in both filters were picked and
rescreened three times in duplicate with each oligonucleotide, giving rise to forty-seven clones. Each was subsequently reanalyzed at increasing wash stringency (-29.5, -24.5, -19.5, and -14.5°C Tm). Inserts were excised into pBluescript and both strands sequenced via a Prizm 377 DNA Sequencer (Perkin-Elmer, Branchburg, NJ; University of Virginia Biomolecular Research Facility). Of identical clones, most common was a novel sequence lacking homology to BM180 (BestFit quality = 16, vs random quality of 17±2) from which the poly G-rich S1 and S2 oligonucleotides were derived. Predicted was a 417 bp open reading frame, whose expected protein product was designated 'lacritin', in keeping with its lacrimal gland expression. Lacritin insert was subsequently used to screen a human P1 genomic library (carried out by Genome Systems Inc; St. Louis MO) and three identical clones were obtained, as determined by restriction digestion and Southern analysis. The largest lacritin-positive fragment (12.4 kb) was subcloned intact into pBluescript and both strands were completely sequenced. Alignment and analyses (Kumar et al, 2000) of cDNA and genomic sequence was primarily with Unix-based (Gelstart, Gap) and web-based (FASTA, BestFit, Gap) Genetics Computer Group (Madison WI) software using default settings and E values (FASTA) restricted to 5 or less. Genomic exon searching and identification of splice sites was facilitated by the Baylor College of Medicine Human Genome Sequencing Center web site. All nucleotide sequences have been submitted to the GenBank/EBI Data Bank with accession numbers af238867 (cDNA) and ay005150 (genomic).

Northern Analysis

Human lacrimal and submandibular glands were obtained during autopsy through the Southern division of the Cooperative Human Tissue Network within 18 hours of death and most within 8 hours to minimize autolytic degradation. The tenets of the Declaration of Helsinki were followed and informed consent and full IRB approval were obtained. Donors were without known systemic bacterial or viral infections, and tissues were normal as determined from cause of death, pathology reports and in most cases histological examination. Tissues were snap frozen in liquid nitrogen after removal and stored at -85°C until used for RNA preparation. Total RNA was extracted from 100 - 300 mg of tissue using a commercial version of
the acidified guanidine thiocyanate/phenol method (RNazol B, Tel-Test, The Woodlands, TX). Purified RNA was dissolved in diethylpyrocarbonate-treated water, and the concentration and purity determined from the A260/280 absorption values. A ratio close to 2.0 was considered acceptable. RNA integrity was initially determined by electrophoresis of ethidium bromide-complexed RNA samples in a gel containing 0.22M formaldehyde. Samples that did not show prominent 28S and 18S rRNA bands in a 1:1 - 2:1 ratio under UV light were rejected. For blotting, RNA (5 µg/lane) was separated on a 0.8% agarose gel under denaturing conditions (Laurie et al, 1989) and transferred to nitrocellulose. Also assayed were two purchased (cat # 7756-1 and 7751-1; Clontech Labs, Palo Alto CA) Northern blots with multiple human fetal and adult poly A+ RNA’s and a dot blot (cat # 7770-1; Clontech Labs) containing fifty different human poly A+ RNA’s together with control RNA’s and DNA’s. Blots were hybridized with [32P]-labeled lacritin insert, washed in 0.1 x SSC, 0.1% SDS (Northern) or 2 x SSC, 0.1% SDS (dot blot) at 55°C, and exposed to X-ray film. Dot blots were then quantitated using NIH Image by measurement of pixel gray values of individual dots.

PCR Analysis and Chromosome Mapping

Alternative splicing was examined by RT-PCR using human submandibular or lacrimal total RNA and initial priming with oligo dT, or in a gene specific manner with lacritin reverse primer CGCTACAAGGGTATTTAAGGC (SEQ ID NO: 13) corresponding to nucleotides 523 to 503 from lacritin cDNA). Subsequent amplification with lacritin forward primer ACTCACTCCTCATCCCCCCAG (SEQ ID NO: 14; from exon 1; lacritin cDNA nucleotides 32 to 51) and reverse primer TTTCAGCTTCTCATGCCC (SEQ ID NO: 15; from exon 5; lacritin cDNA nucleotides 480 to 462) involved denaturation for 2 min at 94°C, thirty cycles of amplification (94°C for 30 sec, 52°C for 30 sec & 72°C for 1 min), and a final cycle for 5 min at 72°C. PCR product was analyzed in agarose gels.

For FISH mapping (Genome Systems; St. Louis, MO), lacritin genomic DNA was labeled with digoxigenin dUTP by nick translation and hybridized (50% formamide, 10% dextran, 2 x SSC) to metaphase chromosomes from PHA-stimulated
human peripheral blood lymphocytes. Following washes, specific labeling was detected with fluoresceinated antidigoxigenin antibodies and DAPI, and examined in a Nikon Labophot microscope. A total of eighty metaphase cells were analyzed with sixty exhibiting specific labeling. Confirmation was achieved by double labeling using a 12q15 marker, and by comparison with human genome project draft sequence. Photographs were taken on a Nikon AFX at a final magnification of 1,435 x.

Results:

Lacrimal acinar cells are polarized exocrine secretory cells containing some mRNA's that are remarkably under-represented in gene data banks and may code for a rich array of differentiation factors - a presumption underlying the paired oligonucleotide screening of a little used human lacrimal gland cDNA library. Among the clones identified by this approach was a novel cDNA sequence (SEQ ID NO: 2) represented by several independent clones and corresponding to a 760 bp transcript and the corresponding amino acid sequence (SEQ ID NO: 4). The secreted gene product of this lacrimal gland-specific transcript was designated 'lacritin'. The lacritin nucleic acid sequence contains a 417 bp open reading frame that predicts a 14.3 kDa hydrophilic protein core with a 19 amino acid signal peptide giving rise to a mature secreted core protein of 12.3 kDa with an isoelectic point of 5. Noteworthy is a moderately high level of glycosylation with six putative O-glycosylation sites between residues 52 and 64, and a single N-glycosylation site near the C-terminus, indicating that lacritin is a moderately well-glycosylated core protein much like the neuroglycan C glycosaminoglycan binding domain and fibulin-2 amino globular domain to which lacritin bears partial homology. Northern Blot analysis indicates a high level of lacrimal gland specificity.

In FASTA searches of the primate database, partial homology is detected with the glycosaminoglycan binding region of human neuroglycan C (32% identity over 102 amino acids; BestFit quality = 83 versus 37 ± 5 when lacritin sequence was randomized) and with the 'cysteine-free', possibly mucin-like, amino globular region of human fibulin-2 (30% identity over 81 amino acids; BestFit quality = 81 versus 38 ± 5 for random). Although all three are rich in O-glycosylation, positioning of serine and threonine is not strictly shared; and both lacritin and fibulin-
2 lack glycosaminoglycan binding sites. Neuroglycan C (af059274) is a component of brain extracellular matrix (anchored by transmembrane domain; Yasuda et al, 1998). Fibulin-2 (x89494) is widely dispersed in basement membranes and stroma of embryonic and adult tissues (Sasaki et al, 1999). Searches of non-primate databases pointed to modest homologies with T. Cruzi mucin-like protein (af036464; BestFit quality = 78 versus 46 ± 10); P. falciparum merozoite surface antigen 2 (u91656; BestFit quality = 76 versus 53 ± 6) and P. Taeda putative arabinogalactan protein (af101791; BestFit quality = 74 versus 37 ± 4).

No matching or homologous EST's were detected, in keeping with lacritin's abundance in human lacrimal gland and restricted expression elsewhere. Northern analysis revealed a strong 760 bp lacrimal gland message, and weaker submandibular and thyroid gland messages of the same size. No message was detected in human adult adrenal gland, testis, thymus, pancreas, small intestine or stomach; nor in human fetal brain lung, liver or kidney. Similarly, in a commercial dot blot of fifty different human tissue poly A+ RNA's that excluded lacrimal gland, lacritin expression was found only in submandibular gland ('salivary gland'), and to a lesser degree in thyroid. The lacritin coding sequence was subcloned into pET-28b and pCDNA3.1/myc-His(+)C to generate recombinant bacterial and mammalian (293-T cell) lacritin, respectively. Both forms of lacritin displayed anomalous migration in SDS PAGE.

Example 2

Characterization of Lacritin Expression and Function

Preparation of Recombinant Lacritin and Anti-lacritin Antiserum

Full length lacritin cDNA was subcloned in frame into pET-28b (Novagen, Madison WI), with orientation confirmed by completely sequencing through the insert. Recombinant His-tagged lacritin was then generated by IPTG-induction of BL-21 transformed cells, and purified from media on Talon (Clontech; Palo Alto CA) resin using standard denaturing procedures. Required use of denaturing conditions for the binding step is presumed to reflect His tag inaccessibility due to folding in the absence of glycosylation. After elution, lacritin was extensively dialyzed versus PBS, and the His tag was removed by thrombin
cleavage. Protein quality was assessed by SDS PAGE and Western blotting with anti-His antibody (Santa Cruz Biotechnology; Santa Cruz CA). Lacritin displays anomalous mobility in SDS PAGE. Lack of contaminating bacterial lipopolysaccharide was confirmed by the limulus amebocyte lysate assay (MRL Reference Lab; Cypress CA). For analytical comparison, small amounts of mammalian lacritin were expressed in 293T cells using pcDNA3.1/myc-His(+) (Invitrogen, Carlsbad CA) containing lacritin insert, and then purified under native conditions.

Anti-bacterial lacritin antiserum was subsequently prepared in rabbits (Covance Research Products, Denver PA), and assessed by ELISA (1/1000 dilution) using recombinant bacterial lacritin (4 μg/ml) as coat and preimmune serum (1/1000) as control. For immunohistochemistry, sections of zinc formalin-fixed, paraffin-embedded human tissues and a human tissue microarray were deparaffinized and rehydrated, and microwave heated (20 min in 10 mM citrate buffer, pH 6.0) to expose antigen. Endogenous peroxidase was blocked, and then immunodetection was performed using the avidin-biotin-peroxidase complex method (Vectastain Elite kit, Vector Laboratories, Burlingame, CA) after incubation with anti-lacritin antiserum or preimmune serum (1/1000) for one hour at room temperature. Sections were counterstained with hematoxylin, placed in cupric sulfate, and then immersed in lithium carbonate.

Cell Function Analysis

Freshly isolated rat lacrimal acinar cells, and HSG (human salivary gland) ductal and HCE (human corneal epithelial) cell lines were used to study lacritin function. For secretion studies, rat acinar cells were plated serum-free overnight on wells co-coated with 0.05 μM laminin 1 (to ensure adhesion) and 0 to 20 μM lacritin, or alternatively with laminin-1 (0.05 μM) and treated the next day with serum-free medium containing 0 to 162 ng/ml of soluble lacritin for four hours. Unstimulated and stimulated (carbachol 10-4 M/VIP 10-8 M) secretions were then collected, assessed (peroxidase assay) and normalized to μg cellular DNA. To study tyrosine phosphorylation, overnight serum-free cultures of both rat lacrimal acinar and HSG cells were washed and treated with 10 ng/ml of soluble lacritin for 0.5, 2.5, 10 and 30
-23-

min. Py(20) anti-phosphotyrosine antibody immunoprecipitation of cell lysates was then examined in Western blots of 7% SDS PAGE gels using Py(20) and ECL for detection. Calcium signaling in human corneal epithelial cells was similarly carried out in serum-free culture (Trinkaus-Randall et al, 2000; Klepeis & Trinkaus-Randall, in preparation). HCE cells were grown to confluency on glass coverslips in keratinocyte media (Life Technologies, Rockville MD) containing bovine pituitary extract (30 μg/ml), EGF (0.1 ng/ml) and penicillin/streptomycin, and rendered quiescent 18 hrs before loading with Fluo-3AM (2 μM; Molecular Probes, Eugene OR) at 37°C for 30 min. Using an inverted Zeiss 510 LSM for visualization, 50 sec baseline images were first recorded. While the laser was running, lacritin was added (final concentration 4 and 40 ng/ml) and the response continually monitored every 786 msec for a minimum of 200 sec.

ECM Binding Studies

Binding studies were carried out in 96 well plates coated with 10 μg/well of collagen IV, laminin-1, entactin/nidogen-1, collagen I, fibronectin, vitronectin, EGF, heparin or BMS (Matter & Laurie, 1994). Wells were washed, blocked (PBS-T), incubated with 0 - 30 nM lacritin (in PBS-T containing 1% BSA) for 1 hr (4°C), washed and detected with anti-lacritin antibody (1/1000) by ELISA.

Results:

Antibodies prepared against bacterial lacritin were applied to sections of human lacrimal and salivary glands and to tissue microarrays containing formalin-fixed, paraffin embedded sections of 75 different human tissues and organs (see Table I). Immunoreactivity was clearly observed in secretory granules of acinar cells in lacrimal and major and minor salivary glands, but was not apparent in other epithelia or stroma. Presence in thyroid was equivocal (Table I). Frequency of acinar cell staining was high in lacrimal gland, whereas only scattered salivary acinar cells were reactive. Immunoreactivity was also apparent in secretions within lumens of lacrimal and salivary ducts. By ELISA, lacritin was detected in human tears and to a lesser extent in saliva.
Table I

| Restricted Immunolocalization of Lacritin in Human Organs^a |
|--------------------------|-----------------|-----------------|-----------------|
| adrenal medulla | esophagus | parathyroid | small intestine |
| adrenal cortex | gallbladder | parotid gland | spinal cord |
| appendix | ganglia | periph. nerve | spleen |
| bladder | heart | pituitary gland | stomach |
| bone/marrow | kidney | placenta | submax gland |
| brain | lacrimal gland | prostate | testis |
| breast | liver | testes | thymus |
| bronchus | lung | minor salivary | thyroid gland |
| cerebellum | lymphatics | sem vesicle | uterus/vagina |
| colon | ovary | skel muscle | |
| epididymis | pancreas | skin | |

^a relative intensity; not all tissues shown

Lacritin function was assessed in serum-free cultures of lacrimal acinar, salivary ductal and corneal epithelial cells using secretion (acinar), proliferation (ductal), tyrosine phosphorylation (acinar, ductal) and calcium signaling (corneal epithelial) assays. Freshly isolated rat lacrimal acinar cells were plated on increasing amounts of lacritin (with a constant small amount of laminin 1 to ensure adherence), or on laminin-1-coated wells in which lacritin was added to the medium. Both coated and soluble lacritin enhanced unstimulated secretion in a dose-dependent manner (see Fig. 1), but no effect was observed on the stimulated secretory pathways activated by the agonists carbachol and VIP. These results suggest an autocrine or paracrine role, possibly via receptors on the luminal acinar cell surface. As lacritin flows from acini, it contacts ductal epithelial cells and finally the corneal epithelium.

Quiescent human submandibular ductal ("HSG") cells were cultured in serum-free media containing increasing amounts of lacritin and cell proliferation was studied. The lacritin cultures looked healthier; after four days, a dose-dependent increase in ductal cell number was apparent (see Fig. 2a) that reached a level more than twofold that of the BSA (10 ng/ml) negative control (see Fig. 2b). The same
level of lacritin promoted the transient tyrosine phosphorylation of a 48 kDa band in both HSG and rat lacrimal cells.

Next, calcium signals in human corneal epithelial cells were examined. Whereas the basal level of signaling was negligible, the addition of lacritin resulted in rapid and sustained calcium waves that propagated throughout the cells. Wave onset preceded that of the usual response to epidermal growth factor (20 - 40 sec), and the amplitude of the response depended on the concentration of lacritin. To ensure that bacterial lipopolysaccharide (a possible contaminant of recombinant protein preps) was not involved, samples were tested in the limulus amebocyte lysate assay; and no lipopolysaccharide was detected (< 0.05 EU/ml). Finally, the ability of lacritin to bind the tear film components fibronectin or vitronectin was examined; as well as constituents of the periacinar basement membrane that might harbor small amounts of lacritin not detectable by the immunohistochemical procedure. Lacritin displayed a remarkable avidity for fibronectin and vitronectin, and there was a strong basement membrane binding attributable to collagen IV, nidogen/entactin and laminin-1 - similar to that observed for fibulin-2 (Sasaki et al, 1995). No binding was observed to collagen I, EGF or heparin.

The rather broad lacritin lacrimal gland message was suggestive of alternatively spliced forms, or RNA degradation. The same was not true for submandibular gland in which a discrete, but much less intense signal was apparent. To address this issue and to gain information on how the lacritin gene is arranged, a 12.4 kb genomic fragment was sequenced, the largest lacritin-positive fragment readily obtainable from the lacritin genomic clones. The gene consists of five exons preceded by a predicted promoter sequence 109 to 59 bp upstream of the translation start site (promoter score = 1.0; NNPP/Eukaryotic). Exon 1 encodes the complete signal peptide and includes 38 bp of 5’ untranslated sequence. Exon 3 contains sequence for all putative 0-glycosylation sites. The predicted N-glycosylation site is formed at the exon 4/exon 5 splice junction. Exon 5 includes 53 bp of 3’ untranslated sequence. Three potential polyadenylation sites are detected 367, 474 and 534 bp downstream of exon 5, the first of which would be in keeping with a 760 bp transcript. Sequences at exon-intron boundaries all conform to predicted splice donors or acceptors, with the exception of the exon 4 splice acceptor. Intronic
sequences revealed common intronic repeat elements. Also independently discovered on a separate genomic fragment was a lacritin pseudogene lacking 38 bp of 5’ exon 1 sequence.

To examine possible alternative splicing, RT-PCR was used with submandibular or lacrimal gland cDNA as template and forward and reverse primers from exons 1 and 5, respectively, each including untranslated flanking sequence. A single PCR product was detected in both organs whose size (449 bp) was in keeping with transcription from all five exons without alternative splicing. FISH revealed that the lacritin gene is located on chromosome 12, a result confirmed by double labeling with a probe for 12q15. Measurement of ten specifically labeled chromosomes located the lacritin gene approximately 16% of the distance from the centromere to the telomere of 12q, an area that corresponds to 12q13. Also found on 12q13 is a rare genetic alacrimia known as Triple A Syndrome. Attempted PCR using lacritin genomic primers and BAC templates spanning the triple A syndrome region failed to produce PCR product. The lacritin gene is partially included in draft sequences AC068789.4, AC025686.2 and AC025570.6 pointing to a 12q13 location approximately 65.1 to 65.9 Mbp from the centromere.

Discovery of lacritin developed from the hypothesis that multiple extracellular factors trigger glandular differentiation, particularly growth factors and components of the surrounding extracellular matrix. Indeed, partial or failed acinar formation has been reported in mice lacking the TGFβ superfamily members or receptors, ErbB4, the progesterone receptor, the extracellular matrix glycoprotein osteopontin, EGF receptor (with TGFα and amphiregulin), fibroblast growth factor receptor 2 (IIb), or the growth factor FGF-10. Linking such factors to the secretory function of acinar cells in culture has proven more complex. Nonetheless, it is clear that the periacinar mesenchymal and hormonal environment affect glandular development and function, and that both autocrine and paracrine regulation play important roles. Most delicate are primary cultures of freshly isolated exocrine cells, particularly lacrimal acinar cells that functionally dedifferentiate in the absence of lacrimal-1 and lower molecular mass factors derived from the extracellular matrix and elsewhere.
Introduction of recombinant lacritin to cultures of lacrimal acinar, salivary ductal and corneal epithelial cells provided interesting functional insights. Lacrimal acinar cells displayed enhanced unstimulated (but not stimulated) secretion and rapid tyrosine phosphorylation of a 48 kDa protein. Ductal cells phosphorylated the same 48 kDa band and were proliferative. A rapid and sustained calcium transient was noted in corneal epithelial cells. Thus all cell types contributing to or benefiting from lacritin outflow appear to be lacritin-inducible, whereas controls were negative and there was no evidence of contaminating bacterial lipopolysaccharide (known to be proliferative in immune cell cultures). How lacritin acts remains to be elucidated.

Possibly a common receptor(s) is mediatory, ligation of which may be jointly linked to tyrosine phosphorylation and calcium release as in neural retina where tyrosine kinases have been associated with capacitative calcium entry and inositol-3-phosphate induced release of intracellular calcium stores. Alternatively, lacritin signaling in the three cell types may differ. Lacrimal acinar, ductal and corneal epithelial cells perform strikingly different functions. Although some intracellular signaling machinery may be common, others are unique, and some common machinery may be put to different use. Calcium signaling in lacrimal acinar cells is most frequently a downstream effect of muscarinic receptor ligation that mediates the release of tear proteins by the stimulated secretory pathway, a pathway apparently unaffected by lacritin. Yet, subtleties in calcium amplitude, frequency and localization, dependent on the nature and dose of the agonist, can have dramatically different effects. Contrasting lacritin is BM180, a periacinar basement membrane constituent that appears to act only on the stimulated secretory pathway. Balancing the amounts of available lacritin and BM180 may offer a simple mechanism by which secretory capacity in adult and developing glands may be controlled.

Immunolocalization of lacritin in secretory granules, in secretory content of ducts and in tears was extended by binding studies revealing a remarkable affinity for tear constituents fibronectin and vitronectin. Though not immunodetected elsewhere, lacritin also bound the common periacinar basement membrane components nidogen/entactin, collagen IV, and laminin-1; but not collagen I, EGF or heparin. Similar binding properties have been reported for fibulin-2 (Sasaki et al, 1995). Although the significance and precise nature of these interactions remains to
be determined, basement membrane binding is perhaps analogous to growth factors
whose extracellular matrix accumulation, although functionally potent, is often too
low for reliable immunodetection. Alternatively, basement membrane binding (if any)
could possibly occur secondary to tissue damage.

5

Example 3

Characterization of the Lacritin Promoter

The working hypothesis is that lacritin gene activity is attributable to
an atypically restrictive and powerful promoter working hand in hand with unique
enhancer (and possibly repressor) elements in a milieu of appropriate transcription
factors and co-regulators. Such tissue-specific transcriptional control equals or
exceeds that of the aA-crystallin (lens), rhodopsin (retina), aldehyde dehydrogenase
class 3 and keratocan genes (cornea), and offers a unique opportunity to initiate a new
body of literature on nuclear management of gene expression in the human lacrimal
gland.

Mapping of Lacritin Gene Regulatory Elements

Elucidating how lacritin gene expression is targeted to the lacrimal
gland will be determined as described below to better understanding lacrimal gene
regulation. First of all the identify the lacritin transcription initiation site(s) will be
confirmed experimentally. Based on computational promoter analysis, transcription is
anticipated to be initiated at a single site located 69 bp upstream (‘-69 bp’; ‘Neural
Network’) of the ATG translation start site. The ‘TATA-box’ and/or ‘Initiator’
(‘Inr’) elements of the core promoter play an important role in establishing the start
site of transcription in many genes, particularly those highly expressed. As an
example, Inr elements at +1, +220 (also TATA-box at +190 bp) and +316 bp
(intronic) designate transcription start sites in the human keratocan gene as
experimentally confirmed by primer extension (see Tasheva ES, Conrad AH, Conrad
GW. Identification and characterization of conserved cis-regulatory elements in the
human keratocan gene promoter. Biochim Biophys Acta. 2000 Jul 24;1492(2-3):452-
9); and a TATA-box figures prominently in transcription initiation of aA crystallin,
rhodopsin, and aldehyde dehydrogenase gene promoters. If the Neural Network-
predicted -94 to -46 bp region does indeed comprise the lacritin core promoter with transcription start site at -69 bp (score = 1.0), then putative TATA-box and Inr elements at -52 and -67 bp, respectively should play a key role in transcription initiation. Alternatively, transcription could begin at -62 bp, as suggested by ‘CorePromoter’. Primer extension and RNA ligase-mediated 5'-RACE will resolve this question.

For primer extension, advantage will be taken of a 20-mer reverse primer (‘LacP83’) designed by ‘Prime’ (GCG, Madison WI) which is complementary to nucleotides 64 to 83 bp of lacritin mRNA. As per routine procedure, LacP83 will be end-labeled by phosphorylation with T4 polynucleotide kinase in the presence of [γ³²P]ATP, annealed with total lacrimal RNA (100 fmol primer per 10 μg RNA) for 20 min at 58°C, cooled, and then incubated for 30 min at 41°C with AMV reverse transcriptase (Promega, Madison WI) in the presence of deoxynucleotides. Size of newly formed cDNA(s), as analyzed by denaturing SDS PAGE analysis/radiography, provides sufficient information to calculate the approximate transcription start site location(s) - with identification of the 5' terminus(i) determined by semiautomatic ABI sequencing of cDNA from a scaled up non-radioactive extension reaction and RNA ligase-mediated 5'-RACE. Primer extension controls will include replacement of lacrimal RNA with total yeast RNA (or no RNA), and use of an RNA prepared by

in vitro transcription with accompanying primer (Promega, Madison WI) for which primer extension conditions have been previously established.

For confirmation, RNA ligase-mediated 5'-RACE (‘GeneRacer’; Invitrogen) will be utilized. This is a powerful PCR-based modification of primer extension. For this purpose, 1 - 5 μg of total human lacrimal RNA will be treated with calf intestinal phosphatase (1 U per 10 μl reaction mix) to remove 5' phosphates from degraded RNA and non-mRNA contaminants. Incubation with tobacco acid pyrophosphatase (0.5 - 1 U per 10 μl reaction mix) eliminates the 5'-CAP structure present only on authentic 5'-ends, and makes possible ligation of a kit-specific RNA oligonucleotide (‘GeneRacer RNA Oligo’) with T4 RNA ligase (5 U per 10 μl reaction mix). Subsequent LacP83-primed reverse transcription will generate a single strand cDNA. The cDNA will then be PCR amplified using LacP83 and a primer complementary to the 5' RNA oligo as primer pair, and sequenced to identify the start
site(s). In negative PCR controls, amplifications will be attempted in the absence of LacP83 or GeneRacer RNA Oligo or without template, and if banding or smearing is observed further PCR optimization will be carried out (ie. use of less template or fewer PCR cycles or do nested PCR to increase amplicon amount, or use touchdown PCR).

It is anticipated that a single primer extended cDNA band of 152 (or 145) bp will be observed in keeping with a transcription start site at -69 bp (or -62 bp) and inclusion of 83 bp from the 5' end of the primer to the translation start site [69 + 83 bp (or 62 + 83 bp)]. This expectation is in agreement with the single transcript apparent by Northern analysis of human salivary gland. The broader human lacrimal band has been interpreted as attributable to mRNA abundance combined with possibly some slight degradation. Although no alternative splicing has been observed, the possibility of a second transcript cannot be completely ruled out.

A luciferase reporter constructs will also be generated and transfection-based regional mapping of lacritin gene regulatory elements will be initiated. It is hypothesized that Bayesian alignment of human and mouse lacritin genes will provide an excellent foundation for interpretation of reporter construct activity, and that evolutionary conservation similarly will make feasible utilization of a rabbit lacrimal acinar cell line as transfection host - the only immortalized cell line from lacrimal gland of any species. This exploratory approach will lay the conceptual groundwork for more detailed studies both in vitro and in vivo.

Lacritin's tissue specificity is presumably founded in the nature and assortment of transcription factor binding modules that comprise its gene promoter and putative enhancer region(s). Lens-preferred expression of the aA-crystallin gene, for example, is governed by a transcription complex of CREB/CREM, aA-CRYBP1, Pax 6, TBP, USF, AP-1 (context of AP-1 important for tissue specificity) and L-maf that nucleates on the 150 bp aA-crystallin promoter. Transfected plasmid constructs that artificially position luciferase or chloramphenicol acetyltransferase expression under the control of intact or progressively 5' shortened (or mutated) promoter regions, has been used previously to identify cis-acting regulatory region of a promoter. The versatile and sensitive 'Dual-Luciferase Reporter Assay System' (Promega) for example sequentially assays both the transfected gene promoter under
investigation (as manifested by the level of expressed firefly luciferase) and a co-transfected internal positive HSV-TK control promoter designed to independently drive expression of a synthetic sea pansy luciferase with distinct substrate properties at a constant baseline level (see below). Subsequent investigation in transgenic mice using b-galactosidase as reporter brings chromosomal context into play. Recent availability of a rabbit lacrimal cell line (Nguyen DH, Beuerman RW, Halbert CL, Ma Q, Sun G. Characterization of immortalized rabbit lacrimal gland epithelial cells. In Vitro Cell Dev Biol Anim. 1999 Apr;35(4):198-204.) and genomic cloning of lacritin now open up this line of investigation to the lacrimal gland field.

If transcription is indeed initiated at -69 or -62 bp, upstream genomic constructs spanning -2435 to -10 bp (‘Lacrgen2.4’), -1619 to -10 bp (‘Lacrgen1.6’) or -856 to -10 bp (‘Lacrgen0.9’) could include all or most elements necessary for tissue specific and elevated expression. Preparation of each will take advantage of parent amplicon ‘LacrgenInit’ (-2960 to -10 bp) to be generated by PCR from the 12.4 kb lacritin genomic fragment using reverse primer ‘LacP-10/Xho I’ (-10 to -31 bp) with an Xho I site incorporated, and forward primer ‘LacP-2960’ (-2960 to -2942 bp). Primer pairs are designed by ‘Prime’ (GCG, Madison WI). Subsequent digestion of LacrgenInit with XhoI, Bgl II/Xho I or Hind III/Xho I yields fragments Lacrgen2.4, Lacrgen1.6 or Lacrgen0.9, respectively with ends suitable for ready ligation (after gel purification) into the multiple cloning region of pGL3-Basic just upstream of the promoterless and enhancerless luciferase gene (luc+).

A new rabbit lacrimal acinar cell line (Nguyen et al, ‘99), that has been cultured for twelve months without difficulty will be used for the transfection studies. The cells display a strong epithelial morphology and synthesize secretory component, transferrin and transferrin receptor. Importantly, they also express lacritin and are readily transfectable. To carry out transfections, ~80% confluent serum-containing cultures in 96 well plates will be transiently transfected with Lacrgen2.4, Lacrgen1.6 or Lacrgen0.9 in pGL3-Basic plus internal control phRL-TK plasmid (total of 0.24 μg plasmid/well; 50:1 ratio of pGL3-Basic to phRL-TK) using ~0.8 μl/well LipofectAMINE 2000 reagent (Invitrogen Life Technologies). 48 hours later, cultures will be gently washed three times in PBS, lysed for 15 min in 1X ‘Passive Lysis Buffer’ (20 μl/well; Promega), and assayed for firefly luciferase upon addition of
'Luciferase Assay Reagent II' (100 µl/well) in an L-Max 96 well plate luminometer (Molecular Devices, Menlo CA; online with computer). Readings are zeroed to similarly treated wells containing lysate of cells not transfected. Subsequently, 'Stop & Glo Reagent' (100 µl/well) is added for assay of sea pansy (Renilla) luciferase.

Inclusion of identically transfected human 293 cells will serve as a negative control, whereas Araki-Sasaki human corneal epithelial cells (HCE-T) and HSG human salivary cells (both secrete lacritin) are suitable positive controls. Optimal lacrimal LipofectAMINE transfection, and 'Bright-Glo' luciferase assay conditions (Promega), will take advantage of the pGL3-Control vector whereby transfected cells benefit from luc+ expression under SV40 promoter and enhancer control. It is expected that transfection efficiency will be 75 - 90%, and that one of Lacrgen2.4, Lacrgen1.6 or Lacrgen0.9 - likely Lacrgen1.6 or Lacrgen0.9 - will best define the minimal sequence required for lacritin promoter activity.

This course of investigation offers a logical starting point for the generation and testing of Lacrgen2.4, Lacrgen1.6 or Lacrgen0.9-derived constructs progressively shortened 5' by nested deletion, an approach applied to the genomic sequencing of the lacritin gene and flanking regions. Making this possible are single Kpn I and Sac I sites just upstream of each insert in the pGL3-Basic multiple cloning region, and lack of any internal Kpn I or Sac I sites in Lacrgen2.4, Lacrgen1.6 or Lacrgen0.9 - the latter as determined by Map (GCG). Thus when digested with Kpn I and Sac I, a linear plasmid will be generated in which the Kpn I end is exonuclease III resistant (3' protruding) and the Sac I end (3' recessed) is sensitive. Proximity of Lacrgen2.4, Lacrgen1.6 or Lacrgen0.9 to the Sac I site makes them sensitive to exonuclease shortening. To carry this out, 2 µg of plasmid construct is Kpn I and Sac I digested. After enzyme inactivation (10 min at 70°C) and cooling on ice, linear plasmid in exonuclease III buffer is treated with exonuclease III in a final volume of 40 µl at 25°C or 15°C such as to achieve successive 50 - 100 bp deletions at 3 min intervals. 2 µl aliquots of each 3 min time point are removed to tubes on ice containing S1 nuclease. After all timed aliquots have been taken, plasmid digests are removed from ice, incubated at room temperature for 30 min for S1 nuclease digestion of overhangs, heat inactivated, recircularized by blunt end ligation in the presence of T4 DNA ligase, examined in agarose gels and transformed into competent cells with
ampicillin selection. Plasmid preps of each are then applied to the transfection (with internal control plasmid) of lacrimal acinar cells, and assessment of luciferase expression.
Claims

1. A purified polypeptide comprising the amino acid sequence of SEQ ID NO: 4, or an antigenic fragment of SEQ ID NO: 4.

2. A composition comprising amino acid sequence of SEQ ID NO: 4 and a pharmaceutically acceptable carrier.

3. The composition of claim 2, wherein the composition is a topical ophthalmic formulation.

4. The composition of claim 3, further comprising a pharmaceutically acceptable phospholipid or oil.

5. A purified nucleic acid sequence that hybridizes to a 100 nucleotide fragment of SEQ ID NO: 1 or its complement under stringent conditions.

6. A purified nucleic acid sequence comprising a 25 bp nucleic acid sequence that is identical to a contiguous 25 bp sequence of SEQ ID NO: 2 or SEQ ID NO: 5.

7. The nucleic acid sequence of claim 6 comprising a sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO: 6.

8. A nucleic acid construct comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8 operably linked to a heterologous gene.

9. The nucleic acid construct of claim 8 wherein said heterologous gene encodes a marker.

10. The nucleic acid construct of claim 9, wherein the marker produces a fluorescent signal.
11. The nucleic acid construct of claim 9 wherein said construct is a plasmid.

12. A transgenic host cell comprising the nucleotide sequence of claim 8, 9 or 11.

13. A nucleic acid construct comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8 operably linked to a polylinker.

14. The nucleic acid construct of claim 13 wherein said construct is a plasmid.

15. A purified polypeptide comprising the amino acid sequence of SEQ ID NO: 4, or an amino acid sequence that differs from SEQ ID NO: 4 by one or more conservative amino acid substitutions; or an amino acid sequence that differs from SEQ ID NO: 4 by a single mutation, wherein the single mutation represents a single amino acid deletion, insertion or substitution.

16. An antibody that binds specifically to the protein of SEQ ID NO: 4.

17. A method for identifying a test compound capable of modulating lacritin activity, said method comprising:
 (a) contacting a solution containing lacritin with said test compound; and
 (b) measuring lacritin activity in the presence and absence of said test compound, such that if the level obtained in the presence of the test compound differs from that obtained in its absence, then a compound which modulates lacritin gene expression is identified.

18. The method of claim 17 wherein the lacritin activity measured is lacritin's ability to promote ductal cell proliferation.
19. The method of claim 17 wherein the lacritin activity measured is lacritin's ability to promote tyrosine phosphorylation or calcium signaling.

20. A method of treating Dry Eye, said method comprising the step of contacting the ocular surface with a composition comprising a polypeptide, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 4, or an amino acid sequence that differs from SEQ ID NO: 4 by one or more conservative amino acid substitutions; or an amino acid sequence that differs from SEQ ID NO: 4 by a single mutation, wherein the single mutation represents a single amino acid deletion, insertion or substitution.

21. A method of enhancing the proliferation of human corneal epithelial cells or lacrimal acinar cells, said method comprising the step of contacting said cells with a composition comprising a polypeptide, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 4, or an amino acid sequence that differs from SEQ ID NO: 4 by one or more conservative amino acid substitutions; or an amino acid sequence that differs from SEQ ID NO: 4 by a single mutation, wherein the single mutation represents a single amino acid deletion, insertion or substitution.

22. A method for detecting a lacritin receptor, said method comprising providing a cell that has been transfected with nucleic acid sequences that encode for potential cell receptors; contacting said transfected cells with lacritin; detecting cells that display lacritin-dependent calcium signaling; isolating nucleic acid sequences from the detected cells; and identifying a nucleic acid sequence that confers lacritin-dependent calcium signaling on cells transfected with that nucleic acid sequence.
Fig. 1

Secretion (mU/μg DNA)

μM Lacritin coat

0 10 20
Fig. 2A
SEQUENCE LISTING

110 The University of Virginia Patent Foundation
5
Laurie, Gordon
Kumar, Rajesh
Sanghi, Sandhya
Lumsden, Angela

120 Ocular Tear Growth Factor-Like Protein

130 00662-02

150 US 60/269,900
151 2001-02-20
160 15

170 PatentIn version 3.0

210 1
211 12354
212 DNA
213 Homo sapiens

221 exon
222 (5194)―(5251)

30
221 exon
222 (6802)―(6855)

221 exon
222 (7654)―(7794)

221 exon
222 (8196)―(8297)

40
221 exon
222 (9082)―(9143)

221 sig_peptide
222 (5194)―(5250)
acatttttaa aattttttca ctcattgcct tgtcttttaca cctcccccgat ggcccaaggtg

gaagatcgga ggcatcacag gagtgtggca gagctttgct ggcaccaaggg gctttgccaga

gaagacaagc catgtcgagc acagcagcca gggtagaatg gcctcgggag atcaacgtgt

gcctgtgtct ccaatgcagg agcagtctac cctaaatagt ccagttcaat tcctccttct

ggagtctctg cttccccacc agcccccca gaaggtgctta acacagcaggg aggggaagta

gaaaaagacat ttcatccacag ttcatccagg aagtggtgta tcagttgaga ggttccagta

gaaaaacacgt ggacacactoa ggagggctta tatataatatata taataactttt aagttctagt

gtacatg tgtgc acaattgtgca gttttgttacct atatgtatc atgtgccggtg tgtgttgtct

gcacccatta actcactcatt tacccttaggt atttctctta atgtatctcc tcccccatacc

cccacacccca caacagggcct cgggttgtga tgttccccccc cctgtgtcaca agtttgtcaca

tgttccattt ccacccatag atgtgagaca tgtgggtgttg gtttttctttt ccttgctgata

gtttgcctag aagtgtggtt ccacgttta tcctatgtcct ctaaagaggct atgaacctca

ccttgtttat gcgtgcatac ttcatcatttt tgtatatgtg cccacatattt tttaaccagt

catatctgga tggaacatttg ggtttggttcc aagttctcttc tatgtgatgt aatggtccacaa

taaacataca tgtgcatgea tccttttatagt agcatgattt ataatactttt gggtattatac

cagttggttgg tttaatgcta ttctctattgc tagatacttg tagatctcttt tagaactggc

cacactgcttt ccacactggt tgtgctagtt tacaactctca ccgatgttggt aaagacttca

catatcttcc cactctcttc cagcaacctgt tgtttctctga ctcttctattt attgccacctc

taatctctgt gagatgtatat ttcataccttt ttttgatgtg catttcctctg atggccagttg

tagatgagca tttttttctag tgtctctgctg ctgatatctat cttctcttttt caagatgctc
tgttctatac cttttgcccc cttttttgttag gttttttgtg cttttttttgt taataatttga
taatttttt ttgattcttg gatattagcc ctttgatctga tgggttagatt gcacacacat
ttctccatctc tgtagctgc ctcctcaactc tcgatggtagt tcctttgtgc tgcagaagc 1380
tcttttagtgt tattagaccc cattgtgcta ttttgctttt gcttgccatt gttttggttg 1440
5
ttttagctat gaagtaacttg cccatggtca tcgctctgaat ggtatttggcc aggttttctt 1500
tactt ttatgtttta ggtctaacatt taagttcctt aatctatcct ggattatattt 1560
ttgatataag tcgtaaggaag ggtccaggtt tcaggttttct acatagtggtc agccagttttt 1620
10
tcccacacocttaaataaag aaggctctct ttcctctcatt cttgttttttc tcagtttttg 1680
taaagtctg ctagttggat gatgggtgtg tttatcttga cgccctctgtt ctttctcatt 1740
15
tgtctatatc tggttttggca ccagtcacatt gcgtttttgg ttactgttaag cttgttagtat 1800
agtttggaagt caggttaatgt gtagcctcctc gcctttgtctc ttttgctttc gatggctttc 1860
20
gcaatgcagg ccccttttttg gttccatatg aacatatatgc gatgttttttc cactttcttg 1920
aagaaagtcctt gtagttttgat gctgtaggaac tcctctctac cttggggcatg 1980
atggccatttt tcagcatatt gattctctcct ctgcctacacg atggaaatgtt cttctccattt 2040
25
ttttggcttcc tctttttctc tgacaggatt tttggtgctc tcaggagggc cttttttaaa 2100
aaggtttcct taagaaaaat ttatatattt tattacagag attcaagttg gactagcaaa 2160
20
cagcaggaag ctttgatgggg ggttggttttt ggaattgctaa cctgacaaca 2220
agagttgacg cttctgaacaag gccacccag gaaagctcag gtacagagaagaaccatt 2280
gccacacatt gcgtgcattaa gattcccttg gcgttaaaat tatcctatttct ttttggtctt 2340
35
tcacacatga tttttttctc accagtttta tcggatcagca gttccaggtac agatgccc 2400
tccagacag cttgctctct tggctgggtat atgggctgttc gcgctcacctc 2460
aaaactcagc tagagaaaga ccttactctca agtcagctca gttggtactt ggccagtttg 2520
40
agttctctccag aagagtcgcttg actaagggct tcggtctctct actggctacg gcctgggacc 2580
tctgctctgtt tttttcctcg ttaggttctct cacaggagac gcctcacaaca tttttcttc 2640
45
cctccatcaga gcagagtttg tagagctcaca gagagttgta atttgtaaaacc gactaaagttc 2700
-4-

atagtctcag aactgactac ctcacacttt tgcacatttc tatttgttag gatgtatatct

2760
cgagacccag ccagtttaag cagaggaat tacagcaggg caccaatgcc aagacgtagg

2820
catcaccagg agctatctct gaagtcgtcc taccacacat gcgaagcaaa gagagggagc

2880
aggaggaaca aatgccttga tctctctctt ttcccacccct cccctctccc acctgtgtct

2940
cccattgcc aaactcaact cgaagctaga gggcatggga gcccaggtga tacagcccat

3000
agggcactcc ttcacagacca gtgcagagat gagagagaat aaacctgagg cagaggggag

3060
agggt cacaa cgacgagccc atgagcaag acacagatca gccaacctgc agtcacatag

3120
gaggtagat aaccagtaaa acaagacact acacagagca gcccctccacc ctatatccatg

3180
aggtcccgctca agacattgca cagacagcgc ttcacaccat atccatgagg tctgtctctt

3240
taatctatgc accaaattct ttcacagcct ctataatttg ggtgtaacatt tctctgtggcc

3300
tgttctaga ataagtaaaa ttttctataa aacaatgtc cttactttca cctcatccct

3360
atttatgtaa atggttgccct ctttaattac tgggccaggg aggaagattt gggagagaaa

3420
agggctatgc ggtgacattt ggaagacccgt gctctgtgta cagtctctgt gttgactgca

3480
aagttatcat ttcctcttag aaaaagtttg tgcacaatagc ataatgtgcct cctgttgacct

3540
TTTTATAGT GCTCATGAG ACTGCTCGGG ATCTAGATCT GTTTGGGATC TGCCAGACTT

3600
CTCTCTCTGC AGTGACACA CACTGCAAC CACTGATGTC CACATAACCA GGGCACTGTT

3660
GCCATCAAAA CTTCCTCTGG TTTCTCAGGC TTTCCCATTC CAGTGAAGGC CACCACACC

3720
TTCAAGGCTC CCAGGGCCAG ACCCTCAGGC AGTATGCAAT TGCCAAGGCT TTAATGTCCT

3780
ACCCATTAA TTATCTTCT CTTATCTTCC TGAAGATT AATGTCTTAA ACCCTGGCAC

3840
CCAAACACCC CTCACGTTGA AAACCTTCTCA ATACCCCTTT TTCACACTCA CTTCACAGGC

3900
TACATGAG CAGACAAGGC TCACGATCA GCCACATGG GTCTGGGGTA AGCGCCAAC

3960
CAAGCAAGGG GAAAGTACA ATGGACAC ATCAGACCTA TTCTCAGACC TTCAGCCCT

4020
CAACTGACCT CTGTTTCTGA TTAATATTCA GCTATTAGCA CGCCTTGGGA

4080
caaaaaacctt ctggagaaga tggacaga acgccacaca aacctcataacttctc caccactatgc ccctagca 4140
gagcccaac tcctagacaaca aaaaaaaaaa tcctatcacttttaaattc cttaatcctct cagagatcag 4200
gatagacaaa ggcagagagct aaaaatccgagct ccttccagatg agctcagcctt ggccatcagc 4320
aacagccaaagt caaagagagaag ctctttttaga ataatcgtgct tttctgagttt attcacacccca 4380
tgggtccagc cccccatgga agtcagaacc aagttccaat tcctaggaac caacactcatg 4440
ccttgaccag gagattctct cagaaatgtgt ggtgccattt gataggccct ggagacagag 4500
attgacaggc cttactgtgagc ctgggagagt ctttttttagg ggtgctgataa tggcaagaac 4560
agagaacaac ccagagaag gcaacacacgc cttcaaaacc atccccccct catgagggagag 4620
cagccaggaa cttcaggccct aagttcttcta ggtgtgctct cccaaaggaa aggggtcactc 4680
tagttttgggg aaaccttcaca accctctgca gtcgctctag tagactggga cagaaggtgg 4740
acaatgtata cccctgagcc cttacacccct tcctggagag atgacaagat taagattttct cttctgcagc 4800
ctaccacaac cctcaacaca ccatccccag aatctccccca agtgaatggt gtctctaccta 4860
ccgtcctgga gagcccaaggg tgtgtaaaccc agagggcagg tgtggtgggg aagggagag 4920
ggagaaagaa aagggatggc tgggagttag agaagaggtc ctatcagcaga cctgctgcagc 4980
aggatcccaat acatctgcctca gccaacactta ggccttctgtg acttagcagg tcagactttg 5040
gggaagaaggg ggagggagat gggggagtca ccacctcccc ggggtgtccc tctctgcccc 5100
ttggatatct taaaagggcc cagcaatcttc acgatccttct ttccctcgaca ctctgtcaga 5160
ccccccccaa aaaaaggtggtt aatactcactc cttcccttctt cagttcccagc cgtctgctcct 5214
Met Lys Phe Thr Thr Leu Leu

Phe Leu Ala Ala Val Ala Gly Ala Leu Val Tyr Ala

45 cctttctcttc gcggccccacagc agagctctccc cagctcaagg agccctcctct ctctgccttc 5321
acccctcttc ctctctctca gtgctattttt ggttttccttg cccttcgaag tgacctctctctct 5381
ccaggtttct cacaegttggc etctggcacc ccactggccag aaggaaccag aactctctcgg 5441
ctctgtcttg cccctccagcg cctactcttc acacaccatt gttttaccac tatgctctcg 5501
cctacgtgge tgtctctgtgtg tccccctgtat gtagttgacg aggggttccc ccacagcagg 5561
gtggcgcagcc aaggatgtgg agaagactaa atcgtggccga cactctactt gccaagcagt 5621
gacctggcc cctggtcttg tctcttagga ggaagggagt ccccccctt
-7-
agcattccca ggagataagc ttggggaatg gaggaggagg gtgggtcgag taggttacgtt 6761

tcggtccttg ctctcatctg gcattttccc cccatgcga gaa gat gcc tcc tct 6815
Glu Asp Ala Ser Ser 20

gac tcg acg ggt gct gat cct gcc cag gaa gct ggg acc t gtgagtcctc 6865
Asp Ser Thr Gly Ala Asp Pro Ala Gin Ala Gly Thr 25 30 35

tctctcctgc tgccctagcc ctctgttggga aggtttaaca gttagggatg tgagtgttgg 6925

ttgggagaag aagcagctgg gaggatctt gggttctgtg cttggttggta atgggggagg 6985

gcaggttaata taataaagaa gttggcatgg gtgaaatgg tacaaggcta aggacaaag 7045

aggatgaccg agagagacaa ggcaatagg gagcatgggg aaaaagttat tgtgaataaa 7105

aggagagaa acatgggatt aagtggtaag ggcgaatgtct cacatggcct taataccctc 7165

acctgcaaac acettccatt aacctccaaa ctctagcaag ataaccatta tctgctctct 7225

aacctcattt tccaccccca tttccatga ctctctttta tgtgacacc ccctcagcta 7285

aattgaaacct gtgctcttcc cccacactg cctctgcctg actctttact cactgctgc 7345

cccccagggaa gcccttttgg tacatctctct cttgctaaca tctgctcttc aagatccagc 7405

ttctctatga agtgcctccc gattctccac atcccctagt cccatccttt ccccaaacct 7465

gccgcgtgca ttccaaaga cacacagcat gcagaaatgc tatctccctt aagggggcag 7525

cgttttacgc atataccttc tgtatctctg cacccagcac acattaggtta tctggtgccc 7585

tgcacaacc tttccaaaga aacaaacact ttcaactttgc taaatccat caatcgttgc 7645

attcaca g ct aag cct aat gaa gag atc tca ggt cca gca gaa cca gct 7694
Ser Lys Pro Asn Glu Glu Ile Ser Gly Pro Ala Glu Pro Ala 40 45 50

tca ccc cca gag act cca acc acc cca gcc cag gag act tca ggt cca gca gca 7742
Ser Pro Pro Glu Thr Thr Thr Thr Thr Ala Gln Glu Thr Ser Ala Ala Ala 55 60 65

gtt cag ggg aca gcc aag gtc acc tca agc agg cag gaa cta aac ccc 7790
Val Gln Gly Thr Ala Lys Val Thr Ser Ser Arg Gln Glu Leu Asn Pro
70 75 80

ctg a gtaagctct gttctatatgc cagatcaaca acctagaaaa gttcttggtc
5

Leu

gcagccccac atcacacctc caagcacaga gataagcttg gttgagaagca ggtagactca
10

aacagctgaa caacacagca caaatgggtat tggcattgca acccacaac acacgttttca

caatagtaga tgttgacagcc tgcaacaatac atggttttctg tctgtgctca caacaaccttc
15

tatgagagaa gtctggagagc cctcagcaaat acttctgcac tttaaggacct tctgtaggga

18

tgatgctcctg gctggagttgg gccgtgggggg gggtgctagg gggggcaatg cagagttctc

20

tttaaatgag gtgtatatttc tgtgtatattg atttgttattc ttccaaatttt a a tcc

Lys Ser

85

ata gtg gag aaa agt atc tta cta aca gaa caa ggc ctt gca aaa gca
20

Ile Val Glu Lys Ser Ile Leu Leu Thr Glu Gln Ala Leu Ala Lys Ala
90 95 100

gga aaa gag atg cac gga ggc gtg cca ggt gga aaa caa ttc atc gaa
25

Gly Lys Gly Met His Gly Gly Val Pro Gly Gly Lys Gln Phe Ile Glu
105 110 115

gtgaagtgcct ccacacagca ggtctttggtg gaatggaata actcaccacc caccactcgg
30

8357

ggttggaatgt gttggacagaa cttggccccca tttccacctc acatagaga cttggaattt
35

8417

cacagcccc aatgtgacagc tggccacagct ggttcacgct tgtaatccca gcaacctggg

857

8537

agggcagagc agggtggagct cttggacccca ggtgttctca gactgctgctgg gcaacactggc
40

8597

gatacccat cttcacaata aaatcaaaa attagccagg cgttgggccac catgcctgta

8657

gtccacagctc cttggtgagaag taaattgtgga ggtacacctg agccccctgag cagagattgg

8717

cagtggtgagc agatggctgc actgcacctc atctctgggtg acagagaag accctgtccc

8777
aaagagcatca atgtgccatg ttgtctgata ttgattcacc tggtgcttaa
cccctacct tccgocagca gacgctgctt gttcttatc ttgtcccttg ccctgcca
aggtggagaag aggtaggtc ctgcaggcct tgtgaatct aactctcaatc ccctcaacct
ctgtgtaagc ctctccagag tcctgtaaga tcctggaagc agagatggaa agtgagaga
aggaaggg aggagctgtg gcctgggggt ctaaaagctt cattgttcct atcttttcct
cta gat gga agt gaa ttt gca caa aaa tta cgg aag aaa ttc agt cta
Asp Gly Ser Glu Phe Ala Glu Lys Leu Leu Lys Phe Ser Leu
120 125 130
tta aaa cca tgg gca tga gaagctgaaa agaataaggat cattggactt
Leu Lys Pro Trp Ala
135
aagccctaa atacccctgt agccccagac tattaaaaac aaagcatcca acttgcttgt
9233
tgccccgct ctatgggtag gcgcctggag gaagtgccgg gagaaaagcc cccccctgac
9293
cagagagcag ccagagccag ggccttgagg agtcacagcc tgcctggaag
9353
gcagagcttc taacagccccc tttattcac ttggagccac atccacattg ctagccctcc
tttagtcaca aataccccct cagctttttgt cccctctta ctctctccac attactccta
tgtcacttgg agcatttccca aaaaatttat ccaaatactt gagaattcagga agaattcccc
9473
9533
tgaataatttt ccaagccctg aagcttttta ctaaagccac tttctgttac ctttatcaga
9593
aattcatttc tgtctgccttc tattgtctac ttctacactg ggcacaagtg gctggcaatc
gtaattagg tcgacagata aagtaatgag ctactacagt gacaactggc actttgctaa
9713
9773
actggtcctc ataggtgccat attatctccc ccaagggact aaggtctcct aagggggtct
9833
tggctacccc ttcccttctgc ttgacaattt gtttgatgtc tgtcagcagaa accacttctt
tggcagcaca atgaaccagc gaagatcatc ctgactgttc gggcccaag aaagcagtca
9953
gcttttgtct cagacccctt cccagccccg gcacagggtc ttctgtcttt taacatgccc
10013
ggagccattg attctagact gttcttcccc caaccaatcttta gttatattct tcgttgtct 10073
aacagaatat ctaaaatcgg ataatttata agagcgaaca aagctattctt aaccagctag 10133
agctaggaag tccaggtgct caagggcagct tctggctaag cggtgctttgc tggccagga 10193
tctgtgcagg atcccaagcct ggaataagaga atccacatct taggtggtgct tccacgccag 10253
tcagctcttc ttcctttctc tagaagcct ccagttctcc tctgctggca aaccatttat 10313
ccattaccc attaattctc taatcctatc taggtattat atattcacaat gggcaaaagac 10373
tctagccccc aatcattttct tttttttttt gtttttttaag acagagctct gttctgtgctc 10433
ccacactgga gttaacggcc tcaatcctgg ctcactgcaag cctctgctcc cgggttccaa 10493
gcaatttctcc tgcctcagcc tcccaagcag ctaggattac aggtgccacc ggccacagct 10553
ggataatttg ttgatatttt agttagagac gggtttccac atgttgccag ggtatgcttc 10613
aaactcctga cctcataatga tccacctgcc taggccttccc aagtgctgta gattacagac 10673
atgagccact ggcgccagca tgaaccaatc atttctttaat aaccctgcct ttcaaatattg 10733
ttacctttatg gattaagttt caatgtaagt tttgaggggg acaaaacactc aaactatacc 10793
atctctctcc tggcctccttg aaactcatgt ctctctccaa tataatata ttccatccaa 10853
tccctatgc cccaaatcctt agcctcatcc agcacaacct caagatcca aagtcaccag 10913
tatactctgt gagcctgtga aatacaacag agttatatcc ttttaagata cagtttgttgt 10973
aaagcataa aaagacactt cccatccaa aatggagga tagacaaaaa gaaagagta 11033
acaggtctca agcaaatctg aaaccacgca gggcagacat taatcttttaa agctgaagaa 11093
tatcttttt tgaactccttg ttggccctcc cctctcacaag gggtttagg ggctggcccc 11153
agacactcag gcagccctac ccctcattgt ttcgtcagct ggccctatgt gacttctctc 11213
aggtattgga ttctgggtcc tgaagctttc caggtgtggtt gtggcatact gccagtgact 11273
gcacacttct ggtttcccaag tagtggtctcc acctccacag ctcctactagc cattacacta 11333
atggagacac tctacggtcag cacacacctc atggctctcc tagatgggaga ctcttggcag 11393
tggctctgccc cctgtgacaa atcttctgcct ggtctctctag gcttttgatg ataattccttg 11453
aaatctttggt ggaggtctgcc aagctgccac agctttttgtc gtctgccaga cttgcagagtc 11513
agcaccacacct ggacactgccc aaggttttatg gttctctacct tccaaaaactc cagcacaagcg 11573
tacaatttggg gtcacttgag 5ctgtgctag ggctagccatg aagctctgcca ctgggggttcc 11633
agggcagagt ccacaggccac cattcctgcc ttctagacct ctgggctaat aacaggaggg 11693
gcaacctgaa agatctctga aatgcaatttc aggtctttcttc tcactgtcctt gagaatagcg 11753
atccggctcc ttcttatctg tgctaatcttt tttagctgca cccattgatct cctttttctg 11813
atgtgcttttt tcacctttcctc tgggaccagg ctgacagttc tccaaaccttt tccacctttgc 11873
ccccagttaa atgtaaattt tcttttatcttt tataattgctt ttgaattat tccctttgctc 11933
ccaaatctca gcataagtgcc ccaaaagtaa ccagctcaaacct ccttctataat tttgcttga 11993
aatatctcctgc gagataacct gcagatctgc aatgcaattctt tgggctttccga caaagccctt 12053
aatatgtagc acagtacggt caagttctct gcctcaattt caacaaggtggt gccttttactc 12113
cagttcctaa taccttatcct tcctgttcca tctgaaaacct ctcagataagt gcctttacctg 12173
tcatatttcc actagcattct gggtcacaat cacttaacaa atctetaaga agttccaaac 12233
tttccaaaga acgtggtgtgc tccatgagtt tccaacccct gcagcaaaact tctggtcttga 12293
catctaggtg ttttctatca tctcttgaaat tctaggtgga gtttccaaat ccccaattcct 12353
t 12354

<210> 2
<211> 522
<212> DNA
<213> Homo sapiens

<400> 2
gaatcggccg ccggcagatct tctggtgtta tactcaacct ctatcccaaa gaatgaatt 60
taccactctctctttcttgca gctgtgtacg agggcctctg gctatcgcagc aagatgcctc 120
ctctgacctcg a cggtgtgctg atcctgc cca gaa getggg acctctaacgc ctaatgaaa 180
gatctcaggt c cacgcaaac cagctcacc cccagagaca accacaacag cccaggagac 240
ttcgggccac gcgttcagg ggacagccaa ggctcactca agcagcagg aactaaacc 300
cctgaaatcc atagtcgaga aaatgtctt actaacgaa caagcccttg caaaagcagg 360
aaaaggaatg cgccagggcg tgcaggtgg aaacaaatcc atcgaaatg gaagtgatt 420
tgcaaaaaa ttactgaaga aatctgctt attaaacca tggcagcag aagctgaaaa 480
gaatgaggtc attgaaactta aagccttaaa tacccttgta gc 522

<210> 3
<211> 416
<212> DNA
<213> Homo sapiens

<400> 3
tgaaatattac cactcttcct ttcttgccag tgtgacgagg ggccttggtc tgtgctgaaag 60
atgcctcttc tgactcggacg ggtgcgtgtac ctgccccagg gaatgagacc tctaaagccta 120
atgaagagat ctcaggttca gcagaaaccag cttcaccccc agagcacaacc acaacagccc 180
aggagacttc ggccggcagca gtctcagggga cagccaaaggt cacctcaagg aggcaggaac 240
taaaccccct gaatatccata gtggagaaaa gtaatcttact aacagaacaa gcccttgcaaa 300
aacagagaaa aggaatgca cggagccgtgc caggtgaaaa acaattttctc gaaaattgga 360
gtaggatgac acaaaaaatta ctagtagaat tcagttattt aaaaaccatgg gcatgatata 416

<210> 4
<211> 138
<212> PRT
<213> Homo sapiens

<400> 4
Met Lys Phe Thr Thr Leu Leu Phe Leu Ala Ala Val Ala Gly Ala Leu

1 5 10 15
Val Tyr Ala Glu Asp Ala Ser Ser Asp Ser Thr Gly Ala Asp Pro Ala
 20 25 30

Gln Glu Ala Gly Thr Ser Lys Pro Asn Glu Glu Ile Ser Gly Pro Ala
 35 40 45

Glu Pro Ala Ser Pro Pro Glu Thr Thr Thr Thr Thr Ala Gln Glu Thr Ser
 50 55 60

Ala Ala Ala Val Glu Gly Thr Ala Lys Val Thr Ser Ser Arg Gln Glu
 65 70 75 80

Leu Asn Pro Leu Lys Ser Ser Ile Val Glu Lys Ser Ile Leu Leu Thr Glu
 85 90 95

Gln Ala Leu Ala Lys Ala Gly Lys Gly Met His Gly Gly Val Pro Gly
 100 105 110

Gly Lys Gln Phe Ile Glu Asn Gly Ser Glu Phe Ala Gln Lys Leu Leu
 115 120 125

Lys Lys Phe Ser Leu Leu Lys Pro Trp Ala
 130 135

<210> 5
<211> 5193
<212> DNA
<213> Homo sapiens

<400> 5
acattttttaa aattttttca ctcattgttt tgccttttaca cctcccccgat ggccaaggtg 60
gaagatcoggag gcctccacagg gactgtggca gacgcttggtgc agggcacaggg ggagccacgca 120
gaagacaagcc agcgctgcacg asacgcagccac gggtctgaagct caacgggtgc 180
gcctgtgtct ccaatgcacgg agcagctctac cctaatagct cacatatgga ctttctttcttt 240
gggttcctct cttcctccacc agccccacgta acatggttcgta acacacacgg aggaggtcagtga 300
ggaaagaca ttcatcagc ttcagcacagg aagtgggtgta tcatgtggaga gttccagaagta 360
gaaaaacagc ggacacctca ggaggctta tatatatata taatatatttt aagttctagtt 420
gtacatgtgc acaatgtgca ggttgggtac atatgtatac atgtgccgtg tgggtttgct 480
gcaccattta actcatcatt tcaccttagt atttctctca atgtcatacc ttccccatcc 540
ccacccccca caacaggtct ggtggtgta tgtgccccac cctgtgctca agtggtgtca 600
tgtgcctcatt cccacctagag tgtgagaaca tgtggtgtttt gtttttctgt cttggtgata 660
gttggctcag aatgatgttt tcagcttta tcctgtcacc tacaagggac atgaactca 720
ccctggtttat ggtgtgcata ctttatctgg tgtatagtgc ccacatcccc ttaacccttc 780
catacttcca tgtcaacttgg ggtggtgcc aagcttttac tatgtgaatt agtgccacaa 840
taaacataca tgtgccatgca tccttatagtt agcagattt ataatacctt ggtatatatac 900
cagtaatggt gatcttttgg ttaaatggta tttctagttc tagatcccttg aggaatgccc 960
acactgtcct caccaatgttt tggctagtgt tcatcctcaca ccgatggtgtt aaaaagcttc 1020
tatttctcc acaccttctc cagccacgtg tgggtcccttg ctttttaatt atgtgcctttc 1080
tacctcttgt gagatgatat ctcatttgag ttttgatatg cattttcttg atggccacttg 1140
atgatgacca ttttttatgt tgtctctgttg ctcataaat tccttttttt ccaaggtgtc 1200
tgtccataac ctttgccccac ttgggataggt ggttgggtta ttttctcttg taaaattttg 1260
taagttttt gtagatcttg gataggaccc ctttgctaga tgggtgagac gcagaaaaatt 1320
tctccatcc tggagggtgc tgtgctaccc tgggtctagtt tttttttgtt gtgcagacgc 1380
tttttgttt caattgaccc catttgctca ttgggtcatt ttgggctca tgggggttg 1440
tttttagcat gaagtaaccttg cccatgctta tgtctttgaa ggtattgccc aggtttttttt 1500
cagaaatttt gccatcaactt ttaagttttt ccattttaaaat cccttcttttt tctttttttg 1560
ttgtataagg tgtaaggaag ggatccagtt tcagcttttt acatagggct agcagttttt 1620
cccagcaccct tttattaatt aaggaactct ttccccatct tgggtttttgg ttctgtaaaag 1680
caagatcag atggatgtgg atgtgtggttt ttttttttga gggctccttt ttcctttcatt 1740
gttgatatac tgtttttggca ccagttaccat gctgtttttgg ttactgtaaag ctggttagttat 1800
-15-
agtttgaagt caggtaatgt gatggacttca gctttggtct ttttgcttag gatttcttgg 1860
gcaatgcagg ccccttttttg gtctccatatg aaccttttaag tagttttttt cacttctgtg 1920
5
aagaaagtca ttggttagtt gatggggtag gcattgaata ctttaaatatt cttgcccgt 1980
atggccatttt tcacgatatt gattttctct atccaaagac atggaatgtt cttccatttg 2040
tttgtctct cttaatttcat tgagcagttg tttgtggttc tcaggagggc ttttttttaa 2100
10
aaaggttcttt taaggaaaaa tgtatctatt atttacagag attcaagtat ggactagca 2160
caagcagagac cctgagcctc cgggctgggg cggcctgggt aataatgtca cctgacaaca 2220
15
agagatggcc ccctgaaaca gggaccagac agaagctgca gtcagagaga aacaggcaat 2280
gccacaccat gctgcattaa gatccgtggt cttgtaaaaat tattccaaaca tttgggtgct 2340
20
tcacacatga ttttttatcc acagttttta tggatcagca gtcchagtcag agatgcgcct 2400
tcagacacag agtctctaat gaggctgcag tcaaggttctc tgcagggctg cggtcacctc 2460
aaaactcagc tgagggaaaga cccactttcga agcctcagtca cgggtgtgct gcacaggtgg 2520
25
agttctctca agatagctgg actaagggccc tgggctcttt cttggctctca ggtcctgcag 2580
tgctctcgggt ttctgtgcaac tagttttctt ccacaggaca gctccacaca tggccactca 2640
30
tttcatcaga gcagctggag aagatccaga gaccagagtg gttgtaacac gactaagctc 2700
atagttctca aagtcacatc ccataacttt gctcctttcc tattttgttag gacttgaatct 2760
cgacagcag cccagtttaag cagaggaat tacagcagg gccactatgc aagacgtagg 2820
35
cacctcagg agctatcccc gaagctgcttc taccacacat gcacaaagca gagagggagc 2880
aggaggaaca aatgctttga ccgctctcccc tccacacccc cccatctccc accttggtct 2940
40
cccttggcc aaactcaact cgaagctgag ggctagttgga gccgaggtga tccagcccat 3000
agaggtctcc ttccagacca gtcagagat gagagagaat aacactggagc cagaggggag 3060
agaggttacaag cggcagcc acgatgagacg acacagatca gcaacgcctgag agctatcatg 3120
45
gaggtcagat aacccatgaa caagacacct acaacagagca gccctctacc catattccatg 3180
aggtcgtca agacattgca cagagcagcc tctcaccct atccatgagg ttcgcctcct 3240
taatctatgc acccaattct ttccccagct ctataaatgg gggtacatt ttcctgggcc 3300
cggttataga ataataaaaa ttttctataa aacaatgtc cttactttca cctcatcctt 3360
atttatgtaa atgtttgctc ctttaattac tggagccagg aggaagattt ggaggagggaa 3420
agggcctatgc ggtgacattt ggaagacccc tgcctctgtga cagttctagt gttgacgcca 3480
agtctctcat ttctctctag aaaaatcttg tgcaaatagc ataatgtcct cctgttgact 3540
tttttaatgt gctcatggag actgtcgggg atctcagatc cttttgggact tcgcagacctt 3600
ctctctctgc agtgtacaca cagctgcaca caagtatgtg cacatacacc gcggactggt 3660
gccatcaaaa cttttccttg ttcttcagcc ttccccaccc caggttaagg gcacaccacc 3720
ttcagaggtc ccaggccagc accctcaggc aggtagcaat tgccaaggtt ttaatgtccc 3780
accaccattaa ttttatcttc ctttatctcc tgaaagattt aatgttctaa accctggcac 3840
caaaaacacc ctctatggta aacacttctca ataccccccct ctcaactctca ttctcagactg 3900
tcagatagg cagagaagcc tccggaatca gccacatgg ggttgtgtgat agtccaacac 3960
cagcaaggg gaagtcaca aatgtacatc cagcacctta ttctccaccg ttccagcccc 4020
cactgactc ctgtctccag gccctttccta ttaatatcct gcattttgca ccagcttgga 4080
caaaaacota cttgggaaga tgtgtaacaagc acgccacacg actccatagc accggctcgt 4140
taaaatatgt gcttttgcgt atattatccc acttaaatctc caccattagt ctgtacataag 4200
gagccccaac tctctagacaa caaataaaaa tccctatcct tttaaatccc taactttttc 4260
atatgaacaa gccgagaactc aaaaaccaaga cttcttaggt ccagacatcc gagaggaaga 4320
aagcgcagtc caagagaaag cttcttttaga ataatctgc tttcttgatt attcacaacca 4380
tgggcctagct cccccacttgga agtcaagcag aagctcctacat ttctagtaaac caccatcatg 4440
tttgaccag gagattctct cagaaatgtg ggtcggcatt ggtagggctc gaagacagag 4500
attgaggagc ctagtggagc ctggagggagt ttttctaggg ggtctggtaa tggtaagaac 4560
agagaacac ccagagaag gcacacagtc ctcttbaacc atcccttcct gggagaaag 4620
cagccagga actccagcctc aagtttttctt ggttgggtgtt ctccacaggaa cgggtctcact 4680
tagtttggg aaaaacctcaag accctgcact gactcttagg tagactgagga cagaaggttg 4740
acaatgtaat ccctgtggc ctcactcttc ttcttgagag atgacaagat taagatttc 4800
cctaccggca ctcacagca cacatccag aatctcccc caactgagatt gctcttacca 4860
ccttcctgga ggcctcaggg gtgtgaaacc agagggcagg tgtggtgagg aagggaggag 4920
aggagagaa aaggagatgc tggaggttag agaaagccct ctacctggga cctgctgctca 4980
agagatccag gtatcagcca gcctcaacctca gcctttgttg aactagcagg tgcagtttg 5040
ggagagaggg ggagagagat ggcagatct ccctctccca ggtctgggttc cctttgcccc 5100
tggatatcct taaaagggccc cagcaatttc agcactctta ttcctccagac cttctgca 5160
ttcggtttgat acactcaatc ctcacccccca aga 5193

<210> 6
<211> 2436
<212> DNA
<213> Homo sapiens

<400> 6
tctcggagaat cagcccagtt aagcagagga aattacagca gggcaccaat gccaagacgt 60
agccatccac aggagctatc tctgaagtcg ttctacacca gatgcccaag caagagaggg 120
aggagagag acaaatgctct tgaatcttcc tttttttttt cctttcactct ccacacttgt 180
ttcctccttg gcctataccta actcgaagct agggccatg ggcctccagg ggcctactgg gtagcagccc 240
cagagagga tctctccaga ccagttgagag gatggagagga aataaacctg ggcagaggg 300
gagagaggtca ccagcagcag cccatagcag aagacacaga tccagcaact gacagtcata 360
agagagtca gataacctag aaaaacacag atcacaacaga gcagccctct acccatatcc 420
tagaggtcgg tcagacatt gcacagagca gctctccact catatccatg aggtgctgct 480
ctttaatcta tgcaccccaat ttcttcccag gctcttataat ttggttaaac atttccttgg 540
gccctgttat agaatattaag aatattttcta taaaacaaat gtccttacct tcacccctctc 600
cctattttatg taatgtcttg cccttttaat tactgagggc agggagaaaga tttggggagag 660
gaaaggggta tgcggtgaca ttgggaagaac ccctgtcctg tgacattctt agtggtgacg 720
ccaagttct catttcccctc tagaaaatggc ttgtgcacaat agcataattt gtctctgttg 780
actttttttaa tgtgtctcatg gagaactgctt ggagacttaga tcgtttggg atctgcagga 840
cctctctcct tgcagttgac acaacagtgcg acaacagtata gtagacacac ccagggaact 900
ggtgccatcaca aacaaattttc ttgtctctca gctctccccc tatcagagtaa ggcacacc 960
accttcaggg ctcaccggcc cagacccctca ggagggtactg aatggccagc gttttaatgt 1020
caccaccctt taatttttata tttcctttatc tctgtgagaa ataaatgttc taaactcctgg 1080
cacccaaac accctctctatg tgaaaccata tcataacccc cttctcatac tcacccctag 1140
agctaccatg aggcagagaa gctctccgaa tcagcccaac tggggctggg tgaatggccaa 1200
cacaagacaa gggaagactc acaaatgagc atccagcaccc ttaattccca cccctcagcc 1260
cctcaacctga ctcctgcctc acggcgtcttt ctattaatat ctacacattta gcacccactt 1320
ggacaaaaac ctaacatgga agaggtgatac agaaccceac acaaccccat acaacctgacg 1380
tgtctaaaaa aatgcctttgc cgtatatata cccacttata cttccaccact atgcctgtaca 1440
tagaggcccac aaccttcatga cacaacaataa aataaacatac acctttttcaaa tcctaaacct 1500
tctatagcaca aagccagaaa cttcaatcc acacctcttag agtcccagac caggaagaga 1560
agaaacgcga aatcgaagaga agagtcctttt agaatattaat gttttttctg attttcaca 1620
ccatggttca gctcaccact tgaagttcagc accaatgctcc aatttacagt aaccaccact 1680
atgcttttgac caggagatct tcccagaat gttgggtccc atgtgaattt cctgagaca 1740
gagattgaca ggctctattg agcctggaggg aagtttttttt aggggtgaga taatgtccaag 1800
aaccagagaac aacctcagag aagccacaca cgcctcataa cccatccccct cagggggaga 1860
aagcagccag gaactcagcc ctcaagtgtt cttaggtgtgg tctcccaagg aaacgggctc 1920
acttagtttg gggaacactt caaaccctgc actgagtcct atgtagactg ggacagaagg 1980
5
tggacaatgt aatccccctga gcctcaacc tctccttggga gagatgacaa gattaagatt 2040
tctctaccag aaccctcaac agacacatcc cagaacttcc ccaagtgaaa tgtgtcttac 2100
c tacctgctcc ttagagcccc gcgggtgtgaa cccagagggc aggtgtgggt gggaagggag 2160
gagggagaaa gaaaggagat gcctgggaagtt tagagaaagg ctcttatcca ggacagctctt 2220
gcaagagttc cacagttacag cccgcccaac ctagcccttg ttagacttacg aggtgacagt 2280
10
ttgaggagaag aggggagggag gagcgggaag tccacacctt ccaagcttgg ttccc Tatgg 2340
cctttgtagat ccctaaaggg ggccagaat tcagcagcttc ttatcccctgacacgcttcg 2400
agattctgtgt gttatactca ctctctatcc caaaga 2436
20
<210> 7
<211> 1620
<212> DNA
<213> Homo sapiens
25
<400> 7
tagatctgtt tgggatctgc aggacttctc cttctgcaat gtacacacac gtcacacac 60
gtctgtgcar atacccccgg cactgggtgcc atcacaatttt tctctgttgg tctcagcttcc 120
cccattccag gttaggcccc cacccctccc aagcttccc ggcccgacac ctctgggcaggg 180
tagcaattgc caaggtttta atgccccacc ccattaatttt tatcttccttc tatcttcctga 240
aaagattaatt gttctaaacc ctggcaccctt aaacccttac atgttgaaatt ctcttcataa 300
cccctctccc acacaccttt tcgagcttac catggccagc agaagcttcc ggaactcagcc 360
40
cacatggggt cgggtgagttg ccaacacccaa gcaaggggaa agtcacaaatg tagacatccag 420
cacctatttc tccaccttcc aagccccctaa ctgactcttg ctcccaggcc cgtctctatta 480
atatctagca tttgccacca gccctggcaag aacccctatc tgaagagtgg tacaagaacc 540
45
ccacacaact ccatagaact tcgctgtcct aaaaaatgct ttgcctgata tttctccacct 600
taatctccac cactatgctg tccataaggag ccacactccc tagacaaacca ataaaaatcc 660
tatacctttt caaatccata cattttctata tgacaagacc agaaactcaaa atccagacct 720
cctaggtccc agatcaggaa aggaaagaaac gcgaagtcaa agagaagctt ctttagaata 780
atctgcttttt ctggattatt cacacacatgg gtctagccccc caacttgagg tcaaaccaag 840
cctccaatttc agtgaaccac cactatgctt tgacccagag attctctcag aatgtggtggg 900
tcccatgtgg tagccttgaa gacagagatt gacaggtcctg tgtagccttg gagggtcttct 960
ttttaggggc tggataatgt caagaacaga gaacactccca agagaagcga cacacgcctt 1020
caaaccacat cccctcatgg gagaagcag ccaggaacct aggctcctag tgtcttgggt 1080
gtggcttcccc aaggaagcgg gctcacttag tttgggggaa ctttcaaccct cttgctgag 1140
tctatgtag actggggacag aagttggaca atgataatcc cttgacccctc aacctcctcc 1200
tggagagatg acaagattaa gattttctca cccagacccct caacagacac atcccagatt 1260
cctccccagtt gaaatgtgcct tctacctccg tccccctgag ccaggggggtg taacacccaga 1320
gggcaggtgt ggtgggggaag ggaggaggg gaagaagaag gaagtgtgctgg gagtttagaga 1380
aaggtctcta tccagagacct gcttgcaagg atccccaggt taagccagcc caaccttagcc 1440
ccttttgact tagcagagta cagtttggtg aagaagggga ggaggatgcg gaagtgcaac 1500
cctctagcc tttggtctcca tggcctcttg atatccattaa aagggcccag caattccagc 1560
atcctttact cccagacacctt ctgcagatcc tgggtttaata ctcacttcccc atcccaagaa 1620

<210> 8
<211> 862
<212> DNA
<213> Homo sapiens

<400> 8
aaagagaagc ttcttttagaa ttaattgctt ttcttggtta ttcacacccc gaggtcagctc 60
cccacttgaa gtcagaacca agctccaatt tcagtgaacc accatcatgc tttgaccagg
agattctctc agaaatgtgg ggtcccatgg agtggccttg aagacagaga ttgacaggcc
tatgtgagcc tggaggagtt ctttttaggg gctggataat gtaaatgaaaca gagaacaact
cacagaggg cacacagcgc ttcaacacca tcccctcagtg gggagaac gcggcgagaac
tcagccctca agtggcttgct agtggctgctc cccaagagaa cgggctcaccct aagtgggga
aaccttcacaa cccgtcaagt agtcctatgt agactgggac aagagttgaa caatgttaacet
cctgagcerc tcacacctcc cctgagagaga tggacaaggg caggtttcctc taccagagcc
tcaacagac acatcccca aatctcccaaa gtgaatgtgg ctctacctac cgtcctctgag
agccagggg tgtgaacca ccaggcaggt tgggtgggga aggaggagg gagaaagaaca
aggatgttgct gggagttgga aaaaagttcc tatccaggac ctgcctgcaac ggatccccagg
tacagccag cccacacagt ccttggtgaa ctgagcaggt gacagttgg ggaaagggg
aggaggtgt ccgaagttgac acctcctcaag gctgtgctttc cattggccct tggatctcctt
aaagggccc agcgatttca gcatccttat tccccagacc ttctgcagat tctgtggtta

tacctcactcc tcctcccaaa ga

30 <210> 9
<211> 19
<212> PRT
<213> Homo sapiens

35 <400> 9
Met Lys Phe Thr Thr Leu Leu Phe Leu Ala Ala Val Ala Gly Ala Leu
1 5 10 15
Val Tyr Ala

40 <210> 10
<211> 119
<212> PRT
<213> Homo sapiens
<400> 10
Glu Asp Ala Ser Ser Asp Ser Thr Gly Ala Asp Pro Ala Gln Glu Ala
1 5 10 15

5 Gly Thr Ser Lys Pro Asn Glu Glu Ile Ser Gly Pro Ala Glu Pro Ala
20 25 30
Ser Pro Pro Glu Thr Thr Thr Thr Ala Gln Glu Thr Ser Ala Ala Ala
35 40 45

10 Val Gln Gly Thr Ala Lys Val Thr Ser Ser Arg Gln Glu Leu Asn Pro
50 55 60
Leu Lys Ser Ile Val Glu Lys Ser Ile Leu Leu Thr Glu Gln Ala Leu
65 70 75 80

15 Ala Lys Ala Gly Lys Gly Met His Gly Gly Val Pro Gly Gly Lys Glu
85 90 95

20 Phe Ile Glu Asn Gly Ser Glu Phe Ala Gln Lys Leu Leu Lys Lys Phe
100 105 110
Ser Leu Leu Lys Pro Trp Ala
115

25

<210> 11
<211> 23
<212> DNA
30 <213> Artificial
<220>
<223> Oligonucleotide probe for detecting genomic lacritin clone
<221> primer_bind
<222> (1) .. (23)
35

<400> 11
agctggggca cagcccagc cac 23

40 <210> 12
<211> 23
<212> DNA
<213> Artificial
<220>
45 <223> Oligonucleotide probe for detecting genomic lacritin clone
primer_bind
(1) .. (23)

5 ggggttctgg ggctgcaagct ggg

13 DNA
Artificial
PCR primer corresponding to nucleotides 523 to 503 of the lacritin gene
primer_bind
(1) .. (21)

cgctacaagg gtaatttaagg c

14 DNA
Artificial
PCR primer for exon 1 of the lacritin gene
primer_bind
(1) .. (20)

14 actcactcct catccccaaag

15 DNA
Artificial
PCR primer for exon 5 of the lacritin gene
primer_bind
(1) .. (19)

ttttcagctt ctcatgccc