发明名称
烟草臭气消臭香料组合物、烟草臭气消臭剂，以及副流烟臭气少的香烟及烟草包装

摘要
本发明涉及烟草臭气消臭组合物，其中含有柑桔橙精油或实质上除去萜烯的柑桔橙精油级分。
1. 一种烟草臭气消臭香料组合物，其由柑橘橙精油或实质上除去萜烯的柑橘橙精油级分构成，其中所述的柑橘橙精油为云香科的柑橘果实在冷时或常温下压榨采取的精油。

2. 一种烟草臭气消臭剂，其由含有柑橘橙精油或实质上除去萜烯的柑橘橙精油级分的烟草臭气消臭组合物和负载该组合物的载体构成，其中所述的柑橘橙精油为云香科的柑橘果实在冷时或常温下压榨采取的精油。

3. 按照权利要求2中记载的烟草臭气消臭剂，该消臭剂的形态为液态消臭剂、固态消臭剂、粉末状消臭剂、凝胶状消臭剂、雾状消臭剂、或气溶胶状消臭剂。

4. 按照权利要求2中记载的烟草臭气消臭剂，其中，烟草臭气消臭组合物含量比率为0.035~10质量%。

5. 一种香料化妆品类、饮食品类、皮肤外用剂、口腔用组合物或卫生材料，权利要求2中记载的烟草臭气消臭剂含量比率为0.078~0.5质量%。

6. 一种香烟，该香烟备有含烟草填料和卷绕该烟草填料周围的卷烟纸的烟草棒，并负载了含有柑橘橙精油或实质上除去萜烯的柑橘橙精油级分的副流烟草气降低剂，其中所述的柑橘橙精油为云香科的柑橘果实在冷时或常温下压榨采取的精油。

7. 按照权利要求6中记载的香烟，其中，负载的上述副流烟草气降低剂，使每支香烟中的柑橘橙精油或实质上除去萜烯的柑橘橙精油级分至少达到0.01mg。

8. 按照权利要求6中记载的香烟，其中，上述副流烟草气降低剂负载在上述烟草填料中。

9. 按照权利要求6中记载的香烟，其中，上述副流烟草气降低剂负载在上述卷烟纸中。

10. 按照权利要求6中记载的香烟，其特征是，上述卷烟纸是采用接缝糊粘合的。

11. 按照权利要求10中记载的香烟，其特征是，上述副流烟草气降低剂负载在上述接缝糊中。
12. 按照权利要求 6 中记载的香烟，其中，在所述烟草棒的一端具有过滤芯。

13. 一种烟草包装盒，其是盛放烟草棒的包装盒，该棒含有烟草填充和卷绕该烟草填充周围的卷烟纸，其中，在该包装盒内，盛放副流烟气降低剂，该降低剂含有柑桔橙精油或实质上除去萜烃的柑桔橙精油组分，其中所述的柑桔橙精油为芸香科的柑桔果实在冷时或常温下压榨采取的精油。
说明 书

烟草臭气消臭香料组合物、烟草臭气
消臭剂，以及副流烟臭气
少的香烟及烟草包装

技术领域

本发明涉及烟草臭气消臭香料组合物、烟草臭气消臭剂，以及副流烟
臭气少的香烟及烟草包装。

背景技术

一般情况下，从香烟等烟草制品释放的副流烟等的烟草臭气，对于非
吸烟者是一种很不愉快的气味，特别是，降低吸烟中释放至周围环境的副
流烟臭气已引起极大关注。

用于减轻烟草副流烟臭气的对策之一是把吸烟中从烟草制品释放至室
内等周围环境的烟草副流烟的臭气加以消臭。一般情况下，为了消除排放
至周围环境的恶臭，采用具有非常强的芳香物质作为消臭剂，使其强芳香
味与恶臭混合，主要是采用隐蔽恶臭的方法(周知・惯用技术集(香料)第 1
部 香料一般 平成 11 年 1 月 29 日发行)。

然而，这种现有的消臭剂，由于通常使用比恶臭强度大的芳香物质，
所以，作为与恶臭混合后的臭味总强度，比混合前的恶臭强度更弱，结果
是多数情况下产生不快感。另外，即使混合前可以隐蔽，但多数的情况是，
混合后的臭味又会感到另一种新的不愉快臭味。因此，采用现有的消臭剂，
不能达到根本改善不愉快的臭味。

用于减轻烟草副流烟臭味的另一对策是往烟草制品中添加掩盖副流烟
臭气的香料，使从烟草制品本身不排放副流烟臭气。例如，有人提出，为
了改善香烟自然燃烧时排放至周围环境的烟草副流烟臭气，往卷烟纸中添
加掩盖不愉快臭气的香料。

然而，现有的掩盖副流烟臭气的香料，的确可以降低烟草副流烟臭气，
但是作为烟草主流烟味的烟草香味不仅也降低，而且，由于该香料本身的
香味比较强，在香烟自然燃烧时发生的臭气总强度增加。

4
因此，本发明的目的之一是提供一种烟草臭气消臭组合物及烟草臭气消臭剂，其与吸烟中排出至周围环境的副流烟臭气混合后，总臭味不会强烈达到不愉快的水平，而且，与副流烟臭气混合后的臭味，不会变成新的另一种不愉快臭味从而达到隐藏烟草臭味的目的。

另外，本发明的另一目的是提供一种香烟，在该香烟自然燃烧时发生的总臭气强度不会显著增加，并且可以降低副流烟臭气。

发明的公开

本发明人为了达到上述目的进行悉心研究的结果发现，柑桔精油或实质上除去萜烃的柑桔橙精油级分，即使和烟草臭气混合，臭味总强度也不会明显增加，烟草臭气可得到有效的掩蔽。另外，柑桔橙精油或实质上除去萜烃的柑桔橙精油级分，不使香烟自然燃烧时产生的臭气总强度明显增加，从香烟本身发生的副流烟臭气也可以降低。基于这些发现，完成本发明。

即，按照本发明的第1方面，提供一种由柑桔橙精油或实质上除去萜烃的柑桔橙精油级分构成的烟草臭气消臭香料组合物。

另外，按照本发明的第2方面，提供一种含有柑桔橙精油或实质上除去萜烃的柑桔橙精油级分的烟草臭气消臭组合物，以及含有负载该组合物的载体的烟草臭气消臭剂。

按照本发明的第3方面，提供一种香烟，该香烟具有一种由烟草填料和卷绕该烟草填料周围的卷烟纸构成的香烟棒，该香烟负载了副流烟臭气降低剂，该臭气降低剂含有柑桔橙精油或实质上除去萜烃的柑桔橙精油级分。

按照本发明的另一方面，提供一种烟草包装，其是把盛放有烟草填料和卷绕该烟草填料周围的卷烟纸的烟草棒，该包装中放入含有柑桔橙精油或实质上除去萜烃的柑桔橙精油级分的副流烟臭气降低剂。

本发明的香料组合物属于从天然物中精制或分离得到的所谓精制或分离出来的香料范畴，与调合香料不同。

用于实施本发明的最佳方案

下面对本发明加以详细说明。
本发明的烟草臭气消臭香料组合物，含有柑桔橙精油或实质上除去萜烃的柑桔橙精油级分。

本发明所用的柑桔橙精油(下面有时称作 MOO)，系指云香科的柑桔(Citrus reticulate Blanco)果实在冷时或常温下压榨采取的精油，一般称作冷榨油。MOO 既可用通常的方法制造，也可从市场购得。

MOO 含有苎烯、松香烯、异松香烯、月桂烯、千丁香烯、桉烯、对异丙基甲苯、蒎烯、法呢烯等萜烃; 沉香醇、松香醇、庚醇、辛醇、己醇、乙醇、丁醇、戊醇、己醇等醇; 乙二醇、丙二醇、戊二醇等二醇; 苯二酚、苯酚等酚; 羟基、羟基、乙酸、丙酸、丁酸、戊酸、己酸、庚酸等酸; 尚有，邻氨苯甲酸甲酯、N；甲基邻氨苯甲酸甲酯、氧化苎烯等。

实质上除去萜烃的柑桔橙精油级分(下面有时称作脱萜 MOO 级分)，可通过把 MOO 用硅胶柱分级得到。具体的是，把 MOO 填充至硅胶柱内，用石油醚、己烷、庚烷、苯、甲苯、环己烷等烃展开，除去洗提的级分。该烃洗提的级分含有萜烃。接着，把该硅胶柱用乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酮等极性溶剂展开，含有含氧成分的级分被洗提。该含氧级分含有醇、醛、酮、酯、酸等，可将其作为本发明的脱萜 MOO 级分供给使用。

在上述硅胶柱分级前，进行减压蒸馏，除去作为蒸馏残渣的高沸点成分也行。

另外，萜烃采用蒸馏实质上可以除去。例如，把 MOO 在 300Pa 左右的减压条件下除去蒸馏到 43℃的馏分后将所得到的蒸馏残渣用作脱萜烃后的 MOO 级分提供。将该蒸馏残渣再进行精馏，所得到的馏分也可作为本发明的脱萜烃的 MOO 级分提供。

构成本发明的烟草臭气消臭组合物的 MOO 或脱萜烃的 MOO 级分，也可以以实质上除去酸成分的形态供给。例如，上述硅胶级分或蒸馏级分前或后，在 MOO 或脱萜烃的 MOO 级分中混合氢氧化钠、氢氧化钾等碱性水溶液，充分搅拌后，静置，分离油层和水层。得到了除去水层的油层。该油层实质上不含酸成分。

本发明的烟草臭气消臭组合物，即使其香味和烟草臭气混合，混合后的臭味总强度无明显增加，有效消除烟草臭气。

本发明的烟草臭气消臭组合物，可原封不动地放在适当的容器内作为
烟草消臭剂 设置在室内。

但是，本发明的烟草气消臭组合物，将其负载在适当的载体上，可用作烟草消臭剂供给。

此时，在本发明的烟草气消臭组合物中还可以添加具有消臭效果的通常使用的香料成分。作为该消臭性香料，可以举出各种合成香料、天然香料、合成精油、天然精油、柑桔油。具体的可以使用《周知惯用技术集》(香料)第1部 香料综述 2.6.16 掩蔽剂 230～250页(1999年)记载的广泛的消臭性香料。

作为本发明的烟草消臭剂的剂形，可以举出液体状、固体状、粉末状、凝胶状、雾状(ミルト)或气溶胶状等。

另外，载体根据情况也可以使用，例如液态基剂、固态基剂、粉末态基剂、凝胶态基剂、雾状基剂、气溶胶态基剂。

在本发明中作为把消臭组合物在载体上负载的方法，包括，例如，对于液态基剂、凝胶态基剂、雾状基剂，可以采用表面活性剂、凝胶剂、水溶性高分子作为载体，在由其形成的胶束或凝胶的内部保持消臭组合物的方法，作为固态基剂、粉末状基剂、气溶胶基剂，则是在硅胶等粉末或粒状成型物表面保持消臭组合物的方法。

在本发明中，作为液态基剂，可以举出聚氧乙烯山梨糖醇酐单油酸酯、聚氧乙烯山梨糖醇酐单硬脂酸酯、聚氧乙烯硬化蓖麻籽油等非离子性表面活性剂；聚氧月桂酸磷酸钠等离子性表面活性剂。

作为凝胶状基剂，可以举出角叉胶(カラギ-ナノ)、社南胶(ジュランガム)、龙须胶、琼脂、明胶、果胶等从各种植物、动物、藻类、微生物等中萃取的凝胶剂；作为硬脂酸钠、12-羟基硬脂酸钠等凝胶剂使用的金属皂；聚乙烯醇、纤维素衍生物、淀粉、淀粉衍生物等水溶性有机高分子形成的产物等。

作为固体基剂，可以举出硅胶、氧化铝、沸石、硅藻土、硅酸钙、纸浆、纤维素等粉末或粒状成型物等。

作为雾状基剂，可以举出聚氧乙烯山梨糖醇酐单油酸酯、聚氧乙烯山梨糖醇酐单硬脂酸酯、聚氧乙烯硬化蓖麻籽油等非离子性表面活性剂；聚氧月桂酸磷酸钠等离子性表面活性剂等。

作为气溶胶状基剂，可以举出硅胶等球状成型物。
本发明的液态消臭剂、固态消臭剂、粉末态消臭剂、凝胶态消臭剂、雾状消臭剂、气溶胶状消臭剂等烟草消臭剂可以根据各种所期待的效果，作用任意增减，但是，一般希望含有烟草臭气消臭组合物的比例为约 0.005～50 质量%。

在实际使用本发明的烟草臭气消臭剂时，可以作成将其添加至香料化妆品类、饮食品类、皮肤外用剂、口腔用组合物或卫生材料中的形态。

作为香料化妆品类，可以举出柔软化妆水、收敛性化妆水、擦拭用化妆水、乳液、全身用洗液、刮脸用洗液和乳(ジェル)、润肤膏、净化乳脂和肝、制汗剂、眼部美容剂、香波类、发乳类、生发水类、香脂类、漂洗剂类、调节剂类、养发洗液、其他的毛发用化妆品基剂；香粉、口红、其他化妆品基料和化妆品洗剂等。

作为饮食品类，例如可以举出果汁饮料类、果酒类、乳饮料类、碳酸饮料类、保健饮料类等饮料类；冰糕类、果子露类、冰糖果类等冷点心；日本・洋点心类、果酱类、糖果类、陈胶类、胶类、面包类、咖啡类、可可类、红茶类、乌龙茶类、绿茶类等日常饮料类；日本风味的肉汁、西洋风味的肉汁、中国风味的肉汁类等肉汁类；调味料，各种通用饮料及食品类、各种快餐食品类等。

作为皮肤外用剂，例如，可以举出气溶胶制剂、缓冲剂、软膏剂、入浴剂等。

作为口腔用组合物，例如，可以举出牙粉、口腔洗洁剂、漱口药剂、口香糖类等。

作为卫生材料，例如，可以举出洗涤用洗剂类、消毒用洗剂类、防臭用洗剂类、室内芳香剂(室内消臭剂)、肥皂、器皿洗剂、软化剂类、家具清洁剂、其他保健卫生用洗剂类；餐巾纸、卫生纸等各种保健卫生材料等，用于使药品容易服用的矫味品、赋香剂等保健、卫生、医药品类等。

本发明的烟草臭气消臭剂，含有作为必须成分的柑桔精油精油或除去萜烃的柑桔精油级分以及将其负载的载体也可，但是，它们在香料化妆品、饮食品、皮肤外用剂、口腔用组合物、卫生材料等中使用时，可以采用原有的状态，或将它们溶解在例如醇类、丙二醇类、丙三醇等多元醇类中的液态；阿拉伯胶、龙须胶等天然胶质类；用甘油脂肪酸酯、蔗糖脂肪酸酯等乳化剂乳化了的乳化形态；用阿拉伯胶等天然胶类、明胶、糊精等赋型
剂被覆的粉末形态；采用表面活性剂，例如非离子表面活性剂、阴离子表面活性剂、非离子表面活性剂、阳离子表面活性剂、两性表面活性剂等使形成可溶化或分散的可溶化或分散形态；或者，用胶囊化剂处理所得到的微胶囊形态等，可根据使用目的选择形态。

另外，用环糊精等包接剂加以包接，使本发明的烟草臭气消除剂稳定化，同时还具有缓慢释放性。对其加以适当选择，使适于最终制品的形态，例如液态、固态、粉末状、凝胶状、雾状、气溶胶状等形态。

另外，本发明的烟草臭气消除剂，还可以与其他的防臭・消臭剂，例如香料・氧化剂・还原剂・中和剂・无机系消臭剂（无机碱・无机酸・金属氧化物・氟化物・臭氧・多孔物质）、表面活性剂（非离子系・阴离子系・阳离子系・非离子系・两性系等）等共同使用。

还有，往香料化妆、饮食品、皮肤外用剂、口腔用组合物、卫生材料等最终制品中的烟草臭气消除剂添加量，可根据各种场合所期待的效果・作用任意加减，但是，一般对最终制品的总质量达到约 0.0005～20 质量％左右。

进而，本发明的 MOO 或者脱脂 MOO 级分，用于降低香烟自身发生的烟草副流烟臭气的烟草副流烟臭气降低剂中使用。

含有本发明的 MOO 或者脱脂 MOO 级分的副流烟降低剂，负载在香烟中。香烟具备由烟草填料和卷绕该烟草填料周围的卷烟纸构成的烟草棒。

烟草填料含有烟丝，该烟丝是膨化的也可。作为烟丝的膨化法，可以采用已知的方法。作为卷烟纸，可以使用任何一种适于卷绕烟草填充材料周围，制成香烟的卷烟纸。还有，本发明的香烟，在该烟草棒的一端具有过滤芯棒。

本发明的副流烟臭气降低剂，可以以各种形态负载在香烟中。例如，本发明的副流烟臭气降低剂，通过添加至烟草填料中、涂布在香烟的卷烟纸上、或添加至卷烟纸粘合用接缝糊中，负载在香烟中。副流烟臭气降低效果，特别依赖于本发明的副流烟臭气降低剂的使用部位（烟丝、卷烟纸、接缝糊等）。然而，本发明的副流烟臭气降低剂，采用通常的烟丝赋香技术添加至烟草填料中是优选的。在任何一种情况下，本发明的副流烟臭气降低剂在使用部位均匀分布是优选的。还有，本发明的香烟，在烟草棒的一端有过滤芯棒时，一般的过滤芯棒是通过所谓顶端纸连接到烟草棒上，然
而在该末端纸上也可以涂布本发明的副流烟臭气降低剂，或涂布在过滤嘴卷轴纸上。

本发明的香烟，负载的本发明的副流烟臭气降低剂，使每支的 MOO 或脱醛 MOO 级分量优选至少达 0.01mg，更优选 0.02mg~0.2mg。

另外，本发明的副流烟臭气降低剂，也可以放在烟草包装盒内。该烟草包装盒，例如可以盛放 20 支香烟，该香烟具有烟草棒，而该烟草棒含有烟草填料和用于卷绕该烟草填料周围卷烟纸，同时，含有本发明的副流烟臭气降低剂。本发明的副流烟臭气降低剂在包装盒内的放置，例如，可以通过往铝箔内加香来进行。放入包装盒内的本发明的副流烟臭气降低剂，在包装盒开封前移至香烟，在吸烟时降低副流烟的臭气。

下面通过实施例说明本发明，但本发明既不受这些实施例的限定，又不限于这些实施例。

还有，在实施例中用于各种物性测定的装置如下所述。

气相色谱仪(GC): HP-6890(アジェレントテクノロジー 社制)

柱: HP-20(0.25mm x 25mm)(アジェレントテクノロジー 社制)

柱温度: 55 ~ 215 ℃(4℃/分)。

制造例 1: 用硅胶分级制造脱醛烃 MOO 级分(MOO-1-1)的配制

把 MOO(500g)铺在采用硅胶メルク社制: 硅胶(Silicagel) 60
0.063-0.200mm(550g)制成的硅胶柱色谱仪中。即，用己烷填充硅胶后，把 MOO 填充至硅胶柱内，用己烷 2.2L 展开，得到烃级分(下面用 HC 级分表示)。接着，硅胶柱用乙酸乙酯 2.2L 展开，得到作为脱醛 MOO 级分(MOO-1-1)的含氧级分。最后，硅胶柱用乙醇 2.2L 展开，得到乙醇级分。

HC 级分的回收量为 336g(68.0 质量%), 含氧级分(MOO-1-1)的回收量为 16.8g(3.4 质量%), 乙醇级分回收量为 0.5g(0.1 质量%), 总回收率为 71.5%。

表 1 中示出得到的 MOO-1-1 的主要成分。

制造例 2: 用硅胶和硅胶柱分级、制造脱醛烃 MOO 级分(MOO-2-1)

(1) 把 MOO(4997g)供给克莱森蒸馏装置，在 400Pa(3mmHg)的减压下得到 102℃前的馏分。把该馏分残渣再于 10.7Pa(0.08mmHg)的减压下蒸馏至 97℃，把得到的馏分与先前的馏分合并。合并的馏分(蒸馏油)为 4769g(95.4 质
量%），蒸馏残渣为79g（1.6质量%），回收率为97.0质量%。

(2)将上述(1)得到的蒸馏油(504g)铺在用其2倍质量(1kg)的硅胶制成的硅胶柱色谱仪上。即，用己烷填充硅胶后，把MOO填充至硅胶柱内，用己烷8L展开，得HC级分。接着，硅胶柱用乙酸乙酯8L展开，得到作为脱酚MOO级分(MOO-1-1)的含氧级分。最后，用乙醇4L展开，得到乙醇级分。

HC级分的回收量为445g(88.1质量%)，含氧级分(MOO-2-1)的回收量为9.6g(1.9质量%)，乙醇级分回收量为0g(0质量%)，总回收率为90.0%。表1中示出制得的MOO-2-1的主要成分。

制造例3：用蒸馏、脱酸性部除去及硅胶柱分级，制造脱酚烃MOO级分(MOO-3-1)

往制造例2(1)中得到的蒸馏油(4kg)中边缓慢添加10%氯氧化钠水溶液(1kg)边搅拌，充分搅拌后，静置。分离油层和水层后，除去水层，得到油层。把得到的油层，用饱和食盐水(2L)洗2次，分液后用无水硫酸镁干燥，得到除去酸成分的MOO油(3.93kg)。

将得到的油(503g)放在用其2倍质量(1kg)的硅胶制成的柱色谱仪上。即，用己烷填充硅胶后，把油填充至柱内，用己烷8L展开，得HC级分。接着，用乙酸乙酯8L展开，得到作为脱酚MOO级分(MOO-3-1)的含氧级分。最后，用乙醇4L展开，得到乙醇级分。

HC级分的回收量为431g(84.2质量%)，含氧级分(MOO-3-1)的回收量为8.7g(1.7质量%)，乙醇级分回收量为0.02g(0.04质量%)，总回收率为85.94%。表1中示出制得的MOO-3-1的主要成分。
表 1

<table>
<thead>
<tr>
<th>主要成分</th>
<th>MOO-1-1</th>
<th>MOO-2-1</th>
<th>MOO-3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>烃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>三烯丙基</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>γ - 三烯丙基</td>
<td>痕迹量</td>
<td>0.2</td>
<td>痕迹量</td>
</tr>
<tr>
<td>沉香醇</td>
<td>13.8</td>
<td>15.3</td>
<td>16.5</td>
</tr>
<tr>
<td>4-三烯醇</td>
<td>2.8</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>α-三烯醇</td>
<td>5.1</td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>辛醇</td>
<td>2.6</td>
<td>2.7</td>
<td>2.6</td>
</tr>
<tr>
<td>反式-黄 Bakan酯</td>
<td>1.9</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>百里酚</td>
<td>1.1</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>食醇</td>
<td>0.5</td>
<td>-</td>
<td>1.1</td>
</tr>
<tr>
<td>反式-2,8-二烯醇</td>
<td>1.6</td>
<td>2.4</td>
<td>2.8</td>
</tr>
<tr>
<td>酯</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>辛酯</td>
<td>6.6</td>
<td>8.8</td>
<td>6.8</td>
</tr>
<tr>
<td>甜橙酯</td>
<td>6.0</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>宁醚</td>
<td>1.4</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>香叶醇</td>
<td>痕迹量</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>花脑</td>
<td>3.4</td>
<td>3.2</td>
<td>3.4</td>
</tr>
<tr>
<td>二醇</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>黄:o色酮</td>
<td>1.5</td>
<td>2.7</td>
<td>3.0</td>
</tr>
<tr>
<td>酸</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-甲基邻氨苯甲酸甲酯</td>
<td>22.6</td>
<td>22.2</td>
<td>22.5</td>
</tr>
<tr>
<td>反式-氧化苎烯</td>
<td>0.7</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td>顺式-氧化苎烯</td>
<td>0.5</td>
<td>1.3</td>
<td>2.0</td>
</tr>
<tr>
<td>计</td>
<td>77.9</td>
<td>79.3</td>
<td>79.0</td>
</tr>
</tbody>
</table>

制造例 4: 用蒸馏法制备脱脂 MOO 级分 (MOO-1-2)

把 MOO(5000g)供给精馏塔，在300Pa(2.2mmHg)减压下除去43 ℃前的馏分，得到蒸馏残渣164g(3.3 质量%)作为脱脂 MOO 级分 (MOO-1-2)。MOO-1-2 的主要成分示于表 2。制造例 5: 用蒸馏法制备脱脂 MOO 级分 (MOO-2-2)

把制造例 4 中得到的蒸馏 MOO-1-2(140g)供给克莱森蒸馏装置，在 24Pa(0.18mmHg)减压下蒸馏至 103 ℃，得到的馏分作为脱脂 MOO 级分 (MOO-2-2)。产量为 67g，相对于 MOO-1-2 为 47.9 质量 %，相对于 MOO 为 1.6 质量%。MOO-2-2 的主要成分示于表 2。
制造例 6：用蒸馏及酸性除除去制造脱枊 MOO 级分 (MOO-3-2)

往制造例 5 中得到的蒸馏 MOO-2-2(80g) 中边缓慢添加 5% 氢氧化钠水溶液 80g 边搅拌，充分搅拌后装静置。分离油层和水层后，除去水层，得到油层。把得到的油层，用饱和食盐水 50mL 洗 2 次，分液后用无水硫酸镁干燥，得到

除去酸成分的脱枊 MOO 级分 (MOO-3-2)，产量为 33.0g，相对于蒸馏 MOO-2-2 为 41.3 质量%，相对于 MOO 为 1.3 质量%。MOO-3-2 的主要成分示于表 2。

<table>
<thead>
<tr>
<th>主要成分</th>
<th>成分量(质量 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MOO-1-2</td>
</tr>
<tr>
<td>炔</td>
<td></td>
</tr>
<tr>
<td>丙烯</td>
<td>0.1</td>
</tr>
<tr>
<td>γ-松香烯</td>
<td>0.8</td>
</tr>
<tr>
<td>松香烯</td>
<td>0.4</td>
</tr>
<tr>
<td>丁子香烯</td>
<td>1.6</td>
</tr>
<tr>
<td>β-百里香素</td>
<td>0.3</td>
</tr>
<tr>
<td>法呢烯</td>
<td>3.8</td>
</tr>
<tr>
<td>脯香烯</td>
<td>14.8</td>
</tr>
<tr>
<td>4-松香烯</td>
<td>1.4</td>
</tr>
<tr>
<td>α-松香烯</td>
<td>4.3</td>
</tr>
<tr>
<td>辛醇</td>
<td>0.8</td>
</tr>
<tr>
<td>反式-马来烯</td>
<td>2.1</td>
</tr>
<tr>
<td>百里酚</td>
<td>1.7</td>
</tr>
<tr>
<td>反式-p-芳烃-2,8-二烯-1-醇</td>
<td>2.7</td>
</tr>
<tr>
<td>顺式-p-芳烃-1,8-二烯-1-醇</td>
<td>1.1</td>
</tr>
<tr>
<td>顺式-黄醇</td>
<td>3.8</td>
</tr>
<tr>
<td>醇</td>
<td></td>
</tr>
<tr>
<td>丁醇</td>
<td>4.7</td>
</tr>
<tr>
<td>辛醇</td>
<td>6.6</td>
</tr>
<tr>
<td>壬醇</td>
<td>0.8</td>
</tr>
<tr>
<td>己醇</td>
<td>2.9</td>
</tr>
<tr>
<td>香茅醇</td>
<td>0.9</td>
</tr>
<tr>
<td>香叶醇</td>
<td>1.1</td>
</tr>
<tr>
<td>酮</td>
<td></td>
</tr>
<tr>
<td>黄龙胆酮</td>
<td>3.9</td>
</tr>
<tr>
<td>酸</td>
<td></td>
</tr>
<tr>
<td>香茅酸</td>
<td>1.4</td>
</tr>
<tr>
<td>其他</td>
<td></td>
</tr>
<tr>
<td>N-甲基邻氯苯酸甲酯</td>
<td>25.8</td>
</tr>
<tr>
<td>反式-氧化苎烯</td>
<td>1.9</td>
</tr>
<tr>
<td>顺式-氧化苎烯</td>
<td>2.1</td>
</tr>
<tr>
<td>计</td>
<td>91.8</td>
</tr>
</tbody>
</table>
消臭效果试验

MOO 及制造例 1~6 中得到的脱菌 MOO 级分的消臭效果用下列感官评价方法（气袋法）进行评价。还有，制出通常的桔橙精油作为比较例。

5 臭气袋法：

准备一个容量 405L 的长方体容器（下称为副流烟容器）和从市场购得的大气采集盒，在该容器内壁上部具有与外部连通的带空气袋的软管，在其内壁下部具有插入内部空气吸入口的贯穿孔，其内壁具有安装香烟的器具。大气采集盒，其内容积比 10L 略大，在其内壁下部具有内部空气吸入口，在对着排气孔的内侧壁下部具有排气孔。

在副流烟容器的带空气袋的软管内安装内容积 10L 的空气袋，在大气采集盒的吸入口安装内容积 10L 的采集袋后，把大气采集盒的吸入口插入副流烟容器的贯穿孔。然后，抽吸大气采集盒内部的空气，使该抽出的空气排至安装在容器内的空气袋内，把大气采集盒内的排气孔和副流烟容器的带空气袋的软管，通过真空泵用软管连接，形成封闭体系。

然后，把香烟安装在容器内的香烟安装器具上，使自然燃烧，产生副流烟。

香烟自然燃烧终止后，开动真空泵，使大气采集盒内产生负压，同时，通过向空气袋内的排气而把副流烟容器内加压，于是把含有副流烟容器内的副流烟的空气捕集至采集盒内的采集袋内。

把捕集了含有副流烟的空气的采集袋原样放在内部的采集盒，从副流烟容器内取出，连接到稀释管线上。稀释管线，由用泵把稀空气送至连接在气流末端的臭气袋（容量 3L）的管线，和在该管线上处分枝的、在采集盒的吸入口上连接的支管构成，各管线具有流量调节阀。采集袋内的空气，25 由于用加压泵使采集盒的加压，则通过支线送给臭气袋。

因此，对准备的臭气袋（加以稀释，使每 17m³ 内的 1 支香烟燃烧时的浓度相等）用注射器注入作为评价的香料组合物使其挥发，与未注入香料的臭气袋 2 个 1 组，盲目地提示给评判员，采用 1 对比较法（强制 2 者择 1 法），报告下列评价项目的结果。

30 1. 臭气总强度强的是哪个臭气袋
 2. 臭气小的是哪个臭气袋
3. 烟草臭气强的是哪个硫气袋。

结果是，在评价项目 1~3 各项中，对于评价对象的臭气袋回答的评判员人数，用评判员总人数除所得到的值作为评价结果。因此，对臭气总强度和烟草臭气，数值愈小愈好，对臭味小的，数值愈大愈好。还有，评判员为任意抽出的成人，是对烟草臭气未受过专门训练的普通人。

评价结果见于下表 3。

<table>
<thead>
<tr>
<th>表 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>香料组合物</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>橙精油</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MOO</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MOO-1-1</td>
</tr>
<tr>
<td>MOO-2-1</td>
</tr>
<tr>
<td>MOO-3-1</td>
</tr>
<tr>
<td>MOO-1-2</td>
</tr>
<tr>
<td>MOO-2-2</td>
</tr>
<tr>
<td>MOO-3-2</td>
</tr>
</tbody>
</table>

从表 3 可知，本发明的消臭组合物与比较例相比，即使混合烟草臭气，臭气总强度未明显增加，烟草臭气被更进一步有效消除。

实施例 1：粒状消臭剂

(1)采用制造例 3 中得到的脱胶 MOO 级分 (MOO-3-1)，配制下列表 4 所
示组成的粒状消臭剂用消臭组合物。

表 4

粒状消臭剂用消臭组合物

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-甲基十一碳醛</td>
<td>30</td>
</tr>
<tr>
<td>乙酸苄酯</td>
<td>200</td>
</tr>
<tr>
<td>桉叶油</td>
<td>50</td>
</tr>
<tr>
<td>水杨酸乙酯</td>
<td>40</td>
</tr>
<tr>
<td>乙酸异冰片酯</td>
<td>400</td>
</tr>
<tr>
<td>沉香醇</td>
<td>30</td>
</tr>
<tr>
<td>乙酸沉香醇</td>
<td>50</td>
</tr>
<tr>
<td>MOO-3-1</td>
<td>50</td>
</tr>
<tr>
<td>无水松醇(オーケモスアブソリュート)</td>
<td>30</td>
</tr>
<tr>
<td>异苯基环己醇</td>
<td>20</td>
</tr>
<tr>
<td>乙酰氯松烯</td>
<td>100</td>
</tr>
<tr>
<td>计</td>
<td>1000</td>
</tr>
</tbody>
</table>

5 (II) 在下表 5 所示的(C)的硅胶中添加(B)的丙二醇加以充分搅拌，使丙二酸吸收在硅胶中，在硅胶表面干燥后，添加(A)的消臭组合物，一边充分搅拌一边使吸收在硅胶上，得到粒状消臭剂。

表 5

粒状消臭剂

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)实施例 I(I)的消臭组合物</td>
<td>10</td>
</tr>
<tr>
<td>(B)丙二醇</td>
<td>10</td>
</tr>
<tr>
<td>(C)硅胶 B型</td>
<td>80</td>
</tr>
<tr>
<td>计</td>
<td>100</td>
</tr>
</tbody>
</table>

实施例 2：粒状消臭剂

在下表 6 所示的(C)的硅胶中添加(B)的丙二醇加以充分搅拌，使丙二酸吸收在硅胶中，在硅胶表面干燥后，添加(A)的消臭组合物，一边充分搅拌一边使吸收在硅胶上，得到粒状消臭剂。
表 6

粒状消臭剂

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)MOO-3-1</td>
<td>10</td>
</tr>
<tr>
<td>(B)丙二醇</td>
<td>10</td>
</tr>
<tr>
<td>(C)硅胶 B-型</td>
<td>80</td>
</tr>
<tr>
<td>计</td>
<td>100</td>
</tr>
</tbody>
</table>

实施例3：雾状消臭剂

(1) 采用制造例2中得到的脱醛MOO级分(MOO-2-1)，配制下列表7所示组成的雾状消臭剂用消臭组合物。

表 7

雾状消臭剂用消臭组合物

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-辛烯-3-醇</td>
<td>5</td>
</tr>
<tr>
<td>桉树醇</td>
<td>50</td>
</tr>
<tr>
<td>香豆素</td>
<td>20</td>
</tr>
<tr>
<td>香叶醇</td>
<td>50</td>
</tr>
<tr>
<td>柠檬草油</td>
<td>250</td>
</tr>
<tr>
<td>レボサンドール(高砂香料株式会社制、商品名)</td>
<td>10</td>
</tr>
<tr>
<td>沉香醇</td>
<td>150</td>
</tr>
<tr>
<td>乙酸沉香酯</td>
<td>100</td>
</tr>
<tr>
<td>MOO-2-2</td>
<td>70</td>
</tr>
<tr>
<td>巴西二酸乙烯酯</td>
<td>50</td>
</tr>
<tr>
<td>橙油</td>
<td>75</td>
</tr>
<tr>
<td>松油醇</td>
<td>50</td>
</tr>
<tr>
<td>乙酸硒品酯</td>
<td>120</td>
</tr>
<tr>
<td>计</td>
<td>1000</td>
</tr>
</tbody>
</table>

注：1) (E)-(R)-2-乙基-4-(2,2,3-三甲基-3-环戊烯-1-基)-2-丁烯-1-醇
(II) 将表 8 中所示的 (A) 的 4 成分加以混合，完全溶解后，预先添加至溶解了 (B) 的对羟基苯甲酸甲酯的精制水中，搅拌溶解，得到雾状消臭剂。

表 8

雾状消臭剂

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 实施例 3(I)的消臭组合物</td>
<td></td>
</tr>
<tr>
<td>聚氯乙烯硬化蓖麻油(EO40)</td>
<td>1.0</td>
</tr>
<tr>
<td>聚氯乙烯硬化蓖麻油(EO60)</td>
<td>0.5</td>
</tr>
<tr>
<td>95 %香叶醇换成乙醇</td>
<td>2.5</td>
</tr>
<tr>
<td>(B) 对羟基苯甲酸甲酯</td>
<td>0.1</td>
</tr>
<tr>
<td>精制水</td>
<td>95.4</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

实施例 4: 雾状消臭剂

把下表 9 中所示的 (A) 的 4 成分加以混合，完全溶解后，预先添加至溶解了 (B) 的对羟基苯甲酸甲酯的精制水中，搅拌溶解，得到雾状消臭剂。

表 9

雾状消臭剂

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) MOO-2-1</td>
<td></td>
</tr>
<tr>
<td>聚氯乙烯硬化蓖麻油(EO40)</td>
<td>1.0</td>
</tr>
<tr>
<td>聚氯乙烯硬化蓖麻油(EO60)</td>
<td>0.5</td>
</tr>
<tr>
<td>95 %香叶醇换成乙醇</td>
<td>2.5</td>
</tr>
<tr>
<td>(B) 对羟基苯甲酸甲酯</td>
<td>0.1</td>
</tr>
<tr>
<td>精制水</td>
<td>95.4</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

实施例 5: 水基系消臭剂

(I) 采用制造例 1 中得到的脱油 MOO 级分 (MOO-1-1)，配制下表 10 所示组成的水基状消臭剂用消臭组合物。
表 10

水基系消臭剂用消臭组合物

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>壬醛</td>
<td>1</td>
</tr>
<tr>
<td>香茅醇</td>
<td>380</td>
</tr>
<tr>
<td>β-二氢大马酮</td>
<td>3</td>
</tr>
<tr>
<td>丁香酚</td>
<td>20</td>
</tr>
<tr>
<td>顺式-3-乙烯-1-醇</td>
<td>8</td>
</tr>
<tr>
<td>β-紫罗兰酮</td>
<td>50</td>
</tr>
<tr>
<td>异环柠檬醛</td>
<td>5</td>
</tr>
<tr>
<td>MOO-1-1</td>
<td>25</td>
</tr>
<tr>
<td>乙酸苯乙酯</td>
<td>120</td>
</tr>
<tr>
<td>苯乙醇</td>
<td>205</td>
</tr>
<tr>
<td>玫瑰红氧化物</td>
<td>1</td>
</tr>
<tr>
<td>茶香螺酮</td>
<td>2</td>
</tr>
<tr>
<td>乙酸-叔丁基环己酯</td>
<td>180</td>
</tr>
<tr>
<td>计</td>
<td>1000</td>
</tr>
</tbody>
</table>

(II) 将下表 11 中所示的精制水和丙二醇和氯化钙搅拌至均匀。然后，一边搅拌一边逐渐少量添加角叉菜胶和迷香豆(ローストピーン)胶。然后，边搅拌边加热至 80℃，待混合液变成悬浮液后停止加热，放置冷却。冷却至约 65℃后，添加实施例 5(I) 的水基系消臭剂用消臭组合物和单油酸聚氧乙烯山梨糖醇酐，加以搅拌。然后，于 55℃进行搅拌至该混合物成为悬浮液，得到下表 11 所示组成的水基系凝胶状消臭剂。

表 11

水基系凝胶状消臭剂

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>角叉菜胶</td>
<td>2.0</td>
</tr>
<tr>
<td>迷香豆(ローストピーン)胶</td>
<td>0.4</td>
</tr>
<tr>
<td>对羟基苯甲酸甲酯</td>
<td>0.1</td>
</tr>
<tr>
<td>精制水</td>
<td>88.6</td>
</tr>
<tr>
<td>氯化钙</td>
<td>0.4</td>
</tr>
<tr>
<td>丙二醇</td>
<td>3.0</td>
</tr>
</tbody>
</table>
实施例 5(1)的消臭组合物

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量 (质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>单油酸聚氧乙烯山梨糖醇酐</td>
<td>5.0</td>
</tr>
<tr>
<td>单苯基苯甲酸甲酯</td>
<td>0.5</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

实施例 6：水基系凝胶状消臭剂

把下表 12 中所示的精制水和丙二醇和氯化钙搅拌至均匀。然后，一边搅拌一边逐渐少量添加角叉菜胶和迷香豆胶及对羟基苯甲酸甲酯。然后，边搅拌边加热至 80℃，待混合液变成悬浮液后停止加热，放置冷却。冷却至约 65℃后，添加制造例 1 中制造的脱羧 MOO 级分 (MOO-1-1) 和单油酸聚氧乙烯山梨糖醇酐，加以搅拌。然后，于 55℃进行搅拌至该混合物成为悬浮液，得到下表 12 所示组成的水基系凝胶状消臭剂。

10

表 12

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量 (质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>角叉菜胶</td>
<td>2.0</td>
</tr>
<tr>
<td>迷香豆胶</td>
<td>0.4</td>
</tr>
<tr>
<td>对羟基苯甲酸甲酯</td>
<td>0.1</td>
</tr>
<tr>
<td>精制水</td>
<td>88.6</td>
</tr>
<tr>
<td>氯化钙</td>
<td>0.4</td>
</tr>
<tr>
<td>丙二醇</td>
<td>3.0</td>
</tr>
<tr>
<td>MOO-1-1</td>
<td>5.0</td>
</tr>
<tr>
<td>单油酸聚氧乙烯山梨糖醇酐</td>
<td>0.5</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

实施例 7：油性凝胶状消臭剂

(I) 采用制造例 4 中得到的脱羧 MOO 级分 (MOO-1-2)，配制下表 13 所示组成的油性凝胶状消臭剂用消臭组合物。
表 13

油性凝胶状消臭剂用消臭组合物

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙酸苄酯</td>
<td>400</td>
</tr>
<tr>
<td>二氢香叶醇</td>
<td>20</td>
</tr>
<tr>
<td>二氢茉莉酮酸甲酯</td>
<td>150</td>
</tr>
<tr>
<td>咖啡</td>
<td>10</td>
</tr>
<tr>
<td>乙酸沉香酯</td>
<td>50</td>
</tr>
<tr>
<td>氨基酸甲酯</td>
<td>100</td>
</tr>
<tr>
<td>MOO-1-2</td>
<td>30</td>
</tr>
<tr>
<td>巴西二酸乙烯酯</td>
<td>10</td>
</tr>
<tr>
<td>安息香酸乙酯</td>
<td>100</td>
</tr>
<tr>
<td>橙油</td>
<td>50</td>
</tr>
<tr>
<td>苯基乙醇</td>
<td>30</td>
</tr>
<tr>
<td>乙酸 o-叔丁基环己酯</td>
<td>50</td>
</tr>
<tr>
<td>计</td>
<td>1000</td>
</tr>
</tbody>
</table>

5 (II) 于 80~85℃ 加热搅拌下列表 14 中的所示成分使达均匀，然后，冷却，得到油系凝胶状消臭剂。

表 14

油性凝胶状消臭剂

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>硬脂酸钠</td>
<td>7.5</td>
</tr>
<tr>
<td>精制水</td>
<td>2.0</td>
</tr>
<tr>
<td>己二醇</td>
<td>4.0</td>
</tr>
<tr>
<td>二丁基羟基甲苯</td>
<td>0.2</td>
</tr>
<tr>
<td>d-萜二烯-1,8</td>
<td>76.3</td>
</tr>
<tr>
<td>实施例 7(II)的消臭组合物</td>
<td>10.0</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

10 实施例 8：油性凝胶状消臭剂
将 80~85℃加热搅拌下列表 15 中的所示成分使达均匀，然后，冷却，得到油系凝胶状消臭剂。

表 15

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>硬脂酸钠</td>
<td>7.5</td>
</tr>
<tr>
<td>精制水</td>
<td>2.0</td>
</tr>
<tr>
<td>乙二醇</td>
<td>4.0</td>
</tr>
<tr>
<td>二丁基羟基甲苯</td>
<td>0.2</td>
</tr>
<tr>
<td>d-萜二烯-1,8</td>
<td>76.3</td>
</tr>
<tr>
<td>MOO-1-2</td>
<td>10.0</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

实施例 9：气溶胶状消臭剂

(1) 采用制造例 5 中得到的脱菇 MOO 级分(MOO-2-2)，配制下列表 16 所示组成的气溶胶状消臭剂用消臭组合物。

表 16

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙酸苄酯</td>
<td>50</td>
</tr>
<tr>
<td>水杨酸苄酯</td>
<td>30</td>
</tr>
<tr>
<td>乙酸雪松酯</td>
<td>50</td>
</tr>
<tr>
<td>香茅醇</td>
<td>65</td>
</tr>
<tr>
<td>芳草油</td>
<td>30</td>
</tr>
<tr>
<td>薰衣草油</td>
<td>250</td>
</tr>
<tr>
<td>MOO-2-2</td>
<td>100</td>
</tr>
<tr>
<td>松叶油</td>
<td>150</td>
</tr>
<tr>
<td>迷迭香油</td>
<td>25</td>
</tr>
<tr>
<td>鼠尾草油</td>
<td>150</td>
</tr>
<tr>
<td>乙酸 o-叔丁基环己酯</td>
<td>100</td>
</tr>
<tr>
<td>计</td>
<td>1000</td>
</tr>
</tbody>
</table>
(II) 把示于下表 17 的(A) 拆拌溶解，填充至气溶胶套内，密封后，注入(B)，得到气溶胶状消臭剂。喷射剂使用的是一般在气溶胶状消臭剂中使用的液化丙烷气。

表 17
气溶胶状消臭剂

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 实施例 9(I)的消臭组合物</td>
<td>1.0</td>
</tr>
<tr>
<td>95%香叶醇换成乙醇</td>
<td>48.5</td>
</tr>
<tr>
<td>球状氧化硅</td>
<td>0.5</td>
</tr>
<tr>
<td>(B) 喷射剂(液化丙烷气)</td>
<td>50.0</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

10 实施例 10: 气溶胶状消臭剂

把示于下表 18 的(A) 拆拌溶解，填充至气溶胶套内，密封后，注入(B)，得到气溶胶状消臭剂。喷射剂使用的是一般在气溶胶状消臭剂中使用的液化丙烷气。

表 18
气溶胶状消臭剂

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) MOO-2-2</td>
<td>1.0</td>
</tr>
<tr>
<td>95%香叶醇换成乙醇</td>
<td>48.5</td>
</tr>
<tr>
<td>球状二氧化硅</td>
<td>0.5</td>
</tr>
<tr>
<td>(B) 喷射剂(液化丙烷气)</td>
<td>50.0</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

实施例 11: 香波(洗发剂)

20 (I) 采用制造例 6 中得到的脱脂 MOO 级分(MOO-3-2)，配制下列表 19 所示组成的香波用消臭组合物。
表 19

香波用消臭组合物

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>十二碳醛</td>
<td>4</td>
</tr>
<tr>
<td>乙酸苄酯</td>
<td>40</td>
</tr>
<tr>
<td>α-二氢大马酮</td>
<td>10</td>
</tr>
<tr>
<td>丁香酚</td>
<td>30</td>
</tr>
<tr>
<td>ガラクソリッド(IFC社制、商品名)¹</td>
<td>170</td>
</tr>
<tr>
<td>二氢茉莉酮酸甲酯</td>
<td>100</td>
</tr>
<tr>
<td>ヘリオブーク(高砂香料工业株式会社制、商品名)²</td>
<td>80</td>
</tr>
<tr>
<td>コパノール(高砂香料工业株式会社制、商品名)³</td>
<td>70</td>
</tr>
<tr>
<td>柠檬油</td>
<td>150</td>
</tr>
<tr>
<td>レポサンドール(高砂香料工业株式会社制、商品名)⁴</td>
<td>50</td>
</tr>
<tr>
<td>p-叔丁基-α-甲基氯化肉桂酸乙酯</td>
<td>80</td>
</tr>
<tr>
<td>MOO-3-2</td>
<td>30</td>
</tr>
<tr>
<td>巴西二酸乙烯酯</td>
<td>35</td>
</tr>
<tr>
<td>苯基乙醇</td>
<td>100</td>
</tr>
<tr>
<td>松香醇</td>
<td>50</td>
</tr>
<tr>
<td>香子兰醛</td>
<td>1</td>
</tr>
<tr>
<td>计</td>
<td>1000</td>
</tr>
</tbody>
</table>

注: 1) 1,3,4,6,7,8-六氢-4,6,6,7,8,8-六甲基环戊-γ-2-苯并吡喃
2) 2-甲基-3-(3,4-亚甲基二氧苯基)-丙醛
3) 4(3)-(4-羟基-4-甲基戊基)-3-环已烯-1-羰基乙醛
4) (E)-(R)-2-乙基-4-(2,2,3-三甲基-3-环已烯-1-基)-2-丁烯-1-醇

(II) 把下表 20 所示的成分于 80℃搅拌，制成悬浮液，然后，冷却至 35℃，得到香波（洗发）。

24
表 20

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>月桂基硫酸钠</td>
<td>40.00</td>
</tr>
<tr>
<td>N-椰子油脂肪酸酰基-N-羧基甲氧基乙基</td>
<td>10.00</td>
</tr>
<tr>
<td>羧甲基乙烯二胺二钠</td>
<td></td>
</tr>
<tr>
<td>椰子油脂肪酸二乙醇酰胺(2)</td>
<td>2.00</td>
</tr>
<tr>
<td>丁二醇</td>
<td>2.00</td>
</tr>
<tr>
<td>柠檬酸</td>
<td>0.35</td>
</tr>
<tr>
<td>氯化钠</td>
<td>0.10</td>
</tr>
<tr>
<td>对羟基苯甲酸甲酯</td>
<td>0.20</td>
</tr>
<tr>
<td>对羟基苯甲酸丙酯</td>
<td>0.10</td>
</tr>
<tr>
<td>依地酸四钠</td>
<td>0.10</td>
</tr>
<tr>
<td>精制水</td>
<td>44.65</td>
</tr>
<tr>
<td>实施例 11(1)的消臭组合物</td>
<td>0.50</td>
</tr>
<tr>
<td>计</td>
<td>100.00</td>
</tr>
</tbody>
</table>

5

实施例 12: 香波

把下表 21 所示的成分于 80℃搅拌，制成悬浊液，然后，冷却至 35℃，得到香波。

表 21

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>月桂基硫酸钠</td>
<td>40.00</td>
</tr>
<tr>
<td>N-椰子油脂肪酸酰基-N-羧基甲氧基乙基</td>
<td></td>
</tr>
<tr>
<td>羧甲基乙烯二胺二钠</td>
<td>10.00</td>
</tr>
<tr>
<td>椰子油脂肪酸二乙醇酰胺(2)</td>
<td>2.00</td>
</tr>
<tr>
<td>丁二醇</td>
<td>2.00</td>
</tr>
<tr>
<td>柠檬酸</td>
<td>0.35</td>
</tr>
<tr>
<td>氯化钠</td>
<td>0.10</td>
</tr>
<tr>
<td>对羟基苯甲酸甲酯</td>
<td>0.20</td>
</tr>
<tr>
<td>对羟基苯甲酸丙酯</td>
<td>0.10</td>
</tr>
<tr>
<td>依地酸四钠</td>
<td>0.10</td>
</tr>
<tr>
<td>精制水</td>
<td>44.65</td>
</tr>
<tr>
<td>MOO-3-2</td>
<td>0.50</td>
</tr>
<tr>
<td>计</td>
<td>100.00</td>
</tr>
</tbody>
</table>
实施例 13: 洗澡香波

(I) 采用制造例 3 中得到的脱肠 MOO 级分(MOO-3-1)，配制下表 22 所示组成的洗澡香波用消臭组合物。

表 22

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量 (质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>十二碳醇</td>
<td>50</td>
</tr>
<tr>
<td>カロン(ワサイヤー商品名)</td>
<td>5</td>
</tr>
<tr>
<td>春黄菊油</td>
<td>2</td>
</tr>
<tr>
<td>二氢茉莉酮酸甲酯</td>
<td>100</td>
</tr>
<tr>
<td>ヘルオブーク (高砂香料工业株式会社、商品名)</td>
<td>80</td>
</tr>
<tr>
<td>沉香醇</td>
<td>60</td>
</tr>
<tr>
<td>MOO-3-1</td>
<td>100</td>
</tr>
<tr>
<td>巴西二酸乙烯酯</td>
<td>95</td>
</tr>
<tr>
<td>10- 十六烷酯</td>
<td>50</td>
</tr>
<tr>
<td>异环己基醇</td>
<td>50</td>
</tr>
<tr>
<td>四氢沉香醇</td>
<td>58</td>
</tr>
<tr>
<td>トナリド(PFW 社、商品名)</td>
<td>120</td>
</tr>
<tr>
<td>トウナール (高砂香料工业株式会社、商品名)</td>
<td>10</td>
</tr>
<tr>
<td>ファラール (IFF 社、商品名)</td>
<td>20</td>
</tr>
<tr>
<td>乙酸 p-叔丁基环己酯</td>
<td>200</td>
</tr>
<tr>
<td>计</td>
<td>1000</td>
</tr>
</tbody>
</table>

注: 1) 7-甲基-3, 5-二氢-2H-苯并二氧杂七环-3-酮
2) 2-甲基-3-(3, 4-亚甲基二氧苯基)丙醛
3) 6-乙酰基-1, 1, 2, 4, 4, 7-六甲基四氢萘
4) 4-(4-甲基-3-戊烯基)-3-环己烯-1-卡巴醇
5) 2, 4-二甲基-3-环己烯羧基乙醛

(II) 把下表 23 所示的成分于 80℃搅拌，制成悬浊液，然后，冷却至 35℃，得到洗澡用香波。
表 23

洗涤香波

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>二丁基羟基甲基苄基</td>
<td>0.05</td>
</tr>
<tr>
<td>对羟基苯甲酸甲酯</td>
<td>0.10</td>
</tr>
<tr>
<td>对羟基苯甲酸丙酯</td>
<td>0.10</td>
</tr>
<tr>
<td>依他酸四钠</td>
<td>0.10</td>
</tr>
<tr>
<td>氯化钾</td>
<td>0.20</td>
</tr>
<tr>
<td>甘油</td>
<td>5.00</td>
</tr>
<tr>
<td>椰子油脂肪酸二乙醇酰胺(2)</td>
<td>3.00</td>
</tr>
<tr>
<td>聚氧乙烯月桂醚酰酸钠(3E. O.)(30%)</td>
<td>10.00</td>
</tr>
<tr>
<td>椰子油脂肪酸酰胺丙基甜菜碱(34%)</td>
<td>25.00</td>
</tr>
<tr>
<td>ミルシチン酸钾(40%)</td>
<td>25.00</td>
</tr>
<tr>
<td>精制水</td>
<td>30.95</td>
</tr>
<tr>
<td>实施例 13(I)的消臭组合物</td>
<td>0.50</td>
</tr>
<tr>
<td>计</td>
<td>100.00</td>
</tr>
</tbody>
</table>

5

实施例 14：洗涤香波

把下表 24 中所示的成分于 80℃搅拌，制成悬浮液，然后，冷却至 35℃，得到洗涤用香波。

表 24

洗涤香波

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>二丁基羟基甲基苄基</td>
<td>0.05</td>
</tr>
<tr>
<td>对羟基苯甲酸甲酯</td>
<td>0.10</td>
</tr>
<tr>
<td>对羟基苯甲酸丙酯</td>
<td>0.10</td>
</tr>
<tr>
<td>依他酸四钠</td>
<td>0.10</td>
</tr>
<tr>
<td>氯化钾</td>
<td>0.20</td>
</tr>
<tr>
<td>甘油</td>
<td>5.00</td>
</tr>
<tr>
<td>椰子油脂肪酸二乙醇酰胺(2)</td>
<td>3.00</td>
</tr>
<tr>
<td>聚氧乙烯月桂醚酰酸钠(3E. O.)(30%)</td>
<td>10.00</td>
</tr>
<tr>
<td>椰子油脂肪酸酰胺丙基甜菜碱(34%)</td>
<td>25.00</td>
</tr>
<tr>
<td>ミルシチン酸钾(40%)</td>
<td>25.00</td>
</tr>
<tr>
<td>精制水</td>
<td>30.95</td>
</tr>
<tr>
<td>MOO-3-1</td>
<td>0.50</td>
</tr>
<tr>
<td>计</td>
<td>100.00</td>
</tr>
</tbody>
</table>
实施例 15：染发液

(I) 采用制造例 2 中得到的脱脂 MOO 级分 (MOO-2-1)，配制下列表 25 所示组成的染发液用消臭组合物。

表 25

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量（质量份数）</th>
</tr>
</thead>
<tbody>
<tr>
<td>十一碳醛</td>
<td>5</td>
</tr>
<tr>
<td>乙酸苄酯</td>
<td>100</td>
</tr>
<tr>
<td>香茅醇</td>
<td>100</td>
</tr>
<tr>
<td>香豆素</td>
<td>10</td>
</tr>
<tr>
<td>二氢茉莉酮酸甲酯</td>
<td>240</td>
</tr>
<tr>
<td>胡椒醛</td>
<td>80</td>
</tr>
<tr>
<td>イソ・イー・スーパー (IFF 社，商品名)(^1)</td>
<td>60</td>
</tr>
<tr>
<td>柠檬油</td>
<td>55</td>
</tr>
<tr>
<td>レボサンドール (高砂香料工业株式会社，商品名)(^2)</td>
<td>30</td>
</tr>
<tr>
<td>MOO-2-1</td>
<td>30</td>
</tr>
<tr>
<td>エチレン巴西二酸乙烯酯</td>
<td>200</td>
</tr>
<tr>
<td>スザラール (高砂香料工业株式会社，商品名)(^3)</td>
<td>10</td>
</tr>
<tr>
<td>香子兰醛</td>
<td>10</td>
</tr>
<tr>
<td>乙酸 -p- 叔丁基环己酯</td>
<td>80</td>
</tr>
</tbody>
</table>

计 1000

注：1) 7-乙酰基 -1, 2, 3, 4, 5, 6, 7, 8-八氢 -1, 1, 6, 7-四甲基萘
2) (E)-(R)-2-乙基-4-(2, 2, 3-三甲基 -3-环丙烯 -1-基)-2-丁烯-1-醇
3) p-异丁基 -α-甲基氯化肉桂醛

(II) 把下表 26 所示的成分于 80℃下加热搅拌达到均质，然后，冷却至35℃，得到染发液。
表26

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>氯化O-[2-羟基-3-(三甲基铵)丙基]羟乙基纤维素</td>
<td>0.10</td>
</tr>
<tr>
<td>氢氧化钠</td>
<td>0.03</td>
</tr>
<tr>
<td>柠檬酸</td>
<td>0.05</td>
</tr>
<tr>
<td>对羟基苯甲酸甲酯</td>
<td>0.20</td>
</tr>
<tr>
<td>对羟基苯甲酸丙酯</td>
<td>0.10</td>
</tr>
<tr>
<td>聚氧乙烯十六烷基四乙基铝(10E.O.)</td>
<td>0.50</td>
</tr>
<tr>
<td>十六烷醇</td>
<td>1.50</td>
</tr>
<tr>
<td>山醇</td>
<td>3.00</td>
</tr>
<tr>
<td>氯化二硬脂基二甲基铵(90%)</td>
<td>0.20</td>
</tr>
<tr>
<td>氯化硬脂基三甲基铵(50%)</td>
<td>1.50</td>
</tr>
<tr>
<td>2-乙基己酸十六烷酯</td>
<td>0.50</td>
</tr>
<tr>
<td>甲基聚硅氧烷</td>
<td>2.00</td>
</tr>
<tr>
<td>实施例15(I)的消臭组合物</td>
<td>0.50</td>
</tr>
<tr>
<td>精制水</td>
<td>89.82</td>
</tr>
<tr>
<td>计</td>
<td>100.00</td>
</tr>
</tbody>
</table>

5. 实施例16：染发液

将下表27中所示的成分于80℃搅拌均匀，然后，冷却至35℃，得到染发液。
表 27

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>盐化 O-[2-羟基-3-(三甲基铵)丙基]羟乙基纤维素</td>
<td>0.10</td>
</tr>
<tr>
<td>氯氧化钠</td>
<td>0.03</td>
</tr>
<tr>
<td>柠檬酸</td>
<td>0.05</td>
</tr>
<tr>
<td>对羟基苯甲酸甲酯</td>
<td>0.20</td>
</tr>
<tr>
<td>对羟基苯甲酸丙酯</td>
<td>0.10</td>
</tr>
<tr>
<td>聚氧乙烯十六烷基四乙基铅(10E.O.)</td>
<td>0.50</td>
</tr>
<tr>
<td>十六烷醇</td>
<td>1.50</td>
</tr>
<tr>
<td>山 醇</td>
<td>3.00</td>
</tr>
<tr>
<td>氯化二硬脂酸基二甲基铵(90%)</td>
<td>0.20</td>
</tr>
<tr>
<td>氯化硬脂酸基三甲基铵(50%)</td>
<td>1.50</td>
</tr>
<tr>
<td>2-乙基己酸十六烷酯</td>
<td>0.50</td>
</tr>
<tr>
<td>甲基聚硅氧烷</td>
<td>2.00</td>
</tr>
<tr>
<td>MOO-2-1</td>
<td>0.50</td>
</tr>
<tr>
<td>精制水</td>
<td>89.82</td>
</tr>
<tr>
<td>计</td>
<td>100.00</td>
</tr>
</tbody>
</table>

5

实施例 17：酸奶糖果

(1)采用制造例 3 中得到的脱醛 MOO 级分(MOO-3-1)，配制下列表 28 所示组成的酸奶香味增强剂。

表 28

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙基香子兰醛</td>
<td>2.0</td>
</tr>
<tr>
<td>香子兰醛</td>
<td>4.0</td>
</tr>
<tr>
<td>柠檬油</td>
<td>15.0</td>
</tr>
<tr>
<td>橙油</td>
<td>38.0</td>
</tr>
<tr>
<td>柠檬无萜烯油</td>
<td>1.0</td>
</tr>
<tr>
<td>MOO-3-1</td>
<td>2.0</td>
</tr>
<tr>
<td>乳剂基(高砂香料工业株式会社制)</td>
<td>20.0</td>
</tr>
<tr>
<td>酯剂基(高砂香料工业株式会社制)</td>
<td>16.0</td>
</tr>
<tr>
<td>酸剂基(高砂香料工业株式会社制)</td>
<td>2.0</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>
(II) 采用实施例 17(I) 中配制的酸奶糖香味增强剂，配制下表 29 中所示组成的酸奶糖。

表 29

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>砂糖</td>
<td>540.0</td>
</tr>
<tr>
<td>水饴</td>
<td>480.0</td>
</tr>
<tr>
<td>精制水</td>
<td>160.0</td>
</tr>
<tr>
<td>植物性硬化油</td>
<td>20.0</td>
</tr>
<tr>
<td>卵磷脂</td>
<td>0.2</td>
</tr>
<tr>
<td>全脂炼乳</td>
<td>50.0</td>
</tr>
<tr>
<td>发酵乳浆</td>
<td>25.0</td>
</tr>
<tr>
<td>实施例 17(I)的酸奶增香剂</td>
<td>1.0</td>
</tr>
</tbody>
</table>

实施例 18：漱口剂

(1) 采用制造例 1 中得到的脱脂 MOO 级分(MOO-1-1)，配制下列表 30 中所示组成的漱口剂用香味增强剂。

表 30

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-薄荷醇</td>
<td>50.0</td>
</tr>
<tr>
<td>薄荷油トツブカット</td>
<td>20.0</td>
</tr>
<tr>
<td>桉叶油</td>
<td>10.0</td>
</tr>
<tr>
<td>MOO-1-1</td>
<td>10.0</td>
</tr>
<tr>
<td>苤香脑</td>
<td>6.0</td>
</tr>
<tr>
<td>鼠尾草油</td>
<td>2.0</td>
</tr>
<tr>
<td>丁香酚</td>
<td>1.0</td>
</tr>
<tr>
<td>苤香油</td>
<td>0.8</td>
</tr>
<tr>
<td>麝香油</td>
<td>0.2</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>
(II)采用实施例 18(I)中配制的漱口剂用增香剂，配制下表 31 中所示组成的洗口剂。

表 31

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% 乙醇</td>
<td>15.00</td>
</tr>
<tr>
<td>70% 山梨糖醇液</td>
<td>10.00</td>
</tr>
<tr>
<td>聚氧乙烯硬质蓖麻籽油(EO60)</td>
<td>2.00</td>
</tr>
<tr>
<td>实施例 18(I)的漱口用增香剂</td>
<td>0.10</td>
</tr>
<tr>
<td>安息香酸钠</td>
<td>0.05</td>
</tr>
<tr>
<td>糖精钠</td>
<td>0.02</td>
</tr>
<tr>
<td>精制水</td>
<td>72.83</td>
</tr>
<tr>
<td>计</td>
<td>100.00</td>
</tr>
</tbody>
</table>

实施例 19: 牙粉

(I)采用制造例 3 中得到的脱脂 MOO 级分(MOO-3-1)，配制下表 32 中所示组成的牙膏增香剂。

表 32

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>薄荷油</td>
<td>35.0</td>
</tr>
<tr>
<td>1-薄荷醇</td>
<td>25.0</td>
</tr>
<tr>
<td>留兰香油</td>
<td>10.0</td>
</tr>
<tr>
<td>MOO-3-1</td>
<td>10.0</td>
</tr>
<tr>
<td>茴香脑</td>
<td>8.0</td>
</tr>
<tr>
<td>无硫橙油</td>
<td>5.0</td>
</tr>
<tr>
<td>丁子香油</td>
<td>5.0</td>
</tr>
<tr>
<td>柠檬油</td>
<td>2.0</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>
(II)采用实施例 19(I)中配制的牙膏增香剂，配制下表 33 中所示组成的牙粉。

表 33

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>磷酸氢钙(第 2 磷酸钙)</td>
<td>50.00</td>
</tr>
<tr>
<td>甘油</td>
<td>25.00</td>
</tr>
<tr>
<td>羧甲基纤维素钠</td>
<td>1.50</td>
</tr>
<tr>
<td>月桂基硫酸钠</td>
<td>1.40</td>
</tr>
<tr>
<td>实施例 19(I)的牙膏香料</td>
<td>1.00</td>
</tr>
<tr>
<td>糖精钠</td>
<td>0.20</td>
</tr>
<tr>
<td>安息香酸钠</td>
<td>0.05</td>
</tr>
<tr>
<td>精制水</td>
<td>20.85</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

实施例 20：口含剂

(I)采用制造例 2 中得到的脱翅 MOO 级分(MOO-2-1)，配制下表 34 中所示组成的口含清新增香剂。

表 34

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-薄荷醇</td>
<td>50.0</td>
</tr>
<tr>
<td>冷榨柠檬油</td>
<td>15.0</td>
</tr>
<tr>
<td>薄荷油</td>
<td>10.0</td>
</tr>
<tr>
<td>1, 8-桉树叶脑</td>
<td>5.0</td>
</tr>
<tr>
<td>柠檬油</td>
<td>5.0</td>
</tr>
<tr>
<td>MOO-2-1</td>
<td>5.0</td>
</tr>
<tr>
<td>乙醇</td>
<td>10.0</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

(II)采用实施例 20(I)中配制的口含清新增香剂，配制下表 35 中所示
组成的口含剂。

表 35

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量 (质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% 乙醇</td>
<td>50.0</td>
</tr>
<tr>
<td>甘油</td>
<td>10.0</td>
</tr>
<tr>
<td>聚氯乙烯硬化蓖麻籽油 (EO60)</td>
<td>2.0</td>
</tr>
<tr>
<td>实施例 20(I)的口感清新型增香剂</td>
<td>1.5</td>
</tr>
<tr>
<td>糖精钠</td>
<td>0.2</td>
</tr>
<tr>
<td>精制水</td>
<td>36.3</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

实施例 21：口香糖

(1) 采用制造例 6 中得到的脱脂 MOO 级分 (MOO-3-2)，配制下列表 36 中所示组成的口香糖用增香剂。

表 36

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量 (质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOO-3-2</td>
<td>5.0</td>
</tr>
<tr>
<td>薄荷油</td>
<td>44.5</td>
</tr>
<tr>
<td>留兰香油</td>
<td>10.0</td>
</tr>
<tr>
<td>1-薄荷醇</td>
<td>5.0</td>
</tr>
<tr>
<td>水杨酸甲酯</td>
<td>5.0</td>
</tr>
<tr>
<td>桉叶油</td>
<td>10.0</td>
</tr>
<tr>
<td>丁子香油</td>
<td>0.5</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

(II) 采用实施例 21(I) 中配制的口香糖用增香剂，配制下表 37 中所示组成的口香糖。
表 37

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>胶基</td>
<td>20</td>
</tr>
<tr>
<td>糖粉</td>
<td>66</td>
</tr>
<tr>
<td>水饴</td>
<td>13</td>
</tr>
<tr>
<td>实施例 21(I)的口香糖用增香剂</td>
<td>1</td>
</tr>
<tr>
<td>计</td>
<td>100</td>
</tr>
</tbody>
</table>

5

实施例 22: 片状糖果点心

(I) 采用制造例 3 中得到的脱脂 MOO 馏分(MOO-3-1)，配制下列表 38 中所示组成的片状糖果点心用增香剂。

表 38

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOO-3-1</td>
<td>1</td>
</tr>
<tr>
<td>1-薄荷醇</td>
<td>17</td>
</tr>
<tr>
<td>薄荷油</td>
<td>1</td>
</tr>
<tr>
<td>檀叶油</td>
<td>1</td>
</tr>
<tr>
<td>阿拉伯胶</td>
<td>80</td>
</tr>
<tr>
<td>计</td>
<td>100</td>
</tr>
</tbody>
</table>

(II) 采用实施例 22(I)中配制的片状糖果点心用增香剂，配制下表 39 中所示组成的片状糖果点心。

表 39

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量(质量份数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>砂糖</td>
<td>98</td>
</tr>
<tr>
<td>润滑剂、乳化剂</td>
<td>1</td>
</tr>
<tr>
<td>实施例 22(I)的片状糖果点心用增香剂</td>
<td>1</td>
</tr>
<tr>
<td>计</td>
<td>100</td>
</tr>
</tbody>
</table>
实施例 23：明胶胶囊用增香剂

(I) 采用制造例 3 中得到的脱菇 MOO 级分 (MOO-3-1)，配制下列表 40 中所示组成的明胶胶囊用增香剂。

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量 (质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>薄荷油</td>
<td>55</td>
</tr>
<tr>
<td>MOO-3-1</td>
<td>5</td>
</tr>
<tr>
<td>中链脂肪酸甘油酯 (MCT)</td>
<td>40</td>
</tr>
<tr>
<td>计</td>
<td>100</td>
</tr>
</tbody>
</table>

(II) 采用实施例 23(I) 中配制的明胶胶囊用增香剂，配制下表 41 中所示组成的明胶胶囊基剂。

表 41

<table>
<thead>
<tr>
<th>成分</th>
<th>配合量 (质量分数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>明胶</td>
<td>5.0</td>
</tr>
<tr>
<td>精制水</td>
<td>94.9</td>
</tr>
<tr>
<td>实施例 23(I)的明胶胶囊用增香剂</td>
<td>0.1</td>
</tr>
<tr>
<td>计</td>
<td>100.0</td>
</tr>
</tbody>
</table>

上述实施例中配制的粒状消臭剂 (实施例 1~2)、雾状消臭剂 (实施例 3~4)、水基系凝胶状消臭剂 (实施例 5~6)、油性凝胶状消臭剂 (实施例 7~8)、气溶胶状消臭剂 (实施例 9~10)、香波 (实施例 11~12)、洗液香波 (实施例 13~14)、染发剂 (实施例 15~16)、酸奶糖 (实施例 17)、洗口剂 (实施例 18)、牙粉 (实施例 19)、口含剂 (实施例 20)、口香糖 (实施例 21)、片状糖果点心 (实施例 22) 以及明胶胶囊基剂 (实施例 23)，这些对烟草副流烟的消臭效果和使用感的评价结果是，任何一种的消臭效果都优良，使用感也良好。

实施例 24~30
把制造例 1~6 中得到的各种香料，采用通常的赋香技术以下表 42 中所
示量添加至烟丝中，采用同样的卷烟纸进行卷绕，制成各种调合香料的所
需支数的香烟。采用同样操作，制作添加了 MOO 的香烟。另外，除不添加
这些香料以外，完全同样进行操作，制造所要支数的对照香烟。还有，作
为比较例，制造添加了柑桔精油的香烟。

对这样制造的香烟，采用下列房间法进行副流程臭气的评价。

房间法

准备二间（A 室，B 室）除了人进出的 1 个门以外的密闭房间（地板面积：
31m²，容量：85m³）。在门关闭的状态下，A 室内使对照香烟 5 支自然燃
烧。另一方面，在门关闭的状态下使作为评价对象的香烟 5 支自然燃烧。
把评判员分成 2 组，1 组全体成员同时进入 A 室，出 A 室后进入 B 室，出
B 室后按下列项目报告结果。另 1 组全体成员同时进入 B 室，从 B 室出来
后，进入 A 室，从 A 室出来后按下列评价项目报告结果。

1. 臭气总强度强的是哪个房间
2. 臭气总强度弱的是哪个房间
3. 烟草臭气强的是哪个房间。

结果是，在评价项目 1~3 各项中，把用评判员总数除对 B 室（作为评价
对象的香烟自然燃烧的房间）回答的评判员数所得到的值作为评价结果。因
此，关于臭气总强度和烟草臭味，数值愈小愈优良，关于臭气值改善的程
度，数值愈大愈优良。还有，评判员是任意抽到的成人，是对烟草臭气未
受过专门训练的普通人。

将结果一并示于表 42 中。
表 42

<table>
<thead>
<tr>
<th>实施例 No.</th>
<th>香料组成物</th>
<th>香料添加量(μg)</th>
<th>添加部位</th>
<th>香烟</th>
<th>评价结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>比较例</td>
<td>柠檬醇</td>
<td>13000</td>
<td>烟丝</td>
<td>0.8</td>
<td>0.70</td>
</tr>
<tr>
<td>实施例 1</td>
<td>MOO</td>
<td>13000</td>
<td>烟丝</td>
<td>0.46</td>
<td>0.71</td>
</tr>
<tr>
<td>实施例 2</td>
<td>MOO-1-1</td>
<td>1000</td>
<td>烟丝</td>
<td>0.52</td>
<td>0.74</td>
</tr>
<tr>
<td>实施例 3</td>
<td>MOO-2-1</td>
<td>500</td>
<td>烟丝</td>
<td>0.43</td>
<td>0.70</td>
</tr>
<tr>
<td>实施例 4</td>
<td>MOO-3-1</td>
<td>500</td>
<td>烟丝</td>
<td>0.47</td>
<td>0.73</td>
</tr>
<tr>
<td>实施例 5</td>
<td>MOO-1-2</td>
<td>1000</td>
<td>烟丝</td>
<td>0.50</td>
<td>0.80</td>
</tr>
<tr>
<td>实施例 6</td>
<td>MOO-2-2</td>
<td>500</td>
<td>烟丝</td>
<td>0.47</td>
<td>0.80</td>
</tr>
<tr>
<td>实施例 7</td>
<td>MOO-3-2</td>
<td>500</td>
<td>烟丝</td>
<td>0.43</td>
<td>0.83</td>
</tr>
</tbody>
</table>

从表 42 所示结果可知，负载了本发明的副流烟气降低剂的香烟，与对照的香烟相比，臭气总强度实质上未增加，改善了臭气，烟草臭气的强度被降低。