Title: BLOW MOLDED PALLET WITH PRE-FORMED INSERTS

Abstract: A pallet system includes a pallet body. The pallet body is formed from a first, independently formed first portion and a second blow molded second upper portion insert molded to the first portion. The pallet body may have two to eight recesses for forklift truck fork access. The second upper portion has a generally rectangular surface for carrying loads. The portions may have anti-skid properties, for example, a knurled topside surface or rubber coated bottom. At least one foot is attached to the second upper portion by insert molding. At least one runner may be attached to each foot to form part of the first portion. At least one stringer is attached to each runner to add further stability to the pallet. The runners and feet have channels or protruding members to effectively mate with the second upper portion.

Published:
without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
BLOW MOLDED PALLET WITH PRE-FORMED INSERTS
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates in general to the field of plastics. More particularly, the present invention relates to a pallet system and a pallet apparatus and a method of pallet manufacturing. Specifically, one preferred embodiment of the present invention relates to blow molding a first pallet piece and then inserting it into another mold to join it to a second blow molded pallet piece.

2. Discussion of the Related Art

Pallets are used for transporting and storing various types of cargo throughout the world. Therefore, it is important for a pallet to be lightweight, compact and strong. Traditionally pallets were made of wood. However, plastic pallets are now being used with increased frequency, as they are lightweight, generally stronger, do not absorb moisture, and they can be cleaned and disinfected which is important in particular for the food industry. One disadvantage of plastic pallets is that they tend to break up with continued use over time. Therefore, for these and other various reasons it is important that plastic pallets be reinforced by a variety of means.

The below-referenced U.S. patents disclose embodiments that were at least in-part satisfactory for the purposes for which they were intended. The disclosures of all the below-referenced prior United States patents, in their entireties, are hereby expressly incorporated by reference into the present application for purposes including, but not limited to, indicating the background of the present invention and illustrating the state of the art.

U.S. Patent No. 5,417,167 discloses a plastic shipping pallet of the type usually manufactured from wood which is made of hollow plastic stringers and deck boards. The stringers and deck boards are made of plastic materials that may be either virgin plastic, recycled plastics or mixes. The stringers and deck boards are hollow but have closed ends to prevent entry of dirt, fluids, insects and vermin. The stringers and deck boards may be made in a blow molding process or using continuous extrusion and molding processes similar to that used in the manufacture of corrugated pipe. Various connection configurations for affixing the deck boards to the stringers are described including fixation by screws as well as interlocking connections between the plastic parts themselves and the use of separate interlocking components which engage the deck board and stringers.
U.S. Patent No. 5,845,588 discloses a pallet fabricated of a thermoplastic material which is produced by joining together individually fabricated structural components, each of which is individually thermoformed from an extruded plastic parison of a multilayer structure. The structural components include a deck in the form of a continuous sheet with longitudinal and transverse sides, one or more upper runner components fastened by their top side to the bottom of the deck, each of which includes a cross member with downward-facing posts, and one or more lower runner components, each of which includes a cross member with upward-facing posts and which is fastened by the tops of its posts to the bottoms of matching posts on the corresponding upper runner components.

U.S. Patent No. 5,868,080 discloses a reinforced plastic pallet construction and assembly method wherein multiple reinforcing bars are employed. At least some of the reinforcing bars have an exposed surface at a topside surface, underneath surface or underside surface of the pallet. In addition to functioning as a reinforcing member, the exposed surfaces of the reinforcing bars comprise an anti-skid surface for maintaining positioning of payload on the pallet or facilitating transport of the pallet, e.g., via a forklift or automated transport system. Various techniques for retaining the reinforcing bars within channels formed in the plastic pallet body are described. The reinforcing bars preferably comprise composite structural members of fiberglass reinforced plastic fabricated from a pultrusion process.

U.S. Patent No. 6,209,464 discloses a pallet that includes a rectangular support deck having a substantially planar upper supporting surface including a plurality of channels formed therein and extending across the pallet. The deck includes support members extending from an underside of the deck that nest in recesses formed in the upper surface of the deck. An alignment portion is formed at a center point along the first edge of the deck and a second alignment portion is formed at a center point of an opposed edge of the deck. The alignment portion includes angled sides for receiving a tapered member of a complementary device.

SUMMARY AND OBJECTS OF THE INVENTION

It is one object of the present invention to provide a light-weight and compact yet more durable pallet. It is another object of the invention to use 100% recycled plastic in construction of the pallet to provide a cleaner environment. It is still another object of the invention to have a pallet with improved weight to strength ratio. It is yet another object to provide a pallet that is stackable and nestable with other pallets. It another object of
the invention to provide a pallet of varying colors that is inexpensive to produce and easy
to manufacture using largely recycled materials.

Another object of the invention is to provide a pallet that is more ruggedized and
reliable, thereby decreasing down time and operating costs. Another object of the
invention is to provide a pallet that has one or more of the characteristics discussed above
but which is relatively easy to assemble using a minimum of equipment. Another object
of the invention is to provide a process of manufacture that is predictable and
reproducible, thereby decreasing variance and operating costs. Another object of the
invention is to provide a method that has one or more of the characteristics discussed
above but which is relatively simple to setup and operate using relatively low skilled
workers.

In accordance with one aspect of the invention, the inventive pallet system has a
pallet body which has a separately formed lower or pallet stabilizing portion (i.e., a first
portion) and a separately blow molded upper or load bearing portion (i.e., a second
portion) connected to the first portion. The pallet body preferably has four recesses for
four-way fork access. The second or upper portion may have a non-slip topside surface,
e.g., a knurled surface. The first portion is preferably made up of at least one foot which
is attached to the second portion by insert molding, one rail or runner attached to the foot,
and one stringer attached to the runner. In one embodiment, the first portion includes a
plurality of feet secondly molded into the second or load bearing portion. The runners
preferably have a ridge or protruding member for engagement with the foot, and the foot
preferably includes a channel for engagement with the load bearing portion. The load
bearing and pallet stabilizing portions may be pocketed, have waffle configuration, or
honeycomb configuration for added weight to strength ratio. The pockets have at least
one of the following shapes: triangular, circular, square, oval, rectangular, hexagonal, and
octagonal. The second or load carrying portion may also contain at least one cavity
and/or perimeter lip on a topside surface for receiving a pallet stabilizing surface of
another pallet in a nesting or stacking arrangement. The feet and the runners are shaped
like at least one of the following: triangle, square, rectangle, parallelogram, and

trapezoid. Alternatively, the foot is frustoconical or pyramidal shaped. Ribs may also
provide attachment of the second upper portion to the runner.

Other features of the upper or load bearing portion include an end cap to cover the
fork receiving recesses, and a cavity cover for covering the nesting cavities when not in
use. The pallet further preferably has at least one handle hole for ease of carrying by a
user. The pallet and all of its parts may be constructed of various suitable types of moldable materials, such as recycled HDPE plastic, having a wide variety of colors.

The pallet system may further include: (a) a load identification system including at least one of the following bar coding, hot stamping, molding in a logo, affixing a card holder, and tagging with tape; (b) a top cap; and (c) tie members for securing the cap to at least one pallet body.

In accordance with another aspect of the invention, the inventive method of manufacturing a pallet preferably includes the steps of inserting the pallet stabilizing portion into a mold (such as a plastic, metal or wood rod) and then blow molding around the insert a load bearing portion. In one embodiment, the method of forming a plastic pallet preferably has the steps of: a) forming a first runner; b) forming a second runner; c) forming a third runner; d) inserting the runners into a mold; e) blow molding a load bearing portion in a manner which engages the runners to form a pallet; f) ejecting the pallet from the mold; g) allowing the pallet to cool before stacking them. The runners may be put into the mold by an automated arm and held in place by a spring biased or other type of clamp during the blow molding of the load bearing portion. Reinforcing members may also be inserted during this process. The members are preferably rolled steel rods that are inserted into channels in the second portion while this portion is cooling.

These and other aspects and objects of the present invention will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. It should be understood, however, that the following description, while indicating preferred embodiments of the present invention, is given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.

BRIEF DESCRIPTION OF THE DRAWINGS

A clear conception of the advantages and features constituting the present invention, and of the construction and operation of typical mechanisms provided with the present invention, will become more readily apparent by referring to the exemplary, and therefore non-limiting, embodiments illustrated in the drawings accompanying and forming a part of this specification, wherein like reference numerals designate the same elements in the several views, and in which:
Fig. 1 is a perspective underside view of one embodiment of the pallet system of the present invention;

Fig. 2 is a perspective view of the pallet runner shown in Fig. 1 of the present invention;

Fig. 3 is a perspective topside view of Fig. 1 of the present invention;
Fig. 4 is a perspective view of another embodiment of the present invention;
Fig. 5 is a side view of another embodiment of the present invention;
Fig. 6 is a side view of another embodiment of the present invention;
Fig. 7 is a side view of still another embodiment of the present invention;

Fig. 8 is a perspective underside view of another embodiment of the pallet of the present invention;

Fig. 9 is a perspective view of the pallet runner shown in Fig. 8 of the present invention;

Fig. 10 is a perspective topside view of Fig. 8 of the present invention;

Fig. 11 is a perspective topside view of another embodiment of the present invention;

Fig. 12 is a perspective underside view of Fig. 11 of the present invention;
Fig. 13 is a perspective view of another embodiment of the present invention;
Fig. 14 is a perspective underside view of another embodiment of the present invention;

Fig. 15 is a perspective underside view of another embodiment (like Fig. 8) of the present invention including stringers;

Fig. 16 is a cutaway view along A'-A' of Fig. 1 of the present invention;

Fig. 17 is a cutaway view of the embodiment of Fig. 1 shown in a mold;

Figs. 18–20 are various perspective views of another embodiment of the pallet runner of the present invention;

Fig. 21 is a cutaway view (along B'-B' of the runner of Fig. 20) of still another embodiment of the present invention showing the incorporation of the runner shown in Figs. 18–20;

Figs. 22–26 are cutaway views of other embodiments of the present invention showing the connection of the lower portion to the upper portion;

Fig. 27 is a perspective view of another embodiment of the present invention;

Fig. 28 is a perspective underside view of another embodiment of the present invention;
Fig. 29 is a perspective topside view of the pallet system shown in Fig. 28;
Fig. 30 shows one embodiment a foot of the pallet system shown in Figs. 28–29;
Fig. 31 is a cutaway view along C'-C' of the embodiment of Fig. 29;
Fig. 32 is a cutaway view of two pallets like the one shown in Fig. 28 nested and stacked;
Fig. 33 is a perspective topside view of another embodiment of the present invention;
Fig. 33A is a cutaway view along D'-D' of the embodiment shown in Fig. 33;
Fig. 34 is a cutaway view along D'-D' of the embodiment shown in Fig. 33;
Fig. 35 is a perspective view of another embodiment of the pallet system present invention;
Fig. 36 is a perspective view of a pallet mold and one embodiment of the pallet system present invention;
Fig. 37 is a flowchart illustrating the inventive blow molding method;
Fig. 38 is a perspective topside view of Fig. 1 including additional inserts;
Fig. 39 is a perspective topside view of the pallet system of Fig. 26 including additional inserts; and
Fig. 40 is a cutaway view along line E'-E' of Fig. 38.

In describing the preferred embodiment of the invention, which is illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, it is not intended that the invention be limited to the specific terms so selected and it is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose. For example, the word "connected" or terms similar thereto are often used. They are not limited to direct connection but include connection through other elements where such connection may be recognized as being equivalent by those skilled in the art.

DETAILED DESCRIPTION

The present invention and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments described in detail in the following description.

1. **Preferred Embodiments**

As shown in Figs. 1–3, pallet system 5 contains a body 10 which includes an upper or load bearing component or portion 15 and a lower or pallet stabilizing component or portion 20. The upper or second portion 15 preferably includes topside
surface 18 and underside surface 19 on a top deck 21. The lower or first portion 20 may include several feet and/or rails or runners attached thereto. For example, at each of the four corners a first foot 35, a second foot 38, a third foot 39, and a fourth foot 40 may be either integrally or separately formed into the top deck 21. In the preferred embodiment, at least two rails, a first rail or runner 25 and a second rail or runner 30, are then either integrally or separately connected to the feet 35, 38, 39 and 40. Additional rails or runners may be added for additional strength and additional feet may be added as well (see, e.g., Figs. 5–10). One runner is typically 48 inches long and about 3 inches high. As shown in Figs. 8–10, additional feet 43, 44, 46 of different sizes may also be present. The deck is preferably 1½ inches thick making the entire pallet less than 5 inches tall.

The rails or runners 25, 30 and feet may be separately formed as individual parts (see Fig. 2) or may be molded from an upper half 47 and a lower half 48 as shown in the embodiment at Fig. 4. These pieces are separately blow-molded then they may be insert molded to join them to the opposite half. Alternatively, the feet and rails may be formed by injection molding, rotomolding, winding, thermoforming, etc. In this embodiment, the feet 35, 40 are formed from first foot portion 35a, 40a and second foot portion 35b, 40b. The first portions 35a and 40a are preferably connected by an upper rail 49. Although not shown, a similar structure may be utilized for other feet and runners. For example, if the upper half 47 is first blow molded, it may be inserted into another mold and the bottom half 48 is then newly blow molded in such a way so that the two pieces 47, 48 become connected through the blow molding process. In the same way, upper half 47 and lower half 48 shown in Fig. 4 may be blow molded to the top deck 21. Alternatively, upper half 47 may actually be initially integrally blow molded as part of the deck 21. In this embodiment the half 47 may be in the lower half of the part mold while the deck may be in the upper half of the part mold. After the pieces have been combined through the insert molding process, they form the body 10 of the pallet system 5. In another example, once the upper half 47 and lower half 48 are blow molded together, the combined pieces may be inserted into a new mold and the second upper portion 15 may be blow molded around them.

As shown in the embodiments shown in Figs. 5, 6 and 7, there are many variations on the pallet foot and rail structure. In addition, another foot 42 or series of feet may be added to provide more structural rigidity. For example, a bottom deck 22 may be separately or integrally blow molded into the top deck and rails to create the embodiment shown in Fig. 5. Alternatively, it is possible that a plurality of feet 35, 40, 42 are inserted
into a mold and the top deck 21 will be blow molded around them as shown in the embodiment in Fig. 6. Also possible is the embodiment shown in Fig. 7 in which the triangular-shaped feet 35, 40, 42 are separately blow molded and then a top deck 21 with feet is blow molded around them, totally encapsulating the first molded feet through the insert molding process.

It will be apparent to one of ordinary skill in the art that the addition of feet and/or rails will further make the pallet 5 structure stronger. Thus, the embodiments shown in Figs. 8–10 and 11–12, have nine feet and three runners. As shown in Fig. 11, this embodiment preferably also has first cavity 50, a second cavity 52, and a third cavity 55 to receive the runners and/or feet when similar pallets 5 must be stacked for storage. The depths of the cavities may vary depending on a variety of factors such as thickness of the plastic and the dimensions of the feet and/or runners. The embodiment in Fig. 11 is known as a four-way pallet because the forks (not shown) of a fork lift (not shown) can be inserted into the pallet in four different directions A, B, C, D. The pallet preferably, as shown in Fig. 11, has recesses (60, 61, 62, 63, 64, 65, 66 and 67) for receiving the forks. The recesses 60–67 may vary in depth and width depending on the type of pallets and may also vary in number. For example, like in Fig. 1, in the embodiment shown in Fig. 11 there are four areas for the fork to enter in this four-way pallet. Alternatively, pallet 5 may be a two-way pallet as shown in the Fig. 13 and thus it will have fewer recesses.

As shown in Figs. 12 and 13, pockets may be incorporated into the design of the second or upper portion 15 and the first or lower portion 20 to add strength and/or reduce weight. Such honeycomb or waffle designs are often used when molding plastics. The pockets 70 may vary in dimensions and shape (e.g., triangles 70a or circles 70b). The pockets 72 on the lower portion 20 may also vary in dimension and shape. The embodiment shown in Fig. 12, the pockets 72 may also serve to give the lower portion 20 an anti-skid underside surface 75 so the pallet 5 does not slip off the forks. However, this may also be done by merely the addition of knobs, knurling, a rubberized coating and/or rubber grommets. The topside surface (not shown) of the lower portion may also be pocketed. As shown in the embodiment in Fig. 13, at least one, here two, metal rods 78a, 78b may be insert molded into the pallet 5. One way of doing this is by laying the rods into the mold and then blow molding the pallet around them. Another way is to push these rods 78a, 78b in prior to the second portion’s cooling. These reinforcing rods 78a, 78b may also be constructed of wood or more dense and/or stronger plastic.
In the embodiments shown in Figs. 14–15, at least one stringer (e.g., 82) may be attached to the rails 25, 30, 32 to add additional strength and stability to the pallet 5. In the embodiment shown in Fig. 14, a first stringer 80, a second stringer 82, and a third stringer 83 connect to the rails 25, 30, and 32. Again, the insert blow molding process can be used to connect the stringers 80, 82 and 83 to the rails 25, 30, 32. Alternatively, a post molding process may be used where the plastic or metal stringer is inserted prior to the runners cooling.

As shown in Figs. 16–21, the second portion 15 and/or first portion 20 may have either ribs 85 or ridges 90 and channels 88 or holes 92 to engage each other during the insert blow molding process. For example in Fig. 16, the second or upper portion 15 contains channels 88, 88a, 88b which are engaged by protruding ridges 90a and 90b in the runner 25. Kiss off 84 helps to further connect runner 25 to the top deck 21 as the runner’s crown 87 is pressed against the kiss off 84 within the first mold half 81a and the second mold half 81b (see, e.g., Fig. 17). This also helps to strengthen that point.

In Figs. 18–21, a protruding member 90 and rib 85 is received in hole 92 and channel 88, respectively. In this embodiment, first the rail 30, rib 85, and protruding member 90 are blow molded. The rib and protruding member preferably run the length of the rail. Then they are set into a cavity in a mold for a second or upper portion 15 to be insert blow molded into connection with the second portion 15. A lip 89 and groove may also be employed as well. This deep draw molding process strengthens the connection between the portions 15, 20. In one embodiment 20 is about .25 inches thick. A combination of these interconnections (e.g., 85, 88, 89, 90, 92) and/or heating help attach the rails 30 to the second portion 15.

In Figs. 22–26, channel 88 is molded into the portion 15 and a protruding member 90 from the rail 25 (or 30, 32) is insert blow molded into connection on portion 15. A ridge 85 may engage a lip 89 for better connection. Variation on the same theme is shown in Fig. 25, wherein a channel 88 is created in the first portion 20 and during the insert blow molded process a foot 35 having a protruding member 90 is blow molded into the first portion 20. As shown in Fig. 26, second upper portion 15 has a protruding member 93 which is insert molded into a cavity 96 in a foot 40.

As shown in Fig. 27, this embodiment has additional holes or recesses 62–65 bored through rectangular-shaped runners. The recesses are for receiving the lifting tines of a forklift. When not in use, an end cap 95 may be used to block the recesses 62–65 in the first portion 20. The end cap 95 may limit entry on one or more sides of the pallet 5.
This may keep vermin out from underneath the pallet and/or limit access by the forks of the forklift. In the embodiment shown in Fig. 27, one or more cavity covers 100 may also be employed to cover the cavities 52–55 on the second upper portion 15. As indicated previously, these cavities normally receive a foot (not shown) and/or a runner (not shown) of another pallet while nested. Cavity covers may be used to also keep out vermin or other materials and provide further stability to the top deck 21 of the pallet. These covers (100) are generally flush with the topside surface 18 so that loads do not get hung up. A recess and a lip may be added to the cover and the cavity for a tighter fit. A handle hole 105 may also be provided in at least one or more positions on the pallet 5 to allow for easy handling and caring by a warehouse worker. It is important to note that all the various holes, recess, and cavities can be configured and arranged in a blow-molded plastic pallet to decrease weight and increase strength.

Figs. 28–32, show another more lightweight embodiment of the blow molded pallet system of the present invention. Again this pallet system 305, has a body 310 including a lower or first portion 320 and upper or second portion 315. A deck 321 is on the top of the second portion 315 and has a topside surface 318 and an underside surface 319. As best shown in Fig. 30, this embodiment preferably has individual hollow feet 335 which collectively form the first or lower portion 320. As shown in Fig. 31, a deep draw blow molding process may also be used to manufacture this embodiment. Again the deep draw process incorporates the first portion 320 into the second portion 315. This embodiment also allows for interlocking of the protruding members 390 into holes 392. Fig. 32 shows how several pallets, e.g., 305A and 305B of this type can be nested and stacked together as the feet, e.g., 335A, 335B of the different pallets 305A, 305B fit into each other.

Figs. 33, 33A, 34 show an embodiment of another lighter weight (e.g., less than 25 pounds) blow molded pallet system 405. This pallet is preferably 40 inches wide, 48 inches long, and 4.5 inches high. A pallet body 410 of the pallet system 405 may be blow molded as a single piece and then an insert, e.g., a tube or rod 413 may be inserted into the body 410 along a channel 416 after the molding is complete but the pallet is still warm. As the pallet cools, the plastic may further shrink around the rod. This is sometimes referred to as post molding. The insert is preferably about 40 inches long and is fabricated separately from plastic, metal or, wood. Alternatively, the insert may be placed into the pallet body mold and the body is then blow molded around it. One or more inserts may be used to increase the strength of the pallet system. If the insert 413 is
not plastic, the insert should be removed before the pallet body is ground up during the recycling process. As shown in Fig. 33A, one or more kiss offs 384 may be incorporated in the pallet body 310 design to add strength.

Fig. 35 shows stacked pallets nested and tied together with a strap or tie 110 and a top cap 115. The top cap 115 preferably has at least one metal reinforcing member 120 insert molded therein to retain the tie 110. One or more pallets may have a load identification system 125 as shown. Fig. 35 shows nested or stacked pallets 5 with a perimeter lip 130. Foot 38 engages lip 130. The tie 110 preferably is inserted through a hole 150 found in the pallet body deck (see Fig. 1). The hole 150 may be formed during molding. In one embodiment the hole may be formed on an outer ledge and compression molding may be used to reinforce the ledge.

Suitable materials for producing the inventive plastic pallet include virgin or recycled polyolefins, polyethylene (PE), polyvinyl chloride (PVC), acrylonitrile butadiene styrene (ABS) plastics, polypropylene, polyamides (PA), and polycarbonates (PC) of one or more colors. The preferred embodiments are made of 100% reground and recycled ultrahigh molecular weight high-density polyethylene (HDPE - UHMW). Polypropylene homopolymer, or polypropylene block copolymer may also be used for the various parts of the pallet body. Another material which may be blended in is polyvinyl toluene (PVT) or some other polyvinyl. A suitable friction material may be selected from polyolefins containing materials like LLDPE, TPE, EVA, EEA and the like to stop things from sliding off the top side surface 18 of the pallet or to further add friction to the underside of the first portion of the pallet. Other possible options are Duraprene, neoprene, or virgin rubber.

In addition to the high-friction materials listed above, pallet system 5 can also include a number of inserts 500 as shown in Figs. 38 and 39. Each insert is formed of a high-friction material that is a blend of a hard plastic and a rubber, such that the insert 500 is formed to not only be a high-friction material but also to be somewhat deflectable in order to maintain the insert 500 in contact with an object (not shown) positioned on the pallet 5 as the object moves on the pallet 5. The blend of materials utilized to form the inserts 500 may be a blend of 50% w/w rubber and 50% w/w of the plastic material, but is preferably a blend of less than 50% w/w rubber and greater than 50% w/w plastic material, with a particularly preferred blend composition being 20% w/w rubber and 80% w/w plastic material. The plastic materials which can be utilized in forming the blend for the inserts are the same plastic materials listed above, namely, LLDPE, TPE, EVA, EEA
and other suitable materials, with a low density polyethylene (linear or non-linear) being especially preferred. Depending upon the particular properties desired for the inserts 500, the weight percentage of the plastic material can be varied to provide more or less overall rigidity to the inserts 500 in accordance with the particular use to which the pallet 5 including the inserts 500 is to be put. Such materials are typically first heated in separate tanks then mixed in a blender before being extruded by an extrusion machine connected to the production line.

The inserts 500 are formed in a conventional injection molding procedure whereby the selected blend used to form the inserts 500 is injected into the mold to form the inserts 500 having the desired shape. As shown in Figs. 38 and 39, the inserts 500 are preferably circular in shape, but may also have any other desired shape in order to accommodate the particular use for or shape of the pallet system 5.

Once the inserts 500 are fully formed and cooled, they are attached to the pallet system 5. Each insert 500 can be molded integrally with the pallet system 5, or may be attached to the pallet system 5 in a post-molding procedure. Also, while the inserts 500 are disclosed as being attached to the topside surface 18 of the upper portion 15, the inserts 500 may also be present on and secured to the lower portion, i.e., the feet 35, 38, 39 and 40, and/or the runners 25 and 30 secured to the underside surface 19 to assist the lower portion 20 in gripping the surface on which the pallet 5 is placed.

When the inserts 500 are integrally formed with the pallet system 5, the inserts 500 are positioned within a mold (not shown) in which the upper portion 15 is to be formed. The inserts 500 are positioned where desired within the mold such that the resulting upper portion 15 is formed with the inserts 500 positioned at the desired locations. Thus, when the material used to form the upper portion 15 is expanded within the molds to conform to the shape of the mold, the material also contacts and surrounds the inserts 500 in order to fix and maintain the position of the insert 500 with respect to the upper portion 15. More specifically, as the upper portion 15 cools, the material forming the upper portion 15 adheres to and hardens around the insert 500 to hold the insert in engagement with the upper portion 15.

Alternatively, the mold in which the upper portion 15 is formed can be shaped to include features (not shown), which create recesses (not shown) in the topside surface 18 in which the inserts 500 can be positioned after formation of the upper portion 15. In this procedure, after the upper portion 15 has been initially formed within the mold, the mold is opened and the inserts 500 are positioned within the recesses (not shown) formed in the
topside surface 18 of upper portion 15 by the features within the mold. After the inserts 500 are positioned within the recesses, the upper portion 15 cools, and consequently shrinks, fixedly engaging each of the inserts 500 to hold the inserts 500 in position on the topside surface 18.

When the inserts 500 are to be positioned on the lower portion 20, i.e., on the feet or the runners, the processes for attaching the inserts 500 to these components is performed identically to either of the processes outlined above for securing the inserts 500 to the upper portion 15. More specifically, in each case, the inserts 500 are positioned within the molds for these components, or secured to the lower portion 20, feet or runners immediately after formation within the mold as in the above-recited methods. Also, the inserts 500 can be positioned on both of the upper portion 15 and lower portion 20, to further enhance the non-slip capabilities of the pallet system 5 with respect to both the objects positioned on the pallet system 5, and the surface on which the pallet system 5 is positioned.

To further assist the inserts 500 in engaging the objects placed on the upper portion 15, as best shown in Fig. 40, the upper portion 15 can be formed such that the topside surface 18 curves upwardly from each side of the surface 18 towards the center of the surface 18. Preferably, this curvature is parabolic in shape and enables the topside surface 18 and upper portion 15 to flex when objects are positioned on the surface 18. This shape also allows the pallet 5 to deflect during use in a direction that does not result in deformation of the pallet 5 and also increases the useful life of the pallet 5 due to the inherent bias in the curved upper portion 15 acting oppositely to the weight of the objects positioned on the pallet 5.

2. In Use and Operation

As indicated above, in the preferred embodiment there may be one or more molds which independently and separately form (e.g., blow-mold) feet, runners and stringers. As shown in Fig. 36, there is also preferably a mold 81 having two halves 81a and 81b which separately blow molds a second or upper portion, and a first portion. In the preferred embodiment, the second upper portion and first portion molds have a position for receiving feet, runners 25, 30, and/or stringers. Typically, each mold is constructed of a right half 81a and left half 81b. The inventors envision one mold form could be developed to manufacture heavy-duty, medium-duty, and light-duty pallets. The number of preformed inserts added to this mold form would thus determine the pallet’s lift capacity and usage.
As illustrated in Fig. 37, the separately formed 200 pieces (e.g., feet, runners, etc.) are then inserted 210 into the deck portion mold and the deck portion is blow molded into or around the feet, stringers, and/or the rails 220. In one embodiment, gravity holds the inserts (e.g., the feet, runners, rods and stringers, etc.) in place during the blow molding of the deck. In another embodiment, pins that may be tensioned or spring biased hold the feet, stringers, and/or runners in place in the deck mold. Because the insert molding process adds steps and time to the molding of the pallet, automating the steps can help reduce the impact of these factors. Also, automation increases reproducibility and thus quality control.

After the pallet is completely formed, it is ejected (230) from the mold and allowed to cool (240). In one preferred embodiment, the mold for the deck has the flexibility to receive either one or a plurality of rails and/or feet depending on the type of pallet requested by the customer. For example, Customer A1 may only want a pallet with a top deck, four feet, and a bottom deck, while Customer B2 may want a pallet with a top deck, six feet, and three runners. These first portion pieces may all be first independently molded and then inserted into a larger mold so that the inserts may be blow molded together with the deck portion to form the complete pallet end product requested by the customer. Alternatively, for example, a blow molded bottom deck may be added later while still warm by affixing it to the feet by some means such as an adhesive, a channel/protruding member combination, a screw/fastener or some other means.

It is also possible with the insert molding process described herein to make the upper portion 15 of a first material and the lower portion 20 of a second material. If differing blends of rubber and/or plastic are used, a swap out or “returnable” recycling program may be necessary so that these blends are not accidentally blended with straight HDPE for example.

The preferred heavy-duty pallet weighs less than 50 pounds, is relatively inexpensive (e.g., >$50), and can handle loads up to 3500 pounds. Pallets made with blended rubber may be heavier and more costly.

The individual components described herein need not necessarily be formed in the disclosed shapes, or assembled in the disclosed configuration, but could be provided in virtually any shape, and assembled in virtually any configuration. Further, although the feet and runners are described herein as physically separate modules, it will be manifest that it may be more fully integrated into the deck portions. Furthermore, all the disclosed features of each disclosed embodiment can be combined with, or substituted for, the
disclosed features of every other disclosed embodiment except where such features are
mutually exclusive. Finally, it is intended that the appended claims cover all such
additions, modifications and rearrangements. Expedient embodiments of the present
invention are differentiated by the appended subclaims.
CLAIMS

What is claimed is:

1. A pallet comprising:
 a) a first component formed in a first blow molding operation;
 b) a second component formed in a second blow molding operation, the second component engaged with the first component during the second operation; and
 c) at least one insert positioned in at least partially exposed configuration on one of the first component or the second component.

2. The pallet of claim 1 wherein the at least one insert is formed of a generally rigid material.

3. The pallet of claim 2 wherein the generally rigid material is a blend of a hard plastic material and a rubber.

4. The pallet of claim 3 wherein the blend is at least 50% of weight of the hard plastic material.

5. The pallet of claim 3 wherein the hard plastic material is polyethylene.

6. The pallet of claim 3 wherein the first component is formed a generally rigid material.

7. The pallet of claim 1 wherein the second component is formed of a generally rigid material.

8. The pallet of claim 1 further comprising:
 a) at least one first insert positioned on the first component; and
 b) at least one second insert positioned on the second component.

9. The pallet of claim 1 wherein the at least one insert is generally circular in shape.
10. The pallet of claim 1 further comprising a third component formed in a third blow molding operation and secured to the second component at a location spaced from the first component in the second blow molding operation.

11. The pallet of claim 10 further comprising at least one reinforcing member secured between the first component and the third component.

12. The pallet of claim 1 wherein the second component is generally non-planar in shape.

13. The pallet of claim 12 wherein the second component is generally parabolic in shape.

14. A pallet comprising:
 a) a first component formed in a first blow molding operation; and
 b) a second component formed in a second blow molding operation, the second component engaged with the first component during the second blow molding operation, wherein at least one of the first component and the second component is formed of the blend of a hard plastic material and a rubber.

15. A method for forming a pallet, the method comprising the steps of:
 a) forming a first component in a first blow molding process;
 b) positioning the first component in a mold for a second component;
 c) placing at least one insert within the mold for the second component; and
 d) forming the second component by blow molding it into the first component and the at least one insert.

16. The method of claim 15 wherein the at least one insert is formed of a blend of a hard plastic material and a rubber.

17. The method of claim 15 wherein the first component is formed of a hard plastic material and a rubber.
18. The method of claim 15 wherein the second component is formed of a blend of a hard plastic material and a rubber.

19. A method for forming a pallet, the method comprising the steps of:
 a) placing at least one insert in a mold for a first component;
 b) forming the first component in engagement with the at least one insert in a first blow molding process;
 c) positioning the first component in a mold for a second component; and
 d) forming the second component in engagement with the first component.

20. The method of claim 19 further comprising the step of placing a second insert in the mold for the second component prior to forming the second component.

21. A pallet system comprising:
 a) a pallet body including:
 b) a separately molded first portion; and
 c) a separately blow molded second portion insert molded to the first portion.

22. The pallet body of claim 21 further comprising four recesses for four-way access.

23. The pallet body of claim 21 wherein the second portion has a knurled topside surface.

24. The pallet system of claim 21 further comprising at least: one foot attached to the pallet body by insert molding, one runner attached to the foot, and one stringer attached to the runner.

25. A plastic pallet body having a blow molded top load bearing portion; and a bottom pallet stabilizing portion including a plurality of feet molded into the load bearing portion.

26. The pallet of claim 25 wherein each of the feet are connected to a runner.

27. The pallet of claim 25 wherein the pallet stabilizing portion includes a plurality of runners.
28. The pallet of claim 25 further comprising at least one runner having a protruding member connected to at least one foot.

29. The pallet of claim 24 wherein at least one foot includes a channel for engagement with the second portion.

30. The pallet of claim 25 wherein the load bearing portion has a channel for engagement with the foot.

31. A plastic pallet comprising:
 a) a load carrying portion; and
 b) a pallet stabilizing portion insert molded and connected to the load carrying portion.

32. The pallet of claim 31 wherein the load carrying portion has a ridge for engagement with a runner in the pallet stabilizing portion.

33. The pallet of claim 31 where the load carrying portion has a protruding member for engagement with a foot.

34. The pallet of claim 31 wherein the pallet stabilizing portion has a protruding member for engagement with the load carrying portion.

35. The pallet of claim 31 wherein the load carrying portion has waffle configuration for added weight to strength ratio.

36. The pallet of claim 31 wherein the pallet stabilizing portion has honeycomb configuration for added weight to strength ratio.

37. The pallet of claim 31 further comprising a recess for receiving forks of a fork lift.

38. The pallet of claim 31 wherein a topside surface of the load carrying portion has pockets for added weight to strength ratio.
39. The pallet of claim 31 wherein an underside surface of the load carrying portion has pockets for added anti-slip properties.

40. The pallet of claim 31 wherein a topside surface of the pallet stabilizing portion has pockets for added weight to strength ratio.

41. The pallet of claim 31 wherein a bottom of the pallet stabilizing portion has pockets for added weight to strength ratio.

42. The pallet of claim 41 wherein the pockets are at least one of the following shapes: triangular, circular, square, oval, rectangular, hexagonal, octagonal.

43. The pallet of claim 31 wherein the load carrying portion contains a cavity for receiving a pallet stabilizing surface of another pallet.

44. The pallet of claim 31 wherein the pallet stabilizing portion includes a runner.

45. The pallet of claim 44 wherein the runner is shaped like at least one of the following: a triangle, square, rectangle, parallelogram, and trapezoid.

46. The pallet of claim 33 wherein the foot is at least of frustoconical and pyramidal shaped.

47. The pallet of claim 44 further comprising at least one rib for attachment of a second upper portion to the runner.

48. The pallet of claim 31 further comprising at least one recess and one end cap.

49. The pallet of claim 31 further comprising at least one cavity and one cavity cover.

50. The pallet of claim 31 further comprising at least one handle hole.

51. The pallet of claim 44, wherein the runner is constructed of HDPE plastic.
52. The pallet of claim 31, further comprising a load identification system including at least one of the following bar coding, hot stamping, molding in a logo, affixing a card holder, and tagging with tape.

53. The pallet of claim 31 wherein the pallet stabilizing portion includes runners, rails, at least four recesses, and a rod.

54. The pallet of claim 31 wherein the pallet stabilizing portion includes at least one runner and at least one foot.

55. The pallet of claim 31 further comprising runners constructed of one type of regrind plastic, and wherein the load carrying portion is constructed of another higher quality type of recycled plastic.

56. The pallet of claim 31 wherein the load carrying portion is a first color; and wherein the pallet stabilizing portion is a second color.

57. The pallet of claim 31, wherein a topside surface of the load carrying portion is a first color; and wherein the underside surface of the load carrying portion is a second color.

58. The pallet of claim 31 wherein the pallet is blow molded from 100% recycled plastic.

59. The pallet of claim 31 wherein the load carrying portion is blow molded.

60. The pallet of claim 31 wherein the pallet stabilizing portion is blow molded.

61. The pallet of claim 59 further comprising a runner constructed of at least one of the following: wood, metal, plastic.

62. The pallet of claim 31, wherein the load carrying portion further comprises at least one perimeter lip on a topside surface.
63. The pallet of claim 31, wherein the dimensions of the pallet are approximately 48 inches by 40 inches and the weight of the pallet is less than 20 pounds.

64. The pallet system of claim 21, further comprising a top cap having a reinforcing member and a tie member connected to the reinforcing member for securing the cap to at least one pallet body.

65. The pallet system of claim 21, further comprising a runner that is rectangular in shape and has at least two holes therein for receiving forklift tines.

66. The pallet system of claim 21, wherein the first portion includes a foot having a reinforcing member blow molded therein.

67. The pallet system of claim 21, wherein the first portion includes a runner having two protruding members to engage channels of the second portion.

68. The pallet system of claim 21, wherein the second portion includes a channel to receive a reinforcing member that is inserted into the channel while the second portion is warm.

69. The pallet system of claim 21, further including a reinforcing member that is blow molded into the second portion.

70. The pallet system of claim 21, wherein the pallet body includes features for making the pallet rackable.

71. The pallet system of claim 21, wherein the pallet body includes features for making the pallet stackable.

72. The pallet body of claim 25, further including a reinforcing member affixed to at least one foot.

73. The pallet system of claim 21, where the dimensions of the pallet body are about 48 inches long, about 40 inches wide, and at least about 4.5 inches high.
74. A method of blow molding a pallet comprising the steps of:
 a) forming a pallet stabilizing portion;
 b) inserting the pallet stabilizing portion into a mold; and
 c) blow molding a load bearing portion around the previously formed pallet stabilizing portion.

75. A method of forming a plastic pallet comprising the steps of:
 a) forming a first runner;
 b) forming a second runner;
 c) inserting the runners into a mold;
 d) blow molding a load bearing portion in a manner which engages the runners to form a pallet;
 e) ejecting the pallet from the mold; and
 f) allowing the pallet to cool.

76. The method of claim 75, further comprising between steps c) and d), the step of holding at least one runner in place by a clamp during the blow molding of the load bearing portion.
Forming one piece

Inserting formed piece in mold

Blow molding second piece with first

Ejecting the molded pallet

Cooling the pallet

FIG. 37