Multi-filament with annealed copper core and drawn steel layer

The present invention relates to a multi-filament product (10). The multi-filament product (10) comprises filaments (16) having a copper alloy core (12) with an annealed microstructure and a first steel layer (14) with drawn microstructure. Furthermore, the filaments in the multi-filament product are coated with an electrical isolation coating (46). The present invention also relates to the use of the multi-filament product as a heating element. The multi-filament product presents good conductivity, durability and strength.
Description

Technical Field

[0001] The present invention relates to a multi-filament product. The present invention further relates to use of the multi-filament product as heating element.

Background Art

[0002] For a car seat, a heating element such as heating system or heatable textile is required to provide heating effect. It's a long time research to find a good heating element having a good balance between flexibility, corrosion resistance, strength and conductivity.

[0003] Generally yarns comprising bundles of filaments are applied in heating elements. Such yarns comprise up to hundred or more filaments. Up to now, the metal filaments are made from several different materials: they can be pure copper filaments, nickel plated copper filaments, steel filaments, copper plated steel filaments and steel plated copper filaments. All the above kinds of filaments have advantages and disadvantages.

[0004] Pure copper filaments have the best conductivity but low flexibility, low corrosion resistance and low strength.

[0005] Nickel plated copper filaments have a better corrosion resistance compared to pure copper filaments, but slightly lower conductivity.

[0006] Steel filaments have the best flexibility, strength and corrosion resistance, but they have a high electrical resistance.

[0007] Copper plated steel filaments have a better conductivity compared to stainless steel filaments, but a lower corrosion resistance. They have a better strength and flexibility compared to the pure copper filaments.

[0008] Steel plated copper filaments have a better corrosion resistance compared to the copper plated steel filaments.

[0009] Commonly the conductivity, flexibility and corrosion resistance are the main requirements for yarns used in heating element applications.

[0010] The flex life is one index or parameter for flexibility of the yarn and it is an indication of the resistance to rupture of the yarn under repetitive bending conditions. The flex life plays an important role such as for the use in antistatic brushes or the use as lead wire for electrodes or the use in car seat heating. The bigger the flex life, the better the filament.

[0011] WO 2009/147114 A discloses a yarn comprising multi-bundles of filaments having a copper core and stainless steel outer layer. An improved flex life is obtained by a predetermined torsion applied to the yarn. The diameter of the filament is between 7-32 μm.

[0012] US 7041943 discloses an electrical heating element used in car seat comprising wires with steel core and copper outer layer. The wires are further coated with electrical insulation. But due to the copper outer layer, the corrosion resistance of the wire is not very good.

Disclosure of Invention

[0013] It is desired to find a new product with a combination of great flexibility, corrosion resistance, strength and conductivity.

[0014] The object of the invention is to provide a multi-filament product with improved flexibility.

[0015] Another object of the invention is to provide the use of the multi-filament as heating element.

[0016] According to the present invention, a multi-filament product comprising filaments having a copper alloy core and a first layer of steel is provided, wherein the copper core has an annealed microstructure and the steel layer has a drawn microstructure.

[0017] An annealed microstructure is a recrystallized microstructure which comprises substantially equiaxed grains. A drawn microstructure is a microstructure which comprises substantially non-equiaxed grains.

[0018] The use of filaments with the combination of the two kinds of microstructures, recrystallized microstructure of copper alloy core and drawn microstructure of first steel layer in a multi-filament product, leads to an improved flexibility of the multi-filament product while the conductivity, corrosion resistance and strength remain unchanged.

[0019] The recrystallized microstructure of the copper alloy core can be obtained by a heat treatment. While heating the filament with copper alloy core having a drawn microstructure and first steel layer having drawn microstructure under a determined temperature, the microstructure of the copper alloy will recrystallize and the first steel layer will keep its drawn microstructure.

[0020] The temperature of the heat treatment is determined by the annealing temperature of copper alloy core and annealing temperature of first steel layer. The temperature should be high enough to recrystallize the copper alloy core on the one hand, and be low enough to make sure the first steel layer doesn't recrystallize on the other hand. Thus the copper alloy core gets an annealed microstructure while the first steel layer retains the drawn microstructure. Preferably the determined temperature is between 100°C and 800°C.

[0021] The annealed copper alloy core presents good conductivity and ductility. The copper alloy core can be Cu-Ni alloy, Cu-Fe alloy or other alloy known by the person having ordinary skill in the art. Preferably the copper alloy core has more than 99% copper. The higher the copper content of the copper alloy core, the better the conductivity of the filaments and thus the better the conductivity of the multi-filament product.

[0022] The first steel layer can be made of any kind of steel or steel alloy known by the person having ordinary skill in the art, i.e. stainless steel or plain carbon steel for good corrosion resistance and strength. Preferably the first steel layer is stainless steel. Stainless steel layer with drawn microstructure presents better strength.
[0023] To achieve a perfect balance between ductility, conductivity, corrosion resistance and strength, the volume ratio of the copper alloy core and the first layer of steel is determined. The ratio of the volume of the copper alloy core and the volume of the first layer of steel is between 80/20 and 10/90. Preferably the ratio of the volume of the copper alloy core and the volume of the first layer of steel is between 60/40 and 20/80. More preferably the ratio of the volume of the copper alloy core and the volume of the first layer of steel is between 40/60 and 30/70.

[0024] Preferably, the first layer of steel is applied upon the copper alloy core uniformly. It means that the thickness of the first layer in any place around the copper alloy core has the uniform value.

[0025] According to the present invention, the diameter of the filament is more than 40μm, including the copper alloy core and the first layer of steel. The ‘diameter’ here refers to the diameter of an imaginary circular radial cross section having a surface area identical to the average of the surface areas of cross sections of the filament. Commonly steel comprises inclusions, a steel 100% free of inclusions doesn’t exist. In the patent publication WO 2009/147114 filaments with a diameter less than 40μm are described, the steel layer is very thin for good conductivity, but the inclusions inside of the steel can penetrate through the thin steel layer during the manufacturing process, thereby creating fatigue fracture initiation points and exposing copper core to the corrosive environment. In the present invention, the filaments have a diameter more than 40μm, in order to have enough thickness of the layer of steel. Thus the inclusions inside the steel layer can not penetrate through the steel layer, as a result, the fatigue resistance and the corrosion resistance of the filaments improve a lot.

[0026] Preferably, the diameter of the filament is between 40μm and 400μm.

[0027] Preferably, the filaments are further coated with an electrical isolation coating upon the first steel layer. It means that the individual filament has an electrical isolation coating. Such electrical isolation coating can eliminate hot spot and improve the corrosion resistance.

[0028] The electrical isolation coating can be a polymer coating, i.e. PVC, PVA, PTFE, FEP, MFA, PFA or PU.

[0029] The thickness of the electrical isolation can not be too thin and not be too thick. While too thin, it is hard to obtain a complete coverage of the filament with the coating. While too thick, the flexibility of the filament decreases.

[0030] Preferably the thickness of the electrical isolation coating is between 1μm and 10μm. More preferably, the electrical isolation coating is between 3μm and 7μm.

[0031] The multi-filament product can be one bundle, bundles twisted together or multi-strand structure.

[0032] Preferably the multi-filament is multi-strand structure, i.e. 7×7, 3×7 or 12×7, 6×6, 5×7, 8×9 cable construction. ‘Multi-strand’ refers to a gather of strands twisted together, while each strand comprises multiple filaments twisted together.

[0033] Additionally, the multi-filament product can consist of bundle(s) of bundle drawn filaments. Bundle drawn filaments typically have a hexagonal cross section and one bundle contains preferable more than 30 and less than 1000 filaments. During the bundle drawing process the filaments are bundled together into a composite wire which consists of the filaments, the matrix and the sheet. After drawing to the final diameter a filament bundle can be obtained by removal of the matrix and the sheet. The multi-filament product may contain one bundle or plural bundles twisted together.

[0034] According to another object of the invention, the multi-filament product can be used as heating element, especially as car seat heating element.

Brief Description of Figures in the Drawings

[0035] Figure 1 shows the cross-sectional view of one embodiment with the structure of 7×7;

[0036] Figure 2 show the cross-sectional view of another embodiment with the structure of 3×7;

[0037] Figure 3 shows the cross-sectional view of the third embodiment with the structure of 12×7;

[0038] Figure 4 shows the cross-sectional view of the fourth embodiment according to the present invention;

[0039] Figure 5 shows the cross-sectional view of the fifth embodiment according to the present invention.

Mode(s) for Carrying Out the Invention

[0040] The multi-filament product is made from filaments comprising copper alloy core and first steel layer.

[0041] The copper alloy core can be pure copper, Cu-Ni alloy, Cu-Fe alloy or any other alloy known by the person having ordinary skill in the art. The steel outer layer can be pure steel, stainless steel, plain carbon steel or any other steel alloy known by the person having ordinary skill in the art. The stainless steel can be AISI 300 series such as AISI 302, 304, 316 or 316L, AISI 400 series such as AISI 430, AISI 625 or AISI 904.

[0042] The steel layer can be applied to the copper alloy core by means of the technique of cladding. According to the technique of cladding, a strip of a suitable steel of controlled composition and predetermined and desired thickness can be formed into a tube form. The width of this strip is somewhat greater or equal to the circumference of the copper alloy core to be covered. The strip is closed in a tube and welded on or around the copper alloy core.

[0043] Alternatively the steel layer can be applied by inserting a copper alloy core wire into a steel tube and closing the tube thereafter around the copper alloy core wire by conventional drawing techniques known by the person skilled in the art.

[0044] The filaments can be drawn to the final diameter by means of individual drawing process. First, the filaments comprising copper alloy core and first steel layer
plated upon the core are drawn from big diameter (original diameter) to the final smaller diameter by a drawing process individually. Such drawing process has been described in JP05-177243. During the drawing process, the diameter of the filament is reduced.

Alternatively the filaments can be drawn to the final diameter by means of the bundle drawing process. This technique is disclosed e.g. in US-A-2 050 298, US-A-3 277 564 and in US-A-3 394 213. A bundle of the filaments is subsequently enveloped in a metal pipe comprising a matrix and a sheet. Thereafter the thus enveloped pipe is reduced in diameter via subsequent drawing steps to come to a composite bundle with a smaller diameter. Inside the composite bundle the initial filaments have been transformed into thin filaments which are embedded separately in the matrix of the covering material. Such a bundle preferably comprises no more than 2000 filaments, e.g. between 30 and 1000 filaments. Once the desired final diameter has been obtained the matrix of covering material can be removed e.g. by solution in an adequate pickling agent or solvent. The final result is the naked filaments bundle. According to the present invention, the removal of the matrix can be done before or after further process of heat treatment or twisting process.

At the final diameter the copper alloy core and the first steel layer both have a drawn microstructure. At the final diameter the filaments having copper alloy core with drawn microstructure and first steel layer with drawn microstructure are submitted to a heat treatment at a determined temperature. The temperature is determined by the annealing temperature of copper alloy core and annealing temperature of first steel layer. The determined temperature should be high enough to recrystallize the copper alloy core on the one hand, and be low enough to avoid recrystallization of the first steel layer. Thus the copper alloy core gets a recrystallized microstructure while the first steel layer retains the drawn microstructure after the heat treatment. For example, for heat treatment of the filament with copper core and stainless steel layer, the determined temperature is round 200°C, and for annealing the filament with 99%Cu-1%Ni alloy core and stainless steel layer, the temperature is round 400°C. The determined temperature is high enough to recrystallize the copper alloy core and keep the drawn microstructure of the steel layer without any change. In the case the filaments are obtained by the bundle drawing process, the removal of the composite matrix and sheet may be done before or after the heat treatment.

Additionally, the filaments may be coated with an electrical isolation upon the first steel layer to avoid hot spot and improve the corrosion resistance. The electrical isolation can be any kind of the polymer known by the person having ordinary skill in the art, i.e. PVC, PVA, PTFE, FEP, MFA, PFA or PU.

Finally the filaments having copper alloy core with annealed microstructure and first steel layer with drawn microstructure (with or without electrical isolation coating) are bundled together to form a bundle or twisted together to form a strand. Furthermore the bundles or strands of the filaments are twisted together. In the case of bundle drawing the twisting together of the filament bundles may be done before or after the removal of the matrix and the sheet. A multi-filament product is obtained in this way. The multi-filament product may contain one bundle, plural bundles twisted together, or multi-strand twisted together.

Figure 1 illustrates the first embodiment. The multi-filament 10 has the structure of 7×7. The filaments 16 with the diameter of 48μm have copper core 12 and first stainless steel layer 14 with the volume rate of 62/38.

Figure 2 illustrates the second embodiment. The multi-filament 20 has the structure of 3×7. The filaments 26 with the diameter of 60μm have 90%Cu-10%Ni core 22 and first stainless steel layer 24 with the volume rate of 35/65.

Figure 3 illustrates the third embodiment. The multi-filament 30 has the structure of 12×7. The filaments 36 with the diameter of 66μm have copper core 32 and first plain carbon steel layer 34 with the volume rate of 41/59.

Figure 4 illustrates the fourth embodiment. The multi-filament 40 has the structure of 7×7. The filaments 48 with the diameter of 56μm have copper core 42 and first stainless steel layer 44 with the volume rate of 34/66. Each filament has a further layer 46 of PU with the thickness of 6μm.

Figure 5 illustrates the fifth embodiment. The multi-filament 50 has the structure of 3×7. The filaments 58 with the diameter of 52μm have 99%Cu-1%Ni core 52 and first stainless steel layer 54 with the volume rate of 36/64. Each filament has a further layer 56 of PFA with the thickness of 7μm.

A sixth embodiment is a multi-filament yarn has the structure of 2x90. The filaments are obtained by bundle drawing and they have a diameter of 40μm. The core is pure copper and the first steel layer is stainless steel with a volume rate of 32/68.

A comparison test on flex life is done between the prior art products and the present invention. The flex life test is called car seat test also. In the test, the testing product is embroidered into a car seat. Then the car seat is cycledly loaded by a robot simulating a person getting in and out of a car. The number of the cycles is recorded till the product breaks. The prior art products are a yarn consisting of the filaments having copper core with drawn microstructure and stainless steel layer with drawn microstructure, a yarn consisting of the filaments having steel core with drawn microstructure and copper layer with drawn microstructure, and a yarn consisting of the filaments having stainless steel with drawn microstructure.

Prior art yarns used in a car seat break before 20000 cycles are reached. The yarn according to the fourth embodiment reached 80000 cycles without fracture.

It is obvious that the flex life of the present in-
vention is greatly improved compared with the prior art products. The annealed microstructure of copper alloy core presents improved durability to the multi-filament product.

[0059] Furthermore, the conductivity of the invention multi-filament is also improved compared with the prior products, while the strength of the invention multi-filament product keeps good performance.

[0060] The use of the present invention can be as heating element, especially as car seat heating element. The multi-filament product can be embroidered into a car seat. The multi-filament product provides good heat conductivity, durability, corrosion resistance and strength to the car seat.

Claims

1. A multi-filament product comprising filaments having a copper alloy core and a first layer of steel, characterized in that said copper alloy core has an annealed microstructure and said steel layer has a drawn microstructure.

2. A multi-filament product as claimed in claim 1, characterized in that said first layer of steel is stainless steel layer.

3. A multi-filament product as claimed in claim 1 or 2, characterized in that said copper alloy core contains more than 99% copper.

4. A multi-filament product as claimed in any one of claim 1 to 3, characterized in that the ratio of the volume of said copper alloy core and the volume of said first layer of steel is between 80/20 and 10/90.

5. A multi-filament product as claimed in claim 4, characterized in that said ratio of volume of said copper alloy core and said volume of said first layer of steel is between 60/40 and 20/80.

6. A multi-filament product as claimed in claim 5, characterized in that said ratio of volume of said copper alloy core and said volume of said first layer of steel is between 40/60 and 30/70.

7. A multi-filament product as claimed in any one of claim 1 to 6, characterized in that said filaments have a diameter being more than 40µm.

8. A multi-filament product as claimed in any one of claim 1 to 7, characterized in that said filaments have a further electrical isolation coating upon said first steel layer.

9. A multi-filament product as claimed in claim 8, characterized in that the thickness of said electrical isolation coating is between 1µm and 10µm.

10. A multi-filament product as claimed in claims 9, characterized in that said thickness of said electrical isolation coating is between 3µm and 7µm.

11. A multi-filament product as claimed in any one of claim 8 to 10, characterized in that said isolation coating is polymer coating.

12. A multi-filament product as claimed in any one of claim 1 to 11, characterized in that the structure of said multi-filament product is 7x7, 3x7 or 12x7 cable construction.

13. Use of a multi-filament product as claimed in any one of preceding claims is as heating element.

14. Use of a multi-filament product as claimed in claim 14 is as car seat heating element.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y,D</td>
<td>WO 2009/147114 A1 (BEKAERT SA NV [BE]; DE GREVE KRIS [BE]; AMILLS XAVIER [BE]; VERSTRAETEN) 10 December 2009 (2009-12-10) * paragraph [0002]; claims 1,9,13 * * paragraph [0010] * * paragraph [0016] - paragraph [0020] *</td>
<td>1-14</td>
<td>D02G B21C B05B B05N A47C H01B C22F C21D D03D H01L</td>
</tr>
<tr>
<td>A</td>
<td>US 6 359 230 B1 (HILDRETH NELSON [US]) 19 March 2002 (2002-03-19) * column 6, line 25 - line 31; figure 4 * * column 6, line 51 - line 67 *</td>
<td>1</td>
<td>D02G B21C B05B B05N A47C H01B C22F C21D D03D H01L</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>11 March 2011</td>
<td>Pollet, Didier</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **S**: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 11-03-2011.

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

<table>
<thead>
<tr>
<th>Patent Document</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2009147114 A</td>
<td>[0011] [0025]</td>
</tr>
<tr>
<td>US 7041943 B</td>
<td>[0012]</td>
</tr>
<tr>
<td>JP 5177243 A</td>
<td>[0044]</td>
</tr>
<tr>
<td>US 2050298 A</td>
<td>[0045]</td>
</tr>
<tr>
<td>US 3277564 A</td>
<td>[0045]</td>
</tr>
<tr>
<td>US 3394213 A</td>
<td>[0045]</td>
</tr>
</tbody>
</table>