
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2015/088476 Al
18 June 2015 (18.06.2015) P O P C T

(51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
G06F 11/00 (2006.01) G06F 12/08 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(21) International Application Number: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,

PCT/US2013/073871 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

' December 2013 (09.12.2013) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

(25) Filing Language: English ZW.

(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every

(71) Applicant: HEWLETT-PACKARD DEVELOPMENT kind of regional protection available): ARIPO (BW, GH,

COMPANY, L.P. [US/US]; 11445 Compaq Center Drive GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

W., Houston, Texas 77070 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(72) Inventors: WARNES, Lidia; 8000 Foothills Blvd., Ro- EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
seville, California 95747 (US). HANDGEN, Erin, A.; MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
3404 E Harmony Rd., Ft. Collins, Colorado 80528-9544 TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(US). WALTON, Andrew, C ; 8000 Foothills Blvd., Ro- KM, ML, MR, NE, SN, TD, TG).
seville, California 95747 (US).

Declarations under Rule 4.17 :
(74) Agents: HA, Miranda, J. et al; Hewlett-Packard Com

— as to the identity of the inventor (Rule 4.1 7(Ϊ))
pany, Intellectual Property Administration, 3404 E. Har
mony Road, Mail Stop 35, Fort Collins, Colorado 80528 — as to applicant's entitlement to apply for and be granted a
(US). patent (Rule 4.1 7(H))

(81) Designated States (unless otherwise indicated, for every Published:
kind of national protection available): AE, AG, AL, AM, — with international search report (Art. 21(3))
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(54) Title: MEMORY ERASURE INFORMATION IN CACHE LINES

(57) Abstract: Example implementations relate
to storing memory erasure information in

0 FIG. 1
memory devices on a memory module. In ex
ample implementations, a memory location as
sociated with an error in a first cache line may
be identified. The first cache line may include

Machine-Readable data read from the memory location, and the
Storage Medium memory location may be in a first memory

device of a plurality of memory devices on a
memory module. A device number correspond

dentify memory location ing to the first memory device may be written

! 06 to one of the plurality of memory devices.
When the memory location is read for a second

Store device number cache line, the device number corresponding to
the first memory device may be retrieved. The
second cache line may include the retrieved

Retrieve device number device number and data read from the memory
location.

Determine position of error

MEMORY ERASURE INFORMATION IN CACHE LINES

BACKGROUND

[0001] A memory module may include many memory devices. Error correction

logic may be used to correct errors detected in the memory devices. Memory

modules may include spare memory devices so that when a memory device

malfunctions, a spare memory device may be used instead of the malfunctioning

memory device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The following detailed description references the drawings, wherein:

[0003] FIG. 1 is a block diagram of an example memory controller that

includes a machine-readable storage medium encoded with instructions to store

memory erasure information;

[0004] FIG. 2 is a block diagram of an example memory controller that

includes a machine-readable storage medium encoded with instructions that

enable memory erasure for a region of a memory device;

[0005] FIG. 3 is a block diagram of an example memory controller that

includes a machine-readable storage medium encoded with instructions to

correct cache line errors;

[0006] FIG. 4 is a block diagram of an example memory controller that

includes a machine-readable storage medium encoded with instructions to

identify and use device numbers in a cache line for memory erasure;

[0007] FIG. 5 is a block diagram of an example memory controller that

includes a machine-readable storage medium encoded with instructions to track

errors in a memory device;

[0008] FIG. 6 is a diagram of an example cache line having device numbers

for memory erasure;

[0009] FIG. 7 is a flowchart of an example method for storing memory erasure

information;

[001 0] FIG. 8 is a flowchart of an example method for correcting a cache line

error;

[001 1] FIG. 9 is a flowchart of an example method for storing device numbers

to enable memory erasure on a cache line basis;

[0012] FIG. 10 is a flowchart of an example method for memory erasure for a

region of a memory device; and

[001 3] FIG. 11 is a flowchart of an example method for identifying and using

device numbers in a cache line for memory erasure.

DETAILED DESCRIPTION

[0014] Most errors in a memory module do not permeate through an entire

memory device. However, even if an error is localized to a small portion (e.g., bit,

row, column) of a memory device, the entire memory device may be replaced by

a spare memory device. Thus, large error-free portions of a memory device may

be unused because of a small error-prone portion of the memory device.

[001 5] In light of the above, the present disclosure provides for an increase in

the granularity at which memory devices may be replaced. A memory controller

may be programmed to identify portions of memory devices from which errors

originate, to ignore and/or correct data that is read from the identified portions,

and to process data from error-free portions of memory devices as usual (e.g., for

a single memory device that has an error-prone portion and an error-free portion,

data read from the error-prone portion may be ignored/corrected, while data read

from the error-free portion may be processed as usual). The process of ignoring

and/or correcting data read from a memory device may be referred to herein as

"memory erasure". Information regarding which data to ignore/correct may be

referred to herein as "memory erasure information".

[001 6] A memory controller may receive data in a cache line from a memory

module. Data may be read from various memory devices of a memory module at

substantially the same time, and the memory module may output a cache line

that includes the data read from the various memory devices. In some

implementations, data may be read from memory devices in bursts, such that

multiple addresses in a memory device are read in response to each read

command. Each memory device of a memory module may be assigned a device

number, and the position of data in a cache line may correspond to the device

number of the memory device from which the data was read.

[001 7] For example, a memory module may include 18 memory devices (e.g.,

dynamic random-access memories [DRAMs]) numbered 0-1 7 , and a burst length

of 8 may be used when reading the memory devices, with each address of a

memory device holding 4 bits. Thus, when a read command is sent to such a

memory module, the memory module may output a 576-bit cache line (calculated

by multiplying 32, which is the number of bits read per memory device, by 18,

which is the number of memory devices). In some implementations, the 32 most

significant bits of a cache line may be the 32 bits read from memory device 0 , the

following 32 bits may be the 32 bits read from memory device 1, and so on, with

the 32 least significant bits of the cache line being the 32 bits read from memory

device 17. In some implementations, the 32 most significant bits of a cache line

may be the 32 bits read from memory device 17, the following 32 bits may be

the 32 bits read from memory device 16, and so on, with the 32 least significant

bits of the cache line being the 32 bits read from memory device 0 . It should be

understood that other suitable orders of bits may be used, and that other

numbering schemes for the device numbers may be used (e.g., the memory

devices may be numbered from 1 to 18). Although the present disclosure

discusses a memory module having 18 memory devices and a read burst length

of 8 , it should be understood that the concepts discussed herein are applicable to

memory modules having different numbers of memory devices and different burst

lengths.

[001 8] Referring now to the drawings, FIG. 1 is a block diagram of an example

memory controller 100 that includes a machine-readable storage medium

encoded with instructions to store memory erasure information. Memory

controller 100 may be communicatively coupled to, and control access to, various

memory devices (e.g., memory devices on a memory module). In FIG. 1, memory

controller 100 includes processor 102 and machine-readable storage

medium 104. As used herein, the terms "include", "have", and "comprise" are

interchangeable and should be understood to have the same meaning.

[001 9] Processor 102 may include a central processing unit (CPU),

microprocessor (e.g., semiconductor-based microprocessor), and/or other

hardware device suitable for retrieval and/or execution of instructions stored in

machine-readable storage medium 104. Processor 102 may fetch, decode, and/

or execute instructions 106, 108, 110, and 112 to enable storage of memory

erasure information, as described below. As an alternative or in addition to

retrieving and/or executing instructions, processor 102 may include an electronic

circuit comprising a number of electronic components for performing the

functionality of instructions 106, 108, 110, and/or 112.

[0020] Machine-readable storage medium 104 may be any suitable electronic,

magnetic, optical, or other physical storage device that contains or stores

executable instructions. Thus, machine-readable storage medium 104 may include,

for example, a random-access memory (RAM), an Electrically Erasable

Programmable Read-Only Memory (EEPROM), a storage device, an optical disc,

and the like. In some implementations, machine-readable storage medium 104 may

include a non-transitory storage medium, where the term "non-transitory" does not

encompass transitory propagating signals. As described in detail below, machine-

readable storage medium 104 may be encoded with a set of executable

instructions 106, 108, 110, and 112.

[0021] Instructions 106 may identify a memory location associated with an error

in a first cache line. For example, erroneous data in the first cache line may be

detected or identified, and instructions 106 may identify the memory device and/or

memory address from which the data was read. The first cache line may include

data read from the memory location. The memory location may be in a first memory

device of a plurality of memory devices on a memory module. The memory module

may be an in-line memory module, such as a single in-line memory module

(SIMM) or a dual in-line memory module (DIMM), or any memory module suitable

for mounting memory integrated circuits (ICs).

[0022] Instructions 108 may store, in one of the plurality of memory devices on

the memory module, a device number corresponding to the first memory device.

The device number may be in binary form. The device number may be stored in the

first memory device or a memory device other than the first memory device. In

some implementations, instructions 108 may store, in another one of the plurality of

memory devices, the device number corresponding to the first memory device.

Such redundant storage of the device number may allow the device number to be

retrieved even if one of the memory devices storing the device number fails.

[0023] Instructions 110 may retrieve, when the memory location is read for a

second cache line, the device number corresponding to the first memory device.

The second cache line may include data read from the same memory addresses

as those read for the first cache line, but at a later point in time. The second

cache line may include the retrieved device number and data read from the

memory location identified by instructions 106. In some implementations,

instructions 110 may retrieve a first copy of the device number from one of the

plurality of memory devices, and retrieve a second copy of the device number

from a different one of the plurality of memory devices.

[0024] Instructions 112 may determine, based on the device number, a

position of an error in the second cache line. As discussed above, the position of

data in a cache line may correspond to the device number of the memory device

from which the data was read. A device number in a cache line may indicate

which group of bits in the cache line memory controller 100 should ignore or

correct. For example, if a memory module has memory devices numbered 0-17,

and 32 bits are read from each memory device, then if the device number in a

cache line is 0 , memory controller 100 may ignore or correct the 32 least

significant bits in the cache line.

[0025] FIG. 2 is a block diagram of an example memory controller 200 that

includes a machine-readable storage medium encoded with instructions that

enable memory erasure for a region of a memory device. Memory controller 200

may be communicatively coupled to, and control access to, various memory

devices (e.g., memory devices on a memory module). In FIG. 2 , memory

controller 200 includes processor 202 and machine-readable storage

medium 204.

[0026] As with processor 102 of FIG. 1, processor 202 may include a CPU,

microprocessor (e.g., semiconductor-based microprocessor), and/or other

hardware device suitable for retrieval and/or execution of instructions stored in

machine-readable storage medium 204. Processor 202 may fetch, decode, and/

or execute instructions 206, 208, 2 10 , 212, 214, and 216 to enable memory

erasure for a region of a memory device, as described below. As an alternative or

in addition to retrieving and/or executing instructions, processor 202 may include

an electronic circuit comprising a number of electronic components for performing

the functionality of instructions 206, 208, 210, 212, 214, and/or 216.

[0027] As with machine-readable storage medium 104 of FIG. 1, machine-

readable storage medium 204 may be any suitable physical storage device that

stores executable instructions. Instructions 206, 208, 210, and 212 on machine-

readable storage medium 204 may be analogous to (e.g., have functions and/or

components similar to) instructions 106, 108, 110, and 112 on machine-readable

storage medium 104. Instructions 214 may embed tag encoding bits in a stored

device number corresponding to a first memory device. Tag encoding bits may be

used to indicate ownership of cache lines and maintain cache coherency when

multiple processors are used to access the same memory devices. Tag encoding

bits may be embedded in stored device numbers when a device number may be

discernible using less than all the bits reserved for the device number.

[0028] For example, 5 bits may be used to store a device number (in binary

form) in a memory module having 18 memory devices numbered 0-17. For device

numbers 0-15 (00000 to 0 1111 in binary form), all 5 bits may be needed to

recognize the proper device number. However, for device numbers 16 (10000 in

binary form) and 17 (10001 in binary form), the bits that matter are the most

significant bit and the least significant bit; the three bits in between may be ignored

for purposes of recognizing a device number. Thus, when an error is associated

with device number 16 or 17, the third-most significant bit and the fourth-most

significant bit of the 5 bits may be tag encoding bits. When an error is associated

with device numbers 0-15, no tag encoding bits may be embedded in the device

number, and snooping may be used to maintain cache coherency.

[0029] When none of the memory locations read for a cache line are associated

with an error, the most significant bit and another bit other than the least-significant

bit of the 5 bits may both be set to 1. For example, the two most significant bits of

the 5 bits may both be set to 1 (e.g., the 5-bit string ΐ χχχ' may be stored when

there are no errors in a cache line, where each 'x' may represent either a 0 or a 1) .

If the most significant bit and any other bit except for the least significant bit of the 5

bits are both 1, it may not matter what the rest of the bits are for purposes of

indicating that there are no errors in the cache line. Thus, any of the three remaining

bits may be tag encoding bits. For consistency with situations where a memory

location read for a cache line is associated with an error, the third-most significant

bit and fourth-most significant bit may be tag encoding bits (e.g., the 5-bit string

' ttx' may be stored when there are no errors in a cache line, where each 't'

represents a tag encoding bit and the 'x' may represent either a 0 or a 1) . Although

5-bit strings for storing device numbers are mentioned herein, it should be

understood that the principles and concepts of the present disclosure are applicable

for longer or shorter strings for storing device numbers. The number of bits used to

store device numbers may be adjusted based on how many memory devices are

on a memory module and/or how many tag encoding bits are to be embedded in a

device number.

[0030] If tag encoding bits are embedded in a device number retrieved by

instructions 210, instructions 212 may apply a mask to the device number when

using the device number to determine the position of an error in a cache line. For

example, if the device number is 5 bits long and the third- and fourth-most

significant bits are tag encoding bits, instructions 212 may use a mask to block out

the third- and fourth-most significant bits and then determine what the device

number is based on the remaining bits.

[0031] Instructions 216 may designate a region around a memory location in a

first memory device as defective. For example, instructions 216 may designate a

row, column, and/or bank that includes a particular memory location as defective.

A region may be designated as defective when the number of errors originating

from the region exceeds a specified threshold. When an address in the

designated region is read, instructions 210 may retrieve a device number

corresponding to the first memory device.

[0032] FIG. 3 is a block diagram of an example memory controller 300 that

includes a machine-readable storage medium encoded with instructions to

correct cache line errors. Memory controller 300 may be communicatively

coupled to, and control access to, various memory devices (e.g., memory devices

on a memory module). In FIG. 3 , memory controller 300 includes processor 302

and machine-readable storage medium 304.

[0033] As with processor 102 of FIG. 1, processor 302 may include a CPU,

microprocessor (e.g., semiconductor-based microprocessor), and/or other

hardware device suitable for retrieval and/or execution of instructions stored in

machine-readable storage medium 304. Processor 302 may fetch, decode, and/

or execute instructions 306, 308, 310, and 312 to enable correction of cache line

errors, as described below. As an alternative or in addition to retrieving and/or

executing instructions, processor 302 may include an electronic circuit comprising

a number of electronic components for performing the functionality of

instructions 306, 308, 310, and/or 312.

[0034] As with machine-readable storage medium 104 of FIG. 1, machine-

readable storage medium 304 may be any suitable physical storage device that

stores executable instructions. In some implementations, machine-readable storage

medium 304 may include a non-transitory storage medium. As described in detail

below, machine-readable storage medium 304 may be encoded with a set of

executable instructions 306, 308, 310, and 312.

[0035] Instructions 306 may detect an error in a cache line. For example,

instructions 306 may detect a non-matching checksum computed for a cache

line. The detected error may be associated with a first memory device of a

plurality of memory devices on a memory module. The memory module may be

an in-line memory module, such as a SIMM or DIMM, or any memory module

suitable for mounting memory ICs.

[0036] Instructions 308 may identify, in a cache line, a first device number.

The first device number may correspond to a memory device associated with a

detected error (e.g., data read from the memory device may contain the detected

error), and may be read from one of a plurality of memory devices on a memory

module. The first device number may appear in a designated position in a cache

line. For example, a device number may be 5 bits, and any cache line that

contains a device number may have the device number in the 5 most significant

bits of the cache line. The 5 bits of a device number may appear consecutively in

a cache line, or may be split up into different parts of a cache line.

[0037] In some implementations, tag encoding bits may be embedded in the

first device number, as discussed above with respect to FIG. 2 . In such

implementations, instructions 308 may apply a mask to the first device number to

block out the tag encoding bits. For example, if the device number is 5 bits long and

the third- and fourth-most significant bits are tag encoding bits, instructions 308 may

use a mask to block out the third- and fourth-most significant bits and then

determine what device number is specified by the remaining bits.

[0038] Instructions 310 may determine, based on a first device number, a

position of a detected error in a cache line. As discussed above, the position of

data in a cache line may correspond to the device number of the memory device

from which the data was read. Instructions 310 may identify the position, in the

cache line, that corresponds to the first device number. For example, if 32 bits

are read from each memory device of a memory module and the bits read from

memory device 0 are the 32 least significant bits of a cache line, then if the cache

line includes the device number 00000, instructions 310 may determine that a

detected error is in the last 32 bits of the cache line.

[0039] Instructions 312 may correct a detected error in a cache line. In some

implementations, instructions 312 may use non-erroneous data in a cache line to

reconstruct data for a portion of the cache line having the detected error. The

portion of the cache line having the detected error may include data read from a

memory device corresponding to a device number identified in the cache line. In

some implementations, instructions 312 may ignore the data in a certain position

of a cache line (e.g., the portion of the cache line that includes data read from the

memory device corresponding to a device number in the cache line) and use data

in other positions in the cache line to determine what data should be in the

ignored position.

[0040] FIG. 4 is a block diagram of an example memory controller 400 that

includes a machine-readable storage medium encoded with instructions to

identify and use device numbers in a cache line for memory erasure. Memory

controller 400 may be communicatively coupled to, and control access to, various

memory devices (e.g., memory devices on a memory module). In FIG. 4 , memory

controller 400 includes processor 402 and machine-readable storage

medium 404.

[0041] As with processor 302 of FIG. 3 , processor 402 may include a CPU,

microprocessor (e.g., semiconductor-based microprocessor), and/or other

hardware device suitable for retrieval and/or execution of instructions stored in

machine-readable storage medium 404. Processor 402 may fetch, decode, and/

or execute instructions 406, 408, 410, 412, 414, 4 16 , and 418 to enable memory

erasure for a region of a memory device, as described below. As an alternative or

in addition to retrieving and/or executing instructions, processor 402 may include

an electronic circuit comprising a number of electronic components for performing

the functionality of instructions 406, 408, 410, 412, 414, 416, and/or 4 18 .

[0042] As with machine-readable storage medium 304 of FIG. 3 , machine-

readable storage medium 404 may be any suitable physical storage device that

stores executable instructions. Instructions 406, 408, 410, and 412 on machine-

readable storage medium 404 may be analogous to instructions 306, 308, 310,

and 312 on machine-readable storage medium 304. Instructions 408 may identify a

first device number in a cache line, and the first device number may be read from

one of a plurality of memory devices on a memory module. Instructions 414 may

identify a second device number in the cache line. The second device number may

be read from another one of the plurality of memory devices. The second device

number may correspond to a memory device associated with an error detected by

instructions 406, and may be a copy of the first device number. In some

implementations, tag encoding bits may be embedded in the second device

number, and instructions 414 may use a mask when identifying the second device

number, in a manner analogous to that discussed above with respect to FIG. 3 .

[0043] The second device number may appear in a designated position in a

cache line. For example, a device number may be 5 bits, and any cache line that

contains two device numbers may have the second device number in the 5 least

significant bits of the cache line. The 5 bits of the second device number may

appear consecutively in a cache line, or may be split up into different parts of a

cache line.

[0044] Instructions 416 may compare the first device number identified by

instructions 408 and the second device number identified by instructions 414. For

example, instructions 416 may input the first device number and the second

device number into a comparator. If the first device number and the second

device number match, the device number may be used to determine the position

of an error in a cache line detected by instructions 406, and the error may be

corrected. If the first device number and the second device number do not match,

an attempt may be made to use the first device number to determine the position

of an error in a cache line and to correct the error.

[0045] Instructions 418 may determine, based on the second device number,

the position of a detected error in the cache line. Instructions 418 may be

executed if the first device number and the second device number do not match,

and if the detected error is not successfully corrected when the first device

number is used to determine the position of the detected error. As discussed

above, the position of data in a cache line may correspond to the device number

of the memory device from which the data was read. Instructions 418 may

identify the position, in the cache line, that corresponds to the second device

number. For example, if 32 bits are read from each memory device of a memory

module and the bits read from memory device 0 are the 32 least significant bits of

a cache line, then if the second device number is 00000, instructions 4 18 may

determine that a detected error is in the last 32 bits of the cache line.

Instructions 412 may correct the error in the determined position of the cache

line.

[0046] FIG. 5 is a block diagram of an example memory controller 500 that

includes a machine-readable storage medium encoded with instructions to track

errors in a memory device. Memory controller 500 may be communicatively

coupled to, and control access to, various memory devices (e.g., memory devices

on a memory module). In FIG. 5 , memory controller 500 includes processor 502

and machine-readable storage medium 504.

[0047] As with processor 302 of FIG. 3 , processor 502 may include a CPU,

microprocessor (e.g., semiconductor-based microprocessor), and/or other

hardware device suitable for retrieval and/or execution of instructions stored in

machine-readable storage medium 504. Processor 502 may fetch, decode, and/

or execute instructions 506, 508, 510, 512, 514, and 516 to enable tracking of

errors in a memory device, as described below. As an alternative or in addition to

retrieving and/or executing instructions, processor 502 may include an electronic

circuit comprising a number of electronic components for performing the

functionality of instructions 506, 508, 510, 512, 514, and/or 516.

[0048] As with machine-readable storage medium 304 of FIG. 3 , machine-

readable storage medium 504 may be any suitable physical storage device that

stores executable instructions. Instructions 506, 508, 510, and 512 on machine-

readable storage medium 504 may be analogous to instructions 306, 308, 310,

and 312 on machine-readable storage medium 304. Instructions 514 may keep

track of how many errors are associated with a region of a first memory device on a

memory module. The memory module may be an in-line memory module, such as

a SIMM or DIMM, or any memory module suitable for mounting memory ICs. The

region of the first memory device may be a row or column of the first memory

device. In some implementations, instructions 514 may keep track of how many

errors are associated with a memory bank that includes part of the first memory

device.

[0049] In some implementations, instructions 514 may maintain an error

counter that is incremented whenever an error associated with the region (e.g.,

an error in data read from an address in the region) is detected. If the number of

errors associated with the region exceeds a specified threshold value, the region

may be designated as defective. Data read from an address in a region

designated as defective may be deemed unreliable.

[0050] Instructions 516 may retrieve, when an address in the region is read, a

device number corresponding to the first memory device. Instructions 516 may be

executed if the region is designated as defective. The device number may be

retrieved from one of a plurality of memory devices on the memory module. In

some implementations, instructions 516 may retrieve a copy of the device

number from another one of the plurality of memory devices, such that the device

number appears twice in a cache line. If one of the memory devices from which

the device number is retrieved fails, an accurate copy of the device number may

still appear in a cache line and be used for memory erasure.

[0051] In some implementations, a patrol scrubber may be used to program

memory devices in the memory module such that whenever an address in a

defective region is read, the device number corresponding to the memory device

containing the defective region is also retrieved. Thus, both the data read from

the defective region and the corresponding device number may appear in the

same cache line. Instructions 5 10 may use the device number to determine

where in the cache line the data read from the defective region is so that the data

can be ignored or corrected.

[0052] FIG. 6 is a diagram of an example cache line 600 having device

numbers for memory erasure. Cache line 600 may be output by a memory

module having 18 DRAMs. A burst length of 8 may be used when reading the

DRAMs, as illustrated by the 8 rows in FIG. 6 . Each DRAM address may hold 4

bits. Thus, cache line 600 may have 576 bits (calculated by multiplying 32, which

is the number of bits read per DRAM, by 18, which is the number of DRAMs).

[0053] The left-most column in FIG. 6 represents data read for cache line 600

from a first DRAM of the memory module. The second column from the left in

FIG. 6 represents data read for cache line 600 from a second DRAM of the

memory module. The third column from the left in FIG. 6 represents data read for

cache line 600 from a third DRAM of the memory module. The right-most column

in FIG. 6 , which is wider than the other three columns, represents data read for

cache line 600 from the remaining 15 DRAMs of the memory module.

[0054] The first DRAM may store parity bits. Cache line 600 includes 32 parity

bits, which may enable detection of 100% of errors in cache line 600. The second

and third DRAMs may store device numbers (represented by "DRAM #" in

FIG. 6), cyclic redundancy check (CRC) bits, and other data. Cache line 600

includes 10 device number bits. The 10 bits may be two copies of the same 5-bit

device number. In some implementations, the device numbers may include

embedded tag encoding bits (e.g., 2 tag encoding bits per device number, 4 tag

encoding bits total in cache line 600), as discussed above with respect to FIG. 2 .

Cache line 600 includes 22 CRC bits, which may enable 99.999976% of errors in

cache line 600 to be corrected. The remaining 15 DRAMs may store data other

than parity bits, device numbers, and CRC bits.

[0055] Methods related to memory erasure are discussed with respect to

FIGS. 7-1 1. FIG. 7 is a flowchart of an example method 700 for storing memory

erasure information. Although execution of method 700 is described below with

reference to processor 102 of FIG. 1, it should be understood that execution of

method 700 may be performed by other suitable devices, such as processors 202

and 302 of FIGS. 2 and 3 , respectively. Method 700 may be implemented in the

form of executable instructions stored on a machine-readable storage medium

and/or in the form of electronic circuitry.

[0056] Method 700 may start in block 702, where processor 102 may identify a

memory location, in a first memory device of a plurality of memory devices on a

memory module, associated with an error in a first cache line. For example,

processor 102 may detect or identify erroneous data in the first cache line, and

identify the memory device and/or memory address from which the data was read.

The memory module may be an in-line memory module, such as a SIMM or

DIMM, or any memory module suitable for mounting memory ICs. The first cache

line may include data read from the memory location.

[0057] Next, in block 704, processor 102 may write a device number to one of

the plurality of memory devices. The device number may correspond to the first

memory device, and may be in binary form. The device number may be stored in

the first memory device or a memory device other than the first memory device. In

some implementations, 5 bits may be used to store the device number. In some

implementations, tag encoding bits may be embedded in the device number. The

number of bits used to store the device number may be adjusted based on how

many memory devices are on the memory module and/or how many tag encoding

bits are to be embedded in a device number.

[0058] Finally, in block 706, processor 102 may retrieve the device number

written in block 704 when the memory location identified in block 702 is read for a

second cache line. The second cache line may include the retrieved device number

and data read from the memory location. The second cache line may include data

read from the same memory addresses as those read for the first cache line, but

at a later point in time. The device number retrieved in block 706 may be used to

correct an error in the second cache line, as discussed above with respect to

FIG. 3 .

[0059] FIG. 8 is a flowchart of an example method 800 for correcting a cache

line error. Although execution of method 800 is described below with reference to

processor 302 of FIG. 3 , it should be understood that execution of method 800 may

be performed by other suitable devices, such as processors 402 and 502 of FIGS. 4

and 5 , respectively. In some implementations, some blocks of method 800 may be

performed in parallel with and/or after method 700. Method 800 may be

implemented in the form of executable instructions stored on a machine-readable

storage medium and/or in the form of electronic circuitry.

[0060] Method 800 may start in block 802, where processor 302 may detect an

error in a cache line that includes data read from a memory location in a first

memory device corresponding to a stored device number. For example,

processor 302 may detect a non-matching checksum computed for the cache

line. The first memory device may be one of a plurality of memory devices on a

memory module, and the detected error may be associated with the first memory

device (e.g., data read from the first memory device for the cache line may

contain errors). The memory module may be an in-line memory module, such as

a SIMM or DIMM, or any memory module suitable for mounting memory ICs.

Along with data read from the first memory device, the cache line may also

include the device number corresponding to the first memory device.

[0061] Next, in block 804, processor 302 may determine, based on the device

number, a position, in the cache line, of data read from the memory location. As

discussed above, the position of data in a cache line may correspond to the

device number of the memory device from which the data was read.

Processor 302 may identify the position, in the cache line, that corresponds to the

device number in the cache line. For example, if 32 bits are read from each

memory device of the memory module and the bits read from memory device 0

are the 32 least significant bits of the cache line, then if the cache line includes

the device number 00000, processor 302 may determine that the error detected

in block 802 is in the last 32 bits of the cache line.

[0062] In some implementations, tag encoding bits may be embedded in the

device number, as discussed above with respect to FIG. 2 . In such

implementations, processor 302 may apply a mask to the device number to block

out the tag encoding bits. For example, if the device number is 5 bits long and the

third- and fourth-most significant bits are tag encoding bits, processor 302 may use

a mask to block out the third- and fourth-most significant bits and then determine

what device number is specified by the remaining bits.

[0063] Finally, in block 806, processor 302 may correct the data in the

determined position. In some implementations, processor 302 may use non-

erroneous data in the cache line to reconstruct data for a portion of the cache line

having the detected error. In some implementations, processor 302 may ignore

the data in the determined position of the cache line (e.g., the portion of the

cache line that includes data read from the memory device corresponding to the

device number in the cache line) and use data in other positions in the cache line

to determine what data should be in the determined position.

[0064] FIG. 9 is a flowchart of an example method 900 for storing device

numbers to enable memory erasure on a cache line basis. Although execution of

method 900 is described below with reference to processor 302 of FIG. 3 , it should

be understood that execution of method 900 may be performed by other suitable

devices, such as processors 402 and 502 of FIGS. 4 and 5 , respectively. In some

implementations, some blocks of method 900 may be performed in parallel with

and/or after method 700. Method 900 may be implemented in the form of

executable instructions stored on a machine-readable storage medium and/or in the

form of electronic circuitry.

[0065] Method 900 may start in block 902, where processor 302 may identify a

memory location, in a first memory device of a plurality of memory devices on a

memory module, associated with an error in a cache line. For example,

processor 302 may detect or identify erroneous data in the cache line, and identify

the memory address from which the data was read. The cache line may include

data read from the memory location. The memory module may be an in-line

memory module, such as a SIMM or DIMM, or any memory module suitable for

mounting memory ICs.

[0066] Next, in block 904, processor 302 may determine whether there is a

device number in the cache line. For example, processor 302 may determine

whether a device number appears in a designated position in the cache line, as

discussed above with respect to FIG. 3 . If processor 302 determines that there is a

device number in the cache line, method 900 may proceed to block 906, in which

processor 302 may determine, using the device number, the position of the error in

the cache line and correct the error, as discussed above with respect to FIG. 8 .

[0067] If, in block 904, it is determined that there is not a device number in the

cache line (e.g., if there is not a valid device number in the designated position in

the cache line), method 900 may proceed to block 908, in which processor 302 may

scrub the identified memory location in the first memory device (e.g., write correct

data to the identified memory location). Next, in block 910, processor 302 may read

data from the scrubbed memory location.

[0068] In block 912, processor 302 may determine whether the data read from

the memory location is erroneous. For example, processor 302 may run a

checksum algorithm on the data. If the data is not erroneous, method 900 may

proceed to block 914, and the device number corresponding to the first memory

device may not be stored.

[0069] If, in block 912, it is determined that the data read from the memory

location is erroneous, method 900 may proceed to block 916, in which

processor 302 may write, to one of the plurality of memory devices, a device

number corresponding to the first memory device. The device number may be in

binary form (e.g., 5 bits). The device number may be written to the first memory

device or to a memory device other than the first memory device.

[0070] In block 918, processor 302 may embed tag encoding bits in the device

number. For example, the device number may be stored in a 5-bit string, and two of

the five bits may be tag encoding bits, as discussed above with respect to FIG. 2 . It

should be understood that block 918 may not be performed in implementations

where snooping is used to maintain cache coherency.

[0071] In block 920, processor 302 may write, to another one of the plurality of

memory devices, a copy of the device number corresponding to the first memory

device. The copy of the device number may include embedded tag encoding bits.

Such redundant storage of the device number may allow the device number to be

retrieved even if one of the memory devices to which the device number is written

fails.

[0072] FIG. 10 is a flowchart of an example method 1000 for memory erasure

for a region of a memory device. Although execution of method 1000 is described

below with reference to processor 502 of FIG. 5 , it should be understood that

execution of method 1000 may be performed by other suitable devices, such as

processor 202 of FIG. 2 . In some implementations, some blocks of method 1000

may be performed in parallel with and/or after method 700. Method 1000 may be

implemented in the form of executable instructions stored on a machine-readable

storage medium and/or in the form of electronic circuitry.

[0073] Method 1000 may start in block 1002, where processor 502 may keep

track of how many errors are associated with a region around a memory location of

a first memory device. The region may be a row, column, and/or memory bank

that includes the memory location. In some implementations, processor 502 may

maintain an error counter that is incremented whenever an error associated with

the region (e.g., an error in data read from an address in the region) is detected.

[0074] In block 1004, processor 502 may determine whether the number of

errors in the region exceeds a threshold number of errors. For example,

processor 502 may input the value of the error counter and the threshold number

into a comparator. If the number of errors in the region does not exceed the

threshold number, method 1000 may loop back to block 1002.

[0075] If, in block 1004, it is determined that the number of errors in the region

exceeds the threshold number of errors, method 1000 may proceed to block 1006,

in which processor 502 may designate the region around the memory location as

defective. In some implementations, method 1000 may proceed to block 1006 if

the number of errors in the region equals the threshold number of errors. Data

read from an address in a region designated as defective may be deemed

unreliable.

[0076] Finally, in block 1008, processor 502 may retrieve, when an address in

the designated region is read, the device number corresponding to the first memory

device. Processor 502 may retrieve the device number from one of a plurality of

memory devices on a memory module. In some implementations, processor 502

may retrieve a copy of the device number from another one of the plurality of

memory devices, such that the device number appears twice in a cache line. If

one of the memory devices from which the device number is retrieved fails, an

accurate copy of the device number may still appear in a cache line and be used

for memory erasure.

[0077] FIG. 11 is a flowchart of an example method 1100 for identifying and

using device numbers in a cache line for memory erasure. Although execution of

method 1100 is described below with reference to processor 402 of FIG. 4 , it should

be understood that execution of method 1100 may be performed by other suitable

devices, such as processors 102 and 302 of FIGS. 1 and 3 , respectively. In some

implementations, some blocks of method 1100 may be performed in parallel with

and/or after method 800. Method 1100 may be implemented in the form of

executable instructions stored on a machine-readable storage medium and/or in the

form of electronic circuitry.

[0078] Method 1100 may start in block 1102, where processor 402 may detect

an error in a cache line. For example, processor 402 may detect a non-matching

checksum computed for the cache line. The detected error may be associated

with a memory location in a memory device on a memory module. The memory

module may have a plurality of memory devices, and may be an in-line memory

module, such as a SIMM or DIMM, or any memory module suitable for mounting

memory ICs.

[0079] Next, in block 1104, processor 402 may identify a first device number in

the cache line. The first device number may correspond to a memory device

associated with the detected error (e.g., data read from the memory device may

contain the detected error), and may be read from one of a plurality of memory

devices on a memory module. The first device number may appear in a

designated position in the cache line, as discussed above with respect to FIG. 3 .

In some implementations, tag encoding bits may be embedded in the first device

number, and processor 402 may use a mask when identifying the first device

number, as discussed above with respect to FIG. 3 .

[0080] In block 1106, processor 402 may identify a second device number in the

cache line. The second device number may be read from another one of the

plurality of memory devices. The second device number may correspond to a

memory device associated with the detected error, and may be a copy of the first

device number. The second device number may appear in a designated position

in the cache line, as discussed above with respect to FIG. 4 . In some

implementations, tag encoding bits may be embedded in the second device

number, and processor 402 may use a mask when identifying the second device

number, in a manner analogous to that discussed above with respect to FIG. 3 .

[0081] Next, in block 1108, processor 402 may determine whether the first

device number matches the second device number. For example, processor 402

may input the first device number and the second device number into a comparator.

If the first device number and the second device number match, method 1100 may

proceed to block 1110, in which processor 402 may determine, using the device

number, the position of the error in the cache line and correct the error, as

discussed above with respect to FIG. 8 . In block 1112, processor 402 may continue

normal operations of memory controller 400.

[0082] If, in block 1108, it is determined that the first device number does not

match the second device number, method 1100 may proceed to block 1114, in

which processor 402 may use the first device number to determine the position of

the error in the cache line and attempt to correct the error. As discussed above, the

position of data in a cache line may correspond to the device number of the

memory device from which the data was read. In block 1114, processor 402 may

determine which bits in the cache line are in the position corresponding to the first

device number, and may attempt to correct those bits (e.g., reconstruct the data

in the position using data in other positions in the cache line).

[0083] Next, in block 1116, processor 402 may determine whether the correction

attempted in block 1114 was successful. For example, processor 402 may run a

checksum algorithm on the corrected bits and/or the entire cache line with the

corrected bits. If it is determined that the correction was successful, method 1100

may proceed to block 1112.

[0084] If, in block 1116, it is determined that the attempted correction was not

successful, method 1100 may proceed to block 1118, in which processor 402 may

use the second device number to determine the position of the error in the cache

line and attempt to correct the error. For example, processor 402 may determine

which bits in the cache line are in the position corresponding to the second

device number, and may attempt to correct those bits (e.g., reconstruct the data

in the position using data in other positions in the cache line). Next, in block 1120,

processor 402 may determine whether the correction attempted in block 1118 was

successful. For example, processor 402 may run a checksum algorithm on the

corrected bits and/or the entire cache line with the corrected bits. If it is determined

that the correction was successful, method 1100 may proceed to block 1112.

[0085] If, in block 1120, it is determined that the correction attempted in

block 1118 was not successful, method 1100 may proceed to block 1122, in which

a system crash may occur due to the uncorrected error. The defective memory

device associated with the error may need to be replaced for memory controller 400

to operate normally.

[0086] The foregoing disclosure describes inclusion of memory erasure

information for a cache line in the cache line. Such memory erasure information in a

cache line increases the granularity at which memory devices can be spared, for

example up to the contribution of a single memory device to the cache line.

e claim:

1. A method for storing memory erasure information, the method

comprising:

identifying a memory location associated with an error in a first

cache line, wherein the first cache line comprises data read from the memory

location, and wherein the memory location is in a first memory device of a

plurality of memory devices on a memory module;

writing, to one of the plurality of memory devices, a device number

corresponding to the first memory device; and

retrieving, when the memory location is read for a second cache

line, the device number corresponding to the first memory device, wherein the

second cache line comprises the retrieved device number and data read from the

memory location.

2 . The method of claim 1, further comprising:

determining, based on the retrieved device number, a position, in

the second cache line, of the data read from the identified memory location; and

correcting the data in the determined position.

3 . The method of claim 1, further comprising writing, to another one of the

plurality of memory devices, a copy of the device number corresponding to the

first memory device.

4 . The method of claim 1, further comprising embedding tag encoding bits

in the device number.

5 . The method of claim 1, further comprising:

scrubbing the identified memory location in the first memory device;

and

reading data from the scrubbed memory location, wherein the

device number corresponding to the first memory device is written to the one of

the plurality of memory devices if the data read from the scrubbed memory

location is erroneous.

6 . The method of claim 1, further comprising:

designating a region around the memory location as defective; and

retrieving, when an address in the designated region is read, the

device number corresponding to the first memory device.

7 . A machine-readable storage medium encoded with instructions

executable by a processor of a memory controller for storing memory erasure

information, the machine-readable storage medium comprising:

instructions to identify a memory location associated with an error in

a first cache line, wherein the first cache line comprises data read from the

memory location, and wherein the memory location is in a first memory device of

a plurality of memory devices on a memory module;

instructions to store, in one of the plurality of memory devices, a

device number corresponding to the first memory device;

instructions to retrieve, when the memory location is read for a

second cache line, the device number corresponding to the first memory device,

wherein the second cache line comprises the retrieved device number and data

read from the memory location; and

instructions to determine, based on the device number, a position of

an error in the second cache line.

8 . The machine-readable storage medium of claim 7 , further comprising

instructions to store, in another one of the plurality of memory devices, the device

number corresponding to the first memory device.

9 . The machine-readable storage medium of claim 7 , further comprising

instructions to embed tag encoding bits in the device number.

10. The machine-readable storage medium of claim 7 , further comprising:

instructions to designate a region around the memory location as

defective; and

instructions to retrieve, when an address in the designated region is

read, the device number corresponding to the first memory device.

11. A machine-readable storage medium encoded with instructions

executable by a processor of a memory controller for correcting cache line errors,

the machine-readable storage medium comprising:

instructions to detect an error in a cache line, wherein the detected

error is associated with a first memory device of a plurality of memory devices on

a memory module;

instructions to identify, in the cache line, a first device number,

wherein the first device number is read from one of the plurality of memory

devices;

instructions to determine, based on the first device number, a

position of the detected error in the cache line; and

instructions to correct the detected error.

12. The machine-readable storage medium of claim 11, further comprising

instructions to identify, in the cache line, a second device number, wherein the

second device number is read from another one of the plurality of memory

devices.

13. The machine-readable storage medium of claim 12, further

comprising:

instructions to compare the first device number and the second

device number;

instructions to determine, if the first device number and the second

device number do not match, and if the detected error is not successfully

corrected when the first device number is used to determine the position of the

detected error, the position of the detected error in the cache line, based on the

second device number.

14. The machine-readable storage medium of claim 11, wherein tag

encoding bits are embedded in the first device number.

15. The machine-readable storage medium of claim 11, further

comprising:

instructions to keep track of how many errors are associated with a

region of the first memory device; and

instructions to retrieve, when an address in the region is read, the

device number corresponding to the first memory device.

A. CLASSIFICATION OF SUBJECT MATTER

G06F ll/00(2006.01)i, G06F 12/08(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06F 11/00; G06F 11/07; G06F 3/00; G06F 11/10; G06F 11/22; G06F 13/00; G06F 12/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: memory, error, identify, device, number, location, cache, line

DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 2007-0050688 Al (LARRY JAY THAYER) 01 March 2007 1-15

See paragraphs 11-12, 26; and figure 1 .

US 2004-0025094 Al (SHAWN KENNETH WALKER et al.) 05 February 2004 1-15

See paragraphs 4 , 19, 24; and figure 2 .

US 2010-0293305 Al (JONGGYU PARK et al.) 18 November 2010 1-15

See paragraphs 11-12; and figure 4A.

EP 1000395 Bl (INTERGRAPH HARDWARE TECHNOLOGIES COMPANY) 01 December 2004 1-15

See paragraphs 2 , 4 , 12; and figure 1 .

US 2010-0268984 Al (GUY L . GUTHRIE et al.) 21 October 2010 1-15

See paragraphs 7-8; and figure 1 .

I IFurther documents are listed in the continuation of Box C . See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

05 September 2014 (05.09.2014) 05 September 2014 (05.09.2014)
Name and mailing address of the ISA/KR Authorized officer

tt International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,

YU, JAE CHON

V Republic of Korea

Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8647 ¾
Form PCT/ISA/210 (second sheet) (July 2009)

Information on patent family members PCT/US2013/073871

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2007-0050688 Al 01/03/2007 GB 0616145 DO 20/09/2006
GB 2429805 A 07/03/2007
GB 2429805 B 22/12/2010
US 2008-0065933 Al 13/03/2008
us 7307902 B2 11/12/2007
us 7599235 B2 06/10/2009

US 2004-0025094 Al 05/02/2004 JP 2001-249847 A 14/09/2001
us 6591393 Bl 08/07/2003
us 6874116 B2 29/03/2005

US 2010-0293305 Al 18/11/2010 R 10-2010-0122709 A 23/11/2010
us 8359412 B2 22/01/2013

EP 1000395 Bl 01/12/2004 DE 69827949 Dl 05/01/2005
DE 69827949 T2 27/10/2005
EP 1000395 Al 17/05/2000
US 6158025 A 05/12/2000
wo 1999-005599 Al 04/02/1999

US 2010-0268984 Al 21/10/2010 us 8291259 B2 16/10/2012

Form PCT/ISA/210 (patent family annex) (y 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

