wo 2015/088476 A1 [N NI 00000 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau 2

=

\

18 June 2015 (18.06.2015)

WIPOIPCT

(10) International Publication Number

WO 2015/088476 Al

(51)

21

(22)

(25
(26)
(71)

(72)

(74)

(81)

International Patent Classification:
GO6F 11/00 (2006.01) GO6F 12/08 (2006.01)

International Application Number:
PCT/US2013/073871

International Filing Date:
9' December 2013 (09.12.2013)

English
Publication Language: English

Applicant: HEWLETT-PACKARD DEVELOPMENT
COMPANY, L.P. [US/US]; 11445 Compag Center Drive
W., Houston, Texas 77070 (US).

Inventors:. WARNES, Lidia; 8000 Foothills Blvd., Ro-
seville, Cdifornia 95747 (US). HANDGEN, Erin, A
3404 E Harmony Rd., Ft. Coallins, Colorado 80528-9544
(US). WALTON, Andrew, C ; 8000 Foothills Blvd., Ro-
seville, California 95747 (US).

Agents: HA, Miranda, J. et al; Hewlett-Packard Com-
pany, Intellectual Property Administration, 3404 E. Har-
mony Road, Mail Stop 35, Fort Collins, Colorado 80528
9.

Designated States (unless otherwise indicated, for every
kind d national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

Filing Language:

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, Nz,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind d regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, Sz, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the identity d the inventor (Rule 4.17())

as to applicant's entitlement to applyfor and be granted a
patent (Rule 4.17(H))

Published:

with international search report (Art. 21(3))

(54) Titlee MEMORY ERASURE INFORMATION IN CACHE LINES

100~ FIG. 1

(57) Abstract: Example implementations relate
to storing memory erasure information in
memory devices on a memory module. In ex-
ample implementations, a memory location as-

Machine-Readable
Storage Medium

{dentify memory location

Processor

Store device number

N B

Retrieve device number

Determine position of error

sociated with an error in afirst cache line may
be identified. The first cache line may include
data read from the memory location, and the
memory location may be in a firss memory
device of a plurality of memory devices on a
memory module. A device number correspond-
ing to the first memory device may be written
to one of the pluraity of memory devices.
When the memory location isread for a second
cache line, the device number corresponding to
the first memory device may be retrieved. The
second cache line may include the retrieved
device number and data read from the memory
location.

- 106

108

110

- 112

WO 2015/088476 PCT/US2013/073871

-1 -

MEMORY ERASURE INFORMATION IN CACHE LINES

BACKGROUND
[0001] A memory module may include many memory devices. Error correction
logic may be used to correct errors detected in the memory devices. Memory
modules may include spare memory devices so that when a memory device
malfunctions, a spare memory device may be used instead of the malfunctioning

memory device.

BRIEF DESCRIPTION OF THE DRAWINGS
[0002] The following detailed description references the drawings, wherein:
[0003] FIG. 1 is a block diagram of an example memory controller that
includes a machine-readable storage medium encoded with instructions to store
memory erasure information;
[0004] FIG. 2 is a block diagram of an example memory controller that
includes a machine-readable storage medium encoded with instructions that
enable memory erasure for a region of a memory device;
[0005] FIG. 3 is a block diagram of an example memory controller that
includes a machine-readable storage medium encoded with instructions to
correct cache line errors;
[0006] FIG. 4 is a block diagram of an example memory controller that
includes a machine-readable storage medium encoded with instructions to
identify and use device numbers in a cache line for memory erasure;
[0007] FIG. 5 is a block diagram of an example memory controller that
includes a machine-readable storage medium encoded with instructions to track
errors in a memory device;
[0008] FIG. 6 is a diagram of an example cache line having device numbers
for memory erasure;
[0009] FIG. 7 is a flowchart of an example method for storing memory erasure
information;
[001 0] FIG. 8 is a flowchart of an example method for correcting a cache line

error;

WO 2015/088476 PCT/US2013/073871

2.

[001 1] FIG. 9 is a flowchart of an example method for storing device numbers
to enable memory erasure on a cache line basis;

[0012] FIG. 10 is a flowchart of an example method for memory erasure for a
region of a memory device; and

[001 3] FIG. 11 is a flowchart of an example method for identifying and using

device numbers in a cache line for memory erasure.

DETAILED DESCRIPTION

[0014] Most errors in a memory module do not permeate through an entire
memory device. However, even if an error is localized to a small portion (e.g., bit,
row, column) of a memory device, the entire memory device may be replaced by
a spare memory device. Thus, large error-free portions of a memory device may
be unused because of a small error-prone portion of the memory device.

[001 5] In light of the above, the present disclosure provides for an increase in
the granularity at which memory devices may be replaced. A memory controller
may be programmed to identify portions of memory devices from which errors
originate, to ignore and/or correct data that is read from the identified portions,
and to process data from error-free portions of memory devices as usual (e.g., for
a single memory device that has an error-prone portion and an error-free portion,
data read from the error-prone portion may be ignored/corrected, while data read
from the error-free portion may be processed as usual). The process of ignoring
and/or correcting data read from a memory device may be referred to herein as
"memory erasure". Information regarding which data to ignore/correct may be
referred to herein as "memory erasure information".

[0016] A memory controller may receive data in a cache line from a memory
module. Data may be read from various memory devices of a memory module at
substantially the same time, and the memory module may output a cache line
that includes the data read from the various memory devices. In some
implementations, data may be read from memory devices in bursts, such that
multiple addresses in a memory device are read in response to each read
command. Each memory device of a memory module may be assigned a device
number, and the position of data in a cache line may correspond to the device

number of the memory device from which the data was read.

WO 2015/088476 PCT/US2013/073871

-3-

[001 7] For example, a memory module may include 18 memory devices (e.g.,
dynamic random-access memories [DRAMSs]) numbered 0-17, and a burst length
of 8 may be used when reading the memory devices, with each address of a
memory device holding 4 bits. Thus, when a read command is sent to such a
memory module, the memory module may output a 576-bit cache line (calculated
by multiplying 32, which is the number of bits read per memory device, by 18,
which is the number of memory devices). In some implementations, the 32 most
significant bits of a cache line may be the 32 bits read from memory device 0, the
following 32 bits may be the 32 bits read from memory device 1, and so on, with
the 32 least significant bits of the cache line being the 32 bits read from memory
device 17. In some implementations, the 32 most significant bits of a cache line
may be the 32 bits read from memory device 17, the following 32 bits may be
the 32 bits read from memory device 16, and so on, with the 32 least significant
bits of the cache line being the 32 bits read from memory device 0. It should be
understood that other suitable orders of bits may be used, and that other
numbering schemes for the device numbers may be used (e.g., the memory
devices may be numbered from 1 to 18). Although the present disclosure
discusses a memory module having 18 memory devices and a read burst length
of 8, it should be understood that the concepts discussed herein are applicable to
memory modules having different numbers of memory devices and different burst
lengths.

[001 8] Referring now to the drawings, FIG. 1is a block diagram of an example
memory controller 100 that includes a machine-readable storage medium
encoded with instructions to store memory erasure information. Memory
controller 100 may be communicatively coupled to, and control access to, various
memory devices (e.g., memory devices on a memory module). In FIG. 1, memory
controller 100 includes processor 102 and machine-readable storage
medium 104. As used herein, the terms "include", "have", and "comprise" are
interchangeable and should be understood to have the same meaning.

[001 9] Processor 102 may include a central processing unit (CPU),
microprocessor (e.g., semiconductor-based microprocessor), and/or other

hardware device suitable for retrieval and/or execution of instructions stored in

WO 2015/088476 PCT/US2013/073871

-4 -

machine-readable storage medium 104. Processor 102 may fetch, decode, and/
or execute instructions 106, 108, 110, and 112 to enable storage of memory
erasure information, as described below. As an alternative or in addition to
retrieving and/or executing instructions, processor 102 may include an electronic
circuit comprising a number of electronic components for performing the
functionality of instructions 106, 108, 110, and/or 112.

[0020] Machine-readable storage medium 104 may be any suitable electronic,
magnetic, optical, or other physical storage device that contains or stores
executable instructions. Thus, machine-readable storage medium 104 may include,
for example, a random-access memory (RAM), an Electrically Erasable
Programmable Read-Only Memory (EEPROM), a storage device, an optical disc,
and the like. In some implementations, machine-readable storage medium 104 may
include a non-transitory storage medium, where the term "non-transitory” does not
encompass transitory propagating signals. As described in detail below, machine-
readable storage medium 104 may be encoded with a set of executable
instructions 106, 108, 110, and 112.

[0021] Instructions 106 may identify a memory location associated with an error
in a first cache line. For example, erroneous data in the first cache line may be
detected or identified, and instructions 106 may identify the memory device and/or
memory address from which the data was read. The first cache line may include
data read from the memory location. The memory location may be in a first memory
device of a plurality of memory devices on a memory module. The memory module
may be an in-line memory module, such as a single in-line memory module
(SIMM) or a dual in-line memory module (DIMM), or any memory module suitable
for mounting memory integrated circuits (ICs).

[0022] Instructions 108 may store, in one of the plurality of memory devices on
the memory module, a device number corresponding to the first memory device.
The device number may be in binary form. The device number may be stored in the
first memory device or a memory device other than the first memory device. In
some implementations, instructions 108 may store, in another one of the plurality of

memory devices, the device number corresponding to the first memory device.

WO 2015/088476 PCT/US2013/073871

-5-

Such redundant storage of the device number may allow the device number to be
retrieved even if one of the memory devices storing the device number fails.

[0023] Instructions 110 may retrieve, when the memory location is read for a
second cache line, the device number corresponding to the first memory device.
The second cache line may include data read from the same memory addresses
as those read for the first cache line, but at a later point in time. The second
cache line may include the retrieved device number and data read from the
memory location identified by instructions 106. In some implementations,
instructions 110 may retrieve a first copy of the device number from one of the
plurality of memory devices, and retrieve a second copy of the device number
from a different one of the plurality of memory devices.

[0024] Instructions 112 may determine, based on the device number, a
position of an error in the second cache line. As discussed above, the position of
data in a cache line may correspond to the device number of the memory device
from which the data was read. A device number in a cache line may indicate
which group of bits in the cache line memory controller 100 should ignore or
correct. For example, if a memory module has memory devices numbered 0-17,
and 32 bits are read from each memory device, then if the device number in a
cache line is 0, memory controller 100 may ignore or correct the 32 least
significant bits in the cache line.

[0025] FIG. 2 is a block diagram of an example memory controller 200 that
includes a machine-readable storage medium encoded with instructions that
enable memory erasure for a region of a memory device. Memory controller 200
may be communicatively coupled to, and control access to, various memory
devices (e.g., memory devices on a memory module). In FIG. 2, memory
controller 200 includes processor 202 and machine-readable storage
medium 204.

[0026] As with processor 102 of FIG. 1, processor 202 may include a CPU,
microprocessor (e.g., semiconductor-based microprocessor), and/or other
hardware device suitable for retrieval and/or execution of instructions stored in
machine-readable storage medium 204. Processor 202 may fetch, decode, and/

or execute instructions 206, 208, 210, 212, 214, and 216 to enable memory

WO 2015/088476 PCT/US2013/073871

-6 -

erasure for a region of a memory device, as described below. As an alternative or
in addition to retrieving and/or executing instructions, processor 202 may include
an electronic circuit comprising a number of electronic components for performing
the functionality of instructions 206, 208, 210, 212, 214, and/or 216.

[0027] As with machine-readable storage medium 104 of FIG. 1, machine-
readable storage medium 204 may be any suitable physical storage device that
stores executable instructions. Instructions 206, 208, 210, and 212 on machine-
readable storage medium 204 may be analogous to (e.g., have functions and/or
components similar to) instructions 106, 108, 110, and 112 on machine-readable
storage medium 104. Instructions 214 may embed tag encoding bits in a stored
device number corresponding to a first memory device. Tag encoding bits may be
used to indicate ownership of cache lines and maintain cache coherency when
multiple processors are used to access the same memory devices. Tag encoding
bits may be embedded in stored device humbers when a device number may be
discernible using less than all the bits reserved for the device number.

[0028] For example, 5 bits may be used to store a device number (in binary
form) in a memory module having 18 memory devices numbered 0-17. For device
numbers 0-15 (00000 to 01111 in binary form), all 5 bits may be needed to
recognize the proper device number. However, for device numbers 16 (10000 in
binary form) and 17 (10001 in binary form), the bits that matter are the most
significant bit and the least significant bit; the three bits in between may be ignored
for purposes of recognizing a device number. Thus, when an error is associated
with device number 16 or 17, the third-most significant bit and the fourth-most
significant bit of the 5 bits may be tag encoding bits. When an error is associated
with device numbers 0-15, no tag encoding bits may be embedded in the device
number, and snooping may be used to maintain cache coherency.

[0029] When none of the memory locations read for a cache line are associated
with an error, the most significant bit and another bit other than the least-significant
bit of the 5 bits may both be set to 1. For example, the two most significant bits of
the 5 bits may both be set to 1 (e.g., the 5-bit string “17 xxx' may be stored when
there are no errors in a cache line, where each 'x' may represent either a 0 or a 1).

If the most significant bit and any other bit except for the least significant bit of the 5

WO 2015/088476 PCT/US2013/073871

-7-

bits are both 1, it may not matter what the rest of the bits are for purposes of
indicating that there are no errors in the cache line. Thus, any of the three remaining
bits may be tag encoding bits. For consistency with situations where a memory
location read for a cache line is associated with an error, the third-most significant
bit and fourth-most significant bit may be tag encoding bits (e.g., the 5-bit string
"11ttx' may be stored when there are no errors in a cache line, where each 't
represents a tag encoding bit and the 'x' may represent either a 0 or a 1). Although
5-bit strings for storing device numbers are mentioned herein, it should be
understood that the principles and concepts of the present disclosure are applicable
for longer or shorter strings for storing device numbers. The number of bits used to
store device numbers may be adjusted based on how many memory devices are
on a memory module and/or how many tag encoding bits are to be embedded in a
device number.

[0030] If tag encoding bits are embedded in a device number retrieved by
instructions 210, instructions 212 may apply a mask to the device number when
using the device number to determine the position of an error in a cache line. For
example, if the device number is 5 bits long and the third- and fourth-most
significant bits are tag encoding bits, instructions 212 may use a mask to block out
the third- and fourth-most significant bits and then determine what the device
number is based on the remaining bits.

[0031] Instructions 216 may designate a region around a memory location in a
first memory device as defective. For example, instructions 216 may designate a
row, column, and/or bank that includes a particular memory location as defective.
A region may be designated as defective when the number of errors originating
from the region exceeds a specified threshold. When an address in the
designated region is read, instructions 210 may retrieve a device number
corresponding to the first memory device.

[0032] FIG. 3 is a block diagram of an example memory controller 300 that
includes a machine-readable storage medium encoded with instructions to
correct cache line errors. Memory controller 300 may be communicatively

coupled to, and control access to, various memory devices (e.g., memory devices

WO 2015/088476 PCT/US2013/073871

-8-

on a memory module). In FIG. 3, memory controller 300 includes processor 302
and machine-readable storage medium 304.

[0033] As with processor 102 of FIG. 1, processor 302 may include a CPU,
microprocessor (e.g., semiconductor-based microprocessor), and/or other
hardware device suitable for retrieval and/or execution of instructions stored in
machine-readable storage medium 304. Processor 302 may fetch, decode, and/
or execute instructions 306, 308, 310, and 312 to enable correction of cache line
errors, as described below. As an alternative or in addition to retrieving and/or
executing instructions, processor 302 may include an electronic circuit comprising
a number of electronic components for performing the functionality of
instructions 306, 308, 310, and/or 312.

[0034] As with machine-readable storage medium 104 of FIG. 1, machine-
readable storage medium 304 may be any suitable physical storage device that
stores executable instructions. In some implementations, machine-readable storage
medium 304 may include a non-transitory storage medium. As described in detall
below, machine-readable storage medium 304 may be encoded with a set of
executable instructions 306, 308, 310, and 312.

[0035] Instructions 306 may detect an error in a cache line. For example,
instructions 306 may detect a non-matching checksum computed for a cache
line. The detected error may be associated with a first memory device of a
plurality of memory devices on a memory module. The memory module may be
an in-line memory module, such as a SIMM or DIMM, or any memory module
suitable for mounting memory ICs.

[0036] Instructions 308 may identify, in a cache line, a first device number.
The first device number may correspond to a memory device associated with a
detected error (e.g., data read from the memory device may contain the detected
error), and may be read from one of a plurality of memory devices on a memory
module. The first device number may appear in a designated position in a cache
line. For example, a device number may be 5 bits, and any cache line that
contains a device number may have the device number in the 5 most significant
bits of the cache line. The 5 bits of a device humber may appear consecutively in

a cache line, or may be split up into different parts of a cache line.

WO 2015/088476 PCT/US2013/073871

-9-

[0037] In some implementations, tag encoding bits may be embedded in the
first device number, as discussed above with respect to FIG. 2. In such
implementations, instructions 308 may apply a mask to the first device number to
block out the tag encoding bits. For example, if the device number is 5 bits long and
the third- and fourth-most significant bits are tag encoding bits, instructions 308 may
use a mask to block out the third- and fourth-most significant bits and then
determine what device number is specified by the remaining bits.

[0038] Instructions 310 may determine, based on a first device number, a
position of a detected error in a cache line. As discussed above, the position of
data in a cache line may correspond to the device number of the memory device
from which the data was read. Instructions 310 may identify the position, in the
cache line, that corresponds to the first device number. For example, if 32 bits
are read from each memory device of a memory module and the bits read from
memory device 0 are the 32 least significant bits of a cache line, then if the cache
line includes the device number 00000, instructions 310 may determine that a
detected error is in the last 32 bits of the cache line.

[0039] Instructions 312 may correct a detected error in a cache line. In some
implementations, instructions 312 may use non-erroneous data in a cache line to
reconstruct data for a portion of the cache line having the detected error. The
portion of the cache line having the detected error may include data read from a
memory device corresponding to a device number identified in the cache line. In
some implementations, instructions 312 may ignore the data in a certain position
of a cache line (e.g., the portion of the cache line that includes data read from the
memory device corresponding to a device number in the cache line) and use data
in other positions in the cache line to determine what data should be in the
ignored position.

[0040] FIG. 4 is a block diagram of an example memory controller 400 that
includes a machine-readable storage medium encoded with instructions to
identify and use device numbers in a cache line for memory erasure. Memory
controller 400 may be communicatively coupled to, and control access to, various

memory devices (e.g., memory devices on a memory module). In FIG. 4, memory

WO 2015/088476 PCT/US2013/073871

-10 -

controller 400 includes processor 402 and machine-readable storage
medium 404.

[0041] As with processor 302 of FIG. 3, processor 402 may include a CPU,
microprocessor (e.g., semiconductor-based microprocessor), and/or other
hardware device suitable for retrieval and/or execution of instructions stored in
machine-readable storage medium 404. Processor 402 may fetch, decode, and/
or execute instructions 406, 408, 410, 412, 414, 416, and 418 to enable memory
erasure for a region of a memory device, as described below. As an alternative or
in addition to retrieving and/or executing instructions, processor 402 may include
an electronic circuit comprising a number of electronic components for performing
the functionality of instructions 406, 408, 410, 412, 414, 416, and/or 418.

[0042] As with machine-readable storage medium 304 of FIG. 3, machine-
readable storage medium 404 may be any suitable physical storage device that
stores executable instructions. Instructions 406, 408, 410, and 412 on machine-
readable storage medium 404 may be analogous to instructions 306, 308, 310,
and 312 on machine-readable storage medium 304. Instructions 408 may identify a
first device number in a cache line, and the first device number may be read from
one of a plurality of memory devices on a memory module. Instructions 414 may
identify a second device number in the cache line. The second device number may
be read from another one of the plurality of memory devices. The second device
number may correspond to a memory device associated with an error detected by
instructions 406, and may be a copy of the first device number. In some
implementations, tag encoding bits may be embedded in the second device
number, and instructions 414 may use a mask when identifying the second device
number, in a manner analogous to that discussed above with respect to FIG. 3.
[0043] The second device number may appear in a designated position in a
cache line. For example, a device number may be 5 bits, and any cache line that
contains two device numbers may have the second device number in the 5 least
significant bits of the cache line. The 5 bits of the second device number may
appear consecutively in a cache line, or may be split up into different parts of a

cache line.

WO 2015/088476 PCT/US2013/073871

-11 -

[0044] Instructions 416 may compare the first device number identified by
instructions 408 and the second device number identified by instructions 414. For
example, instructions 416 may input the first device number and the second
device number into a comparator. If the first device number and the second
device number match, the device number may be used to determine the position
of an error in a cache line detected by instructions 406, and the error may be
corrected. If the first device number and the second device number do not match,
an attempt may be made to use the first device humber to determine the position
of an error in a cache line and to correct the error.

[0045] Instructions 418 may determine, based on the second device number,
the position of a detected error in the cache line. Instructions 418 may be
executed if the first device number and the second device number do not match,
and if the detected error is not successfully corrected when the first device
number is used to determine the position of the detected error. As discussed
above, the position of data in a cache line may correspond to the device number
of the memory device from which the data was read. Instructions 418 may
identify the position, in the cache line, that corresponds to the second device
number. For example, if 32 bits are read from each memory device of a memory
module and the bits read from memory device 0 are the 32 least significant bits of
a cache line, then if the second device number is 00000, instructions 418 may
determine that a detected error is in the last 32 bits of the cache line.
Instructions 412 may correct the error in the determined position of the cache
line.

[0046] FIG. 5 is a block diagram of an example memory controller 500 that
includes a machine-readable storage medium encoded with instructions to track
errors in a memory device. Memory controller 500 may be communicatively
coupled to, and control access to, various memory devices (e.g., memory devices
on a memory module). In FIG. 5, memory controller 500 includes processor 502
and machine-readable storage medium 504.

[0047] As with processor 302 of FIG. 3, processor 502 may include a CPU,
microprocessor (e.g., semiconductor-based microprocessor), and/or other

hardware device suitable for retrieval and/or execution of instructions stored in

WO 2015/088476 PCT/US2013/073871

-12 -

machine-readable storage medium 504. Processor 502 may fetch, decode, and/
or execute instructions 506, 508, 510, 512, 514, and 516 to enable tracking of
errors in a memory device, as described below. As an alternative or in addition to
retrieving and/or executing instructions, processor 502 may include an electronic
circuit comprising a number of electronic components for performing the
functionality of instructions 506, 508, 510, 512, 514, and/or 516.

[0048] As with machine-readable storage medium 304 of FIG. 3, machine-
readable storage medium 504 may be any suitable physical storage device that
stores executable instructions. Instructions 506, 508, 510, and 512 on machine-
readable storage medium 504 may be analogous to instructions 306, 308, 310,
and 312 on machine-readable storage medium 304. Instructions 514 may keep
track of how many errors are associated with a region of a first memory device on a
memory module. The memory module may be an in-line memory module, such as
a SIMM or DIMM, or any memory module suitable for mounting memory ICs. The
region of the first memory device may be a row or column of the first memory
device. In some implementations, instructions 514 may keep track of how many
errors are associated with a memory bank that includes part of the first memory
device.

[0049] In some implementations, instructions 514 may maintain an error
counter that is incremented whenever an error associated with the region (e.g.,
an error in data read from an address in the region) is detected. If the number of
errors associated with the region exceeds a specified threshold value, the region
may be designated as defective. Data read from an address in a region
designated as defective may be deemed unreliable.

[0050] Instructions 516 may retrieve, when an address in the region is read, a
device number corresponding to the first memory device. Instructions 516 may be
executed if the region is designated as defective. The device number may be
retrieved from one of a plurality of memory devices on the memory module. In
some implementations, instructions 516 may retrieve a copy of the device
number from another one of the plurality of memory devices, such that the device

number appears twice in a cache line. If one of the memory devices from which

WO 2015/088476 PCT/US2013/073871

-13-

the device number is retrieved fails, an accurate copy of the device number may
still appear in a cache line and be used for memory erasure.

[0051] In some implementations, a patrol scrubber may be used to program
memory devices in the memory module such that whenever an address in a
defective region is read, the device number corresponding to the memory device
containing the defective region is also retrieved. Thus, both the data read from
the defective region and the corresponding device number may appear in the
same cache line. Instructions 510 may use the device number to determine
where in the cache line the data read from the defective region is so that the data
can be ignored or corrected.

[0052] FIG. 6 is a diagram of an example cache line 600 having device
numbers for memory erasure. Cache line 600 may be output by a memory
module having 18 DRAMs. A burst length of 8 may be used when reading the
DRAMSs, as illustrated by the 8 rows in FIG. 6. Each DRAM address may hold 4
bits. Thus, cache line 600 may have 576 bits (calculated by multiplying 32, which
is the number of bits read per DRAM, by 18, which is the number of DRAMS).
[0053] The left-most column in FIG. 6 represents data read for cache line 600
from a first DRAM of the memory module. The second column from the left in
FIG. 6 represents data read for cache line 600 from a second DRAM of the
memory module. The third column from the left in FIG. 6 represents data read for
cache line 600 from a third DRAM of the memory module. The right-most column
in FIG. 6, which is wider than the other three columns, represents data read for
cache line 600 from the remaining 15 DRAMs of the memory module.

[0054] The first DRAM may store parity bits. Cache line 600 includes 32 parity
bits, which may enable detection of 100% of errors in cache line 600. The second
and third DRAMs may store device numbers (represented by "DRAM #" in
FIG. 6), cyclic redundancy check (CRC) bits, and other data. Cache line 600
includes 10 device number bits. The 10 bits may be two copies of the same 5-bit
device number. In some implementations, the device numbers may include
embedded tag encoding bits (e.g., 2 tag encoding bits per device number, 4 tag
encoding bits total in cache line 600), as discussed above with respect to FIG. 2.

Cache line 600 includes 22 CRC bits, which may enable 99.999976% of errors in

WO 2015/088476 PCT/US2013/073871

-14 -

cache line 600 to be corrected. The remaining 15 DRAMs may store data other
than parity bits, device numbers, and CRC bits.

[0055] Methods related to memory erasure are discussed with respect to
FIGS. 7-1 1. FIG. 7 is a flowchart of an example method 700 for storing memory
erasure information. Although execution of method 700 is described below with
reference to processor 102 of FIG. 1, it should be understood that execution of
method 700 may be performed by other suitable devices, such as processors 202
and 302 of FIGS. 2 and 3, respectively. Method 700 may be implemented in the
form of executable instructions stored on a machine-readable storage medium
and/or in the form of electronic circuitry.

[0056] Method 700 may start in block 702, where processor 102 may identify a
memory location, in a first memory device of a plurality of memory devices on a
memory module, associated with an error in a first cache line. For example,
processor 102 may detect or identify erroneous data in the first cache line, and
identify the memory device and/or memory address from which the data was read.
The memory module may be an in-line memory module, such as a SIMM or
DIMM, or any memory module suitable for mounting memory ICs. The first cache
line may include data read from the memory location.

[0057] Next, in block 704, processor 102 may write a device number to one of
the plurality of memory devices. The device number may correspond to the first
memory device, and may be in binary form. The device number may be stored in
the first memory device or a memory device other than the first memory device. In
some implementations, 5 bits may be used to store the device number. In some
implementations, tag encoding bits may be embedded in the device number. The
number of bits used to store the device number may be adjusted based on how
many memory devices are on the memory module and/or how many tag encoding
bits are to be embedded in a device number.

[0058] Finally, in block 706, processor 102 may retrieve the device number
written in block 704 when the memory location identified in block 702 is read for a
second cache line. The second cache line may include the retrieved device number
and data read from the memory location. The second cache line may include data

read from the same memory addresses as those read for the first cache line, but

WO 2015/088476 PCT/US2013/073871

-15-

at a later point in time. The device number retrieved in block 706 may be used to
correct an error in the second cache line, as discussed above with respect to
FIG. 3.

[0059] FIG. 8 is a flowchart of an example method 800 for correcting a cache
line error. Although execution of method 800 is described below with reference to
processor 302 of FIG. 3, it should be understood that execution of method 800 may
be performed by other suitable devices, such as processors 402 and 502 of FIGS. 4
and 5, respectively. In some implementations, some blocks of method 800 may be
performed in parallel with and/or after method 700. Method 800 may be
implemented in the form of executable instructions stored on a machine-readable
storage medium and/or in the form of electronic circuitry.

[0060] Method 800 may start in block 802, where processor 302 may detect an
error in a cache line that includes data read from a memory location in a first
memory device corresponding to a stored device number. For example,
processor 302 may detect a non-matching checksum computed for the cache
line. The first memory device may be one of a plurality of memory devices on a
memory module, and the detected error may be associated with the first memory
device (e.g., data read from the first memory device for the cache line may
contain errors). The memory module may be an in-line memory module, such as
a SIMM or DIMM, or any memory module suitable for mounting memory ICs.
Along with data read from the first memory device, the cache line may also
include the device number corresponding to the first memory device.

[0061] Next, in block 804, processor 302 may determine, based on the device
number, a position, in the cache line, of data read from the memory location. As
discussed above, the position of data in a cache line may correspond to the
device number of the memory device from which the data was read.
Processor 302 may identify the position, in the cache line, that corresponds to the
device number in the cache line. For example, if 32 bits are read from each
memory device of the memory module and the bits read from memory device 0
are the 32 least significant bits of the cache line, then if the cache line includes
the device number 00000, processor 302 may determine that the error detected

in block 802 is in the last 32 bits of the cache line.

WO 2015/088476 PCT/US2013/073871

-16 -

[0062] In some implementations, tag encoding bits may be embedded in the
device number, as discussed above with respect to FIG. 2. In such
implementations, processor 302 may apply a mask to the device number to block
out the tag encoding bits. For example, if the device number is 5 bits long and the
third- and fourth-most significant bits are tag encoding bits, processor 302 may use
a mask to block out the third- and fourth-most significant bits and then determine
what device number is specified by the remaining bits.

[0063] Finally, in block 806, processor 302 may correct the data in the
determined position. In some implementations, processor 302 may use non-
erroneous data in the cache line to reconstruct data for a portion of the cache line
having the detected error. In some implementations, processor 302 may ignore
the data in the determined position of the cache line (e.g., the portion of the
cache line that includes data read from the memory device corresponding to the
device number in the cache line) and use data in other positions in the cache line
to determine what data should be in the determined position.

[0064] FIG. 9 is a flowchart of an example method 900 for storing device
numbers to enable memory erasure on a cache line basis. Although execution of
method 900 is described below with reference to processor 302 of FIG. 3, it should
be understood that execution of method 900 may be performed by other suitable
devices, such as processors 402 and 502 of FIGS. 4 and 5, respectively. In some
implementations, some blocks of method 900 may be performed in parallel with
and/or after method 700. Method 900 may be implemented in the form of
executable instructions stored on a machine-readable storage medium and/or in the
form of electronic circuitry.

[0065] Method 900 may start in block 902, where processor 302 may identify a
memory location, in a first memory device of a plurality of memory devices on a
memory module, associated with an error in a cache line. For example,
processor 302 may detect or identify erroneous data in the cache line, and identify
the memory address from which the data was read. The cache line may include
data read from the memory location. The memory module may be an in-line
memory module, such as a SIMM or DIMM, or any memory module suitable for

mounting memory ICs.

WO 2015/088476 PCT/US2013/073871

-17 -

[0066] Next, in block 904, processor 302 may determine whether there is a
device number in the cache line. For example, processor 302 may determine
whether a device number appears in a designated position in the cache line, as
discussed above with respect to FIG. 3. If processor 302 determines that there is a
device number in the cache line, method 900 may proceed to block 906, in which
processor 302 may determine, using the device number, the position of the error in
the cache line and correct the error, as discussed above with respect to FIG. 8.
[0067] If, in block 904, it is determined that there is not a device number in the
cache line (e.g., if there is not a valid device number in the designated position in
the cache line), method 900 may proceed to block 908, in which processor 302 may
scrub the identified memory location in the first memory device (e.g., write correct
data to the identified memory location). Next, in block 910, processor 302 may read
data from the scrubbed memory location.

[0068] In block 912, processor 302 may determine whether the data read from
the memory location is erroneous. For example, processor 302 may run a
checksum algorithm on the data. i the data is not erroneous, method 900 may
proceed to block 914, and the device number corresponding to the first memory
device may not be stored.

[0069] If, in block 912, it is determined that the data read from the memory
location is erroneous, method 900 may proceed to block 916, in which
processor 302 may write, to one of the plurality of memory devices, a device
number corresponding to the first memory device. The device number may be in
binary form (e.g., 5 bits). The device number may be written to the first memory
device or to a memory device other than the first memory device.

[0070] In block 918, processor 302 may embed tag encoding bits in the device
number. For example, the device number may be stored in a 5-bit string, and two of
the five bits may be tag encoding bits, as discussed above with respect to FIG. 2. It
should be understood that block 918 may not be performed in implementations
where snooping is used to maintain cache coherency.

[0071] In block 920, processor 302 may write, to another one of the plurality of
memory devices, a copy of the device number corresponding to the first memory

device. The copy of the device nhumber may include embedded tag encoding bits.

WO 2015/088476 PCT/US2013/073871

-18 -

Such redundant storage of the device number may allow the device number to be
retrieved even if one of the memory devices to which the device number is written
fails.

[0072] FIG. 10 is a flowchart of an example method 1000 for memory erasure
for a region of a memory device. Although execution of method 1000 is described
below with reference to processor 502 of FIG. 5, it should be understood that
execution of method 1000 may be performed by other suitable devices, such as
processor 202 of FIG. 2. In some implementations, some blocks of method 1000
may be performed in parallel with and/or after method 700. Method 1000 may be
implemented in the form of executable instructions stored on a machine-readable
storage medium and/or in the form of electronic circuitry.

[0073] Method 1000 may start in block 1002, where processor 502 may keep
track of how many errors are associated with a region around a memory location of
a first memory device. The region may be a row, column, and/or memory bank
that includes the memory location. In some implementations, processor 502 may
maintain an error counter that is incremented whenever an error associated with
the region (e.g., an error in data read from an address in the region) is detected.
[0074] In block 1004, processor 502 may determine whether the number of
errors in the region exceeds a threshold number of errors. For example,
processor 502 may input the value of the error counter and the threshold number
into a comparator. K the number of errors in the region does not exceed the
threshold number, method 1000 may loop back to block 1002.

[0075] If, in block 1004, it is determined that the number of errors in the region
exceeds the threshold number of errors, method 1000 may proceed to block 1006,
in which processor 502 may designate the region around the memory location as
defective. In some implementations, method 1000 may proceed to block 1006 if
the number of errors in the region equals the threshold number of errors. Data
read from an address in a region designated as defective may be deemed
unreliable.

[0076] Finally, in block 1008, processor 502 may retrieve, when an address in
the designated region is read, the device number corresponding to the first memory

device. Processor 502 may retrieve the device number from one of a plurality of

WO 2015/088476 PCT/US2013/073871

-19-

memory devices on a memory module. In some implementations, processor 502
may retrieve a copy of the device number from another one of the plurality of
memory devices, such that the device number appears twice in a cache line. If
one of the memory devices from which the device number is retrieved fails, an
accurate copy of the device number may still appear in a cache line and be used
for memory erasure.

[0077] FIG. 11 is a flowchart of an example method 1100 for identifying and
using device numbers in a cache line for memory erasure. Although execution of
method 1100 is described below with reference to processor 402 of FIG. 4, it should
be understood that execution of method 1100 may be performed by other suitable
devices, such as processors 102 and 302 of FIGS. 1 and 3, respectively. In some
implementations, some blocks of method 1100 may be performed in parallel with
and/or after method 800. Method 1100 may be implemented in the form of
executable instructions stored on a machine-readable storage medium and/or in the
form of electronic circuitry.

[0078] Method 1100 may start in block 1102, where processor 402 may detect
an error in a cache line. For example, processor 402 may detect a non-matching
checksum computed for the cache line. The detected error may be associated
with a memory location in a memory device on a memory module. The memory
module may have a plurality of memory devices, and may be an in-line memory
module, such as a SIMM or DIMM, or any memory module suitable for mounting
memory ICs.

[0079] Next, in block 1104, processor 402 may identify a first device number in
the cache line. The first device number may correspond to a memory device
associated with the detected error (e.g., data read from the memory device may
contain the detected error), and may be read from one of a plurality of memory
devices on a memory module. The first device number may appear in a
designated position in the cache line, as discussed above with respect to FIG. 3.
In some implementations, tag encoding bits may be embedded in the first device
number, and processor 402 may use a mask when identifying the first device

number, as discussed above with respect to FIG. 3.

WO 2015/088476 PCT/US2013/073871

-20-

[0080] In block 1106, processor 402 may identify a second device number in the
cache line. The second device number may be read from another one of the
plurality of memory devices. The second device number may correspond to a
memory device associated with the detected error, and may be a copy of the first
device number. The second device number may appear in a designated position
in the cache line, as discussed above with respect to FIG. 4. In some
implementations, tag encoding bits may be embedded in the second device
number, and processor 402 may use a mask when identifying the second device
number, in a manner analogous to that discussed above with respect to FIG. 3.
[0081] Next, in block 1108, processor 402 may determine whether the first
device number matches the second device number. For example, processor 402
may input the first device number and the second device number into a comparator.
If the first device humber and the second device number match, method 1100 may
proceed to block 1110, in which processor 402 may determine, using the device
number, the position of the error in the cache line and correct the error, as
discussed above with respect to FIG. 8. In block 1112, processor 402 may continue
normal operations of memory controller 400.

[0082] If, in block 1108, it is determined that the first device number does not
match the second device number, method 1100 may proceed to block 1114, in
which processor 402 may use the first device number to determine the position of
the error in the cache line and attempt to correct the error. As discussed above, the
position of data in a cache line may correspond to the device number of the
memory device from which the data was read. In block 1114, processor 402 may
determine which bits in the cache line are in the position corresponding to the first
device number, and may attempt to correct those bits (e.g., reconstruct the data
in the position using data in other positions in the cache line).

[0083] Next, in block 1116, processor 402 may determine whether the correction
attempted in block 1114 was successful. For example, processor 402 may run a
checksum algorithm on the corrected bits and/or the entire cache line with the
corrected bits. If it is determined that the correction was successful, method 1100

may proceed to block 1112.

WO 2015/088476 PCT/US2013/073871

-21 -

[0084] If, in block 1116, it is determined that the attempted correction was not
successful, method 1100 may proceed to block 1118, in which processor 402 may
use the second device number to determine the position of the error in the cache
line and attempt to correct the error. For example, processor 402 may determine
which bits in the cache line are in the position corresponding to the second
device number, and may attempt to correct those bits (e.g., reconstruct the data
in the position using data in other positions in the cache line). Next, in block 1120,
processor 402 may determine whether the correction attempted in block 1118 was
successful. For example, processor 402 may run a checksum algorithm on the
corrected bits and/or the entire cache line with the corrected bits. If it is determined
that the correction was successful, method 1100 may proceed to block 1112.

[0085] If, in block 1120, it is determined that the correction attempted in
block 1118 was not successful, method 1100 may proceed to block 1122, in which
a system crash may occur due to the uncorrected error. The defective memory
device associated with the error may need to be replaced for memory controller 400
to operate normally.

[0086] The foregoing disclosure describes inclusion of memory erasure
information for a cache line in the cache line. Such memory erasure information in a
cache line increases the granularity at which memory devices can be spared, for

example up to the contribution of a single memory device to the cache line.

WO 2015/088476 PCT/US2013/073871

-22-

We claim:

1. A method for storing memory erasure information, the method

comprising:

identifying a memory location associated with an error in a first
cache line, wherein the first cache line comprises data read from the memory
location, and wherein the memory location is in a first memory device of a
plurality of memory devices on a memory module;

writing, to one of the plurality of memory devices, a device number
corresponding to the first memory device; and

retrieving, when the memory location is read for a second cache
line, the device number corresponding to the first memory device, wherein the
second cache line comprises the retrieved device number and data read from the

memory location.

2. The method of claim 1, further comprising:
determining, based on the retrieved device number, a position, in
the second cache line, of the data read from the identified memory location; and

correcting the data in the determined position.

3. The method of claim 1, further comprising writing, to another one of the
plurality of memory devices, a copy of the device number corresponding to the

first memory device.

4. The method of claim 1, further comprising embedding tag encoding bits

in the device number.

5. The method of claim 1, further comprising:
scrubbing the identified memory location in the first memory device;
and
reading data from the scrubbed memory location, wherein the

device number corresponding to the first memory device is written to the one of

WO 2015/088476 PCT/US2013/073871

-23-

the plurality of memory devices if the data read from the scrubbed memory

location is erroneous.

6. The method of claim 1, further comprising:
designating a region around the memory location as defective; and
retrieving, when an address in the designated region is read, the

device number corresponding to the first memory device.

7. A machine-readable storage medium encoded with instructions
executable by a processor of a memory controller for storing memory erasure
information, the machine-readable storage medium comprising:

instructions to identify a memory location associated with an error in
a first cache line, wherein the first cache line comprises data read from the
memory location, and wherein the memory location is in a first memory device of
a plurality of memory devices on a memory module;

instructions to store, in one of the plurality of memory devices, a
device number corresponding to the first memory device;

instructions to retrieve, when the memory location is read for a
second cache line, the device number corresponding to the first memory device,
wherein the second cache line comprises the retrieved device number and data
read from the memory location; and

instructions to determine, based on the device number, a position of

an error in the second cache line.
8. The machine-readable storage medium of claim 7, further comprising
instructions to store, in another one of the plurality of memory devices, the device

number corresponding to the first memory device.

9. The machine-readable storage medium of claim 7, further comprising

instructions to embed tag encoding bits in the device number.

10. The machine-readable storage medium of claim 7, further comprising:

WO 2015/088476 PCT/US2013/073871

-24 -

instructions to designate a region around the memory location as
defective; and
instructions to retrieve, when an address in the designated region is

read, the device number corresponding to the first memory device.

11. A machine-readable storage medium encoded with instructions
executable by a processor of a memory controller for correcting cache line errors,
the machine-readable storage medium comprising:

instructions to detect an error in a cache line, wherein the detected
error is associated with a first memory device of a plurality of memory devices on
a memory module;

instructions to identify, in the cache line, a first device number,
wherein the first device number is read from one of the plurality of memory
devices;

instructions to determine, based on the first device number, a
position of the detected error in the cache line; and

instructions to correct the detected error.

12. The machine-readable storage medium of claim 11, further comprising
instructions to identify, in the cache line, a second device number, wherein the
second device number is read from another one of the plurality of memory

devices.

13. The machine-readable storage medium of claim 12, further
comprising:
instructions to compare the first device number and the second
device number;
instructions to determine, if the first device number and the second
device number do not match, and if the detected error is not successfully
corrected when the first device number is used to determine the position of the
detected error, the position of the detected error in the cache line, based on the

second device number.

WO 2015/088476 PCT/US2013/073871

-25-

14. The machine-readable storage medium of claim 11, wherein tag

encoding bits are embedded in the first device number.

15. The machine-readable storage medium of claim 11, further
comprising:
instructions to keep track of how many errors are associated with a
region of the first memory device; and
instructions to retrieve, when an address in the region is read, the

device number corresponding to the first memory device.

WO 2015/088476 PCT/US2013/073871

111
100 ~y
104 \ Machine-Readable
Storage Medium
identify memory location s
™\
Processor 108
Store device number .
} \\M 108
102
Retrieve device number -
\“"“m 110
Determine position of error .
\“M 112

WO 2015/088476 PCT/US2013/073871

2111
200 ~y
204 \ Machine-Readable
Storage Medium
identify memory location s
AN
Processor 208
Store device number .
} \\M 208
202
Retrieve device number -
\“"m 210
Determine position of error .
\M 242
Embed tag encoding bits N
\\““w- 214

Designate region as defective =

e 216

WO 2015/088476 PCT/US2013/073871

311
300
Ty
304 \ Machine-Readable
Storage Medium
Detect error in cache ling =
Processor T 300

fdentify first device number b

P

e 308

302 , =
Determine position of error

based on first device number

310

Correct detected arror o=

Lo Lo L L

e 312

WO 2015/088476 PCT/US2013/073871

402 e 412

identify second device number

- 414

Compare first and second
device numbers

4/11
400 ¥
404 Machine-Readable
\ Storage Medium
Detect error in cacha ling =
\\‘“““m 406
identify first device number \\
e 408
Determine position of error
based on first device number \\
Processor e 410
, Correct detected error s
) .
AN

e 416

Determine position of error
based on second device
number

/

- 418

WO 2015/088476 PCT/US2013/073871

Keep track of errors =

514

Reatrieve device number o=

5i11
500 «»:%
504 Machine-Readable
\ Storage Medium
Detect error in cache line

\\M 506

identify first devica number -\\
e 508

Processor Determine position of error

based on first device number \\
. S 510

5(3% Correct detected error «\\

WO 2015/088476

PCT/US2013/073871

600
IR
Parity | DRAM # | DRAM # o
(4 bits) | (4 bits) | (4 bits) Data (80 bits)
Farity ‘
(4 bits) Data (68 bits)
DRAM # | DRAM #
Parity | (1bity | (1bit) -
(4 bits) | CRC ORC Data (60 bits)
{3 bits) | (3 bits)
Farity
(4 bits) Data (68 bits)
Parity CRC CRC ' -
(4 bits) | (4 bits) | (4 bits) Data (80 bits)
Parity ‘
(4 bits) Data (68 bils)
Parity CRC CRC ' -
(4 bits) | (4 bits) | (4 bits) Data {60 bits)
Farity
(4 bits) Data (68 bits)

1 DRAM 1 DRAM -1 DRAM:

15 DRAM

WO 2015/088476 PCT/US2013/073871

700 ~y

identify memory location, in first memory
device of plurality of memaory devices, S
associated with error in first cache line 702

Write device number to one of plurality of
memory devices N 704

Retrieve device number when memory
focation is read for second cache line “\‘mms

WO 2015/088476 PCT/US2013/073871

800
¥

Delect error in cache line that includes
data read from memory location in first
memory device corresponding to stored] . gz

device number

Determine, based on device number, a
position, in cache line, of data read
from memory location -804

Correct data in determined position .
806

WO 2015/088476

800
3y

PCT/US2013/073871

{dentify mamory location, in first memory
davice, associated with error in cache line N\Uggz

804

R —
Davice number

=

Determineg, using
davice number,
Yes! position of error in

in cache ling7.— cache line and
correct error
No
Scrub identified memory location
| ¥ 5"“\\908 906
L
| Read data from memory location §\\
910
- P
No " Read data
erroneoui‘i&ﬁ
o
Yes 9;‘56

¥

Device number
corresponding 1o
first mamory
device not stored

»\\““914

918"

&
o

/

Write, to one of pEuraEity of memaory
devices, device number
corresponding to first memory device

¥

Embed tag encoding bits in device
number

Write, to another one of plurality of
memory devices, copy of device

7 number corr nding to first
gzof umber corresponding to firs

memory device

WO 2015/088476 PCT/US2013/073871

HUKN

Keep track of how many errors
are associated with region
around memory location of first 1002
memory device

k4

- N
No o Num%‘ger of errors in
region excesds

threshold? "
.“"M
‘,.o""
Yeas

Designate region around memory
location as defective 1006

¥

Retrieve, when an address in
designated region is read, the device
number corresponding to first N\M 008
memory device

FIG. 10

WO 2015/088476 PCT/US2013/073871

11711

1100«§§

Detect error in ¢cache line .
1102

A

identify first device number in cache line .
1104

&

identify second device number in cache line S
1108

-~ First device number
YBS_‘,‘»-"“"'&
maiches second e

¥ 1114

Determine, using ¥
device number, Determine, using first device
position of error in “‘\4119 number, position of error in cache
cache line and line and altempt to correct error
correct error

¥ o

Yog o “Correction
. o _“‘,p"
Continue normal = succ&sgfui‘?ﬂf

operations of ”“\4112 -
memory controlier NG

4

¥ 1120 : ‘
- Determine, using second

Yes " Correction device number, position
succe$sfu53fw” of error in cache line and
e attempt to correct error

1122

System crash;
replacement for
defective memory
device needed

1118

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/073871

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 11/00(2006.01)i, GO6F 12/08(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 11/00; GO6F 11/07; GO6F 3/00; GO6F 11/10; GO6F 11/22; GO6F 13/00; GO6F 12/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords. memory, error, identify, device, number, location, cache, line

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to clam No.

A US 2007-0050688 Al (LARRY JAY THAYER) 01 March 2007 1-15
See paragraphs 11-12, 26; and figure 1.

A US 2004- 0025094 Al (SHAWN KENNETH WALKER et al.) 05 February 2004 1-15
See paragraphs 4, 19, 24; and figure 2.

A US 2010-0293305 Al (JONGGYU PARK et al.) 18 Novenber 2010 1-15
See paragraphs 11-12; and figure 4A

A EP 1000395 Bl (| NTERGRAPH HARDWARE TECHNOLOG ES COWPANY) 01 Decenber 2004 1-15
See paragraphs 2, 4, 12; and figure 1.

A US 2010-0268984 Al (QUY L. GUTHRIE et al.) 21 Qctober 2010 1-15
See paragraphs 7-8; and figure 1.

l__' Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art whichisnot considered date and not in conflict with the applicationbut citedto understand
to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be consideredto involvean inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document i staken alone
citedto establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"0" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obviousto aperson skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
thanthe priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
05 September 2014 (05.09.2014) 05 September 2014 (05.09.2014)
Name and mailing address of the ISA/KR Authorized officer .
International Application Division e‘§&:\ %
¢ KoreanIntellectual Property Office YU, JAE CHON g\\\\‘

189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan City, 302-701,

A
Yy it

L

=V Republic of Korea \
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8647

%7
%, e

£

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2013/073871
Patent document Publication Patent family Publication
cited in search report date member(s) date
us 2007-0050688 Al 01/03/2007 B 0616145 po 20/09/2006
GB 2429805 A 07/03/2007
GB 2429805 B 22/12/2010
us 2008-0065933 Al 13/03/2008
us 7307902 B2 11/12/2007
us 7599235 B2 06/10/2009
us 2004-0025094 Al 05/02/2004 JP 2001-249847 A 14/09/2001
us 6591393 Bl 08/07/2003
us 6874116 B2 29/03/2005
us 2010-0293305 Al 18/11/2010 Kr 10-2010-0122709 A 23/11/2010
us 8359412 B2 22/01/2013
EP 1000395 Bl 01/12/2004 DE 69827949 DI 05/01/2005
DE 69827949 T2 27/10/2005
EP 1000395 Al 17/05/2000
us 6158025 A 05/12/2000
wo 1999-005599 Al 04/02/1999
us 2010-0268984 Al 21/10/2010 us 8291259 B2 16/10/2012

Form PCT/ISA/210 (patent family annex) (July 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

