wo 2013/148852 A1 I} 1] A0 000 0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/148852 Al

3 October 2013 (03.10.2013) WIPO | PCT
(51) International Patent Classification: (74) Agents: BERSCHADSKY, Jonathan et al.; Fitzpatrick,
GO6F 17/27 (2006.01) Cella, Harper & Scinto, 1290 Avenue of The Americas,
New York, NY 10104-3800 .
(21) International Application Number: ew rork, (US)
PCT/US2013/034130 (81) Designated States (unless otherwise indicated, for every
. .) kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: 27 Mareh 2013 (27.03.2013 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY.
aro (27.03.2013) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L.) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
61/617,563 29 March 2012 (29.03.2012) Us NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
13/850,044 25 March 2013 (25.03.2013) Us RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(71) Applicant: THE ECHO NEST CORPORATION ZM, ZW.
[US/US]; 48 Grove Street, Suite 306, Somerville, MA . o
02144 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: WHITMAN, Brian; c¢/o The Echo Nest Cor- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

poration, 48 Grove Street, Suite 306, Somerville, MA
02144 (US). CAO, Hui; c/o The Echo Nest Corporation,
48 Grove Street, Suite 306, Somerville, MA 02144 (US).

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: NAMED ENTITY EXTRACTION FROM A BLOCK OF TEXT

1103\ 110b\ 110n\
EXTERNAL EXTERNAL | EXTERNAL INTERNET
COMPUTER COMPUTER COMPUTER | 4,
[T
[106
APPLICATION PROGRAM
INTERFACE (API) SERVER
1M1a 111b 11in
CPU || REQUEST A Al A
QUELE TEXT TEXT TEXT
GATHERING | | GATHERING | . | GATHERING
10 g SERVER SERVER SERVER
MEMORY 101\ |—
18- INTERNAL SERVER
REQUEST
e QUEUE
102 104
113 MEMORY
N
DATABASE 103
— [
[T 1
INTERNET CLIENT INTERNAL INTERNAL INTERNAL
SERVER COMPUTER | | COMPUTER COMPUTER
T e 5 1060~ 1o/
100

(57) Abstract: A data processing method, program, and apparatus for
identifying a document within a block of text. A block of text is token-
ized into a plurality of text tokens according to at least one rule parser.
Each of the plurality of text tokens is sequentially compared to a plur-
ality of document tokens to determine if the text token matches one of
the plurality of document tokens. The plurality of document tokens
correspond to a plurality of documents which have been tokenized ac-
cording to the one or more rule parsers. Each matched text token is
filtered according to predetermined filtering criteria to generate one or
more candidate text tokens. It is then determined whether sequence of
candidate text tokens that occur in sequential order within the block of
text match sequence of document tokens. If so, then it is determined
that the document has been identified within the block of text. The
document can correspond to an artist, a song names, and misspellings
and aliases thereof.

WO 2013/148852 A1 |IIWAT 00TV AV 0 O AU

Published:
— with international search report (Art. 21(3))

WO 2013/148852 PCT/US2013/034130

S1-
TITLE

NAMED ENTITY EXTRACTION FROM A BLOCK OF TEXT

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates generally to extracting information from a block

of text, and more particularly to extracting artist names and song titles.

Related Art

[0002] Music service providers that stream content to their customers have become a

major component of the music industry. In the music industry, for example, the

WO 2013/148852 PCT/US2013/034130

streaming content often includes descriptive material about the artists and songs, such
as biographical information as well as current events information. To stay current,
relevant information must be continually acquired.

[0003] Such information, however, can come from a variety of sources. For example,
a local or national news organization may choose to run a story on a particular artist or
song. This commonly occurs when an artist plays in a city or town covered by the
news organization. With the advent of the Internet, these stories are commonly
published online. In addition, some news media organizations are dedicated to the
music industry, such as VH1, MTV, and Rolling Stone, who also provide coverage of
artists and songs.

[0004] These traditional news providers, however, are not the only sources of relevant
information on artists and songs. In fact, the growing use of social media has
dramatically increased the number of potential sources of information. For example,
concert-goers can provide commentary via blogs, feeds (e.g., Twitter feeds), posts
(e.g., Facebook or Google+ posts), and other social media venues. Oftentime, this
information is available long before a traditional news provider provides any
information about the song, artist, or related events. In addition, the pervasive use of
smartphones for instant access to the Internet and social media has exponentially
increased the number of sources and correspondingly increased the amount of
information available. While almost all of this information is available over the
Internet, it is in a highly decentralized form, which creates an obstacle to efficient

retrieval and analysis.

WO 2013/148852 PCT/US2013/034130

-3-

[0005] Relevant information may also be combined with other information which is
not related to the artist or song. For example, the average social media page, such as a
Facebook page, contains only a small amount of information, if any, relating to artists
or songs. A Twitter feed may only contain a few tweets relating to an artist or song.
A web log may only contain one post directed to an artist or song out hundreds of
posts.

[0006] Automated recovery of information on artists and songs from the Internet can
therefore be advantageous. One significant technical challenge to accomplishing this
is recognizing that a particular set of data refers to an artist or song. Almost every
word in the English language corresponds to an artist’s name. For example, the band
“Queen.” Thus, a system which can distinguish between common English words and
named entities is advantageous. Furthermore, webpages can be in any language.
Thus, a system which can identify an artist or song name regardless of the language
the webpage is written in is also desirable. Still a further technical complication is that
artists and songs often have aliases or abbreviations which are used instead of their
formal or legal names. For example, Dave Matthews Band may be referred to as
either “Dave Matthews” or “DMB.” Thus, recognizing aliases and abbreviation is
also advantageous. In addition, artist and song names are often misspelled. The
information that is being reported may nonetheless be relevant; so it is also

advantageous to be able to recognize misspellings of artist names or songs.

WO 2013/148852 PCT/US2013/034130

BRIEF DESCRIPTION
[0007] The present invention provides methods, apparatuses, and computer readable
mediums for extracting a named entity from a block of text.
[0008] In one embodiment, a data processing method of identifying a document
within a block of text includes tokenizing, comparing, filtering, and matching steps. A
block of text is tokenized into a plurality of text tokens according to at least one rule
parser. Each of the plurality of text tokens is sequentially compared to a plurality of
document tokens to determine if the text token matches one of the plurality of
document tokens. The plurality of document tokens correspond to a plurality of
documents which have been tokenized according to the at least one rule parser. Each
matched text token is filtered according to predetermined filtering criteria to generate
one or more candidate text tokens. A sequence of candidate text tokens from the one
or more candidate text tokens is then matched to a sequence of document tokens.
These candidate text tokens occur in sequential order within the block of text.
[0009] In another embodiment, a non-transitory computer readable storage medium
stores a computer program for causing a computer to execute a method of identifying
a document within a block of text, the method includes tokenizing, comparing,
filtering, and matching steps. A block of text is tokenized into a plurality of text tokens
according to at least one rule parser. Each of the plurality of text tokens is
sequentially compared to a plurality of document tokens sequentially to determine if
the text token matches one of the plurality of document tokens. The plurality of

document tokens correspond to a plurality of documents which have been tokenized

WO 2013/148852 PCT/US2013/034130

according to the at least one rule parser. Each matched text token is filtered according
to predetermined filtering criteria to generate one or more candidate text tokens. A
sequence of candidate text tokens from the one or more candidate text tokens is then
matched to a sequence of document tokens. These candidate text tokens occur in
sequential order within the block of text.

[0010] In yet another embodiment, a data processing apparatus for identifying a
document within a block of text. The apparatus includes a processor configured to: (i)
tokenize a block of text into a plurality of text tokens according to at least one rule
parser; (ii) compare cach of the plurality of text tokens to a plurality of document
tokens sequentially and determine if the text token matches one of the plurality of
document tokens, wherein the plurality of document tokens correspond to a plurality
of documents which have been tokenized according to the at least one rule parser; (iii)
filter each matched text token according to predetermined filtering criteria to generate
one or more candidate text tokens; and (iv) match a sequence of candidate text tokens
from the one or more candidate text tokens to a sequence of document tokens, wherein
the sequence of candidate text tokens occur in sequential order within the block of
text.

[0011] Further features and advantages of the present invention will become more
apparent from the detailed description set forth below when taken in conjunction with

the following drawings.

WO 2013/148852 PCT/US2013/034130

-6-

BRIEF DESCRIPTION OF THE DRAWINGS
[0012] The features and advantages of the present invention will become more
apparent from the detailed description set forth below when taken in conjunction with
the following drawings.
[0013] FIG. 1 is an overview of a physical environment for extracting named entities
from a block of text.
[0014] FIGS. 2A, 2B, 2C, and 2D are examples of documents stored within a name
database.
[0015] FIG. 3 shows an inverted index comprising a plurality of document tokens
corresponding to the documents shown in FIGS.2A, 2B, 2C, and 2D.
[0016] FIG. 4A shows a block of text.
[0017] FIG. 4B shows a plurality of text tokens corresponding to the block of text in
FIG. 4A.
[0018] FIGS. 5A, 5B, and 5C are examples of documents stored within a name
database.
[0019] FIG. 6 shows an inverted index comprising a plurality of document tokens
corresponding to the documents shown in FIGS. 5A, 5B, and 5C.
[0020] FIG. 7 is a flowchart showing the overall process of identifying a named entity
within a block of text.
[0021] FIG. 8 is a hierarchical figure showing the various analyses within a matched
token analysis.

[0022] FIG. 9 is a flowchart corresponding to the filtering analysis.

WO 2013/148852 PCT/US2013/034130

[0023] FIG. 10 is a flowchart corresponding to the document matching analysis.
[0024] FIG. 11 is a flowchart corresponding to the plural document token analysis.
[0025] FIG. 12 is a block diagram of a general and/or special purpose computer in

accordance with some of the example embodiments.

DETAILED DESCRIPTION

Overview

[0026] The example embodiments of the invention presented herein are directed to
systems, methods, and computer program products for extracting named entities from
a block of text related to the musical artists and songs. This is for convenience only,
and is not intended to limit the application of the present invention. In fact, after
reading the following description, it will be apparent to one skilled in the relevant art
how to implement the following invention in alternative embodiments, involving, for
example, television, movies or games.

[0027] FIG. 1 is an overview of a system 100 for extracting a named entity from a
block of text. As shown in FIG. 1, separate servers execute program code to manage
requests from internal and external users, each having an individual request queue. As
discussed below, this configuration provides a higher level of bandwidth and query
performance because it segregates an internal server from external requests which
could overwhelm the internal server. Alternatively, the program code could be stored
and executed on a single server, with requests from internal and external users

managed by a single request queue. In addition, elements shown in FIG. 1 need not be

WO 2013/148852 PCT/US2013/034130

-8-

contained in separate physical structures, and may be incorporated into a single
apparatus.

[0028] FIG. 1 shows an internal server 101 that includes an internal server processor
102, an internal server memory 103, and an internal server request queue 104. The
internal server processor 102 runs a named entity extraction program stored in the
internal server memory 103, the details of which are discussed below. The internal
server memory 103 also serves as a storage cache for temporarily storing data when
the program is run and may be configured to permanently store such information,
including extracted artist and song names. The internal server request queue 104
manages requests from internal computers 105a, 105b,..., 105n to execute the named
entity extraction program.

[0029] An application program interface (API) server 106 includes an API server
processor 107, an API server memory 108, and an API server request queue 109. The
API server 106 receives requests to run the named entity extraction program which
originate from external computers 110a, 110b,..., 110n. This arrangement provides a
layer of network security by preventing the internal server 101 from being inundated
with external requests. An external computer 110a, 110Db,..., 110n calls the named
entity extraction program, stored in the API server memory 108 to analyze a block of
text sent from the external computer 110a, 110b,..., 110n. It should be understood
that the term “text” is used for convenience and may refer to, for example, alpha
characters, numeric characters, alphanumeric characters, American Standard Code for

Information Interchange (ASCII) characters, symbols, or foreign language unicode

WO 2013/148852 PCT/US2013/034130

-9.-

(e.g. UTF-8). The API request queue 109 manages and prioritizes requests from the
external computers 110a, 110b,..., 110n.

[0030] The internal server 101 connects to one or more text gathering servers 111a,
111b,..., 111n. In one embodiment, the text gathering servers 111a, 111b,..., 111n are
configured to perform web crawls in an asynchronous manner to gather data from the
Internet 112. In other words, each text gathering server 111a, 111b,..., 111n performs
web crawls independently from another text gathering server 111a, 111b,..., 111n.
The text gathering servers 111a, 111b,..., 111n can retrieve text from several web
pages each day (e.g., millions of webpages).

[0031] When performing web crawls, each text gathering server 111a, 111b,..., 111n
loads a webpage and collects the text data contained therein. One or more of the text
gathering servers 111a, 111b,..., 111n may be configured to cyclically load a
predetermined sequence of webpages associated with certain types of websites; for
example, websites devoted to coverage of the music industry, e.g. MTV, VHI, or
Rolling Stone. These websites are continually updated based on recent events, and
therefore may contain relevant information. The text gathering servers 111a, 111b,...,
111n may also be configured to seek out websites based upon a search algorithm. The
text gathering servers 111a, 111b,..., 111n can collect text from any website which is
publicly accessible including Facebook pages, Twitter feeds, Google+ pages,
YouTube postings and the like.

[0032] Once a text gathering server 111a, 111b,..., 111n loads a webpage, the

HyperText Markup Language (HTML) code CSS (Cascading Style Sheets), and

WO 2013/148852 PCT/US2013/034130

-10 -

JavaScript (JS) elements are removed while keeping the viewable text content from
cach element. While text contained within each element can be extracted and
analyzed, the text gathering server 111a, 111b,..., 111n may also be configured to
identify and extract text from the largest continuous block of text within the webpage.
For certain websites, analyzing only the largest block of text may be more efficient
than analyzing every block of text. For example, relevant information from a news
provider may come in the form of an article, which is also likely the largest block of
text. Rather than analyzing the other blocks of text which are unlikely to contain
relevant information, only the largest block of text is analyzed. Processing time and
resources are thereby conserved without a significant loss of relevant information.
Whether each block of text or only the largest block of text is analyzed may be
determined based on the type of website. In either case, the text within each block is
removed and temporarily stored within a text database connected to, or a part of, the
text gathering servers 111a, 111b,..., 111n.

[0033] The text gathering servers 111a, 111b,..., 111n may also collect information
from other sources besides webpages, such as, for example, an RSS (Rich Site
Summary), a voice-to-text translation, an OCR (Optical Character Recognition)
output, a word processing document, or a simple text document. While this
information may be retrieved by the text gathering servers 111a, 111b,..., 111n
connecting remotely to the source of the information, the information may also be
supplied directly to one or more of the text gathering servers 111a, 111b,..., 111n by,

for example, a computer readable storage medium.

WO 2013/148852 PCT/US2013/034130

-11 -

[0034] The text gathering servers 111a, 111b,..., 111n treat information retrieved or
supplied from a source other than a webpage in an analogous manner to information
retrieved from a webpage. Non-textual elements are removed from the retrieved
information, while the text data is retained. The retained text data may then be
analyzed in its entirety or only a portion thereof. Similar to the case involving a
website, analyzing only a portion of the text data may be more efficient. For example,
if the source of the information is a voice-to-text translation of an interview, the
relatively larger blocks of text likely contain substantive responses to key questions,
which yield a higher likelihood of containing relevant information. Accordingly, a
user can set criteria for choosing whether to analyze only a portion of or the entirety of
the collected text from a source.

[0035] As discussed below in more detail, the named entity extraction program
analyzes the collected text by comparing the collected text to documents stored in a
name database 113, discussed below, and reports the identity of an artist or song
contained within the block of text when a match occurs. Therefore, the named entity
extraction program is language invariant, and can effectively extract named entities
from text regardless of the language of the collected text.

[0036] The text gathering servers 111a, 111b,..., 111n send requests to analyze the
collected text to the internal server 101. These requests are queued in the internal
server 101 or the internal server request queue 104 until called for and processed by
the internal server processor 102. A request to analyze a block of text may be

accompanied by the block of text itself. In such a circumstance, the block of text may

WO 2013/148852 PCT/US2013/034130

-12-

be temporarily stored in the internal server memory 103. Alternatively, the block of
text may remain on the text gathering server 111a, 111b,..., 111n until called for by
the internal server processor 102.

[0037] The internal server 101 and the API server 106 are connected to a name
database 113. Name database 113 may be physically stored on the internal server 101
or on the API server 106, or provided in a separate server, as shown in FIG. 1. In one
embodiment the name database 113 stores a plurality of artist names and song names,
along with aliases and common misspellings. For example, the band “Led Zeppelin”
is commonly referred to by its alias “Led Zep” and often misspelled "Led Zeppellin”
or "Led Zepelin." An alias or misspelled artist or song name, may still lead to relevant
information. Accordingly, known aliases and common misspellings of an artist or a
song are included in the name database 113 to ensure the maximum amount of
relevant information is obtained from analyzing the text retrieved by the text gathering
servers 111a, 111b,..., 111n. The aliases and common misspellings are then
associated with the formal name for the artist or song.

[0038] Each artist name, song name, alias, and common misspelling stored in the
name database 113 is considered a document. Thus, in the case of the band “Led
Zeppelin,” the alias “Led Zep” is stored as a document and the common misspellings
“Led Zeppellin” and “Led Zepelin™ are stored as two separate documents. A user may
choose to add a particular misspelling to the name database 113 as a separate
document stored therein, if they discover that the artist or song is commonly

misspelled in that particular manner. Of course, there are numerous possible

WO 2013/148852 PCT/US2013/034130

-13 -

misspellings for any particular artist or song. Accordingly, the artist or song name is
also processed through a phonetic algorithm (e.g., Metaphone or Soundex). The
phonetic algorithm converts the artist or song name into one or more phonetic codes,
corresponding to how the artist or song name sounds. The phonetic codes are then
stored in the name database, as described below.

[0039] Each document stored in the name database 113 includes a plurality of
document tokens derived from the artist name or song name. A first set of document
tokens is simply each of the terms in the artist name or song name. Additional sets of
document tokens may be generated and stored according to different indexers. One
indexer corresponds to the phonetic algorithm mentioned above. The indexer uses the
phonetic algorithm to produce the phonetic codes corresponding to the artist’s name or
song name. The phonetic codes are then stored as a set of document tokens. Another
type of indexer may convert symbols into words (e.g., an ampersand symbol “&” into
“and”), and produce a corresponding set of document tokens. Still another type of
indexer may filter out certain predetermined words and terms (e.g., “band” or “DJ”).
As one of ordinary skill in the art will appreciate, numerous different indexers can be
used to produce sets of document tokens associated with an artist or song. In one
embodiment, duplicative document tokens produced by the different indexers are
eliminated.

[0040] FIGS. 2A, 2B, 2C, and 2D are examples of four documents 201, 202, 203, and
204 stored within the name database 113. Each of the documents 201, 202, 203, and

204 includes the followings fields: a unique artist name (ARTIST NAME), artist

WO 2013/148852 PCT/US2013/034130

-14 -

identifier (ID) (ARTIST ID), and a unique document ID (DOCUMENT ID). The
relative position of each document token within the artist name is also included.
[0041] The exemplary document shown in FIG. 2A corresponds to the “Dave
Matthews Band” which is assigned an artist ID of “AR1234.” FIGS. 2B and 2C are
examples of two common aliases for the “Dave Matthews Band,” “DMB” and “Dave
Matthews.” Aliases, rather than having unique artist ID values, refer back to the artist
ID for the formal band name, in this case “AR1234.” FIG. 2D illustrates an example
of a common misspelling for the “Dave Matthews Band,” in this instance a “t” is
omitted. As with the aliases, the misspelling does not have a unique artist ID value,
but rather refers back the artist ID for the formal band name.

[0042] Since new artists and songs are constantly emerging, and entries in the name
database 113 are continuously updated. One mechanism for updating the entries is to
obtain information on new artists and songs directly from the music label companies
or other providers of music content, ¢.g. via client server 114. This may be
accomplished by periodically downloading updated database files containing the
information, or by receiving physical media containing the information. These entities
may also be a source for aliases and common misspellings. Common misspellings of
an artist or a song may also be entered by a user as separate documents in the name
database 113.

[0043] To facilitate quick and efficient searching for artists and song titles, the name
database 113 is arranged as an inverted full text index. FIG. 3 is an example of an

inverted full text index 301 corresponding to the documents shown in FIGS. 2A, 2B,

WO 2013/148852 PCT/US2013/034130

-15 -

2C, and 2D. To create the inverted full text index 301, each artist name in the
documents 201, 202, 203, and 204 is tokenized according to one or more rule parsers.
As one of ordinary skill in the art will appreciate, tokenization is a process of breaking
up a series of words, phrases, or symbols into individual elements. This is
accomplished by analyzing the series of words for certain elements such as spaces,
punctuation, and separates possessives which indicate boundaries between words. For
example, in FIG. 2A the artist name “Dave Matthews Band” in document 201 has
been tokenized into three document tokens: “Dave”, “Matthews”, and “Band”. In an
inverted full text index, the position of each document token within the document is
retained. Thus, as shown in FIGS. 2A, 2B, 2C, and 2D, cach document token includes
a position value corresponding to its position within the artist name.

[0044] In addition to tokenization, the artist or song name is also indexed according to
one or more indexers. As discussed above, one indexer uses a phonetic algorithm to
convert each term in the artist or song name into a phonetic code. In the exemplary
embodiment shown in FIGS. 2A-2D, cach term in the ARTIST NAME ficld has been
indexed according to a phonetic algorithm to generate phonetic codes, which are
stored as separate document tokens and represented by brackets surrounding the terms
inputted into the phonetic algorithm, e.g., “<DAVE>". This is merely a convenient
representation, however, as the particular phonetic code is dependent upon the
phonetic algorithm which is used.

[0045] Additional indexers may also be used. For example, one indexer indexes the

artist or song name according to a list of stopwords which are considered generic and

WO 2013/148852 PCT/US2013/034130

- 16 -

unlikely to further in identification of an artist or song, ¢.g., “DJ” and “band.” In such
a circumstance, this indexer will return document tokens “DAVE” and
“MATTHEWS” for an entry of “DAVE MATTHEWS BAND” in the ARTIST
NAME field, rather than “DAVE,” “MATTHEWS” and “BAND.” This type of
indexer is represented in FIGS. 2A and 2D by showing the document token “BAND”
in dashed lines.

[0046] As shown in FIG. 3, for each document token, the documents in which that
document token appears, and the position of the document token therein, are
associated to that document token. For example, the document token "DAVE" is
associated with documents/position [F3x89, 1], [F3x91,1], and [F3x92, 1]. Once the
index is created it is relatively quick and efficient to identify the documents in which a
token appears.

[0047] In one embodiment, the name database 113 may be configured as a relational
database where a table of terms relating to the documents is stored. Still further, the
name database 113 may be set up as a key-value storage, which is a non-relational
storage method where a key is stored and when queried returns all the values
associated with that key. For example, if the key is “Matthews”, all of the data entries
containing ‘“Matthews” would be returned. One of the advantages of the key-value
storage method is that it also provides a relatively fast lookup.

[0048] The contours of the environment having been described above, a first
embodiment for extracting a named entity from a block text will now be described

with reference to FIGS. 4A-11.

WO 2013/148852 PCT/US2013/034130

-17 -

[0049] To illustrate features of this embodiment, an example block of text 401 shown
in FIG. 4A will be partially analyzed. The block of text 401 may correspond to, for
example, a social feed message gathered by one of the text gathering servers 111a,
111b,..., I11n. This particular block of text 401 is merely demonstrative, and could
be of any length and any language, as discussed above.

[0050] As shown in FIGS. 4A-4B, the block of text 401 is tokenized according to rule
parsers which ignore punctuation, grammar, and possessives. Thus, the exclamation
points, apostrophe, and possessive “s” within the block of text 401 are ignored. The
rule parsers also treat spaces as boundaries between separate words. Based on these
rule parsers, the block of text 401 is converted in a plurality of text tokens 402, as
shown in FIG. 4B.

[0051] FIGS. 5A, 5B, and 5C shows three documents 501, 502, and 503 stored in the
name database 113. The documents 501, 502, and 503 haven been tokenized
according to the same rule parsers which tokenized the block of text 401 in FIG. 4A.
The resulting document tokens 601, 602, 603, and 604 populate an inverted index 600
shown in FIG. 6 which is stored in the name database 113. In addition, ecach term in
the artist’s name, in documents 501, 502, and 503, has been indexed by a phonetic
algorithm to produce a corresponding set of document tokens 605, 606, 607, and 608
which are also included in the inverted index 600.

[0052] FIG. 7 is a flowchart showing the overall process of identifying a named entity
within a block of text. In step S701, the block of text is selected, and in step S702 the

block of text 401 is tokenized, according to the processes described above.

WO 2013/148852 PCT/US2013/034130

- 18 -

[0053] In step S703 the first text token w; of the text tokens 402 from the tokenized
block of text 401 is designated as the analysis token w,. In the illustrative example,
the first text token w; corresponds to "Queen," and is designated as the analysis token
wa. In step S704 the analysis token w, is compared to the documents tokens 601, 602,
603 and 604 stored in the name database 113 to see if the analysis token w, matches
one of the document tokens 601, 602, 603 and 604. If the analysis token w, does not
match of one the document tokens 601, 602, 603, and 604 generated by tokenizing the
artist names in documents 501, 502, and 503, then the analysis token w, is also
indexed by the same indexers used for the documents 501, 502, and 503, to produce a
phonetic code corresponding to the analysis token w,. This phonetic code is then
compared to the document tokens 605, 606, 607, and 608. Because the document
tokens 601-608 are stored in an inverted index this lookup process is fast and efficient.
[0054] If the phonetic code corresponding to the analysis token w, matches one of the
document tokens 605, 606, 607, and 608, then the analysis token w, likely represents a
misspelling of one of the terms in artist name in at least one of the documents. Since
misspellings nevertheless may lead to relevant information, the process would proceed
to step S800 in Figure 7. In the illustrative example, however, none of the text tokens
402 are misspelled, and thus the result when each of the text tokens 402 is analyzed
will be a direct match with no phonetic matches.

[0055] In the illustrative example, the analysis token w, (“Queen”) matches document
token 601, which is contained in two documents identified by their respective

document IDs [F2x01] and [F2x03]. Any document containing a document token

WO 2013/148852 PCT/US2013/034130

-19 -

which matches the analysis token wy, is referred to as a hit document. Because the
analysis token w, matches one of the document tokens 601, 602, 603 and 604, the
result of step S704 is that process would proceed to the matched token analysis. If,
however, the analysis token w, did not match any of the document tokens 601, 602,
603 and 604, the process would proceed to consider whether the phonetic code of the
analysis token w, matches one of the document tokens 605, 606, 607, and 608, as
described above. If not, then the process would proceed to step S705 where it is
determined whether all of the text tokens 402 have been analyzed.

[0056] One method for determining whether all of the text tokens 402 have been
analyzed is to use a conditional flag. When the block of text 402 is tokenized in step
S701 the number of resulting text tokens 402 can be stored. In the illustrative
example, the number of text tokens is equal to 11. A counter 7 can be used to keep
track of which text token w, is being analyzed. This also serves an additional purpose
of determining where in the text block a particular text token w, is located. When the
counter i is equal to the number of text tokens 402, the conditional flag is triggered to
indicate that all of the text tokens 402 have been analyzed.

[0057] If in step S705 it is determined that all of the text tokens 402 have been
analyzed, the process proceeds to step S707 where the name and position within the
block of text 401 of any matched entities are reported, as will be discussed below in
further detail.

[0058] If, however, in step S705 it is determined that all of the text tokens have not

been considered, then the analysis token w, is set to w, + 1, e.g. to the next text token in

WO 2013/148852 PCT/US2013/034130

-20 -

sequential order within the block of text 401. In the illustrative example, the next text
token w, is “rocks.” The process then returns to step S704 to determine whether the
analysis token w, matches one or more of the document tokens. If, as in the
illustrative example, the result of step S704 is that w, matches one of the document
tokens 601, 602, 603 and 604, then the process proceeds to a matched token analysis.
[0059] As shown in FIG. 8, the matched token analysis 800 includes two sub-
analyses: a filtering analysis 900 and a document matching analysis 1000. The
document matching analysis further includes a plural document token analysis 1100.
[0060] The filtering analysis 900, shown in FIG. 9, eliminates matches which are
unlikely to correspond to an artist or song name (or in the case of a movie or game, a
movie or game title). In step S901 the analysis token w, is compared to a plurality of
stop words contained in a stop word list stored in the internal server memory 103 or
the API server memory 108. Whether the stop word list is called from the internal
server memory 103 or the API server memory 108 depends upon which server is
running the named entity extraction program. In this instance, the stop words are
words which are deemed unlikely to aid in identifying the name of an artist or song,
for example: I, the, it, an, and a. The stop words can be predetermined for example,
by the system administrator, and can be updated (e.g., by the system administrator) as
well.

[0061] In an alternative embodiment, the rule parsers can be configured to eliminate
the stop words during the indexing process in step S702, essentially performing step

S901 on the block of text 401 rather than on matching text tokens. In such an

WO 2013/148852 PCT/US2013/034130

221 -

alternative embodiment, the filtering analysis would not include a stop word check
S901, as such a step would be redundant.

[0062] If, in step S901, the analysis token w, matches one of the stop words then the
process returns to step S705 in FIG. 7 to determine if there are any further text tokens
to be analyzed. If, however, the analysis token w, does not match one of the stop
words, the process proceeds to step S902 where the analysis token w, is compared to a
common word list.

[0063] The common word list is populated with all English dictionary words, with the
exception of proper nouns. If the analysis token w, matches one of the English words,
a capitalization check is performed on the analysis token wy, in step S903. While it is
possible for an artist or song name to include a common English word, unless the
word is capitalized it is unlikely to be intended to refer to an artist or song name. Such
a situation is shown in the illustrative example, where “Queen” matches the common
English word “queen.”

[0064] If the capitalization check determines that the analysis token w, is not
capitalized, then the process returns to step S705 in FIG. 7 to determine if there any
further text tokens to be analyzed. Otherwise, if it is determined (i) that the analysis
token w, matches one of the plurality commons words and is capitalized, or (ii) that
the analysis token w, does not match one of the plurality of common words, then the
analysis token w, is identified as a candidate token, and the process proceeds to the

document matching analysis 1000 shown in FIG. 10.

WO 2013/148852 PCT/US2013/034130

-0

[0065] In the illustrative example, “Queen” does not match any of the stop words, but
does match the common word “queen.” Because the analysis token wy, is capitalized,
the process proceeds to the document matching analysis 1000.

[0066] The document matching analysis, shown in FIG. 10, is designed to determine
whether the document tokens within a hit document match a sequence of text tokens
within the block of text.

[0067] To begin, in step S1001 an analysis document is set as the first hit document.
In the illustrative example, the first hit document is document 501, shown in FIG. 5A.
This selection is arbitrary and any of the hit documents could be analyzed first. In step
S1002 it is determined whether the analysis document contains more than one
document token. If the analysis document contains only one document token, then the
analysis document is considered to be a matched document, and the process proceeds
to step S1003 where the analysis document ID and the position of the analysis
document within the block text is stored. The process then proceeds to step S1004 to
determine if all of the hit documents have been considered. If not, the analysis
document is set as the next hit document in step S1005 and the process returns to step
S1002.

[0068] If, however, it is determined in step S1004 that all of the hits documents have
been considered, then the process returns to step S705 in FIG. 7 to determine if all of
the text tokens have been analyzed.

[0069] In the illustrative example, the analysis document 501 is set as the first hit

document. The analysis document 501 contains only one document token “QUEEN”.

WO 2013/148852 PCT/US2013/034130

-23 -

Thus, the analysis document ID, which in this case is [F2x01], is stored. In addition,
the position of the document within the block of text is also stored. The position of
the document within the block of text is easily determined by simply referring to the
present value of the counter 7, which in this instance is equal to 1.

[0070] In the illustrative example, the candidate token occurs in more than one
document. Therefore, the result in step 1004 is “no” and the analysis document is set
to the next hit document, which is [F2x03], in step S1005 and the process returns to
step S1002. [F2x03] contains two document tokens “QUEEN" and “LATIFAH”, thus
the process proceeds to the plural document token analysis 1100.

[0071] The plural document token analysis 1100 determines if a string of sequential
text tokens matches the document tokens that comprise the analysis document. More
specifically, the plural document token analysis 1100 will determine whether the text
tokens which come after the candidate token, in sequential order, match the sequential
order of the document tokens in the analysis document.

[0072] Because the plural document token analysis involves analyzing text tokens
which have yet to be compared against the entire set of documents, in step S1101 of
FIG. 11 a temporary token w, takes on the value of the candidate token w, so as to
preserve the overall progress of the analysis of the block of text 401. Of course, this
could be accomplished by other means. For example, the value of the counter i could
saved in memory, and once the plural document token analysis 1100 is completed, the

analysis token could be set to w;.

WO 2013/148852 PCT/US2013/034130

-4 -

[0073] In step S1102, it is determined whether the temporary token wy is equal to the
first document token in the analysis document. If not, then a string of text tokens
beginning with the candidate token in the block of text, cannot match the string of
document tokens within the analysis document. For example, let the temporary token
wq take on the value of, “MATTHEWS,” and the analysis document be set to
document ID [F3x89], shown in FIG. 2A, corresponding to the artist “DAVE
MATTHEWS BAND.” Because the temporary token wy; does not match the first
document token (“DAVE?”), regardless of the text tokens that follow “MATTHEWS”
in the block of text, a string of text tokens beginning with the temporary token w, will
not match the sequential order of the document tokens in the analysis document.
Thus, if it is determined in S1102 that the temporary token wy does not match the first
document token in the analysis document, the process returns to step S1004 in FIG.
10.

[0074] If the result of step S1102 is that the temporary token w, matches the first
document token in the analysis document, then it possible that a string of text tokens
beginning with the temporary token w, could match the sequential order of the
document tokens in the analysis document. Thus, the process proceeds to step S1103
where the next text token in the block of text is set as the temporary token, i.e., wy; =
wg+;. In step S1104 it is checked whether the temporary token w,; matches the next
document token in sequential order in the analysis document. If not, the process
returns to step S1004 in FIG. 10. If, however, the temporary token w; matches the

next document token in sequential order in the analysis document, then a check is

WO 2013/148852 PCT/US2013/034130

_25.-

performed in step S1105 to determine if there is another document token within the
analysis document. If there is another document token within the analysis document,
then the process returns to step S1103. If not, then the result is that a plurality of text
tokens, in sequential order, in the block of text matches the sequence of documents
tokens within the analysis document. Accordingly, the document ID of the analysis
document and its position within the block of text is stored in step S1106, and the
process returns to step S1004 in FIG. 10.

[0075] If it is determined in step S1004 in FIG. 10 that all of the hit documents have
been analyzed, the process returns to step S705 in FIG. 7. If not, then the process
returns to step S1005 and the next hit document is analyzed.

[0076] After reporting document [F2x01] as a matched document, the next hit
document, [F2x03], is set as the analysis document. [F2x03] contains two document
tokens “QUEEN” and “LATIFAH,” thus the process proceeds to the plural document
token analysis in FIG. 11.

[0077] The analysis token w, is presently equal to the first text token w; (“Queen”).
In step S1101 the temporary token wy takes on the value of the analysis token w,. In
step S1102 it is determined that the temporary token w, (“Queen”) is equal to the first
document token 601 (“QUEEN”). Thus, the process proceeds to step S1103 where
the temporary token w, takes on the value of the next text token in sequential order in
the block of text 402, which in this instance is w; (e.g., “rocks"). The process
proceeds to step S1104 where it is determined that that the temporary token wy (e.g.,

“rocks”) does not match the next document token 604 ("LATIFAH") in sequential

WO 2013/148852 PCT/US2013/034130

-26 -

order in the analysis document [F2x03]. Accordingly, [F2x03] does not correspond to
a matched document, and the process returns to step S1004 in FIG. 10. With all of the
hit documents having been analyzed, the process returns to step S705 in FIG. 7.
[0078] At this point, the first text token w; (e.g., “Queen”) in the block of text has
been analyzed, and the result is that document ID “F2x01” corresponding to the artist
name “QUEEN” has been determined to be a match. Because more text tokens
remain, the result of step S705 will be that more text tokens remain to be analyzed,
and the process will proceed to step S706 where the next text token, w; (e.g., “rocks”)
will be analyzed according to the above described processes.

[0079] Once it is determined in step S705 in FIG. 7 that all text tokens within the
block of text have been analyzed, then the process proceeds to step S707 where the
matched documents and their position within the block of text are reported to the user.
[0080] While the above description is a musical implementation, the invention is not
limited to that field. The above features may also be applied to movies, games,
television shows, literature, people, or any other field. For example, with respect to
movies, blocks of text may be analyzed for movie titles. The name database 113 may
store as, a plurality of documents, movie names, aliases, and common misspellings.
Thus, the present invention is not limited to searching for artist or song names, but
may applied to searching for any named entity within a block of text.

[0081] FIG. 12 is a block diagram of a general and/or special purpose computer 1200,
which may be a general and/or special purpose computing device, in accordance with

some of the example embodiments of the invention. The computer 1200 may be, for

WO 2013/148852 PCT/US2013/034130

_27 -

example, a user device, a user computer, a client computer and/or a server computer,
among other things.

[0082] The computer 1200 may include without limitation a processor device 1210, a
main memory 1225, and an interconnect bus 1205. The processor device 1210 may
include without limitation a single microprocessor, or may include a plurality of
microprocessors for configuring the computer 1200 as a multi-processor system. The
main memory 1225 stores, among other things, instructions and/or data for execution
by the processor device 1210. The main memory 1225 may include banks of dynamic
random access memory (DRAM), as well as cache memory.

[0083] The computer 1200 may further include a mass storage device 1230,
peripheral device(s) 1240, portable non-transitory storage medium device(s) 1250,
input control device(s) 1280, a graphics subsystem 1260, and/or an output display
interface 1270. For explanatory purposes, all components in the computer 1200 are
shown in FIG. 12 as being coupled via the bus 1205. However, the computer 1200 is
not so limited. Devices of the computer 1200 may be coupled via one or more data
transport means. For example, the processor device 1210 and/or the main memory
1225 may be coupled via a local microprocessor bus. The mass storage device 1230,
peripheral device(s) 1240, portable storage medium device(s) 1250, and/or graphics
subsystem 1260 may be coupled via one or more input/output (I/O) buses. The mass
storage device 1230 may be a nonvolatile storage device for storing data and/or
instructions for use by the processor device 1210. The mass storage device 1230 may

be implemented, for example, with a magnetic disk drive or an optical disk drive. In a

WO 2013/148852 PCT/US2013/034130

-28 -

software embodiment, the mass storage device 1230 is configured for loading contents
of the mass storage device 1230 into the main memory 1225.

[0084] The portable storage medium device 1250 operates in conjunction with a
nonvolatile portable storage medium, such as, for example, a compact disc read only
memory (CD-ROM), to input and output data and code to and from the computer
1200. In some embodiments, the software for storing information may be stored on a
portable storage medium, and may be inputted into the computer 1200 via the portable
storage medium device 1250. The peripheral device(s) 1240 may include any type of
computer support device, such as, for example, an input/output (I/O) interface
configured to add additional functionality to the computer 1200. For example, the
peripheral device(s) 1240 may include a network interface card for interfacing the
computer 1200 with a network 1220.

[0085] The input control device(s) 1280 provide a portion of the user interface for a
user of the computer 1200. The input control device(s) 1280 may include a keypad
and/or a cursor control device. The keypad may be configured for inputting
alphanumeric characters and/or other key information. The cursor control device may
include, for example, a handheld controller or mouse, a trackball, a stylus, and/or
cursor direction keys. In order to display textual and graphical information, the
computer 1200 may include the graphics subsystem 1260 and the output display 1270.
The output display 1270 may include a cathode ray tube (CRT) display and/or a liquid
crystal display (LCD). The graphics subsystem 1260 receives textual and graphical

information, and processes the information for output to the output display 1270.

WO 2013/148852 PCT/US2013/034130

-29.

[0086] Each component of the computer 1200 may represent a broad category of a
computer component of a general and/or special purpose computer. Components of
the computer 1200 are not limited to the specific implementations provided here.
[0087] Software embodiments of the example embodiments presented herein may be
provided as a computer program product, or software, that may include an article of
manufacture on a machine accessible or machine readable medium having
instructions. The instructions on the non-transitory machine accessible machine
readable or computer-readable medium may be used to program a computer system or
other electronic device. The machine or computer-readable medium may include, but
is not limited to, floppy diskettes, optical disks, CD-ROMs, and magneto-optical disks
or other type of media/machine-readable medium suitable for storing or transmitting
electronic instructions. The techniques described herein are not limited to any
particular software configuration. They may find applicability in any computing or
processing environment. The terms “computer-readable”, “machine accessible
medium” or “machine readable medium” used herein shall include any medium that is
capable of storing, encoding, or transmitting a sequence of instructions for execution
by the machine and that cause the machine to perform any one of the methods
described herein. Furthermore, it is common in the art to speak of software, in one
form or another (e.g., program, procedure, process, application, module, unit, logic,
and so on) as taking an action or causing a result. Such expressions are merely a

shorthand way of stating that the execution of the software by a processing system

causes the processor to perform an action to produce a result.

WO 2013/148852 PCT/US2013/034130

-30 -

[0088] Portions of the example embodiments of the invention may be conveniently
implemented by using a conventional general purpose computer, a specialized digital
computer and/or a microprocessor programmed according to the teachings of the
present disclosure, as is apparent to those skilled in the computer art. Appropriate
software coding may readily be prepared by skilled programmers based on the
teachings of the present disclosure.

[0089] Some embodiments may also be implemented by the preparation of
application-specific integrated circuits, field programmable gate arrays, or by
interconnecting an appropriate network of conventional component circuits.

[0090] Some embodiments include a computer program product. The computer
program product may be a storage medium or media having instructions stored
thereon or therein which can be used to control, or cause, a computer to perform any
of the procedures of the example embodiments of the invention. The storage medium
may include without limitation a floppy disk, a mini disk, an optical disc, a Blu-ray
Disc, a DVD, a CD or CD-ROM, a micro-drive, a magneto-optical disk, a ROM, a
RAM, an EPROM, an EEPROM, a DRAM, a VRAM, a flash memory, a flash card, a
magnetic card, an optical card, nanosystems, a molecular memory integrated circuit, a
RAID, remote data storage/archive/warehousing, and/or any other type of device
suitable for storing instructions and/or data.

[0091] Stored on any one of the computer readable medium or media, some
implementations include software for controlling both the hardware of the general

and/or special computer or microprocessor, and for enabling the computer or

WO 2013/148852 PCT/US2013/034130

231 -

microprocessor to interact with a human user or other mechanism utilizing the results
of the example embodiments of the invention. Such software may include without
limitation device drivers, operating systems, and user applications. Ultimately, such
computer readable media further includes software for performing example aspects of
the invention, as described above.

[0092] Included in the programming and/or software of the general and/or special
purpose computer or microprocessor are software modules for implementing the
procedures described above.

[0093] While various example embodiments of the invention have been described
above, it should be understood that they have been presented by way of example, and
not limitation. It is apparent to persons skilled in the relevant art(s) that various
changes in form and detail can be made therein. Thus, the disclosure should not be
limited by any of the above described example embodiments, but should be defined
only in accordance with the following claims and their equivalents.

[0100] In addition, it should be understood that the figures are presented for example
purposes only. The architecture of the example embodiments presented herein is
sufficiently flexible and configurable, such that it may be utilized and navigated in
ways other than that shown in the accompanying figures.

[0101] Further, the purpose of the Abstract is to enable the U.S. Patent and
Trademark Office and the public generally, and especially the scientists, engineers and
practitioners in the art who are not familiar with patent or legal terms or phraseology,

to determine quickly from a cursory inspection the nature and essence of the technical

WO 2013/148852 PCT/US2013/034130

-32 -

disclosure of the application. The Abstract is not intended to be limiting as to the
scope of the example embodiments presented herein in any way. It is also to be
understood that the procedures recited in the claims need not be performed in the order

presented.

WO 2013/148852 PCT/US2013/034130

-33 -

WHAT IS CLAIMED IS:

1. A data processing method of identifying a document within a block of text,
comprising:

tokenizing a block of text into a plurality of text tokens according to at least
one rule parser;

comparing each of the plurality of text tokens to a plurality of document tokens
sequentially and determining if the text token matches one of the plurality of
document tokens, wherein the plurality of document tokens correspond to a plurality
of documents which have been tokenized according to the at least one rule parser;

filtering each matched text token according to predetermined filtering criteria
to generate one or more candidate text tokens; and

matching a sequence of candidate text tokens from the one or more candidate
text tokens to a sequence of document tokens, wherein the sequence of candidate text

tokens occurs in sequential order within the block of text.

2. A data processing method according to claim 1, wherein the predetermined

filtering criteria includes a plurality of stop words and a plurality of common words.

3. A data processing method according to claim 2, wherein the filtering
includes performing a stop word analysis of comparing the matched text token to the

plurality of stop words, such that

WO 2013/148852 PCT/US2013/034130

-34 -

(1) if the matched text token matches one of the plurality of stop words, a next
text token in sequential order, of the plurality of text tokens, is compared to the
plurality of document tokens, and

(i1) if the matched text token does not match one of the plurality of stop words,
a common word analysis of comparing the matched text token to the plurality of
common words is performed, such that

(a) if the matched text token matches one of the plurality of commons
words and is not capitalized, the next text token in sequential order is
compared to the plurality of document tokens, and

(b) if the matched text token does not match one of the plurality of
common words, the matched text token is identified as a candidate text token,
and the next text token in sequential order is compared to the plurality of

document tokens.

4. A data processing method according to claim 1, wherein the plurality of
documents include artist names, misspellings of the artists names, aliases of the artist

names, song titles, misspellings of the song titles, and aliases of the song titles.

5. A data processing method according to claim 1, further comprising:

acquiring the block of text from a webcrawl.

WO 2013/148852 PCT/US2013/034130

-35-

6. A data processing method according to claim 1, wherein the plurality of

documents are stored in an inverted index.

7. A data processing method according to claim 1, further comprising:
notifying a user of (i) a matched document corresponding to the sequence of
document tokens which match the sequence of candidate text tokens, and (ii) a

position of the matched document within the block of text.

8. A non-transitory computer readable storage medium storing a computer
program for causing a computer to execute a method of identifying a document within
a block of text, the method comprising;:

tokenizing a block of text into a plurality of text tokens according to at least
one rule parser;

comparing each of the plurality of text tokens to a plurality of document tokens
sequentially and determining if the text token matches one of the plurality of
document tokens, wherein the plurality of document tokens correspond to a plurality
of documents which have been tokenized according to the at least one rule parser;

filtering each matched text token according to predetermined filtering criteria
to generate one or more candidate text tokens; and

matching a sequence of candidate text tokens from the one or more candidate
text tokens to a sequence of document tokens, wherein the sequence of candidate text

tokens occur in sequential order within the block of text.

WO 2013/148852 PCT/US2013/034130

-36 -

9. A non-transitory computer readable storage medium according to claim 8,
wherein the predetermined filtering criteria includes a plurality of stop words and a

plurality of common words.

10. A non-transitory computer readable storage medium according to claim 9,
wherein the filtering includes performing a stop word analysis of comparing the
matched text token to the plurality of stop words, such that

(1) if the matched text token matches one of the plurality of stop words, a next
text token in sequential order, of the plurality of text tokens, is compared to the
plurality of document tokens, and

(i1) if the matched text token does not match one of the plurality of stop words,
a common word analysis of comparing the matched text token to the plurality of
common words is performed, such that

(a) if the matched text token matches one of the plurality of commons
words and is not capitalized, the next text token in sequential order is
compared to the plurality of document tokens, and

(b) if the matched text token does not match one of the plurality of
common words, the matched text token is identified as a candidate text token,
and the next text token in sequential order is compared to the plurality of

document tokens.

WO 2013/148852 PCT/US2013/034130

-37-

11. A non-transitory computer readable storage medium according to claim 8,
wherein the plurality of documents include artist names, misspellings of the artists
names, aliases of the artist names, song titles, misspellings of the song titles, and

aliases of the song titles.

12. A non-transitory computer readable storage medium according to claim 8§,
wherein the method further comprises:

acquiring the block of text from a webcrawl.

13. A non-transitory computer readable storage medium according to claim 8,

wherein the plurality of documents are stored in an inverted index.

14. A data processing apparatus for identifying a document within a block of
text, comprising;:
a processor configured to:

(1) tokenize a block of text into a plurality of text tokens according to at
least one rule parser;

(i1) compare each of the plurality of text tokens to a plurality of
document tokens sequentially and determine if the text token matches one of the
plurality of document tokens, wherein the plurality of document tokens correspond to
a plurality of documents which have been tokenized according to the at least one rule

parser;

WO 2013/148852 PCT/US2013/034130

-38 -

(ii1) filter each matched text token according to predetermined filtering
criteria to generate one or more candidate text tokens; and

(iv) match a sequence of candidate text tokens from the one or more
candidate text tokens to a sequence of document tokens, wherein the sequence of

candidate text tokens occur in sequential order within the block of text.

15. A data processing apparatus according to claim 14, wherein the
predetermined filtering criteria includes a plurality of stop words and a plurality of

common words.

16. A data processing apparatus according to claim 15, wherein the processor
is further configured to filter a matched text token by comparing the matched text
token to the plurality of stop words, wherein

(1) if the matched text token matches one of the plurality of stop words, a next
text token in sequential order, of the plurality of text tokens, is compared to the
plurality of document tokens, and

(i1) if the matched text token does not match one of the plurality of stop words,
a common word analysis of comparing the matched text token to the plurality of
common words is performed, such that

(a) if the matched text token matches one of the plurality of commons
words and is not capitalized, the next text token in sequential order is

compared to the plurality of document tokens, and

WO 2013/148852 PCT/US2013/034130

-39-

(b) if the matched text token does not match one of the plurality of
common words, the matched text token is identified as a candidate text token,
and the next text token in sequential order is compared to the plurality of

document tokens.

17. A data processing apparatus according to claim 14, wherein the plurality
of documents include artist names, misspellings of the artists names, aliases of the

artist names, song titles, misspellings of the song titles, and aliases of the song titles.

18. A data processing apparatus according to claim 14, wherein the processor

is further configure to acquire the block of text from a webcrawl.

19. A data processing apparatus according to claim 14, wherein the plurality

of documents are stored in an inverted index

20. A data processing apparatus according to claim 14, wherein the processor
is further configured to notify a user of (i) a matched document corresponding to the
sequence of document tokens which match the sequence of candidate text tokens, and

(i1) a position of the matched document within the block of text.

WO 2013/148852

1/11

PCT/US2013/034130

110a\ 110b\ 110n\
EXTERNAL EXTERNAL EXTERNAL e INTERNET
COMPUTER COMPUTER COMPUTER | 449
| |
106
APPLICATION PROGRAM
INTERFACE (API) SERVER
111a\ 111b\ 111n\
CPU RSSgEET TEXT TEXT TEXT
GATHERING | | GATHERING GATHERING
107) \109 SERVER SERVER SERVER
MEMORY 101\
108~ INTERNAL SERVER
REQUEST
CPU QUEUE
10/ 104
113 MEMORY
N D,
DATABASE 103
| | [I |
INTERNET CLIENT INTERNAL INTERNAL INTERNAL
SERVER COMPUTER COMPUTER COMPUTER
\112 \114 1053/ 105bJ 105nj
100

WO 2013/148852

/201

ARTIST NAME: DAVE
MATTHEWS BAND

ARTIST ID: AR1234
DOCUMENT ID: F3X89

TOKENS POSITION
‘DAVE" [
‘MATTHEWS’]
‘BAND' 3]
“<DAVE>" [1]
“<MATTHEWS>" 2]
“<BAND>" 3]

FIG. 2A

/203

ARTIST NAME: DAVE
MATTHEWS

ARTIST ID: AR1234
DOCUMENT ID: F3X91

TOKENS POSITION
‘DAVE’ 1]
‘MATTHEWS® 2]
“<DAVE>" 1]

‘<MATTHEWS>" [2]

FIG. 2C

2/11

PCT/US2013/034130

/202

ARTIST NAME: DMB

ARTIST ID: AR1234
DOCUMENT ID: F3X90

TOKENS POSITION
IGDMB” [1]
Il<DMB>ll [1]

FIG. 2B
/204

ARTIST NAME: DAVE
MATHEWS BAND

ARTIST ID: AR1234
DOCUMENT ID: F3X92

TOKENS POSITION
‘DAVE" 1]
‘MATHEWS' 12
‘BAND’ 13
“DAVE>" 0
“MATHEWS> 12
“BAND>" 13

FIG. 2D

WO 2013/148852 PCT/US2013/034130

3/11

/301

NAME DATABASE INVERTED INDEX
TOKEN DOCUMENT/POSITION
‘DAVE” [F3x89, 1] [F3x91, 1] [F3x92, 1]
‘MATTHEWS” [F3x89, 2] [F3x91, 2
BAND' [F3x89, 3] [F3x92, 3]
DMB’ [F3x90, 1]
"MATHEWS” F3x92,2]
“<DAVE>" [F3x89, 1] [F3x91, 1] [F3x92, 1]
“MATTHEWS>" [F3x89, 2] [F3x91, 2
“BAND>" [F3x89, 3] [F3x92, 3
“DMB>’ [F3490, 1]
“MATHEWS>” [F3x92,2]

FIG. 3

WO 2013/148852

4/11

401
/

PCT/US2013/034130

[402

TEXT: “QUEEN ROCKS! FREDDIE MERCURY IS
AMAZING! QUEEN LATIFAH'S VOICE CANNOT
COMPARE!"

7. | TEXTTOKEN
W, | QUEEN
W, | ROCKS
W; | FREDDE
W, | MERCURY
s | 1S

Wy | AMAZING
Wy | QUEEN
Wy | LATIFAH
Wy | VOICE
W, | CANNOT
;| COMPARE

FIG. 4A

FIG. 4B

WO 2013/148852

PCT/US2013/034130

5/11
/ 501 / 502 / 503
ARTIST NAME: QUEEN ARTIST NAME: FREDDIE ARTIST NAME: QUEEN

ARTIST ID: AR5678
DOCUMENT ID: F2x01

TOKENS POSITION
“QUEEN’ 0
‘“QUEEN>" [f]

MERCURY
ARTIST ID: AR5679
DOCUMENT ID: F2x02

TOKENS POSITION
‘FREDDIE’ 1]
‘MERCURY” [2]
FREDDIE>" [1]

‘“MERCURY>" [2]

LATIFAH
ARTIST ID: AR3456
DOCUMENT ID: F2x03

TOKENS ~ POSITION
“QUEEN’ 1]
“LATIFAH’ 12
“«QUEEN>" 0
LATFAH [

FIG. 5A

FIG. 5B
[600

FIG. 5C

601— TOKEN
I‘QU EEN”

602—\
“FREDDIE”

603 —
\‘MERCURY”

604—\
“LATIFAH’

605~\
606~\ <QUEEN>
‘<FREDDIE>"

607—

608___\\<|\/|ERCURY>
“<LATIFAR>"

NAME DATABASE INVERTED INDEX
DOCUMENT/POSITION

[F2x01, 1] [F2x03, 1]
F2x02, 1]
F2x02, 2
[F2x03, 2]
[F2x01, 1] [F2x03, 1]
F2x02, 1]
F2x02, 2
[F2x03, 2]

FIG. 6

WO 2013/148852 PCT/US2013/034130

6/11

SELECT BLOCK OF TEXT

|

TOKENIZE BLOCK OF TEXT

:

ST01

S702

S703
|

SET ANALYSIS TOKEN W5 = Wy

W3 MATCH ONE OF
THE DOCUMENT
TOKENS?

S706 \
ALL TEXT
SET Wy = Wa+1 TOKENS
CONSIDERED?

S1707
REPORT MATCHED ENTITIES

FIG. 7

800
/

MATCHED
TOKEN
ANALYSIS

WO 2013/148852 PCT/US2013/034130

7/11
/ 800
MATCHED TOKEN ANALYSIS

900

FILTERING ANALYSIS S
1000

DOCUMENT MATCHING
ANALYSIS |
Joo
PLURAL DOCUMENT
TOKEN ANALYSIS

FIG. 8

WO 2013/148852 PCT/US2013/034130

8/11

<O
(e
(s]

S901

YES =<::E::>

s MATCH
ACOMMON YES
WORD?

5902

5903

NO IS Wa
CAPW@UZED
1000 r
N~ DOCUMENT MATCHING
ANALYSIS

FIG. 9

WO 2013/148852 PCT/US2013/034130

9/11

1000

$1001
_ ANALYSIS DOCUMENT = 15T HIT DOCUMENT

DOES ANALYSIS
DOCUMENT
CONTAIN MORE

THAN ONE
DOCUMENT TOKEN?

1180\ STORE ANALYSIS DOCUMENT ID & |/

PLURAL POSITION WITHIN BLOCK OF TEXT
DOCUMENT

TOKEN
ANALYSIS

51004

ALLHIT
DOCUMENTS
ANALYZED?

SET ANALYSIS DOCUMENT TO

NEXT HIT DOCUMENT

FIG. 10

WO 2013/148852 PCT/US2013/034130

10/11

1100
S1101 i«

\ SET Wy =W,

S1102
IS WyEQUAL TO THE
FIRST DOCUMENT
TOKEN IN THE ANALYSIS
DOCUMENT?

SET Wy =Wq + 1

A 4

S1104
DOES Wy MATCH NEXT
DOCUMENT TOKEN IN
SEQUENTIAL ORDER IN
THE ANALYSIS
DOCUMENT?

S1105

IS THERE A NEXT
DOCUMENT TOKEN IN
THE ANALYSIS
DOCUMENT?

YES

. NO
S 1& STORE ANALYSIS
DOCUMENT ID & POSITION
WITHIN BLOCK OF TEXT

FIG. 11

PCT/US2013/034130

WO 2013/148852

11/11

¢t Old

0.2}
02z}
AV1dSIa
1Nd1N0 WHOMLIN
Verd)
08¢l 0szZlL
09Z1 301A3a (vzl
S)32IA3d 32I1A3d
W3LSASANS WNIQ3IW (S)30IA3Q
SOIHdVYO 3ovd0Ls | | ORNDY || vaEHdNEd | | e
379v140d
502l Snd
G2z} AMOWIN NIVIN 0lch
301A30 HOSSID0Md

00cl

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/034130

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/27
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

AL BRUN CAROLINE [FR] ET AL)
20 March 2008 (2008-03-20)

figure 2

28 June 2006 (2006-06-28)
paragraph [0013]

paragraph [0005]

X US 2008/071519 Al (BRUN CAROLINE [US] ET

paragraph [0023] - paragraph [0024]
paragraph [0060] - paragraph [0085]
paragraph [0046] - paragraph [0053]

X EP 1 675 020 A2 (XEROX CORP [US])
paragraph [0016] - paragraph [0017]

X US 2009/319500 Al (AGRAWAL SANJAY [US] ET
AL) 24 December 2009 (2009-12-24)

1-20

1-20

1-20

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

19 June 2013

Date of mailing of the international search report

26/06/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Abram, Robert

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/034130

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 2010/313258 Al (CHAUDHURI SURAJIT [US]
ET AL) 9 December 2010 (2010-12-09)
paragraph [0023] - paragraph [0028]

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/034130
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2008071519 Al 20-03-2008 NONE
EP 1675020 A2 28-06-2006 BR PI0505594 A 12-09-2006
EP 1675020 A2 28-06-2006
JP 5139635 B2 06-02-2013
JP 2006178980 A 06-07-2006
US 2006136196 Al 22-06-2006
US 2009319500 Al 24-12-2009 NONE
US 2010313258 Al 09-12-2010 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - wo-search-report
	Page 54 - wo-search-report
	Page 55 - wo-search-report

