

(19)

(10) **FI 130021 B**
 (12) **PATENTTIJULKAIKU**
PATENTSKRIFT
PATENT SPECIFICATION

(45) Patentti myönnetty - Patent beviljats - Patent granted **30.12.2022**(51) Kansainvälinen patenttiluokitus - Internationell patentklassifikation -
International patent classification**C23C 16/458 (2006.01)****H01L 21/67 (2006.01)****H01L 21/673 (2006.01)****H01L 21/687 (2006.01)**

SUOMI - FINLAND
(FI)

PATENTTI- JA REKISTERIHALLITUS
PATENT- OCH REGISTERSTYRELSEN
FINNISH PATENT AND REGISTRATION OFFICE

(45) Patentti myönnetty - Patent beviljats - Patent granted

30.12.2022(51) Kansainvälinen patenttiluokitus - Internationell patentklassifikation -
International patent classification**C23C 16/458 (2006.01)****H01L 21/67 (2006.01)****H01L 21/673 (2006.01)****H01L 21/687 (2006.01)**

(21) Patentihakemus - Patentansöökning - Patent application

20215556

(22) Tekemispäivä - Ingivningsdag - Filing date

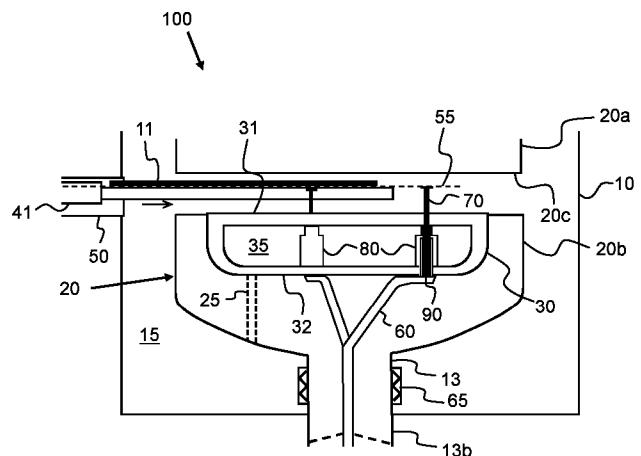
10.05.2021

(23) Saapumispäivä - Ankomstdag - Reception date

10.05.2021

(43) Tullut julkiseksi - Blivit offentlig - Available to the public

11.11.2022(73) Haltija - Innehavare - Proprietor
1 •Picosun Oy, Tietotie 3, 02150 Espoo, SUOMI - FINLAND, (FI)(72) Keksijä - Uppfinnare - Inventor
1 •KILPI, Väinö, MASALA, SUOMI - FINLAND, (FI)
2 •BLOMBERG, Tom, MASALA, SUOMI - FINLAND, (FI)(74) Asiamies - Ombud - Agent
Espatent Oy, Kaivokatu 10 D, 00100 Helsinki


(54) Keksinnön nimitys - Uppfinningens benämning - Title of the invention

SUBSTRAATIN PROSESSOINTILAITTEISTO JA MENETELMÄ**Substratprocessningsapparatur och förfarande****SUBSTRATE PROCESSING APPARATUS AND METHOD**(56) Viitejulkaisut - Anförla publikationer - References cited
 US 2012231633 A1, US 2018182660 A1, US 2013333616 A1, US 2020411354 A1

(57) Tiivistelmä - Sammandrag - Abstract

A substrate processing apparatus (100), comprising a reaction chamber (20) having an upper portion (20a) and a lower portion (20b) sealing an inner volume of the reaction chamber (20) for substrate processing, the lower portion (20b) being movable apart from the upper portion (20a) to form a substrate loading gap therebetween, a substrate support system comprising a support table (31) and at least one support element (70) vertically movable in relation to the support table (31) and extending through the support table (31) to receive a substrate within the reaction chamber (20), and a stopper (90) stopping a downward movement of the at least one support element (70) at a substrate loading level.

Substraatin prosessoointilaitteisto (100), joka käsittää reaktiokammion (20), jolla on ylempi osa (20a) ja alempi osa (20b), jotka tiivistävät reaktiokammion (20) sisätilavuuden substraatin prosessoimista varten, joka alempi osa (20b) on liikutettavissa erilleen ylemmästä osasta (20a) substraatin latausraon muodostamiseksi niiden välisiin, substraatin tukisysteemini, joka käsittää tukipöydän (31) ja vähintään yhden tukielementin (70), joka on pystysuuntaisesti liikuteltavissa tukipöytään (31) nähdien ja ulottuu tukipöydän (31) lävitse vastaanottaaseen substraatin reaktiokammiossa (20), ja pysäytimen (90), joka pysäyttää vähintään yhden tukielementin (70) alas paini suuntautuvan liikkeen substraatin lataamiskorkeudelle.

SUBSTRATE PROCESSING APPARATUS AND METHOD

FIELD OF THE INVENTION

5

The present invention generally relates to substrate processing apparatus and a method. More particularly, but not exclusively, the invention relates to chemical deposition or etching reactors.

10

BACKGROUND OF THE INVENTION

This section illustrates useful background information without admission of any technique described herein representative of the state of the art.

15

In chemical deposition or etching reactors loading of substrates into a reaction chamber may be performed from the side via a gate valve by a loading robot.

However, this loading method and all associated substrate handling methods used in the field place certain space limitations on the tool design. In particular, these

20 limitations are observed in the possible design for the reactors. The limitations frequently manifest in challenges in positioning a substrate reception surface at a suitable level within the reactor for adequate reactions to take place while simultaneously enabling sufficient space for the loading robot to operate.

25

SUMMARY

It is an object of certain embodiments of the invention to provide an improved substrate processing apparatus optimized to address space limitations experienced

30 in practice or at least to provide an alternative solution to existing technology.

According to a first example aspect of the invention there is provided a substrate processing apparatus, comprising:

a reaction chamber having an upper portion and a lower portion sealing an inner volume of the reaction chamber for substrate processing, the lower portion being movable apart from the upper portion to form a substrate loading gap therebetween; a substrate support system comprising a support table and at least one support

5 element vertically movable in relation to the support table and extending through the support table to receive a substrate within the reaction chamber, the apparatus further comprising:
a stopper stopping a downward movement of the at least one support element at a substrate loading level.

10

In certain embodiments, the apparatus is configured to move the lower portion with the support table.

15 In certain embodiments, the apparatus is configured to move the at least one support element downwards with the support table until the at least one support element is stopped by the stopper (or stopping element).

20 In certain embodiments, the apparatus is configured to move the support table further downwards after the at least one support element has been stopped by the stopper.

In certain embodiments, the apparatus comprises a stationary attachment part supporting the stopper.

25 In certain embodiments, the stationary attachment part extends from a reaction chamber exhaust line.

In certain embodiments, the apparatus is configured to lift the at least one support element with the support table upwards to a substrate processing position.

30

In certain embodiments, the support table is configured to elevate the substrate above a bottom surface of the upper portion of the reaction chamber.

In certain embodiments, this lifting occurs after the at least one support element has received the substrate.

In certain embodiments, the support table is attached to the reaction chamber, and

5 the support table and the lower portion of the reaction chamber (e.g., a reaction chamber bowl) are configured to move as one package up-and-down, the at least one support element and the support table are configured to rise together above the substrate loading level, and the at least one support element is configured to stay on the loading level, stopped by the stopper, while the support table is lowered,

10 together with the lower portion, below the loading level.

In certain embodiments, the apparatus comprises an outer chamber at least partly surrounding the reaction chamber. In certain embodiments, the outer chamber is a vacuum chamber.

15 In certain embodiments, a top surface of the at least one support element resides, in a substrate processing position, higher than the highest spot of a loading opening of a gate valve used by a substrate loading device for loading a substrate.

20 In certain embodiments, a gate valve is attached to a wall of the outer chamber.

In certain embodiments, the at least one support element is in the form of a pin with an enlarged top.

25 In certain embodiments, the apparatus is configured to process at least one substrate within the reaction chamber by sequential self-limiting surface reactions.

According to a second example aspect of the invention there is provided a substrate processing apparatus, comprising:

30 a reaction chamber having an upper portion and a lower portion sealing an inner volume of the reaction chamber for substrate processing, the lower portion being movable apart from the upper portion to form a substrate loading gap therebetween; and

a substrate support system comprising a support table adapted to elevate a substrate above a bottom surface of the upper portion of the reaction chamber.

According to a third example aspect of the invention there is provided a method for

- 5 loading a substrate into a reaction chamber, comprising:
 - moving a lower portion of a reaction chamber apart from an upper portion of the reaction chamber to form a substrate loading gap therebetween;
 - lowering a substrate support system comprising a support table and at least one support element, wherein the at least one support element is vertically movable in
- 10 relation to the support table and extending through the support table; and
- stopping the downward movement of the at least one support element by a stopper at a substrate loading level.

In certain embodiments, the method comprises:

- 15 moving the support table further downwards after the at least one support element has been stopped by the stopper (wherein the at least one support element remains at the substrate loading level).

According to a fourth example aspect of the invention there is provided a method

- 20 for loading a substrate into a reaction chamber, comprising:
 - moving a lower portion of a reaction chamber apart from an upper portion of the reaction chamber to form a substrate loading gap therebetween;
 - elevating a substrate on a support table above a bottom surface of the upper portion of the reaction chamber, and sealing an inner volume of the reaction chamber by
- 25 the upper portion and the lower portion for substrate processing.

Different non-binding example aspects and embodiments have been illustrated in the foregoing. The above embodiments are used merely to explain selected aspects or steps that may be utilized in implementations of the present invention. Some

- 30 embodiments may be presented only with reference to certain example aspects. It should be appreciated that corresponding embodiments apply to other example aspects as well. In particular, the embodiments described in the context of the first aspect are applicable to each further aspect. Any appropriate combinations of the

embodiments may be formed.

BRIEF DESCRIPTION OF THE DRAWINGS

5

The invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

10 Fig. 1 shows a schematic cross section of a substrate processing apparatus in a substrate processing stage in accordance with certain embodiments;

15 Fig. 2 shows the substrate processing apparatus of Fig. 1 during a substrate loading stage with a lower portion of the reaction chamber in a mid position in accordance with certain embodiments;

20 Fig. 3 shows the substrate processing apparatus of Fig. 1 during the substrate loading stage with the lower portion of the reaction chamber in a lowest position in accordance with certain embodiments;

Fig. 4 shows a schematic cross section of an elevator arrangement for the apparatus of Fig. 1 in accordance with certain embodiments; and

25 Fig. 5 shows a top view showing pin and elevator attachment point locations in accordance with certain embodiments.

DETAILED DESCRIPTION

25

In the following description, Atomic Layer Deposition (ALD) technology and Atomic Layer Etching (ALE) technology are used as an example.

30

The basics of an ALD growth mechanism are known to a skilled person. ALD is a special chemical deposition method based on sequential introduction of at least two reactive precursor species to at least one substrate. A basic ALD deposition cycle consists of four sequential steps: pulse A, purge A, pulse B and purge B. Pulse A consists of a first precursor vapor and pulse B of another precursor vapor. Inactive

gas and a vacuum pump are typically used for purging gaseous reaction by-products and the residual reactant molecules from the reaction space during purge A and purge B. A deposition sequence comprises at least one deposition cycle. Deposition cycles are repeated until the deposition sequence has produced a thin film or

5 coating of desired thickness. Deposition cycles can also be either simpler or more complex. For example, the cycles can include three or more reactant vapor pulses separated by purging steps, or certain purge steps can be omitted. Or, as for plasma-assisted ALD, for example PEALD (plasma-enhanced atomic layer deposition), or for photon-assisted ALD, one or more of the deposition steps can be

10 assisted by providing required additional energy for surface reactions through plasma or photon in-feed, respectively. Or one of the reactive precursors can be substituted by energy, leading to single precursor ALD processes. Accordingly, the pulse and purge sequence may be different depending on each particular case. The deposition cycles form a timed deposition sequence that is controlled by a logic unit

15 or a microprocessor. Thin films grown by ALD are dense, pinhole free and have uniform thickness.

As for substrate processing steps, the at least one substrate is typically exposed to temporally separated precursor pulses in a reaction vessel (or chamber) to deposit

20 material on the substrate surfaces by sequential self-saturating (or self-limiting) surface reactions. In the context of this application, the term ALD comprises all applicable ALD based techniques and any equivalent or closely related technologies, such as, for example the following ALD sub-types: MLD (Molecular Layer Deposition), plasma-assisted ALD, for example PEALD (Plasma Enhanced Atomic Layer Deposition) and photon-assisted or photon-enhanced Atomic Layer Deposition (known also as flash enhanced ALD or photo-ALD).

However, the invention is not limited to ALD technology, but it can be exploited in a wide variety of substrate processing apparatuses, for example, in Chemical Vapor

30 Deposition (CVD) reactors, or in etching reactors, such as in Atomic Layer Etching (ALE) reactors.

The basics of an ALE etching mechanism are known to a skilled person. ALE is a

technique in which material layers are removed from a surface using sequential reaction steps that are self-limiting. A typical ALE etching cycle comprises a modification step to form a reactive layer, and a removal step to take off only the reactive layer. The removal step may comprise using a plasma species, ions in particular, for the layer removal.

In context of ALD and ALE techniques, the self-limiting surface reaction means that the surface reactions on the reactive layer of the surface will stop and self-saturate when the surface reactive sites are entirely depleted.

10

Fig. 1 shows a schematic cross section of a substrate processing apparatus 100 in a substrate processing stage in accordance with certain embodiments. The substrate processing apparatus 100 may be, for example, an ALD reactor or an ALE reactor. The apparatus 100 comprises a reaction chamber 20, and an outer chamber 10 (or vacuum chamber) at least partly surrounding the reaction chamber 20. An intermediate volume 15 (or intermediate space) is formed in between the reaction chamber 20 and the outer chamber 10. In certain embodiments, the intermediate volume 15 is formed within the outer chamber 10 on the outside of the reaction chamber 20 so that the intermediate volume 15 is defined by both an outer chamber 15 wall and a reaction chamber wall and, accordingly, is formed therebetween.

The apparatus 100 further comprises a substrate support (or substrate support system) 30 within the reaction chamber 20. In certain embodiments, the substrate support 30 is formed as a support table (or substrate supporting table) 31. In certain embodiments, the substrate support 30 comprises the support table 31 and a bottom cover 32. In certain embodiments, the substrate support 30 comprises a hollow inner volume 35. The volume 35 may be defined by or in between the support table 31 and the bottom cover 32.

30 The reaction chamber 20 in certain embodiments comprises an upper portion 20a and a lower portion 20b sealing an inner volume of the reaction chamber 20 for substrate processing. Further, the upper portion 20a comprises a bottom surface 20c.

A substrate 11 is supported by the substrate support 30 or its support table 31 and processed in vacuum for example by ALD or ALE within the reaction chamber 20. Accordingly, the substrate is exposed to sequential self-limiting surface reactions.

- 5 The flow geometry within the reaction chamber is shown by arrows 12. Precursor vapor (which includes a plasma species in certain embodiments) approaches the substrate 11 surface from top and exits the reaction chamber 20 from the bottom of the reaction chamber 20 into an exhaust line 13.
- 10 The substrate support 30 (or its bottom part or cover 32) is supported from below (or from a side (not shown)) by a connecting (support) part 25 and attached to the lower part 20b. In certain embodiments, the part 25 forms a channel leading from the hollow inner volume 35 to the intermediate volume 15. This enables for example wirings from the support table 31 to be fed through from volume 35 to volume 15
- 15 (and from volume 15 via an appropriate outer chamber feedthrough to outside of vacuum) without exposing them to reactants, plasma or precursor vapor, for example.

In certain embodiments, the substrate support 30 further comprises at least one vertically movable support element (or a set of vertically movable support elements) 70 that extend through the substrate support 30 or through the support table 31, although in certain other embodiments, the elements 70 are adapted to work at the side of the substrate support 30. The elements 70 can move vertically in an enclosure 80 arranged in the substrate support 30. In certain embodiments, the substrate support 30 comprises one or more stoppers 90. In certain embodiments, the one or more stoppers are attached to an attachment part 60. In certain embodiments, the attachment part 60 is a stationary part extending from the exhaust line 13. The stopper(s) 90 stop a downward movement of the elements 70 at a substrate loading level so as will be next demonstrated with the aid of Figs. 2 and 3.

- 30 In certain embodiments, the substrate processing apparatus 100 comprises a gate valve 50 or another device enabling side loading of at least one substrate in vacuum by a loading device, such as a loading robot. In certain embodiments, the gate valve

50 is attached to a wall of the outer chamber 10. The substrate loading level is depicted by arrow 55.

In certain embodiments, the apparatus 100 comprises a part 65 in the exhaust line

5 13 (on the outside of the reaction chamber 20 and/or inside the intermediate volume 15) allowing lengthening and shortening of the exhaust line 13 by a vertical movement. In certain embodiments, the said part 65 is a vacuum bellows. In certain embodiments, the part 65 is positioned in the portion of the exhaust line 13 facing the intermediate volume 15 (in the outer chamber 10).

10

For loading a substrate or wafer into the reaction chamber 20, the lower portion 20b of the reaction chamber 20 (hereinafter: reaction chamber bowl 20b) is moved apart from the upper portion 20a by a lowering movement to form a substrate loading gap therebetween. When moving downwards the elements 70 (which are support pins

15 equipped with enlarged pin tops in certain embodiments) move a short distance with the support table/reaction chamber bowl (31/20b) combination, but the lower end of each pin 70 hits, about in the middle of the stroke, a solid surface of stopper 90 stopping the pin movement and resulting in the pin tops remaining on the loading height of a loading robot. In certain embodiments, the solid surface of stopper 90 is
20 affixed to the attachment part 60. In certain embodiments, the attachment part 60 is affixed to a static part of the exhaust line 13b (as illustrated in Fig. 3). In certain embodiments, the static part of the exhaust line is affixed to the outer chamber 10.

25 The downward movement of the support table/reaction chamber bowl combination is caused by a lowering movement of an elevator attached to the said combination.

In certain embodiments, the lowering movement is brought about by an elevator 53 shown in Fig 4 and comprising a force transmission element (or rod) 51 extending through an outer chamber feedthrough 52 and attaching to the part 20b or its edge at an attachment point 22. In certain embodiments, the apparatus comprises a 30 plurality of force transmission elements 51 adapted with elevators 53 and attachment points 22. Attachment points 22 may be arranged evenly on the circumference of the bowl 20b. Accordingly, an elevator arrangement with symmetrically positioned attachment (or lifting) points (for example three points) as

shown in Fig. 5 may be implemented. Similarly, the elements 70 may be evenly distributed on the support table 31. Fig. 5 shows three elements, which in certain embodiments are pin tops, arranged somewhat equidistant, the distances being approximately at 120 degrees intervals.

5

The lowering movement of the elements 70 follow the movement of the support table/reaction chamber bowl combination by gravity only. In alternative embodiment, the actuation of the lowering movement is induced or assisted by an actuator or a spring (not shown). After the movement of the element 70 has been stopped, the support table/reaction chamber bowl combination is further moved downwards until a lower (or lowest) position is reached as depicted by Fig. 3. In this way, more room for the loading robot 41 (Fig. 3) may be obtained, and yet the loading of a substrate 11 may be performed, as an example, by only a horizontal movement (or optionally by a horizontal and a lowering movement) of the loading robot 41 along the said substrate loading level 55 via the gate valve 50.

Once the substrate 11 has been placed on the element 70 and the loading robot arm retracted via the gate valve 50, the pin tops remain on the loading height (or level) until the support table (or susceptor plate) 31, on its way up, reaches the substrate 11. The substrate 11 starts to move upwards together with the support table/reaction chamber bowl combination. In certain embodiments, at the end of the upwards movement, the substrate is at a position that is higher than the top surface of the opening of the gate valve 50 used by the loading robot 41 (as shown in Fig. 1). In certain embodiments, at the end of the upwards movement, the substrate is at a position that is higher than the bottom surface 20c of the upper portion 20a of the reaction chamber 20. In certain embodiments, there are no moving parts or contact surfaces above the surface of the wafer. Possible sources of particles that could affect the substrate 11 are thus reduced and a lower count of added particles can be obtained as a result. The elements 70 raise together with the support table/reaction chamber bowl combination as it raises.

Without limiting the scope and interpretation of the patent claims, certain technical effects of one or more of the example embodiments disclosed herein are listed in

the following. A technical effect is enabling wafer loading without a separate actuator for wafer supporting pins. A further technical effect is providing adequate room for loading.

- 5 The foregoing description has provided by way of non-limiting examples of particular implementations and embodiments of the invention a full and informative description of the best mode presently contemplated by the inventors for carrying out the invention. It is however clear to a person skilled in the art that the invention is not restricted to details of the embodiments presented above, but that it can be
- 10 implemented in other embodiments using equivalent means without deviating from the characteristics of the invention.

Furthermore, some of the features of the above-disclosed embodiments of this invention may be used to advantage without the corresponding use of other features.

- 15 As such, the foregoing description should be considered as merely illustrative of the principles of the present invention, and not in limitation thereof. Hence, the scope of the invention is only restricted by the appended patent claims.

Claims

1. A substrate processing apparatus (100), **characterized** by comprising:
 - a reaction chamber (20) having an upper portion (20a) and a lower portion (20b) sealing an inner volume of the reaction chamber (20) for substrate processing, the lower portion (20b) being movable apart from the upper portion (20a) to form a substrate loading gap therebetween;
 - a substrate support system comprising a support table (31) and at least one support element (70) vertically movable in relation to the support table (31) and extending through the support table (31) to receive a substrate within the reaction chamber (20), the apparatus (100) further comprising:
 - a stopper (90) stopping a downward movement of the at least one support element (70) at a substrate loading level.
- 15 2. The substrate processing apparatus of claim 1, wherein the apparatus (100) is configured to move the lower portion (20b) with the support table (31).
3. The substrate processing apparatus of claim 1 or 2, wherein the apparatus (100) is configured to move the at least one support element (70) downwards with the support table (31) until the at least one support element (70) is stopped by the stopper (90).
- 20 4. The substrate processing apparatus of claim 3, wherein the apparatus (100) is configured to move the support table (31) further downwards after the at least one support element (70) has been stopped by the stopper (90).
- 25 5. The substrate processing apparatus of any preceding claim, comprising a stationary attachment part (60) supporting the stopper (90).
- 30 6. The substrate processing apparatus of claim 5, wherein the stationary attachment part (60) extends from a reaction chamber exhaust line.
7. The substrate processing apparatus of any preceding claim, wherein the

apparatus is configured to lift the at least one support element (70) with the support table (31) upwards to a substrate processing position.

8. The substrate processing apparatus of any preceding claim, wherein the support table (31) is attached to the reaction chamber (20) and the support table (31) and the lower portion (20b) of the reaction chamber (20) are configured to move as one package up-and-down, the at least one support element (70) and the support table (31) are configured to rise together above a substrate loading level (55), and the at least one support element (70) is configured to stay on the loading level (55), stopped by the stopper (90), while the support table (31) is lowered, together with the lower portion (20b), below the loading level (55).
10
9. The substrate processing apparatus of any preceding claim, comprising an outer chamber (10) at least partly surrounding the reaction chamber (20).
15
10. The substrate processing apparatus of any preceding claim, wherein a top surface of the at least one support element (70) resides, in a substrate processing position, higher than the highest spot of a loading opening of a gate valve used by a substrate loading device for loading a substrate.
20
11. The substrate processing apparatus of any preceding claim, wherein the at least one support element (70) is in the form of a pin with an enlarged top.
25
12. The substrate processing apparatus of any preceding claim, configured to process at least one substrate within the reaction chamber (20) by sequential self-limiting surface reactions.
30
13. A substrate processing apparatus (100), **characterized** by comprising:
 - a reaction chamber (20) having an upper portion (20a) and a lower portion (20b) sealing an inner volume of the reaction chamber (20) for substrate processing, the lower portion (20b) being movable apart from the upper portion (20a) to form a substrate loading gap therebetween; and
 - a substrate support system comprising a support table (31) adapted to

elevate a substrate (11) above a bottom surface (20c) of the upper portion (20a) of the reaction chamber (20).

14. A method for loading a substrate into a reaction chamber, **characterized** by
5 comprising:

moving a lower portion (20b) of a reaction chamber (20) apart from an upper portion (20a) of the reaction chamber (20) to form a substrate loading gap therebetween;

lowering a substrate support system comprising a support table (31) and at least one support element (70), wherein the at least one support element (70) is vertically movable in relation to the support table (31) and extending through the support table (31); and

10 stopping the downward movement of the at least one support element (70) by a stopper (90) at a substrate loading level.

15

15. The method of claim 14, comprising:

moving the support table (31) further downwards after the at least one support element (70) has been stopped by the stopper (90).

20

16. A method for loading a substrate into a reaction chamber, **characterized** by comprising:

moving a lower portion (20b) of a reaction chamber (20) apart from an upper portion (20a) of the reaction chamber (20) to form a substrate loading gap therebetween;

25 elevating a substrate (11) on a support table (31) above a bottom surface (20c) of the upper portion (20a) of the reaction chamber (20), and sealing an inner volume of the reaction chamber (20) by the upper portion (20a) and the lower portion (20b) for substrate processing.

30

PATENTTIVAATIMUKSET

1. Substraatin prosessointilaitteisto (100), **tunnettu** siitä, että se käsittää:

reaktiokammion (20), jolla on ylempi osa (20a) ja alempi osa (20b), jotka tiivistävät reaktiokammion (20) sisätilavuuden substraatin prosessoimista varten, joka alempi osa (20b) on liikutettavissa erilleen ylemmästä osasta (20a) substraatin latausraon muodostamiseksi niiden välillä;

substraatin tukisysteemin, joka käsittää tukipöydän (31) ja vähintään yhden tukielementin (70), joka on pystysuuntainen liikuteltavissa tukipöytään (31) nähdien ja ulottuu tukipöydän (31) lävitse vastaanottaaakseen substraatin reaktiokammiossa (20), joka laitteisto lisäksi käsittää:

pysäytimen (90), joka pysäyttää vähintään yhden tukielementin (70) alaspäin suuntautuvan liikkeen substraatin lataamiskorkeudelle.

2. Patenttivaatimuksen 1 mukainen substraatin prosessointilaitteisto, jossa laitteisto (100) on järjestetty liikuttamaan alempaa osaa (20b) tukipöydän (31) kanssa.

15 3. Patenttivaatimuksen 1 tai 2 mukainen substraatin prosessointilaitteisto, jossa laitteisto (100) on järjestetty liikuttamaan vähintään yhtä tukielementtiä (70) alaspäin tukipöydän kanssa (31) kunnes vähintään yksi tukielementti (70) pysäytetään pysäyttimellä (90).

20 4. Patenttivaatimuksen 3 mukainen substraatin prosessointilaitteisto, jossa laitteisto (100) on järjestetty liikuttamaan tukipöytää (31) vielä lisää alaspäin sen jälkeen, kun vähintään yksi tukielementti (70) on pysäytetty pysäyttimellä (90).

5. Minkä tahansa edeltävän patenttivaatimuksen mukainen substraatin prosessointilaitteisto, joka käsittää kiinteän kiinnitysosan (60), joka tukee pysäytintä (90).

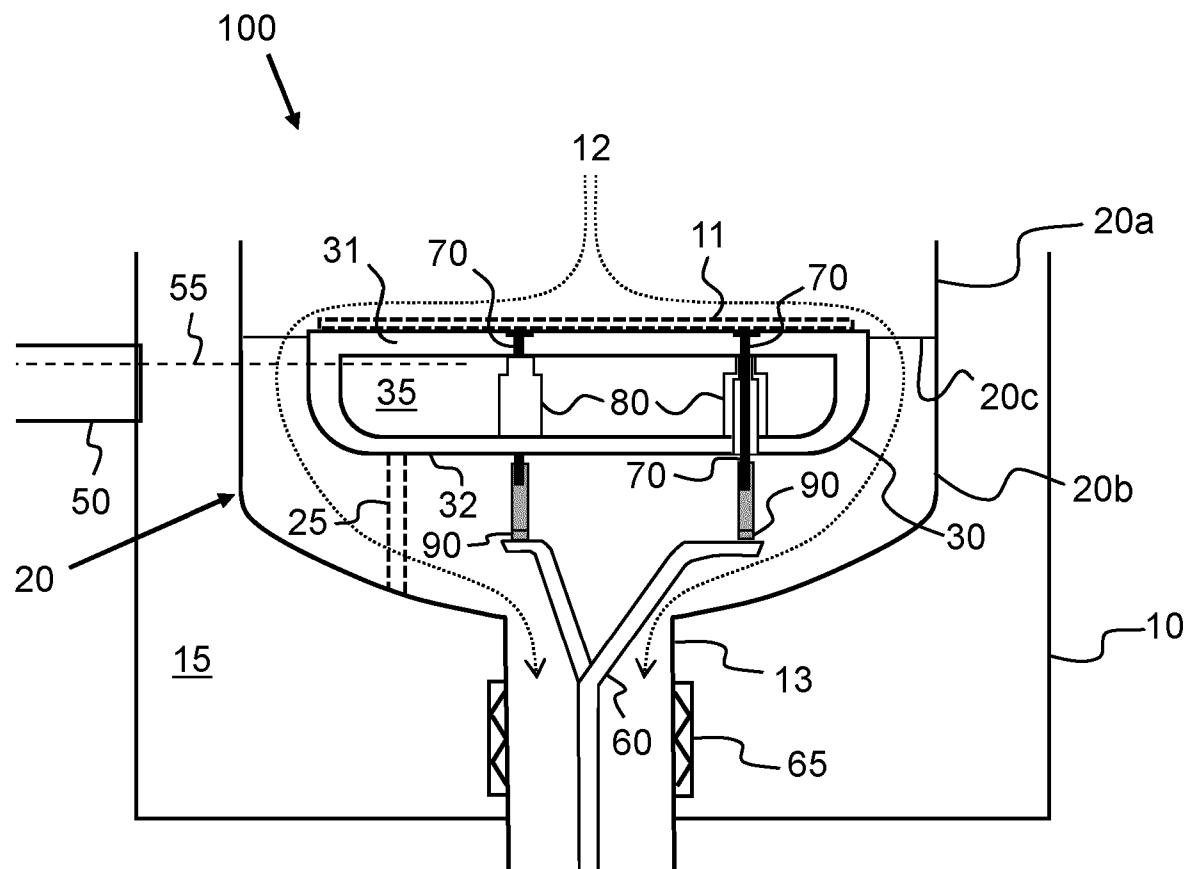
25 6. Patenttivaatimuksen 5 mukainen substraatin prosessointilaitteisto, jossa kiinteä kiinnitysosa (60) ulottuu reaktiokammiolta poistolinjaan.

7. Minkä tahansa edeltävän patenttivaatimuksen mukainen substraatin prosessointilaitteisto, jossa laitteisto on järjestetty nostamaan vähintään yhtä tukielementtiä (70) tukipöydän (31) kanssa ylöspäin substraatin prosessointikohtaan.

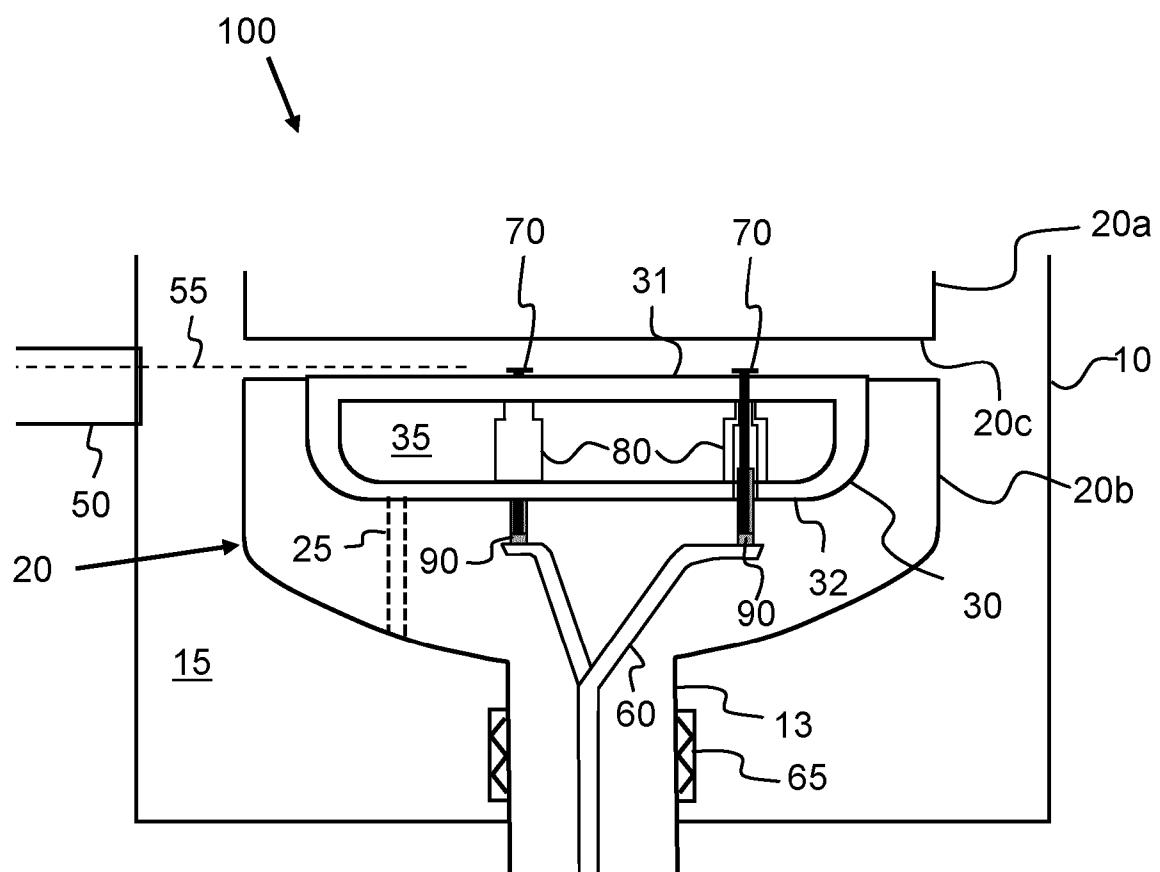
30 8. Minkä tahansa edeltävän patenttivaatimuksen mukainen substraatin prosessointilaitteisto, jossa tukipöytä (31) on kiinnitetty reaktiokammioon (20) ja tukipöytä (31) ja reaktiokammion (20) alempi osa (20) ovat järjestetty liikkumaan yhtenä pakettina ylös ja alas, vähintään yksi tukielementti (70) ja tukipöytä (31) ovat järjestetty

nousemaan yhdessä substraatin lataustason (55) yläpuolelle ja vähintään yksi tukielementti (70) on järjestetty pysymään lataustasolla (55) pysäyttimeen (90) pysäyttämänä, jolloin tukipöytä (31) lasketaan yhdessä alemman osan (20b) kanssa lataustason (55) alapuolelle.

- 5 9. Minkä tahansa edeltävän patenttivaatimuksen mukainen substraatin prosessointilaitteisto, joka käsittää ulomman kammion (10) vähintään osittain reaktiokammion (20) ympärillä.
- 10 10. Minkä tahansa edeltävän patenttivaatimuksen mukainen substraatin prosessointilaitteisto, jossa vähintään yhden tukielementin (70) yläpinta on substraatin prosessointikohdassa korkeammalla kuin substraatin latauslaitteen substraatin lataukseen käyttämän porttiventtiilin latausaukon korkein kohta.
11. Minkä tahansa edeltävän patenttivaatimuksen mukainen substraatin prosessointilaitteisto, jossa vähintään yksi tukielementti (70) on pinnin muodossa, jolla pinnillä on suurennettu yläosa.
- 15 12. Minkä tahansa edeltävän patenttivaatimuksen mukainen substraatin prosessointilaitteisto, joka on järjestetty prosessoimaan vähintään yhtä substraattia reaktiokammiossa (20) peräkkäisillä itserajoittuvilla pintareaktioilla.
13. Substraatin prosessointilaitteisto (100), **tunnettu** siitä, että se käsittää:
20 reaktiokammion (20), jolla on ylempi osa (20a) ja alempi osa (20b), jotka tiivistävät reaktiokammion (20) sisätilavuuden substraatin prosessoimista varten, joka alempi osa (20b) on liikutettavissa erilleen ylemmästä osasta (20a) substraatin latausraon muodostamiseksi niiden väliin; ja
substraatin tukisysteemin, joka käsittää tukipöydän (31) sovitettuna nostamaan substraattia (11) reaktiokammion (20) ylemmän osan (20a) alapinnan (20c) yläpuolelle.
- 25 14. Menetelmä substraatin reaktiokammioon lataamista varten, **tunnettu** siitä, että menetelmässä:
liikutetaan reaktiokammion (20) alempaa osaa (20b) erilleen reaktiokammion (20) ylemmästä osasta (20a) substraatin latausraon muodostamiseksi niiden väliin;
30 lasketaan substraatin tukisysteemiä, joka käsittää tukipöydän (31) ja vähintään yhden tukielementin (70), missä vähintään yksi tukielementti (70) on pystysuuntaisesti liikuteltavissa tukipöytään (31) nähdyn ja ulottuu tukipöydän (31) lävitse; ja
pysäytetään vähintään yhden tukielementin (70) alaspin suuntautuva liike pysäyttimellä (90) substraatin lataamiskorkeudelle.


15. Patenttivaatimuksen 14 mukainen menetelmä, jossa:

liikutetaan tukipöytää (31) vielä lisää alaspäin sen jälkeen, kun vähintään yksi tukielementti (70) on pysäytetty pysäyttimellä (90).


16. Menetelmä substraatin reaktiokammioon lataamista varten, **tunnettu** siitä, että
5 menetelmässä:

liikutetaan reaktiokammion (20) alempaa osaa (20b) erilleen reaktiokammion (20) ylemmästä osasta (20a) substraatin latausraon muodostamiseksi niiden väliin;

10 nostetaan substraattia (11) tukipöydällä (31) reaktiokammion (20) ylemmän osan (20a) alapinnan (20c) yläpuolelle, ja tiivistetään reaktiokammion (20) sisätilavuus ylemmällä osalla (20a) ja alemalla osalla (20b) substraatin prosessoimista varten.

Fig. 1

Fig. 2

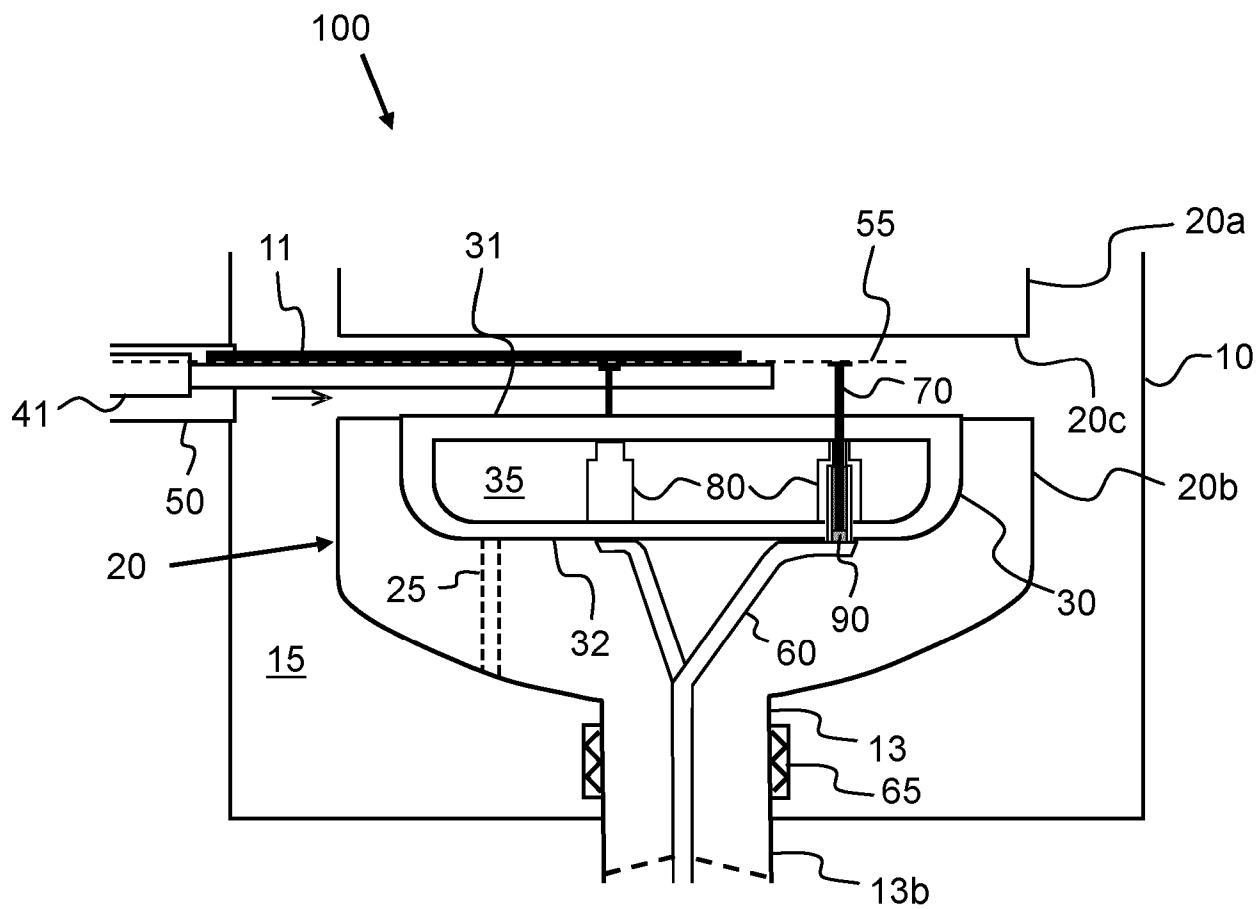
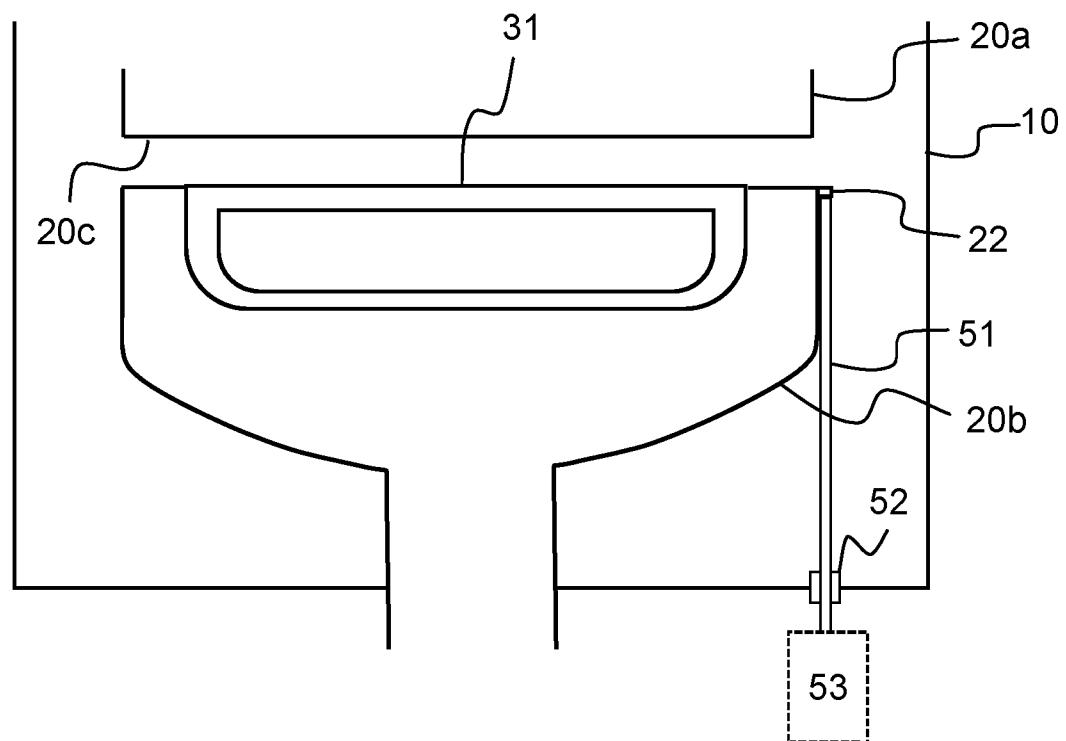
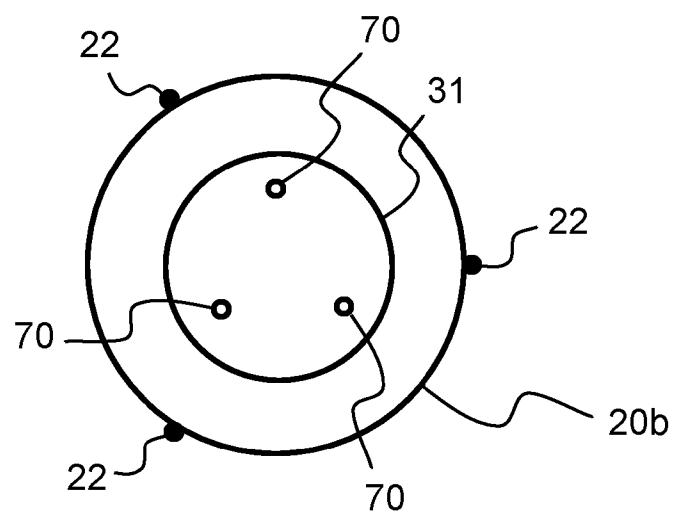




Fig. 3

4 / 4

Fig. 4

Fig. 5