0 0 OO0 OO

1/35278 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 May 2001 (17.05.2001)

00 000 0

(10) International Publication Number

WO 01/35278 Al

(51) International Patent Classification’: GO6F 17/30

(21) International Application Number: PCT/US00/30913
(22) International Filing Date:
10 November 2000 (10.11.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/164,527
60/197,036

10 November 1999 (10.11.1999) US
13 April 2000 (13.04.2000) US

(71) Applicants and

(72) Inventors: FAKHOURI, Sameh, A. [US/US]; 143 Storer
Avenue, New Rochelle, NY 10801 (US). JEROME,
William, F. [US/US]; 4 Noel Court, Anawalk, NY 10501
(US). KUMMAMURU, Krishna [IN/IN]; 86/4 Opp NCC
Office, Safdariung Enclave, New Delhi 110016 (IN).
NAIK, Vijay, E. [IN/US]; 48 Iroquois Road, Pleasantville,
NY 10570 (US). PERSHING, John, A, Jr. [US/US];

(74)

@n

(84

162 Cortlandt Street, Buchanan, NY 10511 (US). RAINA,
Ajay [IN/IN]; 131-B, Uttam Nagar, Kuniwani, Jammu-J
& K-180010 (IN). VARMA, Pradeep [IN/IN]; 10 West
Avenue, IIT Campus, Hauz Khas, New Delhi 110016 (IN).
BADOVINATZ, Peter [US/US]; 13740 SW 27th Court,
Beaverton, OR 97008 (US). KUMAR, Ajay [IN/US];
New Orchard Road, Armonk, NY 10504 (US).

Agents: DIGIGLIO, Frank, S. et al.; Scully, Scott, Mur-
phy & Presser, 400 Garden City Plaza, Garden City, NY
11530 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH, GM, HR,
HU, ID,IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ,PL, PT,RO,RU, SD, SE, SG, SI, SK, SL,, TJ, T™M,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, F1, FR, GB, GR, IE,

[Continued on next page]

(54) Title: A DECISION BASED SYSTEM FOR MANAGING DISTRIBUTED RESOURCES AND MODELING THE GLOBAL

OPTIMIZATION PROBLEM

Mounties Central: internal design

(57) Abstract: A decision support system called Mounties that is designed for managing applications and resources using rule-
based constraints in scalable mission-critical clustering environments. Mounties consists of four active service components: (1) a
repository of resource proxy objects for modeling and manipulating the cluster configuration; (2) an event notification mechanism
for monitoring and controlling interdependent and distributed resources; (3) a rule evaluation and decision processing mechanism;
and (4) a global optimization service for providing decision making capabilities. The focus of this paper is on the design of the first
three services that together connect and coordinate the distributed resources with the decision making component.

woO 01/35278 A1 IR N0 AT RO O A

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BI, CF, For two-letter codes and other abbreviations, refer to the "Guid-

CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

Published:

— With international search report.

— Before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of

amendments.

WO 01/35278 PCT/US00/30913

5

10

15

20

30

A DECISION BASED SYSTEM FOR MANAGING DISTRIBUTED
RESOURCES AND MODELING THE GLOBAL OPTIMIZATION PROBLEM

Background Of The Invention

Field of the Invention

This invention generally relates to decision support systems. More specifically, the
invention relates to decision support systems designed for managing applications and
resources using rule-based constraints in scalable mission-critical clustering

environments.
Prior Art

A cluster is a collection of resources (such as nodes, disks, adapters, databases, etc.)
that collectively provide scalable services to end users and to their applications while
maintaining a consistent, uniform, and single system view of the cluster services. By
design, a cluster is supposed to provide a single point of control for cluster
administrators and at the same time it is supposed to facilitate addition, removal, or
replacement of individual resources without significantly affecting the services
provided by the entire system. On one side, a cluster has a set of distributed,
heterogeneous physical resources and, on the other side, it projects a seamless set of
services that are supposed to have a look and feel (in terms of scheduling, fault

tolerance, etc.) of services provided by a single large virtual resource. Obviously, this

WO 01/35278

10

15

20

30

PCT/US00/30913

implies some form of continuous coordination and mapping of the physical distributed

resources and their services onto a set of virtual resources and their services.

Typically, such coordination and mappings are handled by the resource management
facilities, with the buik of the work done manually by the cluster administrators.
Despite the advances in distributed operating systems and middleware technology, the
cluster management is highly human administrator bound (and hence expensive, error-
prone, and non scalable beyond a certain cluster size). Primary reasons for such a
state-of-the-art is that existing resource managemen: “ystems adopt a static resource-
centric view where the physical resources in the cluster are considered to be static
entities, that are either available or not available and are managed using predetermined
strategies. _

These strategies are applied to provide reliable system-wide services, in the presence
of highly dynamic conditions such as variable load, fauits, applicétion failures, and so
on. The coordination and mapping using such an approach is too complex and tedious

to make it amenable to any form of automation.

Application management middleware has traditionally been used for products that
provide high availability such as IBM's HA/CMP and Microsoft's Cluster Services
(MSCS). HA/CMP's application management requires cluster resource configuration.
Custom recovery scripts that are programmed separately for each cluster installation
are needed. Making changes to the recovery scheme or to basic set of resource in the
cluster requires these scripts to be re-programmed. Finally, HA/CMP recovery
programs are stored and executed synchronously on all nodes of the cluster. MSCS
provides a GUI-driven application manager across a two-node clluster with a single
shared resource: a shared disk [see, M. Sportack, Windows NT Clustering BluePrints,
SAMS Publishing, Indianapolis, IN 46290, 1997].

These two nodes are configured as a primary node and a backup node; the backup

node is used normally pure backup node and no service-oriented processing is

V]

WO 01/35278

10

15

20

25

30

PCT/US00/30913

performed on it. Configuration and resource management is-simplified with MSCS:

there is only one resource to manage with limited management capabilities.

Tivoli offers an Application Management Specification (AMS) mechanism, which
provides an ability to define and configure applications using the Tivoli Application
Response Measurement (ARM) API layer [Tivoli Corp., Tivoli ahd Application
Management, http:/www:
tivoli.com/products/documents/whitepapaers/body.map.wp.html, 1999. These
applications are referred to as instrumented applications. The information gathered
from the instrumented applications can be used to drive scripts by channeling the
information through the Tivoli Event Console (TEC). The TEC can be configured to
respond to specific application notification and initiate subsequent actions upon
application feedback. The current version of ARM application monitoring is from a
single system's perspective. Future versions may include correlating events among

multiple systems.

Over the last few years several new efforts towards coordinating and managing
services provided by heterogeneous set of resources in dynamically changing
environments. The examples of these include TSpaces [see, P. Wyckoff, S.
McLaughry, T. Lehman, and D. Ford, T Spaces, IBM Systems Journal, pp. 454-474,
vol. 37,1998] and the Jini Technology [see, K. Edwards, Core JINI, The Sun
Microsystems Press Java Series, 1999]. The TSpaces technology provides messaging
and database style repository services that can be used by other higher level services to
manage and coordinate resources in a distributed environment. Jini, on the other hand,
is a collection of services for dynamically acquiring and relinquishing services of
other resources, for notifying availability of services, and for providing a uniform

means for interacting among a heterogeneous set of resources.
Summary Of The Invention

An object of this invention is to provide an improved decision support system.

w)

WO 01/35278

10

15

20

25

30

PCT/US00/30913

Another object of the present invention is to provide a decision support system that is
designed for managing applications and resources using rule-based constraints in

scalable mission-critical clustering environments.

A further object of this invention is to provide a decision support system in which
resources are considered as services whose availability and quality-of-service depends

on the availability and the quality-of-services provided by one or more other services

in a cluster of resources.

To achieve the above objectives, and to overcome the above-discussed difficulties of
the prior art, the present invention take an approach that is different from the
traditional resource management approach. In this approach, resources are considered
as services whose availability and quality-of-service depends on the availability and
the quality-of-service provided by one or more other services i.n' the éluster. For this
reason, the cluster and its resources may be represented by two dimensions. The first
dimension captures the semi-static nature of each resource; e.g., the type and quality
of the supporting services needed to enable its services. Typically, these requirements
are defined (explicitly or implicitly) by the designers of the resource or the
application. These may be further qualified by the cluster administrators. These are
formalized as simple rules that can be dynamically and programatically evaluated,
taking into account the current state of the cluster. The second dimension is the
dynamic state of the various services provided by the cluster. The dynamic changes
are captured by events. Finally, all the coordination and mapping is done at a logically
centralized place, where the events are funneled in and the rules are evaluated. This
helps in isolating and localizing all the heterogeneity and associated complexity. By
separating the dynamic part (the events) from the semi-static parts (the rules), and
combining these in a systematic manner only when needed, the desifed level of
automation in the coordination and mapping of resources and services can be

achieved.

WO 01/35278 PCT/US00/30913

10

15

25

30

While the general principles outlined above are fairly straightforward, there is a
nontrivial émount of complexity in managing the choreogréphy. To show the proof of
concept, we have designed and implemented a system called Mounties based on the
above described general principles. The Mounties architecture itself is composed of
multiple components, a primary component being the modeling and decision making
engine. The remaining components together form an active and efficient resource
management layer between the actual cluster resources and the decision-making
component. This layer continuously transports the state information to the decision
maker and commands from the decision maker to the cluster resources, back-and-forth

in a fault-tolerant manner.
Further benefits and advantages of the invention will become apparent from a
consideration of the following detailed description, given with reference to the
accompanying drawings, which specify and show preferred embodiments of the
invention. '

Brief Description Of The Drawings

Figure 1 shows a cluster configuration that may be managed by the present invention

Figure 2 illustrates the dependencies for a web server supported by the cluster

configuration of Figure 1.
Figure 3 depicts aspects of the present invention and their relationship cluster services.

Figure 4 shows an internal design of a preferred decision support system embodying

this invention.

Figure 5 shows the performance of an algorithm that may be used in the practice of

this invention.

WO 01/35278 PCT/US00/30913

10

15

20

30

Figure 6 outlines an approach to finding an optimum solution for managing online

resources.

Figure 7: Example ~ Graphical representation of a collection of resources with their

dependencies and collocation constraints.

Figure 8: Block diagram showing the role of optimizer in the whole system.

Figure 9: Evolutionary algorithms based optimization technique.

Figure 10: Contents of Solution Resource Object.

Figure 11: A Feasible Solution Graph (FSG) of the example considered.

Figure 12: A Complete Feasible Solution Graph (CFSG) of the example considered.
Figure 13: makeCFSG function.

Figure 14: Initialization scheme.

Figure 15: Mutation operator.

Figure 16 shows the performance of an algorithm that may be used in the practice of

this invention.
Figure 17 illustrates a set of resources.
Figure 18 outlines an approach for connecting fractional solution to integer solution.

Figure 19 illustrates a procedure for computing a fontier.

WO 01/35278

10

15

20

30

PCT/US00/30913

Detailed Description Of The Preferred Embodiments
Definitions and Basic Cluster Concepts

In a cluster managed by Mounties, hardware components such as nodes, adapters,
memory, disks, and software components such as applications, database servers, web
servers are all treated as cluster resources. When there is no ambiguity, we use the
terms resource and the service it provides, interchangeably. A location is a unique
place in the cluster where a resource or service physicaily resides and makes its
service available. Typically it is identified by the node (or the processing element), but
it could be any uniquely identifiable location (such as an URL). To provide its
intended services, a resource may need services provided by one or more other
resources. These are referred to as the dependencies. In addition to the dependencies,
a resource may have other limitations and restrictions such as capacity (defined in the
following) or location in the cluster where it can provide its éervices. Some of these
may be because of the physical limitations of the resource, while 6thers may be
imposed by the cluster administrators. The dependencies and the Speciﬁed limitations
together form a set of constraints that must be satisfied for making a service available.
Usually the cluster administrator satisfies these constraints by‘allocating appropriate
resources. Typically, a cluster is expected to support multiple services. To achieve
this, constraints for multiple resources must be satisfied simultaneously, by judiciously
allocating lower level supporting resources and services. This hierarchical allocation
of resources (i.e., one level of resources supporting the next level of resources) gives
rise to a particular cluster configuration where dependency relations are defined
among cluster resources. Note that there may be more than one possible cluster
configuration to provide the same set of services. When there are only a limited
number of resources or when the constraints among resources are complex, there may
only be a small number of ways in which cluster can be conﬁgured to satisfy all the

constraints. Determining such unique configurations is a hard problem.

WO 01/35278

10

15

25

30

PCT/US00/30913

Resources have attributes that distinguish them from one another.

These include Name, Type, Capacity, Priority, and State. Each resource has a unique
Name and resources are classified into multiple Types based on the functionality they
provide. Capacity of a resource is the number of dependent resources that it can serve
simultaneously. The capacity may be inherent in the design of a resource, or it may be
imposed by cluster administrators for performance or testingpurposes. All allocations
of a resource must ensure that its capacity constraints are not violated. Priority denotes
the relative importance of a resource or a service. In Mounties, the Priority is a
number (on a scale of 1 to 10, 1 being the lowest) to indicate its relative value. It is
used in more than one way. For example, if two resources depend on a resource that

can only support one of them, then one way to resolve the conflict is to allocate the

scarce resource to the resource with higher priority.

Similarly, in a cluster there may be more than one resource of a certain type and a
resource or service that depends that type of resource may have a choice in satisfying
that dependency. Here priority of the supporting resources may be used to make the
choice. The Priority field can also be used in stating the goals or objectives for cluster
operation; e.g., resources may be allocated such that the sum of the Priorities of all
services made available is maximized. The State of a resourée-indicates the readiness
of its availability. In Mounties, the State of a resources is abstract.ed as ONLINE,
OFFLINE, or FAILED. An ONLINE resource is ready and is available for immediate
allocation, provided its capacity is not exhausted; An OFFLINE resource could be
made ONLINE after its constraints are satisfied. A FAILED resource cannot be made
available just by satisfying its constraints. The FAILED state is indicative of either a

failure because of an error condition or unavailability because of administrative

servicing requirements.

We use the term end users to mean the cluster administrators, the applications that use
the cluster services, or the end users in the conventional sense. In practice, cluster

administrators and high level applications tend to be the real users of the services

provided by Mounties.

WO 01/35278

10

15

20

25

30

PCT/US00/30913

The Mounties Approach

As described above, Mounties introduces a constraint-based methodology for the
cluster configuration, startup and recovery of applications and other higher level
resources. The constraints are used to build relationships among supporting and
dependent resources/services. Under this approach, the heterogeneity and
nonuniformity of the physical cluster are replaced by the consistent and single-system
like service views. This is further enhanced by providing higher-level abstractions
that allow end users to express requirements and objectives that are tailored to a

particular cluster and the organization using the cluster.
Basic Rules and Abstractions

In a cluster, certain services are expected to be normally available. In Mounties, this
is expressed by means of a resource attribute called the NominalState. The
NominalState acts as a constraint for one or more resources in the cluster and this
information becomes a part of the cluster definition. To indicate the normal
availability of the services of a resource, the NominalState of that resource is set to
ONLINE. This constraint is satisfied when the State of that resource is ONLINE.
Furthermore, the ONLINE NominalState implies that every effort must be made to
keep that service ONLINE. Similarly, a NominalState of OFFLINE is sometimes

desirable; e.g., for servicing a resource or when the cost of keeping a resource on-line

all the time is too high.

When a resource or service has an ONLINE NominalState, the cluster management
system needs to be informed about how the resource or service can be brought on-line.

Typically, most services or applications depend on other lower level services or

resources.

WO 01/35278 PCT/US00/30913

10

15

30

Mounties provides two main abstractions for expressing the inter-resource
dependencies: the DependsOn relationship and the Collocated With relationship.
Resource A DependsOn B if services of Resource B are needed.for the liveliness of A.
Note that a resource or an application may require services of more than one type of
other resources. Generally these services may be available anywhere in the cluster. In
certain cases, only the services provided by local resources can be used. To express
such a location specific constraint a CollocatedWith relationship is used. For
example, Resource A CollocatedWith B means Resource A must have the same
location as that of B; i.e., they must reside on the same node. Note that services of B
may be available at more than one location. In that case, there is a choice and a
decision has to be made about the location that is to be picked. Similarly, sometimes
it is desirable not to locate two resources on the same node. This is expressed by the

Anti-CollocatedWith constraint.

Mounties provides a new resource abstraction called an Equivalency. Generally, an
equivalency is a set of resources with similar functionality, but bossibly with different
performance characteristics. It has a run-time semantics of “choose one of

these.” Since the selection of the most appropriate resource from an equivalency
depends on the cluster-state, the concept of equivalencies provides Mounties with a
strong and flexible method to meet the service goals of the cluster. With this
abstraction, the end-user is freed from making ad-hoc decisions and allows Mounties
to choose the most appropriate resource based on the conditions at run-time. An
equivalency can also be associated with a weighting function, called a policy. A
policy can guide, but not force, the decision- making mechanism within Mounties
towards a particular selection based on end-user preferences or advanced knowledge
about the system. Since an equivalency can be treated as a resource, it maintains
uniformity in specifying constraints and at the same time allows specification of

multiple options that can be utilized at run-time.

Finally, Mounties provides abstractions for defining business objectives or goals of

how the resources in the cluster are to be managed and configured. These objectives

10

WO 01/35278 PCT/US00/30913

wn

10

15

20

25

30

typically include maintaining availability of cluster services and of individual
resources in a prioritized manner, allocation of resources so as to balance the load or

services, or delivering a level of service within a specified range, and so on.
Management and Coordination of Resources

At the lowest levels, all resources are manipulated in a programmable manner or from
the command line. Mounties divides the work such that the decision making and
resource allocation processes (which require global knowledge about the cluster) are
distinct from the resource monitoring, controlling, and manipulating processes (which
require resource specific information) such as the resource managers. This
encapsulation of resource manipulation gives flexibility and requires no special

programming in order to add an application into the cluster once its resource manager

is available.

Mounties gathers and maintains information about the cluster configuration and the
dependency information for each resource at cluster startup or whenever a new
resource or application is introduced in the cluster. A continuous event notification
and heartbeat mechanisms are also needed for monitoring clusfer-wide activities.
Using these mechanisms, Mounties continuously monitors the cluster-wide events and
compares the current cluster-state with the desired state. Whenever there are
discrepancies between the two, the best possible realignment of resources is sought
after taking into account the conditions existing in the cluster and the desired cluster-
wide objectives. If a new realignment of resources can lead to a better configuration,

commands are issued to the resources to bring about the desired changes.

These principles are illustrated in the following simple, but realistic example.

An Example

11

WO 01/35278 PCT/US00/30913

10

15

25

30

This example involves a cluster of three nodes shown in Figure 1. Both Node~0 and
Node~1 have disk adapters that connect them to a shared disk which holds a database. -
Each node has a network adapter which connects it to the network. The services of

this cluster are used by a Web Server, as shown in Figure 2.

The hardware and software components shown the Figure 1 are defined to Mounties
along with their attributes and are treated as resources. For example, the disk

adapter~0 has the following attributes:

Disk Adapter 0 Attributes
{
Capacity = 1
Priority = 2.0
}

The nodes and other adapters in the system are defined to Mounties in a similar
manner. Using these basic resources, a set of equivalenciésv are defined. As explained
earlier, an equivalency is a grouping of the same type of resources and is treated as an
abstract resource. In this example, Equivalency 1 groups the two disk adapters into
one new resource. Similarly, Equivalency 2 groups the three network adapters into one

new resource.

The database itself has two engines that can be brought on-line only on the nodes with
both disk and network adapters. Figure 2 shows the dependencies for the two database

management engines. Database engine 0 has the following attributes:

Database 0 Attributes

{
NominalState = ONLINE

WO 01/35278

wn

10

15

20

30

PCT/US00/30913

Priority =38.0
DependsOn = Equivalency !, Equivalency 2
CollocatedWith = Equivalency 1,Equivalency 2

Database engine 1 is defined in the same manner. Aside from having a relatively high
priority of 8, both engines have a NominalState of ONLINE. This indicates to
Mounties that it should try an keep them both ONLINE at all times. In addition, the
database engines have dependencies and collocation constraints on both Equivalency 1
and 2. Both constraints are represented in Figure 2 by the bi-directional arrows

linking the Database engines to the Equivalencies.

Mounties represents these constraints as follows: For each Database engine to be
online we need a Disk Adapter, a Network Adapter and they must be located on the
same node as the Database engine. So, if Mounties were to pick Disk Adapter 0 from
Equivalency 1 to satisfy the requirements of Database 1 for a disk adapter, the
collocation constraint will force it to also pick Network Adaptér 0.from the
Equivalency 2. So, to make Database 1 ONLINE, Mounties would perform the

following allocations:

Database |
{
From Equivalency 1 = Disk Adapter 0
From Equivalency 2 = Network Adapter 0
Node Assignment = Node 0

——

These allocations satisfy all the constraints of Database 1, therefore it can be brought
ONLINE. When allocating resources for Database 2, neither Disk Adapter~0 nor
Network Adapter~0 are eligible because their capacity is exhausted. Mounties cannot

allocate Network Adapter 2 from Equivalency 2, since there is no Disk Adapter on

13

WO 01/35278 PCT/US00/30913

10

15

20

30

Node 2 that would satisfy the collocation constraint. The only choice then is the

following allocations for Database 2:

Database 2
{
From Equivalency | = Disk Adapter |
From Equivalency 2 = Network Adapter 1
Node Assignment = Node 1

N

These allocations satisfy all the constraints of Database 2, therefore it can be brought
ONLINE.

Figure 2 also shows Equivalency~3, which contains both Database engines. Shown

also is a new resource, Web Server which has the following attributes:

Web Server Attributes
{
Nominal State = ONLINE
Priority =6.0
DependsOn = Equivalency 2, Equivalency 3

CollocatedWith = Equivalency 2

The dependency and collocation constraints are shown with the bi-directional arrows
linking the Web Server to Equivalency 2. The dependency is shown with the uni-

directional arrow linking the Web Server to Equivalency 3.
Given the previous assignments that Mounties made to bring the

Database engines up (i.e., make their State ONLINE), the only available Network
Adapter from Equivalency~2 is Network Adapter 2.

14

WO 01/35278 PCT/US00/30913

10

15

20

25

30

To satisfy the Web Server's dependency on Equivalency 3, Mounties could pick
Database~1. So, to bring the Web Server to the ONLINE state, Mounties would

perform the following allocations:

Web Server
{
From Equivalency 2 = Network Adapter 2
From Equivalency 3 = Database |

Node Assignment = Node 2

This completes the resource allocations necessary to bring all resources to the
ONLINE state. While running, if Database 1 should fail for any réason, Mounties
would switch the Web Server over to Database 2 and thus keep it ONLINE.

We note here that in the above, we have described the decision mziking process in an
intuitive manner. In Mounties, this process is formalized by modeling the problem as
an optimization problem with specific objective functions defined by cluster
administrators. The optimization problem encapsulates all the relevant constraints for
the cluster resources along with desired cluster objective. Good solution techniques

invariably involve performing global optimization.

Mounties Design Overview

Previously, we have discussed the resource management concepts used in Mounties.
We now describe the Mounties architecture and its design in some detail, and provide
rationale for our design decisions where appropriate.

A cluster is a dynamically evolving system and is constantly subjéct to changes in its

state because of the spontaneous and concurrent behavior of the cluster resources,

random and unpredictable nature of the demands on the services, and the interactions

15

WO 01/35278 PCT/US00/30913

10

15

20

25

30

with end users. At the same time, a cluster is expected to respond in a well-defined

manner to events that seek to change the cluster-state. Some of these events are:

1. Individual resource related events such as: resource is currently unavailable;
unavailable resource has become available; a new resource has joined the cluster; a
resource has (permanently) left the cluster.

2. Feedback response to a cluster manager command: successful execution of a
command such as go online or go offline; failure to execute such a command.

3. End user interactions and directives: cluster startup and shutdown; resource
isolation and shutdown; manual overrides for cluster configurations; movement of
individual and/or a group of resources; changes in dependency definitions and
constraint definitions among resources; updates to business objectives; requests
leading to what-if type of analysis, and status queries.

4. Resource groups related events, or virtual events, which arise from a combination

- of events/feedback related to individual resources.

5. Alerts and alarms from service and load monitors.

With these dynamic changes taking place in the background, a cluster manager such as
Mounties is required to make resource allocation and other changes such that the
predefined global objectives are met in the best possible manner, while resource
specific constraints are obeyed. The resource specific constraints usually limit the
number of ways in which the resources in the cluster can be configured. These
constraints include capacity constraints, dependency constrafnts, location constraints,
and so on. The objectives and the constraints lead to a solution of a global
optimization problem that must be solved in soft real-time. This requires an efficient
decision making component and a set of services that form an efficient middleware
connecting the resources with the decision making component. Before describing how
these components can be designed, first we describe the overall clustering

environment in which a system like Mounties operates.

Cluster Infrastructure

16

WO 01/35278 PCT/US00/30913

n

10

15

20

25

30

The Mounties system as described here can be used as an application/resource
management system or as a subsystem for guaranteeing high availability and quality-
of-service for other components in the cluster. When used as an application/resource
management system, the Mounties system described here can bzisically be used in a
stand-alone mode. When used as a guarantor of dependable services, a few other

cluster services are required.

In Figure 3, we illustrate a conceptual design of Mounties on the top of basic high
availability services. Using these services, Mounties can then be used as an intelligent
mechanism for guaranteeing high availability. Note that the basic cluster services that
Mounties would depend on are provided as standard services in state-of-the-art
clusters such as IBM's SP-2 System [see, IBM Corp., RS/6000 SP High Availability
Infrastructure, IBM Publication SG24-4838, 1996; and IBM Corp., RS/6000 SP
Monitoring: Keeping It Alive, IBM Publication SG24—4873; 1997]. Asshown in
Figure 4, four additional cluster services are needed to ensure high availability: (1) a
persistent Cluster Registry (CR) to store and retrieve the configuration of the
resources; (2) a mechanism called Topology Services (TS) for detecﬁng node and
communication adapter failures; (3) a mechanism for Reliable Messaging (RM) for
important communication between Mounties Central and all the other Mounties
Agents; and (4) a Group Services (GS) facility for electing a leader (i.e., Mounties
Central) at cluster initialization and whenever an existing leader is unable to provide
its services (because of a node failure, for example). We note here that the Mounties
Repository and the Event Notification services (described below) can be embellished
to incorporate the functions provided by Cluster Registry and Reliable Messaging.
Similarly, a customized version of Group Services can be designed into the Mounties

architecture to monitor and elect Mounties Central.
Internals of Mounties Design

Overview and the Ideal

WO 01/35278 PCT/US00/30913

10

15

25

30

In brief terms, designing the internals of the manager described thus far is an exercise
in coming up with software that can coordinate the following choreography: Events
arise asynchronously, throughout the cluster. They are delivered to the coordinator
(such as an ideal version of Mounties) using pipelined communication channels. The
coordinator is programmed to respond to events in the context of a semi-static
definition of the cluster, that consists of dependencies, constraints, objective functions
etc. The coordinator's decision-making component, basically an optimizer, has to
combine the dynamic events with the semi-static definition in order to arrive at a

response to events.

The response has to translate into simple commands to resources such as go ONLINE
and go OFFLINE. The coordinator sends its commands to resources at the same time
as when various events arise and traverse the cluster. The commands are also sent
using pipelined communication channels. Thus there is a basic dichotomy in the
activity of coordinating the choreography. At the one end there is the cluster of
resources and the events it generates. At the other end there is the decision-making
optimizer. In between the two is middleware that along one path, collects, transports,
and fine-tunes events for the decision-maker, and on the reverse path, decomposes the

decisions of the decision-maker into commands that are then transported to the

individual cluster resources.

Ideally, the coordinator reacts to the events instantaneously. It is able to account for
faults in command execution--not all commands may succeed--along with being able
to respond to events and command feedback in a real-time manner. Suppose the ideal
coordinator is an infinitely fast computation engine. In this case, the choreography
becomes a seamless movement of events, commands, and commands feedback in a
pipelined/systolic manner throughout the cluster. Events and feedback upon arrival at
the coordinator get transformed instantaneously into commands that in turn get placed
on channels to various resources. The coordinator is able to ensure that globally-

optimal solutions get deployed in the cluster in response to cluster events.

18

WO 01/35278 PCT/US00/30913

10

15

20

In Mounties, the ideal coordinator as described above is approximated by one active
Mounties Central that resides on one node, to which all events a_nd command feedback
get directed. Mounties Central can change or migrate in response to say node failure.

However, at one time, only one Mounties Central is active.

Command Execution Model
The next definition we add in deriving our practical system from, the ideal alluded to
above is a command execution model. The model builds fault tolerance and simplicity
in the execution of commands by sacrificing pipelining. It uses the following
protocol: A command contains all the state needed for its execution by a resource
manager. A command is only a simple directive to a resource fnanager; e.g., “go
ONLINE using X, Y, Z resources,” or “go OFFLINE,” and no more. A resource
manager does not need a computation engine to handle conditional behavior or context
evaluation at its site. To achieve this, no new command is sent out until Mounties is
aware of the positive outcome of the commands that the execution of the new
command depends on. It is up to Mounties Central to make the best use of the
command feedback it receives in order to minimize command failure. So for example,
after receiving an "“go ONLINE" command, a resource manager need not find out
whether its supporting resources are actually up. The resource manager should simply
assume that to be the case. In general, the more effective Mounties is in managing
such assumptions, more efficient is the overall resource coordination. Clearly, one of
the things Mounties Central has to do is to issue the commands in the partial order
given by dependencies. Thus, in order for a resource to be asked to go on-line, its
planned supporting resources have to be brought up first. Only after that the resource
is to be asked to go on-line using the specific supporting resources. Similarly, before
bringing down a resource, all the resources dependent on that resource must be
brought down first. The existing and the planned dependencies in the cluster thus

enforce a dataflow or partial order on the execution of the commands.

The above command execution model imposes minimal requirements on resource -

managers. This allows our system to coordinate heterogeneous and variously-sourced

19

WO 01/35278 PCT/US00/30913

w

10

15

resources without requiring unnecessary standardization on the implementation of
resource managers. The command execution proceeds in a dataflow or frontier-by-
frontier ménner. Within a frontier, commands do not depend on one another, and thus
can proceed concurrently. A preceding frontier comprises of corﬁmands whose
execution results are needed for the succeeding frontier. For bringing up resources, the
frontiers are a:rranged bottom up, from the leaves to root(s), while for bringing down
resources, the order is reversed. For example, in shutting down the cluster in the
above example, the first the web server has to be brought down. The next frontier
comprises of the two databases and either can be brought down before the other. On
the other hand, in bringing up the same cluster, the order of the frontiers is reversed
and the web server is the last entity on which an up command gets executed. Note that
ordering of the frontiers does not imply synchronized execution. Individual commands
in a frontier are issued as soon as the corresponding commands in the preceding
frontiers are executed successfully. Although commands across frontiers are not
pipelined, no artificial serialization is introduced either. The system remains as

asynchronous and concurrent as it can within the bounds of the commands model

described above.

Realizable Decision Making
An infinitely-fast or zero-time computation engine is not realizable. Since the
optimization decisions involve solution of NP-hard problems [see, R. Krishna and V.
Naik, Application of Evolutionary Algorithms in Controlling Semi-autonomous
Mission-Critical Distributed Systems, Proceedings of the Workshop on Frontiers in
Evolutionary Algorithms, (FEA200), Feb. 2000], even an attempt at approximating
zero time, or say hard real time, for solving the optimization problem is not possible.
The approach we follow embraces global heuristic solutions that can be arrived at in
soft real time. The computationally intensive nature of the decision making
component predisposes us towards persisting with a previously derived global solution
even when there are a limited number of command failures. It is not computationally-
efficient to chart a totally new global course every time there is a. command failure. So

for example, when a resource refuses to go ONLINE, Mounties looks for an auxiliary

20

WO 01/35278

10

15

20

PCT/US00/30913

solution from within the proposed solution that can substitute for the failed resource.
For example, a lightly-loaded resource can (and does) replace a failed resource in case
the two belong to the same equivalency. Auxiliary solutions are local in nature. If the
finally deployed solution turns out to have too many auxiliary solutions, then the
quality of the solution is expected to suffer. To avoid the configuration to deviate too
far from the globally optimal solution, Mounties recomputes a global solution
whenever the objective value of the deployed solution is below a certain value as
compared to the proposed solution. This is done by feeding back an artificially-
generated event that forces recomputing the global solution. In summary, Mounties
does not attempt to maintain a globally-optimal cluster conﬁgu;ation at all times.
Instead, Mounties looks for global approximations for the same. The obvious tradeoff
here is using a suboptimal solution versus keeping one or more cluster services
unavailable while the optimal solution is being computed. . The tradeoff could be
unfavorable for Mounties in a relatively uneventful and simple clusters where
resources take relatively long time to execute “go ONLINE” and “go OFFLINE”
commands as compared to the time spent in determining optimal solution. For such

clusters, it would be of merit to recompute a globally optimal cluster configuration.

Computing a globally optimal solution based on the constraints and the current state of
cluster, is a significant function of Mounties. The resulting optimization problem can
be cast as an abstract optimization problem that can be solved using many well known
techniques such as combinatorial optimization methods, mathematical programming
and genetic/evolutionary methods. For that reason and to bring modularity to the
design, in Mounties, we treat that as a separate module and it is called the Global
Optimizer or simply, the Optimizer. It is designed with a purely functional interface
to the rest of the system. The interface to the Optimizer module completely isolates it
from effects of concurrent cluster events on its input. A snapshot of the current
cluster-state, which incorporates all events that have been recorded till the time of the
snapshot, is created and handed over to the Optimizer. The metaphor snapshot is
meaningful since once taken, the snapshot does not change even if new events occur in

the cluster. The snapshot is thus referentially transparent, i.e., purely functional and

WO 01/35278 PCT/US00/30913

10

15

20

25

non-imperative, and references to a particular snapshot return the same data time after
time. Given a snapshot, the Optimizer proceeds with its work of proposing an
approximately optimal cluster configuration that takes into account the current context

and the long-term objectives defined for the cluster.

Just as the Optimizer is not invoked whenever a new cluster event arrives, it may not
be interrupted if a new event arrives while [is computing a new global solution. This
is primarily to maintain simplicity in the design and implementation. Thus, when the
Optimizer retumns a solution, the state of the cluster, as perceived by Mounties, may
not be the same as the state at the time the optimizer is invoked and that the results
produced may be stale. Our system however does try to make up for exclusion of
newer events by aligning the solutions proposed by the optimizer with any events that
may have arrived during the time the solutions were being created. Such an alignment
however, is local in nature. Over longer time intervals, the effecfs of newer events get

reflected in the global solutions computed subsequently.

Because of the nature of the problem, simple rule-based heuristics can be used to make
local optimization decisions prior to invoking the Optimizer. Such preprocessing can
significantly reduce the turnaround time in responding to events. The preprocessing
step is also necessary for isolating the Optimizer from the on going changes in the
system. This is referred to as the Preprocessor. Specifically, the Preprocessor waits
on a queue of incoming events and then processes an eligible event all by itself or
hands down a preprocessed version of the problem to the Optimizer. The decisions
from the Optimizer or the Preprocessor are directed to a module called the
Postprocessor, which is the center of the command generation and execution
machinery. Figure 4 shows the interactions among the Preprocessor, the Optimizer,

the Postprocessor, and other modules. These modules are discussed in detail next.

39
(9]

WO 01/35278 PCT/US00/30913

10

15

25

Main Services

As discussed in the subsection on repository herein, each resource managed by
Mounties is represented in the centralised repository by an object for the purpose.
Each resource object stores information concerning the resource in fields such as
Nominal State discussed previously. In contrast to the nominal state, which contains
the desired status for a resource, the actual known status of the resource is stored in a
field known as CMF State. Up events (i.e. resource ONLINE events) and down
events (i.e. resource OFFLINE events) shift the CMF state of a resource object as
follows. (a) A down event takes the state to dead (i.e. unavailable), and if the previous
state of the resource was not up (i.e. not ONLINE), then no resource reallocations are
attempted, and if the previous state of the resource was up, then an atomic
computation is carried out for updating the CMF state. The atomic computation
implies Mounties' cognizance of the resource's new status. In the atomic computation,
just before the resource's CMF field is marked as dead, the resource object is removed
from dependent resources field of the repository object of each of its supporting
resources. Later (outside the atomic stretch), resource reallocations are attempted. (b)
An up event takes the state from dead to down, and if the initial state is anything other
than dead, then the event is ignored. If the event takes the state from dead to down,

then resource reallocation is attempted.

Referring now to Figure 4, the preprocessor, postprocessor, optimizer, and gossamers
modules communicate with each other using task queues as follows. The decision to
do a resource reallocation (e.g. in response to a resource up or down event) results in
the creation of a preprocessor task that is deposited in the entry queue of the
preprocessor module. The task is an object, which has an entry method, which when
invoked by a Mounties scheduler (see section on programming paradigm) results in
the task being executed. The execution of the task resuits in ‘either a postprocessor
task being deposited in the postprocessor input queue, an optimizer task being
deposited in the optimizer input queue, or both. Both of these tasks are scheduled by

an invocation of the entry method associated with the individual tasks. The optimizer

23

WO 01/35278 PCT/US00/30913

10

15

20

30

task upon execution resuits in a postprocessor task (a postprdcessor task is also called
a postprocessor plan) being deposited in the postprocessor input queue. The execution
ofa postprécessor plan results in one or more gossamer tasks being created and placed
in the input queue for gossamers. Gossamers also communicate with the
postprocessor module independently of this task queues layout. This queues layout is

included in the communication arrows depicted in Figure 4.
The Resource Repository

The Repository of resource objects provides a local, somewhat minimal, and abstract
representation of the cluster. The repository cache is coherent with the actual cluster
to the extent that cluster events are successfully generated and reported to Mounties.
Mounties does safe/conservative cluster management without any assumptions of: (a)
completeness of the set of events received by it; (b) correctness of any of the events
received by it; and (c) (firm) significance of the temporal ordedng of the events
received by it. Generally, the effectiveness and efficiency of management depends
upon the completeness, correctness, and speed with which events are reported to
Mounties, but Mounties does not become unsafe even if event reporting degrades.
Within the above event-reporting context, Mounties does assume ownership of the
management process, so resources are not expected to configure themselves
independently of Mounties. If the context requires say human intervention and direct
configuration of resources, then either this can be routed through Mounties, or the
semantics of the events reported to Mounties modified so that Mounties remains

conservative in its actions.

Regardless of its current state, the repository is updated with an event before the
preprocessor is informed. The updating of the repository is an atomic act: readers of
the repository either see the update fully, or not at all. The reposifory is partitioned,
and individual resource objects can be accessed individually, so the synchronization

requirements of such updating are limited. Partitioning of the repository serves many

24

WO 01/35278 PCT/US00/30913

10

25

30

purposes, including permitting higher concurrent access and better memory use and

reduced traversal and searching costs.

Resource objects in the repository contain only a few fields representing necessary
information such as current status, desired status, and the current supports of the
resource, etc. Snapshot related information (e.g., a time-stamp when the last snapshot
was taken and is the object now ready for another snapshot) as well as information on
the planned actions to be taken are also stored in the resource objects. Since the
repository is read and modified concurrently, it is mandatory to reason about all
possible combinations of concurrent actions that can take place in the repository so
that no erroneous combination slips through. This is carried out by (a) restricting the
concurrent access and modifications to only a small set of states in the resource
objects, and (b) establishing/identifying invariants and other useful properties of these
fields such as monotonicity. For example, we know that cluster events can only
change the state of a resource from on-line to off-line or failed and not from failed to

on-line since the change to on-line from any state requires a Mounties command.

As mentioned previously, the temporal order between Mounties' commands within
and across events is maintained explicitly in a dataflow manner. This is carried out by
maintaining an ordered first-in-first-removed sequence of gossamers in each resource
object (in the repository). For a resource, the sequence identifies at any time the order
in which gossamers have to still carry out or complete a command on the resource.
This field is accessed by the multiple threads that need to knéw of the status of
commands on this resource. Just before the thread for a oossamer. command
completes its execution, it removes its gossamer from the ordered sequence. This
announces (passively) to the rest of the system that the command has completed its
execution on the resource. This is the only way that the sequence is reduced by the
system. The sequence is increased each time a gossamer on the resource is created.
As a part of the creation of the gossamer, the gossamer is added in temporal order to

the sequence. This is the only way by which the sequence is increased by the system.

WO 01/35278

10

15

20

25

30

PCT/US00/30913

A brief note on timing, race, and semantic issues of the shared, concurrent Mounties
repository is as follows. In a resource object, the shared, concurrent, read and write
state cornpﬁses of (a) the CMF state field (b) the ordered gossamer sequence field as
discussed above, and (c) the supporting resources list and the dependent resources list
in the object. These fields are read and written asynchronously and concurrently. In
order to do this safely without requiring any specific atomic read/write properties from
the underlying language (e.g. Java), all reads and writes on the fields are carried out
solely in protected sections. In our Java implementation, Java's synchronized methods
are used. For example, the reading and writing of a CMF state for an event is carried
out atomically within a synchronized method for the state so that during this time, no
other thread can alter the same state. In order to have a consistent view of CMF state
throughout the processing of an event, the CMF state is sampled and copied (into
concurrently immutable space) exactly once for each resource.possibly affected by the
event. The sampled CMF state is not current and instead is expected in the sense that
pending gossamer commands on the resource are conservatively assurhed to result in
success. This sampling is carried out by the preprocessor when it forms partial copies
of resource objects for an island (see later) into a CMF State field in the partial copies.
As far as Mounties is concermned, an up or down event on a resource only conveys the
message that the island containing the resource needs to be re-evaluated. The CMF
state of a resource as reported by an up/down event is ignored and instead is sampled
only from the resource object in the repository by the preprocessor. Such a sampled
CMEF state can be different from the state as reported by the event because a later
event or goséamer command could have changed the state further. What is guaranteed

is that the sampling of CMF starts directly from resource objects.
The Evaluator and Decision Processing Mechanisms

The Preprocessor
As shown in Figure 4, events arrive from the cluster and are recorded in the repository
module. If an event needs attention by the Preprocessor, then the event is also placed

in the input queue of the Preprocessor after it has been recorded in the repository.

WO 01/35278

10

15

20

30

PCT/US00/30913

When there are one or more events in its input queue, the Preprocessor creates a
snapshot of the relevant cluster-state by identifying and making a copy of the affected
part of the repository. While the repository is constantly updated by new events, the
snapshot remains unaffected. Any further processing, in response to the event, takes
place using the information encapsulated in the snapshot. Note that the snapshot may
capture some of the events that are yet to show up in the Preprocessor queue. Since
the repository is more up-to-date, the Preprocessor treats the snapshot as
representative of all the events received so far. Note also that because of the atomic
nature of the updates to the repository, a snapshot captures an atomic event entirely, or
leaves it out completely. For identifying the part of the repository affected by an
event, the Preprocessor partitions the cluster resources into disjoint components, called
islands, by using the constraint graphs formed by the resource dependencies and
collocation constraints. Clearly, an event cannot directly, or indirectly affect resources
outside its own island. Such partitioning also serves the purpose as an optimization
step prior to applying the global optimization step, by creaAting‘ multiple smaller size
problems, which are less expensive to solve. This is especially beneficial at cluster

startup time, when each island can be processed as a small cluster.

Preprocessing includes many more activities: excluding ineligible events (an event can
be ineligible for reasons like Mounties is busy with processing a previous snapshot
comprising the event's related resources, and thus proccssing the same resources in
another snapshot may lead to divergent action plans which cannot be reconciled);
clubbing multiple events (in conjunction with the repository's predisposition) into a
larger event; optimizing the snapshot associated with one or more events so that either
the event can be handled directly by the Preprocessor, or can be posed as an
optimization problem to the Optimizer. A somewhat advanced, but optional treatment
of the Preprocessor is to partially evaluate an event using a basic set of rules so as to
reduce the amount of processing done by the Optimizer. In general, this can lead to
globally non-optimal solutions, but in many instances simple rules can be constructed
and embedded in the Preprocessor so as to keep the solutions globally optimal while

reducing the load on the Optimizer.

WO 01/35278

10

15

20

25

30

PCT/US00/30913

The process of clubbing together events is arrived at in the process of creating a
snapshot of the island wherein the sampling of data from repository objects of the
island into their partial copies effectively combines the effect of all events that have

been registered (updated) in the repository.

When the preprocessor picks an up/down event for processing, it marks all resource
objects in the island affected by the event as being analysed. These resources are
unmarked by the postprocessor plan for the event, after gossamers for the island have
been created by the postprocessor plan. The preprocessor is disallowed from picking
an event for processing for which the affected resources (the island) are being

analysed.

When the preprocessor actually picks up an event for processing, it can find itself
handling an island in which gossamers for a previous event are still being processed.
In such a case, the preprocessor samples into its repository object copies, the expected

CMF states assuming no gossamer command failures.

The setting of CMF state in each copy is carried out atomically using a locked section
as usual, and involves a reading of the gossamer-sequence field and CMF-state field of

the corresponding repository object.

For the purpdse of providing the optimizer with additional information for taking into
account issues related to reducing excessive resource migration, it‘ is desirable to
provide to the optimizer a not-necessarily-correct approximation of the existing
solution that is up or could (soon) be up so that the optimizei can take its decisions in
the context of this solution. The approximate solution is provided via a supporting-
resources field in each repository object copy. The supporting-resource field conveys
approximately to the optimizer the supports that are used by any up resource. The
supporting-resource field of a copy is filled as follows: if a resource is sampled as up

without any gossamer still to act on the resource, then the supporting-resources field

28

WO 01/35278

10

15

20

PCT/US00/30913

of the resource's repository object is copied into the supporting-resources field of the
copy; if a resource is sampled as up based on the expected successful action of an up
gossamer, then the supporting-resources field of the copy is filled using the expected
(repository object) supports for the resource stored in the up gossamer. In a later,
separate pass, each supporting-resources field in the copies is modified to replace each

repository object with its corresponding copy.

This results in all references from the copies’ supporting-resources fields getting
expressed in terms of the copies alone. In this later pass, a check is made that if any
resource's expected CMF state has been sampled as dead in the creation of the copies,

then the resource is removed from the supporting-resources field of all the copies.

The Postprocessor
Using the cluster status contained in a snapshot, a new cluster configuration is created
by either the preprocessor alone, or by the preprocessor and the optimizer jointly. The
configuration primarily indicates the supporting resources to Be used in on-lining the
resources in the snapshot. The solution is in the form of a graph, outlining the choices
to be made in bringing up the resources in the snapshot. Note that, in the cluster, some
of these resources may et to be configured; some other resources-may already be
configured and up, as desired by the solution, while the remaining resoﬁrces may be
configured differently and may require alterations. The postprocessor takes this into
account and partitions this solution graph into one or more disjoint components that
are then handled by simple finite-automaton like machines called the up- and down-
gossamers. Commands within a disjoint region are executed in a pipelined or
concurrent manner, as discussed earlier. Across disjoint regilons these can be carried

out concurrently.

When the Postprocessor picks up a solution to translate into commands and control
machinery {one or more gossamers), the Postprocessor notes into the repository the
availability of the resources comprising the solution for new analysis. This makes

events related to these resources eligible for preprocessing (see above). For Mounties

29

WO 01/35278 PCT/US00/30913

10

15

20

25

30

Central supported by a single-processor node, a convenient task size for the
Postprocessor is from picking up a solution to the creation of gossamers related to the
solution. The Postprocessor can make auxiliary solutions available to a gossamer as
the following. If a resource cannot come up because of a failure of one or more issued
commands and a suitable alternative resource exists (with spare capacity to support

another dependent resource) then that altemnative 1s treated as an auxiliary solution.

The system conservatively interprets all dependencies as hard dependencies - which
means that a resource is brought down (temporarily) even if all that happens is that its
supports are being switched. A generalisation to hard and soft dependencies 1s
straightforward. Gossamers are of two kinds — onlining and offlining. Onlining
gossamers bring resources up and offlining gossamers bring resources down. The
structure of onlining and offlining gossamers is symmetric: each has a single root
node. Onlining commands are executed in a bottom-up maringf by a gossamer, and
offlining commands are executed in a top-down manner by a gossamer. A gossamer
executes an onlining/offlining command by simply calling a method for the purpose

defined in the resource's repository object.

For a given solution, gossamers are created as follows.

Offlinesteady._state = Island - Onlines is a set of resources that will be offline in the
island in a steady state sense after the event (i.e. after a long period of time, assuming
that no failures and events occur in the cluster). Here Island is the set of up, down,
and dead resources present in the island, and Onlines is the set of resources that the
optimizer or preprocessor has decided as should be online after the event. Let
Offlinelargest = Offlinesteady_state r {r or an (in)direct dependent of r such that ris
Up, and one or more supporters of r will be changed by the current postprocessor
plan}. Offlinelargest is the union of all the resources that will _b‘e offline in a steady-
state sense, and those that have to be temporarily offlined in order to process the
current event under hard dependency assumptions. The resources that have to be
brought down using offlining gossamers are given by the set Offg=risUp --r

belongs to Offlinelargest}. The roots for offlining gossamers are given as follows.

30

WO 01/35278

10

15

20

25

PCT/US00/30913

Roots = {r -- r belongs to Offg and r is a top-level resource} r -- T supports a dead or
down resource, r does not have a dependent resource belonging to Offg, r belongs to
Offg}. Given the roots for the offlining gossamers, one gossamer is created per root
by finding the maximal set of resources that are up recursivelj in order to support the
root such that the no element of the set has been included in another offlining
gossamer. The gossamers are created sequentially, so this method tends to make the
earlier gossamers larger than the later ones. Onlining gossamers are comprised as
follows. Let C=r--ris up, r belongs to current island. ContinuingOn = C - Offg is
the set of resources that continue to be on from before the current event to afterwards.
Onlining gossamers are made of all the resources that belong to Onlines and do not

belong to ContinuingOn. The roots of onlining gossamers are the top-level resources

belonging to the gossammer.

While an island is released for new preprocessor tasks after it is released from being
analysed, the processing of postprocessor plans on the island is blocked until all
gossamer commands on the island for a given postprocessor plan have completed.
The postprocessor checks that any plan it picks up from its inpﬁt satisfies this
condition prior to picking it up. This restriction is enforced so that the solution from
any event in terms of supporting resources fields and dependent resources fields in
repository resource objects is fully formed before gossamers for a later event are

created.

Gosszimers v
Each gossamer is a simple finite-automaton like machine, which is responsible for
changing the state of its set of resources toONLINE or OFFLINE and follows the
dataflow order. Simultaneous execution by multiple gossamérs brings a high-degree
of concurrency to the execution process. The simplicity in their design allows these
entities to be spawned just like auxiliary devices while the more interesting and
“thinking” work is kept within the other modules (e.g., the Postprocessor). A
gossamer executes its commands by “wiring up” the relevant part of the repository-

with the solution-set assigned to it. Mounties attempts to bring down a resource only

31

WO 01/35278

10

15

25

30

PCT/US00/30913

after it has confirmed that all resources dependent on such a resource are currently
down. A “go ONLINE” command for a resource is dispatched only after receiving
positive acknowledgements for all the supporting resources, and checking that the
supporting resources have enough capacity for the upcoming resource (i.e. all

necessary resource downs have occurred). This naturally leads to the execution of the

commands in a dataflow manner.

The process of on-lining and off-lining of resources in unrelated parts of a solution can
proceed simultaneously in a distributed manner. If a resource fails to come up after
being asked to do so, the related gossamer asks (the Postprocessor) for auxiliary

solutions for the same resource in trying to bring dependent resources of the same up,

upon their individual turns.

Gossamers at present try to handle up/down command failures by-dynamically
substituting with auxiliary solutions as follows. When an up command finds that it
can be scheduled (all commands that it is dependent on have executed), however, not
all of the supporting resources required are up, then the up command asks its
postprocessor plan (using a method call) to advise it about all substitutes for each
dowr/dead supporting resource such that each substitute beléngs to an applicable
equivalency, and the expected CMF state of the substitute in the postprocessor plan is
up. Any substitute has to acquire/have a CMF state up and have adequate spare
capacity to support the extra load prior to being used as a replacement. The up
command tri}es to use the first substitute that it finds as up with adequate spare
capacity. The up command fails if it finds that for a given down/dead supporting
resource, all substitutes have settled, and there is no substitute that has settled as up
with adequate spare capacity. Whenever a resource is used as Aan auxiliary solution its
spare capacity is reduced by one to reflect the extra load that it has accepted. The
strategy for using an auxiliary solution in bringing a resource up is similar to the
ordinary case of bringing a resource up -- along with the other supports that the

resource needs, all potential auxiliary solutions are waited upon to settle after which

32

WO 01/35278 PCT/US00/30913

10

15

20

30

valid auxiliary choice(s) are also verified and made in order to bring the resource up

on the supports and the auxiliary choice(s).

If despite all attempts to bring up resources using auxiliary solutions, a top-level
resource does not come up due to command failures, then an artificial event is
generated for the purpose of reevaluating the island status globally. This is done as
follows. Whenever a top-level resource fails to come up, its contribution to the
optimization objective for the island is added to a field for the purpose in the current
postprocessor plan. Thus starting from zero, the field collects the contribution of all
failed top-level resources for the plan. When all failures have been recorded, the
contribution is compared with the attained objective for the island. If the attained
objective is less than the objective collected for the failed top-level resources, then an
event on the island is immediately inserted in the preprocessor qﬁeue. If the objective
is less, then a timer is invoked that inserts an event on the island into the preprocessor
queue after a certain amount of time has elapsed. The elapséd.time is a function of the

collected objective and the attained objective.

Commands are managed in terms of repository objects for resources as follows.
Gossamer failures are treated as follows: Each gossamer up or down failure leads to
the setting of the CMF state of the resource's repository object to dead or down. This
occurs within a locked section of the gossamer command over the resource. Gossamer
down-command successes are treated within a locked CMF section as follows: Each
resource down success sets the resource's CMF state to down, and (just) prior to that
removes the resource from each of its supporting resource's dependent field. A
gossamer up-command success can cause several locked-section attempts at bringing a
resource up in two steps process that comprises of a basic step as follows: First a lock
on the resource being brought up and all its supporting resources is acquired (using a
one attempt per lock only till either all locks are acquired; if é.ny attempt fails, then all
acquired locks are released and a new attempt at acquiring the locks is made), the
resource being brought up is verified as not being dead, the supporting resources are

verified as being up, and each supporting resource is verified as being capable of

33

WO 01/35278 PCT/US00/30913

10

15

20

25

30

accommodating the load of the resource being brought up (current load of a resource
is defined by the number of resources in its dependent-resources field). If only the
supporter load verification fails (other verification failures are discussed below), then
all the locks are released and the (step 1's) attempt at bringing the resource up 1s
deferred to a later attempt. If all verification succeeds, then, for step 1, a reservation
ticket for the resource being brought up is added to the dependent field in each of'its
supporters, and for step 2, in case of feedback being successful, the CMF state of the
resource being brought up is set as up, the dependent-resources field (in repository
object) of the resource (being brought up) is reset to empty, the resource's supporting-

resources field is filled (in repository object, with all supporting resources).

Cluster Startup and Shutdown
Cluster startup is the only event allowed initially. When cluster startup occurs, the
CMF state of all resources in the PoJ is taken to be down. For each island, a separate
optimizer task or direct postprocessor plan is created for startup. This leads to the

creation of multiple postprocessor plans for startup, which are then handled as usual

by the postprocessor.

Cluster shutdown is handled as follows. Repository object copies are created for the
entire cluster, and a shutdown postprocessor plan is created directly by the
preprocessor wherein an empty Onlines set that covers all islands is provided. When
the postprocessor (via, the scheduler) finds itself looking at a shutdown plan (in its
search for a plan that is ready to execute), the postprocessorbexecutes the following
special sequence: the postprocessor stops searching for any other 'plan to execute and
simply waits for all gossamers on all islands to complete after which the shutdown
plan is executed. Thus all other plans present in the postprocessor queue are ignored.
Going island by island, the postprocessor creates only offlining gossamers for all up
resources in the cluster, using the usual method for creating gossamers. The scheduler
is cognizant of cluster shutdown as follows: after a cluster shutdown event is
scheduled for the preprocessor, the scheduler never schedules the preprocessor; after a

shutdown postprocessor plan is scheduled for the postprocessor, the scheduler never

34

WO 01/35278 PCT/US00/30913

10

15

25

schedules the postprocessor; after all gossamers for shutdown have completed, the

scheduler informs the administrator/user and with his permission, exits.
Some Other Services

The Event Notification and Event Handler Mechanisms
Mounties Central and Mounties Agents are associated with a component of the Event
Handler. We use Java RMI layer as the event notification mechanism. The central
handler gets requests from the agents, which are serialized automatically by Java RMI
and communicates back with the agents, again using Java RMI. Because we use the
standard services provided by Java RMI, we do not describe those in detail here. We
note here that the more reliable event notification mechanisms can replace the RMI-
based event notification layer, in a straightforward manner. All resource managers in
the cluster, various Mounties agents, and Mounties Central, as well as Mounties GUI
all are glued together by the event notification mechanism. ‘We describe the GUI

component in detail below.

Mounties GUI '
The GUI displays various graphical views of the cluster to the end user, in response to

the submitted queries and commands. These requests are routed through the Event

Notification mechanism.

Java's EventDespatcher thread writes the request in the form of an event in an input
queue of the EventHandler. The EventHandler then requests for the required data
from Mounties Central. When the necessary information is recéived, the
EventHandler communicates the same to the Mounties agent that is local to the node
where the initial request came from. The actual rendering is then done by the GUL
The two-way communication between the local Mounties agent and the Mounties
Central is done over a layer of Java RMIL Using the GUI, the user can view many of

the important characteristics of the resources being managed.

35

WO 01/35278 PCT/US00/30913

10

15

There are three separate panels, each displaying some aspect of the centralized
Resource Repository. The first panel displays the entire constfa_int graph and
dependency information in a hierarchical manner. The nominal state, priority, and
location of each resource are also displayed in this panel. The display on this panel
does not change during a session unless resources/constraints are added/modified
dynamically. The second panel displays the decisions made by the Optimizer and/or
the Preprocessor. It shows the resource allocation in a hierarchical fashion. The
priorities of the resources are also displayed. This display can be updated each time
there is a new solution. This display is on an island basis. These decisions cannot be
instantaneously reflected in the cluster and, in some cases, they may not executed
because of failures in the execution. The current state of the cluster as seen by
Mounties, is shown in the final panel. The final state in shown in this panel may differ
from the proposed solution shown in the second panel because of two reasons: (D

command failures may occur and (2) an auxiliary solution may be selected as a local

substitute for a failed resource.

The GUI for Mounties can be distributed across a network of machines in order to
cater to a distributed basis of cluster supervision and management. For this, each
terminal can send its plot request to Mounties central. The event handler simply puts
such a request in the preprocessor queue. The preprocessor creates the relevant
snapshot and puts it in the outgoing queue. If the plot requeét is local, then say a
plotter thread can be forked that does the local display. For a plot request, the data
sent to a terminal/node is as follows: since the last plot on the terminal, data from all
islands that have faced an event processing is sent to the terminal. Each island tracks
terminal status for this purpose now. Display on a terminal can show (parts of) the

new data and/or (parts of) the old, unchanged, cached data.

Resource Groups

A resource group is a 4-tuple, < a set of resources S, a CMFstate CMF belongingTo
{Online, Offline}, a nominalState N belongingTo

WO 01/35278

10

15

30

PCT/US00/30913

{Online, Offline, Not-in-Effect}, a set of nodes ND> such that:

1. S contains at least one top-level resource (TLR), and all resources in S are either

TLRs, or (in)direct supports of S's TLRs.

[S

. No TLR belonging to S may belong to a resource group other than S.

w

IfN is Online, then CMF can be set to or kept as Online only if all the TLRs in S
are up and all of the TLRs in S and their supports in S are coﬂocated on a node
belonging to ND.

4. Unless N is Not-in-Effect, if CMF is Offline, then no resource in S can be brought
up or left Online unless the resource (in)directly supports a resource not in S.

5. IfN is Offline then CMF is Offline.

A resource group is said to be up if for the resource group, N and CMF are Online. A
resource group is said to be down if it is in effect (i.e. N is not Not-in-Effect), and
CMEF is Offline. For a resource group, unless N is Not-in-Effect, a change of CMF to
Offline can result in a forcing down of all members of S that'do,not (in)directly
support resources outside of S. Mounties allows a user to specify a priority for a
resource group which defines the relative importance of the resource group. The
default priority for a resource group is the highest priority among TLRs belonging to
the resource group. The individual priorities and nominal states of a resource group's
TLRs are meaningful only when the nominal state of the resource group is Not-in-
Effect. For a resource group, unless the user specifies ND explicitly, ND is assumed

to be the set of all nodes of the cluster.

The above definition allows the entire graph supporting a set of TLRs, or any portion
the same graph to be included in a resource group. In particular, the above definition
allows S-contained supports for a TLR in S to be partitioned such that no dependency
edge inbetween resources comprising the TLR and the supports crosses a partition

boundary.

WO 01/35278 PCT/US00/30913

10

15

20

25

30

To reiterate, for a resource group, unless N is Not-in-Effect, the nominal state of the
resource group governs the nominal states of all resources in S. CMFstate of a
resource group is Online, only if the nominal state of the group is Online and
CMFstates of all TLRs in S is Online; otherwise, the CMFstate of the resource group
is Offline.

Implementation
Resource groups are implemented using proxy resources. For a resource group, <§,
CMF, N, ND>, the central entity representing the resource group is a proxy TLR that
is constructed as a resource that depends on the TLRs contained in S. Strictly
speaking, after this construction, the TLRs of S lose their top-level status, however, for
the sake of discussion, we will continue to refer to them as TLRs. The top-level proxy
will be referred to as the proxy TLR. Besides the proxy TLR, one proxy leaf-level
resource is constructed for each node contained in ND. The proxy leaf is defined as
fixed on its corresponding node (i.e., the proxy is assigned the location of the
corresponding node). The CMFState and the nominalState of the proxy leaf is set to
Online. All proxy objects and the postprocessor are aware of the proxy nature of these
objects. For example, they do not have any corresponding real resources in the cluster
with which they attempt any correspondence. Next an equivalency of the leaf-level
proxies is made. The proxy TLR is defined to depend on the equiValency, and also to
be collocated with the choice from the equivalency. For now, proxy LLRs (leaf level
resources) are not shared across resource groups, so a capacity of one suffices for
proxy LLRs. The proxy TLR is defined to be collocated with all the resources
contained in S. As detailed later, CMF and N of the resource group are maintained in

the proxy TLR's CMFstate field and NominalState field, respectively.
In the above construction, proxy LLRs are built in order to let the optimizer have the

option of not treating nodes as resources. Thus a nodes equivalency has to be

presented as a proxy LLRs equivalency in which each leaf represents a node.

38

WO 01/35278

10

15

20

25

30

PCT/US00/30913

Direct events on resource groups that are supported are (all possible) nominal state
changes only. Indirect events on a resource group are eventé on the resources
contained within the resource group which can result in the resoufce group being
brought up or down. When a resource group goes to nominal state Online, then the
construction above for the resource group is inserted in the pfoblem graph and the
island containing the resource group is reevaluated. For this, the definition of islands
is weakened as follows: if a resource group falls on multiple islands, then, even if the
resource group is Not-in-effect, the multiple islands are collapsed into one large
island. When a resource group becomes Not-in-Effect, then the construction above for
the resource group is removed from the problem graph and the island containing the
resource group is reevaluated. For nominal state Offline, before a resource group's
nominal state changes to Offline, it is ensured that the CMF for the group is set to
Offline. The island containing the resource group is then evaluated with no proxy
resources and no TLRs of the resource group passed to the optimizer. Changing the
nominal state of a resource group to Offline thus typically'le;dds to the resources of the
group being brought down unless the group's nominal state is chaﬁged to something
else before the island containing the resource group is reevaluated. CMF of a group is

disallowed from changing while the nominal state of the groﬁp.is Offline.

The CMFstate of a proxy TLR represents CMF for the associated resource group.
CMFstate up represents CMF = Online and CMFstate down represents CMF =
Offline. CMFstate dead is disallowed for a proxy TLR. In an Online RG (resource
group) with Online CMF, whenever a resource (it's repository object) loses its up
status, the CMFstate of the proxy has to also lose its Online status in the same atomic
computation. NominalState field of the proxy TLR is extended to have a third state,
Not-in-Effect. The nominal state field represents the nominal stafe of the resource
group straightforwardly, with NominalState up representing N = Online, NominalState
down representing N = Offline, and NominalState Not-in-Effect representing N = Not-
in-Effect.

39

WO 01/35278

10

15

20

25

30

PCT/US00/30913

Changes to the nominal state of a resource group are carried out solely from the
graphical user interface by an administrator. Each change locks out the proxy TLR
object ﬁorﬁ all concurrent access for a short duration. In this atomic section, the
change request ensures that CMF change to Offline precedes nominal-state change to
Offline. Once the locked section is over, the request adds an event to the preprocessor
queue if the request had indeed changed the nominal-state field from one state to
another. The preprocessor handles nominal-state change events on a resource group as
usual -- for the island concerned, it clubs all collected events together by sampling the
repository to get the cumnulative effect of multiple events including multiple nominal-
state-change events. This is followed by the usual reevaluation of the allocations for
the island.

Whenever an island containing an Online resource group is evaluated, special
attention has to be paid to how the resource group is brought ﬁp or kept up since
failure of a gossamer command on a resource group has to result in the entire group
being brought down. This is done by creating gossamers for conditional offlining of
resources. The members of a conditional offlining gossamer for conditional offlining
of resources belonging to an RG comprise of the intersection of the RG's S and the
Onlines set for the island containing the RG. The root of the gossamer is one - the
proxy TLR of the RG. These commands execute only after the up command on the
proxy TLR executes. Ifthe proxy TLR is brought up, then all the conditional
gossamer commands execute as nops -- the commands execute in dataflow order from
the root down as nops. If the proxy TLR fails to come up, then each conditional down
command executes in dataflow order as either (a) a standard down command in case
the resource it executes on supports no up resource, or (b) a nop in case the resource it
executes on supports an up resource. It is possible to reduce the number of executed
up and down commands in case of RG failure by concluding RG failure and taking

appropriate action as soon as any TLR in an RG fails to come up.

Auxiliary solutions for gossamer up command failures are limited in resource groups

by the collocation requirement of resource groups. Screening for collocation is done

40

WO 01/35278 PCT/US00/30913

10

15

dynamically when an auxiliary solution from within the RG is picked for handling

gossamer up command failure.

When cluster startup is done, then all resource groups are checked for correctness.
The check comprises of tests for the first two conditions in the definition above of
RGs. If an RG definition is incorrect, then the nominal state of fhe RG is set to Not-
in-Effect, the user is informed of the condition and action taken, and changes to
nominal state of the RG are disabled. Besides correctness checking, startup also
witnesses the initialisation of RGs by proxy resource construction. All resource
groups whose nominal states are Online find their proxy resources and collocation
constraints activated, resource groups with nominal state Not-in-Effect find their
proxy resources and collocations disabled, and esource groups with nominal state
Offline find their proxy resources and TLRs removed from consideration by the

optimizer.

Dynamic Graphs
All dynamic changes to problem graphs in terms of events indicating resource
changes, constraint changes, collocation changes etc. are described here. A graph
change event, or graph event, is generated by the system admi;ﬂstrafor/user. The
result of the graph change event is an acknowledgement from Mounties that the
resulting change has been carried out by Mounties. After this acknowledgement, the
user can say physically remove the deleted resources, and start using the newly added
resources etc. The acknowledgement is flashed on the GUI of the system

administrator/user.

Introduction of graph events brings in another event queue in the system. All events
are first stored as they arrive in this queue before an attempt is made to inform
Mounties about them via an atomic update to the repository. A graph event requires
some prior processing before an attempt to update the repository with can be made,
and some graph events can be explicitly delayed while other events pass them by. A

graph event can also force a delay in other events. Although the incoming event

41

WO 01/35278

10

15

20

30

PCT/US00/30913

channels are themselves queues and thus can substitute for the queue above, an
explicit handle on those queues is required for the purpose of the discussion below.
The event handler component local to Mounties Central that has a handle on its input
channels contains and implements the above queue (called the input queue in the

following) and does the prior processing for graph events.

When the event handler gets a non graph event in its input queue, it processes the
event immediately unless the event is blocked by some graph event. For this purpose,
the event handler needs to identify only the island of the event and for this, the event
handler refers to the repository in a read-only manner. In processing the event, the
event handler updates the repository atomically for the event and causes the creation

of a preprocessor event for the same.

When the event handler gets a graph event, it quickly identifies the minimal set of
islands that are affected by the event. The event handler leaves the event as is if any
of the islands's events have been blocked by some prior graph event processing.
Otherwise, the event handler collects all graph events in its input queue that have not
been blocked, and that affect any island in the above identified minimal set of islands.
The minimal set of islands can expand each time another event is collected, and this
increase can make more events become eligible to join the collection. Thus the
minimal set of islands and collection of events increase recursively. Regardless of
clubbing, the identities of individual events are remembered for acknowledgements
that have to be sent later. A clubbed event can comprise of other clubbed events that
were previously formed, but not processed beyond clubbing. A clubbed event is not
ready for processing if there exists a pending task in Mounties related to any island
affected by the clubbed event. Mounties has to be completely dréined of all tasks
related to a clubbed event's islands for the clubbed event to be processed. Mounties by
default gives a higher priority to non graph events over clubbed events, and any new
arrival that is a non graph event jumps ahead of a clubbed event whose processing has
not yet started. A clubbed event is picked for processing only when Mounties is fully

drained, and no new non graph arrival affects any island affected by the clubbed event.

WO 01/35278

10

15

20

25

30

PCT/US00/30913

In processing a clubbed event, the event handler first blocks all graph and non graph
events on the islands affected by the clubbed event. The event handler then creates a
special shutdown event for the islands affected by the clubbed event. The shutdown
events are processed in a manner that is similar to the cluster shutdown event, except
that only a subset of the cluster's islands are shut down. The clubbed event remains in
the event handler's input queue until all its related shutdown tasks have completed.
Next, the repository is modified to reflect the new problem graph defined in the
clubbed event. This can lead to a new set of islands in place of the old set associated
with the clubbed event. The input queue of the event handler is then traversed fully to
change the island identifications of any blocked arrivals on the old islands of the
clubbed event. The identities of any deleted resources are remembered in order to be
able to screen out events from such resources such as resource dead event, resource
back from dead event. Next, the clubbed event is removed from the event handler's
input queue and treated as a special startup event for its new islands. The clubbed
event is treated in a similar manner as cluster startup except that it serves to startup
only the subset of cluster islands identified with the clubbed 'eyént. Once the event
handler has processed the clubbed event by removing it from its input queue, and
passing it on to the repository and preprocessor, the event handler then unblocks all
events affecting the islands of the clubbed event. Next the event handler is free to
acknowledge the processing of the clubbed event by Mounties to the pertinent system

administrators/users. The event handler can do this right away or later.

The work done by the event handler in all of the above is small. The heaviest task for
the event handler is the creation of the modified repository and islands for a given
event. This the event handler can get another thread to carry out. As far as concurrent
processing of events goes, the event handler can be processing multiple clubbed events
and other events in different parts of the cluster at the same time. An important
optimization (for the preprocessor) given the above context is to not do a simple
complete shutdown event treatment for a clubbed event's shutdown. Instead, the -

special shutdown event should only bring down a minimal number of resources

43

WO 01/35278

10

15

25

30

PCT/US00/30913

needed for changing the problem graph - e.g. bring down only resources that have to
be deleted and the resources currently supported by them. The startup for the clubbed
event later can then benefit by not having to bring up all resources. For the purpose of

startup, any artificial events set that causes the reprocessing of the affected islands

suffices.
Structuring Mounties Implementation

Implementation of Mounties architecture and design imposes a challenging
requirement for the software developer--the challenge being how to ensure that the
software developed is correct, robust, extensible, maintainable, and efficient enough to
meet soft real-time constraints. In this section, we describe a pr_ograrnming paradigm

that is well suited to meet these requirements.

A concurrent specification is naturally suited to Mounties and is more likely to yield a
verifiably correct and robust implementation of the system. A simple and concurrent
implementation of Mounties would comprise of a CSP-style pfocess [see, C. Hoare,
Communicating Sequenﬁal Processes, Prentice Hall International (U.K.) Ltd., 1985]
for each functional block described earlier. Each such process would then
communicate with other processes via communication channels, and the entire
operation would then proceed in a pipelined manner. Such a specification however
can suffer from two problems: (a) complexities associated with managing parallelism
including state sharing and synchronization, and (b) inefficiency of fine-grained
parallelism. Both of these problems can be addressed by using a different approach
than the CSP approach, as described in the following. The approach described here
enables a variable-concurrency specification of Mounties and is consistent with the
overall operational semantics of Mounties described previously. The paradigm also
provides a few additional benefits such as: efficiency and ease in performance tuning;
simple extensions to simulate events using cloned copies of the repository; flexibility

and amenability to changes in functionality (e.g., adding more Preprocessor smarts).

44

WO 01/35278

10

15

20

25

PCT/US00/30913

Efficient and Flexible Concurrent Programming

The paradigm comprises of an approach of defining relatively short lived, dynamic,
concurrent tasks wherein the tasks can be in-lined. In the limit of this approach, ail of
the tasks can be in-lined, resulting in a sequential implementation of the system. The
key issue in this approach is not to compromise on the natural concurrency in the

description of the system while defining the dynamic, concurrent tasks, and task in-

lining.

In this paradigm, computations are broken into a set of atomic tasks. Tasks are defined
such that (a) each task is computationally significant as compared to the bookkeeping
costs of managing parallelism; and (b) each task forms a natural unit of computation
so that its specification is natural and straightforward. In initial prototyping, (b) can
overrule (a), so that correctness considerations of initial work can override
performance considerations. Each atomic computation descﬁbéd in a detailed
Mounties semantics has to be contained in a task from this set of atomic tasks.
Although this is an optimization and not a requirement, for reducing context-switching
costs, the computation of a task should proceed with thread-preemption/task-

preemption disabled.

Under this paradigm, the operations within Mounties can proceed as follows. Each
event from the event handler results in the creation of one or more tasks, to be picked
by the one or more threads implementing Mounties. The tasks wait in an appropriate
queue prior to being picked. In processing a task, the thread/processor will compute it
to completion, without switching to another task. The task execution can result in one
or more new tasks getting created, which the thread will compute as and when it gets
around to dealing with them. So for example, say an event arises, that creates a
Preprocessor-task. The Preprocessor-task can end up creatin'g.a'n Oﬁtimizer—task, and
a Postprocessor-task. The Postprocessor-task can create gossamer-related tasks, and
so on. Allowing for performance tuning and also for later extensions, it may be

desirable for the Preprocessor to inline the Postprocessor task within itself and to

45

WO 01/35278

10

15

20

25

30

PCT/US00/30913

create the gossamer-related tasks directly, which can be done straightforwardly in this

paradigm since tasks are explicit and not tied to the executing threads.

In this programming paradigm, computation and communication are merged.
Generally a task is a procedure call, with its arguments representing the
communicated, inter-process, channel data from the CSP model. In general inter-
module communication is carried out by task queues connecting the modules, wherein,
the scheduler is given the charge of executing a task for a module by causing a thread
to pick it up from the module's incoming queue. Since in this paradigm, just one
thread can implement all the modules, it becomes possible to continue thinking in
terms of a purely sequential computation, and to avoid concufrency complexity such
as synchronization and locks. If this sequential exercise using this paradigm is carried
out in consistence with the Mounties choreography described earlier, then a
straightforward extension of the work to multi-threaded implementation with thread
safety is guaranteed. The accompanying complexity of lock management and

synchronization is straightforward.

The scheduling of threads itself is done in a manner that avoids looping over input.
Whenever a thread finds itself in a position that it cannot proceed with the current
input or if there is no input present, then the thread deschedules itself. This enables

other computation to proceed, which can result in a rescheduling of the descheduled
thread.

Related Work

The Mounties system described here is of relevance to both the commercial state-of-
the-art products as well as to academic research in this area. Presented below is a
comparison of the Mounties System with three important systems that can be
considered as the state-of-the-art: IBM's HA/CMP, Microsoft's MSCS, Tivoli's AMS

system, and Sun's Jini technology.

46

WO 01/35278

10

15

25

30

PCT/US00/30913

Application management middleware has traditionally been used for products that
provide high availability such as IBM's HA/CMP and Microsoft's Cluster Services
(MSCS). HA/CMP's application management requires cluster resource configuration.
Custom recovery scripts that are programmed separately for each cluster installation
are needed. Making changes to the recovery scheme or to basic set of resource in the
cluster requires these scripts to be re-programmed. Finally, HA/CMP recovery
programs are stored and executed synchronously on all nodes of the cluster. MSCS
provides a GUI-driven application manager across a two-node cluster with a single
shared resource: a shared disk [see, Sportack, Windows NT Clustering BluePrints,
SAMS Publishing, Indianapolis, IN 46290, 1997]. These two nodes are configured as
a primary node and a backup node; the backup node is used normally pure backup
node and no service-oriented processing is performed on it. Configuration and
resource management is simplified with MSCS: there is only one resource to manage

with limited management capabilities.

Tivoli offers an Application Management Specification (AMS) mechanism, which
provides an ability to define and configure applications using the Tivoli Application
Response Measurement (ARM) AP1I layer [see, Tivoli Corp., Tivoli and Application

Management, http://www.tivole.com/products/documents/whitepapers/bodv\ maph wp.html,

1999]. These applications are referred to as instrumented applications. The
information gathered from the instrumented applications can be used to drive scripts
by channeling the information through the Tivoli Event Console (TEC). The TEC can
be configured to respond to specific application notification and initiate subsequent
actions upon application feedback. The current version of ARM 'application
monitoring is from a single system's perspective. Future versions may include

correlating events among multiple systems.

Over the last few years several new efforts towards coordinatingand managing
services provided by heterogeneous set of resources in dynamically changing
environments. The examples of these include Tspaces [see, P. Wyckoff, S.

McLaughry, T1 Lehman, and D. Ford, T Spaces, IBM Systems Journal, pp. 454-474,

47

WO 01/35278 PCT/US00/30913

10

15

25

vol. 37, 1998] and the Jini Technology [see, K. Edwards, Core JINI, The Sun
Microsystems Press Java Series, 1999]. The TSpaces technology provides messaging
and database style repository services that can be used by other higher level services to
manage and coordinate resources in a distributed environment. Jini, on the other hand
is a collection of services for dynamically acquiring and relinquishing services of
other resources, for notifying availability of services, and for providing a uniform
means for interacting among a heterogeneous set of resources. Both TSpaces and Jini
technologies are complimentary to Mounties in the sense that they both lack any
systematic decision making and decision execution component. However, the services
provided by the Repository and Event Notification mechanisms in Mounties do
overlap in functionality with the similar services provided in TSpaces and Jini.
Finally, there are several resource management systems for distributed environments
with decision-making capabilities. Darwin is an example of such a system that
performs resource allocations taking into account application requirements [see, P.
Chandra, A. Fisher, C. Kosak, E. Ng, P. Steenkiste, E. Takahashi, and H. Zhang,
Darwin: Customizable Resource Management for Value-Added Network Services,
Proceedings of 6™ International Conference on Network Protocols, pp. 177-188, Oct.
1998]. Although there are similarities between Darwin and Mounties, Mounties
provides a much richer set of abstractions for expressing complex dependency
information among resources. Also, the Mounties system is gearved towards
optimizing the allocation of services such that overall objectives are met; in Darwin
the goal seems to be more geared towards optimizing the reqﬁirements of an

application or of a service.

The Mounties services described here have some similarities with the Workflow
management systems that are typically used in automating and coordinating business
processes such as customer order processing, product support, etc. As in Mounties,
workflow systems also involve coordination and monitoring of multiple tasks that
interact with one another in a complex manner [see, J. Halliday, S. Shrivastava, and S.
Wheater, Implementing Support for Work Activity Coordination within a Distributed
Workflow System, Proceedings of 3™ IEEE/OMG International Enterprise Distributed

48

WO 01/35278

10

15

25

30

PCT/US00/30913

Object Computing Conference, pp. 116-123, September 1999]. Thus, the task and
data choreography can have similar implementation features. However, workflow
systems typically do not involve any type of global decision making component, much
less solution of an optimization problem resulting in commands for the components of

the system.

At the implementation level, Mounties software structuring approach or programming
paradigm provides a contrast with approaches such as CSP [see, C. Hoare,
Communicating Sequential Processes, Prentice Hall International (U.K.) Ltd, 1985],
and Linda [see, N. Carriero and D. Gelemter, Linda in Context, Communications of
the ACM, vol. 32, pp. 444-458, April 1989]. Briefly, in comparison to CSP, instead
of defining static, concurrent tasks, our paradigm works with relatively short lived,
dynamic, atomic tasks that can be inlined. Since tasks in our apprbach are delinked
from threads, our approach has the advantage of allowing greater flexibility and
control in software development including variable and controlled concurrency, and a
finer level of control over task priority and data priority. In contrast to CSP, the
Linda approach and futures [see, D. Kranz, R. Halstead and E. Mohr, Mul-T: A High
Performance Parallel Lisp, Proceeding of the ACM Symposium on Programming
Language Design and Implementation, pages 81-91, June .1989] provide a handle on
dynamic threads, see, D. Kranz, R. Halstead and E. Mohr, Mul-T: A High
Performance Parallel Lisp, Proceeding of the ACM Symposium on Programming
Language Design and Implementation, pages 81-91, June 1989] provides a method of
dynamic thread in-lining, and Linda in particular provides a handle on a coordination
structure, a tuplespace, that can straightforwardly emulate and provide the equivalent
of CSP channels for data communication. Our paradigm is different from all these
programming language approaches in that it is an informal framework wherein
implementation issues/idioms relevant to Mounties-like systems find a convenient,
and top-down expression, beyond what these generic language approaches with their

compiler/run-time support provide.

49

WO 01/35278

10

15

20

25

30

PCT/US00/30913

Conclusions

The Mounties system, as described above, is designed to support a diverse set of
objectives including support for global cluster startup, resource failure and recovery,
guarantees for quality-of-service, load-balance, application farm management, plug-
and-configure style of management for the cluster resources, and so on. The system
itself is composed of multiple services, and the services described here are designed to
be general purpose and scalable. This modularity allows for substitution, at run-time,
by alternate services including alternate decision making components. Moreover, the
system is flexible enough to operate in a full auto pilot mode or a human operator can
control it partially or fully. The three services described here (the repository services,
the evaluation and execution services, and the event notification services) are
adaptable to changes in the system. New resources, constraints, and even new rules or
policies can be defined and the system adjusts the cluster-state around these changes.
In that sense, these services are active and dynamic components of the middleware. A
fourth component of the system, the Optimizer, is also capable of adjusting to such

changes in the system.

Finally, it should be noted that the decision making capabilities and associated
support services are general enough to be applied in other écenarios including in
environments that are much more loosely coupled than clusters and that are highly
distributed such those encountered in mobile and pervasive computing environments.
In such environments, multiple independent decision support systems can co-exist ina
cooperative and/or hierarchical manner. This is an area we ihtcnd to explore in the

future.

Described below is an approach for on-line modeling and solution of the global
optimization problem using Evolutionary algorithms. These problems arise in the

managing distributed resource using the decision support apparatus described earlier.

50

WO 01/35278

10

15

30

PCT/US00/30913

This aspect of the invention relates to the filed of distributed computing, and more
particularly, to allocation various resource in the distributed computing environment.
The resources need to be allocated to their dependent resources such that a given

criterion is optimized.
Background

In a mission-critical semiautonomous system, maintaining continuous availability of a
set of (mission critical) services is of paramount importance, even in the presence of
partial failures. To accomplish this, resources are automatically monitored for their
availability, brought and kept on-line as long as their configuration constraints are
satisfied. Whenever failures are detected or whenever individual resources need to be .
serviced, alternative choices are evaluated and resources are re-deployed after taking
into account the global state of the system. To accomplish this, the system requires

the capability for making decisions taking into account various tradeoffs and the
overall objectives set for the system, in the presence of unavailability of a subset of

TeSources.

Typically in complex systems, end user services depend on multiple, lower level
services and these in turn may depend on other lower level services. For example,
web servers depend on database servers which in turn depend on lower level services
such as I/O services, communication services, and even lower level services provided
by the OS and the CPU. Together, these inter dependencies 'fo_rfn a (directed acyclic)
dependency or constraint graph (CG) (refer Figure 1), where the vertices correspond
to the individual services and the edge correspond to the dependency relationships.
For a variety of reasons, complex systems invariably consist of redundant services,
that provide similar functionality. This results in resource dependency graphs with
multiple choices in allocating a particular type of supporting resource or service. We
refer to these multiple choices as equivalent services and the set of such services forms
an equivalency. In a system, there may be many équivalents each providing multipie

choices for a particular type of service. Similarly, a service may appear in more than

51

WO 01/35278 PCT/US00/30913

wh

10

15

20

30

one equivalency. Furthermore, multiple higher level services may depend on the same
lower level supporting service, which in turn may have capaéity constraints limiting its
ability to serve only a fixed number dependent services at a time. In practice,
performance and implementation considerations also require that certain location
constraints be satisfied; e.g., use services available on the same node or make sure two
services are not located on the same node. These are referred fo as the collocation and
anti-collocation constraints. In mission-critical systems, an added constraint is that
the resource allocation problem must be solved on-line and that the solution must be
obtained within a fixed time interval. Please note that throughout this document we

use the terms service and resource interchangeably.

To summarize, services depend on one or more types of lower»lev_el services, in a
recursive manner; there may be more than one resource in the system that provides a
particular type of service, possibly at different performance-level. There are one or
more services that are mission critical and hence need to be rh_aintained on-line by
satisfying their dependency constraints, even in the presence of failures of one or more
supporting lower level services. Clearly the problem to be solved here is an on-line
resource allocation problem where allocations are to be made such that certain
business objectives (such as maintaining continuous availability of high priority
services, fulfilling quality-of-service guarantees, load balancing, and so on) are met. In
general, this problem is NP-complete. The problera becomes even harder (from
implementation point of view) when priorities, preferences, and load-balancing issues

are to be taken into account.

There are various approaches for solving the resource allocation problem. These
include the algorithms based on approximation, mathematical programming,
probabilistic, and local search techniques. Evolutionary Algorithms (EAs), which
belong to the class of probabilistic algorithms and include Génetic Algorithms,
Evolution Strategies and Evolutionary Programming, have become popular in solving
complex optimization problems. EAs, apart from being able to fond better optima,

have an additional advantage in the present context because of their iterative nature.

52

WO 01/35278

10

15

25

30

PCT/US00/30913

The sub-optional solutions that are found while evolving towards a globally optimal
solution can be used by the resource management system for bringing up at least some

of the resources earlier instead of waiting for the final solution.

EAs use a population a fixed number of (feasible) solutions; a sofution 1s a
representation of an instance in the search space. EAs are iterative algorithms. Each
iteration is called a generation. To start with, the population is randomly initialized
and is evolved over generations. During each generation, new solutions are created by
applying evolutionary operators OVer the solutions in the current population. These
operators mainly include selection, recombination, and mutation operates. Each
solution in a population is associated with some figure of merit or fitness depending
on the function to be optimized. The selection operator decides the solutions to be
maintained in the population during the next generation depending on their fitness
values. The recombination operator combines two solutions<to yield possibly two new

solutions. The mutation operator randomly perturbs the solutions.

The particular scheme used to represent a solution and the associated evolutionary
operators determine the computation needed during each generation. The main
requirement on an operator is that it should have closure property; i.e., operator should
result in a feasible solution. Typically, the operators tend to be computationally
intensive while maintaining the closure property. Moreover, simple representation
schemes often make fitness value calculations very computationally intensive.

Perhaps, that is why, EAs are efficient when they are customized to the problem under

consideration.
Summary

This aspect of the invention describes a method and a apparatus using the method to
allocate resources to their dependent resources satisfying all the constraints so that
specified objectives are optimized. The method is based on evolutionary algorithms.

This method uses a simple representation scheme that is specific to the problem under

WO 01/35278

wn

10

15

25

PCT/US00/30913

consideration. Under this scheme, the computations associated with the objective
functions are relatively light. We also define a simple problem specific mutation

operator that has the closure property.

Detailed Description

In the following paragraph, we describe a method useful to find optimal
configurations. We describe the overall system before describing the methods. The
overall system is depicted in Figure 8. Whenever there is an event that calls for
reallocation of resources, a “snap shot” of the state of the cluster is created and handed
over to the preprocessor. As the name suggest, preprocessor prunes the conflicting
constraints and outputs a pruned constrained graph. The pruned graph is generated by
applying various constraints and reduce the number of resources that can possible
support other resources. For example, collocation constraints may result in fewer
number of resources equivalencies. The main objective of preprocessor is to reduce
the search space for finding an optimal allocations. The optfmizer, the key invention
in this disclosure, takes a stopping criterion to output the optimal éolution. The
stopping criterion could be time to calculate an optimum. The result of optimizer is
directed to a module called post-processor, which issues commands for actual

execution of reallocation.

We describe below the optimization method and a specific embodiment of it. The
proposed method is based on evolutionary algorithms and is shown in Figure 9. Let P
represent the set of N solutions in the population. The solutions in the population are
represented as Complete Feasible Solution Graphs which are defined below. The
method randomly initialized these N solutions as shown in Figure 14 and computes
various objective functions of the solutions. The solutions are mutated as Figure 15 to
create an intermediary population P’. The objective functions of these solutions are
also computed. Then an appropriate selection operator is apblied onPand P’'to geta
new population of solutions. The process of application of mutation operator,

computation of objective functions and application of selection operator is repeated

54

WO 01/35278 PCT/US00/30913

10

15

20

30

until the time of execution exceeds a predefined time limit. The method gives out the
best solution in the population whenever the time limit is crossed. We explain the
details of the method by describing the specific representation scheme used to
represent solutions, the initialization scheme used to initialize the solution, the

mutation and selection operators.

A solution is represented as a vector of solution resource objects. Each solution
resource object contains a pointer to the resource that it represent, an array of pointers
to the resources that it supports, an array of pointers to the resources that support the
present resource and the location of the resource (see Figure 10). We first define some

notation which will be used in the description of various operators.

A Solution Graph (SG) is a directed graph where a vertex represeﬁts a resource or a
service. An SG has only a subset of the edges from the original CG-SG contains an
edge from resource r; to r;is allocated to r;. A Feasible Solution Graph (FSGQ) is an
SG in which the basic depend-on, equivalency, collocation, aﬁd capacity constraints
specified in the CG are not violated. A Complete Feasible Solution Graph (CFSG) is
an FSG in which no resource can be allocated (by inserting an edge) to any other
resource without violating the basic constraints. That means, either the capacity of a
supporting resource is exhausted or that the potentially dependent resources are
supported by other services from an equivalency and thus, do not require the services
of a supporting resource with unused capacity. Solutions are rep;esented as a FSG and

the operators make sure that they are CFSGs.

To make the above definitions clear, we consider an examplé shown in Figure 7. Let
us consider a collection of resources containing thee ip-adapters (fal, ia2 and ia3 on
nodes 1, 2 and 3 respectively), three network disks (nd1, nd2 and nd3 on nodes 1,2
and 3 respectively), two disk adapters (dal, and da2 on node 1 and 2 respectively),
two database servers (DB1 and DB2) and 2 web servers (W51, and #S2). each of ip-
adapters and network disks can support only one dependent resource and has a

preference of 0.2. The priorities of DB, DB2, WSI and WS2 are 0.85, 0.8, 0.6 and 0.7

55

WO 01/35278

10

15

20

25

30

PCT/US00/30913

respectively. All the ip-adapters form an equivalency 101, the network disks
equivalency 102, disk adapters equivalency 103, and database servers equivalency
104. The equivalencies are represented by dashed ellipses in Figure 7. DB/ should be
supported by only one resource from each of equivalencies 101, 102 and 103. This is
shown in the figure by edges from DBI to the respective equivalencies. Moreover, all
the supporting resources of DB/ should be at the same location. This collocation
constraint is represented by a dashed arc on the corresponding edges in the figure.
The other edges in the figure be interpreted appropriately. For this example, Figure 11
and Figure 12 show instances of FSD and CFSG respectively. Note that in Figure 4
no constraint is violated. However, nd] can be assigned to WSI, nd2 to DB2 and nd3
to WS2. After these assignments the FSG becomes CFSG as shown in Figure 6. Also
note that no resource in CFSG either can be allocated to other resources or need to be

allocated to other resources.

The initialization scheme and the mutation operator use a functiori, call makeCFSG,
that randomly generates a CFSG from a given FSG. The flowchart of the function is
shown Figure 7. Let P(c) be the set of resources that have a dependency on resource ¢
and that each such dependency is yet to be satisfied. Let C bev the set of resources with
leftover capacity and non-empty P(c), ¢ € C. The method makeCFSG randomly
chooses a resource ¢ in C and allocates it to a resource randomly chosen from P(c) (by
introducing a new edge). After every such assignment, makeCFSG reevaluates C.
Note that the resource that can be brought up due to the last assignment may get added

to C and a resource, whose capacity is exhausted, is removed from C. The method

makeCFSG terminates when the set C is empty.

The solutions are initialized based on the initial configuration of the cluster. First the
initial configuration is converted into an FSG by deleting ineonsistent edges. Then,
makeCFSG method is called to obtain a random CFSG. This is shown in Figure &. It
may be noted that since makeCFSG randomly generates an CFSG, it can yield
different CFSGs each time it is called. The mutation operater fist randomly remox}es

some edges from the solution with a small probability Pm, called Mutation

56

WO 01/35278

10

15

20

30

PCT/US00/30913

Probablilitv. Mutation operator is shown in Figure 15. Note that the edge removals
may necessitate removal of some other edges to keep the solution in FSG. Mutation

operator calls makeCFSG on this FSG to geta CFSG.

The basic aim of selection operator is to retain the promising solution in the
population. There exist several heuristics that try to achieve this objective; each
having their own merits and demerits. The promising nature of a solution is quantified
based on the objective functions which is explained below. The rank based selection
operator ranks each solution in the population and picks first N solutions for the new
population. The stochastic tournament selection operator performs N comparisons
between 2 randomly picked solutions from P and P’ and retain ihe best among the two
in the new population. In the considered resource allocation problem, there could be
the following objectives: maximization of the sum of priorities of the resources that
are brought on-line (denote it by function /1), maximization of the extent of equal
distribution of load on the resources of similar type (denote it by f2), minimization of
the cost incurred in reallocation (migration) of resource (denote it by /f3). The
objectives have their own importance in optimization. For example, the primary
objective is to maximize /1, the secondary is 70 maximize f2, and the tertiary is to
minimize /3. Let A and B be two configuration then, if ((f1(A)==f1(B)) AND
(f2(A)==/2(B)) AND (3(4) ==13(B)))
then A4 and B are equally good
else if (((f1(4) ==f1(B)) AND (12(4) == f2(B)) AND f3(4) <£3(B))) OR
((f1(4) ==f1(B)) AND (F2(A)>f2(B))) OR
(f1(4)>f1(B)))
then A is better than B
else B is better than A.

In a specific embodiment of the method, we considered the maximization of fI. The
method has been used to find optimal reallocations for various problems; a few real-
life examples and various synthetic examples. The real-life examples consisted of

small number of resources and constraints (between 10 to 20 resources distributed

57

WO 01/35278

wn

10

15

PCT/US00/30913

over up to 3 node locations). In all cases, the optimum solution was reached in less
than 10 generations. Synthesized large examples consisting of 100 to 500 resources
distributed over 10 to 30 nodes and an hierarchy of 3 to 5 layers of resources. Figure
10 shows the performance of the algorithm (in terms of the CPU .timc used) for an
example consisting of 300 resources distributed over 20 nodes and 3 layers. The
population size was 100 and the mutation probability was set to 0.01. Shown in that
figure are results from three different runs each with a unique initial seed for the

random number generator. We observed similar trends with other examples.

The main features of the algorithm are (A) simplicity of approach, (B) amenable to
soft real-time constraints, (C) ability to handle multiple obj ectivé functions, (D) can
obtain a solution within a specified time; optimality depends-on computational time,
and (Against the) adaptive — can start from the current conﬁgﬁration and find an

optimal one satisfying the modified constraints.

58

WO 01/35278

10

15

30

PCT/US00/30913

Described below is an approach for on-line modeling and solution of
the global optimization using LP-based mathematical programming.
These problems arise in the managing distributed resources using the

apparatus described earlier.

This aspect of the invention relates to the problem of on-line management of
distributed resources for providing reliable services in a clustering environment with

externally specified business objectives.
Background

A cluster is a highly flexible configuration that brings together a set of heterogeneous
resources and provides users and system administrators a uniform, consistent, and
single system view of these resources. Clusters address the user’s requirements of
high availability and reliability while providing the scalability and flexibility of
configuration that is valuable to the system administrators. A typical cluster
environment contains a variety of physical and computational resources. Theses
resources can be as diverse processing elements, file systems, and databases.
Relationships between resources can take many forms. A resource may depend on the
services of another resource, provide a replacement for it, or compete with it for a
third resource. By design, a cluster is supposed to provide a single point of control for
cluster administrators and at the same time it is supposed to facilitate addition,
removal, or feplacement of individual resources without signiﬁcé.ntly affecting the
services provided by the entire system. On one side, a cluster has a set of distributed,
heterogeneous physical resources and, on the other side, it pfojécts a seamnless set of
services that are supposed to have a look and feel (in terms of scheduling, fault
tolerance, etc.) of services provided by a single large virtual resource. Obviously, this
supplies some form of continuous coordination and mapping of the physical
distributed resources and their services onto a set of virtual resources and their
services. Typically, such coordination and mappings are handled by the resource .

management facilities. On-line management of the resources of a cluster involves

59

WO 01/35278

10

15

20

25

30

PCT/US00/30913

allocating and re-allocating resources in the presence of complex-inter-relationships
and competing requirements among resources and dynamic events such as failures,
addition and deletion of resources, scheduled maintainace services, etc. In addition to
the inter-resource dependencies and dynamic changes in their states, the clusters are to
be configured and managed to achieve certain business objectives such as a
maintaining certain quality-of-services, maintaining high availability of certain end-

user services even in the presence of faults, graceful handling of failures, and so on.

In the following, we present a methodology for a deriving mathematical model of the
cluster. Using that model, we obtain a solution to the on-line resource allocation
problem using an innovative combination of well known mathématical optimization
techniques. For this we first create abstractions that capture the inter-relationships
among resource. Using these abstractions and the current state of the resources, we
derive the mathematical model. The solution of the problem' must be such that any
allocation of resources must respect the constraints imposed by thése relationships and
conform with the given state of the system. An allocation must afternpt to achieve
several objectives: optimal availability of various prioritized‘service, good load
balancing, and minimization of service disruptions and other costs of altering a
configuration. These objectives have to be met continuously by on-line monitoring,
formulating and solving the problem within a specified-time-window and in an event
driven manner. The methodology presented here captures these constraints and
objectivés in the model and solution approach in such a way that it can be encoded in

an apparatus for continuous on-line resource management.
Resources and Resource Relationships:

The term resource refers to any persistent hardware or software entity that uses and/or
provides services available within the cluster. Examples of resources are nodes or
processing elements, collection of nodes (i.e., servers), disks, memory, various
adapters, networks, file systems, communication subsystemsv, data bases, web servérs,

various persistent systemOlevel applications, etc. Every resource is associated with a

60

WO 01/35278

10

15

20

25

30

PCT/US00/30913

fixed capacity: i.e., it may service only a fixed number of clients at a time. This also

implies that a resource may be shared.

Typically, in a complex computing environment, hardware and software subsystems
are built on the top of other components. The most basic components (such as the
operating system of a node) bootstrap themselves. We refer to such resources as low-
Jevel resources. However, more advanced components rely on the availability of other
services (for instance, a mounted files system may depend on the services provided by
an 10-adapter). We refer to such resources as high-level resources. Top-level
resources are those on which no other resources depend and typically these interact

directly with end-users or other applications.

An illustrative set of resources is shown in Figure 17. A, B, C, D, E, F, G and H are
low-level resources. I, J, K, L, M and N are high-level resources. K, L,M and N are

top-level resources. The capacities of various resources are shown in parentheses after

the resource names.

We say that a resource R depends on a resource T, if R requires the services provided
by T in order to be online. In some cases, it may be possible to meet such a
requirement by using the services of any one of several resources. This flexibility is
captures using an abstraction called an equivalency. An equivalency a set of resources
that associates with each resource a positive real number called the weight of that
resource. We say that resource R depends on equivalency S, if R requires the services
of one of the resources in S in order to be online. The policy associated with an
equivalency is the vector of the weights of its resources. Policies are useful in
ordering or prioritizing resources within an equivalency. In the example shown in

Figurel, I depends on F, and on two equivalencies, one containing A, B, and C, and

the other containing D and E.

There is a Jocation associated with each resource. Some resources may have a pre-

defined location, while others may have to be assigned a location. The process of

61

WO 01/35278

10

15

25

30

PCT/US00/30913

allocation may encounter several kinds of location-related constraints, which arise
from various inter-relationships between resources. We refer to such constraints as
collocation constraints. A collocation constraint between resources A and B implies
that A and B should be at the same location. If resource A depends on equivalency B,
a collocation constraint on A and B implies that the location of A must be the same as
that of the member of B which serves A. If resource A depends on equivalencies B
and C, a collocation constraint on these two dependencies implies that the two
resources allocated to serve A from B and C respectively must both have the same

location.

In a typical cluster, there may be multiple top-level resources that may need to be
brought up simultaneously. These resources may be competing for other resources
and it may not be possible to support all of them simultaneously. With each resource
is associated a number of referred to as the priority of that resource, which represents
the relative importance of that resource. Each top-level resource is assigned a positive
priority. A higher priority implies preference in bringing up tat resource over another
with a lower priority. Some other resources at other levels may have positive
priorities assigned to them, if it is desirable to bring them online. Other resources
have a priority of zero: such a resource is brought online only if doing so helps bring

up a resource with positive priority.
Summary

In this particular aspect of the invention, we propose a methodology by which
resources can be allocated and re-allocated on-line to meet the complex and competing
requirements and business objectives encountered in clustering environment; and
various competing objectives can be combined and addressed in sophisticated manner.

The approach comprises the following elements:

i. A scheme for representing the various constraints and objectives in the form of an

integer linear program.

62

WO 01/35278

10

15

20

25

30

PCT/US00/30913

ii. Converting integer variables into fractional variables, which converts the integer
linear program into a linear program; using standard mathematical programming

tools and techniques to obtain a fractional optimal solution for the linear program.

iii. A scheme for obtaining an integer solution from the fractional optimal solution,
wherein the conversion is done in several stages. At each stage, a suitable subset of
variables are identified for which integer values are to be obtained, and the fractional
values of those variables are replaced by integer values in such a way that the
resulting solution is a valid solution for the linear program. Any variable in sucha

subset is never assigned a non-integer value in a subsequent subset.

iv. A scheme for performing the allocation of various resources based on the values
for the various resources in the integer sol ution solution obtained in the previous

step.
Integer Linear Program Formulation:

We formulate the problem of resource allocation as an integer linear program as
follows. For every resource v, there is a 0-1decision variable z, which takes the value
1 if and only if v is to be brought up. Let dep(v,i) represent the set of resources that
can satisfy the i"™ dependency for resource v. For each resourcé u in dep(v,i), let x,, be
a decision variable indicating whether u is allocated to v, that is, whether v is served
by u (here, we are assuming for simplicity of description that u does not occur in

dep(v,i) for more that one).

Then the requirements of v can be represented by the set of constraints

Z“u € dep(v.i) (Xv,u) =Z, forall i

For example, corresponding to resource I in Figure 1 we ‘have the constraint

WO 01/35278

10

15

25

30

PCT/US00/30913

XiatXip Tt Xic=24

Let C, denote the capacity of u. The capacity constraint for u can be represented by

the following set of equations:

2, (X,,)=C,forallu
(1)

For resource A in our example this takes the form

XekatXia=1
2)

We associate a 0-1 variable /,; with every resource v location , indicating whether v is
located at j (in case of resources whose locations are fixed these variables are replaced
by constants). The following set of equations represents the reqﬁirefnent that a

resource vvmust have one unique location:

T(l,) =1 forall u
(3)

Collocation of any two resources u and v can then be expressed by the constraints

l,j=1,; forallj
4)

Consider a resource v choosing some resource out of the set dep(v,i). The variable e,

indicates whether the chosen resource is located at location j.

Let there be k resources, 1, 2, ..., kin dep(v,i). The following constraints ensure that

each variable e, ;; takes the appropriate value:

64

WO 01/35278 PCT/US00/30913

10

15

20

25

30

eij>=Xim T lnj—l forallm=1,2, ..,k

(5)
and

2je, =z, forallvi

(6)

Now the location of v can be made to depend on the choice made form the

equivalency dep(v,i) by adding the following constraints:

lv_j = ev‘,-Jfor allj
()

For the example in Figure 1, let us assume that there are three possible locations,
Locations 1, 2, and 3. Also, assume that resource A, B and C are locations 1, 2 and 3
respectively. Now if we were to require that the location of resource K must depend
on the choice made by K from the Equivalency {A,B, C}, then the following

constraints would ensure such a selection:

€x1,1 >= X4, ex11 >=X15-1; ekl >= Xic -1
€x1o >= X1a-1l; €x12 >= X138 ex12 >= Xic-1;

| ex13 >= X1a-1; ex13 >=Xie-l; €ki3 >= Xic;

If the choices made from equivalencies dep(v,s) and dep(v,t) are needed to be

collocated, the following constraints can be added:

65

WO 01/35278

10

15

20

30

PCT/US00/30913

€vsj= €vtj for all j

(®)

For instance, if we require that the choice made by K from equivalency {A,B, C} must
have the same location as the choice made by resource J from equivalency {G,H}.

then we add the following constraints:
e 1,1 = €121 EK 12T €22, €KI13T €123,

If resources « and v must be anti-collocated (located at different locations), then the

following constraint is used:

lj+ lj<=1forallj 9)
Thus, if K and M must be located at different locations, we require that
Ko+ vy <=1 ke Hva<= Lkt Iva <=1

In resource allocation, a primary objective is to maximize the sum of the
priorities of resources that are brought online. Let P, represent the priority of resource

v. The following objective function captures this objective:

O\ =Zv Pv Zv

Other objectives may be to distribute load across similar resources in a way
that achieves load balance and conforms to policies associated with equivalences.

These objectives are address as described below.

Let L, denote the total load on resource v. This is captured by the following

constraints:

66

WO 01/35278 PCT/US00/30913

OI =Zv Pva

Other objectives may be to distribute load across similar resources in a way that achieves load balance and conforms to

policies associated with equivalencies. These objectives are addressed as described below.

Le:L\, denote the total load on resource v. This is captured by the following constraints:
Z u Xuy = LV forall v (10)

Let U, v be the usage factor of resource v, determined by the constraints

L, =U, .C, for all v (11)

We aim to achieve load balance by requiring that within any equivalency, the usuage factors of all resources be as close to

each other as possible. Let B; denote the baiance in equivalency i, defined as
Bi = minye; hiy (1-U,),

where /1; , denotes the weight of v in the policy associated with 1.

The following linear constraints ensure that the variables B; take the desired values:

B <=]’l('v (I-Uv) forallvei

67

WO 01/35278 PCT/US00/30913

In our example, let {1, 4, 3} be the policy associated with Equivalency (A, B, C), which we will refer to as Equivalency 1.
Then we have the constraints

By <= I—UA; B1 <= 4(1—UB); B1 <= 3(1-Uc);

We seek to optimize the values Bj in order to achieve the objective of load balances in conformance with priority policies. We

represent this objective of optimizing load balance as

Oz =Z,~ B,‘ , where the summation is over all equivalencies i.

The presence of the }; term in Equation 12 serves to relax load balance requirements — a more favoured resource may

thus be loaded more than other resources. Lastly, our objective of minimizing the deviation from an existing solution may be
represented by the objective function

03 =Za11 (wv) Ix,,,v - yu,vl , where Y, represents the value of Xy,y in the existing allocation.

We combine the three objectives into one objective function simply as

maximize O; + k; O; + k; O3

subject to constraints (I - 12)

The constants &, and &; can be selected to be small enough so that the objectives represented by O3 and O3 are strictly

secondary and the above ILP optimizes O;.

Obtaining an integer solution from the optimal fractional solution

68

WO 01/35278 PCT/US00/30913

10

15

In brief, we obtain an integer solution by solving a linear relaxation of the ILP
described above, and then heuristically converting the optimal factional solution to
obtain an integer solution. Having obtained an optimal fractional solution, we convert
it into an integer solution in stages, at each stage “fixing” the values of variables that
have been rounded in previous stages. We tackle lower-level resource before those
that depend on them. In every iteration, we identify a few resources and their
associated variables. We apply the integrality constraint for those variables to obtain
an ILP with a relatively small number of integrality constraints. We solve this ILP,
extract the values of the selected variables from the solution, and fix those values for
their respective variables for all subsequent iterations. We continue this process till
we arrive at a fully integral solution. An outline of our approach is presented in Figure

17. Figure 18 illustrates in detail the computation step represented by function block
400 in Figure 17.

Allocation of resources based on the integer solution

Having obtained an integer solution, we perform resource allocation in a
straightforward manner. For every variable Z, whose value'is 1, the corresponding
resource v is brought up. This is done by allocating resource u to resource v whenever
for all u and v such that the value of Xy, is 1. Similarly, for all v and j such that L,; is

1, resource v. is assigned location j.

While it is apparent that the invention herein disclosed is well calculated to
fulfill the objects stated above, it will be appreciated that numerous modifications and
embodiments may be devised by those skilled in the art, and it is intended that the
appended claims cover all such modifications and embodiments as fall within the true

sprit and scope of the present invention.

69

WO 01/35278

(0]

(98]

N w»n b

) o

wm B

U

oA W b

18]

PCT/US00/30913

CLAIMS

o

A method for manuaily/semi-automatically/automatically, and concurrently
discovering resources, resource groups, leaving of resoufces, and determining their
dynamic dependency and other configuration information such as capacities and
equivalency policies and changes thereto, in a network of resources, at cluster
initialization and dynamically during cluster operation, along with supporting a

seamless startup and shutdown of the cluster and all its components.

A method to automatically build and incrementally manipulate an object database
of resources from a discovered set of resources and their dependencies such that
the database mirrors, digests, virtually centralises, partitions, and optimises a
summary the cluster state, and ensures atomicity of changes, and enables

linearisable views of the cluster with benefits.

A method for automatic invocation of one or more optimization solvers via a
standard interface upon detecting state changes in the syétern, including an
automatic representation of resource dependencies as a constraint graph and
translating the constraint graph into a data structure suitable for any of a branch-
and-bound type of search, a mathematical programming method, and an

evolutionary optimisation method, upon receiving an external event.

A method for preprocessing events for optimisations and decisions including
clubbing multiple enabled events, disjoint region or island by island processing,
local optimisations, and creating the solution directly by bypassing the optimizer

module.
A method for postprocessing a solution including its representation as a

dependency graph with an implicit partial order for deployment of the solution, a

translation of the dependency graph into multiple executable instructions and

70

WO 01/35278 PCT/US00/30913

(U9

wn

[« N, TR G S B o)

w)

10.

automatic and fault tolerant execution of such a plan of action, and a provision for

auxiliary solutions in response to a failed execution of an instruction.

A method for partitioning a dependency graph with an implicit partial order into
one or more disjoint regions for simultaneous, ordered, automatic, and fault-
tolerant execution, with execution involving wiring up the repository with ordered
commands, and with further support included for creation of artificial events for

full island reevaluation in response to a poor deployment of a dependency graph.

A method for concurrent and pipelined handling of asynchronous state changes
among resources in a distributed system, including a scheduler and atomic tasks
with no permission for task preemption, parallel and pipelined execution of
modules and their connecting channels, efficiency including no thread spinnng,
and a reduced number of state definitions, state transitions, and simple

synchronisation such that system response is predictable.

A method for concurrent management of a distributed system and simulation of

the same system using the same apparatus.

Apparatus for manually/semi-automatically/automatically, and concurrently
discovering resources, resource groups, leaving of resources, and determining their
dynamic dependency and other configuration information such as capacities and
equivalency policies and changes thereto, in a network of resources, at cluster
initialization and dynamically during cluster operation, along with supporting 2

seamless startup and shutdown of the cluster and all its components.

Apparatus to automatically build and incrementally manipulate an object database
of resources from a discovered set of resources and their dependencies such that
the database mirrors, digests, (virtually) centralises, partitions, and optimises a

summary the cluster state, and ensures atomicity of changes, and enables

71

WO 01/35278 PCT/US00/30913

5 linearisable views of the cluster with benefits like a quick clubbing of muitiple

6 events and updates.

1 11. Apparatus for automatic invocation of one or more optimization solvers via a

2 standard interface upon detecting state changes in the system, including an

3 automatic representation of resource dependencies as a cohstraint graph and

4 translating the constraint graph into a data structure suitable for any of a branch-
5 and-bound type of search, a mathematical programming method, and an

6 evolutionary optimisation method, upon receiving an external event.

| 12. Apparatus for preprocessing events for optimisations and decisions including

2 clubbing multiple enabled events, disjoint region or island by island processing,
3 local optimisations, and creating the solution directly by bypassing the optimizer
4 module. |

1 13. Apparatus for postprocessing a solution including its representation as a
dependency graph with an implicit partial order for deploymexit of the solution, a
translation of the dependency graph into multiple executable instructions and

automatic and fault tolerant execution of such a plan of action, and a provision for

wm A WN

auxiliary solutions in response to a failed execution of an instruction.

1 14. Apparatus for partitioning a dependency graph with an implicit partial order into
one or more disjoint regions for simultaneous, ordered, automatic, and fault-
tolerant execution, with execution involving wiring up the repository with ordered

commands, and with further support included for creation of artificial events for

(O T U VS B S

full island reevaluation in response to a poor deployment of a dependency graph.

1 15. Apparatus for concurrent and pipelined handling of asynéhronous state changes

2 among resources in a distributed system, including a scheduler and atomic tasks
3 with no permission for task preemption, parallel and pipelined execution of
4 modules and their connecting channels, efficiency including no thread spinnng,

WO 01/35278

o

o

w)

O 0 NN v W»n b

16.

17.

18.

19.

PCT/US00/30913

and a reduced number of state definitions, state transitions, and simple

synchronisation such that system response is predictable.

Apparatus for concurrent management of a distributed system and simulation of

the same system using the same apparatus.

A program storage device readable by machine, tangibly embodying a program of
instructions executable by the machine to perform method steps for assisting a
decision support system, said method steps comprising manually/semi-
automatically/automatically, and concurrently discovering resources, resource
groups, leaving of resources, and determining their dynamic dependency and other
configuration information such as capacities and equivalency policies and changes
thereto, in a network of resources, at cluster initialization and dynamically during
cluster operation, along with supporting a seamless startﬁp and shutdown of the

cluster and all its components.

A program storage device readable by machine, tangibly-embodying a program of
instructions executable by the machine to perform method.steps for assisting a
decision support system, said method steps comprising automatically building and
incrementally manipulating an object database of resources from a discovered set
of resources and their dependencies such that the database mi_rrors, digests,
virtually centralises, partitions, and optimises a summary the cluster state, and
ensures atomicity of changes, and enables linearisable views of the cluster with

benefits.

A program storage device readable by machine, tangibly embodying a program of
instructions executable by the machine to perform method steps for assisting a
decision support system, said method steps comprising automatically invoking one
or more optimization solvers via a standard interface upon detecting state changes
in the system, including an automatic representation of resource dependencies as a

constraint graph and translating the constraint graph into a data structure suitable

WO 01/35278 PCT/US00/30913

(o WLV, T - U B S

20.

for any of a branch-and-bound type of search, a mathematical programming
method, and an evolutionary optimisation method, upon receiving an external

event.

A program storage device readable by machine, tangibly embodying a program of
instructions executable by the machine to perform method steps for preprocessing
events for optimisations and decisions, said method steps including clubbing
multiple enabled events, disjoint region or island by island processing, local
optimisations, and creating the solution directly by bypassing the optimizer

module.

74

WO 01/35278 PCT/US00/30913

1/16

Netwaork

Y

T T

'Nen§)ork. Netwoﬂc e

' Adapterl ' Adaprer2| -

‘Node1" s f'NodeHZ -
" Disk Disk B cwclo L

TA‘};”P‘E’_Q | Adapter |

1 Disk L Disk
EAdapterO"

t

Equivalency 1

Network |

1 Adapter 2

Equivalency 2 || Nerwork | Network

’ Adapter 0

3

An example cluster configuration managed by Mounties

Figure

WO 01/35278 PCT/US00/30913

2/16

Equivdency 3

Equivaency 1 Equivalency 2

Dependencies for a Web Server supported by the example cluster of Fig. 1

WO 01/35278 PCT/US00/30913

3/16

Ci uéer Infraétructure

Registry

Event

Fadlity Events

Mounties design and its relationship cluster services for high availability

Figure 3

WO 01/35278 PCT/US00/30913

4/16

K ey 3109‘/\3

Pre-Procesor

Pog-Procesor

Mounties Central: internal design

Figure 4

0O 01/35278 PCT/US00/30913
W

S/16

N = 1001 ®m = 0.0

N ,._._._._._._._._._.:.E_—':—'_’-—-'Tﬁ
:-g . :
i = T
g -t

Figure 5 The performance of the algorithm on a synthetic example
Figure 5

1. Check all vertices and mark every low-level resource. The marked vertices form Frontier(1).
i=1
2. Repeat

E.

2.1. Mark all resources not already included in some frontier.
3.2. For every resource v,
3.2.1 unmark v if dep(v, i) for some i contains
some u & Frontier(1)|J Frontier(2) U...UFrontier(i).
3.3. If more than k resources are marked, unmark at random all except k

3.4. The marked resources constitute Frontier(i+1)
3.5. Repeat

{

d.5.1. For every resource v in Frontier(i+1),
if any of the variables associated with v (z,, I, ; etc)

are found to be fractional, define all of them to be integer variables.
3.5.2. Solve the new ILP

}

Until no more fractional variable are found

4. For every variable defined as an integer variable, . 6
convert it into a fixed value equal to its current value. Figure
5.1 =1+1;

Untii every vertex has been included in some frontier.

Figure 6 Outline of our approach

WO 01/35278 PCT/US00/30913

6/16

Collocation
104

Equivalency

)) X/_A\'\

s~ , .'/ \
@ @@& @ ® @)
Graphical representation of a collection of resources with their
dependencies and collocation constraints.

WO 01/35278 PCT/US00/30913

7/16

Snap shot of

the state of
cluster
Preprocessor
Y
Stopping
Criteria

|
Y

Post-processor

|
v

Solution

Block diagram showing the role of optimizer in the whole system.

Figure 8

WO 01/35278

8/16

tian = towsew = Current time

1
Y

Create Population P of Random CFSGs

v

Compute Fitness Values of CFSGs in P

v

tpn-m -tltl.ﬂ >=T

Yes

PCT/US00/30913

No

Mutste each CFSG in P to Creats an
Intermediary Poputatton P’

|
v

Compute Fitnessvalues of CFSGs in P’
|
Apply selectionon P and P’ 1o get a new P
%

torese = Current time

Qutput the Best CFSG In P

Evolutionary algorithms based optimization technique.

o

Fioure

WO 01/35278 PCT/US00/30913

9/16

Solution Resource Object

pointer to the resource object
(CEGOResource)

a vector of pointers to the resource
that are supported by the resource

a vector of pointers that actually
support the resource

the location of the present resource

Contents of Solution Resource Object.

Figure 10

WO 01/35278 PCT/US00/30913

10 /16

Figure 11

DO 0O WE®

A Feasible Solution Graph (FSG) of the example considered.

Figure 12

WO 01/35278

11 /16

Input FSG
I

Y

For every resource ¢, compute P(c),
the set of resources dependent on ¢

T

Y

Compute C, the set of
¢ with P(c) non-empty

W e

vNo

Randomly choose a ¢ from C

v

makeCrFSG

Assign ¢ to a rondomly-choosen
resource in P(c)

PCT/US00/30913

——

Output CFSG

makeCFSG function.

Figure 13

WO 01/35278

12 /16

Initial configuration

PCT/US00/30913

Intialization

|

Convert it to a FSG by deleting
inconsistent edges

L4

Y

Apply makeCFSG function on FSG

Y

Output CFSG

Initialization scheme.

Figure 14

WO 01/35278

Objectlve Funcllon

13/16

Input CFSG

Mutation Operator Y

Remove randomly choosen edges
with prabability Pa

Y

Make the resulting SG an FSG by
deleting other inconsistent edges

Y

Apply makeCFSG function on FSG

Y

| ouputcrsc B

Mutation operator.

N=100; Pm = 0.01

PCT/US00/30913

0 20 40 60
CPU time in seconds

80

100

Periormzancs of the method

Figure 15

Figure 16

WO 01/35278 PCT/US00/30913

14 /16

ATBRC@ DR—EE R “BeHE)

In addition 1o bringing up resources with positive priorities. other objectives are trying 1o avoid load imbalances among

“similar™ resources, and. when dealing with failures or other events, minimizing the deviation from the existing allocation.

Figure 17

WO 01/35278 PCT/US00/30913

15/16

Converting fractional solution to integer solution

200 400
100 300
Mark every low-level . .
Start resource and include it in > tito 1 > Compl(_t.te1Front1er L ——
Frontier 1; unmark all setito 1)
other resources (See Figure 3)
: |
500 800
700
Is there any vin change all
Frontier(i+ 1), such that varables Solve
some variable associated —.
associated with vhas a with vinto thtlaLnPew
fractional value in the integer
current solution? variables
v 800 800
] Has every
Replace every integer | setito resource been

variable with a fixed value

) included in some
equal to its current value

frontier?

i+1

Ficure 18

WO 01/35278

16 /16

PCT/US00/30913

Computing a frontier

function
block 4107

Are there
more than k
marked
resources?

included in any

frontier?

470

unmark at random all
except kresources

¢ 480

add all marked resources
to Frontier j+1

' 400
l 410
mark all vertices not included in some frontier
420
430 440
any Does some 450
resources dep(vlj)
not visited select a contain a
since resouyc.e t unmark v
vio visit resource no

=
W
L
D

INTERNATIONAL SEARCH REPORT Tt zional application No.

PCT/US00/30913
A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : GO06F17/30

US CL :707/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 707/10, 709/222-226, 706/919, 703/1-28

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,737,728 A (SISLEY et al.) 07 Aprii 1998 (07.04.98) 1-20
AE US 6,178,529 A (SHORT et al.) 23 January 2001 (23.01.01) 1-20
A US 5,617,510 A (KEYROUZ et al.) 01 April 1997 (01.04.97) 1-20
AP US 6,026,403 A (SIEFERT) 15 February 2000 (15.02.00) 1-20

D Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: “T" later documeat published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A" document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“X" document of particular relevance; the claimed invention cannot be
“E" earlier application or patent published on or after the internationai filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L"™ document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “y document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the docurment is
combined with one or more other such documeats, such combination
“O" document referring to an oral disclosure, use, exhibition or other means being obvious (o a person skilled in the art
“P" document published prior to the international filing date but later than the & document member of the same patent family
priority date claimed
Date of the actual compietion of the international search Date of mailing of the international search report
14 Feb. 2001 (14.02.01) 27 MAR 2001
Name and mailing address of the ISA/US Authorized officer

Commissioner of Patents and Trademarks

o i e [oman R Motttz
Washington, D.C. 20231 /

Facsimile No. (703)305-3230 Telephone No. 703-305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

