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| Description
Title of Invention: MODEL STRUCTURE SELECTION
APPARATUS, METHOD, DISAGGREGATION SYSTEM AND

PROGRAM
Technical Field

[0001] The present invention relates to a model structure selection apparatus, method, disag-
gregation system and program. |
Background Art

[0002]  Disaggregation technology is used to disaggregate an aggregate (synthetic) signal,
such as power or current consumption, of a plurality of appliances into an individual
waveform.

[0003]  As an algorithm for disaggregation, any one of algorithms such as Factorial Hidden
Markov Model (FHMM), Combinatorial Optimization, Blind Source Separation and so
forth may be utilized.

[0004]  Graphical state model is a probabilistic model, where a graph denotes a conditional
structure between time periods of given data or distribution. Generally, an appliance is
likely to remain in a current state thereof and an occurrence of state change is com-
paratively rare or frequent, depending on an operation type of the appliance, for
example.

[0005]  As one of typical state model structures for modeling transitions among states, there
is a fully connected state model wherein all the states are fully connected, i.e.,
transition from any state to any other state is allowed, and any state could act as a
beginning state or an ending state.

[0006] In a FHMM based disaggregation approach, such a state model structure with a fixed
number of nodes (states) and fixed number of edges is usually adopted. As a simple
case of FHMM, one appliance corresponds to one factor, wherein each factor
represents a state model structure. FIGs. 10A and 10B respectively illustrate
schematically Hidden Markov Model (HMM) and FMMM in terms of relation
between observation and states of HMM and FHMM.

Note: regarding disaggregation system using FHMM, reference may be made to
Non-Patent Literature 1 (NPTL 1), Patent Literature 1 (PTL 1) and Patent Literature 2
(PTL 2).

[0007] In HMM, one state variable S, (hidden states) at time stamp t, corresponds to ob-
servation data Y, (aggregate waveform data) at time stamp t (See FIG.10A).

[0008] In FHMM, as a state variable S, at time stamp t, there are a plurality of (M) state

variables: S,™, S@, §,®, ..S,@ . and S,™ | and from M number of state variables: S
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D to SM at time stamp t, one observation data Y, is generated (See FIG.10B). That is,
in FHMM, the observation Y, at time stamp t, depends on all state variables S, to S™
at that time stamp.

M number of state variables SV to S;™ may correspond respectively to M number of
appliances. The state values of M number of state variables S,V to S™ correspond re-
spectively to states of M number of appliances (operation state, such as, on or off
state). That is, a state of an m-th factor (m=1,...,M) corresponds to a state of an m-th
appliance corresponding to the m-th factor. In a learning process of FHMM, model pa-
rameters are obtained or updated such that a synthetic waveform Y, at each time stamp
t may be observed.

Assuming that hidden states {S;, S, ...,S,...,St} correspond to observation data {Y,
Ys,...,Ys..., Y}, a joint probability P({S,, Y,}) for a state S, and observation data Y,

can be given as

PSP R LS TAS s P sy e
P

The joint probability P ({S,, Y.}) is a probability that Y, is observed in a state S, that
is a combination of states of M factors.
P (S)) is an initial state probability that at initial time stamp t=1, a combination of

states of M factors is in S;. P(S;) can be calculated as

s =T [Ps™) (2)

m=1

where P (S™)) is an initial state probability that the state S™; of the m-th factor is in
the state at time stamp t = 1.

P (S.1S.,) is a transition probability (conditional probability) that a combination of
states of M-factors: S, at time stamp t-1 transitions to a combination of states of M-

factors: St at time stamp t. P (S, | S.) can be calculated as

M .
P(-Sz|51—1):HP[5:MJ|5'z(f1”) (3)

A graphical representation for this model is illustrated in FIG. 10B. Assuming that
the number of states is K, the transition probability P (S™ | S®™, ) is a K x K square
matrix with a transition probability of the m-th factor from k-th state to k '-th (k' =1, 2,
..) state arranged in k-th row and k'-th column.

P (Y. S) is an observation probability (conditional probability) that Y, is observed at

time stamp t under the condition of a combination of states of M-factors being St.

A K ) e M O
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D is a dimension of Y, C is a D x D covariance matrix, ' denotes matrix transpose, -1
denote inverse matrix, |l denote a determinant, and W™ is a D x K weight matrix.

W is a parameter relating of P ({S,, Y.}) corresponding to a waveform of m-th
appliance. |, is an observation average at time t and is obtained by adding M column
elements corresponding to the state S ™, of the matrix W,

In FHMM, an algorithm such as EM (Expectation-Maximization) algorithm may be
used to estimate parameters from output (observation data) to maximize a log
likelihood of observation data by repeating E (Expectation) step and M (Maximization)
step as illustrated in a flow chart in FIG.11. FIG.11 illustrates a model learning
procedure using EM algorithm.

<Step S1> Set initial parameters.

<Step S2> Acquire aggregate waveform data {Y,, Y,,...,Yr}.

<Step S3> Estimates state (calculate each probability that each factor of FHMM is in
each state. That is, E step calculates an expectation value of likelihood of the model
based on a distribution of latent variables currently estimated. The expectation value of

the likelihood can be given as:

where Q is a function of parameters ¢, given current parameter ¢ and observation
sequences {Y.}. The model parameter estimated in FHMM, may be ¢={ W, g, P,
C}, where ttm=P(S™,) (initial state probability), Pm™=P(S®™ IS ), and C and W™ are
those in the above equations (4) and (5).

<Step S4> M step maximizes Q as a function of ¢™v. The parameters obtained in the
M step are used to determine a distribution of latent variables used in E step of next
iteration.

<Step S5> Checks whether or not model parameter ¢ converges (does not increase).
Steps 3 and 4 are repeated until the expected value converges (does not increase).

Complexity involved in selecting a state model structure (state transition model) for
appliance(s) is relatively high in terms of the number of nodes and the number of edges
in a state space graph of the state model.

Accordingly, instead of performing selection of a structure of a state model, the same
structure of the state model, such as a fully connected state model, is kept used. The
state model (model parameters) may be learned using data of different appliances,
waveform of which are to be synthesized into an aggregate waveform. However,
keeping the same state model structure may lead to poor estimation accuracy in disag-
gregation, if given data obtained from an appliance and a state model structure do not
match each other.

The fully connected state model is one of commonly used state model design in
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FHMM. Since the number of appliances in disaggregation varies in each application, it
is difficult to select a structure (topology) of a state model. Therefore, selecting fully

connected state model may be one of the options.
There are known such a method that learns a state model (parameters) automatically

from given waveform data. This method may fall under a category of unsupervised
learning approach and data driven models. However, it is known that this method
cannot ensure that the state model structure selected is appropriate.

In Patent Literature 3 (PTL 3), there is disclosed an electrical power consumption
measuring system that is capable of determining and presenting power consumed by
individual appliances at a home or premises. The system collects operational state in-
formation about a plurality of appliances, each connected to a power line to which is
also attached a power meter, and it can determine which appliances are on or off, and

how much power each of the appliances consume.
Citation List
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[Patent Literature 2] Japanese Patent Kokai Publication No. 2013-218715A
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Nov./Dec. 1997

Summary of Invention

Technical Problem

In related technologies of disaggregation, a structure of a fully connected state model
does not always suit to all different kind of appliances.

Learning of state model based on an inappropriate state model structure from given
waveform data would result in poor estimation accuracy. More specifically, using fully
connected state models for all appliances in disaggregation system, complexity in es-
timation would be highly increased, which makes it difficult to estimate a state of the
appliance.

The state model selection is very important to learn state model which would enable
a estimation process in disaggregation to smoothly run.

The present invention is invented to solve the above problem and one of the ob-
jectives of the invention is to enable selection of an appropriate state model structure

based on time series of sampled data of a signal with reduced complexity.
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Solution to Problem

According to an aspect of the present invention, there is provided a state model
structure selection apparatus comprising: an input unit that receives time series data
from a data storage unit that stores time series of waveform sample data or feature
values calculated from the sample data; a calculation unit that computes a measure in-
dicating change and repetition characteristics of the time series data, based on sample
value distribution thereof; and a selection unit that selects a state model structure to be
used for model learning and estimation, from state models including a fully connected
state model and a one way direction state model, based on the measure and stores the
selected state model in a storage unit that stores the state model selected.

According to an aspect of the present invention, there is provided a disaggregation
system comprising:

a data storage unit that stores time series of feature values of sample data;

a model storage unit that stores a state model;

a data acquisition unit that acquires waveform sample data of at least one appliance;

a data preprocessing unit that stores time series of feature values that is composed by
the waveform sample data or calculated from the sample data;

a model structure selection unit that receives the time series data from the data
storage unit, computes a measure indicating change and repetition characteristics of the
time series data, based on sample value distribution of the time series data, and selects,
a state model structure to be used for model learning and estimation, from state models
including a fully connected state model and a one way direction state model, based on
the measure to store the selected state model in the model storage unit;

a model learning unit that learns model parameters on the selected state model, from
the waveform time series data acquired and stored in the data storage unit, using the
selected state model stored in the model storage unit; and

an estimation unit that estimates an individual waveform from a waveform into
which respective individual waveforms of a plurality of appliances are aggregated,
using the state model stored in the model storage unit.

According to an aspect of the present invention, there is provided a method for
selecting a state model structure, comprising:

receiving time series data from a data storage unit that stores time series of waveform
sample data or feature values calculated from the sample data;

computing a measure indicating change and repetition characteristics of the time
series data, based on sample value distribution thereof received;

selecting a state model structure to be used for model learning and estimation, from

state models including a fully connected state model and a one way direction state
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model, based on the measure; and

storing the state model selected in a model storage unit.
According to an aspect of the present invention, there is provided a program causing

a computer to execute processing comprising:

receiving time series data from a data storage unit that stores time series of waveform
sample data or feature values calculated from the sample data;

computing a measure indicating change and repetition characteristics of the time
series data, based on sample value distribution thereof received;

selecting a state model structure to be used for model learning and estimation, from
state models including a fully connected state model and a one way direction state
model, based on the measure; and

storing the state model selected in a model storage unit.

In still another aspect of the present invention, there is provided a computer-readable
recording medium (a non-transitory computer-readable recording medium such as a
semiconductor memory (Random Access Memory (RAM), Read Only Memory
(ROM), Electrically Erasable and Programmable Read Only Memory (EEPROM),
flash memory, or the like), Hard Disk Drive (HDD), Solid State Drive(SSD), Compact
Disc, Digital Versatile Disc, and so forth) which stores therein the program according
to the above described aspect.

Advantageous Effects of Invention

According to the present invention, it is possible to select an appropriate state model
structure based on time series of sampled data of a signal with reduced complexity. As
a result, the present invention can contribute to enhancement of accuracy in disag-
gregation. Still other features and advantages of the present invention will become
readily apparent to those skilled in this art from the following detailed description in
conjunction with the accompanying drawings wherein only exemplary embodiments of
the invention are shown and described, simply by way of illustration of the best model
contemplated of carrying out this invention. As will be realized, the invention is
capable of other and different embodiments, and its several details are capable of mod-
ifications in various obvious aspects, all without departing from the invention. Ac-
cordingly, the drawing and description are to be regarded as illustrative in nature, and
not as restrictive.

Brief Description of Drawings

[fig.1]FIG. 1 is a diagram illustrating an arrangement of an example embodiment.
[fig.2A]FIG. 2A schematically illustrates a type 1 (fully connected) state model.
[fig.2B]FIG. 2B shows a transition matrix of a type 1 (fully connected).

[fig.2CJFIG. 2C schematically illustrates typical example of time series data of a type
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1 (fully connected).

[fig.3A]FIG. 3A schematically illustrates a type 2 (one way direction) state model.
[fig.3B]FIG. 3B shows a transition matrix of a type 2 (one way direction).
[fig.3CJFIG. 3C schematically illustrates typical example of time series data of a type
2 (one way direction).

[fig.4]FIG. 4 schematically illustrates a model structure selection unit.

[fig.5]FIG. 5 is a flow chart illustrating procedures of an example embodiment.
[fig.6A]FIG. 6A schematically illustrates time series data of an example case of type 1
state model structure.

[fig.6B]FIG. 6B illustrates Number of Occurrences of Magnitude of FIG.6A.
[fig.6C]FIG. 6C illustrates Correlation Coefficient between Probability of Frequency
of cycles and Probability of Frequency in FIG.6A.

[fig.7A]FIG. 7A schematically illustrates time series data of an example case of type 2
state model structure.

[fig.7B]FIG. 7B illustrates Number of Occurrences of Magnitude of FIG.7A.

[fig. 7C]FIG. 7C illustrates Correlation Coefficient between Probability of Frequency
of cycles and Probability of Frequency in FIG.7A.

[fig.8]FIG. 8 schematically illustrates a system of a second example embodiment.
[fig.9]FIG. 9 schematically illustrates a system of a third example embodiment.

[fig. 10A]FIG. 10A schematically illustrates graphical model of HMM in terms of
relation between observation and states thereof.

[fig. 10A]FIG. 10B schematically illustrates graphical model of FMMM in terms of
relation between observation and states thereof.

[fig.11]Fig. 11 schematically illustrates disaggregation procedure using EM algorithm.
Description of Embodiments

In one of example embodiments, a supervised learning approach is used to learn a
state model (model parameters) from given waveform data of an appliance. It is noted
that model selection means selecting a structure of the state model. In the example em-
bodiments, it is assumed that FHMM model is used.

In one of the example embodiments, there may be provided two types of structures,
wherein a first type is a fully connected state model and a second type is a one way
direction state model, though not limited thereto. Out of these two types of state
models, selection of a particular state model for given waveform data may be
performed.

If a fully connected state model is assumed to be applied to all appliances in disag-
gregation system, then, there would be an increase in complexity of estimation to dis-

aggregate an aggregate waveform of multiple appliances, such as total sum of current
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consumption thereof, into an individual signal waveform of each appliance. That is,
using fully connected state model for all appliances in disaggregation would have such
a disadvantage as an increase in complexity for estimating occurrence of a state at a
relevant moment in the appliance from the aggregate waveform, such as current con-
sumption waveform.

In one of example embodiments, a processor with a memory storing a program
(instructions) therein may be configured to load and execute the program to execute:
input processing that receives time series data from a data storage unit that stores time
series of sample data or feature values calculated from the sample data; calculation
processing that compute a measure indicating change and repetition characteristics of
the time series data, based on sample value distribution thereof; and selection
processing that selects a state model structure to be used for model learning and es-
timation, from state models including a fully connected state model and a one way
direction state model, based on the measure and stores the selected state model in a
storage unit that stores the state model selected. The state model selection out of fully
connected state model and one way direction state model may be performed on a per
appliance basis. For example, using combination of two types of state models, an
appliance A may be assigned fully connected state model and an appliance B may
assigned one way direction state model and so on, respectively, based on given
waveform of each of appliance A and appliance B.

Assigning one of two state model structures on a per appliance basis can reduce
complexity for estimating a waveform of each appliance in disaggregation that dis-
aggregate an aggregate signal waveform of multiple appliances into a signal waveform
of an individual appliance.

Waveform data such as current consumption (for example, RMS (root mean square)
current) of an appliance includes mainly two types of patterns. Accordingly, it can be
categorized into two types. For example, a first type is a step based pattern and the
other is a repetition of same sequence. A step based pattern may include a pattern, such
as a current consumption of an appliance, that takes a form similar to so called a step
function or a staircase function, with horizontal line segments with jumps in-between.
For example, a current consumption of an appliance is kept constant for a time period,
in an appropriate measurement scale of current, and then changes instantly to jump to
another value. In terms of state model structure, this means that a change of state
occurs instantly and a state resides in its own state for some time period.

A second type is a sequence based pattern, in which a current consumption is not
constant and changes frequently in response to operation and working of an appliance.

<Example Embodiment 1>

FIG. 1 is a diagram illustrating an arrangement of a disaggregation system according
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to a first example embodiment. The disaggregation system includes a data acquisition
unit 101, a data preprocessing unit 102, a data storage unit 103, a model structure
selection unit 104, a model learning unit 105, a model storage unit106, an estimation
unit 107, and an output unit 108.

The data acquisition unit 101 acquires waveform data (or aggregate waveform) of
current measured at a main line or a power distribution board (not illustrated in the
drawing) to which one or more appliances may be connected. The data acquisition unit
101 may acquire the waveform data (or aggregate waveform), via one or more commu-
nication networks, such as LAN (local area network) and/or WAN (wide area
network), from a sensor (not illustrated in the drawing) that samples (measures) a
signal and is equipped with a communication function, or from an energy management
controller that acquires the waveform data (aggregate waveform).

The data preprocessing unit 102 calculates (extracts) features from the waveform
data acquired by the data acquisition unit 101 and saves the calculated features in the
data storage unit 103. For example, the data preprocessing unit 102 may calculate a
root mean square (RMS), as a feature value, from the waveform data (i.e., sampled
value of current signal). More specifically, the data preprocessing unit 102 may
calculate time series of RMS values from current waveform data (instantaneous current
value) sampled by a sensor at a predetermined sampling frequency. Alternatively, the
sensor may provide time series data of such as RMS current that the sensor measures
(calculates) to the data acquisition unit 101. Alternatively, the data preprocessing unit
102 may use as the feature value a peak value, an average value, a wave height value,
etc. of the waveform in a time domain, or, the waveform itself in the time domain. The
data preprocessing unit 102 may, if necessary, decimate or interpolate (re-sample) in
time domain sample data of the waveform acquired by the data acquisition unit 101.
Alternatively, the data preprocessing unit 102 may transform the waveform data using
Fourier transform (Fast Fourier Transform (FFT) or Discrete Fourier Transform
(DFT), etc.) into a frequency domain and may calculate a feature value based on
frequency spectrum components. The sensor may provide time series data of
magnitude of power (such as effective power) that the sensor measures to the data ac-
quisition unit 101. In a still further variation, the data acquisition unit 101 may include
the sensor to sample (measure) a signal waveform to obtain the time series data of the
signal waveform or directly connected to the sensor.

Initially model training and state model learning may be executed to acquire
appliance parameters into a probabilistic model that is a state model graph.

The model structure selection unit 104 selects a state model structure (fully
connected state model or one way direction state model) from given waveform data

stored in the data storage unit 103.
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The selection of a state model structure by the model structure selection unit 104 may
be executed prior to a model training phase.

When the training model structure of the state model is selected by the model
structure selection unit 104, the model learning unit 105 may learn model parameter of
the selected structure of the state model and store the trained model(s) for appliance(s)
in the model storage unit 106.

The estimation unit 107 retrieves waveform information from the data storage unit
103 and estimates an individual waveform of each of appliances from an aggregate
(synthetic) waveform data such as current consumption of a plurality of appliances.

The estimation unit 107 may use the above described EM algorithm, though not
limited thereto. In this case, the estimation unit 107 may include a first unit that
performs E-step and a second unit that performs M-step. The first unit (process), based
on the waveform data (Y,..,Yr) stored in the data storage unit 103, may estimate a
state probability in each state of each factor (m) (m=1,...,M) of FHMM stored in the
model storage unit 106, and supply a estimation result to the second unit. The second
unit, using the acquired waveform data: Y, to Y from the data storage unit 103 and the
estimation result from the first unit, may perform learning of FHMM, and update the
model parameter of FHMM: ¢={W®, gt Pm_(C} where '™ is a initial state
probability, P is a transition probability, C is a covariance matrix, and W™ is a char-
acteristic waveform.

The output unit 108 outputs the estimation result (individual waveform of each of ap-
pliances) to an output device such as a display device, a storage device, or a network
device (not illustrated in the drawing), wherein the network device may be configured
to transmit the result to a remote terminal via a network (not illustrated in the drawing).

FIG. 2A illustrates an example of the fully connected state model, wherein four
states, each with a self loop, are represented by four nodes in a directed graph (state
transition diagram), the four nodes being connected by edges with each other. The self
loop of each state is the edge connected to the node itself. Connection from each state
to another state may be related to an analogy that the appliance in any state can change
to another state without travelling a whole path. The self loop may be related to an
analogy that the appliance keeps staying in its own state.

FIG. 2A may be represented by a 4 x 4 state transition matrix A, as illustrated in FIG.
2B, wherein a; ; element representing a state transition probability that i-th state p;
transitions to j-th state p; (i,j=1..,4). It is noted that the number of states is not limited to
4, but can be increased, as per the requirement of the appliance working pattern and
amount of current consumption for particular period of time.

As described above, a step based waveform data (time series data) as schematically

illustrated in FIG. 2C can be suitable to the fully connected state model illustrated in
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FIG. 2A, where a self-loop in each state represents waiting at the same state until a
next state occurs. In FIG. 2C, a horizontal axis indicates time and a vertical axis
indicates a magnitude of a featured value, such as RMS (root mean square) current
computed by the data preprocessing unit 102. That is, in FIG. 2C, a value at each of
sampling points represented by a dot may be a magnitude of a feature value. It is as a
matter of course possible to adopt as the time series data, a waveform data itself
(instantaneously current value sampled by a current sensor), wherein an amplitude
value of the sampled current value or an absolute value of the amplitude value may be
used as a magnitude value.

FIG. 3A illustrates the one way direction state model, with K states (values): py,..., p
x and one waiting state w. The states in FIG. 3A are connected by one edge in one way
direction. This means that transition from one state can be its next state. The topology
is termed as one directional topology. State designated by w is a waiting state, in which
a self-loop represents an occurrence of the same state, in which a probability of oc-
currence of the same state or a next state depends on a trained model.

A state transition matrix B with respect to states (values) p; to px in FIG. 3A is il-
lustrated in FIG. 3B. In a K x K matrix B, b, ,=b,:=b;4=bx ; x= 1, with remaining

elements are all zero.

State transition probability P (S, | S,) for an appliance between states can be given as
follows:

PSS, =pc I Sei=px) =P(S;=wIS;=p)=1(7)

P(S=pilS.i=w)=a (8)

P(S=wiIS. =w)=1-a (9)

Equation (7) indicates that, when a value (operation state) of a state variable S, at

time stamp t-1 is py 4, a probability that a value (state of operation) of a state variable S,
at time stamp t transitions to py is 1, for k = 1 to K, and a probability that, when a value
(operation state) of a state variable S, at time stamp t-1 is pg a value (state of
operation) of a state variable S, at the next time stamp t transitions to w is 1.

Equation (8) indicates that the probability that the value (state of operation) of the
state variable S, at time stamp t becomes p, is a (0 <a <1), when a value (operation
state) of the state variable S, at time stamp t - 1 is w (waiting state).

Equation (9) indicates that the probability that a value (state of operation) of the state
variable S, at time stamp t is w (Waiting state) is 1- o, when a value (operation state) of
the state variable S, at time stamp t - 1 is w (wait state).

The state variables S,and S, in Equations (7)-(9) may be associated with an in-
dividual appliance composing a plurality of appliances whose waveforms are ag-
gregated into an aggregate waveform data. That is, S,and S, in Equations (7)-(9) of the

one way direction state model may be associated with states of a m-th factor (m-th
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appliance) S™, and S™,; out of total M factors (M appliances), at time stamp t and t-1,
in model learning process by the model learning unit 105, after the one way direction
state model is selected by the model structure selection unit 104.

As described above, the one way direction state model represents the sequence of
patterns in the appliance, as illustrated in FIG. 3C. The repetition of sequences is
analogous to design one connection between states. Since sequences of pattern are
repeating, there is a waiting time or a pause time in-between sequences of appliances.
The waiting time can be mapped to a waiting state of the state model structure. A
length of one way states can be changed based on the sequence or pattern of the
appliance. In FIG. 3C, as with FIG. 2C, a horizontal axis indicates time and a vertical
axis indicates a magnitude of a feature value such as RMS current computed by the
data preprocessing unit 102.

FIG. 4 illustrates a model section unit 104. Referring to FIG. 4, the model section
unit 104 includes an input unit 1041 that receives waveform time series data from the
data storage unit 103, a calculation unit 1042 that computes a measure indicating
change and repetition characteristics of the waveform time series data, based on each
sample value (such as magnitude or amplitude) distribution thereof received, a
selection unit 1043 that selects a state model structure to be used for model learning
and estimation from a fully connected state model and a one way direction state model,
for example, based on the measure, and stores the selected state model in the model
storage unit 106.

FIG. 5 is a flow chart illustrating an operation of the model structure selection unit
104.

The following describes procedures for selecting a state model structure based on
two types of state model structures with two examples of time series data.

<Step S101>

Input from the data storage unit 103, a waveform time series data x including [x],
where i=1,2,..,n. In this example, though not limited there to, each sample xi (i=1,..,n)
may be a magnitude of a root mean square (RMS) current value calculated by the data
preprocessing unit 102 from the current waveform data acquired by the data ac-
quisition unit 101. The RMS current value may be obtained from a current sensor.

Or, each sample xi (i=1,..,n) may be a magnitude of a feature value other than a RMS
that is calculated by the data preprocessing unit 102. Alternatively, each sample xi
(i=1,..,n) may be an amplitude (or absolute value of an amplitude) of sample data of
the waveform data acquired by the data acquisition unit 101.

In an example of FIG. 6A, the time series data x includes sample data set: x;, where
i=1,2,..,n(=105). In an example of FIG. 7A, the time series data x includes sample data
x;, where i=1,2,..,n(=45).
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In FIG. 6A and FIG. 7A, a horizontal axis is a time and a vertical axis is a magnitude
of each sample of the time series data x. More specifically, a magnitude may refer to
an absolute value (magnitude) of each sample or a magnitude of each RMS sample of
the time series data x.

It is noted that assuming that appliances whose current are aggregated into an
aggregate waveform are an appliance A and an appliance B, the time series waveform
data of FIG. 6A may be obtained from the appliance A alone in operation, with the
appliance B being stopped, and the time series waveform data of FIG. 7A may be
obtained from the appliance B alone in operation, with the appliance A being stopped.

<Step S102>

Calculate a frequency of occurrence of a sampled value data of the time series data x.

FIG. 6B illustrates magnitude value (horizontal axis) vs. number of occurrences of
that magnitude value (vertical axis) in the time series data of FIG. 6A. The time series
data x=[x;] (i=1,...,105) has five different magnitude values (y,-ys): 1, 1.5, 2, 2.5 and 3.
Occurrence of magnitude values: 1, 1.5, 2, 2.5 and 3 are 20, 15, 35, 10 and 25, re-
spectively.

As shown in FIG. 6A, frequency of amplitude values: 1(=y,) is 4, frequency of
amplitude values: 1.5(=y») is 3, frequency of amplitude values: 2(=y;) is 7, frequency
of amplitude values: 2.5(=y.) is 2, and frequency of amplitude values: 3 (=ys) is 5.

FIG. 7B illustrates magnitude (horizontal axis) vs. number of occurrences of
magnitude value (vertical axis) in time series data of FIG. 7A. The time series data
x=[x;] (i=1,...,45) has three different magnitude values (y-ys): 1, 2, 3. Occurrence of
magnitude values 1, 2, and 3 are 30, 10, and 5, respectively.

As shown in FIG. 7A, frequency of a first magnitude value: 1(=y,) is 6, frequency of
a second magnitude value: 2(=y,) is 10, and frequency of a third magnitude value: 3
(=ys) is 5.

<Step S103>

The total number of cycles is counted.

In the case of FIG. 6A, total number of cycles= 4+3+7+2+5=21.

In the case of FIG. 7A, total number of cycles= 6+10+5=21.

<Step S104>

A probability of number of cycles for magnitude value: y; is calculated by dividing
an occurrence of number of cycles of y; by total number of cycles.

Numberof cyclesol y,

P(y; ]: Total numberof cycles
(10)
In the case of FIG. 6A, the probabilities are given, for y,=1, y,=1.5, y;=2, y,=2.5, and

ys=3, as follows:
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P(y©)=4/21=0.190,
P(y»)=3/21=0.143,
P(y;)=7/21=0.333,
P(y,)=2/21=0.095 and
P(y;9)=5/21=0.238.
In the case of FIG. 7A, the probabilities are given, for y,=1, y,=2, and y;=3, as
follows:
P(y©)=6/21=0.285,
P(y,*)=10/21=0.476, and
P(y;)=5/21=0.238.
<Step S105>
The number of times y; in the time series data x is counted.

In the case of FIG. 6A, the total number of amplitude value: yy, y,, y; y4, and ysare

respectively 20, 15, 35, 10 and 25.

In the case of FIG. 7A, the total number of amplitude value: y, y», and y; are re-
spectively 30, 10, and 5.

<Step S106>

A probability of number of occurrences of y;, is calculated by dividing Number of

occurrences of magnitude value: y; by length of x.

Numberof occurences of v,
plye)= Kmbere /,

Lentghof x
(11)

In the case of FIG. 6A, the probabilities are given, for y,;=1, y,=1.5, y;=2, y,=2.5, and
ys=3, as follows:

P(y,°)=20/105=0.190,

P(y»°)=15/105=0.143,

P(y;°)=35/105=0.333,

P(y4)=10/105=0.095, and

P(ys°)=25/105=0.238.

In the case of FIG. 7A, the probabilities are given, for y,=1, y,=2, and y;=3, as
follows:

P(y,°)=30/45=0.667,

P(y,°)=10/45=0.222, and

P(y;2)=5/45=0.111.

<Step S107>

A correlation coefficient [R] between the probability of number of cycles and the
probability of number of occurrences of y; is calculated.

FIG. 6C shows a scatter map or correlation [R] between the probability of number of
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cycles and the probability of number of occurrences of magnitude value: y; (j=1,...,5).
A horizontal axis indicates the probability of number of occurrences of y; and a vertical
axis indicates the probability of number of cycles of y;. It is observed in FIG. 6C that
there is strong correlation between the probability of number of cycles and probability
of number of occurrences of ;.

FIG. 7C shows a scatter map or correlation [R] between probability of number of
cycles and probability of number of occurrences of magnitude value: y; (j=1.2, and 3).
It is observed in FIG. 7C that there is no correlation between the probability of number
of cycles and the probability of number of occurrences of y;.

<Step S108>

In a case where the correlation coefficient is less than 0.5, a type 2 state model
structure is selected (Step S113).

<Step S109>

In a case where the correlation coefficient is greater than 0.8, a type 1 state model
structure is selected (Step S112).

<Step S110>

In a case where the correlation coefficient is less than or equal to 0.8 and greater than
or equal to 0.5, check if the probability of number of occurrences of y; is greater than
0.5 (Step S 111).

If the probability of number of occurrences of y; is greater than 0.5, the type 2 state
model structure is selected (Step S113).

If the probability of number of occurrences of y; is less than or equal to 0.5, the type
1 state model structure is selected (Step S112).

The type 1 state model is a fully connected state model as illustrated in FIG. 2A, and
the type 2 state model is a one way direction state model, as illustrated in FIG. 3A.

The two types of state model structures are selected and assigned to appliances on a
per appliance basis.

The selection method selects a state model structure with the concept of occurrence
of y; and the number cycles of y;. The correlation coefficient is used to find relationship
between these two variables.

The correlation coefficient [R] between O and 0.5 is a weak correlation between two
given variables.

The type 2 state model structure is selected for this kind of relation (weak cor-
relation) between the probability of number of cycles and the probability of number of
occurrences of y;. The reason for this is that repetition of the same sequence in given
data will have the same y; repeating after each time period. The correlation between the
two variables being less than 0.5 may be used as a threshold value to select the type 2

state model structure.
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Secondly, a moderate correlation [R] between the two variables lies in between 0.5
and 0.8. When the correlation coefficient [R] between the probability of number of
cycles and the probability of number of occurrences of y; lies in this range, the
probability of occurrence of y; is further examined as one extra step (Step S111 in FIG.
5). The given waveform does not clearly fall under type 1 and type 2 structures, and
one more examination (Step S111 in FIG. 5) is required.

The probability of occurrence of any y; being greater than 0.5 will lead to final
selection of the type 2 state model structure.

The reason of adopting 0.5 as a threshold for probability of occurrence of y; is that if
a state is occurring more than 50% of time from the total time period, then it is clear
that the structure of one way direction will be suited better to the given waveform data.
If the probability of occurrence of y; is greater than 0.5, then, in terms of state model
approach, the number of occurrences of one state is more than 50% of the total length
(total time period) of the sampled waveform data length.

In order to reduce complexity, by assigning the type 2 state model structure to this
kind of waveform data (time series data), it is better to assign a single state, such as w
in FIG. 3A that is a waiting state, to such a kind of state that occurs more than 50% of
the total length (total time period) of the time series data length. The single state (w in
FIG. 3A) can make transition to a leading state p; of the type 2 state model structure.

The type 1 model structure will not have a probability 0.5 of occurring the same state
as many times, because the full connected topology has many paths which can be
chosen from one state and each y; will share approximately the same probability of oc-
currence of y; .

<Example Embodiment 2>

FIG.8 schematically illustrates Example Embodiment 2 in which the present
invention is applied to a production system. Although not particularly limited, in the
first exemplary embodiment, the application to a surface mounting system of an
electronic substrate is described as a production system. Referring to FIG. 8, a loader
(substrate supply apparatus) 514 sets the substrate on which cream solder has been
printed in a rack, and automatically supplies the set substrate to a mounter 515. The
mounter 515 automatically mounts electronic components on the board. An unloader
516 automatically stores the mounted board in the rack. A substrate transfer conveyor
514 transports the substrate provided in a series from the loader 514 to the mounter
515 and the unloader 516. The substrate stored in the rack by the unloader 516 is
further transported to a subsequent process such as a reflow process, an inspection
process, an assembly packing process and the like (not illustrated in the drawing).

A current sensor 53 measures a current at a power distribution line from a dis-
tribution board 52 to the loader 514, mounter 515 and the unloader 516, wherein the
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current is a sum of current supplied to the loader 514, the mounter 515 and the
unloader 516, for example. The current sensor 53 transmits the measured current
waveform (digital signal waveform) to the waveform disaggregation apparatus 100 via
the communication device 54. The current sensor 53 may be constituted by a CT
(Current Transformer) (for example, a zero-phase-sequence current transformer
(ZCT)), a Hall element or the like. The current sensor 53 may sample a current
waveform (analog waveform) with an analog-to-digital converter (not shown),
converts it into a digital signal waveform, compresses and encodes it with an encoder
(not shown), and then supplies the signal to the communication apparatus 54 as W-
SUN (Wireless Smart Utility Network) or the like. The current sensor 53 may calculate
RMS(root mean square) current from instantaneously current values sampled at prede-
termined sampling frequency and transmit time series data of RMS current to the
waveform disaggregation apparatus 100 via the communication device 54. The com-
munication apparatus 54 may be disposed in a factory (building). We have found that
the one way direction state model can well be applied as a state model structure for the
mounter 515.

The disaggregation apparatus 100 may be disposed in a factory or may be mounted
on a cloud server connected to the communication device 54 via a wide area network
such as the Internet.

The disaggregation apparatus 100 may select as the state model structure for the
mounter 515, the one way direction state model as illustrated in FIG. 3A, wherein "w"
(waiting state) indicates that the mounter 515 is waiting for pre and post process
(waiting for an arrival of a substrate to be processed from a previous process, or
waiting for unloading a substrate on which the mounting process is finished, to a
subsequent process). Regarding the mounter 515, the time required for circulation from
the waiting state w through states p, to px and returning to the waiting state w, in FIG.
3A, is referred to as a cycle time.

<Example Embodiment 3>

The disaggregation system or apparatus described in the above embodiments may be
implemented on a computer system as illustrated in FIG. 9, for example. Referring to
FIG. 9, a computer system 110, such as a server system, includes a processor (Central
Processing Unit) 111, a memory 112 including, for example, a semiconductor memory
(for example, Random Access Memory (RAM), Read Only Memory (ROM), Elec-
trically Erasable and Programmable ROM (EEPROM), and/or a storage device
including at least one of Hard Disk Drive (HDD), Compact Disc (CD), Digital
Versatile Disc (DVD) and so forth, a display device 113, and a communication
interface 114. The communication interface 114 (such as a network interface controller

(NIC)) may well be configured to communicate with a current sensor or a controller of



18

WO 2019/026231 PCT/JP2017/028230

[0117]

[0118]

an energy management system such as FEMS (Factory Energy Management System)
via LAN and/or WAN, for example. A program for executing the process of the disag-
gregation system in FIG.1 is stored in a memory 112 and the processor 111 reads the

program from the memory to execute the program to realize the disaggregation system.
The disclosure of the aforementioned PTLs 1-3 and NPL 1 is incorporated by

reference herein. The particular exemplary embodiments or examples may be modified
or adjusted within the scope of the entire disclosure of the present invention, inclusive
of claims, based on the fundamental technical concept of the invention. In addition, a
variety of combinations or selections of elements disclosed herein may be used within
the concept of the claims. That is, the present invention may encompass a wide variety
of modifications or corrections that may occur to those skilled in the art in accordance
with the entire disclosure of the present invention, inclusive of claims and the technical
concept of the present invention.
Reference Signs List

101 Data Acquisition Unit

102 Data Preprocessing Unit

103 Data storage Unit

104 Model Selection Unit

105 Model Learning Unit

106 Model Storage Unit

107 Estimation Unit

108 Output Unit

1041 Input Unit

1042 Calculation Unit

1042 Selection Unit
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Claims

A state model structure selection apparatus comprising:

an input unit that receives time series data from a data storage unit that
stores time series of sample data or feature values calculated from the
sample data;

a calculation unit that computes a measure indicating change and
repetition characteristics of the time series data, based on sample value
distribution thereof; and

a selection unit that selects a state model structure to be used for model
learning and estimation, from state models including a fully connected
state model and a one way direction state model, based on the measure
and stores the selected state model in a storage unit that stores the state
model selected.

The state model structure selection apparatus according to claim 1,
wherein the calculation unit computes:

a first probability of number of cycles for each magnitude value in the
time series data, by dividing an occurrence of number of cycles of the
magnitude value by total number of cycles in the time series data; and
a second probability of number of occurrences for each magnitude
value in the time series data, by dividing number of occurrences of the
magnitude value by a length of the time series data;

the calculation unit computes a correlation coefficient between the first
probability and the second probability, and

the selection unit selects either the fully connected state model or the
one way direction state model, based on the correlation coefficient, as
the measure.

The state model structure selection apparatus according to claim 2,
wherein the selection unit selects the fully connected state model when
the correlation coefficient is more than a first threshold value, and
selects the one way direction state model when the correlation co-
efficient is less than a second threshold value that is less than the first
threshold value.

The state model structure selection apparatus according to claim 3,
wherein, when the correlation coefficient is between the second
threshold value and the first threshold value,

the selection unit checks whether or not the second probability is more
than a third threshold value, and
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the selection unit selects the fully connected state model, when the
second probability is less than or equal to the third threshold value, and
selects the one way direction state model when the correlation co-
efficient is more than a third threshold value.

The state model structure selection apparatus according to claim 4,
wherein the third threshold value is equal to the second threshold value.
The state model structure selection apparatus according to any one of
claims 1 to 5, wherein the feature value includes a root mean square
(RMS) value of a current signal.

A disaggregation system comprising:

a data storage unit that stores time series of feature values of sample
data;

a model storage unit that stores a state model;

a data acquisition unit that acquires waveform data of at least one
appliance;

a data preprocessing unit that stores time series of feature values that is
composed by the waveform sample data or calculated from the
waveform sample data;

a model structure selection unit that receives the time series data from
the data storage unit, computes a measure indicating change and
repetition characteristics of the time series data, based on sample value
distribution of the time series data, and selects, a state model structure
to be used for model learning and estimation, from state models
including a fully connected state model and a one way direction state
model, based on the measure to store the selected state model in the
model storage unit;

a model learning unit that learns model parameters on the selected state
model, from the waveform time series data acquired and stored in the
data storage unit, using the selected state model stored in the model
storage unit; and

an estimation unit that estimates an individual waveform from a
waveform into which respective individual waveforms of a plurality of
appliances are aggregated, using the state model stored in the model
storage unit.

The disaggregation system according to claim 7, wherein the model
structure selection unit computes:

a first probability of number of cycles for each magnitude value in the

time series data, by dividing an occurrence of number of cycles of the
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magnitude value by total number of cycles in the time series data; and

a second probability of number of occurrences for each magnitude
value in the time series data, by dividing number of occurrences of the
value by a length of the time series data,

the model structure selection unit computes a correlation coefficient
between the first probability and the second probability, and

the model structure selection unit selects either the fully connected state
model or the one way direction state model, based on the correlation
coefficient, as the measure.

The disaggregation system according to claim 8, wherein the model
structure selection unit selects the fully connected state model, when
the correlation coefficient is more than a first threshold value, and
selects the one way direction state model, when the correlation co-
efficient is less than a second threshold value that is less than the first
threshold value.

The disaggregation system according to claim 9, wherein, when the
correlation coefficient is between the second threshold value and the
first threshold value,

the model structure selection unit checks whether or not the second
probability is more than a third threshold value, and

the model structure selection unit selects the fully connected state
model, when the second probability is less than or equal to the third
threshold value, while the model structure selection unit selects the one
way direction state model, when the correlation coefficient is more than
a third threshold value.

The disaggregation system according to claim 10, wherein the third
threshold value is equal to the second threshold value.

The disaggregation system according to any one of claims 7 to 11,
wherein the feature value includes the sample data of a current
waveform or a root mean square (RMS) value calculated from the
sample data.

A method for selecting a state model structure, comprising:

receiving time series data from a data storage unit that stores time series
of sample data or feature values calculated from the sample data;
computing a measure indicating change and repetition characteristics of
the time series data, based on sample value distribution thereof
received;

selecting a state model structure to be used for model learning and es-
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timation, from state models including a fully connected state model and
a one way direction state model, based on the measure; and

storing the state model selected in a model storage unit.

The method according to claim 13, comprising:

computing a first probability of number of cycles for each magnitude
value in the time series data, by dividing an occurrence of number of
cycles of the magnitude value by total number of cycles in the time
series data;

computing a second probability of number of occurrences for each
magnitude value in the time series data, by dividing number of oc-
currences of the value by a length of the time series data;

computing a correlation coefficient between the first probability and the
second probability; and

selecting either the fully connected state model or the one way direction
state model, based on the correlation coefficient, as the measure.

The method according to claim 14, comprising

selecting the fully connected state model when the correlation co-
efficient is more than a first threshold value, while selecting the one
way direction state model when the correlation coefficient is less than a
second threshold value that is less than the first threshold value.

The method according to claim 15, comprising

checking, whether or not the second probability is more than a third
threshold value, when the correlation coefficient is between the second
threshold value and the first threshold value; and

selecting the fully connected state model, when the second probability
is less than or equal to the third threshold value, while selecting the one
way direction state model, when the correlation coefficient is more than
a third threshold value.

The method according to claim 16, wherein the third threshold value is
equal to the second threshold value.

The method according to any one of claims 13 to 17, wherein the
feature value includes a root mean square (RMS) of a current signal.

A program causing a computer to execute processing comprising:
receiving time series data from a data storage unit that stores time series
of sample data or feature values calculated from the sample data;
computing a measure indicating change and repetition characteristics of
the time series data, based on sample value distribution thereof

received;
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selecting a state model structure to be used for model learning and es-
timation, from state models including a fully connected state model and
a one way direction state model, based on the measure; and

storing the state model selected in a model storage unit.

The program according to claim 19, causing the computer to execute
processing comprising:

computing a first probability of number of cycles for each magnitude
value in the time series data, by dividing an occurrence of number of
cycles of the magnitude value by total number of cycles in the time
series data;

computing a second probability of number of occurrences for each
magnitude value in the time series data, by dividing number of oc-
currences of the value by a length of the time series data;

computing a correlation coefficient between the first probability and the
second probability; and

selecting either the fully connected state model or the one way direction
state model, based on the correlation coefficient, as the measure.

The program according to claim 20, causing the computer to execute
processing comprising:

selecting the fully connected state model when the correlation co-
efficient is more than a first threshold value,

while selecting the one way direction state model when the correlation
coefficient is less than a second threshold value that is less than the first
threshold value.

The program according to claim 21, causing the computer to execute
processing comprising:

checking, whether or not the second probability is more than a third
threshold value, when the correlation coefficient is between the second
threshold value and the first threshold value; and

selecting the fully connected state model, when the second probability
is less than or equal to the third threshold value, while selecting the one
way direction state model, when the correlation coefficient is more than
a third threshold value.

The program according to claim 22, wherein the third threshold value is

equal to the second threshold value.
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18,
Fd
A 11 3
/ ," l{/
Display Pracessor Memory

Lommunication
fnteeface

214

5/6

PCT/JP2017/028230



WO 2019/026231

[Fig. 11]
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