
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0027980 A1

Owens et al.

US 20080027980A1

(43) Pub. Date: Jan. 31, 2008

(54) DATASTRUCTURE AND MANAGEMENT

(75)

(73)

(21)

(22)

(63)

SYSTEM FOR A SUPERSET OF
RELATIONAL DATABASES

Inventors: Timothy C. Owens, New Freedom, PA

Correspondence Address:
ALSTON & BIRD LLP
BANK OF AMERICA PLAZA

(US); Bruce E. Harrison, Baltimore,
MD (US)

101 SOUTH TRYON STREET, SUITE 4000
CHARLOTTE, NC 28280-4000 (US)

Assignee: United Parcel Service of America, Inc.,

Appl. No.:

Filed:

Atlanta, GA (US)

11/838,010

Aug. 13, 2007

Related U.S. Application Data

Continuation of application No. 10/690.322, filed on
Oct. 21, 2003, now Pat. No. 7,305,404.

| Street Alias

: Preferred
: Table 141.1 :

+Field2
+Field.3
-Field

Table 142.

Carrier
Database

132

Preferred .
Table 141.2

Street Alias
Table 142.2

Consignee Alias
Table 143.2

+Field
-Field2
Field3

: +Fieldn

ADDRESS SUPERSET130

Publication Classification

(51) Int. Cl.
G06F 7/00 (2006.01)

(52) U.S. Cl. 707/103 R; 707/E17

(57) ABSTRACT

A computer readable medium for validating data is dis
closed. The computer readable medium provides a computer
readable medium with instructions executable by a computer
to cause the computer to perform the following functions:
receive a subjective representation of an address; re-format
the Subjective representation of the address according to a
set of Standardization rules; locate one or more candidate
representations of the address from source data by recog
nizing that a preferred token is present among any of the one
or more candidate representations of the address; select a
preferred representation of the address from among the one
or more candidate representations of the address based on
the presence of the preferred token; and communicate the
preferred representation of the address to an interface.

Standard
Database Database

133 : : 134

Prefered : Preferred
Table 1413 : Table 1414 :

Street Alias
Table 142.3

-Field
Field2

-Field3
-Fieldin

Consignee Alias
Table 143.3

US 2008/0027980 A1 Patent Application Publication Jan. 31, 2008 Sheet 1 of 11

081 LastEdns SSEHGqw

US 2008/002798.0 A1

55 jno eseqeqeq

0€ LES}}EdInS V LVCI

Patent Application Publication Jan. 31, 2008 Sheet 2 of 11

Patent Application Publication Jan. 31, 2008 Sheet 3 of 11

AMS GUI 324

AMS Client 655

Data Capture .
Workstation

GUI 26

User 28

Primary
AMS Server 510
(Infrastructure .
Server 25)

AMS Client 655

(Application
Server 200)

AMS Client 655

Data Capture
WorkStation

(155
GUI 26
User 28

econdary
AMS Server 520

AMS glient 65

Data Capture
Workstation

GUI 26

User 28

FG. 3

US 2008/002798.0 A1

- System 10

AMS Client 655

Data Capture
Workstation

C 155
GUI 26

User 28

Patent Application Publication Jan. 31, 2008 Sheet 4 of 11 US 2008/0027980 A1

AMS Stand-Alone Service Mode y

computer- is

AMS GUI 600 Address Superset :
324 | Suite of Programs 130

Address Management.
System 110

Patent Application Publication Jan. 31, 2008 Sheet 5 of 11 US 2008/002798.0 A1

Table 40
Field 44

IEEE com/encrym (row i, columnj) 1 3
Field (1,2) Field (1,3)
Field (2.2) Field (2,3)

Row 3 Field (3,1) Field (3.2
Field (42) Field (43)

Record 42

Patent Application Publication Jan. 31, 2008 Sheet 6 of 11 US 2008/002798.0 A1

Field 44
(row, column)

Next-in-ROW
Pointer 342

Next-in-Column
Pointer 344

Column Column Column

Croz 008 008 ALS Oºv Ow Is ISNIH ZIL 1000z

US 2008/0027980 A1

(SN

C)
hu
t

{£I.
ZVOz 09 w O?w. ALS a Ovº Ovº LS – LSHI, III, 1000z | ZI zvoz 80cv VOC; ALS a Ovº Ovº LS LSHIH OIL I000Z || II 980z 01& 01& ALS ?NOORWOV A OVV Ovº LS ISHIH 6 L 1000z | 01

080z 008 008 ALS NOLX?T? a Ovº OVW IS ISHIH : 8L , 1000z| 6 | 0€0Z 009 009 FILS !OOHON A OVV Ovº LS LSHIH LL 1000Z | 8
L?0z 009 009 ALS ALWO ONITTOå WV A OVV Ovº LS LSHIH 9L 1000z || L. L?0z 009 009 ALS , !! OdV = 0°, 0°V IS IS HIJ 9 L 1000z| 9 8z0z 009 009 ALS-3. Owº OVW IS ISHIH SL 1000z| s 8z0z 00€; 00€, ALS a 0°W. Ovº LS ISHIH VL 1000z | # 8Z0Z 00° 00'? ALSH OVV Ovº LS LSHIH EL 1000z | €

8ZOZ ! -H OVV Ovº LS LSHIH ZL 1000z | z {I IH OT ºdÂL. 100 ns uoxio L d?Z || opoN.

Patent Application Publication Jan. 31, 2008 Sheet 7 of 11

Patent Application Publication Jan. 31, 2008 Sheet 8 of 11 US 2008/002798.0 A1

s s :

Patent Application Publication Jan. 31, 2008 Sheet 10 of 11 US 2008/0027980 A1

Matching Module 85 R

i. Capture
: 300

Parse
305

Subjective
Representation

80 troopmas

N

Standardize
- 310

|validate Module
320

-

... f.

t

-

B

Preferred
Representation

90

US 2008/0027980 A1 Patent Application Publication Jan. 31, 2008 Sheet 11 of 11

SVOIHHWV HHL HO HnNHAV | d1,807||

| 8047_L

cHIZ

US 2008/002798.0 A1

DATASTRUCTURE AND MANAGEMENT SYSTEM
FOR A SUPERSET OF RELATIONAL DATABASES

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. applica
tion Ser. No. 10/690,322, entitled “DATA STRUCTURE
AND MANAGEMENT SYSTEM FOR A SUPERSET OF
RELATIONAL DATABASES.” listing Timothy Owens as
the first inventor, filed on Oct. 21, 2003, the contents of
which is incorporated herein in its entirety.

BACKGROUND OF THE INVENTION

0002) 1. Technical Field
0003. The following disclosure relates in general to rela
tional database management systems and more particularly,
to a method and apparatus for processing hierarchical data
across multiple relational databases using sparse matrix
linked lists in a computer network environment.
0004 2. Description of Related Art
0005 The database has been a staple of computing since
the beginning of the digital era. A database refers generally
to one or more large, structured sets of persistent data,
usually associated with a Software system to create, update,
and query the data. In a database, each data value is stored
in a field; a set of fields together form a record; and a group
of records may be stored together in a file.
0006 The first databases were flat; meaning all the data
was stored in a single line of text called a delimited file. In
a delimited file, each field is separated by a special character
Such as a comma. Each record is separated by a different
character, such as a caret () or a tab character. A simple
delimited file may look like this:

0007 Last.First Age Doe,John.26 Smith,Jane.43
Jones.David.34

0008 Each field may be assigned a name or category
called an attribute. In the sample file above, the attributes are
Last, First, and Age. The attribute indicates the type of data
to be stored in each field. For large amounts of data, the
delimited text file can grow very long. Accessing specific
data generally requires searching sequentially through the
entire list. As the capacity of computers and databases
increased, the need for more efficient access and faster
searching techniques led to the development of new data
Structures.

0009. The relational database model was described in the
early 1970s. In a relational database, the data is stored in a
table. A table organizes the data into rows and columns,
providing a specific location (Such as row X, column y) for
each field. Each row contains a single record. The columns
are arranged in order, by attribute, so all the fields in each
column contain the same type of data. The delimited file
above may be represented in table format like this:

Last First Age

Doe John 26
Smith Jane 43
Jones David 34

Jan. 31, 2008

0010. The set of attributes or column headings is some
times referred to as the schema of a table. The table above,
for example, may be described as a table having the schema
(Last, First, Age).

0011. The table format for a database file makes search
ing and accessing data faster and more efficient. The records
(rows) can also be sorted into a new order, based on any one
or more of the columns (fields). Sorting is often used to order
the records such that the most desired data appears earlier in
the file, thereby making searching faster.

0012. As computing speed and capacity increased, data
base tables were able to store larger amounts of data.
Additional records (rows) may be added to describe addi
tional instances. Additional attributes (columns) may be
added to accommodate more types of data about each
instance. As the number of fields increases, the task of
changing the table structure (adding or deleting rows and
columns) becomes more complex and increases the likeli
hood of error. Also, for large tables, the task of sorting the
databased on one or more columns becomes more complex
and time-consuming. Adding diverse types of data in a
single, large, two-dimensional table eventually creates prob
lems such as redundancy, inconsistency, increased storage
requirements, and slower Sorting and computing speeds.

0013 Relational Databases with Multiple Tables. To
accommodate diverse types of fields containing related data,
a relational database model may include multiple tables.
Multiple tables containing related data may be linked
together using a key field. A key field contains a unique
identifier for each record (or row of data). The key field can
contain actual data, Such as a part number or a Social
Security Number, as long as it is unique to that record. This
is sometimes called a logical key. The key field may also be
a Surrogate key, such as a record number, which is a unique
identifier not related to the actual data. Also, a key can be
defined using a single field or a set of fields. A simple key
is based on a single field, whereas a composite key is based
on multiple fields.

0014. In a relational database, related data may be stored
in multiple tables. A key field called a “primary key acts as
a unique reference point for finding a particular record in a
table. For example, the attributes (or column headings) in a
sample “Table A” may be (Name, Age, Social Security
Number, Employee Number). The primary key for Table A
is the Social Security Number field.

0015. In a relational database where data is stored in
multiple tables, another key field called a “foreign key” is
used as a reference point for connecting the tables. For
example, consider another sample table: “Table B having
the schema (Employee Number, Department Name, Date of
Hire, Salary). The primary key for Table B is the unique
Employee Number field. Referring back to the attributes in
Table A, the foreign key for Table A is the Employee
Number field, because it links the records in Table A to the
records in Table B. This relationship between tables can be
illustrated using Entity Relationship Diagrams, where each
table contains the data for a unique entity or category, Such
as “Age' or “Department.”

US 2008/002798.0 A1

Relational Database

Table A (Age) Table B (Dept)

--Name +EmployeeNr
+Age +DepartmentName
--SSN +HireDate
+EmployeeNr +Salary

0016. The shaded “EmployeeNr field is common to both
tables, and it provides a link between the data in the two
Tables. The “EmployeeNr” field is the foreign key in Table
A, but it is the primary key in Table B.

0017 Table A and Table B need not include the same
number of records. For example, the records in Table A may
include the names, ages, Social Security Numbers, and
Employee Numbers of everyone in an organization; and the
records in Table B may be limited to only those in a
particular department or division.

0018. By including discrete sets of data in separate tables,
a relational database can access selected tables for a variety
of purposes. A single relational database may include any
number of tables, from just a few to several thousand tables.
0.019 Query language allows users to interact with a
database and analyze the data in the tables. A query is a
collection of instructions used to extract a set of data from
a database. Queries do not change the information in the
tables; they merely display the information to the user. The
result of a query is sometimes called a view.
0020. The best known query language is Structured
Query Language (SQL), pronounced "sequel. SQL is the
standard language for database interoperability. Queries are
probably the most frequently used aspect of SQL, but SQL
commands may also be used as a programming tool, to
create and maintain a database.

0021 Database Management Systems. A database man
agement system (sometimes abbreviated DBMS) refers gen
erally to an interface and one or computer Software pro
grams specifically designed to manage and manipulate the
information in a database. The DBMS may include a com
plex Suite of Software programs that control the organiza
tion, storage, and retrieval of data, as well as the security and
integrity of the database. The DBMS may also include an
interface, for accepting requests for data from external
applications.

0022. An interface is a computer program designed to
provide an operative connection or interface between a user
and an application, such as a DBMS. An interface for a
DBMS may provide a series of commands that allow a user
to create, read, update, and delete the data values stored in
the database tables. These functions (create, read, update,
delete) are sometimes referred using the acronym CRUD, so
an interface with those commands may be called a CRUD
interface. A database interface that includes a query function
may be called a CRUDQ interface.

0023) A COM-based interface refers to software that is
based upon the Component Object Model. Component
Object Model is an open software architecture developed by

Jan. 31, 2008

Digital Equipment Corporation and Microsoft which allows
for interoperability between various components of a data
base system.
0024. In a relational database including multiple tables,
the database management system (DBMS) is generally
responsible for maintaining all the links between and among
key fields in the various tables. This is referred to as
maintaining the “referential integrity” of the database.
0025 Maintaining referential integrity is often a chal
lenge in a relational database that includes a very large
number of tables. The linked nature of relational database
tables has many advantages, but it may also allow an error
to propagate across tables and throughout the entire data
base, especially when records or key fields are changed or
deleted. The potential for error is compounded for systems
where a variety of users have access to the database through
a CRUD interface.

0026. In a computer network environment, a large data
base may be housed on an central server, with many users or
Subscribers accessing the data from remote locations using
a communication link. The speed of access is often limited
by the type and capacity of the communication link. Dis
tributing a duplicate of the entire database to the remote
location is generally impractical, especially for applications
where the data must be current to be useful. Also, a large
database stored locally would create a substantial burden on
local users because remote systems are typically smaller
than central servers. Storing a large database on a local
system without Sufficient capacity often causes an unaccept
able increase in computing time. The cost of upgrading all
the hardware for every remote location may be too expen
sive, especially for very large user networks.
0027. Updating the data in large relational databases can
be technically challenging and time-consuming, especially
in a network environment where the data must be updated
frequently. Transmitting an updated copy of the entire data
base is often impractical and cost-prohibitive. Also, the cost
and delay of distribution may present a barrier to the
frequency of updates.
0028. Thus, there is a need in the art for an improved
database management system capable of maintaining and
protecting a large Volume of data, distributing frequent
updates in a cost-effective manner, and processing requests
for data quickly and efficiently at all locations within a
network.

0029. Address Databases. The United States includes
more than 145 million deliverable addresses. A database
containing information about all those street addresses is an
example of a very large database. Address databases are
available from private Sources or from government sources,
such as the U.S. Postal Service (USPS).
0030) The USPS offers a variety of address databases to
the public, including a City-State file, a Five-Digit ZIP file,
and a ZIP+4 file. The City-State file is a comprehensive list
of ZIP codes with corresponding city and county names. The
Five-Digit ZIP file, when used in conjunction with the
City-State file, allows users to validate existing five-digit
ZIP code assignments. The ZIP+4 file provides a compre
hensive list of ZIP+4 codes.

0.031) The Delivery Sequence File (DSF) is a computer
ized database developed by the USPS which includes a

US 2008/002798.0 A1

complete, standardized address, Stored in a discrete record,
for every delivery point serviced by the USPS. Each separate
record contains the street address, the ZIP+4 code, the
carrier route code, the delivery sequence number (walk
sequence number), a delivery type code, and a seasonal
delivery indicator. DSF includes sufficient data to accom
plish address validation and standardization. DSF is offered
to licensees who develop certified address hygiene software.
The USPS recently developed a new Delivery Point Vali
dation (DPV) database to replace DSF. The DPV database is
available in its basic format or in its enhanced format, called
DSF, which includes additional address attributes.
0032. Address Standardization. The need to standardize
mailing addresses is a relatively modern development. A
tremendous increase in the Volume of mail, mostly business
mail, caused a serious crisis for the postal service in the early
1960s. The computer was the single greatest force behind
the dramatic increase in mail Volume. The computer allowed
businesses to automate a variety of mailing functions, but
the postal service was not prepared for the explosion in mail
Volume. In response to the crisis, the Zone Improvement
Plan (ZIP) was instituted. By July 1963, a five-digit ZIP
code had been assigned to every deliverable address in the
United States. The ZIP code marked the beginning of the
modern era of address standardization.

0033. Two decades later, the ZIP+4 code was introduced,
adding a hyphen and four more digits to the ZIP code. Today,
mail is often sorted using multi-line optical character readers
that scan the entire address, print an eleven-digit Delivery
Point Bar Code (DPBC) on the envelope, and sort the mail
into trays in the established walk sequence along each
delivery route.
0034 Address standardization transforms a given address
into the best format for meeting governmental guidelines,
such as those established by the USPS. Standardization
affects all components of the delivery address, including the
format, font, spacing, typeface, punctuation, and ZIP code or
DPBC. For example, a non-standard address such as:

0035) John Doe
0036) 123 East Main Street, N.W.
0037 Oakland Center, Suite A-4
0.038 Atlanta, Ga. 30030
may look quite different after standardization:
0039) JOHN DOE
0040 123 E MAIN ST NW STE A4
0041) DECATUR GA 30030-1549

0.042 An address can be subdivided or parsed into its
components, which are sometimes called artifacts. For
example, the individual artifacts in the address above
include a Resident or Consignee (John Doe), a Number
(123), a Pre-directional (E), a Primary Name (Main), a Type
(St), a Post-directional (NW), a Secondary Name (STE), a
Secondary Number (A4), and a city, state and ZIP+4 code
(Decatur Ga. 30030-1549). Dividing an address into its
individual artifacts is useful in many contexts, including
postal sorting and address validation.
0043. Address Validation. Whereas standardization refers
to the way an address is formatted, the process of address

Jan. 31, 2008

validation confirms whether a given address is valid and
current. Address databases, from private or government
Sources, are often used to validate addresses. For example,
the USPS databases discussed above may be used for
comparison purposes to validate addresses.
0044) In addition to governmental postal services, private
businesses such as commercial parcel carriers often develop
and maintain address databases for storing unique and
valuable customer information. Private databases, devel
oped independent of government postal service data, may
represent the next generation in addressing precision and
data storage. In the future, a wider variety of governmental
and private address databases will be available.
0045 USPS address databases are regularly updated with
new data. In addition to regular, periodic updates, the USPS
has also developed a number of correction databases includ
ing NCOA and LACS. The National Change of Address
(NCOA) database contains address change records. The
Locatable Address Conversion System (LACS) contains
new addresses for regions that have undergone a conversion
from rural route to city-type addresses.
0046 Because of growth and changes in population,
address databases generally require frequent updating. As
with any other large database, updating the data in very large
address databases is often technically challenging and time
consuming. Thus, in the context of address databases, there
is a need in the art for an improved database management
System capable of maintaining and protecting large quanti
ties of address data, distributing frequent updates to users or
Subscribers in a cost-effective manner, and processing
requests for address data quickly and efficiently.

SUMMARY

0047 Broadly described, the present invention provides a
computer readable medium with instructions executable by
a computer to cause the computer to perform the following
functions: receive a Subjective representation of the address
stored in a first relational database, wherein the subjective
representation of the address comprises a plurality of arti
facts, including a name, Street address, city, state, and Zip
code artifact; re-format the subjective representation of the
address according to a set of standardization rules; arrange
a plurality of records stored in a second relational database
in one or more second tables in hierarchical order based
upon the values of the source data stored in the plurality of
records; transform one or more of the second tables into a
sparse matrix linked list; locate one or more candidate
representations of the address from Source data stored in the
second relational database by recognizing that a preferred
token is present among any of the one or more candidate
representations of the address; select a preferred represen
tation of the address from among the one or more candidate
representations of the address based on the presence of the
preferred token; and communicate the preferred representa
tion of the address from a third relational database to an
interface.

0048. These and other objects are accomplished by the
apparatuses, methods, and systems disclosed and will
become apparent from the following detailed description of
a preferred embodiment in conjunction with the accompa
nying drawings in which like numerals designate like ele
mentS.

US 2008/002798.0 A1

BRIEF DESCRIPTION OF THE DRAWING

0049. The invention may be more readily understood by
reference to the following description, taken with the accom
panying drawing figures, in which:
0050 FIG. 1 is a block diagram of an address superset
according to one embodiment of the present invention.
0051 FIG. 2 is a block diagram of a generic dataset
according to one embodiment of the present invention.
0.052 FIG. 3 is an illustration of a system architecture
according to one embodiment of the present invention.
0053 FIG. 4 is a block diagram of a stand-alone service
mode according to one embodiment of the present invention.
0054 FIG. 5 is a graphical illustration of a data table
according to one embodiment of the present invention.
0.055 FIG. 6 is a graphical illustration of values in a table,
according to one embodiment of the present invention.
0056 FIG. 7 is a block diagram of a link according to one
embodiment of the present invention.
0057 FIG. 8 is a block diagram of a linked list according
to one embodiment of the present invention.
0.058 FIG. 9 is a table of address data according to one
embodiment of the present invention.
0059 FIG. 10 is a graphical illustration of containment
levels and nodes, according to one embodiment of the
present invention.
0060 FIG. 11 is a table of address data with tokens,
according to one embodiment of the present invention.
0061 FIG. 12 is a flow chart of a matching module
according to one embodiment of the present invention.
0062 FIG. 13 is a table of alias data according to one
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

0063 Reference is now made to the figures, in which like
numerals indicate like elements throughout the several
views.

1. INTRODUCTION

0064. As used in this application, the term “computer
component” refers to a computer-related entity, either hard
ware, firmware, software, a combination thereof, or software
in execution. For example, a computer component can be,
but is not limited to being, a process running on a processor,
a processor itself an object, an executable, a thread of
execution, a program, a server, and a computer. By way of
illustration, both an application running on a server and the
server itself can be referred to as a computer component.
One or more computer components cans reside within a
process and/or thread of execution and a computer compo
nent can be localized on a single computer and/or distributed
between and among two or more computers.
0065 “Computer communications, as used herein,
refers to a communication between two or more computer
components and can be, for example, a network transfer, a
file transfer, an applet transfer, an e-mail, a Hyper-Text

Jan. 31, 2008

Transfer Protocol (HTTP) message, a datagram, an object
transfer, a binary large object (BLOB) transfer, and so on. A
computer communication can occur across, for example, a
wireless system (e.g., IEEE 802.11), an Ethernet system
(e.g., IEEE 802.3), a token ring system (e.g., IEEE 802.5),
a local area network (LAN), a wide area network (WAN), a
point-to-point system, a circuit Switching system, a packet
Switching system, and so on.

0066 “Logic, as used herein, includes but is not limited
to hardware, firmware, software and/or combinations of
each to perform one or more functions or actions. For
example, based upon a desired application or needs, logic
may include a Software controlled microprocessor, discrete
logic Such as an Application-Specific Integrated Circuit
(ASIC), or other programmed logic device. Logic may also
be fully embodied as software.
0067 “Signal,” as used herein, includes but is not limited
to one or more electrical or optical signals, analog or digital,
one or more computer instructions, a bit orbit stream, or the
like.

0068 “Software,” as used herein, includes but is not
limited to, one or more computer readable and/or executable
instructions that cause a computer, computer component
and/or other electronic device to perform functions, actions
and/or behave in a desired manner. The instructions may be
embodied in various forms like routines, algorithms, stored
procedures, modules, methods, threads, and/or programs.
Software may also be implemented in a variety of execut
able and/or loadable forms including, but not limited to, a
stand-alone program, a function call (local and/or remote), a
servelet, an applet, instructions stored in a memory, part of
an operating system or browser, and the like. It is to be
appreciated that the computer readable and/or executable
instructions can be located in one computer component
and/or distributed between two or more communicating,
co-operating, and/or parallel-processing computer compo
nents and thus can be loaded and/or executed in serial,
parallel, massively parallel and other manners. It will be
appreciated by one of ordinary skill in the art that the form
of software may be dependent on, for example, requirements
of a desired application, the environment in which it runs,
and/or the desires of a designer or programmer or the like.

0069. An “operable connection’ (or a connection by
which entities are “operably connected') is one in which
signals, physical communication flow and/or logical com
munication flow may be sent and/or received. Usually, an
operable connection includes a physical interface, an elec
trical interface, and/or a data interface, but it is to be noted
that an operable connection may consist of differing com
binations of these or other types of connections sufficient to
allow operable control.

0070 "Database,” as used herein, refers to a physical
and/or logical entity that can store data. A database, for
example, may be one or more of the following: a data store,
a relational database, a table, a file, a list, a queue, a heap,
and so on. A database may reside in one logical and/or
physical entity and/or may be distributed between two or
more logical and/or physical entities.
0.071) The terms “fuzzy” or “blurry” refer to a superset of
Boolean logic dealing with the concept of partial truth; in
other words, truth values between "completely true’ and

US 2008/002798.0 A1

“completely false.” Any specific theory or system may be
generalized from a discrete or crisp form into a continuous
or fuZZy form. A system based on fuZZy logic or fuZZy
matching may use truth values that have various degrees
similar to probabilities except the degrees of truth do not
necessarily need to Sum to one. In terms of applying fuZZy
matching to a string of alpha-numeric characters, the truth
value may be expressed as the number of matching charac
ters in the string, for example.
0072 The systems, methods, and objects described
herein may be stored, for example, on a computer readable
media. Media may include, but are not limited to, an ASIC,
a CD, a DVD, a RAM, a ROM, a PROM, a disk, a carrier
wave, a memory Stick, and the like. Thus, an example
computer readable medium can store computer executable
instructions for a method for managing transportation assets.
The method includes computing a route for a transportation
asset based on analysis data retrieved from an experience
based travel database. The method also includes receiving
real-time data from the transportation asset and updating the
route for the transportation asset based on integrating the
real-time data with the analysis data.
0073. It will be appreciated that some or all of the
processes and methods of the system involve electronic
and/or Software applications that may be dynamic and
flexible processes so that they may be performed in other
sequences different than those described herein. It will also
be appreciated by one of ordinary skill in the art that
elements embodied as Software may be implemented using
Various programming approaches such as machine language,
procedural, object oriented, and/or artificial intelligence
techniques.
0074 The processing, analyses, and/or other functions
described herein may also be implemented by functionally
equivalent circuits like a digital signal processor circuit, a
Software controlled microprocessor, or an application spe
cific integrated circuit. Components implemented as Soft
ware are not limited to any particular programming lan
guage. Rather, the description herein provides the
information one skilled in the art may use to fabricate
circuits or to generate computer Software to perform the
processing of the system. It will be appreciated that Some or
all of the functions and/or behaviors of the present system
and method may be implemented as logic as defined above.
0075) Furthermore, to the extent that the term “includes”

is employed in the detailed description or the claims, it is
intended to be inclusive in a manner similar to the term
“comprising as that term is interpreted when employed as
a transitional word in a claim. Further still, to the extent that
the term 'or' is employed in the claims (for example, A or
B) it is intended to mean “A or B or both. When the author
intends to indicate “only A or B but not both, the author will
employ the phrase “A or B but not both.” Thus, use of the
term “or herein is the inclusive use, not the exclusive use.
See Bryan A. Garner, A Dictionary Of Modern Legal Usage
624 (2d ed. 1995).

2. EXEMPLARY EMBODIMENT

0.076 The system of the present invention is often
described herein, by way of example, in the context of its
usefulness as an address management system. Although the
address-related example may be described in considerable

Jan. 31, 2008

detail, it is not the intention of the applicants to restrict or in
any way limit the scope of the invention to Such detail.
Additional uses, applications, advantages, and modifications
of the inventive system will be readily apparent to those
skilled in the art. Therefore, the invention, in its broader
aspects, is not limited to the specific details, the represen
tative apparatus, and illustrative examples shown and
described. Accordingly, departures may be made from Such
details without departing from the spirit or scope of the
general inventive concept.

0077. Example apparatuses, methods, systems, pro
cesses, and the like, are now described with reference to the
drawings, where like reference numerals are used to refer to
like elements throughout. In the following description, for
purposes of explanation, numerous specific details are set
forth in order to facilitate a thorough understanding of the
apparatuses, methods, systems, processes, and the like. It
may be evident, however, that the apparatuses, methods,
systems, processes, and the like, can be practiced without
these specific details. In other instances, well-known struc
tures and devices are shown in block diagram form in order
to simplify the description.

3. DATA STRUCTURE

The Superset

3.1. A Data Superset

0078. In one embodiment, as illustrated in FIG. 2, the
system of the present invention may include a data Superset
30. The data superset 30 may include four or more discrete,
relational databases 31-35 (including Databases One. Two,
Three. Four, ... N, as shown). The databases 31-35 may be
connected to the others in a network of database links 36. In
one embodiment, one of the databases 31-35 may be des
ignated as primary and the others as secondary. Together, the
several relational databases 31-35 may be controlled by a
database management system in order to create a single data
Superset 30 that is capable of storing large amounts of data
and executing complex queries in an ordered way across all
the relational database tables.

0079. The relational databases 31-35 may contain a set of
tables 40 (including Tables A, B, C, ... N, as shown). The
tables 40 may contain a set of data fields 44 (including
Field1, Field2, Field3, ... Fieldin, as shown). The tables 40
may be linked together using one or more keys 48 in a
manner known in the art of relational databases.

0080. In one embodiment, each database 31-35 may have
a common data structure. In this aspect, each relational
database 31-35 may include the same number of tables 40,
and each table may include the same number of fields 44.
The common data structure among the various tables 40 in
the data superset 30 may provide a degree of flexibility that
allows the storage and processing of any type of data.

0081. The common data structure in one embodiment
may include arranging the records in one or more tables 40
in hierarchical order, in a series of levels from general to
specific, based upon the value of the stored data, as
described in more detail below. The common data structure
may also include storing the tables 40 as a sparse matrix
linked list.

US 2008/002798.0 A1

3.2. An Address Superset
0082 One exemplary embodiment of the data superset is
illustrated in FIG. 1. An address superset 130 may include
several discrete, relational databases, including in one
embodiment a postal database 131, a carrier database 132, a
standard database 133, and a plan database 134. The data
bases 131-134 may be connected to the others in a network
of database links 36, as shown, to form an address Superset
130. The relational databases 131-134 may be controlled by
an address database management system.
0083. The relational databases 131-134 may contain a set
of data tables 140, including in one embodiment a Preferred
Table 141, a Street Alias Table 142, and a Consignee Alias
Table 143, as described in more detail below. The Preferred
Tables 141 may also include one or more fields for storing
a token to act as a unique identifier for a particular record.
The tables 141, 142, 143 may contain a set of data fields 44
(including Field1, Field2, Field3, ... Fieldin, as shown). The
tables 141, 142, 143 may be linked together using one or
more keys 48 in a manner known in the art of relational
databases.

0084. In one embodiment, each database 131-134 may
have a common data structure. In this aspect, each relational
database 131-134 may include the same number of tables
141-143, and each table may include the same number of
fields 44. The common data structure among the various
tables in the address data superset 130 may provide a degree
of flexibility that allows the storage and processing of any
type of data. The common data structure in one embodiment
may include arranging the records in one or more tables in
hierarchical order, in a series of levels from general to
specific, based upon the value of the stored address data, as
described in more detail below. The common data structure
may also include storing or re-formatting the tables as a
sparse matrix linked list.

4. SYSTEMARCHITECTURE

0085 FIG. 3 is a representational diagram of a system 10
according to one embodiment of the present invention. The
system 10 may include an infrastructure server 25, one or
more computer networks, an application server 200, and one
or more clients 655 distributed in a multi-tiered server-client
relationship. The one or more computer networks facilitate
communications between the infrastructure server 25, the
application server 200, and the one or more clients 255. The
one or more computer networks may include a variety of
types of computer networks such as the internet, a private
intranet, a private extranet, a public Switch telephone net
work (PSTN), a wide area network (WAN), a local area
network (LAN), or any other type of network known in the
art.

0086). As shown in FIG. 3, a primary AMS server 510
may reside on an infrastructure server 25. A graphical user
interface such as an AMS GUI 324 may communicate with
the primary AMS server 510 as shown.
0087. The next tier in the system 10 in one embodiment
may include several AMS clients 655 and a secondary AMS
server 520. Some of the AMS clients 655 may include a data
capture workstation 155 and a GUI 26 for one or more users
28. In one embodiment, an application server 200 may
reside on an AMS client 655.

Jan. 31, 2008

0088. Descending from the secondary AMS server 520,
in one embodiment, the next tier may include several AMS
clients 655, each including a data capture workstation 155
and a GUI 26 for one or more users 28.

0089. The infrastructure server 25 in an exemplary
embodiment, may include a central processor that commu
nicates with other elements within the infrastructure server
25 over a system interface or bus. Also included in the
infrastructure server 25 may be an input and display device
for receiving and displaying data. The input and display
device may be, for example, a keyboard or pointing device
used in combination with a monitor. The infrastructure
server 25 may further include a memory, which may include
both read only memory (ROM) and random access memory
(RAM). The ROM may be used to store a basic input/output
system (BIOS), which contains the basic routines that help
transfer information between and among elements of the
infrastructure server 25.

0090. In addition, the infrastructure server 25 may
include at least one storage device. Such as a hard disk drive,
a floppy disk drive, a CD-ROM drive, or an optical disk
drive, for storing information on various computer-readable
media, Such as a hard disk, a removable magnetic disk, or a
CD-ROM disk. Each of these types of storage devices may
be connected to the system bus by an appropriate interface.
The storage devices and their associated computer readable
media may provide non-volatile storage. It is important to
note that the computer readable media described above may
be replaced by any other type of computer readable media
known in the art. Such media include, for example, magnetic
cassettes, flash memory cards, digital video disks, and
Bernoulli cartridges.
0091. A number of program modules may be stored by
the various storage devices within the RAM. Such program
modules include an operating system and one or more
applications. Also located within the infrastructure server 25
may be a network interface, for interfacing and communi
cating with other elements of a computer network. One or
more components of the infrastructure server 25 may be
geographically remote from other processing components.
Also, one or more of the components may be combined. The
infrastructure server 25 may include additional components
for performing the functions described herein.
4.1. A Database Management System (DBMS)
0092 According to one embodiment of the present inven
tion, a database management system (DBMS), referring
again to FIG. 3, may reside on a primary AMS server 510
(the infrastructure server 25), an Application Server 200, or
a secondary AMS server 520. The DBMS may include an
interface 600 and a suite of programs 500, similar to the
AMS 110 shown in FIG. 4.

0093. By way of example, a database management sys
tem (DBMS) of the present invention may be described in
the context of its usefulness as an address management
system (AMS) 110. Like the DBMS, the AMS 110 may
reside on a primary AMS server 510 (the infrastructure
server 25), an Application Server 200, or a secondary AMS
server 520. In one embodiment, the AMS 110 may include
an interface 600 and a suite of programs 500, as shown in
FIG. 4.

0094 FIG. 4 is a block diagram of a system 10 according
to one embodiment of the present invention that depicts an

US 2008/002798.0 A1

AMS 110 operating in Stand-Alone Service Mode 640. The
system 10 as shown includes a computer 15 that provides
access to one or more users 28 through an AMS GUI 324.
4.2. An Address Management System (AMS)
0.095 The address management system (AMS) 110 may
be specifically designed to control the organization, storage,
and retrieval of data in an address data superset 130, and to
control the security and integrity of the address superset 130
and its component databases. The interface 600 may be
configured to accept and process requests for data received
from external applications (not shown). In one embodiment,
the interface 600 may be a COM-based interface with the
capacity to create, read, update, and delete records. The
interface 600 may also include a query function for per
forming operations on the data stored in the address Superset
130.

5. FINDING A PREFERRED REPRESENTATION

0096. In one embodiment, the system 10 of the present
invention may include a database management system
(DBMS) for a data superset 30. The DBMS may also be
useful as a database management system for any type of
data, including address data. In the context of address data,
the DBMS may be referred to as an address management
system (AMS) 110. In any capacity, the management system
110 may include an interface 600 and a suite of programs
SOO.

0097. In one embodiment, the suite of programs 500 may
include one or more computer Software programs for receiv
ing raw data in a “subjective representation,” analyzing
values stored in a database by using an interface 600 to
execute one or more queries, and producing output data in
a “preferred representation.”
0098. The term “subjective representation' is used herein
to indicate raw data entered or submitted by someone whose
understanding of the data may be personal to that individual.
Subjective representations tend to be ambiguous or incom
plete, which may be problematic when the raw data is
needed to perform computing steps. For example, a person
may enter a date of birth using the Subjective representation
“12-4-63. In the United States, this date may indicate
“December 4th, whereas in Europe it may signify "12th
April.” A computer component may interpret the year as
1963 or 63. These ambiguities have a serious impact on the
accuracy of the raw data. To remove the ambiguities and
incompleteness, a Suite of programs 500 may be designed to
convert the subjective representation into a “preferred rep
resentation.” Such a suite of programs 500, for example,
may include a system or query for determining whether the
user is entering the date in U.S. format or in European
format. A suite of programs 500 may also include a rule or
logic routine setting the 0s as the default century for all years
entered, unless the user enters a four-digit year. Designing
and building a suite of programs 500 requires forethought
and planning about the types and formats of raw data to
expect in a particular system.
0099. A subjective representation may be processed by a
suite of programs 500 into a preferred representation that is
generally unrelated to the raw data. For example, a customer
may order a printer cartridge using the Subjective represen
tation “Acme LX-709 Color where Acme is the printer

Jan. 31, 2008

manufacturer, LX-709 is the model number of the printer,
and color ink is desired. In a system for processing printer
cartridge orders, for example, the cartridges may be cata
logued and stored using a ten-digit cartridge serial number.
The serial number is not directly related to the text and digits
in the raw data; however, the serial number is the “preferred
representation' to be printed on a purchase order, so the
seller can locate and ship the desired cartridge. To match the
subjective raw data to the correct serial number, a suite of
programs 500 may be written to interpret any variety of
potential indicators Submitted by a customer. Suppose the
first four digits of every cartridge serial number corresponds
to a list of printer manufacturers who build machines
capable of using that type of cartridge. A Suite of programs
500 may include a stored procedure for comparing the
printer manufacturer name entered to the names in the list,
and finding the corresponding first four digits of the car
tridge serial number. This represents a first step toward
finding the ten-digit serial number to print on the purchase
order.

0.100 Another example of a subjective representation is a
common Street address. On a mail piece, a person may write
the subjective representation “Doe, 123 East Main Street
N.W., Suite A-4, Atl 30030.” Several parts of the address are
ambiguous or incomplete, including the addressee "Doe.”
the abbreviation “Atl.” and the missing State name. If this
data were destined for processing by a computer or sorting
equipment, these ambiguities may result in the loss, delay, or
incorrect delivery of the mail piece. To remove the ambi
guities and incompleteness, a Suite of programs 500 may be
designed to convert the Subjective representation into a
preferred representation. Such a suite of programs 500, for
example, may include a program or a stored procedure for
comparing the written address to a commercially available
computer database of street addresses and ZIP codes.
0101 The examples described above refer to an attribute
or parameter—a date, a part number, an address. A param
eter may be characterized in a variety of formats, including
the subjective representations shown above and other rep
resentations depending on the context of use. The system of
the present invention, in one embodiment, uses tabulated
data to manipulate and modify the way a parameter is
characterized, as described in more detail below.
0102) In one embodiment, the a database management
system (DBMS) of the present invention, my include a suite
of programs 500, which may include one or more of the
following general procedures: (1) an Enhancement module:
(2) a Publish & Subscribe module; and (3) a Matching
module. The suite of programs 500 may include additional
components and procedures, of course, for performing the
other functions described in this application.
5.1. An Enhancement Module

0103) In one embodiment, the suite of programs 500 of
the present invention may include an Enhancement module
suitable for use in optimizing the structure and order of the
data stored in the relational databases 31-35 of a data
superset 30. Each database 31-35 in a data superset 30 may
include millions of records. The tasks of reading, updating,
and searching through all or most of the records in each
database 31-35 may be improved and expedited, in one
embodiment, by optimizing the structure of the data.
0.104 Database tables including a large number of
records consume large amounts of memory and require

US 2008/002798.0 A1

lengthy computing times for performing sorting, searching
and other analytical operations. A simple example of
enhancing or optimizing data is to sort the records based
upon one or more attributes (columns), to place the records
in order, increasing or decreasing. For large tables with
multiple attributes, however, a simple record sort does not
yield significant time savings or searching efficiency.

0105. In one embodiment, one kind of Enhancement
module in the suite of programs 500 includes a procedure for
transforming a database into a sparse matrix linked list. A
linked list includes a link designed to direct a query from one
field to the next, sometimes using the link to bypass or skip
irrelevant fields. A sparse matrix includes no repeated field
values in Subsequent records. Instead of repeating a first
value, the Subsequent fields are left blank and Subsequent
values are presumed to be equal to the first value unless and
until a different value appears.
0106 For example, in FIG.9, the ZIP code field includes
a repetitive entry (the ZIP code 20001) in each of the thirteen
records. In one aspect, the system 10 of the present invention
uses the concept of a sparse matrix to eliminate repetitive
entries and thereby save memory and shorten computing
times. In FIG. 9, for example, the ZIP code for Node 1 may
be populated by the five digit ZIP code 20001. In the system
10 of the present invention, where a table may be trans
formed into a sparse matrix, the subsequent ZIP code fields
would be made empty or zeroed. In FIG. 9, the ZIP code
field for Node 2 through Node 13 would be empty or zero;
and the value in those fields would be presumed to be 20001.
0107. In a sparse matrix the value encountered in the
sequence of records is presumed to remain the same until a
different value appears. Because many repeated values may
be eliminated in this way, the table or matrix is described as
being sparse. Any attribute in a table may be made sparse by
applying the rules for creating a sparse matrix.

0108) A small portion of a model database table 40 is
shown in FIG. 5. Each row contains a single record 42. Each
field 44 may be located by referring to the row and column
numbers. The field located in Row 3 of Column 2, for
example, may be described as Field (3.2) or simply (3.2).
This field-naming convention is of value in many database
operations where pointing to a particular field is desired.

0109) The table 40 of FIG. 6 is an example of a sparse
matrix. Column 2, for example, begins with the value
“Smith' in Row 1 and is followed in subsequent records
(row) by a zero value. Accordingly, the value of Column 2
is understood to be “Smith' in subsequent rows 2, 3, and 4.
0110. The row-and-column naming convention for fields

is helpful when a table is organized as a linked list. In one
type of linked list, a link 340 may include a field 44, a value
46, and one or more pointers, as shown in FIG. 7 and FIG.
8. In one type of link340, shown in FIG. 7, a next-in-column
pointer 344 is included, along with a next-in-row pointer
342. The pointers 344, 342 include instructions to the next
field containing a non-Zero value. Because they point to the
next field (as opposed to the last field) these pointers 344,
342 are referred to as forward pointers. Some types of linked
lists also include backward pointers, with instructions
directed toward the last or previous non-zero field value. In
one aspect, the system 10 of the present invention may
include only forward pointers.

Jan. 31, 2008

0111 FIG. 8 is a representation of the links 340 between
the sparse matrix values shown in FIG. 6. The instructions
in link 340 for Row 4, Column 1, for example, would
quickly direct the analysis to the next non-Zero value located
in Row 4, Column 3. The instructions contained in link 340
allow an analytical process Such as a search query to bypass
or skip the empty fields in a sparse matrix. By skipping
empty fields, the searching time is greatly reduced, produc
ing faster results from the query.
0.112. In one embodiment, a suite of programs 500
including an Enhancement module may be used to transform
any table in a data Superset 30 into a sparse matrix linked
list. A data superset 30 stored as a sparse matrix linked list
may consume far less memory, and therefore may be more
suitable for distribution as a duplicate superset 330 to
subscriber clients 255. When a data table has been trans
formed into a sparse matrix linked list (SMLL) table, the
Enhancement module may finalize or otherwise "wrap' the
SMLL table to prepare it for distribution and use by other
system components and elsewhere.
0113. As shown in FIGS. 5-8, a duplicate superset 330
may reside on the one or more clients 255 in the system 10.
The transmission or “publication of a duplicate superset
330 throughout the system 10 may be accomplished using a
Publish & Subscribe module, as discussed below.
0114. The Enhancement module in one embodiment may
also monitor the condition of tables as new data is added,
maintain the tables in optimal condition by repeating the
transformation procedure as necessary, and communicating
with other system components regarding the condition of
tables and their availability to be shared or distributed to
subscriber clients 255. In this aspect, the Enhancement
portion of the suite of programs 500 may be configured to
interact and communicate with other system components to
maintain data tables in optimal condition for fast and effi
cient searching.
5.2. A Publish & Subscribe Module

0.115. In one embodiment, the suite of programs 500 of
the present invention may include a publication and Sub
Scription program or procedure to control and facilitate the
transfer of data between components of the system 10 of the
present invention. As illustrated in FIG. 3, the system 10
may include an infrastructure server 25, one or more com
puter networks 230, an application server 200, and one or
more clients 255 distributed in a server-client relationship.
0116. In a server-client network environment, such as the
ones illustrated in FIGS. 5-9 for example, a duplicate
superset 330 may reside on the one or more subscriber
clients 255 in the system 10. A Publish & Subscribe module
may be configured to monitor and control the publication of
a duplicate superset 330 throughout the system 10 to clients
255 who are Subscribers.

5.3. A Matching Module
0.117) In one embodiment, the suite of programs 500 of
the present invention may include a Matching module 85
configured to receive raw data in a subjective representation
80, analyze the values stored in a data superset 30 using an
interface 600 to execute one or more queries, and produce
output data in a preferred representation 90. The general
steps in an exemplary Matching module 85 are shown as a
flow chart in FIG. 12.

US 2008/002798.0 A1

0118. The steps of finding and displaying data in its
preferred representation 90, based on a subjective represen
tation 80, in one embodiment may involving the following
general functions: capture 300, parse 305, standardize 310,
validate 320, update 380, combine 390, and release 395. One
skilled in the art may understand these general steps need not
necessarily occur in this order, and some steps may be
repeated as necessary, according to one or more specific
algorithms.

0119) 5.3.1. Capture. The step referred to as capture 300
in one embodiment may involve capturing or otherwise
receiving the subjective representation 80 (input data).

0120 5.3.2. Parse. The step referred to as parse 305 in
one embodiment may involve parsing the Subjective repre
sentation 80 into its component parts. The task of parsing
generally involves dividing a sentence or character string
into its component parts. In the context of a street address,
for example, the address written on an envelope represents
a subjective representation 80 that may be divided into many
different components or artifacts through the process of
parsing. A parsing algorithm or program generally receives
the input as a sequence or string of characters and then
applies a set of rules to accomplish the division by category.

0121 One example of a subjective representation 80 is a
street address. For example, a U.S. street address such as
“123 East Main Street N.W., Suite A-4” may include a
number of discrete artifacts, including a Number (123), a
Pre-directional (East), a Primary Name (Main), a Type
(Street), a Post-directional (NW), a Secondary Name
(Suite), and a Secondary Number (A-4). A street address
may also be parsed into components based upon political
Subdivisions such as cities, counties and states, or it may be
parsed to a finer level of detail or granularity, based upon the
ZIP+4 code, for example.

0122). By parsing a subjective representation 80 and stor
ing its component parts in separate fields of a table, for
example, the Matching module 85 of the present invention
may allow users to access and Summarize (or "abstract’) the
data in a variety of ways, depending upon the need and the
application. For example, a user may request a Summary or
abstract of address data based upon the five-digit ZIP code
in a particular state. If address data has been parsed and the
ZIP code is stored in a discrete field, the step of abstracting
the data based upon ZIP code involves a relatively simple
search and retrieval. Storage of the artifacts in separate fields
may allow the user to search and retrieve data using any
level of abstraction. In this aspect, the invention provides a
great deal of flexibility to various users with various needs.

0123 5.3.3. Standardize. The step referred to as standard
ize 310 in one embodiment may generally involve re
formatting a Subjective representation 80 according to a set
of standardization rules. Standardization in general may
involve many characteristics of a Subjective representation
80, including the font, spacing, typeface, punctuation,
whether a field may include alphabetic or numeric characters
or both, the length of the field, the size or capacity of the
field, and other aspects.

Jan. 31, 2008

0.124. In the context of a street address for example, a
subjective representation 80 may be written as:

0125 John Doe
0126 123 East Main Street, N. W.
0127 Oakland Center, Suite A-4
0128 Atlanta, Ga. 30.030
The step referred to as standardize 310 may alter the font,

spacing, punctuation, and other aspects of the Subjec
tive representation 80 above, such that it may appear
after standardization as:

0129 JOHN DOE
0.130) 123 E MAIN ST NW STE A4
0131 DECATUR GA 30030-1549

0.132. The standardize step 310 in one embodiment may
include a variable set of rules, depending upon the type of
address and the region or country. Foreign addresses, for
example, may have very different rules governing the stan
dard presentation of various address artifacts. For example,
the following subjective representations 80 may be stan
dardized:

Subjective Representation 80: Standardized:
Prielle Kelia. U. 19-15 BUDAPEST XI
Budapest H-2100 PRIELLE KELIAU. 19-35
Hungary 1117

HUNGARY
Subjective Representation 80: Standardized:
W. Delle Terme LARGO DELLE TERME
Rome OO1 OO OO153 - ROMARM
Italy ITALY
Subjective Representation 80: Standardized:
103 New Oxford 103 NEW OXFORD ST
London WC1A1 PG LONDON
Great Britain WC1A1PG

UNITED KINGDOM

0.133 The standardize step 310 may be performed in
conjunction with the parse step 305 so that the parsed
artifacts are stored in the tables in their standardized format.
In one embodiment, the standardize step 310 may be per
formed on each separate artifact after parsing, while in
another the parse step 305 may take place first. As with the
other general steps in the Matching module 85, the stan
dardize 310 and parse 305 steps may take place in any order,
and may be repeated.
0134) 5.3.4. Validation Module. The step referred to as
validate 320 in one embodiment may involve a complex
series of steps undertaken to validate a Subjective represen
tation 80, as described in more detail below. Validation 320
generally involves checking the accuracy and recency of a
subjective representation 80. Validation 320 may also
include comparing a Subjective representation 80 to the
values stored in tables in the superset 30 and thereby
searching for a preferred representation 90.
0135 5.3.5. Update. The step referred to as update 380 in
one embodiment may involve adding newly acquired data to
one of the relational databases in the Superset 30. In this
aspect, the superset 30 by and through the operation of the
suite of programs 500 may be updated continually based

US 2008/002798.0 A1

upon new data. The update step 380 may occur at any time
during the procedures executed by the Matching module 85.
0136. In one embodiment, the update step 380 may add
new data to one of the tables in the superset. The data may
be placed in records located near the end of a table. In one
aspect of the invention, the table may or may not be
recompiled before the tasks of the enhancement module are
next executed. The tables as designed do not require fre
quent compiling.

0137) 5.3.6. Combine. The step referred to as combine
390 in one embodiment may involve the reversal of the parse
step 305, in that the separate artifacts of a subjective
representation 80 are re-assembled. In one embodiment, the
combine step 390 is executed after the validate step 320 has
produced the artifacts of a preferred representation 90.
0138 5.3.7. Release and Display. The step referred to as
release 395 in one embodiment may involve the transmis
sion or sending of the preferred representation 90 (or a
preferred token) to one or more components of the system 10
of the present invention. In this aspect, the release step 395
may be described as returning or publishing the results of the
search query. The release step 395 may also include or be
followed by a display step, in which the preferred represen
tation 90 may be displayed on a monitor or other type of user
display. The release step 395 may further include or be
followed by a printing step, in which the preferred repre
sentation 90 may be printed onto a label, in a list, as part of
a report, or otherwise sent in readable text format as directed
by the system.
5.4. Validation Module

0.139. The validation step 320 in one embodiment may
generally include comparing a Subjective representation 80
to the values stored in tables in the Superset 30 and thereby
searching for a preferred representation 90. In the context of
an address management system 110, address validation 320
generally involves comparing the Subjective representation
80 of an input address to the values stored in address
databases 131, 132, 133 in an address superset 130 (as
shown in FIG. 1), and identifying the preferred representa
tion 90 for the address.

0140. As illustrated in FIG. 1, the address superset 130
may include in one embodiment a postal database 131, a
carrier database 132, a standard database 133, and a plan
database 134. Each relational database 131-134 may include
in one embodiment a preferred table 141, a street alias table
142, and a consignee alias table 143. The preferred tables
141 may also include one or more fields for storing a token
to act as a unique identifier for a particular record.
0141 Postal Database 131 in one embodiment may
include address data from a postal service. Such as the U.S.
Postal Service (USPS). The United States includes more
than 145 million deliverable addresses. The USPS offers a
variety of address databases to the public which are updated
regularly, including the Delivery Sequence File (DSF). DSF
is a computerized database developed by the USPS which
includes a complete, standardized address, stored in a dis
crete record, for every delivery point serviced by the USPS.
Each separate record contains the street address, the ZIP+4
code, the carrier route code, the delivery sequence number
(walk sequence number), a delivery type code, and a sea
sonal delivery indicator. The USPS recently developed a

Jan. 31, 2008

new Delivery Point Validation (DPV) database to replace
DSF. The DPV database is available in its basic format or in
its enhanced format called DSF (which includes additional
address attributes). Many foreign countries and regions offer
similar databases of postal address records, including
addresses standardized according to the particular needs and
rules of the country. The postal database 131 of the present
invention may be configured to receive and store any of a
variety of databases containing postal addresses.

0142. Within the postal database 131, the preferred table
141.1 may be configured to accept and store the preferred
representation for the delivery points served by a postal
authority. The preferred representation may be stored as a
whole, or as separate artifacts, or both. The postal preferred
table 141.1 may be one of the primary sources of preferred
representations 90 of addresses.
0.143 A postal authority may also provide street alias data
that may be accepted and stored in street alias table 142.1.
An alias, as the name implies, refers to the situation where
several different identifiers refer to the same object. A
common example of a street alias occurs when a road has
multiple names: a local street name, a state route number,
and a federal highway number. For example, U.S. Highway
1 may be referred to as State Route 16 in a particular state,
and also as Maple Street when it passes through a particular
town. In the region where all three names apply, the Street
names Maple Street, State Route 16, and U.S. Highway 1 are
street aliases. In addition, a list of street aliases may also
include S.R. 16, Route 16, U.S. 1, Route 1, or Maple Drive,
for example, if those names are in use. The USPS databases
often include street alias data. The street alias table 142.1
may be configured to accept and store the street alias data
provided by a postal authority.

0.144 Other features and artifacts are also subject to
aliasing. For example, a formal company name may include
terms that are not typically included by the public. For
example, the Acme Shoe Corporation may be referred to in
everyday parlance as Acme Shoes or simply Acme. The
problem created by different names or aliases for a value to
be stored in a database arises when a user of the database
wants to retrieve that value specifically. A search for Acme
Shoe Corporation, for example, may not find records that
simply say Acme Shoes.
0145 The consignee alias table 143.1 may be configured
to accept and store the consignee alias data provided by a
postal authority, when it is available. A postal authority may
or may not provide consignee alias data. In some jurisdic
tions, like the United States, the postal service may not
distribute data revealing the identity of residents (consign
ees) in connection with a street address. The data fields
shown for the consignee alias table 143.1 (Field1, Field2.
Field3, ... Fieldin) are preceded by a hyphen instead of a +
sign, to indicate these fields may be blank.

0146 The tables 141.1, 142.1, 143.1 of the postal data
base 131 may be linked or otherwise interconnected using
one or more key fields, in a manner known in the art of
relational databases.

0147 Carrier Database 132 in one embodiment may
include address data from a private source, such as a
commercial freight carrier, parcel service, or private data
base provider. Some delivery companies and other service

US 2008/002798.0 A1

providers develop and maintain address databases, some of
which may be made available. The carrier database 132 of
the present invention may be configured to receive and store
any of a variety of private databases containing address
information.

0148 Within the carrier database 132, the preferred table
141.2 may be configured to accept and store the preferred
representation for the delivery points contained in a private
source database. The preferred representation may be stored
as a whole, as separate artifacts, or both.
0149 Aprivate source may also provide street alias data
that may be accepted and stored in street alias table 142.2.
Some delivery companies and other service providers
develop and maintain lists of street aliases for the territories
they serve. The street alias table 142.2 may be configured to
accept and store the Street alias data provided by any private
SOUC.

0150. The consignee alias table 143.2 may be configured
to accept and store the consignee alias data provided by a
private Source. In addition to street aliases, many delivery
companies and other service providers develop and maintain
lists of users or customers (consignees) that may include
aliases. The consignee alias table 143.2 may be configured
to accept and store the consignee alias data provided by any
private source.

0151. The tables 1412, 142.2, 143.2 of the carrier data
base 132 may be linked or otherwise interconnected using
one or more key fields, in a manner known in the art of
relational databases. Similarly, the carrier database 132 may
be linked or otherwise interconnected with the postal data
base 131.

0152 Standard Database 133 in one embodiment may
include alias data, generally. During the upload and instal
lation of the postal database 131 and the carrier database
132, the system 10 of the present invention may include a
tool to harvest Street alias and consignee alias information
and store it in the standard database 133. The standard street
alias table 142.3 may be configured to accept and store street
alias data. The standard consignee alias table 143.3 may be
configured to accept and store consignee alias data. In this
aspect, the standard database 133 in one embodiment may
act as a repository for alias data.
0153. Because the standard database 133 is generally for
alias data, it may or may not include any preferred data in
table 141.3. The data fields for the standard preferred table
141.3 (Field1, Field2, Field3, ... Fieldn) are preceded by a
hyphen instead of a + sign, to indicate these fields may be
blank.

0154) The tables 141.3, 142.3, 143.3 of the standard
database 133 may be linked or otherwise interconnected
using one or more key fields, in a manner known in the art
of relational databases. Similarly, the standard database 133
may be linked or otherwise interconnected with the carrier
database 132 and the postal database 131.
0155 Data stored in the standard database 133 may be
used in a process known as blurry or fuZZy matching. Literal
matching requires an exact match, such as Acme and Acme.
FuZZy matching reveals partial matches. Such as Acme,
ACM, Acmed, and Ch2Acme. Alias data may be generally
useful in a system where fuzzy matching is allowed or

Jan. 31, 2008

desired, because aliases by their very nature contain subtle
differences yet represent the same object. The consignee
aliases discussed above, for example, (Acme Shoe Corpo
ration, Acme Shoes, Acme) also represent fuZZy matches of
one another.

0156 Fuzzy matching may be useful in the context of
address standardization because the Subjective representa
tion 80 of an address may include one or more ambiguous
or incorrect address artifacts. For example, the subjective
representation 80“Doe, 123 East Main Street N.W., Suite
A-4, Atl 30030” is incomplete and includes several ambi
guities. The addressee “Doe' may be matched with a pre
ferred consignee “John W. Doe' through the process of
fuZZy matching, using data stored in the consignee alias
table 143.3 of the standard database 131. This example may
illustrate how the databases 131-134 of the address superset
130 work together, because the standard database 131 may
not include any preferred data in table 141.3. Accordingly,
to complete the address validation 320, the address man
agement system 110 may be configured to access related
data in tables stored in other databases 131, 132,134 in order
to find a preferred representation 90 for the address. Because
the tables 141, 142, 143 are linked, the search for a match
may use the ZIP code “30030” alone or together with the
street primary “Main” in order to find records similar to the
subjective representation 80. In this aspect, the address
management system 110 of the present invention in one
embodiment may be configured to include programs or
Structured query language for finding a match among any of
the data stored in the address superset 130.
0157 Another tool that may be useful in the context of
address standardization and validation is known as Soundex.
Soundex provides a method of finding words that sound
alike. SoundeX began as a filing system and it uses a simple
phonetic algorithm to reduce proper names and other words
into a four-character alpha-numeric code. In one type of
Soundex algorithm, the first letter of the code may corre
spond to the first letter of a word or proper name, and the
remainder of the code may consist of three digits derived
from the sound of the remaining syllables. In this way, the
phonetic sound of a word or name is quantified. The
Soundex function is useful because computers are generally
better at comparing numbers than comparing letters. In one
embodiment, the validation step 320 of the present invention
may include a SoundeX algorithm.
0158 Plan Database 134 in one embodiment may include
the input data, including one or more Subjective represen
tations 80. In this aspect, the process of adding the subjective
representation data into the plan tables 141.4, 142.4, 143.4
may involve the steps of capturing, parsing, and standard
izing described herein, so that the input data may be properly
divided and standardized in preparation for validation.
0159. In one embodiment, the input data may be stored
primarily in plan preferred table 141.4. Because the plan
database 134 is generally for input data, it may or may not
include any data in the Street alias and consignee alias tables
142.4, 143.4. The data fields for these tables are preceded by
a hyphen instead of a + sign, to indicate these fields may be
blank.

0.160 5.4.1. Arranging Data by Hierarchy. In one aspect,
the address management system 110 of the present invention
takes advantage of the hierarchical nature of address data in

US 2008/002798.0 A1

order to quickly and efficiently locate records similar to the
subjective representation 80. In this aspect, the address
management system 110 may include a method of preparing
or arranging the stored data according to its inherent hier
archy. The data may be arranged in a series of levels,
described below, from general to specific or in any order
particularly Suitable for the application. In use, the address
management system 110 may be configured to include
programs or stored query procedures capable of finding a
match among any of the data stored in the address Superset
130.

0161 In general, a query may be used to extract the
desired data from a database, without changing or altering
the data itself. Because queries generally find and display the
desired data to a user, the result of a query is sometimes
referred to as a view. Also, a query may be used to create a
result (a view) without displaying it to the user. In this
aspect, a query may be used to arrange data (usually
temporarily) into a new structure that is different from the
table structure. A query may be used to create a new data
structure that has particular advantages, such as improved
logic in the arrangement, faster Sorting and searching, or
moving a particular data field to a more primary position, for
example. The validation step 320 of the present invention in
one embodiment may include one or more queries to arrange
data in the Superset. One such arrangement involves a
process called tokenization.
0162 5.4.2. Tokenization. An example of a postal pre
ferred table 141.1 is depicted in FIG. 9. Each row represents
a single record and includes multiple fields. Each separate
field is stored in a separate column containing like attributes.
The attributes of the table are shown across the top as the
column names. Preferred Table 141.1 as shown in FIG. 9,
may be described as having the schema (ZIP Token, Street,
Type, Lo, Hi, Odd/Even, Consignee, Sec, Lo, Hi, +4).
0163 The Token column as shown includes a postal
token 71 as a unique identifier for each unique address.
Notice, the two records containing the address “440 First
Street, Suite 600 have been assigned postal token T6. The
other street address records in other rows of the table
represent different addresses, and therefore have different
tokens.

0164. Address data by its very nature is hierarchical. The
various artifacts of an address vary from the general to the
specific. For example, the five-digit ZIP code by itself
provides a general idea of an address location, whereas a
complete address is normally understood as including the
resident or consignee and all street data as well as a ZIP code
or ZIP+4, provides a very specific address location.

0165. In one embodiment, the validation step 320 of the
present invention may include a query or algorithm for
placing the City-State-ZIP combination at the top of an
address data hierarchy. City-State combinations, of course,
may include multiple ZIP codes. At the next level of
specificity are the street artifacts, including a pre-directional,
street name, Street type, and post-directional. Such a street
address may look like 100 East Main Street, SW. The street
artifacts may be further subdivided by using one or more
street address ranges which may be purely numeric as in the
range 240-298 or may be alphanumeric depending upon the
range field. Beyond the regular street artifacts are the
secondary artifacts including a secondary and number, Such

Jan. 31, 2008

as Suite 100 or Apartment1C. The additional four digits in
a ZIP+4 code may provide yet another level of specificity.
Some databases may also include an additional two-digit
delivery sequence number.
0166 The validation step 320 of the present invention, in
one embodiment, may include a method of ordering the
records in a table of a Superset into a hierarchical structure,
from general to specific. The resulting relationships and
grouping of records may be defined within the validation
step 320 in terms of the concepts known as containment and
inclusion. A node number has been assigned to each record
of the table 141.1, as shown in FIG. 9. The node numbers
may help demonstrate the concepts of containment and
inclusion among the address records.
0.167 5.4.3. Containment Levels. After the validation
step 320 has re-ordered the records of table 141.1, the new
hierarchical arrangement of the records may be illustrated as
shown in FIG. 10. The Node numbers in FIG. 10 are
distributed according to the level of specificity displayed in
the data. For example, Level 1 in FIG. 10 includes Node 1,
which represents the record including the address range
“440-498 First Street. Of all the records shown in FIG. 9,
the record located at Node 1 is the most general and thus is
placed in Level 1. The next level of specificity, Level 2.
includes Node 2. The record at Node 2 includes a single
street address (440 First Street) but no secondary artifacts
(no Suite number).
0168 Level 3 in FIG. 10 includes those addresses with
Suite numbers or ranges, but no consignee name. These
records include Nodes 3, 11, 4, 12, 5, and 13. The nodes in
Level 3 are arranged from left to right in order of the
increasing Suite number. In this aspect, the system 10 may be
configured to order the address data from left to right in
addition to placing them in different levels of specificity.
Level 4 includes those records having a name in the con
signee field.
0169. The concepts of containment and inclusion are
demonstrated by the connections between the various nodes
in FIG. 10. Node 10 is connected to Node 3 because “Suite
310 is a subset of the range “Suite 100-400.” Similarly,
Nodes 6, 7, and 8 are connected to Node 5 because their suite
numbers “500 and 600 are a subset of the range in Node 5
(Suite 500-600). Finally, Node 9 is a subset of Node 13
because the address is the same, but Node 9 includes a
consignee name.

0170 The nodes as shown in FIG. 10 illustrate the
containment and inclusion concepts that may be enforced in
one embodiment of the validation step 320 of the present
invention. Node 1 on Level 1"contains' all the nodes below
it, because all the other address records fall within the range
stated for Node 1. Conversely, all the nodes below Level 1
are “included within (or contained by) Node 1. Similarly,
Node 2 on Level 2 contains all the nodes below it, and Node
3 contains Node 10. Node 5 contains Nodes 8, 6, and 7
because they are subsets of the range stated in Node 4. Node
13 contains Node 9.

0171 In one embodiment, the validation step 320 of the
present invention may assign a token to each unique record.
The tokens also demonstrate the concepts of containment
and inclusion. FIG. 11 is a tabular representation of the
hierarchy table illustrated in FIG. 10. The table in FIG. 11

US 2008/002798.0 A1

shows all the nodes and tokens at each level, beginning with
Level 1. The token T1 can be described as containing all the
other tokens in the hierarchy table. Notice, however, the
token numbers may be different from the node numbers.
Token T3 contains token T9. Token T5 contains tokens T6
and T7. Notice that token T6 is used for both Nodes 6 and
7 because the addresses are equivalent.

0172 The concepts of inclusion and containment can be
readily seen in FIG. 11. For example, comparing the data at
Node 3 and Node 10, the reader will notice that “Suite 310'
in Node 10 lies between the range of suite numbers (100
400) stored in Node 3. This relationship demonstrates the
inclusion and containment concepts that are also illustrated
in FIG. 10.

0173. In one embodiment, there is no limit on the number
of containment levels that may be applied during the vali
dation step 320 of the present invention. An address records
may contain a large number of artifacts. A table may include
a large number of records. Considering the vast number of
records that may be included in a table, the hierarchical
organization of records may be used to greatly increase the
speed of accessing and analyzing the data. The containment
levels and token numbers described for the thirteen nodes
illustrated in FIGS. 14, 15, and 16 may be applied to millions
of address records and ranges, in any one of the tables of an
address superset 130. In the same way that preferred table
141.1 in FIG.9 may be ordered according to hierarchy, the
other tables 141, 142, 143 in the address superset 130 may
also be organized using nodes and containment levels.
0.174. In addition to the re-arrangement of data using
containment levels, each table may be transformed into a
sparse matrix linked list, as described herein, to further
increase the speed of processing.

0175 5.4.3. Preferred Tokens. Referring again to the
table 141.1 in FIG. 9, Nodes 6 and 7 were both given the
identical token T6 because they represent the same physical
location. Notice, the consignee names in Nodes 6 and 7 are
“APC and “AM POLLING CMTE, respectively. These
alternative names for the addressee are consignee aliases. In
other words, APC is an alias for AM POLLING CMTE. As
discussed herein, Such a consignee alias may be stored in
one or more consignee alias tables 143 in address Superset
130.

0176) Similarly, street alias data may be stored in one or
more street alias tables 142 of the address superset 130. The
fields in a street alias table 142, for example, may be
arranged as shown in FIG. 13. The example street alias table
142 in FIG. 13 includes the several street aliases for Sixth
Avenue in New York City, which is also known as Avenue
of the Americas. A street alias table 142 may include such a
list in a format that is readily accessible when comparing
street address records.

0177. In one aspect of the present invention, the address
database management system 10 may be instructed to mark
one of the alias representations as the “preferred represen
tation. Applying the various street aliases and consignee
aliases to the data stored in the address data superset 130,
one of the tokens T4081 (for example) may be marked as the
preferred representation. As such the preferred token 70 may
include a marker such as a “p' for preferred, such that the
preferred token 70 may look like T4081p. The system 10 of

Jan. 31, 2008

the present invention may recognize that all address records
with the token T4081 are equivalent. In one embodiment,
identifying a preferred token 70 and marking it (T4081p, for
example) may be helpful to ensure the preferred artifacts
(marked T4081p) of a particular street address are always
returned in response to a query.
0.178 In this aspect of the invention, a validation step 320
in one embodiment may be configured to arrange Stored data
into new hierarchical data structures using queries. One or
more tokens may be marked or otherwise identified as a
preferred token 70 in one embodiment in order to identify
the preferred representation of an address or a particular
artifact.

0179. In a related aspect, the management system of the
present invention may be configured to pass tokens (instead
of text) among various components of the system 10 of the
present invention. Exchanging tokens may be more efficient
and less prone to errors than exchanging long Strings of
address text. In this aspect, the use of tokens as unique
identifiers further speeds the processing of queries, report
ing, and other types of analysis on data stored in a Superset.
0180. In one embodiment, the validation step 320 may be
executed as part of a suite of programs 500 of the address
management system 110 (see FIG. 7, for example). The
validation step 320 may be performed on a duplicate super
Set 330 and results released to the AMS client 655. In an
address management system 110 applying one or more of
the techniques described herein, the elapsed time from the
capture step 300 to the release step 395 may be in the range
of one hundred to two hundred milliseconds.

0181 5.4.5. Comparing. The validation step 320 in one
embodiment generally includes comparing a subjective rep
resentation 80 to the values stored in tables in the superset
30 and thereby searching for a preferred representation 90.
In the context of an address management system 110.
address validation 320 generally involves comparing the
subjective representation 80 of an input address to the values
stored in address databases 131, 132, 133 in an address
superset 130 (as shown in FIG. 1), and identifying the
preferred representation 90 for the address.
0182. In the block diagram shown in FIG. 12, the vali
dation step 320 occupies a single block. As described herein,
however, the validation step 320 may involve a large number
of steps and procedures for validating an address. The
preceding sections have outlined a number of data manipu
lation routines and searching methods, while the process of
comparing the input data to the stored data is described
generally. More specifically, the comparing process of the
validation step 320 in one embodiment may include the
numbered steps listed below.
0183 (1) Store the input data (subjective representations
80) in the plan database 134, in preferred table 141.4 (refer
to FIG. 1).
0.184 (2) Compare the input data stored in preferred table
141.4 to the data values stored in the other preferred tables
141.1, 141.2, and 141.3 (if any). Recall, in one embodiment,
each table in the Superset may have been transformed into a
sparse matrix linked list, re-arranged using nodes and hier
archical containment levels, and/or tokenized as described
above, to facilitate fast and efficient searching in each table.
The process of comparing may including locating one or

US 2008/002798.0 A1

more candidate representations from among the data values
stored in the other preferred tables 141.1, 141.2, 141.3.
Finding a match may include, in general, selecting the
candidate representation having the closest resemblance to
the selective representation 80 being searched.

0185 (a) If a match is found between the input data
and the preferred table data, then locate the correspond
ing preferred token 70 and proceed to execute the
update 380, combine 390, and release 395 steps shown
in FIG. 12.

0186 (b) If no match is found, proceed to step (3)
below.

0187 (3) Compare the street name input data stored in
preferred table 141.4 to the street alias data values stored in
the street alias tables 142.1, 142.2, and 142.3. The process
of comparing may including locating one or more candidate
street aliases from among the data values stored in the Street
alias tables 141.2, 142.2, 142.3. Finding a match may
include, in general, selecting the candidate Street alias most
closely associated with a preferred token.

0188 (a) If a match is found between the street name
input data and the Street alias table data, then locate the
preferred token 70 identifying the preferred street alias,
substitute the corresponding street alias for the street
name in the preferred table 141.4, and using the street
alias repeat step (1) above.

0189 (b) If no match is found, proceed to step (4)
below.

0.190 (4) Compare the consignee name input data stored
in preferred table 141.4 to the consignee alias data values
stored in the consignee alias tables 143.1 (if any), 143.2, and
143.3. The process of comparing may including locating one
or more candidate consignee aliases from among the data
values stored in the consignee alias tables 143.1, 143.2,
143.3. Finding a match may include, in general, selecting the
candidate consignee alias most closely associated with a
preferred token.

0191 (a) If a match is found between the consignee
name input data and the consignee alias table data, then
locate the preferred token 70 identifying the preferred
consignee alias, Substitute the corresponding consignee
alias for the consignee name in the preferred table
141.4, and using the consignee alias repeat step (1)
above.

0.192 (b) If no match is found, proceed to step (5).
0193 (5) Return an exception code 400 to the user 28 or
application.

0194 (6) In one embodiment, the validation step 320
may include the step of displaying a list of possible matches
(addresses, street aliases, consignee aliases) and permitting
the user 28 to execute a visual comparison and manually
select (if appropriate) one of the possible matches as the
preferred representation.

0.195 (a) If a manual selection is made, the comparing
process would proceed to execute the update 380,
combine 390, and release 395 steps shown in FIG. 12.

0.196 (b) If no manual selection is made, the input data
and the exception code 400 may be transferred out of
the validation system for further processing.

Jan. 31, 2008

0197) The method described in Step (2) above, for find
ing a preferred address representation, may include the
additional steps of
0198 (a) parsing the subjective representation into one or
more discrete artifacts;
0199 (b) selecting one of the one or more discrete
artifacts:

0200 (1) locating one or more candidate artifacts from
among the Source data by comparing the one discrete
artifact to the Source data;

0201 (2) selecting a preferred artifact from among the
one or more candidate artifacts, the preferred artifact
having the closest resemblance to the one discrete
artifact:

0202 (3) storing the preferred artifact:
0203 (c) repeating step (b) for each of the one or more
discrete artifacts;
0204 (d) combining the preferred artifacts to form a
preferred representation.
0205 Similarly, the method described in Steps (3) and (4)
above, for finding a preferred alias representation, may
include the additional steps of

0206 (a) parsing the subjective representation into one
or more discrete artifacts;

0207 (b) selecting one of the one or more discrete
artifacts:

0208 (1) locating one or more candidate alias arti
facts from among the source data by comparing the
one discrete artifact to the alias data;

0209 (2) selecting a preferred alias artifact from
among the one or more candidate alias artifacts, the
preferred alias artifact being most closely associated
with the preferred alias token;

0210 (3) storing the preferred alias artifact;
0211 (c) repeating step (b) for each of the one or more
discrete artifacts;

0212 (d) adding the preferred alias artifact to the
preferred alias.

0213 The term “match as used in the comparing steps
described above, in one embodiment, may involve an analy
sis of one or more artifacts of an address in order to
determine whether the similarities between the data are
sufficiently valid to constitute a “match.” For example, the
following guidelines may apply:
0214) 1. A literal match is required on the primary
address, which includes the street number and the street
aC.

0215 2. A literal match is only required on the secondary
(such as a Suite number) when the secondary exists in the
Carrier Database 132 and it is associated with the primary
address.

0216) 3. A literal match is only required on the consignee
name when the consignee exists in the Plan Database 134
(the input data).

US 2008/002798.0 A1

0217. It should be understood that other matching guide
lines may be established, depending upon the application
and processing goals.
5.5. Interface

0218. In one embodiment, the database management sys
tem, 110 of the present invention may include an interface
600 and a suite of programs 500, as shown in FIGS. 3 and
5-9. An interface 600 in one embodiment may be a computer
program designed to provide an operative connection or
interface between an application (such as a Suite of programs
500) and a user (or another application). An interface 600
may provide a series of commands that allow a user to
create, read, update, and delete the data values stored in the
database tables. These functions (create, read, update,
delete) are sometimes referred using the acronym CRUD, so
an interface providing those commands may be called a
CRUD interface. A database interface that includes a query
function may be called a CRUDQ interface.
0219. In one embodiment, the interface 600 may be
configured as a COM-based interface; meaning that it is
based upon the Component Object Model. Component
Object Model is an open software architecture that may
facilitate interoperability between an interface 600 and vari
ous other components of the system 10 of the present
invention. Although a COM-based interface 600 may be
provided, other Software models may be used to accomplish
a desired functionality.

0220) A query function may be included in an interface
600 according to one embodiment of the present invention.
A query is a command or instruction used extract a desired
set of data from a database. The best known query language
is Structured Query Language (SQL, pronounced "sequel”).
although other query languages may be used. A query may
include a single command or a complex series of commands.
SQL includes a wide variety of query commands. Sets of
query commands that may be used again can be saved in
SQL as a stored procedure. Like running a program, calling
a stored procedure in sequel is more efficient than sending
individual query commands one at a time. Also, stored
procedures are generally compiled ahead of time and may
also be cached by the database management system. In this
aspect, query commands may be used as a powerful pro
gramming tool.

0221 5.5.1. Application Identifier. The interface 600 in
one embodiment may be configured to operate and interact
with a variety of different programs and application, both
internal and external to the database management system,
110 in use. The interface 600 may be configured to operate
with each component of the internal suite of programs 500.
The interface 600 may also be configured to operate with
one or more external programs or applications, outside the
database management system, Such as related database
applications, auxiliary reporting applications, stand-alone
business applications, or any of a variety of other programs
that may have a desire or a business need to interact with the
data stored in the superset 30, 130.
0222. In one embodiment, the interface 600 of the present
invention may include one or more application identifiers,
each having a corresponding rule set. The application iden
tifier may be used to identify the application seeking access
to the database management system of the present invention.

Jan. 31, 2008

The application identifier may be a single command or a
complex algorithm. In general, the application identifier
operates to identify an application seeking to interact with
the database.

0223) Each application identifier may include a corre
sponding rule set that may be used to govern the interaction
between a specific application 270 and the database man
agement system. Such interactions may include query
requests, Subscription updates, data transfer or other com
munications, output format instructions, or any other con
duct. The application identifiers and rule sets may be stored
in a database or otherwise saved in an accessible format.

0224. In the context of an address management system
110, for example, a specific application 270 may seek access
to the address Superset 130 by sending a query. In response,
an interface 600 may be configured to identify the applica
tion 270, retrieve the appropriate application identifier, and
in turn retrieve the corresponding rule set. The interface 600
may then pass the rule set to the address management system
110 for use in processing the query or other interaction with
the application 270. The address management system 110
may process queries or take other actions related to the
application 270 which produce output data. The output data
may be returned to the interface 600, where the rule set may
be used to confirm the output data is in a format accessible
by the application 270. In this aspect, the address manage
ment system 110 and its interface 600 may cooperate in
processing requests from applications 270 by using the rule
Set.

0225. In this aspect, the interface 600 of the present
invention is generic; meaning the interface 600 may be
configured to operate and interact with any application 270.
By maintaining a rule set separate from the interface itself.
the programming in the interface 600 need not include rules
for all the various applications 270. Instead, by using an
application identifier, the interface 600 may include only
relatively simple commands for finding and retrieving the
corresponding rule set.
0226. When the management system 110 requires inter
action with a new application 270, there may be no need to
modify the interface 600. The only action required may be
to add an application identifier and a corresponding rule set
for the new application 270. The interface 600 may provide
a system for entering Such new information.
0227 5.5.2. Depth of Data Capture. The rule set for a
particular application 270 in one embodiment may be con
figured to control which particular artifacts to capture from
a data Superset 30. In use, for example, a first application
may require only ZIP code data, while a second application
may require ZIP+4. City, and State. The rule set of the
present invention may include stored information about the
data requirements for the particular application 270 in use.
By controlling the extent or depth of the data capture, the
rule set may increase the efficiency and speed at which the
interface 600 accesses data within the system 10.

6. CONCLUSION

0228. The described embodiments of the invention are
intended to be merely exemplary. Numerous variations and
modifications will be apparent to those skilled in the art. All
such variations and modifications are intended to fall within
the scope of the present invention as defined in the appended
claims.

US 2008/002798.0 A1

0229 What has been described above includes several
examples. It is, of course, not possible to describe every
conceivable combination of components or methodologies
for purposes of describing the systems, methods, computer
readable media and so on employed in database manage
ment systems. However, one of ordinary skill in the art may
recognize that further combinations and permutations are
possible. Accordingly, this application is intended to
embrace alterations, modifications, and variations that fall
within the scope of the appended claims. Furthermore, the
preceding description is not meant to limit the scope of the
invention. Rather, the scope of the invention is to be
determined only by the appended claims and their equiva
lents.

0230 While the systems, methods, and apparatuses
herein have been illustrated by describing examples, and
while the examples have been described in considerable
detail, it is not the intention of the applicants to restrict or in
any way limit the scope of the appended claims to Such
detail. Additional advantages and modifications will be
readily apparent to those skilled in the art. Therefore, the
invention, in its broader aspects, is not limited to the specific
details, the representative systems and methods, or illustra
tive examples shown and described. Accordingly, departures
may be made from Such details without departing from the
spirit or scope of the applicant's general inventive concepts.

What is claimed is:
1. A computer readable medium having instructions

executable by a computer to cause the computer to perform
the following functions:

receive a subjective representation of the address stored in
a first relational database, said Subjective representation
of the address comprising a plurality of artifacts includ
ing a name, Street address, city, state, and Zip code:

re-format the subjective representation of the address
according to a set of standardization rules;

arrange a plurality of records stored in a second relational
database in one or more second tables in hierarchical
order based upon the values of said source data stored
in said plurality of records;

transform one or more of said second tables into a sparse
matrix linked list;

locate one or more candidate representations of the
address from source data stored in said second rela
tional database by recognizing that a preferred token is
present among any of said one or more candidate
representations of the address;

select a preferred representation of the address from
among said one or more candidate representations of
the address based on the presence of the preferred
token; and

communicate said preferred representation of the address
from a third relational database to an interface.

2. The computer readable medium of claim 1, wherein
said computer readable medium has instructions for causing
a computer to perform the following function:

store said one or more second tables as a sparse matrix
linked list in said second relational database.

Jan. 31, 2008

3. The computer readable medium of claim 1, wherein
said computer readable medium has instructions for causing
a computer to perform the following functions:

(a) parse said subjective representation of the address into
a plurality of discrete artifacts;

(b) select one of said plurality of discrete artifacts:

(1) locate one or more candidate artifacts from among
said source data by comparing said one of said
plurality of discrete artifacts to said source data;

(2) select a preferred artifact from among said plurality
of candidate artifacts;

(c) repeat step (b) for each of said plurality of discrete
artifacts; and

(d) combine the plurality of preferred artifacts to form one
of said one or more candidate representations of the
address.

4. The computer readable medium of claim 1, wherein
said computer readable medium has instructions for causing
a computer to perform the following function:

read standardization data from the third relational data
bases, said standardization data comprising one or
more standardized representations of said plurality of
discrete artifacts.

5. The computer readable medium of claim 1, wherein
said computer readable medium has instructions for causing
a computer to perform the following functions:

(a) parse said subjective representation of the address into
the plurality of discrete artifacts;

(b) select one of said plurality of discrete artifacts:

(1) locate one or more candidate alias artifacts from
among said source data by comparing said one of the
plurality of discrete artifacts to said alias data;

(2) select a preferred alias artifact from among said one
or more candidate alias artifacts;

(c) repeat step (b) for each of said one or more discrete
artifacts to generate a plurality of selected preferred
alias artifacts; and

(d) combine said plurality of selected preferred alias
artifacts to form one of said one or more candidate
representations of the address.

6. The computer readable medium of claim 1, wherein
said computer readable medium has instructions for causing
a computer to perform the following functions:

present said one or more candidate representations of the
address to a user, and

receive an indication from the user identifying one of the
one or more candidate representations of the address as
the preferred representation of the address.

7. The computer readable medium of claim 1, wherein
said computer readable medium has instructions for causing
a computer to perform the following functions:

parse said Subjective representation of the address into a
plurality of discrete artifacts;

US 2008/002798.0 A1

read standardization data in the third relational database,
said standardization data comprising one or more stan
dardized representations of said plurality of discrete
artifacts; and

read alias data in a fourth relational database, said alias
data comprising one or more equivalent representations
of said plurality of discrete artifacts.

8. The computer readable medium of claim 1, wherein
said computer readable medium has instructions for causing
a computer to perform the following function:

Jan. 31, 2008

read a plurality of rule sets, each correlated to one of said
one or more external applications;

receive a request from a first external application;
retrieve a first rule set correlated to said first external

application; and
apply said first rule set to govern the interaction between

said first external application and said one or more
computer program modules.

k k k k k

