

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2012/067657 A1

(43) International Publication Date

24 May 2012 (24.05.2012)

WIPO | PCT

(51) International Patent Classification:

F21S 4/00 (2006.01)

(21) International Application Number:

PCT/US2011/001921

(22) International Filing Date:

17 November 2011 (17.11.2011)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

12/927,608 17 November 2010 (17.11.2010) US

(71) Applicant (for all designated States except US): **LIGHT & MOTION INDUSTRIES** [US/US]; 300 Cannery Row, Monterey, CA 93940 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **ARMER, Jarod** [US/US]; 17575 Ramadero Way, Aromas, CA 95004 (US). **FOSS, Doug** [US/US]; 1332 Lawton Avenue, Pacific Grove, CA 93950 (US). **McCASLIN, Christopher** [US/US]; 1120 Pearl Street, Alameda, CA 94501 (US).

(74) Agent: **FREIBURGER, Thomas, M.**; P.O. Box 1026, Tiburon, CA 94920 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: UNDERWATER LIGHTS FOR DIVERS

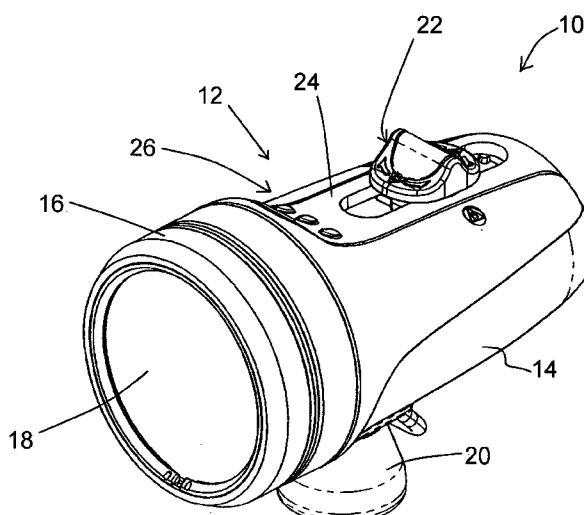


FIG. 1

(57) Abstract: An LED underwater light, which can be hand-held or mounted on an underwater camera housing, is switchable between two light modes. A first embodiment of the dive light is a focus light, used for initial focusing with a still underwater camera. Incorporated in the focus light is a red light source to which the focus light can be switched from initially projected white light. The switch is used to switch off a series of white LEDs while switching on a series of red LEDs. In another embodiment, the dive light is a flood/spot light, or with another two types of selectable LED arrays, and enables a diver to quickly switch between two types of light projection. Another feature is a laser beam projecting device within the housing, with a momentary switch on the housing to power the laser, as for pointing out underwater objects of interest.

UNDERWATER LIGHTS FOR DIVERSS P E C I F I C A T I O NBackground of the Invention

This invention concerns underwater lighting, including for photography, and in particular a compact and powerful underwater light that is easily switched from one mode to another. In one aspect the device is a focus light or imaging light for underwater diving, used to locate photography subjects in darkness or very low light situations. The device of the invention allows focusing on a subject using a camera's auto focusing feature, then moving in on a subject without disturbing the subject. In another aspect the device is a flood light that toggles to a spot light, switching modes in the same way as the imaging light.

Focusing lights for underwater diving are well known. Used in low light situations such as night diving, the focusing light, typically mounted on an underwater camera housing, is used to locate and then focus on a subject for photography, taking advantage of the auto focus feature on a still camera.

An imaging light can also be used for taking video of underwater subjects. When used as a video light the typical arrangement is with two lights separated at some distance, both focused on the subject. When used as a focus light, the typical arrangement is mounted on the top of the photo housing where the user has quick access and the light points in the

same direction of the camera. In photography applications the actual photo is taken using powerful strobes. The focus light insures the camera is properly focused prior to the actual shot when the strobes fire in concert with the camera shutter. 5 The strobes overpower the focus light, which doesn't interfere with the shot even if left on.

A problem is that the white light of the focus light tends to cause fish or other animal subjects to react, quickly escaping before being captured in a photograph. The diver is 10 thus unable to move in on the subject with the light before taking the picture.

It is known that red light generally does not have the same effect on the seagoing creatures, who often do not see or react to red light due to the filtering effect of the water 15 which over 30 feet in depth typically filters out most red and yellow wavelengths. Consequently the fish or other animals do not react to red light. For this reason, one solution previously provided on focus lights has been a red flip-down filter that can be brought down over the front lens or window 20 of the white light.

Red light has the additional advantage that it tends to attract fewer small creatures that are often attracted to white light and tend to swarm around white lights, interfering with the shot. This causes the photographer to turn lights 25 off completely and wait until the swarming creatures, often the size of small flies or gnats, leave the area before turning the lights back on just before taking the shot.

Dive lights are often used by divers for viewing scenes and objects, whether or not in support of underwater 30 photography. To illuminate a large scene a diver will need a flood light, while looking deep into a cave, or signaling a companion, usually requires a spot beam. Until this invention there has been no compact, high-power unitary device that is

quickly toggled between flood beam and spot beam.

A further desire of divers is to be able to point out specific objects to other divers with a high degree of accuracy, such as identifying a small animal of interest.

5 Recently, divers have begun using green lasers for this purpose; green lasers perform much better than common red lasers because they are much brighter to start with, and red light is rapidly absorbed as it travels through seawater. However, no lighting devices currently known provide the user 10 the ability to illuminate a scene with spot or flood light, and rapidly switch to a laser pointer with the same device.

15 There is a need for a more efficient, compact, convenient, and high-powered underwater lighting device for conveniently switching between one form of light projection to another, while also preferably allowing for adjustment of light level.

Summary of the Invention

The invention addresses these needs by providing an LED underwater light, which can be hand-held or mounted on an 20 underwater camera housing, and which in one embodiment is for use in initial focusing with a still underwater camera. As noted above, the device is used to provide sufficient initial white light on a subject to locate a subject and to allow focusing of the camera through its auto focus feature.

25 Incorporated in the disclosed focus light is a red light source to which the focus light can be switched from the initially projected white light. The switch is used to switch off a series of white LEDs while switching on a series of red LEDs. In this way a diver at night can search for subjects 30 using the white light, allowing the camera to auto focus on a subject, then switch to the red light to move in closer, so that sea animal subjects will not see or react to the red

light. In a preferred arrangement a single printed circuit board has rows or arrays of white LEDs adjacent to red LEDs. A rechargeable battery pack powers the LEDs, and a selection switch conveniently located on the light housing allows the diver to switch on the white light LEDs, adjust light level, switch to the red light LEDs, and switch the light off. A convenient form of switch is a spring-biased switch positioned on top of the focus light casing, slidable forward or back and returning by spring to a central position. For an effective water seal, the switch preferably comprises a slide member on a switch cover, these components not being under waterproof seal but the light casing or housing being sealed below the switch mechanism. A magnetic coupling between the slide switch member and internal switch pickups in the sealed casing effects the switch selections.

Other features of the focus light include a reflector disc with reflector holes positioned in front of the LEDs, a screw-on front bezel with seals to the main casing, a series of light indicators at the exterior of the housing for showing light status, and a battery charging port at the exterior of the casing.

In another embodiment of the invention a very similarly constructed underwater lighting device enables convenient switching between flood light and spot light projection. Again, a single printed circuit board has two different arrays of LEDs, one with optics for flood light projection and one with optics for spot light projection. The switching is as described above.

In another embodiment of the invention, a laser, preferably a green laser for significantly higher performance, is included in the front electronics assembly. Using similar switching to that described above, the user can rapidly switch from illumination to laser pointing and back again, or

maintain illumination and add laser pointing temporarily.

The invention thus provides an efficient assembly of an underwater light device that is conveniently used and is quickly switchable among modes of light. These and other 5 objects, advantages and features of the invention will be apparent from the following description of a preferred embodiment, considered along with the accompanying drawings.

Description of the Drawings

Figure 1 is a perspective view showing the underwater 10 focus light of the invention.

Figure 2 is an exploded perspective view showing the housing of the light and indicating a switch assembly.

Figure 3 is an exploded perspective view showing assembly of internal components of the focus light.

15 Figure 4 is a frontal perspective view showing a second embodiment of the invention in which the underwater light device switches between flood light and spot light.

Figure 5 is a perspective view schematically indicating a wrist strap on the dive light of this embodiment.

20 Figure 6 is an exploded perspective view similar to Figure 3, but showing the construction and assembly of the light device of the second embodiment.

Figure 7 is an exploded perspective view showing the addition of a laser device.

25 Figure 8 is a front elevation view showing the appearance of the face of the product with a flood/laser pointer implementation.

Description of Preferred Embodiments

Figure 1 shows an underwater photography focusing light 30 10 of the invention. The focusing light device has a housing 12 including a main body or casing 14 and a front bezel 16

with a window 18 of glass, the casing, bezel and glass being sealed in watertight relationship. To the housing is attached a mounting base 20 having a fitting, not shown, for attachment to an underwater camera housing. At the base of the device is 5 an aluminum plate that accepts a 10-32 or 1/4-20 threaded shaft commonly used in the dive industry. The imaging light can be attached in a number of methods. The most common for 10 photography uses a ball joint with a friction clamp that allows the user to position and point the light easily. The other methods employ aluminum strobe arms or flexible plastic 15 "Loc Line" joints that can be added to position the light farther away from the housing.

The housing also includes a slide switch 22 slidable on a slide mounting or switch cover 24. Indicator lights, 15 preferably light pipes that conduct a light from inside the housing, are shown at 26, preferably provided to indicate light status.

Figure 2 shows the casing 14 without the front bezel and with the switch assembly removed. The casing or body 14 is 20 water-sealed in the configuration shown, with the switch components being outside the water seal. As shown, the indicator light pipes 26 are positioned to extend up through holes 28 in the slide mounting or switch cover 24. The light pipes direct light from the single driver circuit board 25 (discussed below) up to the proper viewing angle for the diver. Light pipes are typically clear acrylic, molded or extruded, straight or bent, conducting light by internal reflection.

The switch 22 includes a switch cap 30 for finger contact 30 and a switch base 32 that receives the cap, together referred to as a switch of the slide switch 22. A shuttle member 34 of the slide switch 22 connects to the switch base 32 through a slide slot 36 of the switch cover 24, and this shuttle member

is biased by compression springs 38 and 40 toward a generally central rest position within the slot 36. The springs 38 and 40 are held in line by a spring shaft 42 and are captured within the assembly when the slide mounting 24 and the other 5 components are in place.

The slide switch 22 preferably has a locking feature to hold it in the rest position when desired, to avoid inadvertent switching on. This is not shown in detail in the drawings, but a small nipple 32a can be seen on the bottom 10 side of the switch base 32 in Figure 2, and a similar nipple can be 180°-opposed. The slide member comprised of the components 32 and 30 can be rotated 90° relative to the switch cover 24, at which point the nipples will engage in detents 32b provided in the switch cover. This provides a lock out 15 feature to protect against inadvertent moving of the slide switch and turning the light on when traveling, for example. The switch can be unlocked by again turning the manual slide member (30, 32) 90° in either direction, once again allowing the switch to move forward or back when intentionally pushed.

The switch assembly 22 is not mechanically connected to 20 switch the light color or power. This is effected by a magnetic coupling, to avoid the need for a dynamic water seal. The assembly includes a magnet 44 held within a magnet cup 46 that is secured at the bottom of the switch shuttle 34. Movement of the switch assembly including the magnet 44, by 25 sliding the switch cap 30, is picked up by electronics within the sealed casing 14 as further discussed below.

Figure 2 also shows a D-ring 50 preferably included 30 adjacent to the mounting base 20, that allows the light to attach to a lanyard for non-photographic applications such as scientific dives. Also, at the rear of the casing are charging ports 52 and 54 for the battery (preferably a lithium-ion battery) contained within the casing for powering

the lights. The charger has mating gold plated male plugs that insert into the exposed female charging ports and causing the internal battery to be charged. The two ports provide plus and minus connections. There is a third pin that insures 5 the plug can only be inserted in a single orientation.

As indicated in Figure 2, when the switch components are assembled in place, a fastener, e.g. a threaded bolt 56, secures the slide mount or switch cover 24 in place on the casing. A clip is preferably included at the rear of the 10 switch cover to retain that end in place without a need for a fastener. Other arrangements can be used.

The exploded view of Figure 3 indicates assembly of internal components into the casing 14, and closure of the housing via the bezel 16 and window 18. Threads 58 make the 15 connection. A window retaining ring 60 is shown for holding the window within the bezel, and elastomeric O-ring seals are shown at 62 and 64.

A battery casing is shown at 66 for the rechargeable battery. A cable 68 carries power, after switching, to a 20 printed circuit board or LED board 70 that carries rows of LEDs 72, 74 and 76. The cable 68 plugs into the back of the PCB 70. A PCB retainer is shown at 78.

An LED driver printed circuit board 80 includes switching for the LEDs. The switching is operated by magnetic pickups 25 82, three of which are seen in the drawing. These are sensitive to the movement of the slide switch 22 forward and back. In a preferred embodiment, sliding the switch forward momentarily initially turns power on and selects, in sequence, low, medium and high white light power settings. Momentarily 30 moving the switch back to a rear position will switch off white light and turn on red light, which preferably has only one level but could be provided with more if desired. Holding the switch to a rear position or to the forward position will

switch power off. If desired the red light could be on whenever power is on; the red LEDs draw less power, about 200 lumens, while the white LEDs can have a high setting at about 600 lumens. The red light could be provided with adjustable power level if desired.

5 The rows of white LEDs in the illustrated assembly are at 72 and 76, top and bottom. The center row 74 is comprised of red LEDs. A reflector disc 84 immediately in front of the LED printed circuit board 70 has individual reflectors 86 positioned in front of each LED, with a desired angle of reflection provided as a conical annulus in each opening. A reflector mask is shown at 88.

10 Three additional small LEDs, not shown, are on the PC board 70 in position to be picked up by the light pipes 26. 15 Preferably multi-color LEDs, these preferably indicate low, medium and high white light settings by the number of light pipes illuminated, and with different colors also indicate remaining battery charge. For example, green light from the light pipes can indicate above 75% power remaining; amber can 20 signal 50% to 75%; red can warn of 25% to 50%; and flashing red can show a critical condition of under 25% battery remaining. This is very important in underwater night 25 photography.

The illustrated focusing and imaging light assembly is 25 efficient in design, is readily attached to an underwater camera casing and is very conveniently used for use of initial white focusing light, at a selected level, and for instant switching to red light for moving in on a subject. An underwater camera continues to auto focus the subject under 30 red lighting, without startling the living photography subject.

Figure 4 shows in perspective a second embodiment of an underwater light 90 of the invention. As in the above

embodiment, this dive light can have a base 20 to enable mounting on another underwater device, or it can have a bracket to provide a wrist mounting. Figure 5 shows a wrist mounting, with two straps 92 and 94 to extend around the user's wrist indicated at 95. The respective straps can engage around the wrist and palm.

The flood/spot underwater dive light 90 has exterior components similar to those of the above-described device 10: a housing 12 including a main body or casing 14 and a front bezel 16 with a window 18 preferably of glass. The casing, bezel and glass are in sealed watertight relationship. Also similar to the above embodiment, the housing assembly includes a slide switch 22 slidable on a slide mounting or switch cover 24. Indicator lights as in the first embodiment preferably included, as shown at 26 in Figure 1.

The construction of the casing 14 and the switch assembly is similar to that shown in Figure 2 and described above. The slide switch 22 preferably also functions in the same way as described above, although switching between different types of LED arrays.

Figure 4 shows a ring of flood LEDs 96, which can be six in number, in an outer array within the glass window 18. At the center of the ring of flood LEDs is a tight cluster of preferably three spot LEDs 98. The slide switch 22 is used to select between flood light via the LEDs 96 and spot light via the LEDs 98, by momentarily moving the switch back to a rear position. Other control options using the slide switch 22 are the same as above: toggling the switch forward changes the power level, with level status being indicated by the light pipes 26 shown in Figure 2. Holding the switch to a rear position or to the forward position will be effective to switch off power. Also as discussed above, the switch 22 preferably has a locking feature to hold it in the rest

position when desired, to avoid inadvertent switching. The locking feature structure is the same as described above.

Figure 6 is an exploded assembly drawing very similar to that of Figure 3, but with the flood/spot LEDs and optics 5 rather than the red/white LEDs discussed for the earlier embodiment. In Figure 6 the same reference numbers are used for components that are the same as those in Figure 3.

In this form of dive light, the LED printed circuit board or LED board 70a is fitted into the assembly and the casing 14 10 in the same way as above, but the LEDs and optics are somewhat different. As noted above, an outer ring of preferably six flood LEDs 96 are mounted on the LED board 70a, connected in series as shown, and a tight cluster of preferably three centrally located LEDs 98 are the spot LEDs, also connected in 15 series but in a separate circuit from the flood LEDs. A PCB retainer is shown at 78a, behind the LED board 70a.

The focus LEDs 98 project light that is focused by a transparent mounting plate 100 having three TIR (total 20 internal reflection) lenses that focus the LED light to spot focus. The spot angle in a preferred embodiment is between about 8° and about 17°, or slightly wider. A pin connector seen at 102 is soldered to the front of the LED board 70a, which is a metal core board with dielectric at front, and the pins extend through to connect with the LED driver printed 25 circuit board 80.

As shown in Figure 6, a reflector 104 for the flood LEDs 96 has a center opening 106 sufficiently large to accommodate the TIR lens plate 100. The reflector 104 includes essentially conical reflector recesses 105, one for each flood 30 LED. A sticker 108 is secured over the assembled reflector 104 and TIR device 100, for decorative purposes as seen in Figure 4.

The TIR lens, a solid piece of clear plastic, does an

effective job of focusing the beam into a tighter spread in a short space. The flood reflectors 105 are shallow, and the LEDs need to be placed as close to the glass as possible to get the wide beam desired - approximately 60°. A spot beam 5 requires a deeper reflector or a TIR lens to gather the light emitted widely and to redirect it back center, creating a spot beam. Achieving the two types of beams from the same device is difficult - LEDs close to the glass window for flood light and LEDs far back from the window for a spot beam. Although 10 reflectors could be used to create the spot beam, TIRs tend to be smaller for doing the equivalent focusing. Since all the LEDs are mounted on the same PCB to keep costs lower (versus having two different PCBs positioned at different distances from the glass to allow room for a shallow and a deep 15 reflector), the invention makes a compromise with a moderately shallow system design that allows enough depth for a reasonable spot beam (about 8° to 17°) while still allowing the flood to deliver close to 60°.

The flood reflectors are "a-focal". They are designed to 20 spread the beam and mix it to make it clean. Instead of a typical parabolic reflector the flood reflector is simply a cone that scatters the light and thereby encourages a clean mixing of the light with no focal point, producing a nice even flood. Because the flood reflector is somewhat deeper than 25 the depth needed for the TIRs for the spot, the a-focal cones can have a step in them, with a tighter cone close to the LED, stepping wider to essentially put the cone surface farther from the LED so it does not interfere with the escaping light.

In one preferred embodiment, the diving light 10 of the 30 invention emits a flood light beam, at maximum power, of about 1200 lumens. The spot beam is preferably about 500 lumens. The weight of the unit preferably is no more than about 265 grams (0.6 pound). The flood beam angle is about 60°, while

the spot angle preferably is in the range of about 8° to 17°. On a full battery charge the unit will produce 1200 lumen flood light for about 70 minutes; 600 lumen flood light for about 140 minutes, and 300 lumen flood light for about 280 minutes. Charge time is about 150 minutes.

5 Figure 7 shows an exploded perspective view of an embodiment of the invention that includes a lasing device. In this case, one of the flood LEDs 96 has been removed from the outer ring array of six LEDs on the modified LED circuit board 10 70b, to make room for the lasing device 110 where it will fit in the compact housing. The sixth LED could be moved to the center or left off if not required for the desired lumen output. On the modified reflector 104a, one of the reflector cones 105 has been removed to make room for the lasing device. 15 On the modified sticker 108a, one of the holes has been made smaller to mask the outer portion of the lasing device cosmetically while allowing the laser beam to pass through.

20 The lasing device is mounted to the driver printed circuit board 80 so that it can be controlled easily by the switching mechanism previously described. The switch preferably has a momentary (spring-biased toward off) feature for the laser, for brief periods of laser beam use.

25 Figure 8 shows a front elevation view. The five LEDs 96 shown provide spot or flood output, as described above. The lasing tube 110 provides the green laser output.

30 Other laser output colors can be used if desired. LED output colors can also be as desired. The ability to select blue light (whether with blue-emitting LEDs or via a filter) when filming during daylight is important because it allows the videographer to match the color of light from the video lights to the color of sunlight filtered through seawater. Blue light also is useful for capturing on film an underwater creature that phosphors and can only be seen with blue light.

Infrared is useful in military applications. Any desired light wavelength can be included, by inclusion of LEDs for the light color or by filtration, which can be part of the internal optics or could be an external filter. An LED array 5 can have mixed LEDs to achieve a desired output color.

The above described preferred embodiments are intended to illustrate the principles of the invention, but not to limit its scope. Other embodiments and variations to these preferred embodiments will be apparent to those skilled in the 10 art and may be made without departing from the spirit and scope of the invention as defined in the following claims.

WE CLAIM:

1. A focus light for divers, comprising:
 - a waterproof housing including a mounting base for securing to an underwater camera housing,
 - 5 a plurality of LEDs mounted in the housing for projection out a front of the housing, including white light LEDs and red light LEDs,
 - 10 driver circuitry in the housing for the white and red LEDs, arranged to drive the white LEDs and red LEDs separately,
 - a reflector positioned in front of the LEDs to direct light from each LED as desired,
 - a window at the front of the housing through which LED light can be projected in a forward direction,
 - 15 a power source, and
 - a switch on the exterior of the housing, operatively connected to switch on power from the power source to the LEDs and to selectively power the white light LEDs and the red light LEDs.
- 20 2. The focus light of claim 1, wherein the switch comprises a slide switch with an exterior manually operated slide member positioned on the exterior of the housing for sliding movement on a switch cover, the slide member being spring-biased toward a rest position, and the housing being water sealed below and independently of the slide member and switch cover, with a magnet connected to the slide member, and the switch including, in an internal sealed space in the housing, magnetic pickups in the circuitry to detect movement of the magnet and to effect power on, power off and selections

between red and white light.

3. The focus light of claim 2, including in the housing a printed circuit board with LED drivers and the magnetic pickups.

5 4. The focus light of claim 2, wherein the slide switch includes a lockout feature engaged by rotating the manually operated slide member 90° when in the rest position, the lockout feature being effective to prevent unintended switching of the focus light.

10 5. The focus light of claim 2, wherein the switch includes selection among multiple white light power levels.

6. The focus light of claim 1, wherein the reflector has a series of conical reflector holes positioned to be directly in front of the LEDS.

15 7. The focus light of claim 6, further including indicator lights on the exterior of the housing, indicating power level of the white light.

8. The focus light of claim 1, wherein the housing comprises a casing and a front cover comprising a bezel 20 retaining a window, the bezel having screw threads for securing to the casing via threads on the casing.

9. An underwater light for divers, comprising:
a waterproof housing including a mounting base for
securing to an underwater camera housing,
25 a plurality of LEDs mounted in the housing for projection
out a front of the housing, including flood LEDs and spot

LEDs,

driver circuitry in the housing for the flood LEDs and the spot LEDs, arranged to drive the flood LEDs and spot LEDs separately,

5 optics positioned in front of the LEDs to direct light from the flood LEDs as flood light and from the spot LEDs as spot light,

10 a window at the front of the housing through which selected flood or spot LED light can be projected in a forward direction,

 a power source, and

 a switch on the exterior of the housing, operatively connected to switch on power from the power source to the LEDs and to selectively power the flood LEDs or the spot LEDs.

15 10. The underwater light of claim 9, wherein the switch comprises a slide switch with an exterior manually operated slide member positioned on the exterior of the housing for sliding movement on a switch cover, the slide member being spring-biased toward a rest position, and the housing being 20 water sealed below and independently of the slide member and switch cover, with a magnet connected to the slide member, and the switch including, in an internal sealed space in the housing, magnetic pickups in the circuitry to detect movement of the magnet and to effect power on, power off and selections 25 between flood and spot light.

11. The underwater light of claim 10, including in the housing a printed circuit board with LED drivers and the magnetic pickups.

30 12. The underwater light of claim 10, wherein the slide switch includes a lockout feature engaged by rotating the

manually operated slide member 90° when in the rest position, the lockout feature being effective to prevent unintended switching of the underwater light.

13. The underwater light of claim 10, wherein the switch 5 includes selection among multiple light power levels.

14. The underwater light of claim 9, wherein the optics include a series of conical reflector holes positioned to be in front of and in the path of light from the LEDS.

15. The underwater light of claim 14, further including 10 indicator lights on the exterior of the housing, indicating power level of the white light.

16. The underwater light of claim 15, wherein the housing comprises a casing and a front cover comprising a bezel retaining a window, the bezel having screw threads for 15 securing to the casing via threads on the casing.

17. The underwater light of claim 9, wherein the flood LEDs are positioned in a ring array at the front of the housing, and the spot LEDs are positioned in a tight center cluster at a center of the ring array.

20 18. The underwater light of claim 9, wherein the flood LEDs have optics producing a divergence angle of about 60°.

19. The underwater light of claim 9, wherein the spot LEDs have optics producing a divergence angle of about 8° to 17°.

20. An underwater light for divers, comprising:

a waterproof housing including a mounting base for securing to an underwater camera housing,

5 a plurality of LEDs mounted in the housing for projection out a front of the housing, including a first array of first LEDs and a second array of second LEDs,

driver circuitry in the housing for the first LEDs and the second LEDs, arranged to drive the first LEDs and second LEDs separately,

10 first optics positioned in front of the first LEDs to direct a first type of light from the first LEDs and second optics positioned in front of the second LEDs to direct a second type of light from the second LEDs,

15 a window at the front of the housing through which selected first or second LED light can be projected in a forward direction,

a power source, and

20 a switch on the exterior of the housing, operatively connected to switch on power from the power source to the LEDs and to selectively power the first LEDs or the second LEDs, to project, as desired, the first type of light or the second type of light.

21. The underwater light of claim 20, wherein the switch comprises a slide switch with an exterior manually operated slide member positioned on the exterior of the housing for sliding movement on a switch cover, the slide member being spring-biased toward a rest position, and the housing being water sealed below and independently of the slide member and switch cover, with a magnet connected to the slide member, and the switch including, in an internal sealed space in the housing, magnetic pickups in the circuitry to detect movement of the magnet and to effect power on, power off and selections

between the first and second types of light.

22. The underwater light of claim 21, including in the housing a printed circuit board with LED drivers and the magnetic pickups.

5 23. The underwater light of claim 21, wherein the slide switch includes a lockout feature engaged by rotating the manually operated slide member 90° when in the rest position, the lockout feature being effective to prevent unintended switching of the underwater light.

10 24. The underwater light of claim 20, further including a selectable laser beam projector in the housing, including a lasing device mounted on the housing for projection of a pointing beam out through the window at the front of the housing, said switch being operatively connected to switch power to the lasing device to selectively power the lasing device when desired.

15 25. The underwater light of claim 24, including an LED driver printed circuit board in the housing, and wherein the lasing device is mounted on the LED driver printed circuit board.

20 26. The underwater light of claim 24, including an LED circuit board with the LEDs, the LED circuit board being open for passage of a laser beam from the lasing device, which is mounted behind the LED circuit board.

25 27. The underwater light of claim 20, wherein one of the first and second types of light is blue light.

28. An underwater light for divers, comprising:

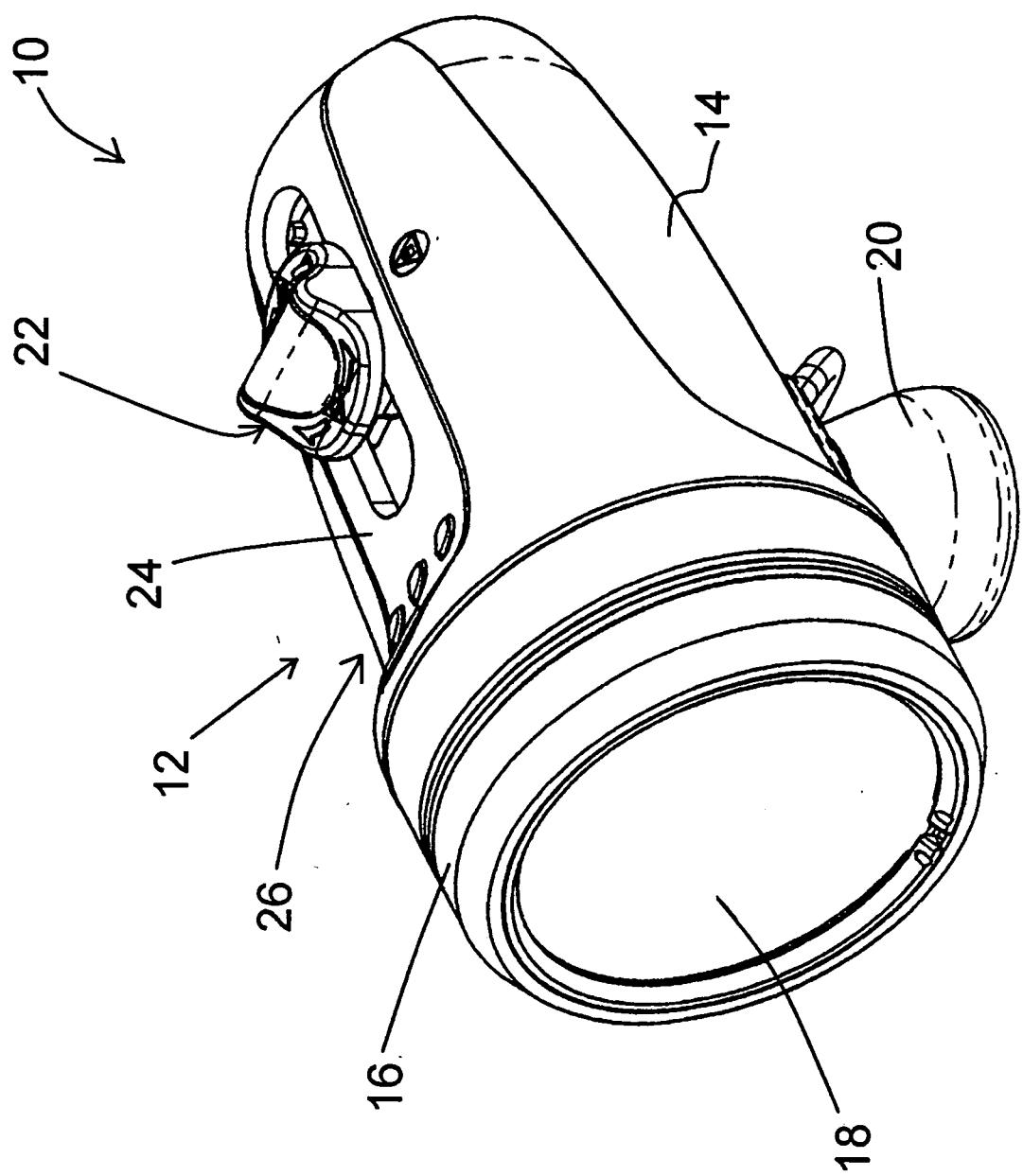
5 a waterproof housing including a mounting base for securing to an underwater camera housing,

 a plurality of LEDs in an array mounted in the housing for projection out a front of the housing,

 driver circuitry in the housing for the LED array,

 optics positioned in front of the LEDs to direct illumination light from the LEDs,

10 a window at the front of the housing through which LED light can be projected in a forward direction,


 a lasing device mounted in the housing for projection of a laser pointing beam out through the window at the front of the housing,

 a power source, and

15 a switch on the exterior of the housing, operatively connected to switch on power to selectively power the LEDs or the laser device, to project, as desired, the LED illumination light or a laser pointing beam.

29. The underwater light of claim 28, including an LED circuit board with the LEDs, the LED circuit board being open for passage of a laser beam from the lasing device, which is mounted behind the LED circuit board.

FIG. 1

2/6

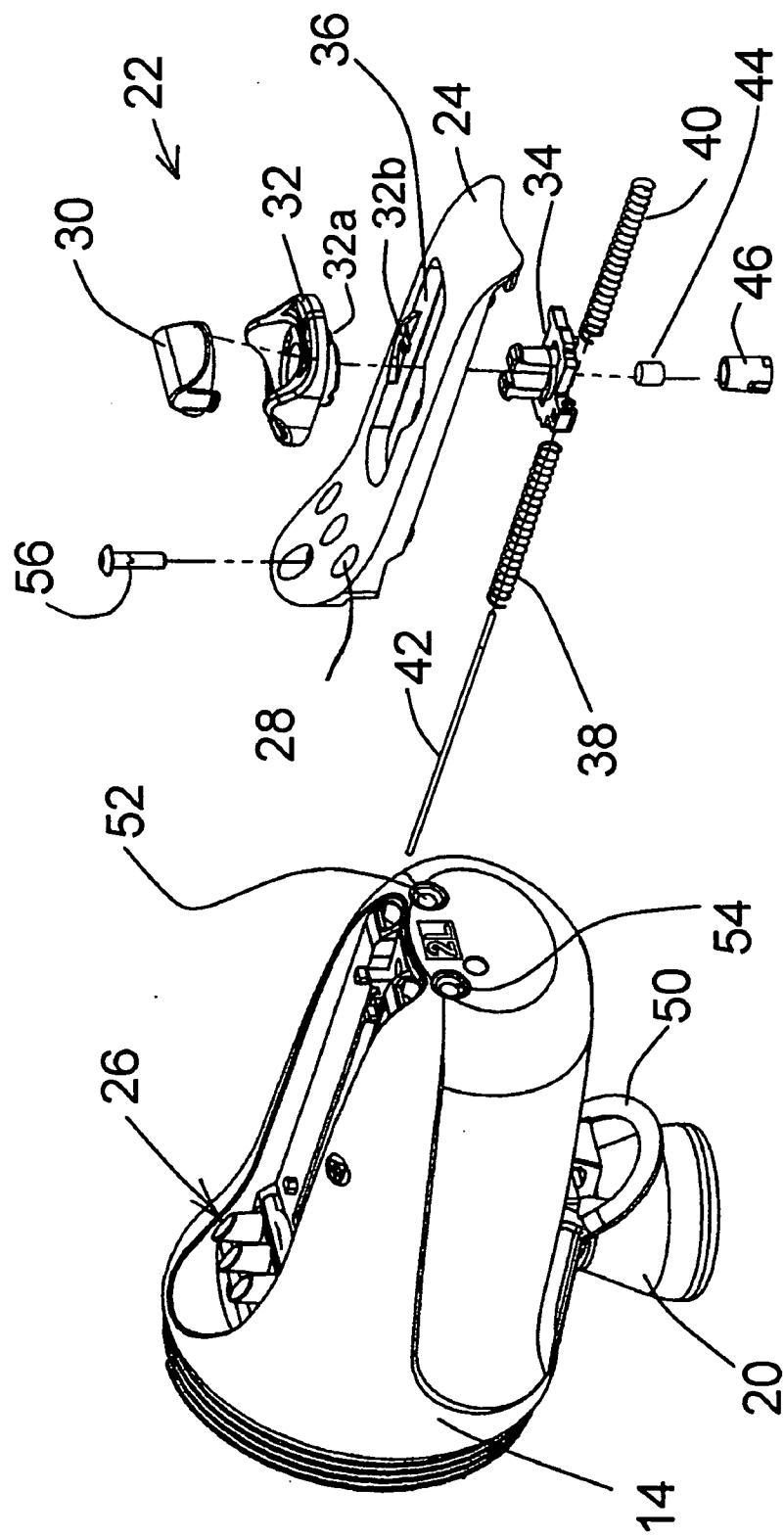
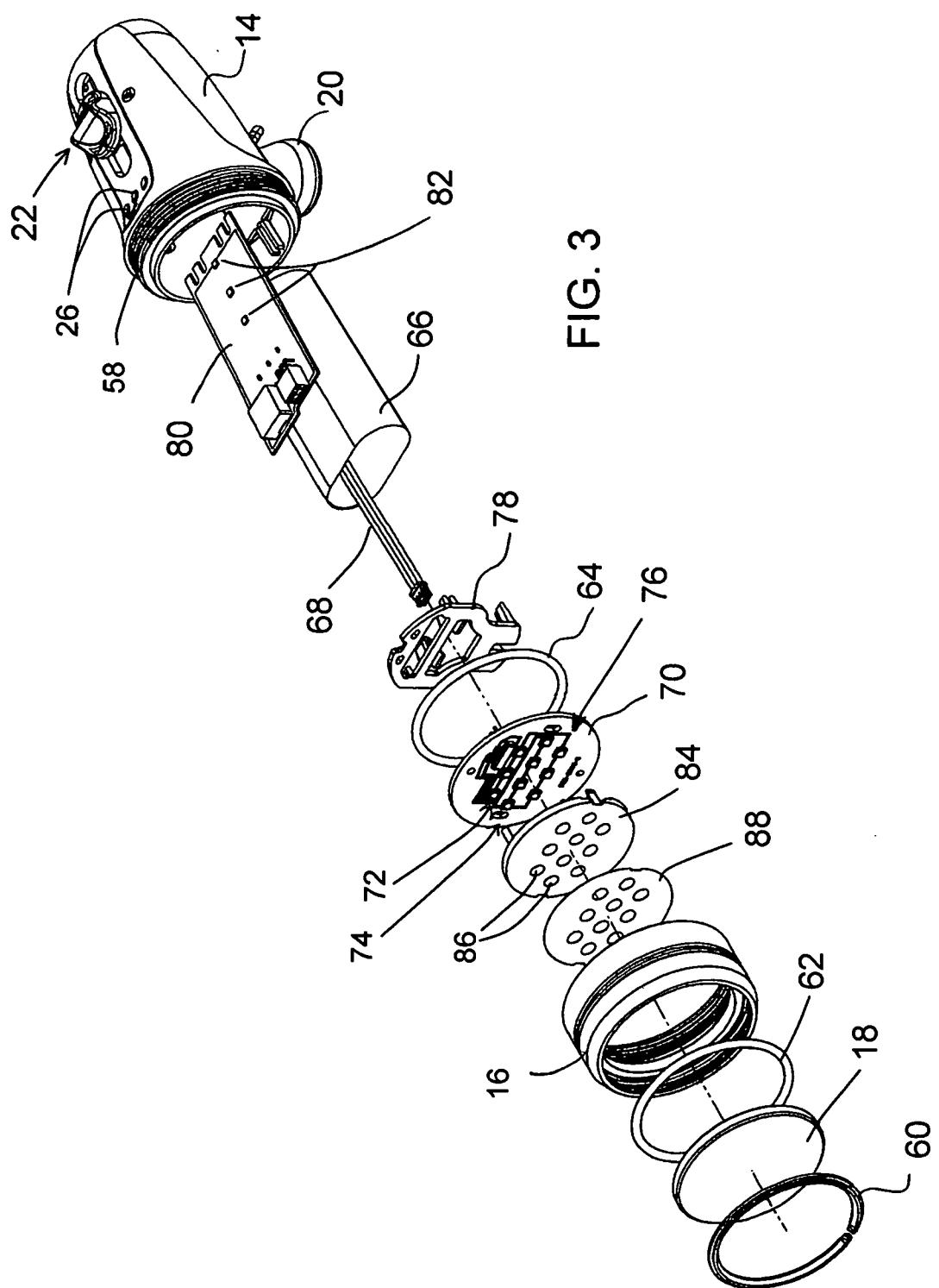



FIG. 2

4/6

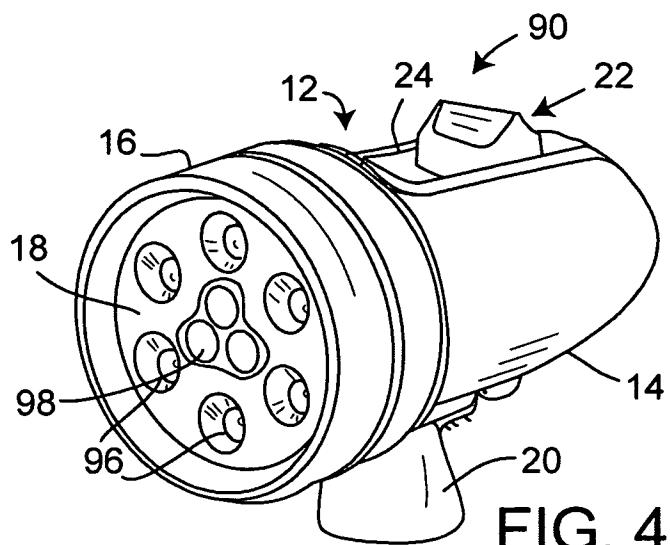


FIG. 4

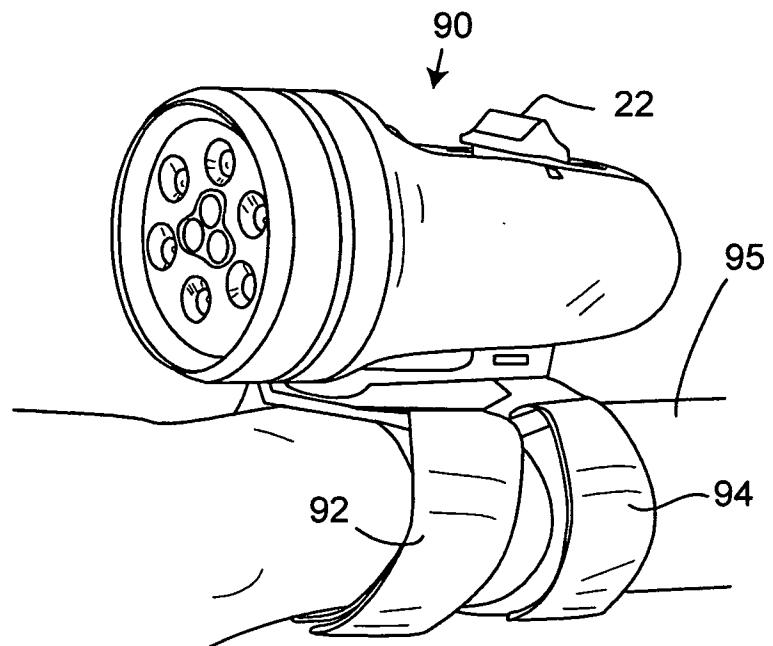


FIG. 5

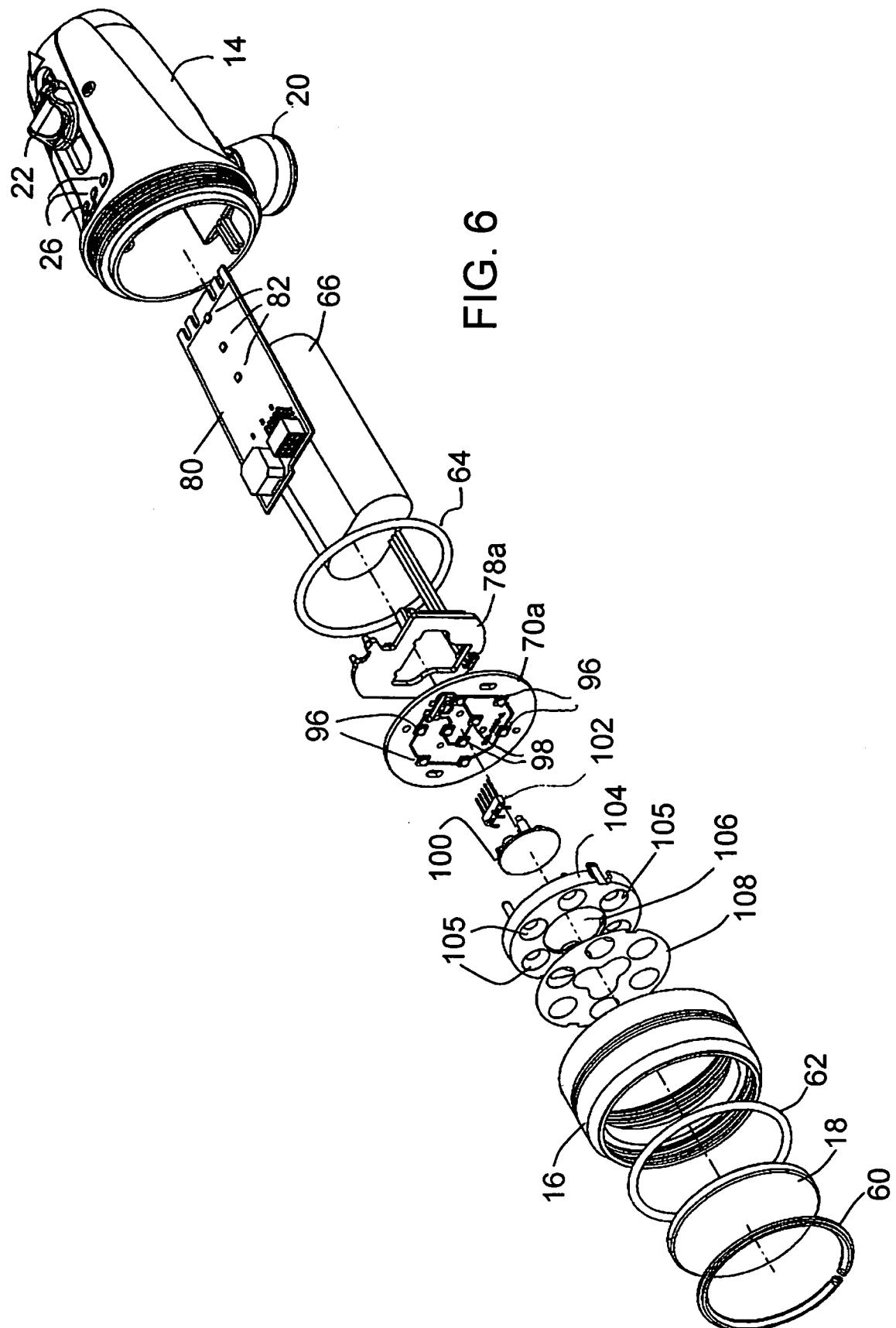
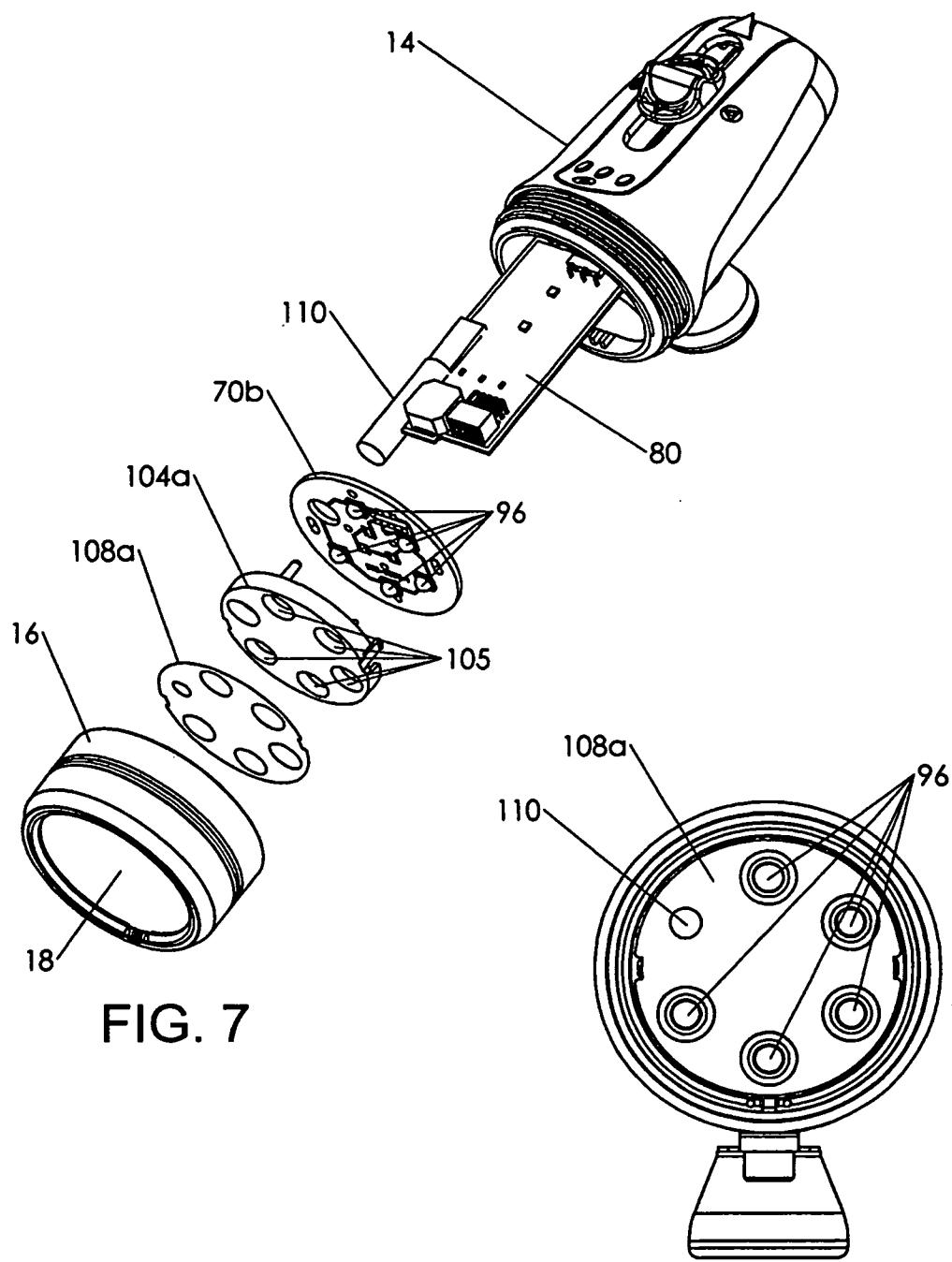



FIG. 6

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 11/01921

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - F21S 4/00 (2012.01)

USPC - 362/249.12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC: 362/249.12Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 362/157,158,184,190,202,205,208,227,230,235,236,248,249.02,249.12,296.01,800 (keyword limited--see terms below)Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PubWEST(PGPB, USPT, EPAB, JPAB); Google Scholar
Search Terms Used: underwater waterproof light LED reflector flood spot switch lock water proof light emitting diode magnetic laser slide blue red white camera flood spot

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2009/0014624 A1 (BLEES et al.) 15 January 2009 (15.01.2009), para [0015]-[0016], [0021], [0029]-[0031], [0039]-[0041]	1-29
Y	US 7,303,303 B1 (HAYNES et al.) 04 December 2007 (04.12.2007), Abstract, col 2, ln 14-63, col 3, ln 39-47, col 4, ln 61- col 5, ln 3, col 5, ln 19-24	1-29
Y	US 2007/0115387 A1 (HO) 24 May 2007 (24.05.2007), para [0017]-[0019], [0031]	2-5, 10-13, 21-23
Y	US 2007/0279900 A1 (BAUER et al.) 06 December 2007 (06.12.2007), para [0049]-[0050]	7, 15, 16

 Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

- "&" document member of the same patent family

Date of the actual completion of the international search 29 March 2012 (29.03.2012)	Date of mailing of the international search report 16 APR 2012
Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 Facsimile No. 571-273-3201	Authorized officer: Lee W. Young PCT Helpdesk: 571-272-4300 PCT OSP: 571-272-7774