US 20050033779A1

a2 Patent Application Publication (o) Pub. No.: US 2005/0033779 Al

a9 United States

Seki et al.

43) Pub. Date: Feb. 10, 2005

(549) DATABASE MANAGEMENT PROGRAM, A
DATABASE MANAGING METHOD AND AN
APPARATUS THEREFOR

(75) Inventors: Yumiko Seki, Toyonaka (JP); Masami
Kameda, Yokohama (JP); Takeshi
Fujii, Yokohama (JP); Yoshifumi
Yamashita, Yokohama (JP)

Correspondence Address:

MATTINGLY, STANGER & MALUR, P.C.
1800 DIAGONAL ROAD

SUITE 370

ALEXANDRIA, VA 22314 (US)

(73) Assignee: Hitachi, Ltd.

Related U.S. Application Data

(63) Continuation of application No. 10/046,981, filed on
Jan. 17, 2002, now Pat. No. 6,832,227.

(30) Foreign Application Priority Data
Feb. 19, 2001 (IP) ceevererrerccrvccreccrseerinnes 2001-041122

Publication Classification

(51) TNt CL7 oo GOGF 7/00
(52) US.ClL oo 707/202
(7) ABSTRACT

Database optimizing method and system are provided to
optimally locate data. Only data satisfying conditions
desired by a user is extracted among an access log. Values
of a part of the data are translated on the basis of a translation
table, and aggregated on the basis of aggregation condition

(21) Appl. No.: 10/933,393 rules. The obtained aggregation result is presented to the
user. In addition, data in the database are optimally relocated
(22) Filed: Sep. 3, 2004 on the basis of the obtained aggregation result.
SR
v
COMPUTER 2
DATABASE APPLICATION |~ 102
‘¥]___/ PROGRAM
COMPUTER 1 103
ACCESSLOGDATA I~ 105
DATABASE 101 od
MANAGEMENT | L/— INPUT/OUTPUT
PROGRAM MEANS
NETWORK
oA 04
ACCESS LOG EDITION/AGGREGATION PROCESSING PROGRAM
111 LI EXTRACTIONPROCESS TRANSLATONTABLE | | | 443
i CREATING PROCESS
112 L TRANSLATION PROCESS OPTIMIZATION PROCESS L1l 116
= N
114 LK AGGREGATION PROCESS QUTPUT PROCESS Ll 115
COMPUTER 3

Patent Application Publication Feb. 10,2005 Sheet 1 of 23 US 2005/0033779 A1
VL
\——/
. COMPUTER 2
DATABASE APPLICATION |~ 102
~— PROGRAM
COMPUTER 1 103
ACCESS LOG DATA 105
DATABASE 101 Vad
MANAGEMENT | — INPUT/OUTPUT
PROGRAM MEANS
NETWORK
104
ACCESS LOG EDITIONAGGREGATION PROCESSING PROGRAM
111 LI| EXTRACTIONPROCESS | | TRANSLATIONTABLE [|| 143
| (FIG.3) CREATING PROCESS (FIG. 8)
S |
TRANSLATION PROCESS OPTIMIZATION PROCESS | |
11241 (FIGS. 7,9 AND 10) (FIGS.22 AND 23) 116
114 LL] AGGREGATIONPROCESS | _| OUTPUTPROCESS ||| 445
(FIG.12) (FIGS.20 AND 21)

COMPUTER 3

Patent Application Publication Feb. 10,2005 Sheet 2 of 23 US 2005/0033779 A1

FIG.2

FORMAT EXAMPLE : yyymm/dd hhomm:ssms UserlD Loginformation1 Loginformation2 .

06/19/2000 02:18:19.388 ACUser6 Pid051 CONNECT 673d2be0-d1fd-11d0-ab59-08002be29e1d
05/19/2000 02:18:52. 261 ACUser6 Pid051 DISCONNECT

(06/19/2000 02:19:16.420 ACUser6 Pid058 CONNECT 673d2be0-d1fd-11d0-ab59-08002be29e1d
06/19/2000 0221:50.877 ACUser6 Pid058 CREATE OBJECT object id:088901123

06/19/2000 0222:37.607 ACUser6 Pid058 GET PROPERTIES object_id:088901123 (nil)
06/19/2000 0222:54.537 ACUser6 Pid058 RELEASE OBJECT object_id:088901123

06/19/2000 02:36:13.963 ACUser6 Pid058 DISCONNECT _

06/19/2000 02:50:16.420 ACUser3 Pid302 CONNECT 673d2be0-d1fd-11d0-ab59-08002be2%1d
06/19/2000 02:51:50.877 ACUser3 Pid302 CREATE OBJECT object id:088301123.

06/19/2000 02:52:37.607 ACUser3 Pid302 GET PROPERTIES object id:088901123 (nil)
06/19/2000 02:52:54.537 ACUser3 Pid302 RELEASE OBJECT object_id:088901123

06/19/2000 02:13:52. 963 ACUser3 Pid302 DISCONNECT

FIG.3
(e)
)

GENERATE EXTRACTION FILTER 211
~ (FLTER 202)

i

EXTRACT INPUT DATA ~— 212

y
=

Patent Application Publication Feb. 10,2005 Sheet 3 of 23 US 2005/0033779 A1

FIG.4

PRIORITY: TIMEZ>USER>OBJECT >PROCESS ID>MESSAGE

EXTRACTION START TIME: NONE SPECIFIED
EXTRACTION END TIME: NONE SPECIFIED
EXTRACTION DURATION: 30 MINUTES
USER: ACUser 6 OR ACUser 3

OBJECT:

object_id:088901123

PROCESS iD: 0 OR MORE

MESSAGE: NORMAL SYSTEM

FIG.5

START_TIME=START_TIME;
END_TIME=START_TIME+DURATION;
DURATION=00:30;

USER="ACUser8" | | "ACUser3";
OBJECT=object_id:088901123;
PID=TRUE;

MESSAGE=NORMAL;
START_TIME=END_TIME;

Patent Application Publication Feb. 10,2005 Sheet 4 of 23 US 2005/0033779 A1

FIG.6A

06/19/2000 0221:50.877 ACUser6 Pid058 CREATE OBJECT object 088901123
06/19/2000 0222:37.607 ACUser6 Pid058 GET PROPERTIES object_id:088901123(nil)
06/19/2000 0222:54.537 ACUser6 Pid058 RELEASE OBJECT object id:088901123

F1G.6B

06/19/2000 02:52:37.607 ACUser3 Pid302 GET PROPERTIES object_id:088301123(nil)
06/19/2000 02:52:54. 537 ACUser3 Pid302 RELEASE OBJECT object id:088901123

711

ISTHERE TRANSLATION TABLE
: ? .

PERFORMTRANSLATONTABLE ~ [~— 712
CREATING PROCESS (113)

!

TRANSLATEVALUESOFEXTRACTED [~— 713
ACCESS LOG DATA

1
(e)

Patent Application Publication Feb. 10,2005 Sheet 5 of 23 US 2005/0033779 A1

FIG.8
C STQHT)

GET TRANSLATION KEYS 811
FROM TRANSLATION RULES

i

GENERATELIST OF VALUES 812
OF TRANSLATION SOURCES

v

CREATE TRANSLATION TABLE —~— 813
@)

Patent Application Publication Feb. 10,2005 Sheet 6 of 23 US 2005/0033779 A1

FIG.9

Rules

PRIORITY=USER>OBJECT

REPLACE ALL OBJECT ID'S WITH OBJECT NAMES

REPLACE ANY OBJECT ID WITH ANOTHER PROPERTY ATTRIBUTE
WHEN OBJECT NAME IS NOT ALLOTTED TO THE OBJECT ID
REPLACE ALL USER ID'S WITH USER NAMES

DON'T REPLACE ANY USER ID

WHEN USER NAME IS NOT ALLOTTED TO THE USER ID

FIG.10

Rules

Key1=UserlD;
ACUser6,
ACUser3

Key2=0bijectID;
object_id:088901123

Patent Application Publication Feb. 10,2005 Sheet 7 of 23 US 2005/0033779 A1

Key Target Value - Translated Value
UserliD ACUser6 TARO YAMADA
UserlD ACUser3 HANAKO HITACHI
ObjectiD | object_id:088901123 FUNCTION
SPECIFICATIONS
(_smr)
CREATE ACCESS TABLE
(OUTPUT ACCESS TABLE WHEN L~ 1211
OUTPUT OPTION IS DESIGNATED)
CREATE AGGREGATION FILTER ~— 1212

|

AGGREGATEVALUESOF ACCESSTABLE | 1213

WITH AGGREGATION FILTER

D

Patent Application Publication Feb. 10,2005 Sheet 8 of 23 US 2005/0033779 A1
UserlD Pid Command ObjectIiD
: ' FUNCTION
TARO YAMADA Pid058 CREATE OBJECT SPECIFICATIONS
, FUNCTION
TARO YAMADA Pid058 GET PROPERTIES SPECIFICATIONS
: FUNCTION
TARO YAMADA Pid058 RELEASE OBJECT SPECIFICATIONS
AGGREGATEIN USER UNIT
SET COMMANDS AS AGGREGATION TARGET
SET TIMES AS AGGREGATE UNIT

AGGREGATE COMMANDS AS THE SAME COMMAND EVEN IF THE COMMANDS ARE
THE SAME BUT DIFFERENT IN OTHER CONDITIONS
AGGREGATETOTALLY IN ALL USERS

FIG.14B

AGGREGATE IN USER UNIT AND IN OBJECT UNIT

PRIORITY=USER>OBJECT

SET COMMANDS ASAGGREGATION TARGET

SET TIMES AS AGGREGATE UNIT

AGGREGATE COMMANDS AS THE SAME COMMAND EVEN IF THE COMMANDS ARE
THE SAME BUT DIFFERENT IN OTHER CONDITIONS

AGGREGATETOTALLY IN ALL USERS

Patent Application Publication Feb. 10,2005 Sheet 9 of 23 US 2005/0033779 A1

Stat =Date hh:mm:ss

End =Date hh:mm:ss

Key1 Target Summary Unit

Subtotal

Total Target Summary Unit

FIG.15B

Stat =Date hh:mm:ss

End =Date hh:mm:ss

Key1 Key2 Target Summary Unit
Key2 Target Summary Unit

Subtotal = ------- Target Summary Unit

Key1 Key2 Target Summary Unit
Key2 Target Summary Unit

Subtotal ------- Target Summary Unit

Total ------- Target Summary Unit

Patent Application Publication Feb. 10,2005 Sheet 10 of 23 US 2005/0033779 A1

FIG.16A

AGGREGATION FILTER (one key)

Key=Key1,;
Key1=UserlD;
Target=Command;
Summary Unit=Count;
Subtotal=Yes;
Total=Yes;

Others=Invalid;

FIG.16B

AGGREGATION FILTER (two keys)

Key=Key1,Key2;
Key1=UserlD;
Key2=0bjectlD;
Target=Command,
Summary Unit=Count;
Subtotal=Key1;
Total=Key2;
Others=Invalid;

Patent Application Publication Feb. 10,2005 Sheet 11 of 23 US 2005/0033779 A1
Start =06/1 9/2_000 02:21:50.877
End =06/19/2000 02:22:54.537
UserlD ObjectiD Command Count
TARO YAMADA FUNCTION SPECIFICATIONS CREATEORJECT 1
FUNCTION SPECIFICATIONS GET PROPERTIES 1
FUNCTION SPECIFICATIONS RELEASE OBJECT 1
Sublotdl ------- Command Count
CREATE OBJECT 1
GET PROPERTIES 1
RELEASE OBIECT 1
Start = 06/19/2000 02:52:37.607
End =06/19/2000 02:52:54.537
UserlD ObjectiD Command Count
HANAKOSATO FUNCTION SPECIFICATIONS .. GET PROPERTIES 1
FUNCTION SPECIFICATIONS ~ RELEASEOBJECT 1
Subtotal @@=0 ------- Command. Count
GET PROPERTIES 1
RELEASE OBJECT 1
Todd = ------- Command Count
CREATE OBJECT 1
GET PROPERTIES 2
RELEASE OBJECT 2

Patent Application Publication Feb. 10,2005 Sheet 12 of 23 US 2005/0033779 A1

FIG.18A

AGGREGATE IN USER UNIT

SET DOCUMENT PROCESSING COMMANDS <— VALUE SPECIFIED
AS AGGREGATION TARGET BY USER IS USED

SET TIMES AS AGGREGATE UNIT AS AGGREGATION TARGET
AGGREGATE COMMANDS AS THE SAME COMMAND EVEN

IF THE COMMANDS ARE THE SAME BUT DIFFERENT IN OTHER
CONDITIONS AGGREGATE TOTALLY IN ALL USERS

FIG.18B
Key=Key1,
~Keyl=UserlD;
Target=Customised_Command_Table_1; <—— POINTER TO AGGREGATION
TARGET DEFINITION TABLE

Summary Unit=Count;
Subtotal=Yes;
Total=Yes;
Others=Invalid;

US 2005/0033779 A1

Patent Application Publication Feb. 10,2005 Sheet 13 of 23

O avodn
O MNMNN
O aNigNN
O 135
Q DIOAH
Q 1Sn
O NN
Q SHIHLO
O 1InS3H 139
O HOWY3S 31N033
o O HOHY3
avOINMOQ
O O SH3HLO
103r80 313130
O Q SH3HLO
103060 31v3d0
®) 193INNOD
@) 1NOXD3HD
@) NINOIHO
O JONVHD
©) anig
HOWH3 3Lvadn H343H 3131 31¥34D HOHV3S 103NNOD INJNNOHY | ONVINWOD
(ONVININOD DNISSIDOHd INFWNJ0Q 40 ALH3dOHd A9) NOLLYOIISSY10 NOILLYDIHDDY V1va LNdNI 40 NOLLYWHOANI

610l

Patent Application Publication Feb. 10,2005 Sheet 14 of 23

DOCUMENT PROCESSING COMMAND Count

CREATE 1
REFER 1
CONNECT : 1

DOCUMENT PROCESSING COMMAND Court

CREATE 1
REFER 1
CONNECT 1

DOCUMENT PRCCESSING COMMAND Count
REFER -1
CONNECT 1

DOCUMENT PROCESSING COMMAND Count
REFER 1
CONNECT 1

Start =06/19/2000 02:21:50.877

End =06/19/2000 02:22:54.537

UserlD CbjediD

TAROYAMADA FUNCTION SPECIFICATIONS
FUNCTION SPECIFICATIONS
FUNCTION SPECIFICATIONS

Subtotsd =0 -------

Start = 06/19/2000 02:52:37.607

End =06/19/2000 02:52:54.537

UserlD ObjediD

HANAKOSATO FUNCTION SPECIFICATIONS
FUNCTION SPECIFICATIONS

Subtoel @000 -------

TotAal -------

' DOCUMENT PROCESSING COMMAND Court

CREATE 1
REFER 2
CONNECT -2

US 2005/0033779 A1

Patent Application Publication Feb. 10,2005 Sheet 15 of 23 US 2005/0033779 A1

FIG.21

AGGREGATION RESULT OF OBJECT Y _.--®
@ i

AGGREGATION RESULT OF OBJECT X

NUMBER OF TIMES OF DOCUMENT PROCESSING COMMANDS

- AGGREGATION SECTION

Patent Application Publication Feb. 10,2005 Sheet 16 of 23 US 2005/0033779 A1

F1G.22

OPTIMIZATION PROCESS 116
(smar)
READ ACCESS TABLE

! /~,2312

2311

AGGREGATE NUMBER OF TIMES OF COMMAND ISSUES FOR
EVERY EXTRACTION SECTION WITH OBJECT ID ASKEY

ISTT ALWAYSNOT LOWER THAN
PREDETERMINED VALUE ?

NO
,~/2314

' \V
COMPARE FREQUENCIES OF ACCESS COMMAND TO
RESPECTIVE OBJECTS FOR EVERY SECTION,
AND JUDGE TENDENCY OF INCREASE/DECREASE
ON THE BASISOF JUDGEMENTRULES

J]WHEN INCREASE | WHEN NOCHANGE lWHEN DECREASE

2315 2316
: OPTIMALLY LOCATE OPTIMALLY LOCATE
e OBJECTSHIGH IN OBJECTSLOWIN

ACCESS FREQUENCY ACCESS FREQUENCY

Bl !)
C D

Patent Application Publication Feb. 10,2005 Sheet 17 of 23

US 2005/0033779 A1

DIFFERENCE BETWEEN | DIFFERENCE BETWEEN
JUDGEMENT OF
EVENT SECTION AAND SECTIONBAND
SECTIONB SECTIONC INCREASEDECREASE
WHENOBJECTIS — —
DELETED DURING DECREASE
EXTRACTION SECTION
WHENOBECT IS ACCESSINCREASE | ACCESSINCREASE
PRESENT DURING NCREASE
EXTRACTIONSECTION | s50ESS INCREASE NOCHANGE
ACCESSINCREASE | ACCESSDECREASE
NOCHANGE
NOCHANGE NOCHANGE
NOCHANGE | ACCESSDECREASE
DECREASE
ACCESS DECREASE | ACCESS DECREASE

Patent Application Publication Feb. 10,2005 Sheet 18 of 23 US 2005/0033779 A1

| 100
COMPUTER 2
DATABASE APPLCATION | ~}-102
N~ PROGRAM
COMPUTER 1 103
ACCESSLOGDATA ™ 105
DATABASE 101 o
MANAGEMENT | _ INPUTIOUTPUT
PROGRAM MEANS
NETWORK
104
ACCESS LOG EDITION/AGGREGATION PROCESSING PROGRAM
n ‘ TRANSLATIONTABLE | |
111 14 EXTRACTION PROCESS CREATING PROCESS 113
11211 TRANSLATION PROCESS OPTIMIZATION PROCESS 1~ 116
114 1~ AGGREGATION PROCESS OUTPUTPROCESS 115
OBJECT LIFE CYCLE ANALYZING PROCESS 117
COMPUTER3

Patent Application Publication Feb. 10,2005 Sheet 19 of 23 US 2005/0033779 A1

F1G.25

C START)
!

SET EXTRACTION START TIME TO THE TIME
WHEN OBJECT IS CREATED, AND
SET EXTRACTION END TIME TO THE TIME
WHEN OBJECT ISDELETED

2611

!7

GET ID OF DESIGNATED OBJECT

~— 2612

!;

EXTRACTION PROCESS

—~— 111

;

TRANSLATION PROCESS

—~— 112

&

AGGREGATION PROCESS

~ 114

!7

ANALYSIS OUTPUT PROCESS

]

OPTIMIZATION PROCESS

-!,
(o)

Patent Application Publication Feb. 10,2005 Sheet 20 of 23

FIG.26

2701

US 2005/0033779 A1

NUMBER OF TIMES OF DOCUMENT PROCESSING COMMANDS

AGGREGATION RESULT OF OBJECT Y

AGGREGATION RESULT
OF OBJECT X

AVERAGE LIFE OF OBJECTS =S SECONDS

AVERAGE RATIO OF TIMES OF DOCUMENT PROCESSING COMMAND ISSUES
TOTOTAL TIMES OF DOCUMENT PROCESSING COMMAND ISSUES =

80% (SHORTER THAN LIFE/2) ‘

90% (NOT SHORTER THAN 1/2 OF LIFE, AND SHORTER THAN 3/4 OF LIFE)

ISOPTIMIZATION OF COMMAND PROCESSING ADDED
TORULES ON THE BASIS OF COMPARISON BETWEEN AVERAGE LIFEAND
TIME WHEN OBJECT WASCREATED ?

©YES(Y) NO(N)

|~ 2704

Patent Application Publication Feb. 10,2005 Sheet 21 of 23 US 2005/0033779 A1
OPTIMIZATION PROCESS
EVENT ACCESS FREQUENCY PROCESSING
LOAD OBJECT INTO CACHE
WHEN EXISTENCE TIME
GIVE PRIORITY TO DOCUMENT
%': &Bfoggi ivaglég INCREASE PROCESSING COMMANDS
°UFE INCREASE PROCESS PRIORITY
* NECESSARY TO CREATE OBJECT INDEX
ENCETIVE RELEASE CACHE
WHEN EXISTENG RETURN DOCUMENT PROCESSING
OF OBJECT EXCEEDS NO CHANGE COMMAND TONORMAL LEVEL
50% OF AVERAGE LIFE
RETURN PROCESS TO NORMAL LEVEL
WHEN EXISTENCE TME SAVE OBJECT ON BACKUP
OF OBJECT EXCEEDS DECREASE B\ DOCUMENT PROCESSNG. -
75%OF AVERAGE LIFE LEVEL
REDUCE PROCESS PRIORITY .

Patent Application Publication Feb. 10,2005 Sheet 22 of 23 US 2005/0033779 A1

F1G.28

WHEN SHORTER THAN 50% WHEN NOT SHORTER THAN 75%
OF AVERAGE LIFE OF AVERAGE LIFE

OTHERS ___ CONNECT
TE

REFER

SEARCH

2901

DETAILS OF TIMES OF DOCUMENT PROCESSING COMMAND ISSUES:
MOST FREQUENT COMMAND = |

UPDATE (SHORTER THAN 1/2 OF LIFE)

SEARCH (NOT SHORTER THAN 3/4 OF LIFE)

2902
ISOPTIMIZATION OF COMMAND PROCESSING ADDED TO RULES ON
THE BASIS OF COMPARISON BETWEEN AVERAGE UFE’AND

TIME WHEN OBJECT WAS CREATED?
YES(Y) NO(N)

Patent Application Publication Feb. 10,2005 Sheet 23 of 23

FI1G.29

EVENT

ACCESS FREQUENCY

PROCESSING

WHEN EXISTENCE TIME

OF OBJECT ISSHORTER

THAN 50% OF AVERAGE
LFE

INCREASE

LOAD OBJECT INTO CACHE

GIVE PRIORITY TO DOCUMENT
PROCESSING COMMANDS

INCREASE PROCESS PRIORITY
NECESSARY TO CREATE OBJECT INDEX

GIVE PRIORITY TO COMMANDS FOR

- UPDATE PRCCESSING

GIVE PRIORITY TO PROCESS FOR
UPDATE PROCESSING
GIVE PRIORITY TO PROCESS FOR
EXCLUSIVE CONTROL

WHEN EXISTENCE TIME
OF OBJECT EXCEEDS
50% OF AVERAGE LIFE

NO CHANGE

RELEASE CACHE

RETURN DOCUMENT PROCESSING
COMMAND TO NORMAL LEVEL

RETURN PROCESS TONORMAL LEVEL

GIVE PRIORITY TO COMMANDS FOR
REFERENCE PROCESSING

GIVE PRIORITY TOPROCESS FOR
REFERENCE PROCESSING

REDUCE PRIORITY OF PROCESSFOR
EXCLUSIVE CONTROL

WHEN EXISTENCE TIME
OF OBJECT EXCEEDS
75%OF AVERAGE LIFE

DECREASE

SAVE OBJECT ON BACKUP

. RETURN DOCUMENT PROCESSING

COMMAND TO NORMAL LEVEL
REDUCE PROCESS PRIORITY

GIVE PRIORITY TO COMMANDS FOR
SEARCH PROCESSING

GIVE PRIORITY TO PROCESS FOR
SEARCH PROCESSING

NECESSARY TO CREATE INDEX FOR
SEARCH

PROHIBIT EXCLUSIVE CONTROL

US 2005/0033779 A1

US 2005/0033779 Al

DATABASE MANAGEMENT PROGRAM, A
DATABASE MANAGING METHOD AND AN
APPARATUS THEREFOR

BACKGROUND OF THE INVENTION

[0001] The present invention relates to a database, and
particularly relates to a database management program, a
database managing method and a database managing system
for carrying out rearrangement of a database or the like on
the basis of log information showing access status to data.

[0002] As a conventional database optimizing system
based on trace information, there is a database optimizing/
rearranging system as disclosed in JP-A-5-2515. In this
system, information of a method for gaining access to a
database at data operation requests issued from respective
user programs is accumulated as trace information. When
the database is rearranged at regular time intervals, the
optimum storage order of data in the database and the
necessity of an index are determined with reference to the
accumulated trace information. Thus, buffer quantity assign-
ment parameters are created for securing a buffer quantity
required for rearranging the database.

SUMMARY OF THE INVENTION

[0003] In the above-mentioned conventional technique,
description is made on a method for optimizing and storing
the order of columns, the order of lines and the necessity of
creating an index in a database on the basis of access
frequency. Such processing is carried out automatically
routinely, and information is not disclosed to any user.
Therefore, the user does not know what standard is used and
what is optimized. Thus, classification between the case to
optimize and the case not to optimize about one item cannot
be defined by the judgement of the user. In addition, for the
optimization of the database, the order of columns or the
order of lines is merely changed or creation of an index is
merely designated. That is, only static optimization is car-
ried out, and description is not made on any dynamic
optimization method in which optimization is carried out in
accordance with the behavior of the system always under-
going a variation.

[0004] Tt is an object of the present invention to provide a
method and a system for supporting user’s database man-
agement to optimize the system dynamically, and a program
for carrying out the support.

[0005] Further, it is another object of the invention to
provide a database optimizing method which can optimize
various conditions such as priorities of data, storage places,
storage methods, management of resources, indexes, priori-
ties of jobs, and so on, in accordance with optimization rules
defined by a user on the basis of a disclosed optimization
criterion (reference).

[0006] In order to achieve the foregoing objects, database
managing means according to one aspect of the invention
has a function to extract log information satisfying prede-
termined conditions from among log information of appli-
cation programs having accessed to a database, and a
function to rearrange data in the database in accordance with
predetermined rules on the basis of commands included in
the extracted log information.

[0007] Other objects, features and advantages of the
present invention will become apparent from the description

Feb. 10, 2005

of the embodiments of the invention taken in conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is a block diagram showing the configura-
tion of a database managing system according to an embodi-
ment of the present invention;

[0009] FIG. 2 is a diagram showing an example of an
access log;

[0010] FIG. 3 is a flow chart of an extraction process;
[0011] FIG. 4 is a diagram showing an example set of

definitions of extraction conditions;

[0012] FIG. 5 is a diagram showing an example of an
extraction filter;

[0013] FIGS. 6A and 6B are diagrams showing examples
of extracted data respectively;

[0014]

[0015] FIG. 8 is a flow chart of a translation table creating
process;

[0016] FIG. 9 is a diagram showing an example set of
translation rules;

FIG. 7 is a flow chart of a translation process;

[0017] FIG. 10 is a diagram showing an example of a
translation source list;

[0018] FIG. 11 is a diagram showing an example of a
translation table;

[0019] FIG. 12 is a flow chart of an aggregation process;
[0020] FIG. 13 is a diagram showing an example of an
access table;

[0021] FIGS. 14A and 14B are diagrams showing

example sets of aggregation condition rules respectively;

[0022] FIGS. 15A and 15B are diagrams showing
examples of aggregation templates respectively;

[0023] FIGS. 16A and 16B are diagrams showing
examples of aggregation filters respectively;

[0024] FIG. 17 is a diagram showing an example of an
aggregation result;

[0025] FIGS. 18A and 18B are diagrams showing an
example set of aggregation condition rules and an example
of an aggregation filter respectively;

[0026] FIG. 19 is a diagram showing an example of an
aggregation target definition table;

[0027] FIG. 20 is a diagram showing an example of an
aggregation result output using the aggregation target defi-
nition table;

[0028] FIG. 21 is an illustration showing an example of
another output format of the aggregation result by a screen
image;

[0029]

[0030] FIG. 23 is a diagram showing an example set of
judgement rules for optimization;

FIG. 22 is a flow chart of an optimization process;

US 2005/0033779 Al

[0031] FIG. 24 is a block diagram showing the configu-
ration of a database managing system according to another
embodiment of the invention;

[0032] FIG. 25 is a flow chart of an object life cycle
analyzing process;

[0033] FIG. 26 is an illustration showing another example
of an output by a screen image;

[0034] FIG. 27 is a diagram showing an example set of
judgement rules for the object life cycle analyzing process;

[0035] FIG. 28 is an illustration showing another example
of an output by a screen image; and

[0036] FIG. 29 is a diagram showing another example set
of judgement rules for the object life cycle analyzing pro-
cess.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

[0037] Embodiments of the present invention will be
described below with reference to the drawings.

[0038] FIG. 1 shows the configuration of a database
managing system according to an embodiment of the present
invention. A computer 1 has a database management pro-
gram 101 for storing data into a database 100, and updating
and reading the data from the database 100. A computer 2
has an application program 102 and outputs a data read
request, a data update request and a data store request to the
computer 1 in accordance with necessity. The computer 2
also stores access log data 103 showing the access status to
the database in accordance with the execution of the appli-
cation program 102. A computer 3 has an access log edition/
aggregation processing program 104. The access log edition/
aggregation processing program 104 fetches the access log
data from the computer 2, and edits, aggregates and analyzes
the access log data. Then, on the basis of the result of the
analysis, the access log edition/aggregation processing pro-
gram 104 determines the optimized location of data in the
database, the priorities of commands, and so on. The access
log edition/aggregation processing program 104 has respec-
tive programs for an extraction process 111, a translation
process 112, a translation table creating process 113, an
aggregation process 114, an output process 115 and an
optimization process 116. In the extraction process 111,
information is extracted from the access log on desired
conditions. In the translation table creating process 113, a
translation table for translating values of the extracted part
of data is created on the basis of translation rules defined by
a user. In the translation process 112, data is translated on the
basis of this translation table. In the aggregation process 114,
aggregation is performed on the extracted data or the trans-
lated data. In the output process 115, the result of the
aggregation is outputted to an internal memory or external
input/output means. In the optimization process 116, data is
optimally located on the basis of the result of the aggrega-
tion. Input/output means 105 forms a part of a user terminal,
and is connected to be able to communicate with the
respective computers 1 to 3 which are connected to each
other over a network.

[0039] FIG. 2 shows an example of the access log out-
putted by the application program. In this format of the log,

Feb. 10, 2005

access date and time, user ID, and log information (includ-
ing process ID, command, and object targeted by command)
are outputted.

[0040] Upon reception of the access log from the com-
puter 2, the computer 3 starts to execute the access log
edition/aggregation processing program 104.

[0041] FIG. 3 shows a flow of the extraction process 111.
When the computer 3 receives the access log data 103, the
computer 3 executes the processing program 104 to create
an extraction filter (211). The extraction filter is created with
extraction keys and conditional expressions defined on the
basis of the extraction condition rules defined by the user.
Next, the extraction filter is used to extract required access
log data from the access log data 103 (212).

[0042] FIG. 4 shows an example set of extraction condi-
tions. These extraction conditions are set or established by
the user. In this example, the priority of data extraction is set
by time>user>object>process ID>message. Thus, the data
extraction is processed according to this priority. Since both
start time and end time have not been specified for the time
assignment having highest priority, the start time and the end
time of input data are used as they are. Since the extraction
duration is defined to be 30 minutes, extraction is carried out
every 30 minutes. That is, data is extracted every 30 minutes
in a section from the start time of the access log data 103 to
the end time thereof. The user extraction condition is
ACUser6 or ACUser3. Accordingly, only access logs of
these users are extracted. As for objects, specified objects
(only one in this example) are extracted. In addition, extrac-
tion conditions are also defined for process IDs and mes-
sages respectively. An extraction filter for extracting access
log data satisfying all the extraction conditions is created in
the extraction process 211.

[0043] FIG. 5 shows an example of the extraction filter.
This extraction filter is created on the basis of the extraction
conditions of FIG. 4. Extraction start time START_TIME of
the extraction filter is in agreement with start time START-
_TIME of first input data. Extraction end time END_TIME
is in agreement with the start time plus extraction duration
(DURATION), that is, 30 minutes after the start of the log.
First, input data is divided in this first 30-minute section.
Data is extracted from every divided section on the condi-
tions of the extraction filter. When START TIME is
replaced by END_TIME at last, the end time is set by
END_TIME=START_TIME+DURATION from the next
time, and the extraction processing is carried out on data in
the next 30-minute section.

[0044] FIGS. 6A and 6B show examples of extracted
data. The data is extracted from the access log data of FIG.
2 by the extraction filter shown in FIG. 5. FIG. 6A shows
extracted data in Extraction Section 1, that is, in the first
30-minute section. FIG. 6B shows extraction data in Extrac-
tion Section 2, that is, in the next 30-minute section.

[0045] FIG. 7 shows a flow chart of the translation process
112 in FIG. 1.

[0046] 1t is confirmed whether a translation table is present
or absent (711). If absent, a translation table is created (113).
If the user prepares a translation table, or if a translation
table has been created before, the values of the extracted
access log data are translated with reference to the transla-
tion table (713).

US 2005/0033779 Al

[0047] FIG. 8 shows a flow chart of the translation table
creating process 113. Translation keys are obtained with
reference to translation rules defined by the user in advance
(811). The translation keys are generic terms of data to be
translated in this process. See FIGS. 9 to 11.

[0048] FIG. 9 shows an example set of the translation
rules. Here, the translation keys are user ID and object ID.
The method of translation will be described. Translation of
users is prior to translation of objects. All the IDs of the
objects are replaced by object names. In addition, if an
object name is not allotted to an object ID, the object ID is
replaced by another property. All the IDs of users are
replaced by user names. In addition, if a user name is not
allotted to a user ID, the user ID is not replaced but used as
it is.

[0049] Next, values corresponding to the translation keys
(for example, user ID and object ID) are obtained from the
extracted access log data so as to create a list of values of
translation sources (812).

[0050] FIG. 10 shows an example of the list of values of
translation sources. Keyl designates a translation key user
ID having priority, and Key2 designates an object ID. For
example, translation sources of user IDs in Keyl are two
values, ACUser6 and ACUser3.

[0051] Next, the translation source list is used to access the
computer 1, and values of accessible translation destinations
are obtained to create a translation table (813).

[0052] FIG. 11 shows an example of the translation table.
In this example, it is prescribed that the user ID ACUser6,
the user ID ACUser3 and the object ID which are translation
keys are translated into the user name “Taro Yamada”, the
user name “Hanako Hitachi” and the object name “func-
tional specifications”, respectively. The values of translation
destinations (Translated Values) of this table are obtained
with reference to values stored in the database. Accordingly,
if this process does not have access authority to the data, the
process cannot obtain the values of translation destinations.
Thus, the translation keys are not translated but left as they
are. Although a translation table can be created by reading
from the database, the user can prepare a translation table
specially. For example, if the user wants user names, object
names and so on not to be known for the purpose of security
guarantee, such translation keys in the translation table may
be translated into random numbers or ciphers.

[0053] FIG. 12 shows a flow chart of the aggregation
process 114. In the aggregation process, either the extracted
data or the translated data can be specified as input data. If
it cannot be confirmed that either data is present, an error
message is outputted, and the process is terminated.

[0054] First, specified data is read as input data, and an
access table (FIG. 13) for aggregation is created on a
memory (1211). Here, when the output of the access table is
designated, this access table is outputted to the external
input/output unit. FIG. 13 shows an example of the access
table. In the access table, columns are made up for every
item included in input information. The input information is
developed on the table, and used to carry out subsequent
calculation repeatedly at a high speed.

[0055] 1If the access table has been created, an aggregation
filter is created along aggregation condition rules and an
aggregation template (1212).

Feb. 10, 2005

[0056] Each of FIGS. 14A and 14B shows an example set
of the aggregation condition rules. FIG. 14A shows an
example set when there is one aggregation key. FIG. 14B
shows an example set when there are two aggregation keys.
In the example where there are two aggregation keys,
aggregation is defined as follows. That is, aggregation is
carried out in user unit and in object unit. Objects are subject
to the aggregation. The unit of aggregation is the number of
times of command issue. Commands different in conditions
other than commands themselves are aggregated as the same
command. Finally, the total sum of results of all users is
calculated. Aggregation condition rules may be predeter-
mined as default values for the system, or may be defined
individually by users.

[0057] Each of FIGS. 15A and 15B shows an example of
the aggregation template with which the aggregation result
is outputted. FIG. 15A shows a template when there is one
aggregation key. FIG. 15B shows a template when there are
two aggregation keys. These templates are assumed to be
outputted to an input/output screen or a file. However,
information listed here may be outputted as a file in a CSV
format. An aggregation template may be predetermined as a
default value for the system, or may be defined individually
by users.

[0058] Each of FIGS. 16A and 16B shows an example of
the aggregation filter. FIG. 16A shows the case where there
is one aggregation key. FIG. 16B shows the case where
there are two aggregation key. In the previous example, there
are two aggregation keys, Keyl and Key2, and user ID is
defined as a high priority key (Keyl) by way of example.

[0059] Returning to the description of FIG. 12, values in
the access table are aggregated through the aggregation filter
created in the step 1212 (1213). The aggregation result is
outputted to the external input/output means 105 by the
output process 115, or stored in a memory or a buffer. Thus,
the aggregation process 114 is terminated.

[0060] FIG. 17 shows an example of the outputted aggre-
gation result. First, the number of times of command issues
is aggregated for every user and for every object in Section
1. Next, the number of times of command issues is aggre-
gated for every user and for every object in Section 2.
Finally, the numbers of times of command issues is aggre-
gated totally. Values specified by the user as shown in FIG.
18A may be used as the aggregation condition rules for the
aggregation. In the example of FIG. 18A, the aggregation
condition rules are specified so that aggregation is carried
out with document processing commands as aggregation
targets. An aggregation target definition table (FIG. 18A) in
which the correspondence between document processing
commands and access commands is defined is Customised-
_Command_Table 1 in the aggregation filter (FIG. 18B).
FIG. 19 shows an example of the aggregation target defi-
nition table. In this example, the access commands are
defined to be classified into seven kinds of document pro-
cessing commands. For example, a command EXECUTE
SEARCH and a command GET RESULT are classified into
search commands because both of the commands search a
document similarly. FIG. 20 shows the result of aggregation
classification using the aggregation target definition table of
FIG. 19. The aggregation result is outputted while the
aggregation targets are not commands but replaced by
document processing commands. FIG. 21 shows an output

US 2005/0033779 Al

example of the aggregation result when the aggregation
template is a graph image. Here, the numbers of issues of
document processing commands are graphed and outputted
for two objects X and Y. Comparing these two graphs with
each other, the user can know easily which object is higher
in access frequency. If the user wants to optimize the
location about data with a high access frequency or data with
a low access frequency, the optimization process 116 is
carried out as follows.

[0061] FIG. 22 shows a flow of the optimization process
116. The access table is read (2311), and the number of
command issues is aggregated for every extraction section
with the object ID as a key (2312). If it is concluded in Step
2313 that the number of accesses is always beyond a
predetermined value in each of the sections, the access
frequency is regarded as high, and the location of objects is
optimized. If such a conclusion is not made in Step 2313, the
frequency of access commands to each object is compared
for every section, and the tendency of increase/decrease in
frequency of access commands is judged on the basis of
judgement rules (FIG. 23) for optimization.

[0062] FIG. 23 shows an example set of the judgement
rules. The judgement rules may be determined by individual
users. The example of FIG. 23 shows the case where there
are an even number of sections. Incidentally, in this
example, if there are an odd number of sections, the number
of increases and the number of decreases in differences for
each section are compared with each other, and the large
number is selected. If there are an even number, judgement
of increase/decrease is performed as illustrated in this draw-
ing.

[0063] Next, as a result of judgement (2314), the location
of an object judged to be high in access frequency is
optimized (2315). Some examples will be shown about such
optimized location. First, an object judged to be high in
access frequency is stored from the database into a cache
memory or a buffer memory in the computer 1. Thus, it is
possible to provide high-speed access to the object judged to
be high in access frequency.

[0064] In addition, the priority of a process for the object
judged to be high in access frequency is increased. For
example, this is effective in the case where the computer 1
is designed to receive access requests from a plurality of
computers 2, and the computer 1 executes a process in
accordance with priority given thereto in order to carry out
processing efficiently. In this case, the access log edition/
aggregation program sends the computer 1 the object judged
to be high in access frequency and the priority for the object.
In the computer 1, the priority and the object sent thereto are
stored. Then, when a command for the object is sent,
processing is carried out in accordance with the stored
priority.

[0065] In addition, the computer 1 may be requested to
create an index for the object judged to be high in access
frequency. Alternatively, in another method, an object col-
umn or line judged to be high in access frequency may be
relocated. When a plurality of objects are accessed with a
high frequency by one application, the access is gained at a
high speed if these objects are stored together. If data is
distributed and stored in a plurality of databases, these
plurality of objects may be stored in different databases. In
such a case, databases to be accessed are distributed, and

Feb. 10, 2005

there is no fear that accesses are concentrated on one
database. Thus, data can be read at a high speed.

[0066] On the contrary, an object judged to be low in
access frequency is subject to processing of optimized
location, such as decreasing the stored order of the object,
storing the object in a lower-rank storage, or reducing the
priority of a process (2316). Thus, the priority of a process
or the stored position of an object is changed in accordance
with the access frequency so that the efficiency is improved
in the database system as a whole.

[0067] Incidentally, the whole of the above-mentioned
processing may be carried out as a batch job automatically
at predetermined time intervals.

[0068] 1t has been known that an access log usually has an
enormous volume of data beyond gigabytes. By the extrac-
tion process in this embodiment, processing can be per-
formed on only required data extracted from a large volume
of access log information. Accordingly, there is an effect that
the processing can be carried out at a high speed or resources
can be saved.

[0069] In addition, any identifier inside the database is
defined uniquely in order to enhance the processing perfor-
mance, and the value of the identifier is often a string of
characters undecipherable for users. By the translation pro-
cess in this embodiment, the access log information can be
outputted to be replaced by expression decipherable for
users. Thus, there is an effect that the visibility for the users
is enhanced, and the access log information can be replaced
by various properties desired by the users.

[0070] Further, by the aggregation process, the access log
can be aggregated for every item, arranged in accordance
with classification defined by the users, and presented to the
users. Thus, there is an effect that it is possible to provide an
interface with which accessed data or access frequency can
be grasped intuitively with good visibility by the users.

[0071] Next, description will be made of a second embodi-
ment of the present invention.

[0072] According to the second embodiment, in the access
log edition/aggregation processing program 104, access log
data is extracted, translated and aggregated in a period from
the time when an object was created till the time when the
object was deleted. Thus, optimization of the access to a
database is supported to reflect the result of analyzing the
life cycle of the object.

[0073] FIG. 24 shows the configuration of a database
managing system according to the second embodiment of
the present invention. The configuration of the system as a
whole is the same as that in FIG. 1. However, only the
access log edition/aggregation processing program 104 in
the computer 3 is different. Particularly, the access log
edition/aggregation processing program in this embodiment
has a life cycle analyzing process 117.

[0074] FIG. 25 shows a flow chart of the life cycle
analyzing process 117.

[0075] In the life cycle analyzing process, an extraction
process is carried out while the start time of the extraction
process is set to be the time when an object was created and
the end time of the extraction process is set to be the time
when the object was deleted. This is followed by a transla-

US 2005/0033779 Al

tion process (112) and an aggregation process (114). Here, in
order to analyze the object over its life cycle, aggregation is
carried out upon the number of document processing com-
mands accessed in a period from the time when each object
was created to the time when the object was deleted. On the
basis of the result of the aggregation, the average life of the
objects is obtained in an analysis process (2613). The
average life and the aggregation result of the number of
command issues are compared, analyzed, and statistically
analyzed. Thus, the result is outputted.

[0076] FIG. 26 shows the analysis and the output in an
screen image by way of example. In this example, an
average life of objects is obtained, and the frequency of the
number of document processing commands issued during
this average life is analyzed. When the result of the analysis
is just as shown in FIG. 26, for example, assume that
commands issued by half the average life occupied 80% of
commands issued in the whole of the life of an object. That
is, this means that 80% of all the commands for the object
were intensively issued before the object reached half the
average life. In addition, assume that commands issued by
three fourths of the average life occupied 90% of the whole.
When such an analysis result is obtained, inquiries are sent
to a user in a guidance image 2704 (FIG. 26) as to whether
the user adds a rule for optimizing the processing on the
basis of the analysis result. If the user indicates addition, a
rule as shown in FIG. 26 is added to judgement rules for
analyzing the life cycle (FIG. 27). Incidentally, this process
may be operated automatically without user’s judgement.

[0077] FIG. 27 shows an example set of the judgement
rules to be added. In this example, there is a tendency for the
access frequency to an object to increase when the existence
time of the object (that is, from the time when the object was
created to the present moment) is shorter than 50% of the
average life. In this case, optimization is carried out so that
the object is loaded into a cache memory of the computer 1,
priority is given to a command or a process, or an index is
created. On the contrary, when the existence time of the
object exceeds 75% of the average life, there is a tendency
for the access to decrease. In this case, optimization is
carried out so that the object is saved on a backup, or the
priority of a command or a process is reduced.

[0078] Further, FIG. 28 shows an example in which
aggregation was performed on the details of the document
processing commands. In an analysis result 2901 in this
example, the number of update command to be issued is the
largest when the existence time of an object is shorter than
50% of the average life of objects. However, the number of
reference command to be issued becomes larger when the
existence time is not shorter than 50% and shorter than 75%
of the average life. Then, queries are sent in a guidance
image 2902 as to whether the user adds a rule on the basis
of such an analysis result. If addition is selected, a judge-
ment rule is added as shown in FIG. 28. In the example of
FIG. 29, when the existence time of an object is shorter than
50% of the average life, optimization is carried out in
accordance with the contents of document processing com-
mands in addition to the optimization process in FIG. 27.
For example, priority is given to an object update processing
command or an update processing step, and exclusive con-
trol is carried out for updating the object. On the contrary,
when the existence time of the object exceeds 75% of the
average life, priority is given to search processing, and it is

Feb. 10, 2005

made necessary to create an index for carrying out search at
a high speed. In addition, because the object is not updated,
the system is optimized so that exclusive control of the
object is prohibited.

[0079] Thus, according to the second embodiment, in
addition to the effects described in the first embodiment, it
is further possible for a user to manage a database and access
data optimally and efficiently in accordance with the life
cycle of each object.

[0080] As described above, according to this embodiment,
access information such as access frequency to data and
access categories is edited, aggregated and analyzed with an
access log to a database as input. Thus, this information can
be presented to a user in a way easy to be understood, so that
the user can be supported on database management.

[0081] Further, according to this embodiment, it is pos-
sible to provide a database optimizing method for locating
data optimally in accordance with optimization judgement
rules defined by the user.

[0082] According to the present invention, a user obtains
an aggregation result of access frequency to data, access
categories, and so on, using an access log to a database.
Thus, the user can carry out optimal management of the
database.

[0083] It will be further understood by those skilled in the
art that the foregoing description has been made on embodi-
ments of the invention and that various changes and modi-
fications may be made in the invention without departing
from the spirit of the invention and scope of the appended
claims.

1-16. (Canceled).

17. A computer-executable database management pro-
gram implementing a method for managing a database, said
method comprising the steps of:

extracting log information satisfying predetermined con-
ditions from among log information of an application
program having accessed a database; and

creating an index for an object in accordance with pre-
determined rules on the basis of commands included in
said extracted log information.

18. The computer-executable database management pro-
gram according to claim 17, wherein said method further
comprises the step of obtaining an existence time of data to
be accessed by said commands included in said extracted log
information, and change stored positions of data to be
accessed by said application program in accordance with
said existence time and commands to be executed in said
existence time.

19. A computer-executable database management pro-
gram implementing a method for managing a database, said
method comprising the steps of:

extracting log information satisfying predetermined con-
ditions from among log information of an application
program having accessed a database; and

relocating an object column or line in accordance with
predetermined rules on the basis of commands included

in said extracted log information.
20. The computer-executable database management pro-
gram according to claim 19, wherein said method further

US 2005/0033779 Al

comprises the step of obtaining an existence time of data to
be accessed by said commands included in said extracted log
information, and change stored positions of data to be
accessed by said application program in accordance with
said existence time and commands to be executed in said
existence time.

21. A method for managing a database comprising the
steps of:

extracting log information satisfying predetermined con-
ditions from among log information of an application
program having accessed a database; and

creating an index for an object in accordance with pre-
determined rules on the basis of commands included in
said extracted log information.

22. The method according to claim 21, further comprising
the step of obtaining an existence time of data to be accessed
by said commands included in said extracted log informa-
tion, and change stored positions of data to be accessed by
said application program in accordance with said existence
time and commands to be executed in said existence time.

23. A method for managing a database comprising the
steps of:

extracting log information satisfying predetermined con-
ditions from among log information of an application
program having accessed a database; and

relocating an object column or line in accordance with
predetermined rules on the basis of commands included

in said extracted log information.
24. The method according to claim 23, further comprising
the step of obtaining an existence time of data to be accessed
by said commands included in said extracted log informa-

Feb. 10, 2005

tion, and change stored positions of data to be accessed by

said application program in accordance with said existence

time and commands to be executed in said existence time.
25. A system comprising:

a client terminal which executes applications;

a database managing terminal which accesses a database
in accordance with a command sent from said client
terminal,

a database managing portion which extracts log informa-
tion satisfying predetermined conditions from among
log information of an application program executed by
said client terminal and having accessed a database and
creates an index for an object in accordance with
predetermined rules on the basis of commands included
in said extracted log information.

26. A system:

a client terminal which executes applications;

a database managing terminal which accesses a database
in accordance with a command sent from said client
terminal,

a database managing portion which extracts log informa-
tion satisfying predetermined conditions from among
log information of an application program executed by
said client terminal having accessed a database; and

relocating an object column or line in accordance with
predetermined rules on the basis of commands included
in said extracted log information.

