57065084 A2 | IV Y 000 O O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

21 July 2005 (21.07.2005)

(10) International Publication Number

WO 2005/065084 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/US2004/038190

(22) International Filing Date:
15 November 2004 (15.11.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/519,526 13 November 2003 (13.11.2003) US

(71) Applicant (for all designated States except US): COMM-
VAULT SYSTEMS, INC. [US/US]; Two Crescent Place,
Oceanport, NJ 07757-0090 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KUMAR, Manoj
[IN/IN]; 2140 Aldrin Road, Ocean, NJ 07712 (US).
PRASAD, Arun [IN/IN]; 2406 E Block, Jothy, Illam,,
Sahakara, Nagar, Bellary Road, Bangalore 560092 (IN).
KOTTOMTHARAYIL, Rajiv [IN/IN]; 1508 Garden
Drive, Ocean, NJ 07712 (US).

(74) Agent: SHANAHAN, Michael; Brown Raysman Mill-
stein Felder & Steiner LLP, 900 Third Avenue, New York,

NY 10022 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE,
ST, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: SYSTEM AND METHOD FOR PROVIDING ENCRYPTION IN PIPELINED STORAGE OPERATIONS IN A STOR-

AGE NETWORK

& (57) Abstract: In accordance with embodiments of the invention, a method is provided for performing a storage operation in a
& pipeline storage system in which one or more data streams containing data to be stored are written into data chunks. The method
includes generating an encryption key associated with a first archive file to be stored when encryption is requested for the storage
operation, encrypting the archive data from the data stream using the encryption key to create an encrypted data chunk when a data
stream containing the archive file is processed in the pipeline storage system, storing the encrypted data chunk on a storage medium,
and storing the encryption key in a manner accessible during a restore operation of the encrypted data chunk.

=

WO 2005/065084 PCT/US2004/038190

SYSTEM AND METHOD FOR PROVIDING ENCRYPTION IN PIPELINED
STORAGE OPERATIONS IN A STORAGE NETWORK

PRIORITY APPLICATIONS
This application is a continuation-in-part of U.S. Application Serial No.

5 10/144,683 titled PIPELINED HIGH SPEED DATA TRANSFER MECHANISM, filed
March 13, 2002, now pending, which was a continuation of U.S. Application Serial No.
09/038,440 Filed March 11, 1998, now U.S. Patent No. 6,418,478.

This application also claims the benefit of U.S. provisional application no.
60/519,526 titled SYSTEM AND METHOD FOR PERFORMING PIPELINED
10 STORAGE OPERATIONS IN A STORAGE NETWORK, filed November 13, 2003,
which application is incorporated herein by reference in its entirety.
OTHER RELATED APPLICATIONS
This application is related to the following patents and pending
applications, each of which is hereby incorporated herein by reference in its entirety:
15 e Application SerialNo. _/ , titled SYSTEM AND
METHOD FOR COMBINING DATA STREAMS IN PIPELINED
STORAGE OPERATIONS IN A STORAGE NETWORK, filed
November 15, 2004, attorney docket number 4982/46;
e Application Serial No. 09/495,751, titled HIGH SPEED
20 TRANSFER MECHANISM, filed February 1, 2000, attorney
docket number 4982/7US;
o Application Serial No. 09/610,738, titled MODULAR BACKUP
AND RETRIEVAL SYSTEM USED IN CONJUNCTION WITH
A STORAGE AREA NETWORK, filed July 6, 2000, attorney

25 docket number 4982/8;

10

15

20

WO 2005/065084

PCT/US2004/038190

Application Serial No. 09/744,268, titled LOGICAL VIEW AND
ACCESS TO PHYSICAL STORAGE IN MODULAR DATA
AND STORAGE MANAGEMENT SYSTEM, filed January 30,
2001, attorney docket number 4982/10;

Application Serial No. 10/658,095, titled DYNAMIC STORAGE
DEVICE POOLING IN A COMPUTER SYSTEM, filed
September 9, 2003, attorney docket number 4982/18; and
Application Serial No. 60/460,234, titled SYSTEM AND
METHOD FOR PERFORMING STORAGE OPERATIONS IN A
COMPUTER NETWORK, filed April 3, 2003, attorney docket

number 4982/35PROV.

FIELD OF THE INVENTION

The invention relates to data transfer mechanisms, and in particular, to a

software-based, high speed data pipe for providing high speed and reliable data transfer

between computers.

BACKGROUND

Data, in the process of being archived or transferred from one location to

another, will pass through various phases where different operations such as compression,

network transfer, storage, etc. will take place on it. There are essentially two approaches

that can be taken when implementing such a transfer mechanism. One would be to split

the archival process into sub-tasks, each of which would perform a specific function (e.g.

Compression). This would then require copying of data between the sub-tasks, which

could prove processor intensive. The other method would be to minimize copies, and

have a monolithic program performing all of the archival functions. The downside to this

10

15

20

WO 2005/065084 PCT/US2004/038190

would be loss of parallelism. A third alternative would of course be to use threads to do
these tasks and use thread-signaling protocols, however, it is realized that this would not
be entirely practical since threads are not fully supported on many computing platforms.
Accordingly, it is highly desirable to obtain a high-speed data transfer
mechanism implemented in software and developed for the needs of high speed and
reliable data transfer between computers. It is also desirable to provide a mechanism to

encrypt the data being transferred.

SUMMARY OF THE INVENTION

In accordance with embodiments of the invention, a method is provided
for performing a storage operation in a pipeline storage system in which one or more data
streams containing data to be stored are written into data chunks. The method includes
generating an encryption key associated with a first archive file to be stored when
encryption is requested for the storage operation, encrypting the archive data from the
data stream using the encryption key to create an encrypted data chunk when a data
stream containing the archive file is processed in the pipeline storage system, storing the
encrypted data chunk on a storage medium, and storing the encryption key in a manner

accessible during a restore operation of the encrypted data chunk.

BRIEF DESCRIPTION OF THE DRAWINGS.

The invention will be better understood with reference to the following
drawings, in which:

FIG. 1A is a block diagram of a network architecture for a system to
perform storage operations on electronic data in a computer network according to an

embodiment of the invention.

10

15

20

WO 2005/065084 PCT/US2004/038190

FIG. 1B is a block diagram of the data pipe architecture in accordance with
one embodiment of the present invention.

FIG. 2A is a schematic of the data pipe transfer process on a single
computer according to an embodiment of the invention.

FIG. 2B is a schematic of the data pipe transfer process on multiple
computers according to another embodiment of the invention.

FIG. 2C is a schematic of the data pipe transfer buffer allocation process
from a buffer pool stored in the shared memory according to an embodiment of the
invention.

FIG. 2D is a schematic illustrating the controlling relationship of the
master monitor process to the various attached processes according to an embodiment of
the invention.

FIGS. 3A-3C illustrate various messages transferred between application
processes and the master monitor process according to an embodiment of the invention.

FIG. 4 is a schematic of the module attachment process to shared memory
space in accordance with the present invention.

FIGs. 5A-5B depict flow diagrams of the operation of the sequencer and
resequencer processes according to the present invention.

FIG. 6 depicts an exemplary data transfer flow among various processing
stages within the pipeline according to the present invention.

FIG. 7 illustrates a data pipe transfer process on multiple computers having
processes with multiple instantiations according to an embodiment of the present

invention.

10

15

20

WO 2005/065084 PCT/US2004/038190

FIG. 8 depicts a screenshot of a user interface according to an embodiment

of the present invention.

DETAILED DESCRIPTION

The present invention includes methods and systems operating in
conjunction with a modular storage system to enable computers on a network to share
storage devices on a physical and logical level. An exemplary modular storage system is
the GALAXY™ backup and retrieval system and QiNetix™ storage management system
available from CommVault Systems of New Jersey. The modular architecture underlying
this system is described in the above referenced patent applications, each of which is
incorporated herein.

Preferred embodiments of the invention are now described with reference
to the drawings. An embodiment of the system of the present invention is shown in Fig. 1.
As shown, the system includes a client 8, a data agent 95A, an information store 90A, a
storage manager (or storage management component) 100A, a jobs agent 102A, a storage
manager index 107A, one or more media management components (or media agent)
105A, one or more media agent indexes 110A, and one or more storage devices 115A.
Although Fig. 1 depicts a system having two media agents 105A, there may be one media
agent ICSA, or a plurality of media agents 105A providing communication between the
client 8, storage manager 100A and the storage devices 115A. In addition, the system can
include one or a plurality of storage devices 115A.

A client 8 can be any networked client 8 and preferably includes at least
one attached information store 90A. The information store 90A may be any memory
device or local data storage device known in the art, such as a hard drive, CD-ROM drive,

tape drive, RAM, or other types of magnetic, optical, digital and/or analog local storage.

10

15

20

WO 2005/065084 PCT/US2004/038190

In some embodiments of the invention, the client 8 includes at least one data agent 95A,
which is a software module that is generally responsible for performing storage
operations on data of a client 8 stored in information store 90A or other memory location.
Storage operations include, but are not limited to, creation, storage, retrieval, migration,
deletion, and tracking of primary or production volume data, secondary volume data,
primary copies, secondary copies, auxiliary copies, snapshot copies, backup copies,

incremental copies, differential copies, synthetic copies, HSM copies, archive copies,

Information Lifecycle Management (“ILM”) copies, and other types of copies and

versions of electronic data. In some embodiments of the invention, the system provides at
least one, and typically a plurality of data agents 95A for each client, each data agent 95A
is intended to backup, migrate, and recover data associated with a different application.
For example, a client 8 may have different individual data agents 95A designed to handle
Microsoft Exchange data, Lotus Notes data, Microsoft Windows file system data,
Microsoft Active Directory Objects data, and other types of data known in the art.

The storage manager 100A is generally a software module or application
that coordinates and controls the system, for example, the storage manager 100A manages
and controls storage operations performed by the system. The storage manager 100A
communicates with all components of the system including client 8, data agent 95A,
media agent 105A, and storage devices 115A to initiate and manage storage operations.
The storage manager 100A preferably has an index 107A, further described herein, for
storing data related to storage operations. In general, the storage manager 100A
communicates with storage devices 115A via a media agent 105A. In some
embodiments, the storage manager 100A communicates directly with the storage devices

115A.

10

15

20

WO 2005/065084 PCT/US2004/038190

The system includes one or more media agent 105A. The media agent
105A is generally a software module that conducts data, as directed by the storage
manager 100A, between the client 8 and one or more storage devices 115A, for example,
a tape library, a hard drive, a magnetic media storage device, an optical media storage
device, or other storage device. The media agent 105A is communicatively coupled with
and controls the storage device 115A. For example, the media agent 105A might instruct
a storage device 115A to perform a storage operation, e.g., archive, migrate, or restore
application specific data. The media agent 105A generally communicates with the
storage device 115A via a local bus such as a SCSI adaptor.

Each media agent 105A maintains an index cache 110A which stores
index data that the system generates during storage operations as further described herein.
For example, storage operations for Microsoft Exchange data generate index data. Media
management index data includes, for example, information regarding the location of the
stored data on a particular media, information regarding the content of the information
stored such as file names, sizes, creation dates, formats, application types, and other file-
related criteria, information regarding one or more clients associated with the information
stored, information regarding one or more storage policies, storage criteria, or storage
preferences associated with the information stored, compression information, retention-
related information, encryption-related information, stream-related information, and other
types of information. Index data thus provides the system with an efficient mechanism
for performing storage operations including locating user files for recovery operations
and for managing and tracking stored data.

The system generally maintains two copies of the media management

index data regarding particular stored data. A first copy is generally stored with the data

10

15

20

WO 2005/065084 PCT/US2004/038190

‘copied to a storage device 115A. Thus, a tape may contain the stored data as well as
index information related to the stored data. In the event of a system restore, the index
information stored with the stored data can be used to rebuild a media agent index 110A
or other index useful in performing storage operations. In addition, the media agent 105A
that controls the storage operation also generally writes an additional copy of the index
data to its index cache 110A. The data in the media agent index cache 110A is generally
stored on faster media, such as magnetic media, and is thus readily available to the system
for use in storage operations and other activities without having to be first retrieved from
the storage device 115A.

The storage manager 100A also maintains an index caché 107A. Storage
manager index data is used to indicate, track, and associate logical relationships and
associations between components of the system, user preferences, management tasks, and
other useful data. For example, the storage manager 100A might use its index cache
107A to track logical associations between media agent 105A and storage devices 115A.
The storage manager 100A may also use its index cache 107A to track the status of
storage operations to be performed, storage patterns associated with the system
components such as media use, storage growth, network bandwidth, service level
agreement (“SLA”) compliance levels, data protection levels, storage policy information,
storage criteria associated with user preferences, retention criteria, storage operation
preferences, and other storage-related information.

A storage policy is generally a data structure or other information which
includes a set of preferences and other storage criteria for performing a storage operation.
The preferences and storage criteria may include, but are not limited to: a storage

location, relationships between system components, network pathway to utilize, retention

10

15

20

WO 2005/065084 PCT/US2004/038190

policies, data characteristics, compression or encryption requirements, preferred system
components to utilize in a storage operation, and other criteria relating to a storage
operation. A storage policy may be stored to a storage manager index, to archive media as
metadata for use in restore operations or other storage operations, or to other locations or
components of the system.

Index caches 107A and 110A typically reside on their corresponding
storage component’s hard disk or other fixed storage device. For example, the jobs agent
102A of a storage manager 100A may retﬁeve storage manager index 107A data
regarding a storage policy and storage operation to be performed or scheduled for a
particular client 8. The jobs agent 102A, either directly or via another system module,
communicates with the data agent 95A at the client 8 regarding the storage operation. In
some embodiments, the jobs agent 102A also retrieves from the index cache 107A a
storage policy associated with the client 8 and uses information from the storage policy to
communicate to the data agent 95A one or more media agents 105A associated with
performing storage operations for that particular client 8 as well as other information
regarding the storage operation to be performed such as retention criteria, encryption
criteria, streaming criteria, etc. The data agent 95A then packages or otherwise
manipulates the client information stored in the client information store 90A in
accordance with the storage policy information and/or according to a user preference, and
communicates this client data to the appropriate media agent(s) 100A for processing. The
media agent(s) 105A store the data according to storage preferences associated with the
storage policy including storing the generated index data with the stored data, as well as

storing a copy of the generated index data in the media agent index cache 110A.

10

15

20

WO 2005/065084 PCT/US2004/038190
10

In some embodiments, components of the system may reside and execute
on the same computer. In some embodiments, a client component such as a data agent
95A, a media agent 105A, or a storage manager 100A coordinates and directs local -
archiving, migration, and retrieval application functions as further described in
Application Serial Number 09/610,738. These client components can function
independently or together with other similar client components.

Data and other information is transported throughout the system via
buffers and network pathways including, among others, a high-speed data transfer
mechanism, such as the CommVault DataPipe™, as further described in U.S. Patent No.
6,418,478 and Application No. 09/495,751, each of which is hereby incorporated herein

by reference in its entirety. Self describing tag headers are disclosed in these applications

wherein data is transferred between a flexible grouping of data transport modules each

supporting a separate function and leveraging buffers in a shared memory space. Thus, a
data transport module receives a chunk of data and decodes how the data should be
processed according to information contained in the chunk’s header, and in some
embodiments, the chunk’s trailer. U.S.Patent No. 6,418,478 and Application No.
09/495,751 generally address “logical data” transported via TCP/IP, however,
embodiments of the invention herein are also contemplated which are directed to
transporting, multiplexing, encrypting, and generally processing block level data as
disclosed, for example, in pending Application No. 10/803,542, titled Method And
System For Transferring Data In A Storage Operation, attorney docket number 4982/49,
which is hereby incorporated herein by reference in its entirety.

As discussed, these applications generally disclose systems and methods of

processing logical data. Thus, for example, contiguous blocks of data from a file mighf

10

15

20

WO 2005/065084 PCT/US2004/038190
11

be written on a first volume as blocks 1, 2, 3, 4, 5, etc. The operating system of the host
associated with the first volume would assist in packaging the data adding additional OS-
specific information to the chunks. Thus, when transported and stored on a second
volume, the blocks might be written to the second in a non-contiguous order such as
blocks 2, 1, 5, 3, 4. On a restore storage operation, the blocks could (due to the OS-
specific information and other information) be restored to the first volume in contiguous
order, but there was no control over how the blocks were laid out or written to the second
volume. Incremental block level backups of file data was therefore extremely difficult if
not impossible in such a system since there was no discernable relationship between how
blocks were written on the first volume and how they were written on the second volume.

Thus, in some embodiments, the system supports transport and
incremental backups (and other storage operations) of block level data via a TCP/IP (and
other transport protocols) over a LAN, WAN, SAN, etc. Additional data is added to the
multi-tag header discussed in the applications referenced above which communicates how
each block was written on the first volume. Thus, for example, a header might contain a
file map of how the blocks were written on the first volume and the map could be used to
write the blocks in similar order on the second volume. In other embodiments, each
chunk header might contain a pointer or other similar data structure indicating the
chunk’s position relative to other chunks in the file. Thus, when a file block or other
block changed on the first volume, the system could identify and update the
corresponding copy of the block located on the second volume and effectively perform an
incremental backup or other storage operation.

In the system, for example as in the CommVault Galaxy system, archives

are grouped by Storage Policy. Many clients/sub clients can point to the same Storage

10

15

20

WO 2005/065084 PCT/US2004/038190
12

Policy. Each Storage Policy has a Primary copy and zero or more Secondary copies. Each
Copy has one or more streams related to the number of Drives in a Drive Pool.

The system uses a tape media to its maximum capacity and throughput by
multiplexing data from several clients onto the same media at the same time. The system
allows for a stream to be reserved more than once by different clients and have multiple
data movers write to this same piece of media.

During backup or other storage operations, data from a data agent to a
media agent is transferred over a “Data pipeline” as further described herein and in U.S.
Patent No. 6,418,478 and Application No. 09/495,751. One or more transport processes
or modules, such as the Dsbackup in the CommVault Galaxy system, form the tail end on
the Media Agent for the pipeline. For example, in the Galaxy system, the Datamover
process running as part of Dsbackup is responsible for writing data to the media. For data
multiplexing, many such Data movers belonging to different pipelines have to write to the
same piece of media. This can be achieved by splitting the Datamover pipeline process
into multiple components including a data receiver, a data writer, and other modules as
necessary.

The DataPipe

A DataPipe comprises a named set of tasks executing within one or more
computers that cooperate with each other to transfer and process data in a pipelined
manner. Within a DataPipe, a pipeline concept is used to improve performance of data
transfer across multiple computers in a network. However, within a DataPipe, any stage
within the pipeline may have multiple instances, thus greatly increasing the scaleability

and performance of the basic pipeline concept.

10

15

20

WO 2005/065084 PCT/US2004/038190
13

The DataPipe mechanism processes data by dividing its processing into
logical tasks that can be performed in parallel. It then sequences those tasks in the order
in which they are to act on the data. For example, a head task may extract data from a
database, a second task may encrypt it, a third may compress it, a fourth may send it out
over the network, a fifth may receive it from the network, and a sixth may write it to a
tape. The latter two tasks may reside on a different computer than the others, for example.

All of the tasks that comprise a single DataPipe on a given computer have
access to a segment of shared memory that is divided into a number of buffers. A small
set of buffer manipulation primitives is used to allocate, free, and transfer buffers between
tasks.

Semaphores (or other OS specific mutual exclusion or signaling
primitives) are used to coordinate access to buffers between tasks on a given computer.
Special tasks, called network agents, send and receive data across network connections
using standard network protocols. These agents enable a DataPipe to connect across
multiple computeir systems. A single DataPipe can therefore reside on more than one
computer and could reside on computers of different types.

Each task may be implemented as a separate thread, process, or as a
procedure depending on the capabilities of the computing system on which the DataPipe
is implemented.

As mentioned previously, each task may be implemented as a separate
thread, or process, or as a procedure in a monolithic process (in cases where native
platforms don’t support any forms of parallel execution or multi processing). For data

transfer across network, dedicated network readers and writers ensure communication

10

15

20

WO 2005/065084 PCT/US2004/038190
14

across the net. FIG. 1B shows a steady state picture of how the DataPipe architecture 10
is set up according to the present invention.

Referring to Figure 1B, there is shown a disk 20 residing on a computer
machine 30 which houses information or data to be backed up or archived to server
computer 40 via DLT device drivers 50 and 60 respectively. As one can ascertain, the
DataPipe represents the end-to-end architecture which may be utilized during database
backup from the disk drive 20 where the database resides to the tape or optical devices 50

and 60 at server 40. The DataPipe thus removes the network as the limiting factor in

backup performance. As a result, the device pool defines the performance capabilities.

i

As shown in Figure 1B, the DataPipe or stream 70 is created for the
transfer of data for each device in the device pool to be used simultaneously, which
comprises modules 72, 74, 76, and 78 and 50. Similarly, a second DataPipe 80 is shown
comprised of modules 82, 84, 76, 78 and 60. Note that if additional DLT devices are used
to backup data and parallel further DataPipes would be provided. Since one can ascertain
the concept of the DataPipe through explanation of one path or thread by which data is
transferred, further description will focus on processing through a single DataPipe or
stream 70, as shown in Figure 1B. At the head of the DataPipe is the collector component
72 which is responsible for obtaining the database information from disk 20. The data is
passed down in buffers residing in dedicated shared memory through the pipeline 70,
through an optional compression module 74, to the network interface modules 76. At the
network interface, data is multiplexed and parallel network paths 77 obtain maximum
throughput across the network. Preferably, each network path runs at a rate equal to
approximately 10 base T or the number of network paths utilized for each stream as

determined by the bandwidth of the network. Note that as higher performance levels are

10

15

20

WO 2005/065084 PCT/US2004/038190
15

necessary, additional devices may be used simultaneously with additional network
interfaces added and utilized to further increase network throughput. On the receiving
side, from the database server 40, the device pull appears local to the machine and the
DataPipe architecture appears as a cloud with no constraints to performance. Network
interface module 78 operates to transfer the data received across the network to device
driver 50 for storage at server 40. Thus, the final task of storing or archiving the data is
accomplished at DLT device module 50.

From the preceding discussion, one can ascertain that a pipeline or
DataPipe 10 comprises a head task 15 that generates the data to be archived or transferred
from store 50, and a tail task 40 which accomplishes the final task of storing or writing
the data to store 60, including archiving or restoring on the data as shown in Fig. 2A. One
or more middle modules 20, 30 may exist, which processes the data by performing
actions such as compression, encryption, content analysis, etc., or by allocating or not
allocating nevs} buffers while doing the processing.

A pipeline on a particular machine can be arranged to provide a feed to
another different machine. A schematic diagram is illustrated in Figure 2B. In this case,
the DataPipe resides on more than one computer. This is done with the aid of network
agents and control processors 50A, 50B, 60A and 60B. In such cases, the first machine
12A has a head 15 and other modules 20, 30, etc. comprise middle processes, but the tail
of this pipeline on this machine is a cluster of dedicated network agents 50A which send
data across to the remote machine 12B via standard network protocols. On the remote
machine, a cluster of dedicated network reader agents 50B act as the head, and along with
other modules such as middle (not shown) and tail 70, constitute the pipeline on that

machine.

10

15

20

WO 2005/065084 PCT/US2004/038190
16

In addition to the transferring of data from one computer to another, a
unique capability of the datapipe invention is the ability to scale to enable full utilization
of the bandwidth of a network, and to fully utilize the number of peripheral devices such
as tape drives, or fully utilize other hardware components such as CPUs. The scaleability
of a DataPipe is achieved by using multiple instances of each task in the pipeline.

For example, multiple head tasks operating in parallel may gather data
from a database and deposit it into buffers. Those buffers may then be processed by
several parallel tasks that perform a function such as encryption. The encryption tasks in
turn may feed several parallel tasks to perform compression, and several parallel tasks
may perform network send operations to fully exploit network bandwidth. On the target
computer, several network reader tasks may receive data, which is written to multiple
tape units by several tasks. All of these tasks on both computers are part of the same
DataPipe an& collectively perform the job of moving data from the database to tape units.
They do this job extremely efficiently by fully utilizing all available bandwidth and
hardware allocated to the DataPipe while also minimizing CPU cycles by avoiding
unnecessary copying of the data as it moves from one stage of the DataPipe to the next.

Figure 2B shows the multiple computer case where a single head task
(collect process) gathers data from the disk 40 and deposits it into buffers. The buffers are
then processed by several parallel instantiations of compression process 20 which upon
completion of processing of each buffer for each instantiation sends the process buffer to
process 30 which performs content analysis, and sends the processed buffer data to
several network agent tasks 50A or instantiations, which perform the network operations

to send the data over the physical network 55 where it is received and processed by

10

15

20

WO 2005/065084 PCT/US2004/038190
17

corresponding network agents 50B on the remote computer 12B énd sent to tail
backup/restore process 70 for storage or writing to DLT drive 80.

In general, there could be N stages in a given DataPipe pipeline. At each
stage of the pipeline, there could be p instances of a given module task. These N stages
could all be on the local machine or could be split across two different machines in which
case there are network writers and network readers (i.e. pseudo tail and head network
agents) which work together to ensure continuity in the pipeline.

Referring to Figure 2B, each DataPipe has a dedicated memory segment
85 on each machine on which the DataPipe resides. For example, a DataPipe that sends
data from machine 12A to machine 12B has two dedicated memory segments, one on
machine A and one on machine B. Tasks that are part of this DataPipe may allocate and
free buffers within these memory segments. Of course, tasks operating on machine 12A
may only allocate or free buffers within the memory segment 85 on machine A and
likewise for tasks on machine B. Thus, any of these modules may allocate or free
segments of a single large shared memory on each machine dedicated for the use of this
particular pipeline.

Buffer Manipulation Primitives

Referring now to FIG. 2C, each task or process (15) that wishes to allocate
a buffer does it from a buffer pool 75 stored in the shared memory segment 85 owned by
the DataPipe using AllocBuf(). Each task that wishes to process incoming data from the
previous task executes a receive call using ReceiveBuf(). Each task that wishes to
relinquish control of a particular buffer so that the next task can operate on it, performs a
SendBuf() on that buffer to send it to the next task. Each task that wishes to destroy a

buffer and return it into the buffer pool, does so by executing a FreeBuf() on that buffer.

10

15

20

WO 2005/065084 PCT/US2004/038190
18

Master_Monitor is connected to a predefined port, to enable it to
communicate with its peers on other computer systems. Master_Monitor monitors the
status of all DataPipes under its control at all times and is able to provide status of the
DataPipe to the application software that uses the DataPipe.

To accomplish these above tasks, a master manager program called
Master_Monitor e)'(ecutes in the preferred embodiment as a daemon on all process
machines, listening on a well-known port, to serve requirements of pipeline operations.
Master_Monitor functions to monitor status of all pipelines under its control at all times
and reports status of the pipeline to all its sub-modules. As shown in Figures 2B and 2D,
Master Monitor includes control messaging sockets 92 open to all modules through
which it can control or change status of execution of each module. Master_Monitor 90
further includes functions which monitor status and listings of all centrally shared
resources (among various modules of the same pipeline) such as shared memory or
semaphores or any similar resource. Master_Monitor unless otherwise requested will
initiate all modules of the pipeline either by fork() or thread_create() or a similar OS
specific thread of control i;litiation mechanism. Master Monitor will permit initiation of a
pipeline with proper authentication. This initiator process can identify itself as either a
head process or a tail process, which will later attach itself to the pipeline. (Exception is
made in the case of a networking module, for this facility. A network process will not be
allowed to attach itself as a the head or tail of any pipeline.)

DataPipe Initiation

Referring now to Figure 3A in conjunction with Figures 1 and 2A-D, a
DataPipe is created by calling Master_Monitor and passing it an Initiate_Pipe message. In

this message, parameters such as the DataPipe name, DataPipe component module names,

10

15

20

WO 2005/065084 PCT/US2004/038190
19

the number of parallel instances for each component, properties of each component (e.g.
whether they allocate buffers or not), local and remote machines involved in the
DataPipe, direction of flow, nature of the invocation program etc. are passed to

Master Monitor. Note that the term “module” refers to a program that is executed as a
task as part of an instance of a DataPipe. Each module may have more than one instance
(e.g. execute as more than one task) within a DataPipe.

Referring now to Figure 3B, depending upon the nature of the invocation
program, it may be required that the process invoking the DataPipe needs to identify itself
to the local Master Monitor 90A and attach itself to the DataPipe as a head or tail task. In
order to operate over a network on two computers, the Master_Monitor 90 initiates a
Network Controller Process 60 on the first machine which contacts Master Monitor 90B
on the second machine where this DataPipe is to be completed using an Extend Pipe
message. All information required for establishing the second side of the DataPipe is
passed along with this call so that the DataPipe is completely established across both
machines.

Identification

The process responsible for initiation of the pipeline constructs a name for
the pipeline using its own process Id, a time stamp, and the name of the machine where
the initiator process is running. This pipeline name is passed along with both the Initiate-
Pipe as well as the EXTEND_Pipe message so that the pipeline is identified with the
same name on all computers on which it is operating (i.e. both the remote as well as the
local machine). All shared memory segments and semaphores (reference numeral 85 of
Figure 2C) attached to a particular pipeline are name referenced with this pipeline name

and definite offsets. Hence the process of identification of a specific semaphore or shared

10

15

20

WO 2005/065084 PCT/US2004/038190
20

memory associated with this pipeline is easy and accessible for all processes, and bound
modules (i.e., modules for which control is initiated by the Master Monitor). Each
unbound module (i.e., a module not initiated via Master_Monitor, which attaches itself
after the pipeline is initiated) must identify itself to its local Master Monitor via a
SEND IDENT message shown in Figure 3C. This message contains the naﬁe of the
pipeline the unbound module wants to attach itself to, a control socket, and a process /
thread id, which Master Monitor uses to monitor status of this particulér module.

Data Transfer Implementation

Allocation: Receive: Send: Free

Directing attention to Figure 2C and Figure 4, buffers are allocated using
the call AllocBuf(), from a common pool of buffers specified for the particular pipeline.
The pool consists of a single large shared memory space 75 with Max Buffers number of
equally sized buffers and an ‘rcq’ structure. The ‘rcq’ structure illustrated in Figure 4,
contains input and output queues for each stage of the pipeline on that particular machine.
Access to shared memory is controlled using a reader writer semaphore.

As shown in Figure 4, the input queue of an ith stage module is the output
queue of the (I-1)th stage module. The input queue of the first module is the output queue
of the last module of the pipeline on that machine. Allocation is always performed done
from the input queue of the first module or process. However, to ensure that no allocation
task can unfairly consume buffers, allocation of buffers to each module is limited to a
threshold value of Max_Buffers/NA, where NA is the number of allocators in the pipeline
on this particular machine. These parameters are stored under control of the
Master_Monitor program, which determines whether any process has exceeded its

allocation. This means there could be K unfreed buffers in the system allocated by a

10

15

20

WO 2005/065084 PCT/US2004/038190

21

single instance of a module H, where K is Max_Buffers/NA. Further allocation by
module H will be possible when a buffer allocated by H gets freed.

All FreeBuf() calls free their buffers into the input queue of first module.
By the same rule, first stage modules are never permitied to do a ReceiveBuf() but are
permitted to do AllocBuf(). On the other hand, tail processes are permitted to perform
only FreeBuf() and never permitted to do a SendBuf(). All other modules can Receive,
Allocate, Send, and Free buffers. First stage modules always perform SendBuf() after
they execute each AllocBuf().

Each queue 95 is associated with a semaphore to guarantee orderly access
to shared memory and which gets triggered upon actions such as AllocBuf(),
ReceiveBuf(), SendBuf() and FreeBuf(). Dedicated network agents thus map themselves
across any network interface on the system, as long as data propagation is ensured. The
number of network agents per pipeline is a configurable parameter, which helps this
mechanism exploit maximum data transfer bandwidth available on the network over
which it is operating. A single dedicated parent network thread / process monitors
performance and status of all network agents on that particular machine for a particular
pipeline.

Referring again to Figure 4, upon allocation of a buffer by AllocBuf() or
receipt of a buffer by ReceiveBuf(), the buffer is taken off from the input queue and
assigned to the module which performed the call. Upon completion of processing on this
buffer, it is passed forward by mean of SendBuf() or FreeBuf() and the buffer is
forwarded to its destination queue or it is freed for reuse by FreeBuf(). AllocBuf()
decrements the input queue semaphore of the first module and also decrements the

semaphore which is the allocator Index for this particular module. Each FreeBuf()

10

15

20

WO 2005/065084 PCT/US2004/038190
22

increments the allocator Index of the module who allocated this particular buffer.
Information relevant to this operation is always available along with the buffer with
which we are performing the free operation.

Attachments

As the identification process is completed, all modules attach themselves
to a specific shared memory space segment that is shared among modules on that machine
for this particular pipeline. This shared memory segment has many data buffers, input
queues for all stages on the pipeline, and their initial values. Each module identifies its
own input queues and output queues depending on the stage that module is supposed to
run at, and initial queune (first stage) is populated with number of data segments for
sharing on this particular pipeline. Also all modules attach themselves to an allocator
semaphore array, which controls the number of buffers allocated by a specific module

that can be active in the pipeline.

Data Integrity

Integrity of the data passed along and the sequencing of data are

maintained in part by a pair of special purpose modules termed sequencer and

- resequencer processes. Figures 5A and 5B provide diagrams of the operation of the

sequencer and resequencer processes respectively. Referring to Figure 5A, the sequencer
process receives each buffer (module 10), reads the current sequence number stored in
memory (module 20), and then stamps the buffer, and then stamps the buffer with the
current sequence number (module 30) and sends the stamped buffer to the next stage for
processing (module 40). The current sequence number is then incremented (module 50)
and the process is repeated for each buffer received by the sequencer. The resequencer is

operative to receive all input buffers and store them internally and wait for the required

10

15

20

WO 2005/065084 PCT/US2004/038190
23

predecessor buffers to show up at the input queue before forwarding them all in the next
sequence to the next stage of processing.

Referring now to Figure 5B, the resequencer receives a buffer (module 10)
of data and determines the sequence number associated with that buffer (module 20). The
buffer is then stored in internal memory (module 30) and a determination is made as to
whether all preceding sequence numbers associated with buffers have been received and
stored (module 40). Until then, the re-sequencer waits for the required predecessor buffers
to show up at the input queue. When all predecessor buffers are available, these buffers
are sent (module 50) to the next processor stage. The sequencer/re-sequencer process
pairs thus ensure proper data sequencing across a set of network reader/writer modules
having multiple instantiations of a particular process. Note however, that when there is |
only one instance of a module present at any particular stage, by virtue of the queuing
mechanism available with all input Queues, data sequence in the right order is insured.

Hence, in the preferred embodiment, all data pipe transfers employing
multi-instance stages via the sequencer/resequencer processes ensure that the input
sequence of sequence numbers are not violated for each instance of the module. Further,
the restriction that all modules of a specific multi-instance stage should be of the same
type eliminates the chances for preferential behavior.

Fairness

The concept of fairness means that each task will be assured of getting the
input buffers it needs to operate on without waiting longer than necessary. Fairness
among the modules in a given DataPipe where no stage of the pipeline has more than one

instance is automatic. As the tail task frees a buffer it enters the free buffer pool where it

may enable the head task to allocate it and begin processing. All tasks in the DataPipe

10

15

20

25

WO 2005/065084 PCT/US2004/038190
24

operate a maximum speed overlapping the processing done by other tasks in the
preceding or following stage of the pipeline.

If a DataPipe has stages consisting of parallel instances of a task, fairness
among those tasks is assured by using an allocator semaphore which counts from
Max_Buffers / NA (where NA is the number of aliocators for this DataPipe on this
particular machine) downward to zero. All FreeBuf()s increment this semaphore béck,
however, there could be only Max_Buffers /NA buffers allocated by any allocator module
in this DataPipe. This ensures that all allocators get a fair share of the available total
number of input buffers. If a particular process attempts to allocate more buffers than it is
allowed, the master monitor process prevents such allocation, causing the process to
either terminate or wait until a Buffer currently allocated to the process becomes freed
thereby incrementing the semaphore back up to allow the process to allocate another
buffer.

Control Messages

All instances of all modules have a control socket to Master Monitor over
which control messages are exchanged. All network readers / writers have an analogous
control socket to their parent network agent. The parent network agent itself has a control
socket to Master Monitor. Each module periodically checks its control socket for any
messages from Master Monitor. Critical information such as a STOP_PIPE message is
passed to Master_Monitor via this mechanism.

Status Monitoring

Each module initiated by Master Monitor on a given machine is
monitored by either a parent network process (in the case of network reader or writer), or
by Master_Monitor itself, for states of execution. In case any module is reported as

having terminated abnormally, Master_Monitor identifies this exception, and signals all

10

15

20

WO 2005/065084 PCT/US2004/038190
25

the modules on that particular pipeline to stop. This is done by means of control messages
through control sockets as described previously. Upon safely stopping all modules
pertaining to this particular pipeline, it signals the remote machine’s Master_Monitor to
stop the remote side of this particular pipeline and entire pipeline is shut down safely by
means of control message signaling.

Implementation

In a preferred embodiment, DataPipe is implemented on Sun Solaris or
HP-UX operating systems and incorporated into Release 2.7 of CommVault System’s
Vault98 storage management product.

FIG. 6 is an illustrative example of the sequence of primitive commands
used to set up a DataPipe. The DataPipe is then used to process data in three modules
named A, B and C.

To set up the DataPipe the Master Monitor for this is called giving it the
name of the DataPipe and the names of the modules that will use the pipe (module 10).

Master Monitor (Initiate_Pipe(Sample_pipe,A,B,C)).

Within the logic of module A, Alloc_Buf() function is then called to obtain
a buffer (20). The logic of module A may perform any actions it wants to fill the buffer
with useful data. When it has completed its processing of the buffer (30), it calls
SendBuf() to send the buffer to module B for processing (40). Module A then repeats its
function by again calling Alloc_Buf() to obtain the next buffer.

The logic of module B calls ReceiveBuf() to obtain a buffer of data from
module A (50). It then operates on the buffer by performing processing as required (60).

When it is finished with the buffer it calls SendBuf() to send that buffer to module C (70).

10

15

20

WO 2005/065084 PCT/US2004/038190
26

Module B then repeats if function by again calling ReceiveBuf() to obtain
the next buffer from module A.

Module C obtains a buffer of data from module B by calling ReceiveBuf().
When it has completed its processing of the data in that buffer (90), it calls FreeBuf() to
release the buffer (100). Like the other two modules, it loops back to receive the next
buffer form module B.

The primitives used to allocate, free, send, and receive buffers are
synchronized by the use of semaphores. This ensures coordination between the modules
so that the receiving module does not start processing data before the sending module has
finished with it. If no buffer is available, the AllocBuf or ReceiveBuf primitives will wait
until one is available. All three modules operate in parallel as separate tasks. The order of
processing from A to B to C is established in the initial call to Master Monitor that
established the DataPipe.

Referring now to FIG. 7, there is shown another embodiment of the
DataPipe apparatus as it is used within Vault98 to provide a high speed path between a
“client” system containing a large dafabase that is being backed up to the “CommServ”
server and stored as archive files on a DLT drive. Everything on the collect side, of the
physical network are part of the client software configuration, whereas everything on the
DLT drive side of the physical network are part of the server software configuration. The
“collect” activities on the client prepare data to be sent over the DataPipe to the
CommServ.

Figure 7, which is similar to Figure 2B, depicts a two computer
configuration where a header task 15, identified as a collect process, is initiated via

Master Monitor daemon 90A on the first computer. Collector 15 retrieves data from the

10

15

20

WO 2005/065084 PCT/US2004/038190
27

disk and allocates the buffer from the shared memory 85A for processing the data to be
transferred. Collector 15 then sends the data to the compression process 20 which
functions to compress the data as it moves ov;:r the pipe. As shown in Figure 7, multiple
instantiations of compression module 20 are provided at this stage for effectively
processing the data as it flows across the system. Accordingly, sequencer 17 initiated by
Master Monitor 90A is coupled directly between collect module 15 and compressor
module 20 to stamp each of the buffers with the sequence number as described
previously. Re-sequencer module 23 is coupled to the output queue of the compression
module 20 instantiations to properly reorder and re-sequence the buffers sent from the
instantiations of module 20 to content analysis module 30. Content analysis module 30
then receives the buffers from re-sequencer 23, processes the data, and sends the buffers
to sequencer 33, which again stamps the buffers and sends them to multiple instantiations
of network agents 50A for processing across the physical network via standard network
protocol such as TCP IP, FTP, ICMP etc. Network agents 50B are instantiated by
network control processor 60B in communication with remote Master_Monitor 90B to
provide multiple network agent instantiations, where each agent on the remote side
uniquely corresponds and communicates with corresponding agent on the local side. In
the preferred embodiment, each network agent S0A on the local side performs a copy of
the data in the buffer for transfer over the physical network to its corresponding network
agent 50B on the remote side and then performs a free buffer function call to free the
buffers associated with shared memory 85A for reallocation. On the remote side, the
network agent 50B receives the data transferred over the network and acts as a header on
the remote side to allocate each of the buffers in shared memory 85B. These buffers are

then sent to re-sequencer 53 which stores buffers received in internal memory until each

10

15

20

25

WO 2005/065084 PCT/US2004/038190
28

of the predecessor buffers are received, and then forwards them to the backup restore
process 70 via the send buff function. The backup restore process then functions to write
the contents of each of the buffers received to DLT drive 80, and upon completion, frees
each of those buffers to permit further reallocation in the buffer pool and shared memory
85B. As one can see, this pipeline could be set up over any high speed network, such as
ATM, FDD]I, etc. The pipeline is capable of utilizing entire practical bandwidth available
on the physical network by means of multiple network agents. In cases where real high
speed networks are available (networks which have transfer rates higher than DLT
drives), multiple pipelines are set up, to utilize resources available to the full extent.
Encryption

As discussed above, the system also supports encrypted pipelined data
transfer by allowing for encryption to be one of the processes or tasks performed in the
datapipe.

Data protection in storage management systems is a tradeoff between
user’s convenience and security, speed of operation and capabilities of the encryption
algorithm, length of the encryption keys, government restrictions, and other elements
known in the art. There are many encryption algorithms available that vary by strength,
speed and other parameters. Most encryption algorithms, however, offer various ways to
manage the encryption keys. For example, some implementations include hardware USB
devices that can store user’s private keys. Whenever that user needs an access to some
encrypted material, the hardware unit is inserted into the USB slot, and the key is
retrieved from the unit. Some units have built-in encrypting capabilities, providing
additional security: the key no longer has to travel over the USB bus. All crypto

operations are conducted within the unit itself.

10

15

20

WO 2005/065084 PCT/US2004/038190
29

More conventional implementations involve storing secret keys in so-
called key rings (technically just binary files with some specific férmat) protected with a
user’s pass-phrase. The user’s pass-phrase is stored nowhere but in the user’s head, so the
secret keys can be considered to be almost secure. “Almost” because the security of the
keys now depend on a human-selected word or phrase, and human languages are known
to be quite redundant (1.3 bits for a letter in average English text), plus some sort of
dictionary attack is possible. Thus, users and system administrators must chose a system
of key management that best suits their particular needs.

Users and system administrators also confront the problem of key
distribution. If there is more than one computer involved, there will be need for
transferring keys from one machine to the other. One can say that a “secure” link is
needed. But the security of such “secure” link hés to be guaranteed by some other key,
which should have been distributed first, but for distribution of which another secure
session would be needed, etc. etc.

When transferring encrypted data, users generally must confront key
management issues and often will want to have precise control over where sensitive
information is stored and how this information is stored. In some embodiments, users
only want some minimum scrambling, or want only the security of the pipeline
connection for secure over-the-network data transfer, and prefer not to enter pass-phrases
or use other methods every time they wish to encrypt or decrypt data. Such users will
probably be satisfied storing the keys in some scrambled form on the CommServe, media
agents, storage media, or other elements of the system. Thus, in some embodiments, for

example, in the CommVault Galaxy system, the key management problem divides in two:

10

15

20

WO 2005/065084 PCT/US2004/038190
30

key management on the CommServe or storage manager and key management on the
backup media.

To be able to restore encrypted data back, the data encryption keys must
generally be stored somewhere. While it is possible to store keys on the media itself
where encrypted data is being stored, keys are generally stored in the storage manager or
CommServe database/index cache. The CommServe can be configured to trust sensitive
data to it unconditionally, or users may agree to store such data on the CommServe,
provided that some additional protectic;n is involved. For example, additional protection
could be a pass-phrase that only customer knows.

Thus, as far as key storage on the CommServe is concerned, we generally

have two cases: strong (where keys are encrypted with a pass-phrase) and weak (where

- keys are simply scrambled in the index cache)

With strong encryption key management (also referred to herein as
“CS_KM_STRONG”), the data encryption keys are stored on the CommServe protected
by some sort of a pass-phrase. For example, the pass-phrase may exist only in the
customer’s head. Such an encryption scheme offers many benefits. For example, even
though the data encryption keys are kept on the CommServe and can be accessed by the
storage management software, such as CommVault’s Galaxy software, when needed, the
storage manager still lacks one important piece of information without which the
encryption keys cannot be reconstructed — the user’s pass-phrase. Without this pass-
phrase the keys are unusable, and the data is unrecoverable.

In some embodiments, the system prompts the user to enter the pass-

phrase every time when a restore is attempted. In other embodiments, the system does

10

15

20

WO 2005/065084 PCT/US2004/038190
31

not prompt users to enter pass-phrases during the backup (so that Galaxy could get the
data encryption key to perform the backup encryption).

Asymmetric public-key cryptography is used to facilitate this latter
method. Asymmetric algorithms use two keys instead of one. The first key (called public)
is not protected, and is used to encrypt the data. The second key (called private) is
guarded by all means, and can be used to decrypt the data. Thus, in some embodimentsa
the system encrypts backup data with the public key (which can be stored unprotected in
the CS database), and decrypt backup data with the private key (which will be protected
by user’s pass-phrase). In some embodiments as further described herein, poor
performance of asymmetric crypto algorithms may avoided by using symmetric cipher to
perform data encryption, and storing the symmetric data encryption key encrypted with
the asymmetric public key.

| With weak encryption key management (also referred to herein as
“CS_KM_WEAK?), keys are merely scrambled in the storage manager index cache and
do not generally require a pass-phrase. For example, in some embodiments, users may
consider their CommServes to be secure or at minimal risk and thus not recjuire a strong
encryption key management scheme as discussed above. Also, users may dislike the
additional inconvenience of having a pass-phrase to remember and enter during restores.

Thus, the data encryption key is stored in a scrambled form in the
database. Something is generally referred to as “scrambled” if it’s made unintelligible by
some sort of built-in algorithm, which is not controlled by any key or pass-phrase that
would exist separately from this algorithm. Clearly, scrambling is potentially less secure
than strong encryption key management, because by isolating the

scrambling/descrambling code in the Galaxy binaries, any scrambled information can be

10

15

20

WO 2005/065084 PCT/US2004/038190
32

restored to its original form. The advantage of scrambling (weak) over pass-phrase
(strong) encryption is that both backups and restores will not require user to provide any
extra information (such as the pass-phrase).

In some embodiments, for example, in an application service provider
(“ASP”) setting or other similar setting, trust level varies between components of the
system. For example, an ASP might maintain Media Agents and CommServes in an ASP-
controlled data center, but the system’s Data Agents might belong to the ASP’s
customers. Thus, the Data Agents may or may not be configured to fully trust the ASP to
handle their data. In this situation the data being backed up belongs to the customers, and
the customers completely trust Data Agents (because they’re in customer’s physical
control), but Media Agents and CommServe databases are handled by ASP, so customers
don’t really trust either of them.

One possible solution is to protect everything with a pass-phrase, which
the ASP’s customers can set without the ASP’s knowledge. There is no real problem here
except for the customer now having to specify pass-phrase each time when they perform
restore operatidn. In some embodiments, however, this minor inconvenience can be
worked around by means of pass-phrase export files. These files are kept on the Data
Agent in a dedicated directory (e.g. /opt/galaxy/PF or some other similar directory) and
contain Data Agent’s pass-phrase in some scrambled form. Thus, each time a restore
starts, the restore process looks for the pass-phrase export files on the destination
machine, and if such file is found, use the enclosed pass-phrase to unlock the encryption
keys. Thus, the customer can restore his data to his machines w/o having to provide a
pass-phrase, but for anyone else (including the ASP), data restoration is impossible

without the pass-phrase.

10

15

20

WO 2005/065084 PCT/US2004/038190
33

In some embodiments, unattended Synthetic Full backups present a
different problem. Synthetic Full backups combine a full backup with several
incrementals to produce a new full backup. This combining involves running backup and
restore pipelines. Since restoring encrypted data generally requires a pass-phrase,
unattended SynthFull backups are often impossible when CommServe security is
CS_KM_STRONG.

One possible work around this problem is to have a copy of asymmetric
public key stored scrambled (rather than encrypted with the user pass-phrase) specially
for running SynthFull backup processes. The hack is gross, because in theory, the system
could be directed to use the same key to run restores as well. Cryptographic protection
thus gets reduced to protection by code.

Generally, encryption keys are not stored on backup media with the
information that they protect since doing so is somewhat akin to locking a house and then
putting the keys under the doormat. Yet, if tﬁe system doesn’t store any information on
the backup media, the recovery of data in case of disasters (such as a CommServe failure)
will generally be extremely difficult if not impossible. Again, there is a tradeoff here
between the overall security of the storage management system and the user’s
convenience. Thus, in some embodiment, key management on the backup media does
occur.

For the key management on the media, there are a number of distinct
security levels. The first is merely scrambling keys on the backup media. Due to its
potential weaknesses as further described below, this method of media key management
is referred to herein as MM_KM_WEAK throughout the rest of the document. One

weakness to this method is that anyone able to figure out the scrambling algorithm (or

10

15

20

WO 2005/065084 PCT/US2004/038190
34

anyone able to invoke unscrambling code) will be able to fully recover the backup media
without any additional knowledge required. All the strengths of encryption algorithms
employed by the system are thus likely nullified by this loophole. Yet, this scheme has
some advantages, and some uses: (1) The user never has to remember or enter a pass-
phrase. All backups/restores remain fully automatic, and the encryption is 100%
transparent to the operator. (2) The data traveling over the pipeline is still encrypted and
protected against interception by an eavesdropper. Thus, in some situations,

MM _KM WEAK may be desirable.

Another scheme is strong media key management (
“MM_KM_STRONG”). In this embodiment, data encryption keys are stored on the
media, but we additionally encrypt them with the user’s pass-phrase. The pass-phrase
becomes the crucial information that will exist only in the customer head, without which
the data cannot generally be reconstructed by third party or even by an encrypted data
recovery tool such as CommVault’s Galaxy DrTool.

The final method of media key management is referred to herein as
paranoid (“MM_KM_PARANOID”). In this case there are NO keys stored on the media
at all. Data recovery without the CommServe database will generally be impossible and
data recover tools such as DrTool will not work since the encrypted data on the media
will not contain any additional information these tools require to decrypt and recover the
data.

The tables below summarize various advantages and disadvantages of key
management schemes on the storage manager and on backup media according to

embodiments of the invention:

Comm§Serve key management.

Method | Advantages | Disadvantages

WO 2005/065084

35

PCT/US2004/038190

CS_ KM_WEAK

No user interaction required to
perform backups or restores.

No pass-phrase to remember.

The CommServe database becomes
the most vulnerable place. Anyone

who has access to it can recover the
encryption key and restore any data.

The data is still securely
protected in transit and on tape
(as long as the media security
is not MM KM WEAK)

CS_KM_STRONG

W/o user’s pass-phrase it’s
impossible to recover the
encryption keys and data even
in the case if CommServe

User has to provide a pass-phrase
during restores

The pass-phrase becomes the weakest

database becomes link of the entire data protection
compromised. scheme.
Media key management
Method Advantages Disadvantages

MM_KM_WEAK

No pass-phrase to remember in
order to run DrTool.

The data is still securely
protected in transit in pipeline.

The data on tape becomes
basically “scrambled”. Anyone
having the knowledge of the
principles of the “scrambling”
algorithm or knowing how to
invoke it in Galaxy DLL can
recover the data.

MM_KM_STRONG

Even though the data
encryption key is stored on the
media, it is protected by user’s
pass-phrase, w/o which the
data is unrecoverable.

DrTool can recover data.

While the data encryption keys are
protected with the pass-phrase, the
whole data protection scheme now
becomes as week as this pass-
phrase. This should be made very
clear to the user.

DrTool will ask user for pass-
phrase.

MM_KM_PARANOID

There are no keys stored on
the media. Having just the
media it’s completely
impossible to recover any data

from it.

Data recovery is impossible w/o
Galaxy CommServe database.

DrTool won’t work.

Besides the encryption key management/storage problem discussed above,

there is also a key exchange problem: even if the keys are stored on the CommServe in a

10

15

20

WO 2005/065084 PCT/US2004/038190
36

secure way, they generally must be somehow transferred to the IDA and MA — the places
where the real data encryption or decryption generally takes place.

If the keys are distributed in a clear text form, they can easily be
intercepted by an eavesdropper, and used later to restore backup data. This method is the
least secure and should generally be avoided if possible.

If keys are distributed in “scrambled” form, the eavesdropper’s task
becomes more difficult, but still possible via the usual scrambling drawback. Once an
entry point. to the system’s unscrambling routing is found and negotiated, for example to
the Galaxy CvLib DLL, any scrambled message can be recovered.

If keys are distributed encrypted with some user’s chosen password, the
user would have to enter that password twice for each client/MA: once on the client itself,
second time on the CommServe, so that the password would be stored somewhere in
registry for further usage, and would never appear on the network. While providing an
illusion of security, this third method is, however, potentially inconvenient for the user
(too many passwords to enter), and the security gain is not that great: the passwords will
have to be stored in file or registry anyway, and they can appear there only in the
“scrambled” form (unless we ask user to enter yet another password, etc. etc.). Thus in
some embodiments, a variant of this scheme uses an automatically chosen password that
requires 1o user interaction and still yields a good security. For example, the system uses
a session network password to encrypt encryption keys when they’re sent between the
machines. Each client computer has a unique session network password, and CommServe
knows all these passwords, so they become a very good candidate for data key encryption
before sending them over the network. Since IDAs and MAs don’t know each other’s

network password, they cannot easily exchange keys, so, in some embodiments, it

10

WO 2005/065084

PCT/US2004/038190
37

becomes the responsibility of the CommServe to generate random data encryption key

and to pass it to IDA and/or MA — depending on where the encryption should take place.

This section describes various aspects of data encryption implementation

according to embodiments of the invention, and relies upon the following variables:

BF
K netenc

IVBF

KRSApub
RSApub
K0y
KRSApn
KRSApri
KRSApri

enc
enc, db

PassPhrase

NetPass

BF(D;, K®F)
RSA(D;, KR8APHPy
RSA™(E;, KRSAPT)
Scramble(D;)

MD5(T)

i~th block of plaintext data

i~th block of encrypted data

Blowfish encryption key

Blowfish key encrypted with RSA public key.

Blowfish key encrypted with RSA public key and converted to
ASCII for storing in the CS database.

Blowfish key encrypted with network password for transmission
over the network to IDA or MA.

Initialization vector used in Blowfish CBC mode — unique 64-bit
number distributed along with the K>F.

RSA public key

RSA public key as it’s stored in the CS database

RSA private key

RSA private key encrypted with pass-phrase

RSA private key encrypted with pass-phrase and converted to ASCII
for storing in the CS database

User-specified pass-phrase, or a built-in pass-phrase for
CS_KM_WEAK or MM_KM WEAK key management modes.
Network password of a particular Galaxy machine

Blowfish algorithm applied to block D; using key K5F

RSA algorithm applied to D; using K**"™ key.

RSA algorithm applied to E; using KX key.

Data block D; converted to ASCII and scrambled (i.e. encrypted
with some built-in key, probably randomized and protected by
CRC32)

MDS5 hash function producing a 128-bit hash value of arbitrary
length text T. It’s used to reduce pass-phrase down to a 128-bit
number, which can then be used as a key in Blowfish encryption.

Thus, exemplary encryption schemes and methods according to

embodiments of the invention can be represented as follows:

In some embodiments, the KX key encrypted with a user-selectable

pass-phrase according to this equation:

KRSAP =BF(K®*" MD5(PassPhrase))

10

15

20

25

30

35

40

WO 2005/065084 PCT/US2004/038190
38

Before storing into the database it is scrambled and converted to ASCII:
KRSApnenc’ db=S crarrlble(KRSApnenc)
In some embodiments, during restores the KRSAp’ienc, a key is decrypted

back to K***" according to this formula:

KRSAPi=BF(Scramble (KR4,), MD5(PassPhrase))
In some embodiments, the KXAP* key is stored in the database in this

scrambled ASCII format:

KRSAPUD | G ramble(KRSAPHY
And the reverse transformation is represented as follows:
KRSAPIL_G o rarribler | (RRSAPED)
In some embodiments, the backup data text is encoded as follows:
E~=BF(D;, K*") ECB (Electronic Codeblock Mode)
or

E~BF(D, ® IV, KPF) CBC (Cipher Block Chaining Mode)
E=BF(D; ® E.;, K*")

In some embodiments, during restores, the encoded data will be decrypted
as follows:
D=BF(E;, K®F) ECB Mode
or

D=BF(Ey, K*") ® IV®F CBC Mode
D=BF(E;, K*") ® E;;

Before being stored into the database, the backup data key K®* (chosen

randomly for every backup) is encrypted according to this formula in some embodiments:

KBFenc=RS A(KBF, KRSApUb)

10

15

20

25

30

WO 2005/065084 PCT/US2004/038190
39

In the database it is stored in the scrambled ASCII format in some embodiments:
KBFenc N db=Scramble(KBFenc)
In some embodiments, during restores the K=" key will be recovered from

the database according to this formula:

KPF=RSA"(Scramble (K one, av), KX5471)
And K®4 5 decrypted from KR4, 4, as described above
In some embodiments, before being transmitted from CS to IDA or MA,

the K®F key is encrypted with the client’s network password according to this formula:

K5 1cienc=BF(K®F, NetPass)
In some embodiments, the client obtains KEF from KB etenc using this formula:
KEF=BF (K" cienc, NetPass)
There are three categories of encryption-related settings that are stored in

the storage manager database/index cache:

[u—
.

The Blowfish data stream encryption key KBFem, ab — per archive file.

2. The RSA public keys (KRSAP%Py,, KR4 4) and key management options — per
client

3. Encryption flag (ENC_NONE, ENC_NETWORK_ONLY, ENC_MEDIA_ ONLY,

ENC_MEDIA AND_NETWORK) — per subclient

The K5 keys are generated randomly for every archive file. The KXSAP*®

and KRSApn

are created once per client. All subclients will share the same RSA keys, the
same pass-phrase and the same key management settings. To be able to turn encryption
ON/OFF individually for every subclient, the “encryption ON” flag should be stored per

subclient.

10

15

20

WO 2005/065084 PCT/US2004/038190
40

Encryption settings and their related GUIs are generally split into two
groups: those that are specified for the entire client computer, and those that can be
customized on a per-subclient basis.

The settings specified for the entire client computer (all subclients) are
summarized in the screenshot in Fig. 8. The screenshot contains the suggested names and
layout of the controls that are presented to the user. As used herein, key management
terminology in Fig. 8 corresponds as follows:

1. “Regular Restore Access” corresponds to CS_KM_WEAK

2. “Restore Access with a pass-phrase” corresponds to CS_KM_STRONG,

3. “Direct Media Access via Media Password” corresponds to MM_KM_WEAK,
4. “Direct Media Access via pass-phrase” corresponds to MM_KM_STRONG, and
5. “No Direct Media Access” corresponds to MM_KM_PARANOID.

When “Pass-phrase: <Export>" button is pressed in Fig. 8, a dialog box is
displayed which allows the user to enter the pass phrase. The dialog box contains the list
of all client computers configured on the CommServe. The default value is the name of
the client for which the encryption settings are being edited. When “Pass-phrase:
<Reset>" button is pressed in Fig. 8, a dialog box is displayed which allows the user to
reset the pass phrase.

There is minimal space in the self describing multi-tag headers to specify
additional information regarding the encryption functionality disclosed herein. In some
embodiments, the system also uses a new header variable or field, but this results in a loss
of compatibility with earlier clients.

Unlike compression, when encrypting data an expansion of the data size is

possible and in some cases expected. For example, since the Blowfish algorithm is a

10

15

20

WO 2005/065084 PCT/US2004/038190
41

block cipher, it will pad data to the block boundary (64 bits). Thus, it can add up to 7
bytes to data associated with every tag header. This padding is not an issue though
because when backup data is put into the pipeline buffer, it’s aligned on the boundary of
8. And since 64 bits constitute exactly 8 bytes, Blowfish will merely consume the unused
alignment bytes, and no data expansion will occur. Unfortunately, lack of data expansion
described above is true only for the simplest mode of Blowfish operation. If one
implements a more secure CBC mode, or even just adds a 32-bit CRC32 checksum to
guarantee data consistency, we will observe expansion of up to 4+8 bytes per tag header
(CRC32 +1V).

Current data pipeline code already implements a failsafe margin (at least
2KB in some embodiments) used by the compression module during data compression
(and released afterwards), so the same can be done for encryption as welll. In fact, the
encryption module uses the same margin, which is already there for compression. If user
backs up a great deal of tiny files, there will be 12*N bytes expansion, where N is the
number of tag headers that fit one pipeline buffer (32K). The 2KB failsafe buffer will be
exhausted if average file size is 96 bytes (32K/(size+96)*12=2K). Thus, the appropriate
fall-back mechanism will have to be implemented in the encryption module, which would
automatically allocate a new pipeline buffer, should this become necessary.

Each tag header will have a flag indicating whether the data has been
encrypted or not. Since there is a 32-bit “compressed_data” flag already present in that
structure, and that flag can take only values of 0 and 1, we can use the second byte of the
integer to specify encryption algorithm to use. Other values of that byte can be reserved

for encryption algorithms that may be implemented.

10

15

20

WO 2005/065084 PCT/US2004/038190
42

It may also be necessary to track the size of the data after it has been
encrypted. For compression this is done by utilizing a second field of the tag header. For
encryption another field out of the tag header is allocated for this purpose, or the
compressed size replaced with the encrypted size and save the compressed size in an
encryption header that would follow every tag header.

The system also uses chunk trailers from the data pipeline to store
encryption information. Every chunk is followed by a chunk trailer that contains
information about archive files encoded in the chunk. This information is used by data
recovery tools, such as DrTool, to recover data in the absence of the CommServe
database. For example, in some embodiments, the Chunk Trailer is the natural place
where encryption keys can be stored to allow DrTool successfully decrypt the data
without contacting the CS for the K*F.

In some embodiments, the Chunk Trailer is an ASCII entity comprised of
two columns (one for variable names, the other one for the values). Depending on the

media key management security level, the following information may be stored in the

Chunk Trailer:

Parameter Description

Cipher An integer identifying the cipher that was used to encrypt backup
data:
0 — Data is not encrypted
1 — Data is encrypted with Blowfish

BFKey Blowfish key encrypted with RSA public key

RSAPriKey RSA private key encrypted with the user or built-in pass-phrase

RSAUserPassPhrase | A flag (taking the values of 0 or 1) specifying whether the
RSAPriKey is encrypted with user pass-phrase (1) or a built-in
pass-phrase (0).

In the course of a backup, the following encryption-related events

generally occur. Note that encryption can take place on a data agent or a media agent.

10

15

20

25

WO 2005/065084 PCT/US2004/038190

43

Moreover, if network encryption is ON, but media encryption is OFF

(ENC_NETWORK_ONLY), decryption may be happening as well:

1.

The system initiates a request to initialize encryption modules in the data pipeline.
For example, CvArchive on IDA sends CVA_GET_PIPELINEINFO_REQ to the
ArchiveManager and gets back encryption settings for the specified appId
(subclient). These encryption settings are used to initialize INIT_PL buffer
dispatched down the pipeline.

An encryption module, for example, CvDataPipe, analyses the encryption settings
in the INIT PL buffer and brings up encrypt/decrypt modules on the IDA or MA

as needed

. The system generates a new encryption key associated with a new archive file that

is to be created. For example, CvArchive sends CVA_ALLOC_AFILEID_REQ
to ArchiveManager as part of creating a new archive file. ArchiveManager
generates a new random Blowfish key KBF and stores it in its memory.

The encryption key is propagated to the appropriate encryption modules. For
example, CvArchive sends PL_FS_CREATE_AFILE down the pipeline.
“encrypt” and “decrypt” modules intercept this buffer and request archive file
encryption key KBF from ArchiveManager via

CVA_GET_AFILE BACKUP_KEY. ArchiveManager returns the temporary key
that was generated in the previous step.

Backup data is being sent through the pipeline and “encrypt” and “decrypt”
modules process it as needed: For example, every PL,_DATA buffer
(tag_header_t::buf type==PL_DATA) is encrypted, and encryption flag is set in

the tag_header_t or other field as appropriate.

10

15

20

25

WO 2005/065084 PCT/US2004/038190

44

. The chunk trailer is propagated with information regarding encryption and other

actions that were taken on the chunk. For example, when it’s time to close the
current chunk, DataMover sends CVA_GET_CLOSECHUNKINFO_REQ to
ArchiveManager, gets KBFm, a» and KRSApﬁenc, @ for every archive file in the

chunk, and stores them in the chunk trailer.

. The archive file encryption key is stored for future use. For example, when it’s

time to close an archive file, DataMover sends CVA_FIN_AFILE_COPY_REQ to
the ArchiveManager. ArchiveManager encrypts the temporary K5 for this archive
file with the client’s K*SAP"_ stores the result into archFile table, and purges

temporary K5F from memory.

The following events generally occur in a restore operation:

. The system, depending on whether strong or weak key encryption is used, checks

to determiﬁe whether a pass phrase is required. If a pass phrase is required the
system determines whether the phrase has been provided; For example,
CvArchive checks whether pass-phrase was specified by user when he initiated
restore, and whether this pass-phrase was passed to CvArchive via restore

parameters.

. In some embodiments, the system check for pass-phrase export files if no pass-

phrase is provided. For example, if user didn’t specify any pass-phrase,
CvArchive browses pass-phrase export files in a Galaxy directory on IDA (e.g.
/opt/galaxy/PF) looking for the file that would correspond to the current appld
(pass-phrase will be stored together with the client ID that they correspond to, and

client ID can be derived from the appld if needed).

10

15

20

WO 2005/065084 PCT/US2004/038190

45

. The restore archive process sends the archive manager the passphrase. For

example, in some embodiments CvArchive sends
CVA_GETPIPELINEINFO_FOR_RESTORE REQ to the ArchiveManager, and

includes the pass-phrase, if it was located in the previous two steps.

. The archive manager attempts to unlock the private key. For example, in some

embodiments, the ArchiveManager process tries to unlock RSA private key

KR4 a5 per the following algorithm:

a. IfrsaPriKeyBPF for this subclient is not empty in the clientEnc table,
ArchiveManager decrypts rsaPriKeyBPF using the built-in pass-phrase.

b. If rsaPriKeyUPF for this subclient is not empty in the clientEnc table,
ArchiveManager decrypts rsaPriKeyUPF using the pass-phrase ;upplied
by CvArchive.

c. IFK®S was obtained in the previous steps, it’s stored in

ArchiveManager’s memory for the duration of the restore.

. The encrypt and decrypt modules are initiated. For example, CvArchive causes

CvDataPipe to bring up encrypt/decrypt modules (“encrypt” on the MA and
“decrypt” on the IDA). Note that like compress/uncompress, these modules will
be brought up every time when restore runs. Whether they actually do something

or not will be determined during the restore itself.

. Buffers are allocated to archive files being restored. For example, in some

embodiments, for every archive file being restored, fsRestoreHead sends new

PL _FS OPEN_AFILE buffer down the pipeline.

. The decrypt/encrypt modules retrieve the appropriate key to process the archive

file buffers. For example, the decrypt/encrypt modules intercept this buffer and

WO 2005/065084 PCT/US2004/038190
46

issue CVA_GET AFILE_RESTORE_KEY to ArchiveManager in order to
retrieve K= for this archive file.
8. ArchiveManager does the following:
a. Ifthere is already a decrypted K5F in memory for this archive file (as a
5 result of a previous CVA_GET_AFILE_RESTORE_KEY request), it’s
returned immediately.
b. IfarchFile.dataEncKey!=NULL for this archive file (data is encrypted on
media), the K*¥ is obtained by decrypting archFile.dataEncKey with the
KRS that was unlocked during pipeline setup. If KR4 wasn’t unlocked
10 because user or CvArchive didn’t specify a pass-phrase, ArchiveManager
should issue an event message saying that a pass-phrase is required, and
should abort the restore.
c. Ifarchive file is not encrypted on the media, but subclient’s network
encryption is ON, a random K™ is generated and is stored in memory.

15 9. Depending on whether KF returned from ArchiveManager was dynamically
generated or not, “encrypt” module either encrypts passing data or sends it
unchanged (if the key wasn’t generated dynamically, it means that the data is
already encrypted on the media, so it can be sent across the network w/o extra
encryption).

20 10. “decrypt” module decrypts every tag data that has encryption flag set in the tag
header.

11. The encryption key is removed from memory at the end of the archive file restore.

For example, at the end of archive file restore, fsRestoreHead sends via

WO 2005/065084 PCT/US2004/038190
47

CvArchive CVA_FORGET_ AFILE_RESTORE KEY to the ArchiveManager,
which causes it to forget the K5 for the current archive file.
12. At the end of restore, fsRestoreHead sends via CvArchive
CVA_FORGET RSAPRI KEY to ArchiveManager causing it purge K****" from
5 memory.
The following sequence occurs during disaster recovery operations, for
example, when the storage manager is unavailable or at other times:
1. While doing the initial media scan, DrTool should read chunk trailers and include
encryption-related parameters in the structure, which are then returned to the
10 middle layer:
a. Let cipher=Cipher (or FALSE, if Cipher is missing)
b. LetbfKeyEnc=BFKey (or NULL, if BFKey is missing)
c. LetrsaPriKeyUPF=RSAPriKey (or NULLm if BFKey is missing)
d. LetrsaPassPhraseNeeded=RSAUserPassPhrase (or FALSE, if missing)
15 2. Middle layer should store the encryption parameters (cipher, bfKeyEnc,
rsaPriKeyUPF and rsaPassPhraseNeeded) in the CTree datal?ase é.long with other
archive file-related settings.
3. When doing the real restore, the middle or GUI layer of DrTool should do the
following:
20 a. Compile the list of archive files that have to be restored
b. For every archive file in the list:
i. If cipher==FALSE, skip the following steps

ii. If bfKeyEnc==NULL, skip the following steps

WO 2005/065084 PCT/US2004/038190
48

iii. If rsaPassPhraseNeeded==TRUE, prompt user for a pass-phrase
and let passPhrase be what user enters. Otherwise let passPhrase be
the built-in pass-phrase.

iv. Decrypt rsaPriKeyUPF using the passPhrase from the previous step

5 to obtain rsaPriKey.
v. Decrypt bfKeyEnc using rsaPriKey to obtain bfKey
¢. For every new archive file being open during restore: |
i. If cipher==FALSE, skip the following steps
ii. If bfKey==NULL abort with “Encrypted data is not recoverable”
10 error
iii. For every tag_header t from this archive file,
1. If second byte of tag_header_t::compressed data is 0, do
nothing
2. Otherwise decrypt tag data using bfKey
15 In some embodiments, the system employs an encryption API on top of
OpenSSL, for example, CommVault’s CvDataCrypt API, that implements appropriate
format of tag data encryption, scrambling, etc.
All keys are generally converted to ASCII form before storing them in the
database.
20 Thé scrambler function randomizes the binary data, computes checksum,
and encrypts the whole thing using some built-in key.
Systems and modules described herein may comprise software, firmware,
hardware, or any combination(s) of software, firmware, or hardware suitable for the

purposes described herein. Software and other modules may reside on servers,

10

15

WO 2005/065084 PCT/US2004/038190
49

workstations, personal computers, computerized tablets, PDAs, and other devices suitable
for the purposes described herein. Software and other modules may be accessible via
local memory, via a network, via a browser or other application in an ASP context, or via
other means suitable for the purposes described herein. Data structures described herein
may comprise computer files, variables, programming arrays, programming structures, or
any electronic information storage schemes or methods, or any combinations thereof,
suitable for the purposes described herein. User interface elements descn'bedl herein may
comprise elements from graphical user interfaces, command line interfaces, and other
interfaces suitable for the purposes described herein. Screenshots presented and
described herein can be displayed differently as known in the art to input, access, change,
manipulate, modify, alter, and work with information.

While the invention has been described and illustrated in connection with preferred
embodiments, many variations and modifications as will be evident to those skilled in this
art may be made without departing from the spirit and scope of the invention, and the
invention is thus not to be limited to the precise details of methodology or construction
set forth above as such variations and modification are intended to be included within the

scope of the invention.

10

15

20

WO 2005/065084 PCT/US2004/038190
50

CLAIMS
What is claimed is:

1. A method for performing a storage operation in a pipeline storage
system in which one or more data streams containing data to be stored are written into
data chunks, the method comprising:

when encryption is requested for the storage operation, generating an
encryption key associated with a first archive file to be stored;

when a data stream containing the archive file is processed in the pipeline |
storage system, encrypting the archive data from the data stream using the encryption key

" to create an encrypted data chunk;

storing the encrypted data chunk on a storage medium; and

storing the encryption key in a manner accessible during a restore
operation of the encrypted data chunk.

2. The method of claim 1, wherein the pipeline storage system comprises
a plurality of processes arranged in stages including an encryption process, and wherein
encrypting the archive data is performed by the encryption process.

3. The method of claim 1, comprising scrambling the encryption key
before it is stored.

4. The method of claim 1, comprising encrypting the encryption key
before it is stored.

5. The method of claim 1, wherein storing the encryption key comprises
storing the encryption key on the storage medium on which the encrypted data chunk is

stored.

WO 2005/065084 PCT/US2004/038190
51

6. The method of claim 1, comprising storing on a first storage device an
index of storage media used by the pipeline storage system, and wherein storing the
encryption key comprises storing the encryption key on the first storage device.

7. The method of claim 1, wherein the pipeline storage system includes a

5 storage management component, and wherein storing the encryption key comprises
storing the encryption key on the storage management component.

8. The method of claim 1, comprising inserting a tag in the data chunk
indicating that the archive data is encrypted.

9. The method of claim 8, comprising inserting the encryption key in the

10 tagin the data chunk.

WO 2005/065084 PCT/US2004/038190

1/13

‘ 8 . 100A

CLIENT
/95/* STORAGE
MANAGER

DATA AGENT JOBS AGENT| |

80A

INFORMATION
STORE

105A 105A -~ 110A
4 4

——
AGENT
MEDIA AGENT 1 MEDIA AGENT 2 NDEX
INDEX 110A
STORAGE DEVICE 1 STORAGE DEVICE 2
N~ 115A S— 115
FIG. 1A

SUBSTITUTE SHEET (RULE 26)

PCT/US2004/038190

2 /13

WO 2005/065084

g1 614

J24IM D4DQ
mw/. 0m/<
G —_ uoissaddwion _
— |T=——— paudo /(>
m ,mlllllll..,wllllll pSle
SIS [==——=——=1 |8 \
| N——
opJ Ly, \M . uojssaudwon
b mhg 8L . _GU_.—.QO
Ja4lM 040Q !

SUBSTITUTE SHEET (RULE 26)

. OT\

WO 2005/065084 PCT/US2004/038190

3/ 13

o
O.
N\
[
(@)
S e
@ I
S
5
£
O
\ &
Q
(79)

SUBSTITUTE SHEET (RULE 26)

PCT/US2004/038190

WO 2005/065084

4 [/ 13

-

— -
—---——-—--n-—n—-—.--.—-———-—--—-

1
08— 858~

2AMQ . Ja4in
‘ 419 toﬁo@

52904y
[0usU0)
MN

JoLjuoW

g
Huedy sisAjouy
\ MN h@&
\F

(14

V08
Jojjuow |

522044
|o44u0)
MN

SUBSTITUTE SHEET (RULE 26)

WO 2005/065084 PCT/US2004/038190

5/ 13

Fig. 2C

SUBSTITUTE SHEET (RULE 26)

WO 2005/065084 PCT/US2004/038190

6 / 13
2l 5 | S 2 &
J o U 4y
(=) O
O T

T Compress
Fig. 2D

90

SUBSTITUTE SHEET (RULE 26)

PCT/US2004/038190

WO 2005/065084

71/ 13

(as0w2y)
JoJjuow
~J245DW

<

806~/

"QId =
124908 [044U0D ~ |
REXTITY uu...o% .._E__&.uanml uo{ooyiddy
~J24SOW o 26vssayy buiyoaus
+UBpT-puas punoqun
06~/
ge b4
!
- qSOL
/ $520044 (jo20n
umwmwwi joJ4u0) ..otco(w«. . zo.wwhu%
TSR] MOMIN e iSO L 2bossaw $5290ug
H ») 3did-24D)4uT BujsoAuT
09 ~ _J
/ Y06
ve b1
2WoN
UJYODW ~
JO4uOW duiDisaUIL— uoyy0oyddy. |
wd215D QIde] ssoo0ug
+SOW abossayy BupjoAu
2d)g-2013 U] Mo

D€

614

06~

SUBSTITUTE SHEET (RULE 26)

PCT/US2004/038190

WO 2005/065084

8 / 13

806 ¥~ ¥08| — |yog

€ 2n2nd

2 2n2nd

1 onand

SUBSTITUTE SHEET (RULE 26)

PCT/US2004/038190

WO 2005/065084

9 /13

g 614

-
-

-

Ow l\“\\\ Nm J\\\\“Illlll’ll'll'li
\\ \\ l//////
/
i 88 .\J\...... i e 8 /«
] \\ t I M\\ II 4‘
— s\ ! /\\ //
—| {208 —!505 — |q0c | —
— W —_ 11008 «\.mow — mom «\.(0& —_—
—! — — |Yog
-)
_ av S _
.m.m.mﬂd .N..dmﬂ.w
€ 2n2nd 2 2n2nd I 2n2nY

SUBSTITUTE SHEET (RULE 26)

PCT/US2004/038190

WO 2005/065084

10 / 13

a6 b1

vg ‘61

Jayng sy
Bupremy pien
sieyng
Auy

4
J244ng puas |

¢ ueg
paAleoey
ueeg sisyng
J0 *ON ‘beg
J0Ss8opeld Iy
oARH

Adowayy
jbuJauI
ul 24048

L/

3

e_ut.nm uo .02
‘bag poay'

A

Jo3ing
2A1299Y

&

'oN 2ousnbag | 98
woums L/
duawauouy
o
Jajing puas |/
Jo44ng o4 Qe
‘oN sousnbag |-/
uauuny dwoys
"o s2u2nbag .Wm
ua4un) poay
...&H:m o
2A1990y -

<

SUBSTITUTE SHEET (RULE 26)

PCT/US2004/038190

WO 2005/065084

11/ 13

9 'bi4

Uo}4p30j|D3y .
sl @ o
2y 04 99y
A Vupam.ou...& n Vm:mozuu&d /Il
Uido342d wJdojded /,//
T 0s/ @
0L
e [@t mse ...
ﬁwﬁ.@wﬁw (J4nganeday
WJotdad —
Fos-/ ®| |-
. y
goi e e
Puag o4 040Q J3jing 7
()ngpuag Jajing 34030]]y 04
WJ0Jdag $533044 Aw_w.__._omh_w_b(e
0¢
» 0z~ @

Avdway pauaoys
’

274
SJaing

So|npow-

2wy adid-
aujjadig
dn 138

ot
L/

JOLINOW-Y3LSVYW

SUBSTITUTE SHEET (RULE 26)

PCT/US2004/038190

WO 2005/065084

12 / 13

08—

968~

sda}ing

aAQ
11q

Adowaw

240452y

paJoyg

!

~
>~

a.o.m. 709
Joyjuowwwm_wm_%
- 245D\ Py

YS8=\

Adowow
paJoys

$539044 Sou
9440 ..._Mmo““
MN :

SUBSTITUTE SHEET (RULE 26)

WO 2005/065084 PCT/US2004/038190

13/13

o

Dala encryptlon ksys ara slo[&d %
3,2%] a. vB '*f

Data éncrypﬂon keys are protected wlth user—selectable af‘

;'gse pass-phrase Foss ofthe pass-phrasa means Ioss~of-p,

Media encrypﬁon‘keyshare stored pass-phrase ptotected 3‘;

B a¥i PaL ¢

ot the: media’Luss-of é‘pass~phrase means Ioss»of ""g r:_;:

FIG. 8

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

