Elevator hoisting machine
Antriebsmaschine für Aufzüge
Machine d’entraînement pour ascenseur

Designated Contracting States:
CH DE FR LI NL

Inventor: Aoki, Hukami
Tokyo 100-8310 (JP)

Representative: HOFFMANN EITLE
Patent- und Rechtsanwälte
Arabellastrasse 4
81925 München (DE)

References cited:
EP-A- 1 010 660
EP-A1- 0 672 781
WO-A2-98/16681
JP-A- 9 142 761

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

TECHNICAL FIELD

[0001] The present invention relates to an elevator hoisting machine for raising and lowering an elevator car by means of a main rope.

BACKGROUND ART

[0002] An elevator hoisting machine according to the preamble of claim 1 is already known i.e. from JP-A-09142761.

[0003] In conventional elevator hoisting machines, a drive sheave being a separate member from a rotating shaft is fixed to the rotating shaft, which is rotated by a drive motor. Rope grooves are formed in the drive sheave, and a main rope for suspending an elevator car is wound around the drive sheave.

[0004] The drive sheave is required to rotate smoothly while constantly bearing the rope load and generating traction. Hence, it is necessary for the drive sheave to have sufficient hardness and strength, and to be manufactured precisely. Furthermore, since a large hoisting torque is transmitted from the drive motor, the drive sheave is fitted to the rotating shaft firmly by methods including shrink fitting, using keys, etc. Consequently, conventional drive sheaves are constituted by thick-walled, high-strength castings, hindering reductions in the size and weight of elevator hoisting machines.

[0005] Furthermore, when using a main rope composed of a steel rope, D/d (drive sheave diameter/main rope diameter) is required to be equal to or greater than 40 from the viewpoint of flexibility, etc., of the steel rope, thereby also enlarging the drive sheave.

[0006] In answer to this, main ropes composed of a synthetic fiber rope have been achieved in recent years. Since synthetic fiber ropes of this kind have high coefficients of friction and superior flexibility, it is possible to lower D/d to around 25, making reductions in the size of the drive sheave possible.

[0007] However, particularly in high-capacity hoisting machines used in large elevators, since the diameter of the rotating shaft is large, if the diameter of the drive sheave is reduced, the difference between the diameter of the drive sheave and the diameter of the rotating shaft is also reduced. In other words, if the diameter of the drive sheave is reduced to a minimum, the drive sheave becomes thin-walled, making manufacture and fitting of the drive sheave onto the rotating shaft difficult. Hence, from the viewpoint of manufacture and assembly, there is a risk that reductions in the size of the drive sheave, and in turn reductions in the size and weight of the hoisting machine, will be limited.

DISCLOSURE OF THE INVENTION

[0008] The present invention aims to solve the above problems and an object of the present invention is to provide an elevator hoisting machine facilitating assembly and also enabling reductions in size and weight by reducing the number of parts.

[0009] According to one aspect of the present invention, there is provided an elevator hoisting machine including: a bearing mount; a rotating shaft rotatably supported in the bearing mount, rotation of the rotating shaft raising and lowering an elevator car by means of a main rope; a drive motor for rotating the rotating shaft; and a braking device for braking the rotation of the rotating shaft, wherein a main rope winding portion provided with a rope groove into which the main rope is inserted is formed integrally on the rotating shaft.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Figure 1 is a side elevation showing an elevator hoisting machine according to Embodiment 1 of the present invention; Figure 2 is a perspective showing a construction of a main rope from Figure 1; Figure 3 is a side elevation showing an elevator hoisting machine according to Embodiment 2 of the present invention; and Figure 4 is a side elevation showing an elevator hoisting machine according to Embodiment 3 of the present invention.

BEST MODE FOR CARRYING OUT THE INVENTION

[0011] Preferred embodiments of the present invention will now be explained with reference to the drawings.

Embodiment 1

[0012] Figure 1 is a side elevation showing an elevator hoisting machine according to Embodiment 1 of the present invention. In the figure, a pair of bearing mounts 2 and 3 are fixed on a base 1. Bearings 4 and 5 are supported in the bearing mounts 2 and 3, respectively, and first and second end portions of a rotating shaft 6 are rotatably supported by means of these bearings 4 and 5. The rotating shaft 6 is composed of a carbon steel, for example.

[0013] A main rope winding portion 6a is formed integrally on an intermediate portion of the rotating shaft 6, a main rope 7 for suspending a car and a counterweight (neither shown) being wound around the main rope winding portion 6a. A plurality of rope grooves 6b into which the main rope 7 is inserted are disposed on the main rope winding portion 6a. The main rope winding portion 6a is forged during manufacture of the rotating shaft 6. The rope grooves 6b may be formed by turning, or they may also be formed by forging. When the rope grooves 6b are formed by forging, the number of manufacturing proc-
A drive motor 8 for rotating the rotating shaft 6 includes: a stator 9 fixed to the base 1; and a rotor 10 mounted to an intermediate portion of the rotating shaft 6. The rotating shaft 6 is rotated directly by the drive motor 8 without intermediation by gears.

A braking device 11 for braking rotation of the rotating shaft 6 includes: a brake disk 12 rotated together with the rotating shaft 6; and a braking device body 13 for braking rotation of the brake disk 12. A diameter of a portion of the rotating shaft 6 adjacent to the main rope winding portion 6a is smaller than a diameter of the main rope winding portion 6a, the brake disk 12 being fixed to the rotating shaft 6 by being joined to an axial end surface of the main rope winding portion 6a. Furthermore, the brake disk 12 is fixed to the rotating shaft 6 by means of a plurality of bolts 14 extending parallel to an axial direction of the rotating shaft 6 and engaged in the end surface of the main rope winding portion 6a.

Next, Figure 2 is a perspective showing a construction of the main rope 7 from Figure 1. In the figure, an inner strand layer 24 having a plurality of inner strands 22 and filler strands 23 disposed in gaps between these inner strands 22 is disposed around a core wire 21. Each of the inner strands 22 is composed of a plurality of aramid fibers and an impregnating material such as a polyurethane or the like. The filler strands 23 are composed of a polyamide, for example.

An outer strand layer 26 having a plurality of outer strands 25 is disposed around an outer circumference of the inner strand layer 24. Each of the outer strands 25 is composed of a plurality of aramid fibers and an impregnating material such as a polyurethane or the like in a similar manner to the inner strands 22.

A friction-reducing coating layer 27 for preventing abrasion of the strands 22 and 25 due to friction among the strands 22 and 25 is disposed between the inner strand layer 24 and the outer strand layer 26. A protective coating layer 28 is also disposed on an outer circumferential portion of the outer strand layer 26.

A synthetic fiber rope of this kind has a high coefficient of friction compared to a steel rope and is superior in flexibility.

In an elevator hoisting machine constructed as above, since the main rope winding portion 6a is formed integrally on the rotating shaft 6 without using a separate drive sheave, the number of parts can be reduced, and the need for shrink fitting and a key work is eliminated, enabling assembly to be facilitated. Furthermore, the diameter of the main rope winding portion 6a is minimized, enabling overall reductions in size and weight.

An elevator hoisting machine of this kind can be used with a main rope composed of a steel rope if a sufficient diameter is ensured at the main rope winding portion 6a, but the elevator hoisting machine of this kind is more effective when used with the main rope 7 composed of the synthetic fiber rope in order to enable reductions in size and weight.

Furthermore, since the main rope winding portion 6a is composed of the same material as the rotating shaft 6, the rope grooves 6b are easily worn if the steel rope is used. In contrast to this, the rope grooves 6b are less likely to be become worn in the case of the synthetic fiber rope. In addition, since the synthetic fiber rope has a high coefficient of friction, it is not necessary to provide undercut grooves to increase friction inside the rope grooves 6b, and from these viewpoints also, the elevator hoisting machine of this kind is more effective when used with the main rope 7 composed of the synthetic fiber rope.

Furthermore, since the end surface of the main rope winding portion 6a integrated with the rotating shaft 6 can be used to mount the brake disk 12, the brake disk 12 can be fixed to the rotating shaft 6 simply and firmly.

Embodiment 2

Figure 3 is a side elevation showing an elevator hoisting machine according to Embodiment 2 of the present invention. In the figure, a bearing mount 32 is fixed on a base 31. A bearing 33 is supported in the bearing mount 32, and an intermediate portion of a rotating shaft 34 is rotatably supported by means of this bearing 33. The rotating shaft 34 is composed of a carbon steel, for example.

Again rope winding portion 34a is formed integrally on a first end portion of the rotating shaft 34, a main rope 7 being wound around the main rope winding portion 34a. A plurality of rope grooves 34b into which the main rope 7 is inserted are disposed on the main rope winding portion 34a.

A drive motor 35 for rotating the rotating shaft 34 includes: a case 36 fixed to the bearing mount 32; a stator 37 fixed inside this case 36; and a rotor 38 mounted to the rotating shaft 34. The rotating shaft 34 is rotated directly by the drive motor 35 without intermediation by gears. Furthermore, in this example, the type of drive motor 35 used employs a permanent magnet in the rotor 38. A bearing 39 for rotatably supporting a second end portion of the rotating shaft 34 is held in the case 36.

A braking device 11 for braking rotation of the rotating shaft 34 includes: a brake disk 12 rotated together with the rotating shaft 34; and a braking device body 13 for braking rotation of the brake disk 12. The brake disk 12 is fixed to the rotating shaft 34 by being joined to an axial end surface of the main rope winding portion 34a. Furthermore, the brake disk 12 is fixed to the rotating shaft 34 by means of a plurality of bolts 14 extending parallel to an axial direction of the rotating shaft 34 and engaged in the end surface of the main rope winding portion 34a.

Hence, the main rope winding portion 34a may be formed in one end portion of the rotating shaft 34, effectively enabling an overall reduction in size when the number of rope grooves 34b is small.
Figure 4 is a side elevation showing an elevator hoisting machine according to Embodiment 3 of the present invention. In the figure, a pair of first and second bearing mounts 42 and 43 are fixed on a base 41. Bearings 44 and 45 are supported in the bearing mounts 42 and 43, respectively, and a rotating shaft 46 is rotatably supported by means of these bearings 44 and 45. The rotating shaft 46 is composed of a carbon steel, for example.

A main rope winding portion 46a is formed integrally on the rotating shaft 46, a main rope 7 being wound around the main rope winding portion 46a. A plurality of rope grooves 46b into which the main rope 7 is inserted are disposed on the main rope winding portion 46a.

A drive motor 47 for rotating the rotating shaft 46 includes: a case 48 fixed to the first bearing mount 42; a stator 49 fixed inside this case 48; and a rotor 50 mounted to an end portion of the rotating shaft 46. The rotating shaft 46 is rotated directly by the drive motor 47 without intermediary by gears. Furthermore, in this example, the type of drive motor 47 used employs a permanent magnet in the rotor 50.

A braking device 11 for braking rotation of the rotating shaft 46 includes: a brake disk 12 rotated together with said rotating shaft 46; and a braking device body 13 for braking said rotation of said brake disk 12. A diameter of said rotating shaft 46 adjacent to said main rope winding portion 46a, the brake disk 12 being fixed to said rotating shaft 46 by being joined to an axial end surface of said rotating shaft 46 includes: a case 48 fixed to the first bearing mount 42; a stator 49 inside this case 48; and a rotor 50 mounted to an end portion of the rotating shaft 46. The rotating shaft 46 is rotated directly by the drive motor 47 without intermediary by gears. Furthermore, in this example, the type of drive motor 47 used employs a permanent magnet in the rotor 50.

A main rope winding portion 46a is formed integrally on the rotating shaft 46, a main rope 7 being wound around the main rope winding portion 46a. A plurality of rope grooves 46b into which the main rope 7 is inserted are disposed on the main rope winding portion 46a.

Moreover, in Embodiments 1 to 3, a gearless type of hoisting machine is shown, but the present invention can also be applied to a geared type of hoisting machine in which a driving force from the drive motor is transmitted to the rotating shaft by means of a speed reduction mechanism.

Further embodiments are as follows:

An elevator hoisting machine comprising: a bearing mount (2, 3, 32, 42, 43); a rotating shaft (6, 34, 46) rotatably supported in said bearing mount (2, 3, 32, 42, 43), rotation of said rotating shaft (6, 34, 46) raising and lowering an elevator car by means of a main rope (7); a drive motor (8, 35, 47) for rotating said rotating shaft (6, 34, 46); and a braking device (11) for braking said rotation of said rotating shaft (6, 34, 46), wherein a main rope winding portion (6a, 34a, 46a) provided with a rope groove (6b, 34b, 46b) into which said main rope (7) is inserted is formed integrally on said rotating shaft (6, 34, 46).

The elevator hoisting machine according to embodiment 1, wherein said braking device (11) includes a brake disk (12) rotated together with said rotating shaft (6, 34, 46), and a braking device body (13) for braking rotation of said brake disk (12), a diameter of a portion of said rotating shaft (6, 34, 46) adjacent to said main rope winding portion (6a, 34a, 46a) being smaller than a diameter of said main rope winding portion (6a, 34a, 46a), and said brake disk (12) being fixed to said rotating shaft (6, 34, 46) by being joined to an axial end surface of said main rope winding portion (6a, 34a, 46a).

The elevator hoisting machine according to embodiment 2 or 3, wherein said brake disk (12) is fixed to said rotating shaft (6, 34, 46) by means of a plurality of bolts (14) extending parallel to an axial direction of said rotating shaft (6, 34, 46) and engaged in said end surface of said main rope winding portion (6a, 34a, 46a).

The elevator hoisting machine according to any one of embodiments 1 to 3, wherein a rotor (10, 38, 50) of said drive motor (8, 35, 47) is mounted to said rotating shaft (6, 34, 46), said rotating shaft (6, 34, 46) being driven directly by said drive motor (8, 35, 47).

The elevator hoisting machine according to embodiment 4, wherein first and second end portions of said rotating shaft (6) are supported by said bearing mount (2, 3), said rotor (10) being mounted to an intermediate portion of said rotating shaft (6), and said main rope winding portion (6a) also being formed on an intermediate portion of said rotating shaft (6).

The elevator hoisting machine according to any one of embodiments 1 to 5, wherein said rope groove (6b, 34b, 46b) is formed by forging.

Claims

1. An elevator hoisting machine comprising:

 a bearing mount (2, 3, 32, 42, 43);
 a rotating shaft (6, 34, 46) rotatably supported in said bearing mount (2, 3, 32, 42, 43), rotation of said rotating shaft (6, 34, 46) raising and lowering an elevator car by means of a main rope (7);
 a drive motor (8, 35, 47) for rotating said rotating shaft (6, 34, 46);
 a braking device (11) for braking said rotation of said rotating shaft (6, 34, 46); and
 a main rope (7);
characterized in that
a main rope winding portion (6a, 34a, 46a) provided with a rope groove (6b, 34b, 46b) into
which said main rope (7) is inserted is formed integrally on said rotating shaft (6, 34, 46);
wherein said main rope (7) is a synthetic fiber rope.

2. The elevator hoisting machine according to claim 1, wherein said braking device (11) includes a brake
disk (12) rotated together with said rotating shaft (6, 34, 46), and a braking device body (13) for braking
rotation of said brake disk (12), a diameter of a portion of said rotating shaft (6, 34, 46) adjacent to said main rope winding portion (6a, 34a, 46a) being smaller than a diameter of said main
rope winding portion (6a, 34a, 46a), and said brake disk (12) being fixed to said rotating shaft
(6, 34, 46) by being joined to an axial end surface of said main rope winding portion (6a, 34a, 46a).

3. The elevator hoisting machine according to claim 2, wherein said brake disk (12) is fixed to said rotating
shaft (6, 34, 46) by means of a plurality of bolts (14) extending parallel to an axial direction of said rotating
shaft (6, 34, 46) and engaged in said end surface of said main rope winding portion (6a, 34a, 46a).

4. The elevator hoisting machine according to any one of claims 1 to 3, wherein a rotor (10, 38, 50) of said
drive motor (8, 35, 47) is mounted to said rotating shaft (6, 34, 46), said rotating shaft (6, 34, 46) being
driven directly by said drive motor (8, 35, 47).

5. The elevator hoisting machine according to claim 4, wherein first and second end portions of said rotating
shaft (6) are supported by said bearing mount (2, 3), said rotor (10) being mounted to an intermediate portion
of said rotating shaft (6), and said main rope winding portion (6a) also being formed on an inter-
mediate portion of said rotating shaft (6).

6. The elevator hoisting machine according to any one of claims 1 to 5, wherein said rope groove (6b, 34b,
46b) is formed by forging.

7. The elevator hoisting machine according to any one of the preceding claims, wherein the main rope (7)
has a flexibility superior to a steel rope.

8. The elevator hoisting machine according to any one of the preceding claims, wherein said rope (7) has an inner strand layer (24) having a plurality of inner strands (22) and filler strands (23) disposed in gaps
between the inner strands (22), the inner strand layer (24) being disposed around a core wire (21);
each of the inner strands (22) being composed of a plurality of aramid fibers and an impregnating mate-
rial; said rope (7) furthermore having an outer strand layer (26) having a plurality of outer strands (25) dis-
posed around an outer circumference of the inner strand layer (24);
each of the outer strands (25) being composed of a plurality of aramid fibers and an impregnating mate-
rial;
a friction-reducing coating layer (27) being disposed between the inner strand layer (24) and the outer
strand layer (26);
a protective coating layer being disposed on an outer circumferential portion of the outer strand layer (26).

9. The elevator hoisting machine according to claim 8, wherein said impregnating material is polyurethane.

10. The elevator hoisting machine according to claim 8 or 9, wherein said filler strands (23) are composed of polyamide.

11. An elevator comprising an elevator hoisting machine according to any one of the preceding claims.

Patentansprüche

1. Aufzughebemaschine, mit:

- einer Lagerfassung (2, 3, 32, 42, 43);
- einer Drehwelle (6, 34, 46), die in der Lagerfass-
 sung (2, 3, 32, 42, 43) drehbar gelagert ist, wobei die Drehung der Drehwelle (6, 34, 46) eine Auf-
 zugkabine mit Hilfe eines Hauptseils (7) anhebt
 und absenkt;
- einem Antriebsmotor (8, 35, 47) zum Drehen der
 Drehwelle (6, 34, 46);
- einer Bremsvorrichtung (11) zum Bremsen der
 Drehung der Drehwelle (6, 34, 46);
- einem Hauptseil (7); und
- einem Hauptseil-Aufwicklungsabschnitt (6a, 34a, 46a), der mit einem Seileinschnitt (6b, 34b,
 46b) bereitgestellt ist, in den das Hauptseil (7) eingefügt wird;
dadurch gekennzeichnet, dass der Hauptseil-
 Aufwicklungsabschnitt (6a, 34a, 46a) integral an
der Drehwelle (6, 34, 46) ausgebildet ist;
 wobei das Seil (7) ein synthetisches Faserseil ist.

2. Aufzughebemaschine nach Anspruch 1, wobei die Bremsvorrichtung (11) eine Brems scheibe (12), die
zusammen mit der Drehwelle (6, 34, 46) rotiert, und einen Bremsvorrichtungskörper (13) zum Bremsen
der Rotation der Brems scheibe (12) umfasst, wobei ein Durchmesser eines Abschnitts der Dreh-
scheibe (6, 34, 46), benachbart zu dem Hauptseil-
Aufwicklungsabschnitt (6a, 34a, 46a), kleiner ist als ein Durchmesser des Hauptseil-Aufwicklungsab-
3. Aufzughebemaschine nach Anspruch 2, wobei die Bremsscheibe (12) an der Drehwelle (6, 34, 46) mit Hilfe einer Vielzahl von Bolzen (14) fixiert ist, die sich parallel zu einer axialen Richtung der Drehwelle (6, 34, 46) erstrecken, und mit der Endoberfläche des Hauptseil-Aufwicklungsabschnitts (6a, 34a, 46a) im Eingriff stehen.

4. Aufzughebemaschine nach irgendeinem der Ansprüche 1-3, wobei ein Rotor (10, 38, 50) des Antriebsmotors (8, 35, 47) an der Drehwelle (6, 34, 46) angebracht ist, und wobei die Drehwelle (6, 34, 46) direkt durch den Antriebsmotor (8, 35, 47) angetrieben wird.

5. Aufzughebemaschine nach Anspruch 4, wobei erste und zweite Endabschnitte der Drehwelle (6) durch die Lagerfassung (2, 3) gelagert sind, der Rotor (10) an einem dazwischen liegenden Abschnitt der Drehwelle (6) angebracht ist, und der Hauptseil-Aufwicklungsabschnitt (6a) auch in einem dazwischen liegenden Abschnitt der Drehwelle (6) ausgebildet ist.

6. Aufzughebemaschine nach irgendeinem der Ansprüche 1-5, wobei der Seileinschnitt (6b, 34b, 46b) durch Schmieden ausgebildet ist.

7. Aufzughebemaschine nach irgendeinem der vorhergehenden Ansprüche, wobei das Seil (7) eine Flexibilität aufweist, die besser als ein Stahlseil ist.

8. Aufzughebemaschine nach irgendeinem der vorherigen Ansprüche, wobei das Seil (7) eine innere Litzenlage (24) aufweist mit einer Vielzahl von inneren Litzen (22), und Fülllitzen (23), die in Lücken zwischen den inneren Litzen (22) angeordnet sind, wo die innere Litzenlage (24) um einen Kerndraht (21) angeordnet ist; wobei jede der inneren Litzen (22) aus einer Vielzahl von Aramidfasern und einem Imprägnierungsmittel bestehen; wobei das Seil (7) ferner eine äußere Litzenlage (26) aufweist, mit einer Vielzahl von äußeren Litzen (25), die um eine äußere Peripherie der inneren Litzenlage (24) angeordnet sind; wobei jede der äußeren Litzen (25) aus einer Vielzahl von Aramidfasern und einem Imprägnierungsmedium bestehen; wobei eine reibungsreduzierende Beschichtungsschicht (27) zwischen der inneren Litzenlage (24) und der äußeren Litzenlage (26) angeordnet ist; eine schützende Beschichtungsschicht an einem äußeren peripheren Abschnitt der äußeren Litzenlage (26) angeordnet ist.

9. Aufzughebemaschine nach Anspruch 8, wobei das Imprägnierungsmaterial Polyurethan ist.

10. Aufzughebemaschine nach Anspruch 8 oder 9, wobei die Fülllitzen (23) aus Polyamid bestehen.

11. Aufzug mit einer Aufzughebemaschine nach irgendeinem der vorheregenden Ansprüche.

Revendications

1. Machine de treuil d'ascenseur, comprenant :

un support de palier (2, 3, 32, 42, 43) ;
un axe rotatif (6, 34, 46) supporté de manière rotative dans ledit support de palier (2, 3, 32, 43), la rotation dudit axe de rotation (6, 34, 46) faisant monter et descendre une cabine d'ascenseur au moyen d'un câble principal (7) ;
un moteur d'entraînement (8, 35, 47) pour entraîner en rotation ledit axe de rotation (6, 34, 46) ;
un dispositif de freinage (11) pour freiner ladite rotation dudit axe de rotation (6, 34, 46) ;
nombre d'une partie d'enroulement de câble principal (6a, 34a, 46a) dotée d'une rainure de câble (6b, 34b, 46b) dans laquelle ledit câble (7) est inséré ;
caractérisée en ce que :

ladite partie d'enroulement de câble principal (6a, 34a, 46a) est formée de manière intégrale sur ledit axe de rotation (6, 34, 46) ;
dans laquelle ledit câble (7) est un câble en fibres synthétiques.

2. Machine de treuil d'ascenseur selon la revendication 1, dans laquelle ledit dispositif de freinage (11) comprend un disque de freinage (12) qui est en rotation avec ledit axe de rotation (6, 34, 46) et un corps de dispositif de freinage (13) pour freiner la rotation dudit disque de freinage (12),
d'un diamètre d'une partie dudit axe de rotation (6, 34, 46) adjacente à ladite partie d'enroulement de câble principal (6a, 34a, 46a) étant inférieur à un diamètre de ladite partie d'enroulement de câble principal (6a, 34a, 46a), et
dudit disque de freinage (12) étant fixé sur ledit axe de rotation (6, 34, 46) en étant joint à une surface d'extrémité axiale de ladite partie d'enroulement de câble principal (6a, 34a, 46a).
3. Machine de treuil d’ascenseur selon la revendication 2, dans laquelle ledit disque de freinage (12) est fixé sur ledit axe de rotation (6, 34, 46) au moyen d’une pluralité de boulons (14) s’étendant parallèlement à une direction axiale dudit axe de rotation (6, 34, 46) et en prise avec ladite surface d’extrémité de ladite partie d’enroulement de câble principal (6a, 34a, 46a).

4. Machine de treuil d’ascenseur selon l’une quelconque des revendications 1 à 3, dans laquelle un rotor (10, 38, 50) dudit moteur d’entraînement (8, 35, 47) est monté sur ledit axe de rotation (6, 34, 46), ledit axe de rotation (6, 34, 46) étant entraîné directement par ledit moteur d’entraînement (8, 35, 47).

5. Machine de treuil d’ascenseur selon la revendication 4, dans laquelle des première et seconde parties d’extrémité dudit axe de rotation (6) sont supportées par ledit support de palier (2, 3), ledit rotor (10) étant monté sur une partie intermédiaire dudit axe de rotation (6), et ladite partie d’enroulement de câble principal (6a) étant également formée sur une partie intermédiaire dudit axe de rotation (6).

6. Machine de treuil d’ascenseur selon l’une quelconque des revendications 1 à 5, dans laquelle ladite rainure de câble (6b, 34b, 46b) est formée par forgage.

7. Machine de treuil d’ascenseur selon l’une quelconque des revendications précédentes, dans laquelle le câble principal (7) a une flexibilité supérieure à celle d’un câble en acier.

8. Machine de treuil d’ascenseur selon l’une quelconque des revendications précédentes, dans laquelle ledit câble (7) a une couche de torons intérieurs (24) comportant une pluralité de torons intérieurs (22) et des torons de remplissage (23) disposés dans des espacements entre les torons intérieurs (22), la couche de torons intérieurs (24) étant disposée autour d’un fil central (21) ; chacun des torons intérieurs (22) se composant d’une pluralité de fibres d’aramide et d’un matériau d’imprégnation ; ledit câble (7) ayant en outre une couche de torons extérieurs (26) comportant une pluralité de torons extérieurs (25) disposés autour d’une circonférence extérieure de la couche de torons intérieurs (24) ; chacun des torons extérieurs (25) se composant d’une pluralité de fibres d’aramide et d’un matériau d’imprégnation ; une couche de revêtement à réduction de frottement (27) étant disposée entre la couche de torons intérieurs (24) et la couche de torons extérieurs (26) ; une couche de revêtement de protection étant disposée sur une portion circonférentielle extérieure de la couche de torons extérieurs (26).

9. Machine de treuil d’ascenseur selon la revendication 8, dans laquelle ledit matériau d’imprégnation est du polyuréthane.

10. Machine de treuil d’ascenseur selon la revendication 8 ou 9, dans laquelle les torons de remplissage (23) se composent de polyamide.

11. Ascenseur comprenant une machine de treuil d’ascenseur selon l’une quelconque des revendications précédentes.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 09142761 A [0002]