Le Ministre des Affaires Economiques,

Vu la Convention de Paris du 20 Mars 1883 pour la Protection de la propriété industrielle;

Vu la loi du 28 Mars 1984 sur les brevets d'invention, notamment l'article 22;

Vu l'arrêté royal du 2 Décembre 1986 relatif à la demande, à la délivrance et au maintien en vigueur des brevets d'invention, notamment l'article 28;

Vu le procès verbal dressé le 11 Décembre 1991 à 14h40 à l'Office de la Propriété Industrielle

ARRETE:

ARTICLE 1.- Il est délivré à : IMPERIAL CHEMICAL INDUSTRIES PLC Millbank, LONDON SW1P 3JF(ROYAUME-UNI)

représenté(e)(s) par : PLUCKER Guy, OFFICE KIRKPATRICK, Square de Meeus, 4 - B 1040 BRUXELLES.

un brevet d'invention d'une durée de 20 ans, sous réserve du paiement des taxes annuelles, pour : AGENTS PHARMACEUTIQUES.

Priorité(s) 12.12.90 GB GBA 9027014 12.07.91 GB GBA 9115107

ARTICLE 2.- Ce brevet est délivré sans examen préalable de la brevetabilité de l'invention, sans garantie du mérite de l'invention ou de l'exactitude de la description de celle-ci et aux risques et périls du(des) demandeur(s).

Bruxelles, le 13 Octobre 1992
PAR DELEGATION SPECIALE:

[Signature]
Agents pharmaceutiques.

La présente invention concerne des agents pharmaceutiques. Plus particulièrement, elle concerne une composition pharmaceutique comprenant une forme physique particulière d'un amide hétérocyclique, des procédés pour la préparation de cette forme physique, de même qu'une autre forme physique de l'amide hétérocyclique utile pour la préparation de la forme physique citée en premier lieu.

L'un des amides hétérocycliques décrits dans le document EP-A2-0 199 543 est le N-[4-[5-(cyclopentyloxy-carbonyl)amino-1-méthylindol-3-ylméthyl]-3-méthoxybenzoyl]-2-méthylbenzènesulfonamide. Ce composé est décrit dans l'exemple 105 du mémoire du brevet et est appelé ci-après
composé 1.

Au cours d'essais cliniques récents, le composé 1 s'est révélé efficace dans le traitement de l'asthme, lorsqu'il est administré par voie orale aux patients asthmatiques. Cette aptitude du composé 1 à être efficace lorsqu'il est administré par voie orale est inhabituelle et hautement souhaitable.

La composition pharmaceutique utilisée dans les essais cliniques précédés n'a pas donné entière satisfaction et une composition améliorée a fait l'objet de recherches. Comme décrit plus en détail ci-après, un certain nombre de difficultés techniques ont dû être résolues pour qu'une telle composition soit obtenue.

Le composé 1 s'est révélé avoir une solubilité relativement faible dans l'eau. Il est ainsi apparu un besoin pour une composition pharmaceutique se prêtant à l'administration par voie orale et comprenant le composé 1 à l'état solide.

Il a été découvert que le composé 1 peut être obtenu à l'état solide sous la forme d'une matière ayant une variété de propriétés physiques différentes suivant la façon dont il a été isolé, puis traité. Cette particularité s'est révélée être due au fait que le composé peut exister sous plus d'une forme physique, dont au moins une a une médiocre stabilité physique, lesquelles formes physiques peuvent être obtenues en mélange. Il a été découvert aussi que différents échantillons du composé à l'état solide ont des biodisponibilités différentes.

Il n'est pas intéressant de développer une composition contenant un mélange de formes physiques d'un composé qui ont des biodisponibilités différentes, surtout lorsque l'une est physiquement instable, parce que la dose effective du composé ne peut être convenablement contrôlée. Il en résulte le besoin de trouver des procédés pour préparer des formes physiques du composé 1 qui soient sensiblement exemptes d'autres formes physiques.
Des procédés pour préparer trois formes physiques du composé 1 sensiblement exemptes des autres formes physiques ont été découverts et la stabilité physique et la biodisponibilité de ces trois formes ont fait l'objet d'investigations. Deux de ces formes, dites ci-après formes B et X, se sont révélées être physiquement stables, mais avoir une biodisponibilité relativement médiocre. La troisième de ces formes, dite ci-après forme A, s'est révélée avoir une biodisponibilité relativement bonne. Néanmoins, il a été découvert que cette forme physique tend à se convertir en la forme B en présence d'eau. Cette propriété est un inconvénient pour une matière qu'il est prévu de présenter à l'état d'une composition solide, parce que la granulation implique d'utiliser de l'eau comme adjuvant dans l'opération de mélange. En effet, les comprimés utilisés dans les essais cliniques précités avaient été préparés par un procédé de granulation par voie humide au départ de la forme A et se sont révélés contenir la forme B en une quantité variant d'environ 25 à environ 30% en poids, sur la base du poids du composé 1.

Il existe donc un besoin pour une composition pharmaceutique se prêtant à l'administration par voie orale, qui comprend le composé 1 sous une forme physique sensiblement exempte d'autres formes physiques, laquelle composition est physiquement stable, peut être préparée de façon reproductible et a une bonne biodisponibilité.

Il a été découvert à présent avec surprise que des compositions pharmaceutiques satisfaisant à ces critères peuvent être obtenues en sélectionnant la forme A comme constituant actif et la polyvinylpyrrolidone comme coconstituant.

La présente invention a dû lors pour objet une composition pharmaceutique qui comprend, comme constituant actif, une forme physique du N-[4-[(5-(cyclopentyloxy-carbonyl)amino-1-méthylindol-3-ylméthyl)-3-méthoxybenzoyl]-2-méthylbenzènesulfonamide (dite ci-dessus forme A)
sensiblement exempte d'autres formes physiques, laquelle
forme physique a un spectre infrarouge (à 0,5% dans le KBr)
présentant des pics aigus à 1690, 1530, 1490, 1420, 1155,
1060, 862 et 550 cm⁻¹, et de la polyvinylpyrrolidone.

La forme A présente un diagramme de diffraction
des rayons X par la poudre ne comprenant pas de pics
discernables et est dès lors amorphe.

Il a été découvert que les compositions conformes
à l'invention ont une stabilité physique acceptable, peuvent
être préparées de façon reproductible et ont une
biodisponibilité étonnamment élevée.

Lorsqu'il est fait référence dans le présent
mémoire à la forme A sensiblement exempte d'autres formes
physiques, cela signifie de préférence que le composé 1 est
présent sous cette forme physique pour au moins 90% en
poids, plus avantageusement pour au moins 95% en poids, par
exemple pour au moins 96, 97, 98 ou 99%.

La composition conforme à l'invention peut être
présentée sous toute forme classique se prêtant à
l'administration par voie orale, par exemple sous la forme
d'un comprimé, d'une capsule, d'une perle ou d'une poudre.
De préférence, elle est présentée sous la forme d'un
comprimé.

Dans la composition conforme à l'invention, le
constituant actif est avantageusement présent en une
quantité de 1 à 90% en poids, sur la base du poids total de
la composition, par exemple de 10 à 50% en poids.

La polyvinylpyrrolidone est avantageusement
présenté en une quantité d'au moins 1% en poids, sur la base
du poids total de la composition. Elle peut, conjointement
avec le constituant actif, former le poids total de la
composition. Néanmoins, la composition comprend plus
habituellement aussi au moins un excipient
pharmaceutiquement acceptable. Par exemple, la
polyvinylpyrrolidone peut être présente en une quantité de
1 à 20% en poids, sur la base du poids total de la
composition, de préférence de 2 à 6% en poids.

Des exemples d'excipients pharmaceutiquement acceptables appropriés sont notamment, à titre illustratif, les sucres comme le mannitol, le lactose, le sorbitol, le glucose, le saccharose, le dextrose, le fructose et le xylitol, et les dérivés cellulosiques, comme la cellulose microcristalline, la cellulose en poudre et l'hydroxypropylméthylcellulose. De préférence, la composition comprend un sucre, spécialement du lactose, et un dérivé cellulosique, spécialement de la cellulose microcristalline. La quantité de sucre en présence peut se situer, par exemple, dans l'intervalle de 10 à 30% en poids, sur la base du poids total de la composition. La quantité de dérivé cellulosique en présence peut se situer, par exemple, dans l'intervalle de 25 à 70% en poids, sur la base du poids total de la composition.

La composition peut comprendre aussi un ou plusieurs adjuvants de mise en composition, comme des désintégrants, par exemple du croscarmellose sodique, de l'amidon-glycolate de sodium et de l'amidon, outre des lubrifiants, par exemple du stéarate de magnésium, de l'acide stéarique, du talc et de la stéarine végétale en poudre. La quantité de désintégrant en présence peut se situer, par exemple, dans l'intervalle de 1 à 10% en poids, sur la base du poids total de la composition. La quantité de lubrifiant en présence peut se situer, par exemple, dans l'intervalle de 0,25 à 2% en poids sur la base du poids total de la composition.

La composition peut être préparée par mélange des constituants suivant un procédé classique, par exemple un procédé de granulation.

Suivant un autre aspect, l'invention a donc pour objet un procédé de préparation d'une composition pharmaceutique, qui comprend la mélange de mélange de la forme A sensiblement exempte d'autres formes physiques avec du polyvinylpyrrolidone et de l'eau, puis le séchage du
mélange résultant.

La quantité d'eau utilisée dépend de la nature de la composition pharmaceutique requise (par exemple un comprimé, une capsule, une poudre ou une perle) et de la nature de tout autre constituant à incorporer à la composition. Avantageusement, le rapport pondéral de l'eau à la forme A se situe dans l'intervalle de 0,1 à 100:1.

Lorsque la composition est présentée sous la forme d'un comprimé, le poids du comprimé peut se situer avantageusement dans l'intervalle de 25 à 500 mg, par exemple de 50 à 250 mg, comme 100 à 200 mg. Le comprimé peut être enrobé ou non enrobé. L'enrobage peut être un enrobage classique et peut être appliqué de façon traditionnelle.

Suivant un autre aspect, l'invention a pour objet des procédés pour préparer la forme A sensiblement exempte d'autres formes physiques du composé 1.

L'invention a donc pour objet un procédé de préparation de la forme A sensiblement exempte d'autres formes physiques, qui comprend le chauffage d'une autre forme physique du N-[4-[5-(cyclopentyloxy carbonyl)amino-1-méthylindol-3-yl méthyl]-3-méthoxy benzoyl]-2-méthyl benzènesulfonamide (dite ci-dessus forme B) sensiblement exempte d'autres formes cristallines, laquelle forme cristalline est un monohydrate du N-[4-[5-(cyclopentyloxy carbonyl)amino-1-méthylindol-3-yl méthyl]-3-méthoxy benzoyl]-2-méthyl benzènesulfonamide qui est cristallin, a un spectre infrarouge (à 0,5% dans le KBr) présentant des pics aigus à 3560, 1690, 1660, 1540, 1440, 1165, 880 et 858 cm⁻¹, et un diagramme de diffraction des rayons X par la poudre présentant des pics à 2θ = 10,0, 11,2, 14,6, 19,8 et 23,0°, à une température de l'intervalle de 90 à 125°C sous pression réduite.

La déshydratation de la forme B est de préférence effectuée à une température de l'intervalle de 115 à 122°C.

La pression absolue pendant la déshydratation de la forme B n'excède de préférence pas 100 mbars, plus avantageusement pas 50 mbars. Par exemple, la pression
absolue peut se situer dans l'intervalle de 5 à 50 mbars.

La forme B peut être préparée sensiblement exempte d'autres formes cristallines par cristallisation à partir de l'acétone aqueuse chaude. En particulier, elle peut être préparée en dissolvant une source du composé 1 dans l'acétone aqueuse à une température élevée, en ajoutant un supplément d'eau et en laissant le mélange resultant refroidir. De préférence, l'eau est ajoutée rapidement afin que le composé 1 se sépare initialement sous la forme d'une huile. La matière séparée de cette façon s'est révélée donner la forme A dans un état de pureté morphologique particulièrement élevé.

Le produit cristallin peut être séché à une température élevée, par exemple à environ 60°C ou au-dessous. Lorsqu'il est souhaité de partir d'une source impure du composé A, il s'est révélé avantageux de triturer cette source impure avec du toluène/acétate d'éthyle chaud avant la cristallisation.

Il convient d'observer que si la forme B est séchée à une température élevée, par exemple au-dessus de 60°C, une certaine conversion en forme A peut avoir lieu. La matière préparée par séchage de la forme B à une température d'environ 60°C ou au-dessous s'est révélée être sensiblement exempte de toutes autres formes physiques du composé 1.

La forme B est, croit-on, nouvelle. L'invention a donc aussi pour objet la forme B sensiblement exempte d'autres formes cristallines.

L'invention a aussi pour objet un autre procédé de préparation de la forme A sensiblement exempte d'autres formes physiques du composé 1, qui comprend l'évaporation rapide du solvant d'une solution du composé 1. Par exemple, elle peut être préparée par séchage par pulvérisation d'une solution du composé 1.

Le solvant peut être toute substance liquide capable de dissoudre le composé 1 et de s'évaporer à une
température inférieure au point de fusion de la forme A. Des exemples de solvants sont les cétones, comme l'acétonitrile, et les nitriles, comme l'acétonitrile, facultativement en mélange avec de l'eau. L'acétonitrile aqueuse s'est révélée être un solvant particulièrement approprié.

La température à laquelle le solvant est évaporé doit être inférieure au point de fusion de la forme A. Avantageusement, elle est inférieure à 125°C, de préférence inférieure à 120°C. Lors de l'utilisation de l'acétone comme solvant, il s'est révélé qu'une quantité sensible de matière cristalline est obtenue si la température est inférieure à 100°C. Dès lors, par exemple, la température à laquelle le solvant est évaporé peut se situer dans l'intervalle de 100 à 125°C.

La solution du composé 1 est avantageusement préparée par dissolution d'une forme cristalline du composé 1, comme la forme B, dans le solvant. Une solution préparée de cette façon doit contenir une quantité minimale d'impuretés non volatiles.

On peut apprécier d'après les indications ci-dessus que l'acétone aqueuse est un solvant particulièrement avantageux à utiliser dans la préparation de la forme A sensiblement exempte d'autres formes physiques. En effet, il a été également découvert que la teneur en solvant organique de la forme A produite au départ de la forme B au moyen de cette solution est très faible. Par conséquent, suivant un autre aspect, l'invention a pour objet une solution du composé 1 dans l'acétone aqueuse. La solution peut comprendre, par exemple, 5 à 15% en poids du composé 1, de préférence 6 à 13%. Le solvant peut comprendre, par exemple, 3 à 9% en poids d'eau, de préférence 4 à 8%.

La nature avantageuse des compositions conformes à l'invention peut être démontrée en comparant leurs propriétés avec celles de compositions correspondantes dans lesquelles la forme A a été remplacée par la forme B ou la forme X et avec celles d'une composition comprenant la
forme A qui ne contient pas de polyvinylpyrrolidone.

La forme X est une forme physique du composé A qui est cristalline, a un diagramme de diffraction des rayons X par la poudre présentant des pics spécifiques à $2\theta = 8,1, 13,7, 16,4, 20,5$ et $23,7^\circ$ et un spectre infrarouge (à 0,5% dans le KBr) présentant des pics aigus à $3370, 1670, 1525, 1490, 1280, 890, 870$ et 550 cm^{-1}.

La forme X peut être préparée sensiblement exempte d'autres formes physiques par un procédé qui comprend la dissolution d'une source du composé 1 dans l'acétone aqueuse chaude, la réduction du volume de la solution résultante par évaporation, l'addition de toluène et la réduction plus poussée du volume par évaporation. Lorsqu'il est souhaité d'utiliser une matière qui est une source relativement impure du composé 1, cette matière peut être avec avantage triturée dans du toluène/acétate d'éthyle chaud avant le stade de cristallisation.

Chacune des formes A, B et X peut être caractérisée commodément, par exemple, par le seul diagramme de diffraction des rayons X par la poudre ou par le seul spectre infrarouge.

Dans le présent mémoire, les spectres infrarouges sont déterminés sur une dispersion à 0,5% de l'échantillon de la matière dans une pastille de bromure de potassium dans le domaine de longueur d'onde de 4000 à 400 cm$^{-1}$. Des exemples du spectre infrarouge pour chacune des formes X, A et B sont donnés aux Fig. 1, 2 et 3 ci-après.

Les spectres de diffraction des rayons X par la poudre sont déterminés sur un échantillon de 2 g de matière monté dans un porte-échantillon profond normal Philips dans le domaine de balayage 2θ de 4 à 40$^\circ$ avec comptage pendant 4 secondes par point à intervalles de 0,02$^\circ$ pour tracer le diagramme des équidistances en fonction de l'intensité dans ce domaine. Des exemples du spectre de diffraction des rayons X par la poudre pour chacune des formes X, A et B sont donnés aux Fig. 4, 5 et 6 ci-après.
Les points de fusion de chacune des formes A, B et X dépendent généralement de leur degré de pureté. Typiquement, il a été observé que la forme X a un point de fusion supérieur à 190°C, par exemple d'environ 200°C; la forme A a un point de fusion entre 115 et 140°C, par exemple d'environ 124 à 132°C; et la forme B a un point de fusion d'environ 140 à 160°C, par exemple de 145 à 155°C. La forme B s'est révélée perdre de l'eau à une température supérieure à environ 60°C et peut ne pas avoir un point de fusion net.

Comme indiqué précédemment, la forme A est acceptablement stable dans les compositions conformes à l'invention. Toutefois, dans des conditions de forte humidité relative et de température élevée, la conversion de la forme A en la forme B s'est révélée avoir lieu. Par conséquent, dans certaines circonstances, il peut être souhaitable de conserver les compositions pharmaceutiques comprenant la forme A en présence d'un agent desséchant approprié, par exemple du gel de silice. Il peut être souhaitable aussi de les conserver dans un récipient étanche à l'air, par exemple un emballage blister.

La dose du composé 1 à administrer à un patient dans une composition conforme à l'invention dépend de la gravité de l'état à traiter, de l'âge et de la taille du patient. En général, le composé est administré en une dose de 0,1 à 10 mg par kg, par exemple de 0,2 à 5 mg par kg.

Des études de toxicité aiguë ont été menées sur le composé 1 pour déterminer les valeurs de la DL_{50}. Par exemple, chez la souris et le rat, il a été constaté que la DL_{50} du composé 1 est > 500 mg par kg.

Les exemples non limitatifs suivants illustrent l'invention.

EXEMPLE 1.-
Préparation de la formule A.

a) Préparation d'une source impure du composé 1.

On convertit du 3-méthoxy-4-(1-méthyl-5-nitro-
indol-3-ylméthyl)benzoate de méthyle (préparé comme décrit dans l'exemple 4 du document EP-A2-0 199 543) en l'acide libre par réaction avec de l'hydroxyde de sodium aqueux. On convertit l'acide libre ensuite en le chlorure d'acide par réaction avec le chlorure de thionyle dans le dichlorométhane. Ensuite, on fait réagir le chlorure d'acide avec l'o-toluènesulfonamide dans le dichlorométhane en présence de 2,2 équivalents de 4-diméthylaminopyridine pour obtenir le sel de diméthylaminopyridine du 4-(1-méthyl-5-nitroindol-3-ylméthyl)-3-méthoxybenzoyl-2-méthylbenzènesulfonamide.

On introduit une solution du sel de diméthylaminopyridine du 4-(1-méthyl-5-nitroindol-3-ylméthyl)-3-méthoxybenzoyl-2-méthylbenzènesulfonamide (30 g) dans du 2-méthoxyéthanol (130 ml) et une solution concentrée d'hydroxyde de sodium (3,2 ml) dans un ballon purgé à l'azote contenant du palladium à 10% sur carbone (3,3 g d'une pâte humectée d'eau à 60,9%). Ensuite, on agite le mélange sous atmosphère d'hydrogène sous une pression de 3 bars pendant 2,5 heures. On filtre le mélange ensuite sur de la terre de diatomées qu'on lave avec du 2-méthoxyéthanol (37,5 ml). On ajoute du chloroformiate de cyclopentyle (9,2 ml) aux liqueurs combinées et on agite le mélange résultant sous atmosphère d'azote jusqu'au lendemain. On ajuste la température ensuite à 30-33°C et on ajoute de l'acide chlorhydrique 0,8 M (68 ml) en 20 minutes sous vive agitation. On refroidit ensuite le mélange à 15-20°C et on l'agite pendant 1 heure. Ensuite, on sépare par filtration le produit cristallin brut qu'on lave à l'eau et qu'on sèche à 50°C. On l'utilise ensuite au stade suivant.

b) Trituration du composé 1 impur.

On chauffe lentement 60 g (0,101 mole) du produit du stade a), 240 ml de toluène (4 volumes) et 150 ml d'acétate d'éthyle (2,5 ml) lentement au reflux et on recueille (30 ml) (0,5 volume) de distillat pour chasser la majeure partie de l'eau dégagée. On chauffe le mélange au reflux pendant 1 heure (88 à 90°C), puis on le refroidit à
10-15°C. Après 3 heures d'agitation à 10-15°C, on filtre le solide sur un verre fritté et on le lave avec un mélange 2:1 de toluène (80 ml) et d'acétate d'éthyle (40 ml). Ensuite, on sèche le produit jusqu'à poids constant sur le verre fritté pour obtenir 53,2 g du composé 1 sec (rendement 91,5%).

c) Préparation de la forme B.

On introduit 30,0 g du produit du stade b), 210 ml d'acétone et 12 ml d'eau dans un ballon de réaction de 500 ml. On chauffe le mélange ensuite au réfluo pendant 15 minutes, puis on le filtre à 40-50°C à travers une couche de terre de diatomées sur un verre fritté pour l'introduire directement dans un ballon de réaction de 500 ml. On lave le ballon et le verre fritté avec un mélange d'acétone (60 ml) et d'eau (3 ml). Ensuite, on agite le mélange des liquides au bain-marie à environ 40°C et on y ajoute de l'eau (120 ml) en 5 minutes. Le mélange se transforme initialement en une huile, mais cristallise ensuite rapidement. On refroidit le mélange ensuite à 20°C en 1 heure, on l'agit pendant 2 heures à 15-20°C et on le filtre. On lave le produit à l'eau (60 ml), on le sèche autant que possible sur le verre fritté, puis on le sèche à l'étuve à l'air à 60°C (maximum). La production de la forme B est de 30,0 g (97%).

d) Préparation de la forme A.

On introduit le produit du stade c) (15,0 g) dans un ballon à fond rond de 500 ml qu'on met ensuite sous vide à l'évaporateur rotatif sous 20 mbars. Ensuite, on immmerge le ballon et son contenu dans un bain d'huile préchauffé à 118°C et on le fait tourner lentement à cette température pendant 6 heures. On concasse la masse après refroidissement pour obtenir la forme A à l'état de poudre blanche.

Pour des préparations à grande échelle, la forme A peut être obtenue de la façon suivante.

On étale uniformément 30 kg du produit du stade c) sur des plateaux métalliques et on les chauffe à
120°C sous vide dans une étuve à vide de 7 m² pendant une
durée atteignant 24 heures. Typiquement, la pression absolue
est d'environ 20 mbars. Après refroidissement (jusqu'à 40°C
ou au-dessous), on retire le produit de l'étuve et on le
broie pour obtenir la forme A désirée.

Si la chose est souhaitée, la forme A peut être
micronisée avant usage.

Préparation de la forme X.

On dissout le produit du stade b) (30,0 g,
0,0521 mole) dans de l'acétone (150 ml) et de l'eau (4,7 ml)
par chauffage au reflux modéré, puis on filtre la solution
dans un entonnoir en verre fritté. On chauffe le filtrat à
l'ébullition et on recueille 90 ml de distillat. On ajoute
du toluène (120 ml) et on recueille un supplément de 75 ml
de distillat. On ajoute un supplément de toluène (120 ml)
et on recueille un nouveau distillat de 75 ml. Après
chauffage au reflux pendant encore 1 heure, on refroidit le
mélange à 15-20°C, puis on recueille le produit et on le
lave avec du toluène (2 x 30 ml). Après séchage sur
l'entonnoir fritté, la production est de 29,5 g (98,3%).

EXEMPLE 2.-

Autre préparation de la forme A.

On dissout la forme B (qui peut être obtenue
comme décrit dans l'exemple 1), dans de l'acétone aqueuse
pour obtenir une solution à 8% p/p du composé 1 dans
l'acétone aqueuse à 6% p/p. Ensuite, on sèche cette solution
par pulvérisation avec un miniséchoir par pulvérisation de
laboratoire Niro (disponible à la Société A/S Niro Atomizer,
Gladsaxevæj 305, DK-2860 Soerborg, Danemark). On atomise la
solution au débit de 2 kg par heure dans de l'azote au débit
de 6,6 kg par heure en utilisant un atomiseur avec bec pour
deux fluides. Le gaz de séchage utilisé est de l'azote au
débit de 70 kg par heure et les températures d'entrée et
sortie sont respectivement de 215 et 120°C. On collecte dans
un filtre à manche la forme A produite.
EXEMPLE 3.-
Composition de la forme A en comprimé.

<table>
<thead>
<tr>
<th>Matière pour la granulation</th>
<th>mg/ comprimé</th>
<th>mg/ comprimé</th>
<th>mg/ comprimé</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Constituant actif</td>
<td>2</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Croscarmellose sodique NF</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone pharmacopée USA</td>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Cellulose micro-</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cristalline NF</td>
<td>54</td>
<td>74</td>
<td>40</td>
</tr>
<tr>
<td>Lactose NF</td>
<td>54</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>Eau purifiée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pharmacopée USA</td>
<td>80</td>
<td>98</td>
<td>62</td>
</tr>
</tbody>
</table>

Matière pour le mélange final

<table>
<thead>
<tr>
<th></th>
<th>mg/ comprimé</th>
<th>mg/ comprimé</th>
<th>mg/ comprimé</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Granules séchés broyés</td>
<td>123</td>
<td>153</td>
<td>143</td>
</tr>
<tr>
<td>Lactose NF</td>
<td>-</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Croscarmellose sodique NF</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Cellulose microcristalline NF</td>
<td>69</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td>Stéarate de magnésium NF</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

On granule par voie humide les constituants de la matière pour la granulation. Ensuite, on sèche les granules et on les broie. On mélange ensuite les granules séchés et broyés avec les autres constituants du mélange final qu'on presse en comprimés.

On détermine par analyse aux rayons X le pourcentage pondéral de forme B présente, sur la base du poids du composé 1 présent. Pour le comprimé de 20 mg, la quantité se révèle être inférieure à 8%. Pour le comprimé de 50 mg, on applique des procédés par rayons X plus
sensibles. Le pourcentage pondéral de forme B avant la mise en composition se révèle être 3% et être après la mise en composition de < 3,2%.

Note : Dans chacun des exemples donnés, la polyvinylpyrrolidone utilisée a un coefficient a K de 29 - 32. On est porté à croire que toute qualité pharmaceutique de polyvinylpyrrolidone, par exemple ayant un coefficient K de 10 à 100, conviendrait.

EXEMPLE 4.-

10 Epreuve de stabilité à court terme.

On conserve des comprimés préparés suivant le procédé de l'exemple 3 et contenant 20 mg de la forme A dans différentes conditions pendant 1, 2 et 3 mois. Ensuite, on examine les comprimés par diffraction des rayons X afin de déterminer en quelle proportion le constituant actif a été converti en la forme B. Les résultats sont résumés au tableau I ci-après.
TABLEAU I

Epreuve de stabilité sur des comprimés contenant
la forme A.

<table>
<thead>
<tr>
<th>Conditions de stockage</th>
<th>Conversion en forme B %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiales</td>
<td>Non décelable</td>
</tr>
<tr>
<td>1 mois, température ambiante</td>
<td>Non décelable</td>
</tr>
<tr>
<td>2 mois, température ambiante</td>
<td>Non décelable</td>
</tr>
<tr>
<td>3 mois, température ambiante</td>
<td>Non décelable</td>
</tr>
<tr>
<td>10 3 mois, 50°C</td>
<td>Non décelable</td>
</tr>
<tr>
<td>1 mois, 40°C, 80% HR</td>
<td>87</td>
</tr>
<tr>
<td>2 mois, 40°C, 80% HR</td>
<td>91</td>
</tr>
<tr>
<td>3 mois, 40°C, 80% HR</td>
<td>82</td>
</tr>
</tbody>
</table>

HR = Humidité relative.

15 Les comprimés conservés à la température ambiante
et à 50°C sont contenus dans des flacons en polyéthylène
haute densité blancs à bouchon métallique.

Les comprimés conservés à 80% d'humidité relative
sont exposés à l'air.
EXEMPLE DE COMPARAISON 1.-

Composition de formule A en comprimés sans polyvinylpyrrolidone.

<table>
<thead>
<tr>
<th>Matière pour la granulation</th>
<th>mg/comprimé</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Constituant actif</td>
<td>50,0</td>
</tr>
<tr>
<td>Amidon prégélatinisé NF</td>
<td>20,0</td>
</tr>
<tr>
<td>Lactose NF</td>
<td>34,55</td>
</tr>
<tr>
<td>Amidon-glycolate de sodium NF</td>
<td>2,0</td>
</tr>
<tr>
<td>Cellulose microcristalline NF</td>
<td>34,95</td>
</tr>
<tr>
<td>10 Laurysulfate de sodium NF</td>
<td>0,5</td>
</tr>
<tr>
<td>Eau purifiée, pharmacopée USA</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Matière pour le mélange final

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Granule broyé séché</td>
<td>142,0</td>
</tr>
<tr>
<td>Amidon-glycolate de sodium NF</td>
<td>6,0</td>
</tr>
<tr>
<td>15 Cellulose microcristalline NF</td>
<td>50,0</td>
</tr>
<tr>
<td>Stéarate de magnésium NF</td>
<td>2,0</td>
</tr>
</tbody>
</table>

On granule par voie humide les constituants de la matière pour granulation. Ensuite, on sèche et on broie les granules. On mélange ensuite les granules séchés et broyés avec les autres constituants du mélange final qu'on presse en comprimés.

On détermine par analyse aux rayons X le pourcentage de composé 1 présent à l'état de forme B avant et après granulation. Avant la granulation, on constate que le composé 1 est présent à l'état de forme B pour < 1,5%. Toutefois, après la granulation, le composé 1 se révèle présent à l'état de forme B pour 28%.

Ces résultats démontrent clairement la stabilité améliorée de la forme A dans les compositions conformes à l'invention.
EXEMPLE 5.

<table>
<thead>
<tr>
<th>Composition en capsules</th>
<th>mg/capsule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituant actif</td>
<td>20</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone</td>
<td>20</td>
</tr>
<tr>
<td>Lactose</td>
<td>177,25</td>
</tr>
<tr>
<td>Cellulose microcristalline</td>
<td>177,25</td>
</tr>
<tr>
<td>Dioxyde de silicium colloïdal</td>
<td>0,5</td>
</tr>
<tr>
<td>Stéarate de magnésium</td>
<td>5</td>
</tr>
</tbody>
</table>

Capsule de gélatine taille 0.

On mélange le constituant actif, le polyvinylpyrrolidone, le lactose et la cellulose microcristalline dans un mélangeur approprié, on ajoute de l'eau purifiée jusqu'à consistance convenable, on sèche et on classe au cours d'un broyage approprié. On mélange le dioxyde de silicium colloïdal et le stéarate de magnésium. On introduit dans des capsules en gélatine en deux pièces de taille 0.

<table>
<thead>
<tr>
<th>Perles (sphéroïdes)</th>
<th>mg/capsule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituant actif</td>
<td>10</td>
</tr>
<tr>
<td>Perles de sucre</td>
<td>200</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone</td>
<td>10</td>
</tr>
</tbody>
</table>

On prépare une dispersion à 10% de la polyvinylpyrrolidone dans de l'eau purifiée. On ajoute le constituant actif et on mélange jusqu'à dispersion uniforme, puis on pulvérise sur les perles de sucre avec un appareil approprié. On introduit les perles dans des capsules en deux pièces de taille 1 ou bien on les introduit dans un sachet approprié.
<table>
<thead>
<tr>
<th>Composition en poudre</th>
<th>mg/poudre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituant actif</td>
<td>20</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone</td>
<td>15</td>
</tr>
<tr>
<td>Mannitol</td>
<td>364,6</td>
</tr>
<tr>
<td>Arôme</td>
<td>0,4</td>
</tr>
</tbody>
</table>

On mélange le constituant actif, la polyvinylpyrrolidone et le mannitol dans un mélangeur approprié. On mélange jusqu'à consistance convenable avec de l'eau purifiée, on sèche et on fait passer par une opération de tamisage appropriée.

EXEMPLE DE COMPARAISON 2.-
Comparaison de la biodisponibilité du composé 1 dans des compositions préparées à partir de la forme A avec et sans polyvinylpyrrolidone.

On répartit au hasard 24 hommes volontaires bien portants entre les groupes de traitement. L'un des traitements comprend un seul comprimé de 50 mg préparé comme décrit dans l'exemple 3 et un autre comprend un seul comprimé de 50 mg préparé comme décrit dans l'exemple de comparaison 1. Pendant l'étude, chaque volontaire reçoit les deux préparations. Au cours de chaque durée de traitement, on prélève périodiquement des échantillons de sang dans lesquels on détermine la concentration en composé 1.
<table>
<thead>
<tr>
<th></th>
<th>Produit de l'exemple 3</th>
<th>Produit de l'exemple de comparaison 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valeur moyenne</td>
<td>Ecart-type (I)</td>
</tr>
<tr>
<td>Concentration maximale du composé 1 (ng/ml)</td>
<td>588</td>
<td>54</td>
</tr>
<tr>
<td>Temps jusqu'à concentration maximale (heures)</td>
<td>2,6</td>
<td>0,3</td>
</tr>
<tr>
<td>Demi-vie</td>
<td>9,0</td>
<td>0,5</td>
</tr>
<tr>
<td>Aire sous la courbe (ng.h/ml)</td>
<td>2268</td>
<td>220</td>
</tr>
</tbody>
</table>

Ces résultats démontrent clairement la biodisponibilité améliorée du composé 1 dans les compositions conformes à l'invention.

EXEMPLE DE COMPARAISON 3.-
Comparaison de la biodisponibilité du composé 1 dans des compositions préparées avec de la polyvinylpyrrolidone et les formes A, B et X.

On prépare conformément à la recette suivante des comprimés contenant 20 mg de forme A, de forme B ou de forme X.
Matière pour la granulation \[\text{mg/comprimé}\]

Constituant actif 20
Croscarmellose sodique NF 6
Polyvinylpyrrolidone 7
pharmacopée USA
Cellulose microcristalline NF 45
Lactose NF 45

Matière pour le mélange final

Croscarmellose sodique NF 6
Cellulose microcristalline NF 69
Stéarate de magnésium NF 2

En prenant un tableau de répartition croisée équilibrée, on administre à chacun de huit chiens chacune des trois formes en comprimés. Pendant chaque période d'étude, on prélève périodiquement des échantillons de sang chez chaque animal et on y détermine la concentration en composé 1. Les résultats sont exprimés ci-après.

<table>
<thead>
<tr>
<th>Constituant actif</th>
<th>Concentration maximale (µg/ml)</th>
<th>Demi-vie (h)</th>
<th>Aire sous la courbe (µg.h/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forme A</td>
<td>1,004</td>
<td>5,398</td>
<td>4,028</td>
</tr>
<tr>
<td>Forme B</td>
<td>0,105</td>
<td>3,524</td>
<td>0,773</td>
</tr>
<tr>
<td>Forme X</td>
<td>0,314</td>
<td>3,590</td>
<td>1,307</td>
</tr>
</tbody>
</table>

Ces résultats démontrent clairement la biodisponibilité supérieure des compositions conformes à l'invention, par comparaison avec des compositions contenant la forme B ou la forme X.
REVENDICATIONS

1.- Composition pharmaceutique, caractérisée en ce qu'elle comprend, comme constituant actif, une forme physique du N-[4-[5-(cyclopentyloxycarbonyl)amino-1-méthylindol-3-ylméthyl]-3-méthoxybenzoyl]-2-méthylbenzéne-sulfonamide sensiblement exempte d'autres formes physiques, laquelle forme physique a un spectre infrarouge (à 0,5% dans le KBr) présentant des pics aigus à 1690, 1530, 1490, 1420, 1155, 1060, 862 et 550 cm⁻¹, et de la polyvinylpyrrolidone.

2.- Composition suivant la revendication 1, caractérisée en ce qu'elle comprend aussi un excipient pharmaceutiquement acceptable.

3.- Composition suivant la revendication 1 ou 2, caractérisée en ce que le constituant actif est présent en une quantité de 1 à 90% en poids, sur la base du poids total de la composition.

4.- Composition suivant l'une quelconque des revendications 1 à 3, caractérisée en ce que la polyvinylpyrrolidone est présente en une quantité de 1 à 20% en poids, sur la base du poids total de la composition.

5.- Composition suivant l'une quelconque des revendications 1 à 4, caractérisée en ce que l'excipient pharmaceutiquement acceptable est choisi parmi le mannitol, le lactose, le sorbitol, le glucose, le saccharose, le dextrose, le fructose, le xylitol, la cellulose microcristalline, la cellulose en poudre et l'hydroxypropylméthylcellulose.

6.- Composition suivant l'une quelconque des revendications 1 à 5, caractérisée en ce qu'elle comprend aussi un auxiliaire de mise en composition choisi parmi le croscarmellose sodique, l'amidon-glycolate sodique, l'amidon, le stéarate de magnésium, l'acide stéarique, le talc et la stéarine végétale en poudre.

7.- Composition suivant l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle est
présentée sous la forme d'un comprimé.

8.- Procédé de préparation d'une composition pharmaceutique suivant la revendication 1, caractérisé en ce qu'il comprend la mélange d'une forme physique du N-[4-[5-(cyclopentyloxy carbonyl)amino-1-méthylindol-3-ylméthyl]-3-méthoxybenzoyl]-2-méthylbenzènesulfonamide sensiblement exempte d'autres formes physiques, laquelle forme physique a un spectre infrarouge (à 0,5% dans le KBr) présentant des pics aigus à 1690, 1530, 1490, 1420, 1155, 1060, 862 et 550 cm⁻¹, avec de la polyvinylpyrrolidone et de l'eau, et le séchage du mélange résultant.

9.- Procédé de préparation d'une forme physique du N-[4-[5-(cyclopentyloxy carbonyl)amino-1-méthylindol-3-ylméthyl]-3-méthoxybenzoyl]-2-méthylbenzènesulfonamide sensiblement exempte d'autres formes physiques, laquelle forme physique a un spectre infrarouge (à 0,5% dans le KBr) présentant des pics aigus à 1690, 1530, 1490, 1420, 1155, 1060, 862 et 550 cm⁻¹, ce procédé comprenant le chauffage d'une autre forme physique du N-[4-[5-(cyclopentyloxy carbonyl)amino-1-méthylindol-3-ylméthyl]-3-méthoxybenzoyl]-2-méthylbenzènesulfonamide sensiblement exempte d'autres formes cristallines, laquelle forme cristalline est un monohydrate du N-[4-[5-(cyclopentyloxy carbonyl)amino-1-méthylindol-3-ylméthyl]-3-méthoxybenzoyl]-2-méthylbenzènesulfonamide qui est cristallin, a un spectre infrarouge (à 0,5% dans le KBr) présentant des pics aigus à 3560, 1690, 1660, 1540, 1440, 1165, 880 et 858 cm⁻¹, et un diagramme de diffraction des rayons X par la poudre présentant des pics à 2θ = 10,0, 11,2, 14,6, 19,8 et 23,0°, à une température de l'intervalle de 90 à 125°C sous pression réduite.

10.- Procédé suivant la revendication 9, caractérisé en ce que la pression absolue se situe dans l'intervalle de 5 à 50 mbars.

11.- Procédé suivant la revendication 9 ou 10, caractérisé en ce que la forme physique monohydratée a été préparée par cristallisation à partir de l'acétone aqueuse.
chaude.

12.- Procédé suivant la revendication 11, caractérisé en ce que la cristallisation a été exécutée par addition rapide d'eau de façon que le N-[4-[5-(cyclopentyl-

oxycarbonyl)amino-1-méthylindol-3-ylméthyl]-3-méthoxy-

benzoyl]-2-méthylbenzènesulfonamide se sépare initialement à l'état d'huile.

13.- Forme physique du N-[4-[5-(cyclopentyl-

oxycarbonyl)amino-1-méthylindol-3-ylméthyl]-3-méthoxybenzoyl]-

2-méthylbenzènesulfonamide sensiblement exempte d'autres formes physiques, laquelle forme physique a un spectre infrarouge (à 0,5% dans le KBr) présentant des pics aigus à 1690, 1530, 1490, 1420, 1155, 1060, 862 et 550 cm⁻¹, lorsqu'elle est préparée par un procédé suivant l'une quelconque des revendications 7 à 10.

14.- Forme physique du N-[4-[5-(cyclopentyl-

oxycarbonyl)amino-1-méthylindol-3-ylméthyl]-3-méthoxybenzoyl]-

2-méthylbenzènesulfonamide sensiblement exempt d'autres formes cristallines, laquelle forme physique est un monohydrate du N-[4-[5-(cyclopentyl oxycarbonyl)amino-1-

méthylindol-3-ylméthyl]-3-méthoxybenzoyl]-2-méthylbenzènesulfonamide qui est cristallin, a un spectre infrarouge (à 0,5% dans le KBr) présentant des pics aigus à 3560, 1690, 1660, 1540, 1440, 1165, 880 et 858 cm⁻¹, et un diagramme de diffraction des rayons X par la poudre présentant des pics à 2θ = 10,0, 11,2, 14,6, 19,8 et 23,0°.

15.- Procédé de préparation d'une forme physique du N-[4-[5-(cyclopentyl oxycarbonyl)amino-1-méthylindol-3-

ylméthyl]-3-méthoxybenzoyl]-2-méthylbenzènesulfonamide sensiblement exempte d'autres formes physiques, laquelle forme physique a un spectre infrarouge (à 0,5% dans le KBr) présentant des pics aigus à 1690, 1530, 1490, 1420, 1155, 1060, 862 et 550 cm⁻¹, qui comprend le séchage par pulvérisation d'une solution de N-[4-[5-(cyclopentyl oxycarbonyl)amino-1-méthylindol-3-ylméthyl]-3-méthoxybenzoyl]-2-méthylbenzènesulfonamide.
16.- Procédé suivant la revendication 15, caractérisé en ce qu'une solution dans l'acétone aqueuse est utilisée.

17.- Forme physique du N-[4-[5-(cyclopentyloxy-carbonyl)amino-1-méthylindol-3-ylméthyl]-3-méthoxybenzoyl]-2-méthylbenzènesulfonamide sensiblement exempte d'autres formes physiques, laquelle forme physique a un spectre infrarouge (0,5% dans le KBr) présentant des pics aigus à 1690, 1530, 1490, 1420, 1155, 1060, 862 et 550 cm\(^{-1}\), lorsqu'elle est préparée par un procédé suivant la revendication 14 ou 15.

18.- Solution de N-[4-[5-(cyclopentyloxy-carbonyl)amino-1-méthylindol-3-ylméthyl]-3-méthoxybenzoyl]-2-méthylbenzènesulfonamide dans l'acétone aqueuse.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Fig. 6.
DOCUMENTS CONSIDERES COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication concernée</th>
<th>CLASSEMENT DE LA DEMANDE (Int. Cl. 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D, A</td>
<td>EP-A-0 199 543 (ICI AMERICAS) * Revendication 1; colonne 37, lignes 14-43; colonne 81, exemple 105; colonne 93, exemple 128 * -----</td>
<td>1-8</td>
<td>A 61 K 31/40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A 61 K 9/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A 61 K 47/32</td>
</tr>
</tbody>
</table>

DOMAINE TECHNIQUES RECHERCHES (Int. Cl. 5)

A 61 K

Date d'achèvement de la recherche

07-05-1992

Examinateur

SCARPONI U.

CATEGORIE DES DOCUMENTS CITES

- X : particulièrement pertinent à lui seul
- Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
- A : arrière-plan technologique
- O : déviation non-écrite
- P : document intercalaire

- T : théorie ou principe à la base de l'invention
- E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date
- D : cité dans la demande
- L : cité pour d'autres raisons
- & : membre de la même famille, document correspondant
ANNEXE AU RAPPORT DE RECHERCHE
RELATIF À LA DEMANDE DE BREVET BELGE NO. BE 9101127 BO 3249

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche visé ci-dessus.
Les dits brevets sont contenus au fichier informatique de l'Office européen des brevets à la date du 13/05/92.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU-A- 5616486</td>
<td>23-10-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3682698</td>
<td>16-01-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 5030643</td>
<td>09-07-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4859692</td>
<td>22-08-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 595839</td>
<td>12-04-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 6398586</td>
<td>30-04-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A, B 0220066</td>
<td>29-04-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 62099359</td>
<td>08-05-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 5049679</td>
<td>17-09-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 5049576</td>
<td>17-09-91</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82