(54) 发明名称
电压跌落模拟方法及装置

(57) 摘要
本发明公开了一种电压跌落模拟方法及装置，其中，该装置包括：三相调压器，与三相交流电源连接，用于调节三相交流电源中被测电压的相数，半压控制开关，与三相调压器连接，用于控制三相调压器与负载侧的电路的断开和导通；全压控制开关，与三相交流电源连接，用于控制三相交流电源与负载侧的电路的断开和导通；处理器，与三相调压器、半压控制开关和全压控制开关连接，用于根据控制信号执行调节被测电压的电压值。通过运用本发明，解决了相关技术无法根据模拟需求来模拟电压跌落，而能够稍好的模拟电压跌落的装置则价格非常昂贵的问题，进而可以以设计简单、易操作的模拟装置进行实验，且降低了制造成本。
1. 一种电压跌落模拟装置，其特征在于，包括：

三相调压器，与三相交流电源连接，用于调节所述三相交流电源中被测电压的相数；

半压控制开关，与所述三相调压器连接，用于控制所述三相调压器与负载侧的电路的
断开和通电；

全压控制开关，与所述三相交流电源连接，用于控制所述三相交流电源与所述负载侧
的电路的断开和通电；

处理器，与所述三相调压器、所述半压控制开关和所述全压控制开关连接，用于根据控
制信号执行调节所述被测电压的电压值，以及通过所述半压控制开关和/或所述全压控制
开关控制所述电路的断开和通电，所述断开和通电用于模拟电压跌落，所述电压值为跌落
幅值。

2. 根据权利要求 1 所述的装置，其特征在于，

所述处理器，还用于根据所述控制信号调节模拟电压跌落的次数。

3. 根据权利要求 1 所述的装置，其特征在于，还包括：

终端，用于向所述处理器发送所述控制信号，其中，所述控制信号用于指示所述处理器
调节电压及控制电路的断开和通电。

4. 根据权利要求 1 所述的装置，其特征在于，还包括：

第一电压互感器，与所述三相交流电源和所述处理器连接，用于采集所述三相交流电
源输出的电压信号；

第二电压互感器，与所述三相调压器和所述处理器连接，用于采集所述三相调压器输
出的电压信号；

第三电压互感器，与所述负载侧和所述处理器连接，用于采集输入所述负载侧的电压
信号；

电流互感器，与所述负载侧和所述处理器连接，用于采集输入所述负载侧的电流信
号；

其中，所述电压信号和所述电流信号用于作为模拟电压跌落的实验数据。

5. 根据权利要求 4 所述的装置，其特征在于，还包括：

数显表，与所述第一电压互感器、所述第二电压互感器、所述第三电压互感器和所述电
流互感器连接，用于显示采集到的电压信号和/或电流信号的值。

6. 根据权利要求 1 所述的装置，其特征在于，所述处理器通过 RS232 串口与外机通讯；
所述处理器通过 RS485 串口与外机通讯；或者，所述处理器通过 CAN 总线与外机通讯，其中，
所述外机用于接收模拟电压跌落的结果。

7. 根据权利要求 1 至 6 中任一项所述的装置，其特征在于，所述处理器为 32 位的数字
信号处理器 DSP。

8. 一种电压跌落模拟方法，其特征在于，包括：

处理器根据来自终端的控制信号控制通过三相调压器输出的电压的相数，以确定当前
电压跌落模式，其中，所述电压跌落模式包括以下之一：单相跌落，分相跌落，三相跌落；

在所述当前电压跌落模式下预设置电压参数以模拟电压跌落，其中，所述电压参数至
少包括以下之一：跌落幅值，跌落时间。

9. 根据权利要求 8 所述的方法，其特征在于，在模拟电压跌落之前，还包括：

2
设置所述当前电压跌落模式下的模拟电压跌落的跌落循环次数；
根据所述跌落循环次数循环进行模拟电压跌落。
电压跌落模拟方法及装置

技术领域
[0001] 本发明涉及电压跌落模拟领域，更具体地，涉及一种电压跌落模拟方法及装置。

背景技术
[0002] 电网电压跌落会对用电负荷产生较大的影响，对照明、精密仪器等敏感负荷的影响更为明显。而这种影响绝大多数发生在低电压配电环节。
[0003] 在电网实际运行中，电压跌落的原因主要有因雷击、外力、设备绝缘损坏等因素引发的短路故障，进而造成电压跌落幅值大，影响范围较大。与较长时间的供电中断事故相比，电压跌落发生机率更高，应对也比较困难。一个重要原因是当线路发生故障时，通常会造成部分线路负荷供电中断或电压跌落，也会引发同母线相邻馈线上不同程度的电压跌落。
[0004] 因此，为了深入研究电网电压跌落对各类负荷的影响机理及影响程度，检验飞轮储能 UPS、ATS 等电源快速切换装置的性能，进而提出有效的技术措施，迫切需要电压跌落模拟装置。目前，市场上售的电压跌落模拟装置较少，国产设备价格为数十万元，且功能、参数和性能较好满足研究的需要，往往功率过小，或者只能单相电压跌落模拟测试，而国外进口设备价格数百万，但功率较小。
[0005] 目前市场上很少有三相的电压跌落模拟装置，极少的三相电压跌落装置也是仅限于风电机组测试低电压穿越能力，而普通的电压跌落装置输出功率较小，无法满足大功率设备测试要求。根据对现有的电压跌落模拟装置的情况介绍与了解，它们存在的问题及缺点分析如下：
[0006] 变压器型式的电压跌落模拟装置的问题主要有以下几点：
[0007] （1）这类装置中最常用的开关器件是接触器，功率可以做到很大，但是接触器，继电器和接触器本身结构的原因，动作时间难以精确控制。同时接触器等器件使用寿命有限，易受环境影响。
[0008] （2）功率较大时，变压器体积和重量很大，不便携带。同时对于普通变压器，变比是不可调的，而变比的设定需要才能获得固定的电压跌落深度，而且对于带中心抽头的变压器，设计和工艺更复杂一些。采用半控型器件晶闸管组成交流开关时，电压的切换只能发生在输出电压为零的位置，不能对电压跌落的起始位置进行控制。
[0009] 浙江海得新能源有限公司研制的电压跌落发生器的电压跌落时间长度固定为 150ms，不能根据测试的需求控制时间长度。中国科学院电工研究所的李建林等人研制的电网电压跌落发生器电压跌落时间长度可以选定为输入电压周期值的一半的整数倍。刘传新研制的电网电压跌落的模拟装置，变压器原边的抽头有限，因此电压跌落的参数范围也很有限。
[0010] 电力电子变换形式的电压跌落装置，一般采用功率二极管、IGBT 等作为开关器件，IGBT 等电力电子器件成本较高。国外的 IGBT 全控型电压跌落发生器由于使用了 8 只大容量 IGBT 开关管，因此价格昂贵，控制电路复杂。上海交通大学的蔡旭等人研制的电网低电压跌落模拟装置结构复杂繁琐，电压跌落的参数范围有限，而且仅限于风机测试使用。
发明内容

本发明旨在提供一种电压跌落模拟方法及装置，以至少解决相关技术中，电压跌落模拟装置存在的问题，价格稍微便宜的电压跌落模拟装置都不好用，无法根据需求模拟电压跌落，而能够稍好的模拟电压跌落的装置则价格非常昂贵的问题。

根据本发明的一个方面，提供了一种电压跌落模拟装置，包括：三相调压器，与三相交流电源连接，用于调节所述三相交流电源中被测电压的相数；半压控制开关，与所述三相调压器连接，用于控制所述三相调压器与负载侧的电路的断开和导通；全压控制开关，与所述三相交流电源连接，用于控制所述三相交流电源与所述负载侧的电路的断开和导通；处理器，与所述三相调压器、所述半压控制开关和所述全压控制开关连接，用于根据控制信号执行调节所述被测电压的电压值，以及通过所述半压控制开关和/或所述全压控制开关控制所述电路的断开和导通，所述断开和导通用于模拟电压跌落，所述电压值为跌落幅值。

优选地，所述处理器，还用于根据所述控制信号调节电压跌落的次数。

优选地，所述装置还包括：终端，用于向所述处理器发送所述控制信号，其中，所述控制信号用于指示所述处理器调节电压及控制电路的断开和导通。

优选地，所述装置还包括：第一电压互感器，与所述三相交流电源和所述处理器连接，用于采集所述三相交流电源输出的电压信号；第二电压互感器，与所述三相调压器和所述处理器连接，用于采集所述三相调压器输出的电压信号；第三电压互感器，与所述负载侧和所述处理器连接，用于采集输入所述负载侧的电压信号；电流互感器，与所述负载侧和所述处理器连接，用于采集输入所述负载侧的电流信号；其中，所述电压信号和所述电流信号用于作为模拟电压跌落的实验数据。

优选地，所述装置还包括：数显表，与所述第一电压互感器、第二电压互感器、第三电压互感器和电流互感器连接，用于显示采集到的电压信号和/或电流信号的值。

优选地，所述处理器通过RS232串口与外机通讯；所述处理器通过RS485串口与外机通讯；或者，所述处理器通过CAN总线与外机通讯，其中，所述外机用于接收模拟电压跌落的结果。

优选地，所述处理器为32位的数字信号处理器DSP。

根据本发明的另一个方面，提供了一种电压跌落模拟方法，包括：处理器根据来自终端的控制信号控制通过所述三相调压器输出的电压的相数，以确定当前电压跌落模式，其中，所述电压跌落模式包括以下之一：单相跌落，分相跌落，三相跌落；在所述当前电压跌落模式下预设置电压参数以模拟电压跌落，其中，所述电压参数至少包括以下之一：跌落幅值，跌落时间。

优选地，在模拟电压跌落之前，还包括：设置所述当前电压跌落模式下的模拟电压跌落的跌落循环次数；根据所述跌落循环次数进行模拟电压跌落。

本发明采用具有三相调压器、半压控制开关、全压控制开关和处理器的电压跌落模拟装置，可以模拟单相和多相情况下的电压跌落，设计的结构简单，造价低廉。且三相调压器能够满足模拟多种跌落模式的需要，根据不同需求来模拟电压跌落，解决了相关技术
说明书

无法根据模拟需求来模拟电压跌落，而能够稍好的模拟电压跌落的装置则价格非常昂贵的问题，进而可以以设计简单、易操作的模拟装置进行实验，且降低了制造成本。

附图说明

[0023] 附图用来提供对本发明的进一步理解，构成申请的一部分，本发明的示意性实施例及其说明用于解释本发明，并不构成对本发明的不当限定。在附图中，

[0024] 图1示出了本发明实施例的电压跌落模拟装置的结构示意图一；

[0025] 图2示出了本发明实施例的电压跌落模拟装置的结构示意图二；

[0026] 图3示出了本发明实施例的电压跌落模拟装置的结构示意图三；

[0027] 图4示出了本发明实施例的电压跌落模拟方法的流程图；

[0028] 图5示出了本发明优选实施例的三相大功率电压跌落模拟装置总体框架的示意图；

[0029] 图6示出了本发明优选实施例的三相大功率电压跌落模拟装置控制电路的示意图。

具体实施方式

[0030] 下面将参考附图并结合实施例，来详细说明本发明。

[0031] 基于相关技术中，电压跌落模拟装置存在问题，价格稍微便宜的电压跌落模拟装置都不好用，无法根据需求模拟电压跌落，而能够稍好的模拟电压跌落的装置则价格非常昂贵的问题，本发明实施例提供了一种电压跌落模拟装置，该装置的结构示意如图1所示，包括：

[0032] 三相调压器1与三相交流电源2连接，用于调节三相交流电源中被测电压的相数；

[0033] 半压控制开关3与三相调压器1连接，用于控制三相调压器与负载侧的电路的断开和导通；

[0034] 全压控制开关4与三相交流电源2连接，用于控制三相交流电源与负载侧的电路的断开和导通；

[0035] 处理器5与三相调压器1、半压控制开关2和全压控制开关4连接，用于根据控制信号执行调节被测电压的电压值，以及通过半压控制开关和/或全压控制开关控制电路的断开和导通，断开和导通用于模拟电压跌落，电压值为跌落幅值。

[0036] 本实施例采用具有三相调压器、半压控制开关、全压控制开关和处理器的电压跌落模拟装置，可以模拟单相和多相情况下的电压跌落，设计的结构简单，造价低廉，且三相调压器能够满足模拟多种跌落模式的需要，根据不同需求来模拟电压跌落，解决了相关技术无法根据模拟需求来模拟电压跌落，而能够稍好的模拟电压跌落的装置则价格非常昂贵的问题，进而可以以设计简单、易操作的模拟装置进行实验，且降低了制造成本。

[0037] 在上述装置模拟电压跌落的过程中，处理器5，还可以用于根据控制信号调节模拟电压跌落的次数。

[0038] 上述装置还可以如图2所示，包括：终端6，用于向处理器5发送控制信号，其中，控制信号用于指示处理器调节电压及控制电路的断开和导通。
[0039] 上述装置的结构示意还可以如图 3 所示，还包括第一电压互感器 7，与三相交流
电源 2 和处理器 5 连接，用于采集三相交流电源输出的电压信号；第二电压互感器 8，与三
相调压器 1 和处理器 5 连接，用于采集三相调压器输出的电压信号；第三电压互感器 9，与
负载侧 11 和处理器 5 连接，用于采集输入负载侧的电压信号；电流互感器 10，与负载侧 11
和处理器 5 连接，用于采集输入负载侧的电流信号，其中，电压信号和电流信号用于作为模
拟电压跌落的实验数据。
[0040] 为了清楚的观察到模拟电压跌落过程中检测到的数值，上述装置还可以包括的
数显表，与第一电压互感器 7、第二电压互感器 8、第三电压互感器 9 和电流互感器连接 10，
用于显示采集到的电压信号和/或电流信号的值。
[0041] 其中上述的处理器 5 需要与外界通信时，例如，将采集到的模拟数据进行输出
时，处理器可以通过 RS232 串口与外机通讯，可以通过 RS485 串口与外机通讯，或者还可以
通过 CAN 总线与外机通讯等。实现时，处理器 5 可以为 32 位的数字信号处理器 DSP，例如，
TMS320F2812。
[0042] 基于上述装置，本实施例还提供了一种可以应用上述装置的电压跌落模拟方法，
该方法的流程可以如图 4 所示，包括步骤 S402 至步骤 S404。
[0043] 步骤 S402，处理器根据来自终端的控制信号控制模拟三相调压器输出的电压的相
数，以确定当前电压跌落模式，其中，电压跌落模式包括以下之一：单相跌落，分相跌落，三
相跌落；
[0044] 步骤 S404，在当前电压跌落模式下预设置电压参数以模拟电压跌落，其中，电压参
数至少包括以下之一：跌落幅值，跌落时间。
[0045] 实施过程中，在模拟电压跌落之前，还可以设置当前电压跌落模式下的模拟电压
跌落的跌落循环次数，然后，再根据跌落循环次数进行模拟电压跌落。
[0046] 优选实施例
[0047] 本实施例 0.4kV 三相大功率电压跌落模拟装置总体框架如图 5 所示。图中的 A、
B、C 为 0.4kV 三相电源侧，三相调压器采用滑动接触式，直流电机驱动，便于信号控制，主
电路的开关器件选用 IGBT，全压开关和半压开关切换时间控制在 5～30μs，切换过程存在
5～30μs 的断电时间。
[0048] 微控制器可以采用 32 位的，例如，采用 TI 公司的 TMS320F2812 的 32 位 DSP 微处
理器，通过微处理器来控制全压电力电子开关、半压电力电子开关，进而检测电源侧电压、
负载侧电压、调压器输出电压、负载电流。
[0049] 该装置可以采用人机界面进行配置及执行模拟过程，其中，人机界面可以包括多
个选项卡，例如调压控制、设置控制、结果显示和系统帮助等。当然，根据需要，还可以多设
置几个选项卡。其工业级硬件配置带 VGA 接口，可连接大屏幕液晶电视用于演示。界面包
含了电量显示、参数设置、操作控制、跌落过程记录、和波形存储等。
[0050] 人机界面可以采用工业 PC，带触摸屏、键盘及鼠标，与三相自动调压柜通过通讯方
式设置电压跌落方式、跌落幅值，显示电压电流有效值、波形、跌落过程记录。采用两面屏
柜，其中一面临为三相调压器柜，另一面为控制柜，两柜之间由电力电缆与控制电缆连接。
[0051] 本实施例的控制电路示意可以如图 6 所示，控制器 DSP 采用 TMS320F2812，控制板
可以通过 RS232 串口或者 CAN 总线与外机通讯，三相电压与三相电流直接接入数显表头在
屏面进行显示，同时负载侧电压与电流同时进入控制板 A/D 采集数据，并取电压同步控制信号。通过驱动板控制全压电子开关和半压电子开关，和三相自动调压器通过通讯方式实现在数据交换。

[0052] 利用上述装置实现模拟电压跌落的工作过程如下，包括：主断路器先上电→全压
开关开通→按设定的方式调压（跌落时间，跌落次数，跌落方式单相或三相，跌落幅值）→
全压开关开断→半压开关开通→半压开关开断→全压开关开通。在执行的过程中，首先要
利用电压跌落模拟装置初始化：随后，根据接收到的控制信号确定当前模拟过程的电压模式，其
中，模式可以包括单相跌落模式、三相跌落模式和分相跌落模式。随后，在不同的跌落模式
下进行电压调节，跌落时间设定、跌落循环次数设定，最后，开始执行模拟跌落。例如，如果
确定当前为单相跌落模式，则在单相跌落模式下进行电压调节、跌落时间设定、跌落循环次
数设定等，然后再进行模拟跌落实验。

[0053] 通过使用本发明装置，在实验室对各种设备进行电压跌落时间，次数，幅值和方式
的测试，有目的地分析了电网电压对设备的影响；可以模拟三相三线（三相四线）系统同时电
压跌落，分相模拟电压跌落，并且能够检测电压跌落过程中的三相电压、电流信号；电压
跌落幅值范围达到了 0～100%，电压跌落步长可以根据需求自行控制，解决了很多电压跌落
发生器电压跌落档位少和跌落程度低的问题，满足各种设备测试需求；电压跌落持续时间
范围应可以根据需要设置，满足瞬时跌落、瞬时跌落和短时跌落等不同跌落时间长度的测
试要求；时间精度分辨应足够高，以保证跌落时间的精确程度很高。本实施例的电压跌落持
续时间范围：1ms～5min，远高于目前现有的电压跌落发生器的跌落持续时间，完全满足了瞬
时跌落、瞬时跌落和短时跌落等不同跌落时间长度的测试要求。时间精度分辨率为 10μs，跌
落时间的设置精确程度很高，电压跌落相角范围：0～359°，时间精度 1°，可以精确和完善的
测试跌落相角对设备运行的影响；本发明克服现有的电压跌落发生器的间隙性问题，控制复
杂的缺点，提出一种新的电压跌落发生器。采用基于 DSP 控制，应用绝缘栅双极晶体管 IGBT
开发了三相大功率电压跌落模拟发生装置，控制系统和电路结构简单，成本也较低廉。

[0054] 从以上的描述中，可以看出，本发明上述的实施例实现了如下技术效果：

[0055] 本发明实施例针对现有各种电压跌落发生器的局限性，结合现场测试经验与实际
情况，以操作简单、实施方便、功能完善和成本低廉为原则，提出了三相大功率电压跌落模
拟装置的设计与研制，采用三相大功率柱式电动调压器，柱式电动调压器输出电压形不
失真（输出电压波形畸变率增量＜1%），柱式电动调压器采用电动操作机构，可以闭环远距
离操作，减小操作劳动强度，输出电压可从零电压起始调节，瞬时过载能力强、空载电流、空
耗损耗小，效率高、噪声低、寿命长，适宜各种感性、容性、电阻负载使用等特点。

[0056] 以上所述仅为本发明的优选实施例而已，并不限于限制本发明，对于本领域的技
术人员来说，本发明可以有各种更改和变化。凡在本发明的精神和原则之内，所作的任何修
改、等同替换、改进等，均应包含在本发明的保护范围之内。
图3

处理器根据来自终端的控制信号控制通过三相调压器输出的电压的相数，以确定当前电压跌落模式 S_{402}

在当前电压跌落模式下预设置电压参数以模拟电压跌落 S_{404}

图4
全压可控开关

控制器

三相调压器

半压可控开关

图 5
图 6