
United States Patent 19
Man-Hak Tso

54 APPLICATION INDEPENDENT RECORD
LEVEL, SYNCHRONIZATION

75 Inventor: Michael Man-Hak Tso, Beaverton,
Oreg.

73) Assignee: Intel Corporation, Santa Clara, Calif.

21 Appl. No.: 431,500
22 Filed: Apr. 28, 1995
(51) Int. Cl. G06F 1730
52 U.S. Cl. 395/617; 395/616; 395/618
58) Field of Search 395/600, 161,

395/200, 617

56 References Cited

U.S. PATENT DOCUMENTS

4,408,273 10/1983 Plow 364,200
4,410,942 10/1983 Milligan et al. ... 364,200
4,853.843 8/1989 Ecklund T. 364,200
4,875,159 10/1989 Cary et al. 364/200
5,355,477 10/1994 Strickland et al. 395/600

US005706509A

11 Patent Number: 5,706.509
45 Date of Patent: Jan. 6, 1998

5,392,390 2f1995 Crozier 395/161
5,485,607 1/1996 Lomet et al. ... 395/6OO
5,526,518 6/1996 Kashio 395/600
5,544,345 8/1996 Carpenter et al. 395,477

Primary Examiner-Thomas G. Black
Assistant Examiner-Jean M. Corrielus
Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafiman

57 ABSTRACT

A method and an apparatus for synchronization of a first set
of data with a second set of data at the record level. A
memory stores a change detection mechanism for generating
a Change List for the first and second sets of data. The
Change List lists the changes made at the record level to the
first and second sets of data. The memory also has a
Synchronization mechanism for making the first set of data
and the second set of data equivalent by using the informa
tion in the Change List generated by the Change Detection
Mechanism. A processor runs the Change Detection mecha
nism and the Synchronization mechanism.

15 Claims, 28 Drawing Sheets

Change Detection takes data sets
D0' and D0 and produces Change List 320

0 (CLO).

Change Detection takes data sets
D1' and Di and produces Change List 321

1 (CL1).

Synchronization takes CL0, CL1,
D0' and D1' to produce D0" 323

and D1".

Delete data set D0 and D1. 324

Save DO" and/or D" for the next
synchronization process.

U.S. Patent Jan. 6, 1998 Sheet 1 of 28 5,706,509

Figure 1
: Art) 1. va

U.S. Patent Jan. 6, 1998 Sheet 2 of 28 5,706,509

Synch Mechanism

Change Detection

Error Correction

Synchronization

Figure 3a

U.S. Patent Jan. 6, 1998 Sheet 3 of 28 5,706.509

Computer 310

314 300

-312 O 317

36

Figure 3b

U.S. Patent Jan. 6, 1998 Sheet 4 of 28 5,706.509

D0 or D1

Change Change
3. Detection Detection

302 302

Synchronization 306

Change Existing Data 308

DO" D1"

Figure 4a

U.S. Patent Jan. 6, 1998 Sheet 5 of 28 5,706,509

Begin

Change Detection takes data sets
D0' and D0 and produces Change List 320

0 (CLO).

Change Detection takes data sets
D1' and D1 and produces Change List 321

1 (CL).

Synchronization takes CL0, CLl,
D0' and D1' to produce D0" 323

and D1".

Delete data set D0 and D1. 324

Save D0" and/or D1' for the next 25 synchronization process.

Figure 4b

U.S. Patent Jan. 6, 1998 Sheet 6 of 28 5,706.509

330 321 322 323

CLO

U

Deleted

C

334 335 336 337

CL1

Figure 4c

U.S. Patent Jan. 6, 1998 Sheet 7 of 28 5,706.509

Figure 5a
OO

HOST PC

322

CABLE 5(22

Af

SATELLITE
DEVICE

322

Figure ab

5,706.509 Sheet 8 of 28 Jan. 6, 1998 U.S. Patent

Ziffyg

ag aan51),

Z

91endp?003 H

89

089

U.S. Patent Jan. 6, 1998 Sheet 9 of 28 5,706,509

Rn' from DO' DO

M

Is there a next record
Rm in DO

Are all key field
values for Rm equal to

those in Rn'?

606

Figure 6

U.S. Patent Jan. 6, 1998 Sheet 10 of 28 5,706,509

Is there a next record
Rn' in DO"?

s there a record Rn
in D0 with the same key

field values as Rin"?
(use Figure 6b).

Does Rn and Rn' have
any non-key value fields
which have different

Rn has been updated to Rn'.
Rn has not been deleted.

Mark Rn' as UPDATED, Rn as
NOT DELETED.

Rn' was created in D0'.
Mark Rin' as CREATED.

Rn has not been changed.
Mark Rn as NOT DELETED.

Figure 7a

U.S. Patent Jan. 6, 1998 Sheet 11 of 28 5,706.509

Data Structure in Figure 7c

or each record Rn' in new data set
DO': Is Rin' marked as UPDATED

710

No

Yes

Add Rin' to Change List as Update.

If Rn' is marked as CREATED, then add Rin' to
Change List as Create.

14

s there a next record Rn' in new
data set D0"?

No

For each record Rn in saved data set D0: If Rn is
not marked NOT DELETED, then add Rn to Change 718

List as Delete.

Figure 7b

U.S. Patent Jan. 6, 1998 Sheet 12 of 28 5,706,509

DO Not-Delete Flag

Not-Delete Flag

720

Figure 7c

U.S. Patent Jan. 6, 1998 Sheet 13 of 28 5,706,509

800

For each record Rin' in new data set D0'.

802
Figure 8b

Next record Rin' in D0"?

No
848

or each record Rn' in new data set
DO': Is Rin' marked as UPDATED

8
Yes

Add Rn' to Change List as Update. -

If Rn' is marked as CREATED, then add Rn' to
Change List as Create.

854

Is there a next record Rn' in new
data set D0"?

856
No

For each record Rn in saved data set D0: If Rn is
not marked NOT DELETED, then add Rn to Change

List as Delete.

Figure 8a.

U.S. Patent Jan. 6, 1998 Sheet 14 of 28 5,706,509

If Error Correction One (Fig. 8c) finds
CONFLICT record Rn in D0, then Rn has been R'

UPDATED to Rn.

If Error Correction One (Fig. 8c) returns 842
NOT FOUND, then Rn' is a new record

CREATED in DO'.

Figure 8b

U.S. Patent Jan. 6, 1998 Sheet 15 of 28 5,706.509

Figure 8c
Is there a next record Rim in saved

data set D0?
No

824

eS

Is Rim marked as DUPLICATE EXISTS

No 810

Y 808

s contents of Key Fields of Rim equal
to Key Fields of Rn"?

Yes 812

No
Is all other fields of Rim equal to Rn.

814
Yes

Mark Rm as DUPLICATE EXISTS and NOT DELETED.

816

No
Rim originally marked as
CONFLICTEXISTS?

Yes

Go to Figure 8b with saved record Rm'.

Return DUPLICATE, Rim.

C End D 822
Mark Rim as a potential conflict for Rn'.

U.S. Patent Jan. 6, 1998 Sheet 16 of 28 5,706.509

826

Is there a record Rim in D0 which is No
marked as a potential conflict for Rn"?

828 Yes

Mark Rx as CONFLICTEXISTS.

830

Save reference to Rn' with Rx.

832

Save list of changed fields.

834

Mark Rx as NOT DELETED.

836

Return CONFLICT, Rx.

838

Return NOT FOUND.

Figure 8d

U.S. Patent Jan. 6, 1998 Sheet 17 of 28 5,706,509

Begin

Is there a next record Rn in No
Change List O (CLO)?

Did Figure 9c returns CONFLICT
or DUPLICATE 2

Mark Rn as DONE.

973 Figure 9e

Figure 9a

U.S. Patent Jan. 6, 1998 Sheet 18 of 28 5,706.509

Is Rx marked as CREATE or No
UPDATE 2

Yes

Are Rx and Rn not duplicates ? No

Yes 936

Add Rx to data set D0' and Rn to D1'.
(use Figure 11a).

938

940

No Is Rx marked as DELETE 2

Yes 942

Add Rn to D1' (use Figure 11a).

Figure 9b

U.S. Patent Jan. 6, 1998 Sheet 19 of 28 5,706,509

Figure 9c
961

Yes 962

Is Rx marked as UPDATE or
CREATE 2

Yes 963

Are Rx and Rn not duplicates?

Yes 964

Add Rx to D0' and add Rn to D1'. (use Fig. 11a.)

965

9

If Rx is marked DELETE, then add Rn to D1'. (use
Fig.11a.)

967

No Is Rin marked as DELETE

Yes 968

Is Rx marked as UPDATE or
CREATE 2

Yes 970

972

Mark Rx in Change List 1 (CL1) as DONE.

U.S. Patent Jan. 6, 1998 Sheet 20 of 28 5,706,509

Is Rn marked as CREATE 2

Create Rn in D1' (use Fig.11a).

Is Rin marked as UPDATE 2

Update Rn in D1' (use Fig.11a).

Is Rin marked as DELETE 2

Delete Rn in D1' (use Fig.11a).

Figure 9d

U.S. Patent Jan. 6, 1998 Sheet 21 of 28 5,706,509

Is there a next record Rxin Change
List 1 (CL1)?

Retrieve next record Rx. Is Rx not
marked as DONE

Is Rx marked as CREATE 2

981

Yes

AddRxto D0' (use Fig.11a). YES

978

Is Rx marked as UPDATE

UpdateRn in D1' (usefig.11a).

If Rn is marked as DELETE then Delete Rn in D1'
(use Fig.11a).

Figure 9e

U.S. Patent Jan. 6, 1998 Sheet 22 of 28 5,706,509

Begin
904

Is there a next record Rxin No
ChangelList 1 (CL1)?

Yes
906

Retrieve Rx. Is Rx marked DONE

No
908

Are all Key Fields in Rx equal to
all Key Fieldsinkin?

Areall non-keyfields in
Rx equal to thosein Rn?

Mark Rx as a potential conflict for Rn.

Figure 10b

Figure 10a

U.S. Patent Jan. 6, 1998 Sheet 23 of 28 5,706,509

Begin

914

No s there a next potential conflict
Ry?

Is there a next Record Rim in CL0?

Yes

If Rim not marked as DONE and all fields in Ry
and Rm are equal, then Rim no longer a potential

conflict.

920

Is Ry still a potential conflict?

Y eS 922

Return Ry as a CONFLICT.
924

Return NOT FOUND.

Figure 10b

U.S. Patent Jan. 6, 1998 Sheet 24 of 28 5,706,509

Error Correction Two (Fig. 8a) saves all fields 400
for the record Rn.

402
Create new record in D0'.

404
Copy all saved fields into the new record D0'.

Figure 11a.

U.S. Patent Jan. 6, 1998 Sheet 25 of 28 5,706.509

550 551 552 553

Rn Updated Rn (from Pa)
410

Figure 11b

Is there a
next record
Rx in Do'?

Yes
4.

Allow
duplicates

Yes 4.

Update Rx to Rn.

Mark 553 for Rn
as DONE.

U.S. Patent Jan. 6, 1998 Sheet 26 of 28 5,706,509

Error Correction Two (Fig. 8a) saves all fields for
record Rn that were from saved data set D1.

430

432
Find correct record to delete.

Is there a next record Rx in D0'?

Do all fields in Rx equal those in Rn 2

438

Delete record Rx.

Figure 11c

5,706,509 Sheet 28 of 28 Jan. 6, 1998 U.S. Patent

|Inse?j | Q

£I a. Inã,/
(29%

/ A29 º

| 88 84D0-10 96up?O ON

espo
/ 2,9%

5,706.509
1

APPLICATION INDEPENDENT RECORD
LEVEL, SYNCHRONIZATION

BACKGROUND OF THE INVENTION

(1) Field of the Invention
The invention relates to synchronization of data between

different applications at the record level (versus a file level),
more particularly, to the methods and apparatus for synchro
nizing data among any applications.

(2) Prior Art
Synchronization is a process by which two or more

different sets of data from one or more different applications
are made semantically equivalent. Semantically equivalent
data sets contain the same information even though they
may represent the information differently in digital storage.
For example, the time 8:00 am may be encoded by one
application as an integer representing the number of minutes
since midnight, and another application may encode the
same information as a string. For example, the time 8:00 am
may be represented as the letter '8' followed by “:', '0', and
'0'. Synchronization is only meaningful for use with sets of
data with semantic equivalence, i.e. two different represen
tations of essentially the same, or a subset of the same
information. For example, it does not make sense to syn
chronize data in a phone book with data in a to-do list.
The main synchronization technique available today is

referred to as file synchronization. There are several PC
applications which implement file synchronization. A typical
implementation uses time stamps which a computer's file
system attaches to each file to determine which files are new
or have been modified. The older files are overwritten with
the newer files by the same name.

FIG. 1 is a table 10 illustrating two possible results
produced by using the prior art technique of file synchroni
zation on two data sets D0 and D1. At time T0, data set D0
has four records A, B, C and D. Data set D1 also has records
A, B, C and D. At time T1, data sets D0 and D1 are
independently modified. Intermediate data set D0' now has
records E, B, C and D, with record A modified to E.
Intermediate data set D1' has records A, B, C and F, with
record D modified to F. File synchronization overwrites one
data set in order to "synchronize” the data sets which have
been modified. Thus at TimeT2, after a file synchronization,
the resulting data sets D0" and D1" have records E, B, C and
D if data set D1' is overwritten by the contents of data set
D0'. In the alternative, a resulting synchronized data set may
have records A, B, C and F, if D0 is overwritten by the
contents of D1'. Neither results are completely correct since
the first result does not reflect the change of record D to F,
and the second result does not reflect the change of record
A to E.

File level synchronization's usefulness is severely lim
ited. First of all, since the contents of the one file is replaced
or overwritten by the other by its file copy, the two files
being synchronized must have the same format. This typi
cally means they must be produced by the same application.
Secondly, if both versions of the file have been changed
independently of one another, as illustrated in the previous
example in FIG. 1, one set of changes will overwrite the
other, leading to data loss in synchronization. These limita
tions of file level synchronization are well understood by
those skilled in the art.

Record level synchronization overcomes both of the
above mentioned limitations of file level synchronization by
synchronizing the individual data items in a file. It uses

O

15

20

25

30

35

45

50

55

65

2
knowledge of how individual data items are stored in a file.
However, record level synchronization is more difficult to
implement because file formats are determined by how
applications decide to encode their data on digital storage,
and varies from one application to another.

Since record level synchronization operates on structured
data rather than arbitrary information in a file, it is currently
believed by those in the art that record level synchronization
requires intimate knowledge of each application's data
format, and that the applications involved must have a built
in support for synchronization.

State of the art synchronization technology requires each
application involved in the process to at least supply the
following primitives: a unique identifier by which each data
item (record) is uniquely identified and a means by which all
changes to its data sets are logged (a change log) and made
available to the synchronization mechanism.

Programming interfaces or documentation describing data
formats are typically readily available. Therefore, the real
barrier in synchronizing data at a record level across appli
cations has not been the lack of knowledge regarding the
applications' data formats. Rather, the barrier has been in
adding the primitives believed to be necessary for synchro
nization to existing applications and making these primitives
work across different applications.
The difficulties in adding new features to existing appli

cations include costly software rewrites, updating software
on end users' systems and coordinating among different
application vendors with an interoperability standard so that
applications can understand each other's change logs and
unique id's. All these are costly exercises, and as a result,
there is currently no industry standard for synchronization
primitives.
Of the handful of applications which do offer

synchronization, most can synchronize only data created by
the same application, and a few with data from at most one
or two other applications. An example is Arabesque Ecco,
which allows the user to copy his or her database onto a
different machine, to make changes to the database
independently, and later synchronize that database with his
or her master Ecco) database.
Thus it is desirable to have a method and an apparatus for

implementing synchronization at a record level which do not
require changing existing applications or establishing new
application interoperability standards, and for implementing
synchronization of data between applications with different
data formats.

BRIEF SUMMARY OF THE INVENTION

A method and an apparatus for synchronization of a first
set of data with a second set of data at a record level. A
memory stores a change detection mechanism for generating
a Change List for the first and second sets of data. The
Change List lists the changes made at the record level to the
first and second sets of data. The memory also has a
Synchronization mechanism for making the first set of data
and the second set of data equivalent by using the informa
tion in the Change List generated by a Change Detection
mechanism. A processor runs the Change Detection mecha
nism and the Synchronization mechanism. The Change List
is detected retroactively by comparing the new data with an
old copy of the data saved from a previous execution of the
Synchronization mechanism. Neither the Change Detection
nor the Synchronization mechanisms require unique identi
fiers to find the record in the new data set which correspond
to any given record in the old data set.

5,706.509
3

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates synchronization results using a prior art
method of file level synchronization.
FIG. 2 illustrates synchronization results using the

method and apparatus of the present invention.
FIG. 3a is a block diagram illustrating the synchroniza

tion mechanism of the present invention.
FIG. 3b is an exemplary system block diagram of the

present invention.
FIG. 4a is a block diagram illustrating an exemplary

synchronization apparatus of the present invention.
FIG. 4b is a flow diagram illustrating the general steps

followed by the apparats illustrated in FIG. 3.
FIG. 4c illustrates exemplary data structures for exem

plary Change Lists CL0 and CL1.
FIGS. Sa-5c are alternate embodiments of a system block

diagram illustrating the synchronization method and appa
ratus of the present invention.

FIGS. 5d and 5e are state transition diagrams illustrating
how a change log is truncated to result in exactly one change
flag marked for each record.

FIG. 6 is a flow chart describing the general steps fol
lowed by the SUID mechanism referred to in FIG. 3.

FIGS. 7a and 7b are flow charts describing the general
steps followed by the Change Detection mechanism referred
to in F.G. 3.

FIG. 7c illustrates an exemplary data structure modified
by the steps described in FIG. 7a.

FIGS. 8a-8d are flow charts describing the general steps
followed by the Error Correction mechanism referred to in
FG. 3,

FIGS. 9a-9e, and 10a and 10b are flow charts describing
the general steps followed by the Synchronization mecha
nism referred to in FIG. 3.
FIGS. 11a–11a are flow charts describing the general

steps followed by the Change Existing Data mechanism
referred to in FG. 3.
FIG. 12 is a table illustrating the Synchronization method

of the present invention.
FIG. 13 is a table illustrating exemplary synchronization

scenarios where there are records with the same Key Field
values.

DETALED DESCRIPTION OF THE
INVENTION

The present invention allows data in an application to be
synchronized at a record level (as opposed to a file level)
with semantically equivalent data from any set of applica
tions. Synchronization as referred to herein takes as input
two different sets of data where those two sets of data
become equivalent subsequent to the synchronization pro
cess. Equivalent herein refers to records which are seman
tically the same but which may not be represented the same.
For example, a record with information indicating an 8:00
am appointment with Bob stored in two different applica
tions has the same semantics independent of how the data is
represented digitally by each of the applications. Given two
applications to be synchronized, the method and apparatus
of the present invention allows the synchronization process
to be performed efficiently and more accurately than prior art
methods.

FIG. 2 is a table 20 illustrating the synchronization of two
data sets D0 and D1 using record level synchronization of

10

5

20

25

30

35

45

50

55

65

4
the present invention. At time T0, data set D0 has records A,
B, C and D. Data set D1 has records A, B, C and D. At
intermediate time T1, data sets DO and D1 have been
independently modified, resulting in intermediate data sets
D0' and D1'. Intermediate data set DO" has records E, B, C
and D, with record Amodified to E. Intermediate data set D1'
has records A, B, C and F, with record D modified to F. At
time T2 after a record level synchronization, the synchro
nized data sets DO" and D1" have data items E, B, C and F,
reflecting the modification of both record A to E as well as
record D to F.

Records A, B, C, etc. referred to above may be records in
a database (e.g. a relational database such as for Oracle(8,
Sybases, or Microsofts Access) or structured data records
in a file. Examples of structured data records in a file
include: phone book records such as those in a Lotus(8
Organizer or an Arabesque Ecco file, appointment book
records such as those in a Schedule+8) or an ACTS) file, and
paragraphs, logical text blocks, pictures, tables, or graphs in
a Words document or in an Excels spreadsheet. The
specific products mentioned above are described for illus
tration purposes only.

Records as referred herein may therefore describe any
logically structured data representation on digital media and
may be logically distinct data items. On digital storage,
records may be intermingled. Although data sets must logi
cally appear as a body of related data (i.e. semantically
equivalent) for synchronization purposes, a data set does not
have to be in a single file. Thus, data sets may be distributed
over a number of files and directories on different physical
storage media.
An iterative process of synchronization of two data sets

may be illustrated with a simple example. Referring back to
the illustration in FIG. 2, given sequential time units T0, T1
and T2 and additional time units T3 and T4 and data sets D0
and D1, if synchronization is performed at the end of time
T1, data sets D0 and D1 are equivalent at T2. The synchro
nized data sets of D0 and D1 are referred to here as D0" and
D1" as was done in the illustration of FIG. 2. Data sets DO"
and D1" may then be independently modified at T3, either
by one or multiple users and/or applications. Upon
modification, data sets DO" and D1" become D1" and D2".
At time T4, synchronization is run with D1" and D2" as
input, outputting D1" and D2". At time T4, D1" and D2"
are again equivalent data sets.

Although this synchronization process is illustrated with
only two data sets to synchronize, namely exemplary data
sets D0 and D1, the present invention can easily be extended
to synchronize more than two data sets. For more than two
data sets, synchronization can be applied to pairs of data sets
until all sets are equivalent. For instance, given four data sets
D1', D2, D3, and D4, each data set may be synchronized in
turn with every other data set. That is, D1' is synchronized
in turn with D2, D3, and D4, then D2 is synchronized with
D1, D3' and D4, etc. A more efficient implementation
would run the Change Detection Method outlined in this
invention on each of the data sets, and then merge the
Change Lists (CL1, CL2, CL3, CLA). Thus, the present
invention's method and apparatus for a two way synchro
nization also provides synchronization among any number
of data sets (i.e. files).

FIG. 3a is a block diagram illustrating the components of
an embodiment of the present invention. Sync mechanism
300 has subparts, Change Detection mechanism 302, Semi
Uniquely Identify (SUID) mechanism 304. Error Correction
mechanism 305, Change Existing Data mechanism 308 and

5,706.509
S

Synchronization mechanism 306. Change Detection mecha
nism302 detects the changes which have occurred to a given
data set since the last synchronization. SUD 304 semi
uniquely identifies records based on record content. More
specifically, SUTD 304 identifies records which do not have
system assigned unique identifiers. Error Correction 305
identifies incorrect updates and creates performed by
Change Detection mechanism 302. Error conditions trigger
ing Error Correction 305 include when a record's Key Field
has changed in D0' and/or when more than one record is
sharing the same Key Field values (an example of a non
unique identifier case is described in more detail below).
Synchronization mechanism 306, performs the synchroni
zation of data sets, given information regarding the data sets
produced by Change Detection mechanism 302. Change
Existing Data 308 modifies existing data to make the data
sets equivalent.

FIG. 3b illustrates an exemplary system block diagram of
the present invention. Computer 310 has memory 312
coupled to CPU 316. Memory 312 has Sync mechanism 300
as well as Change List314. Further, computer 310 may have
various peripheral devices 317 such as a keyboard and/or a
display device.

FIG. 4a illustrates an exemplary sync apparatus of the
present invention. The apparatus has Change Detection
mechanism 302 with inputs of data sets D0, D1' and D0 or
D1. Change Detection mechanism 302 produces Change
List CLO for D0 and D0 and Change List CL1 for D1 and
D1'. A Change List (CL) is a list of record changes for a
given data set (described in more detail in the description
accompanying FIG. 4c below). Synchronization mechanism
306 is fed inputs D0, D1' and newly produced Change Lists
CL0 and CL1. The output of Synchronization mechanism
306 is input to Change Existing Data 308 to produce
synchronized data sets D0" and D1".

FIG. 4b is a flow diagram illustrating the general steps
followed by the synchronization apparatus of the present
invention referenced in FIG. 4a. In step 320, data sets D0,
D1, D0' and D1' are input to Change Detection mechanism
302. Data sets D0 and D1 are equivalent and may be the
same file or nonexistent. D0' and D1' are aversion of D0 and
D1 after they have been independently modified. They are
saved when synchronization was last run (i.e. when the last
time steps 320 through325 were performed), Change Detec
tion mechanism 302 determines the changes which have
been made to data sets D0' and D0 between synchronizations
to produce Change List CL0. In step 321, Change Detection
mechanism 302 performs the same operation to produce
Change List CL1 from data sets D1' and D1. In step 323,
Synchronization mechanism 306 takes as input, CL0, CL1,
D0' end D1'. The result of Synchronization mechanism 306
is input to Change Existing Data 308 to produce synchro
nized data sets D0" and D1". In step 324, original data sets
D0 and D1 are deleted. In step 325, D0" and/or D1" are
saved as D0 end D1 for the next synchronization process.

FIG. 4c illustrates exemplary data structures for Change
Lists CL0 and CL1. In an exemplary data structure for CLO,
column 330 contains the original records from data set D0.
Only the records which have been updated or deleted are
listed in this column, Column 331 contains the status of the
record of the corresponding row and indicates whether the
corresponding record has been updated or deleted. An entry
is also made for records which have been newly created.

For those records which have been created or updated, a
corresponding new record in data set D0' produced as a
result of the update or create is listed in column 332. Thus,

10

15

25

35

45

55

65

6
a record Rim from D0 which has been updated produces an
updated record Rm' in data set D0 in column 332. Deleted
record Rp from D0 is not present in Do" as illustrated by the
corresponding blank entry in column 332. Newly created
record Ru is listed as a new record in data set D0 in column
332,

Finally, column 333 indicates whether the synchroniza
tion has taken place. The entries for this column initially
indicates "no" for corresponding records which have not
been processed by Synchronization mechanism 306 (see
FIGS. 9a-9e for the general steps followed by Synchroni
zation mechanism 306). After processing by Synchroniza
tion mechanism 306, the column entries are changed to
"yes" to indicate that the corresponding record has been
synchronized.
The exemplary data structure illustrated for CL1 has

columns 334 through 335 and has the same structure as was
described for CL0.

In the exemplary Change List (CL) described above.
records may be marked as Created, Updated, Deleted or
Created Deleted. The Change List lists the changes made to
a data set (e.g. D0) to produce a modified data set (e.g. D0).
Thus if a record in D0 was Deleted or Updated, the change
is reflected in CL0, the Change List showing the differences
between D0 and D0'. If a new record not in D0 was Created
in D0', this is reflected in CLO as well.

Although a combination of the operations, Created,
Updated and Deleted, may be applied to a record, only the
end result at the time of the next synchronization is relevant
for the Change List. This may be illustrated with an exem
plary data set Do". Data set D0' contains the final form of
each record before the next synchronization and is a data set
containing all the changes made to an original data set D0.
If a record Ru was created in D0, then modified, the correct
change appearing on the Change List CLO for D0 and D0 is
Created since the original version of the data set D0 did not
contain Ru. Thus, even if Ru was modified after creation in
data set D0', for the purposes of listing the changes made
between the original data set D0 and the modified version
D0', the difference represented in the list is that a new record
Ru was created.

If a record was created in D0' and then deleted (Created
Deleted case), the record should not appear in the Change
List at all, if the Change List is generated retroactively. In
the same fashion, if a record was modified and then deleted,
the record should appear in the Change List as Deleted.
Change Detection method 302 generates correct answers for
all of these cases, as well as any combination of the above.

FIGS. 5a-5c are exemplary embodiments of a system
block diagram with the implementation of the synchroniza
tion method and apparatus of the present invention. The
present invention may be used to synchronize data between
data sets D0 and D1, belonging to application appo and
application app1 respectively. A variety of configurations are
possible. For example, D0 may reside in a satellite device
(e.g. a notebookora handheld computer, such as an Apple(s)
Newton, a Sharps Wizard, or a Caslo?e BOSS) and D1 may
reside on a host computer (e.g. a desktop or a notebook PC)
as illustrated in FIG. Sa. Further, D0 and D1 may reside on
the same system as illustrated in FIG. 5b. D0 and D1 may
also reside on two different PC's linked by a computer
network as illustrated in FIG.Sc. In addition, appo and app1
may be the same application. The present invention may be
implemented for synchronization of any two or more data
sets and is not limited to the exemplary configurations
illustrated herein.

5,706.509
7

More specifically, FIG. 5a illustrates an embodiment of
the present invention where neither appo nor appl generates
a Change List (CL). Host PC 500 is coupled to satellite
device 504 via cable 502. Sync mechanism 300 may reside
on either host PC 500 or satellite device 504 or on both.

In an alternative embodiment, one of the applications,
appo or app1, may support synchronization by generating a
Change List (CL). In this embodiment, the flow diagram in
FIG. 4b may be changed such that a Change List for D0'
from app0 is retrieved at step 320.

FIG. 5b illustrates an embodiment where Sync mecha
nism 300 is implemented as an application residing on PC
500 separate from the applications being synchronized. This
allows users to synchronize data between existing installed
applications without having to buy new versions of their
applications. Further, users do not have to wait for applica
tion vendors to add synchronization support to their appli
cations. The only requirement for this embodiment is that
the applications being synchronized provide a means for a
third party apparatus to import and export data to and from
their native data formats.

Examples of such means include but is not limited to:
published file format, application programming interface
(API), specialized interface such as Standard Query Lan
guage (SQL) used by databases, Dynamic Data Exchange
(DDE), or some communication protocol for transferring
information to and from a mobile or remote device. The
details on how to implement the importation and exportation
of data to and from an application using published formats
are application specific and well understood by those skilled
in the art.

In an alternative embodiment illustrated in FIG.5c, Sync
mechanism 300 is implemented as part of one of the
applications residing on PC 500 and involved in the syn
chronization. The only requirement here is that appl
(residing on PC.506) with which appo (residing on PC.500)
is to be synchronized must provide a means for a third party
apparatus to import and export data to and from their native
formats.

In yet another alternate embodiment, Sync mechanism
300 may be implemented as part of both app0 and app1, and
a predefined communication protocol is used to exchange
information such as for a Change List. Other embodiments
are possible and are included in the scope of this invention.
For these alternative embodiments, the apparatus and meth
ods of the present invention are unchanged, and the only
difference is in how the apparatus is packaged. Given the
present invention, how the apparatus may be packaged will
be readily understood by a person skilled in the art.

Since the synchronization method of this invention is only
concerned with the end resulting difference between D0' and
D0, rather than the history of all changes that might have
happened, a synchronization aware application (such as
Appl in FIG. 5c) need not keep a traditional log of all
activities for each record. Instead, it is safe to truncate the
log such that only the most recent relevant changes are kept.
The state transition diagrams in FIGS. 5d and 5e illustrate
how the log or more specifically, a Change List as referred
to herein, can be truncated such that there is exactly one
change flag marked for each record. Truncating the Change
List is desirable because it reduces the amount of storage
required for the Change List. This is particularly important
for memory limited devices, such as hand held computers.

In FIG. 5d, after synchronization at state 530, all records
are marked "No Change." A "No Change" record may
transition to either "Updated" or "Deleted." In state 532, an

O

15

20

25

30

35

45

55

65

8
"Updated" record stays "Updated" unless it becomes
"Deleted". In state 534, a "Deleted” record always remains
"Deleted.'

In FIG. 5e, a newly created record is marked "Created” as
illustrated in state 540 and remains "Created" unless it is
later deleted. If a "Created" record is deleted, it is marked
"Created Deleted" in state 542. Even if a new record is
later modified, it is still marked "Created" for synchroniza
tion purposes. Created Deleted records are transient and
are always ignored during synchronization.

FIG. 6 is a flow chart describing the general steps fol
lowed by the SUID mechanism referenced in FIG. 3. SUID
mechanism 304 identifies records which do not have system
assigned unique identifiers. More specifically, each record is
a collection of one or more data items, called fields. SUTD
mechanism 304 identifies records by one or more fields
(referred to as Key Fields) whose contents are likely to be
different for different records. For example. Record A is
determined to be a different record from Record B if one or
more of their Key Fields are different. The comparison
procedure itself may be readily understood by those skilled
in the art.

Based on the semantics of the data, the Key Fields to be
compared may be selected manually by the programmer at
design time. For example, for a data set of address book
records with a first name field and a last name field, the
combination of the two fields is a unique identifier for the
record. These fields can also be selected automatically using
a program which scans some sample data and analyzes
which field has a high probability of being unique across
different records. Methods for determining uniqueness,
given two data entries, for example, two fields are well
known in the art.

In the absence of Key Fields, Error Correction 305 alone
is sufficient since it effectively uses all fields in a record to
identify a record. Key Fields are a useful way for enhancing
performance because typically only the Key Fields must be
compared rather than all the fields, but Key Fields are not
required for this invention.

In the flow diagram, data set D0 and record Rn' from data
set D0 are input to SUID mechanism 304. In step 600, if
there is a next record Rim in D0, and in step 602, if all Key
Field values for Rm are equal to those in Rn', then in step
604, return TRUE to indicate a match between the Key
Fields of records Rn' and Rm of the data sets to be synchro
nized (i.e. D0' and D0). Otherwise, loopback to step 600 and
retrieve the next record Rim from saved data set D0. If no
match was found after Rn' has been compared to all records
Rm in D0, then in step 606, return FALSE indicating a no
match result.

FIGS. 7a and 7b are flow diagrams describing the general
steps followed by the Change Detection mechanism refer
enced in FIG. 3. Change Detection mechanism 302 deduces
all the changes that have occurred in a given data set since
the last synchronization. This is accomplished by first saving
a copy of the data set at the end of a synchronization. At the
next synchronization, the records are compared in the modi
fied data set (e.g. D0') with the saved data set (e.g. D0).
detecting the changes which must have happened since the
last synchronization. In the case where the synchronization
is run for the first time, there are no records in the saved data
set (e.g. D0), and Change Detection mechanism 302 con
cludes that all current records have been created.
The steps followed by Change Detection mechanism 302

begins with FIG. 7a where first, data sets D0 and D0 are
input to Change Detection mechanism 302. In step 700, if

5,706.509
9

there is a next record Rn' in data set D0', then in step 702,
it is determined if there is a record Rn in D0 with the same
Key Field values as Rn' (this is determined using the steps
illustrated in the flow diagram of FIG. 6). If there is a record
Rn in D0 with the same Key Field values as Rn' and in step
704, if Rn and Rn' have non-key value fields which have
different values, thenin step 706, it is determined that Rn has
been UPDATED to Rn' and Rn' is marked as UPDATED. In
addition, since Rn has been UPDATED, it is determined that
Rn has not been deleted and Rn is marked NOT
DELETED.

If records Rn and Rn' have the same values for all their
Key Fields and non-Key Fields, then it is determined that
Rn has not been changed and Rn is marked as NOT
DELETED in step 709. In step 708, if there are no records
Rn in D0 with the same Key Field values as Rn', then Rn is
a new record created in D0' and Rn is marked CREATED.
If there is a next record Rn' in D0, then return to step 700
until there are no more records Rn in new data set D0.

After all the records in data set D0 have been processed,
all the records in D0' become marked as either UPDATED
or CREATED, and some records in D0 become marked as
NOT DELETED.

In FIG.7b, in step 710, for each record Rn' in new data
set D0', if Rn is marked UPDATED then in step 712, Rn is
added to Change List as Update. Otherwise, if Rn' is marked
CREATED, then in step 714, Rn is added to Change List as
CREATED. In step 716, if there is a next record Rn' in the
new data set D0, then the next record Rn' in the new data set
D0 is processed until there are no more records Rn' left to
be processed. In step 718, for each record Rn in the saved
data set D0, if Rn is not marked NOT DELETED, then in
step 718, Rn is added to Change List as DELETED. The
process is repeated until all records Rn in the saved data set
D0 are processed.
A Change List CL0 for original data set D0 and modified

data set D0 reflecting the changes made from D0 to D0 has
now been generated by Change Detection mechanism 302.
(Refer to the exemplary CL0 data structure in FIG. 4c and
FIG. 7c for illustration.) There are two conditions which
may be encountered by Error Correction mechanism 305
which require Change Detection mechanism 302 to generate
a Change List by working with Error Correction mecha
nisms one and two. Error Correction mechanisms one and
two are described in more detail in the descriptions accom
panying FIGS. 8a through 8d below.

FIG. 7c illustrates an exemplary Change List data struc
ture modified by the steps described in FIG. 7a. Data
structure 720 contains a list of records Rim, Rn, Rp. Rq, etc.
(contained in data set D0) as well as a corresponding list of
NOT DELETE flags. Data structure 722 contains a list of
records Rm', Rn', Rp', etc. (contained in data set D0') as well
as a list of corresponding NOT DELETE flags.

FIGS. 8a through 8d are flow charts describing the
general steps followed by Error Correction mechanism 305
referenced in FIG. 3. In the Figures, the functions of Error
Correction mechanism 305 is divided into two parts and will
be referred to as Error Correction mechanisms one and two.
There are two error conditions which may be encountered

by Error Correction mechanism 305. Error case 1 is where
a record's Key Field changes in data set D0'. Error case 2 is
where more than one record is sharing the same Key Field
values (a non-unique identifier case).

In error case 1, the correct result to be produced by
Change Detection mechanism 302 is that Rn is Updated.
Since the Key Field is changed during the synchronization

10

15

25

35

45

55

65

10
process, assuming the changed Key Fields are still unique,
Change Detection mechanism 302 deduces that Rn was
Deleted, and Rn' was Created. A Delete and a Create is
equivalent to an Update, since Rn also contains all the
unmodified fields in Rn, as well as any fields a user or an
application normally chooses not to synchronize. Thus no
correction is needed. The case where Rn's Key Fields are the
same as one or more other record's Key Fields is handled as
an error case 2 described below.

For error case 2, Change Detection mechanism 302
deduces incorrect Updates and Creates. For example, assum
ing that records R1 and R2 have the same Key Field values
and that R1' and R2 are unchanged, i.e. R1 has all the same
fields as R1 and R2 as R2. If Change Detection mechanism
302 is run on R2' before R1", it is possible for SUID
mechanism 304 to erroneously determine that R1 has been
updated to R2 and that R2 has been updated to R1'. The
correct determination which should be made by SUID
mechanism 304 is that neither R1 nor R2 has changed.
Similarly, if R1' is unchanged but R2 has changed, it is
possible for Change Detection mechanism 302 to determine
that R1 has been updated to R2 and R2 has been updated to
R1'. In either case, after results are produced by Change
Detection mechanism 302, if R1 or R2 contains fields not
normally synchronized, R1's unsynchronized fields would
be exchanged with R2's unsynchronized fields.
The invention corrects error case 2 using two procedures.

In one procedure, SUID mechanism 304 first looks for a
duplicate in D0. If a duplicate exists in D0, it is marked
DUPLICATE EXISTS as well as NOT DELETED. In
subsequent searches, SUID mechanism 304 ignores any
records in D0 already marked as DUPLICATE EXISTS.
SUID mechanism 304 will then return one of three possible
results, DUPLICATE, CONFLICT, or NOT FOUND.
DUPLICATE is returned when there exists, for example, a
record RX in D0, for which all fields match with record Rn'
in D0'. CONFLICT is returned when there exists a record,
for example, Rx in D0, for which all Key Fields match with
record Rn' in DO' but one or more other fields are different.
NOT FOUND is returned when there is no record in D0 for
which all Key Fields matches with those for Rn' in D0'. This
error correction mechanism for SUD mechanism will
herein be referred to as Error Correction one.
The second procedure for correcting an error case 2 is as

follows. In Error Correction one, when a CONFLICT is
found, the conflict record Rx in D0 is also marked as
CONFLICT EXISTS, and an internal reference to record
Rn' is stored in D0' for which RX is a conflict. For future
records seen in Error Correction one, if a DUPLICATE is
found for a record already marked as CONFLICT EXISTS.
record Rx is marked in D0 as DUPLICATE EXISTS. Rin'
is then retrieved and steps 700 to 706 of the flow diagram
illustrated in FIG. 7a is performed on Rn by Change
Detection mechanism 302. Change Detection mechanism
302's error correction mechanisms will herein be referred to
as Error Correction two. Error Correction one and two work
together as described below.

In FIG. 8a, Error Correction mechanism two takes as
input, data sets D0 and D0. In step 800, for each record Rn'
in new data set Do", the general steps illustrated in FIG. 8b
are performed on Rn. In FIG. 8b, the general steps illus
trated in FIG. 8c is first performed with input of Rn'.

FIGS. 8c and 8d illustrate the general steps followed by
Error Correction one. In FIG. 8c, in step 806, given input Rn'
in D0', for each record Rim in saved data set D0, it is
determined in step 808, if Rim is marked as DUPLICATE

5,706.509
11

EXISTS. If Rim is marked as DUPLICATE EXISTS, then
the next record Rim in D0 is processed back in step 806.
Otherwise, in step 810, if the contents of the Key Fields in
Rm are equal to the contents of the Key Fields in Rn', and
in step 812, if all other fields of Rm are equal to Rn', then
in step 814, Rm is marked with DUPLICATE EXISTS and
NOT DELETED. In step 816, if Rm was originally marked
CONFLICTEXISTS, then the steps in the flow diagram of
FIG. 8b are followed with the saved record Rm' as input. In
step 820, DUPLICATE is returned for record Rm.
Back in step 812, if the contents of the Key Fields of Rim

are equal to the contents of the Key Fields of Rn' but one or
more non-key fields of Rm are not equal to Rn', then in step
822, Rm is marked as a potential conflict for Rn'. Back in
step 806 the process illustrated in FIG. 8c are repeated until
all records Rim in saved data set D0 are processed. After all
records Rm are processed, the general steps illustrated in
FIG. 8d are performed in step 824.

In FIG. 8d. in step 826, if there is a record Rm which is
a potential conflict for Rn', then in step 828, Rm is marked
as CONFLICT EXISTS, in step 830. Rm is also marked
with a reference to Rn' reflecting the record with which Rm
has a conflict. In step 832, a list of changed fields are saved.
In step 834, Rimismarked as NOT DELETED. In step 836,
CONFLICT for record Rm is returned. Back in step 826, if
there are no records Rm which is a potential conflict for Rn'
as determined in FIG. 8c, then NOT FOUND is returned.
The Key Fields may also have no values. This is a valid
entry and multiple records with no values for the Key Fields
are handled the same way as described above.
Back in FIG. 8b, in step 840, if Error Correction one

(described in the flow diagrams of FIGS. 8c and 8d) finds
CONFLICT for record Rn in D0, then it is determined that
Rn has been UPDATED to Rn'. Otherwise, in step 842, if
Error Correction one returns NOT FOUND, then it is
determined that Rn' is a new record CREATED in D0'.
Back in FIG. 8a, after all the records in data set D0 have

been processed through steps 800, 802 and 846, all records
in DO" have been marked as either UPDATED or CREATED,
and some records in D0 have been marked as NOT
DELETED. In step 848, for each record Rn' in new data set
D0', if Rn is marked UPDATED, then in step 850, Rn' is
added to the Change List as UPDATED. Otherwise, in step
852, if Rn' is marked CREATED, then Rn' is added to the
Change List as CREATED. After steps 848 through 854 are
performed for all records Rn' in new data set D0' step 856
is performed. In step 856, for each record Rn in saved data
set D0, if Rn is not marked NOT DELETED then Rn is
added to the Change List (CLO) as DELETED. A list of
changes (Change List) from data set D0 to data set D0' is
therefore generated by Change Detection mechanism 302
and by Error Correction mechanism 305.

FIGS. 9a through9e are flow charts describing the general
steps followed by the Synchronization mechanism referred
to in FIG. 3. Records Rn and Rm are exemplary records in
data set D0 and records Rx and Ry are exemplary records in
data set D1.

Error Correction mechanisms one and two generate a list
of changes when comparing a changed data set Do' to a
saved data set D0. When synchronizing data sets D0' and
D1', Error Correction two, first processes data sets D0 and
D0, producing Change List 0 (CLO), and then processes data
sets D1' and D1, producing Change List 1 (CL1). Data sets
D0 and D1 may or may not be data from the same appli
cation or have the same format. However, datasets D0 and
D1 are equivalent (i.e. synchronized) since they are saved at

10

15

20

25

30

35

45

55

65

12
the end of the last synchronization and there may be only
one data set saved.

Given accurate Change Lists CL0 and CL1 as produced
by the present invention, techniques to modify D0' and D1'
so that they become equivalent would be readily understood
by those skilled in the art. FIGS. 9a through 9e and FIGS.
10a and 10b illustrate an exemplary method.

In FIG. 9a in step 902, the general steps illustrated in FIG.
10a and 10b are first performed for record Rn given Change
List CL1.

In FIG. 10a, for each record Rx in CL1 in step 904, if Rx
is not marked DONE in step 906, then in step 908, it is
determined if all Key Fields in Rx are equal to all Key Fields
in Rn. If all Key Fields in Rx are equal to all Key Fields in
Rn, and in step 910, if all non-key fields in Rx are equal to
those in Rn, then a flag indicating that a duplicate exists
(DUPLICATE) is returned for Rx in step 911. Otherwise, if
one or more key fields in Rx are not equal to those in Rn,
then the process returns to step 904 to retrieve the next
record Rx in CL1. Back in step 908, if one or more non-key
Fields are not equal to those in Rn, then in step 912, Rx is
marked as a potential conflict for Rn. This process is
repeated from step 904 to step 912 until all records Rx in
CL1 are processed.
When all records Rx are processed, the general steps

illustrated in FIG. 10b are performed. In steps 914 and 916,
for each potential conflict Ry, each record Rim in CLO is
processed. In step 918, if Rm is not marked DONE and if all
fields in Ry and Rm are equal, then Rim is no longer marked
as a potential conflict. Back in step 916, if there are no more
records Rm in CL0, then in step 920, if Ry is still a potential
conflict, then in step 922 CONFLICT for Ry is returned. If
all potential conflicts Ry are processed or if there are no
potential conflicts Ry, then in step 924, NOT FOUND is
returned to indicate that there are no conflicts.

If operations illustrated in FIGS. 10a and 10b return a
result of CONFLICT or DUPLICATE, and in step 928, if Rn
is marked as CREATE, then it is determined in step 932 (of
FIG. 9b) whether Rx is marked as either CREATE or as
UPDATE. If Rx is marked as either CREATE or UPDATE,
and in step 934 if Rx and Rn are not duplicates, then in step
936, Rx is added to D0' (using the steps illustrated in FIG.
11a) and Rn is added to D1' (using the steps illustrated in
FIG. 11a). Back in step 934, if Rx and Rn are duplicates,
then in step 938 no action is taken. Back in step 932, if Rx.
is not marked as CREATE or UPDATE, and in step 940 if
Rx is instead marked as DELETE, then in step 942, Rn is
added to D1' (using the steps illustrated in FIG. 11a). In step
944, Rn is marked as DONE, and the next record Rn in CL0
is processed.

Back in step 926, if the result from the operations illus
trated in FGS. 10a and 10b is neither CONFLICT or
DUPLICATE, then the general steps illustrated in FIG. 9d
are performed. In step 948, if Rn is marked CREATE, then
in step 950, Rn is created in D1' (using the steps illustrated
in FIG. 11a). Otherwise, in step 952, if Rn is marked
UPDATE, then in step 954 Rn is updated in D1' (using the
steps illustrated in FIG. 11a). If Rn is not marked UPDATE
or CREATE, and in step 956 if Rn is marked DELETE, then
in step 958 Rn is deleted in D1' (using the steps illustrated
in FIG. 11a). In step 944, Rn is marked as DONE and the
next record Rn in CL0 is processed. Back in step 928, if Rn
is not marked as CREATE, then the general steps illustrated
in FIG. 9c are followed.

In FIG.9c, in step 961, if Rn is marked UPDATE, then in
step 962, it is determined if Rx is marked UPDATE or

5,706.509
13

CREATE. If RX is marked UPDATE or CREATE, then in
step 963 if Rx and Rn are not duplicates, then in step 964 Rx
is added to D0 (using the steps illustrated in FIG. 11a) and
Rn is added to D1' (using the steps illustrated in FIG. 11a).
In step 972, Rx in CL1 is marked as DONE.

Back in step 963, if Rx and Rn are duplicates. then in step
965, no action is taken. In step 972, Rx in CL1 is marked as
DONE. Back in step 962, if Rx is neither marked as
UPDATE nor as CREATE, and in step 966, if Rx is marked
DELETE, then Rn is added to D1' (using the stepsillustrated
in FIG. 11a). In step 972, Rx in CL1 is marked as DONE.

Back in step 961, if Rn is not marked as UPDATE, then
in step 967, it is determined if Rn is marked as DELETE. If
Rn is not marked as DELETE, then in step 972, Rx in CL1
is marked as DONE. If Rn is marked as DELETE, and in
step 968, if Rx is marked UPDATE or CREATE then in step
970, Rx is added to DO'. If Rx is not marked as UPDATE or
CREATE, then in step 971, no action is taken. In step 972,
Rx in CL1 is marked as DONE. When the process in FIG.
9c is completed, Rn in CL0 is marked as DONE backin step
944 of FIG. 9a. Back in step 900 of FIG. 9a, if there are no
more records Rn in CL0, then the general steps illustrated in
FIG. 9e are followed.

In FIG.9e, for each record Rx in CL1, if Rx is not marked
as DONE in step 975, then in step 976 it is determined if Rx
is marked as CREATE. If Rx is marked as CREATE, then in
step 977, Rx is added to D0' (using the steps illustrated in
FIG.11a). In step 981, Rx is marked as DONE. Back in step
976, if Rx is not marked as CREATE, then in step 978 it is
determined if Rx is marked as UPDATE. If Rx is marked as
UPDATE, then in step 979 Rx is updated in D0' (using the
steps illustrated in FIG. 11a). In step 981, Rx is marked as
DONE. Back in step 978, if Rx is not marked as UPDATE,
and if Rx is marked as DELETE in step 980, then Rx is
deleted in D0' (using the steps illustrated in FIG. 11a). In
step 981, Rx is marked as DONE. The steps from step 974
to step 980 are repeated until all records Rx in CL1 are
processed. At this point, the records in D0' and D1' are
equivalent, i.e. synchronized.
With the availability of a complete history of the changed

data as produced above, it is possible to make automatic
decisions for conflict resolution. In addition, there is little
danger of incorrectly overwilting or deleting data. This
allows synchronization to run unobtrusively in the back
ground without having to ask a user to confirm before
overwriting or deleting data.

FIGS. 11a through 11c are flow diagrams describing the
general steps followed by the Change Existing Data mecha
nism referred to in FIG.3. Although the details for importing
and exporting data is application specific and well
understood, making the required changes to the data sets
without unique record identifiers is non-trivial. Such case is
resolved by Change Existing Data mechanism 308.
Change Existing Data mechanism 308 can change an

existing data set such as Do" in three ways: Create a record,
Update a record, and Delete a record. A method for each is
described in detail in FIGS. 11a, 11b and 11c with instruc
tions on specific information regarding each record which
must be retained by Error Correction mechanism two.

FIG.11a illustrates the general steps by which a record Rn
is Created in D0'. In step 400, Error Correction mechanism
two saves all fields for record Rn. In step 402, a new record
is then created in D0. In step 404, all saved fields are copied
into the newly created record in D0'.

FIG.11b illustrates the general steps by which arecord Rn
is updated in D0. Error Correction Mechanism two saves all

10

15

O

25

30

35

45

50

55

65

14
original fields for record Rn, as well as all fields in Rn, the
new values for Rn. This is described in FIGS. 8d and 8e, and
the resulting Change Log entry is shown in FIG. 11b. First
the correct record to update is searched by comparing
original record Rn with all records in D0, until a record RX
is found for which all of Rx's fields are equal to those in Rn
in steps 410, 412 and 414. Then the fields of Rx are updated
with the fields in Rn' in step 416. If duplicate records (where
all fields are the same) are not allowed or desired in D0', an
extra step is needed before updating Rx. In addition to
searching for Rx above, all records in D0' are also searched
in steps 418 and 420 to find a duplicate for Rn'. If a duplicate
exists, then there is no need to update Rx to Rn, since this
will result in two records with exactly the same fields. The
correct action here is to delete Rx from D0' in step 422.
Finally, in step 424, Rn is marked DONE (in 553).
The steps in FIG. 11b guard against errors caused by

records having the same values in their Key Fields. An
implementation using SUID mechanism 304 to find a record
Rx to update may update the wrong record if more than one
record share the same value in their Key Fields.

FIG.11c illustrates the general steps by which a record Rn
is Deleted in D0'. In step 430, Error Correction mechanism
two saves all fields for record Rn that were from the saved
data set D1. In step 432, the correct record to delete is
searched. In step 434, for each record Rx in D0, it is
determined in step 436 if all fields in Rx equal the fields in
Rn. If all fields in Rx are equal to those in Rn then in step
438, record Rx is deleted. Otherwise, the next record Rx in
D0' is retrieved for similar processing back in step 434.

It is important to match all fields in step 436 before
deleting. If only the Key Fields are examined, it is possible
to delete the wrong record if more than one record has the
same value in their Key Fields. In addition, it is pertinent for
Error Correction mechanism two to save the field values for
record Rn from the saved data set D1. This is due to the fact
that some fields in Rn may have changed in D1' before the
entire record is deleted. A request to Delete a record in D0
can only come from running Error Correction mechanism
two on D1' and D1. In addition, the Delete operation
illustrated in FIG. 11c would only be used if the equivalent
record Rx in D0' has not been changed, and thus guarantees
that the Delete operation would find the correct record to
delete.

FIG. 12 is a table 440 illustrating the Synchronization
mechanism 306 of the present invention. Column 442 of
table 440 indicates case numbers. Column 444 indicates the
changes in data set D0. Column 446 indicates the changes in
data set D1. Column 448 indicates the result of the changes
in data set D0. Column 450 indicates the result of the
changes in data set D1. R1+ indicates that R1 has been added
(i.e. created) to the data set. R1- indicates that R1 has been
deleted from the data set, R1->R1" indicates that R1 has
been changed (i.e. updated) to R1'.
Change Detection mechanism 302 produces the cases as

described in column 444 for changes to data set D0 and
column 446 for changes to data set D1. Columns 448 and
450 describe what Synchronization mechanism 306 must
perform given CL0 and CL1. More specifically, column 448
describes the action resulting in the changes to data set D0
and column 450 describes the action resulting in the changes
to data set D1. If the additional inputs to Synchronization
mechanism 306 are D0 and D1, then all actions described in
columns 448 and 450 must be performed. If the additional
inputs are D0 and D1', then only those actions which are
circled must be performed. It is assumed for the sake of
illustration that all records R1,R2, R3, etc., have unique Key
Field values.

5,706.509
15

FIG. 13 is a table 460 illustrating cases which may occur
if there are records with the same Key Field values. These
records are referred to as RR1, RR2, RR3, etc., and RR1'.
RR2, RR3' etc., and have the same Key Field values (e.g.
same name in a phone book of records). The columns 462
through 470 indicate the same entries as those described for
the table in FIG. 12.
What has been described is a method and an apparatus for

performing record level synchronization on two or more
applications. Record level synchronization overcomes the
limitations of the prior art technique by synchronizing the
individual data items (records) in a file. It uses knowledge of
how individual data items are stored in a file. Record level
synchronization of the present invention leads to a more
efficient and accurate synchronization as compared to the
prior art synchronization technique, without requiring indi
vidual applications to implement a standard means for
supporting synchronization.
Whereas many alterations and modifications of the

present invention will be comprehended by a person skilled
in the art after having read the foregoing description, it is to
be understood that the particular embodiments shown and
described by way of illustration are in no way intended to be
considered limiting. Therefore, references to details of par
ticular embodiments are not intended to limit the scope of
the claims, which in themselves recite only those features
regarded as essential to the invention.
What is claimed is:
1. An apparatus for application independent synchroniza

tion of a first set of data with a second set of data from the
same or different applications, said apparatus comprising:

a memory which contains,
a change detection mechanism retroactively generating

a change list for said first and second sets of data
having a plurality of records, said change list gen
erated without requiring any of the applications to
have a synchronization function or their own syn
chronization primitives, said change list listing the
changes made at a record level to said first and
second sets of data for record level synchronization
of said first and second sets of data, and

a synchronization mechanism coupled to said change
detection mechanism, said synchronization mecha
nism making said first set of data and said second set
of data equivalent by using the information in said
change list generated by said change detection
mechanism, said synchronization mechanism pro
ducing the same synchronization results regardless
of whether one or both of said first and second sets
of data are modified prior to synchronization; and

a processor coupled to said memory, said processor run
ning said change detection mechanism and said syn
chronization mechanism.

2. The apparatus of claim 1 wherein said change detection
mechanism further comprises:
a semi-unique identification mechanism for identifying

whether a record in a given data set is a duplicate of a
corresponding record in a modified data set by using
the contents of individual fields in a record; and

an error correction mechanism for identifying said dupli
cate which was not identified by said Semi-Unique
Identification mechanism.

3. The apparatus of claim 1 further comprising a change
existing data mechanism for correctly identifying a record to
update or delete without requiring said record in said first
and second set of data to contain system assigned unique
identifiers.

10

15

20

25

30

35

45

50

55

65

16
4. The system of claim 1 wherein said means for gener

ating further comprises:
means for identifying whether a record in a given data set

is a duplicate of a corresponding record in a modified
data set by using the contents of individual fields in a
record; and

means for identifying said duplicate which was not iden
tified by said Semi-Unique Identification mechanism.

5. The system of claim 1 wherein said means for syn
chronizing further comprises means for correctly identifying
a record to update or delete without requiring said record in
said first and second set of data to contain system assigned
unique identifiers.

6. An apparatus for application independent synchroniza
tion of a first set of data with a second set of data at a record
level from the same or different applications, said apparatus
comprising:

means for containing,
means for retroactively generating a change list for said

first and second sets of data having a plurality of
records, said change list generated without requiring
any of the applications to have a synchronization
function or their own synchronization primitives,
said change list listing the changes made at a record
level to said first and second sets of data for record
level synchronization of said first and second sets of
data, and

means for making said first set of data and said second
set of data equivalent by using the information in
said change list generated by said means for retro
actively generating, said means for making coupled
to said means for retroactively generating, said
means for making producing the same synchroniza
tion results regardless of whether one or both of said
first and second sets of data are modified prior to
synchronization; and

means for running said means for retroactively generating
and said means for making.

7. The apparatus of claim 6 wherein said means for
generating further comprises:

means for identifying whether a record in a given data set
is a duplicate of a corresponding record in a modified
data set by using the contents of individual fields in a
record; and

means for identifying said duplicate which was not iden
tified by said Semi-Unique Identification mechanism.

8. The apparatus of claim 6 further comprising means for
correctly identifying a record to update or delete without
requiring said record in said first and second set of data to
contain system assigned unique identifiers.

9. A computer system for application independent syn
chronization of a first set of data with a second set of data
at a record level from the same or different applications, said
system comprising:

a memory which contains,
a change detection mechanism retroactively generating

a change list for said first and second sets of data
having a plurality of records, said change list gen
erated without requiring any of the applications to
have a synchronization function or their own syn
chronization primitives, said change list listing the
changes made at a record level to said first and
second sets of data for record level synchronization
of said first and second sets of data. and

a synchronization mechanism coupled to said change
detection mechanism, said synchronization mecha

5,706.509
17

nism making said first set of data and said second set
of data equivalent by using the information in said
change list generated by said change detection
mechanism, said synchronization mechanism pro
ducing the same synchronization results regardless
of whether one or both of said first and second sets
of data are modified prior to synchronization; and

a processor coupled to said memory, said processor run
ning said change detection mechanism and said syn
chronization mechanism.

10. The system of claim 9 wherein said change detection
mechanism further comprises:

an Semi-Unique Identification mechanism for identifying
whether a record in a given data set is a duplicate of a
corresponding record in a modified data set by using
the contents of individual fields in a record; and

an error correction mechanism for identifying said dupli
cate which was not identified by said Semi-Unique
Identification mechanism.

11. The system of claim 9 wherein said synchronization
mechanism further comprises a change existing data mecha
nism for correctly identifying a record to update or delete
without requiring said record in said first and second set of
data to contain system assigned unique identifiers.

12. A computer system for application independent syn
chronization of a first set of data with a second set of data
at a record level from the same or different applications, said
system comprising:

means for containing,
means for retroactively generating a change list for said

first and second sets of data having a plurality of
records, said change list generated without requiring
any of the applications to have a synchronization
function or their own synchronization primitives,
said change list listing the changes made at a record
level to said first and second sets of data for record
level synchronization of said first and second sets of
data, and

means for making said first set of data and said second
set of data equivalent by using the information in
said change list generated by said means for retro
actively generating, said means for making coupled
to said means for retroactively generating, said
means for making producing the same synchroniza

O

25

30

35

40

18
tion results regardless of whether one or both of said
first and second sets of data are modified prior to
synchronization; and

means for running said means for retroactively generating
and said means for making.

13, Amethod for application independent synchronization
of a first set of data with a second set of data from the same
or different applications, said method comprising the steps
of:

retroactively generating a first change list listing changes
made to said first set of data at a record level and a
second change list listing changes made to said second
set of data at a record level for record level synchro
nization of said first and second sets of data, said first
and second sets of data having a plurality of records,
said first and second change lists generated without
requiring any of the applications to have a synchroni
zation function or their own synchronization
primitives, and

synchronizing said first set of data with said second set of
data using said first change list generated for said first
set of data and said second change list generated for
said second set of data, said step of synchronizing
producing the same synchronization results regardless
of whether one or both of said first and second sets of
data are modified prior to synchronization.

14. The method of claim 13 wherein said step of gener
ating further comprising the steps of:

identifying whether a record in a given data set is a
duplicate of another record in a modified data set, said
first set of data and said second set of data being said
given data set and said first set of data and said second
set of data with changes being said modified data set;
and

identifying said duplicate which was not identified is said
step of identifying a record.

15. The method of claim 13 wherein said step of syn
chronizing further comprising the step of changing records
in said first set of data and records in said second set of data
for synchronizing records in said first set of data and said
second set of data.

