20167118564 A1 |1 01000 000 OO

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/118564 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

28 July 2016 (28.07.2016) WIPOIPCT
International Patent Classification:
GO6F 13/00 (2006.01)
International Application Number:
PCT/US2016/014024

International Filing Date:
20 January 2016 (20.01.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/105,482 20 January 2015 (20.01.2015) US
15/001,340 20 January 2016 (20.01.2016) US

Applicant: ULTRATA LLC [US/US]; 1934 Old Gallows
Road, Suite 350, Vienna, Virginia 22182 (US).

Inventors: FRANK, Steven; 1804 Walnut Hollow Lane,
Boulder, Colorado 80302 (US). REBACK, Larry; 1807
Brooktrail Court, Vienna, Virginia 22182 (US).

Agents: DALEY, William J. et al,; Two Embarcadero
Center, Fighth Floor, San Francisco, California 94111
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i))

Published:

with international search report (Art. 21(3))

(54) Title: UNIVERSAL SINGLE LEVEL OBJECT MEMORY ADDRESS SPACE

- el
)
Object |
Router g15
. 605 .
Object | Object o
Router g Router
/ 625 \ 630 / \
Node Object Memory . [|Node Object {|Node Object|) | Node Object
| 635 Memory Memory Memory
‘ [S S S I S S S 56 E NN M I 1 1
| |App| AP App | |App ANALLLALL JIATALLA
(10 1 2 3 NN 2 611 2
RSB) el

‘5158 515b '515¢ :51511

515a

FIG. 6

'515¢ 5150 815c s18b B15c

(57) Abstract: Embodiments of the invention provide systems and methods for managing processing, memory, storage, network, and
cloud computing to significantly improve the efficiency and performance of processing nodes. Embodiments described herein can
eliminate typical size constraints on memory space of commodity servers and other commodity hardware imposed by address sizes.
o Rather, physical addressing can be managed within the memory objects themselves and the objects can be in turn accessed and man -
aged through the object name space.

10

15

20

WO 2016/118564 PCT/US2016/014024

UNIVERSAL SINGLE LEVEL OBJECT MEMORY ADDRESS SPACE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims benefit under 35 USC 119(e) of U.S. Provisional
Application No. 62/105,482, filed on January 20, 2015 by Frank et al and entitled “Infinite
Memory Fabric Architecture,” of which the entire disclosure is incorporated herein by reference

for all purposes.

[0002] The present application is also related to the following co-pending and commonly

assigned U.S. Patent Applications:

[0003] U.S. Patent Application No. (Attorney Docket Number 097704-
0967319(000100UYS)) filed concurrent herewith by Frank and entitled “Object Based Memory

Fabric;”

[0004] U.S. Patent Application No. (Attorney Docket Number 097704-
0967320(000110UYS)) filed concurrent herewith by Frank and entitled “Trans-Cloud Object
Based Memory;”

[0005] U.S. Patent Application No. (Attorney Docket Number 097704-

0967322(000130US)) filed concurrent herewith by Frank and entitled “Object Memory Fabric

Performance Acceleration;”

[0006] U.S. Patent Application No. (Attorney Docket Number 097704-
0967323(000200US)) filed concurrent herewith by Frank and entitled “Distributed Index for

Fault Tolerance Object Memory Fabric;”

[0007] U.S. Patent Application No. (Attorney Docket Number 097704-
0967324(000210UYS)) filed concurrent herewith by Frank and entitled “Implementation of an

Object Memory Centric Cloud;”

10

15

20

25

WO 2016/118564 PCT/US2016/014024

[0008] U.S. Patent Application No. (Attorney Docket Number 097704-
0967325(000220UY)) filed concurrent herewith by Frank and entitled “Managing Metadata in an
Object Memory Fabric;”

[0009] U.S. Patent Application No. (Attorney Docket Number 097704-

0967326(000230UYS)) filed concurrent herewith by Frank and entitled “Utilization of a
Distributed Index to Provide Object Memory Fabric Coherency;”

[0010] U.S. Patent Application No. (Attorney Docket Number 097704-
0967327(000300US)) filed concurrent herewith by Frank and entitled “Object Memory Data

Flow Instruction Execution;”

[0011] U.S. Patent Application No. (Attorney Docket Number 097704-
0967329(000310US)) filed concurrent herewith by Frank and entitled “Object Memory Data

Flow Triggers;” and

[0012] U.S. Patent Application No. (Attorney Docket Number 097704-
0967328(000320US)) filed concurrent herewith by Frank and entitled “Object Memory

Instruction Set,” of which the entire disclosure of each is incorporated herein by reference for all

purposes.

BACKGROUND OF THE INVENTION

[0013] Embodiments of the present invention relate generally to methods and systems for
improving performance of processing nodes in a fabric and more particularly to changing the
way in which processing, memory, storage, network, and cloud computing, are managed to

significantly improve the efficiency and performance of commodity hardware.

[0014] As the size and complexity of data and the processes performed thereon continually
increases, computer hardware is challenged to meet these demands. Current commodity
hardware and software solutions from established server, network and storage providers are

unable to meet the demands of Cloud Computing and Big Data environments. This is due, at

10

15

20

25

WO 2016/118564 PCT/US2016/014024

least in part, to the way in which processing, memory, and storage are managed by those
systems. Specifically, processing is separated from memory which is turn is separated from
storage in current systems and each of processing, memory, and storage is managed separately
by software. Each server and other computing device (referred to herein as a node) is in turn
separated from other nodes by a physical computer network, managed separately by software and
in turn the separate processing, memory, and storage associated with each node are managed by

software on that node.

[0015] FIG. 1 is a block diagram illustrating an example of the separation data storage,
memory, and processing within prior art commodity servers and network components. This
example illustrates a system 100 in which commodity servers 105 and 110 are communicatively
coupled with each other via a physical network 115 and network software 155 as known in the
art. Also as known in the art, the servers can each execute any number of one or more
applications 120a, 120b, 120c of any variety. As known in the art, each application 120a, 120b,
120c executes on a processor (not shown) and memory (not shown) of the server 105 and 110
using data stored in physical storage 150. Each server 105 and 110 maintains a directory 125
mapping the location of the data used by the applications 120a, 120b, 120c. Additionally, each
server implements for each executing application 120a, 120b, 120c a software stack which
includes an application representation 130 of the data, a database representation 135, a file

system representation 140, and a storage representation 145.

[0016] While effective, there are three reasons that such implementations on current
commodity hardware and software solutions from established server, network and storage
providers are unable to meet the increasing demands of Cloud Computing and Big Data
environments. One reason for the shortcomings of these implementations is their complexity.
The software stack must be in place and every application must manage the separation of
storage, memory, and processing as well as applying parallel server resources. Each application
must trade-off algorithm parallelism, data organization and data movement which is extremely
challenging to get correct, let alone considerations of performance and economics. This tends to
lead to implementation of more batch oriented solutions in the applications, rather than the

integrated real-time solutions preferred by most businesses. Additionally, separation of storage,

10

15

20

25

WO 2016/118564 PCT/US2016/014024

memory, and processing, in such implementations also creates significant inefficiency for each
layer of the software stack to find, move, and access a block of data due to the required
instruction execution and latencies of each layer of the software stack and between the layers.
Furthermore, this inefficiency limits the economic scaling possible and limits the data-size for all
but the most extremely parallel algorithms. The reason for the latter is that the efficiency with
which servers (processors or threads) can interact limits the amount of parallelism due to
Amdahl's law. Hence, there is a need for improved methods and systems for managing

processing, memory, and storage to significantly improve the performance of processing nodes.

BRIEF SUMMARY OF THE INVENTION

[0017] Embodiments of the invention provide systems and methods for managing processing,
memory, storage, network, and cloud computing to significantly improve the efficiency and
performance of processing nodes. Embodiments described herein can eliminate typical size
constraints on memory space of commodity servers and other commodity hardware imposed by
address sizes. Rather, physical addressing can be managed within the memory objects

themselves and the objects can be in turn accessed and managed through the object name space.

[0018] According to one embodiment, a hardware-based processing node of an object memory
fabric can comprise a memory module storing and managing one or more memory objects. Each
memory object can be created natively within the memory module, can be accessed using a
single memory reference instruction without Input/Output (I/O) instructions, and can be managed
by the memory module at a single memory layer. Physical addressing of both memory and
storage of the object memory fabric can be managed with each of the one or more memory
objects through an object name space of the object memory fabric. The object name space is
unconstrained by the physical addresses managed by the one or more memory objects. The
memory module can manage both storage and memory without distinction through the one or
more memory objects. Managing both storage and memory without distinction through the one
or more memory objects can comprise managing all of the one or more memory objects as
memory regardless of an underlying physical storage media. The object memory fabric can
comprise a plurality of hardware-based processing nodes and the one or more memory objects

can be accessed and managed across the object memory fabric through the object name space of

10

15

20

25

WO 2016/118564 PCT/US2016/014024

the object memory fabric. Each memory object and properties of each memory object can be
maintained on any one or more of the plurality of nodes in the object memory fabric and
managing the memory objects can include maintaining the memory objects and properties of the

memory objects as the memory objects are moved, split, or duplicated between nodes

[0019] In some cases, the hardware-based processing node can comprise a Dual In-line
Memory Module (DIMM) card. For example, the hardware-based processing node can comprise
a commodity server and the memory module can comprise a Dual In-line Memory Module
(DIMM) card installed within the commodity server. A communication interface can also be
coupled with the object memory fabric. For example, the communication interface comprises a
Peripheral Component Interconnect Express (PCI-e) card. In other cases, the hardware-based
processing node can comprise a mobile computing device. In yet another example, the

hardware-based processing node can comprise a single chip.

[0020] According to one embodiment, an object memory fabric can comprise a plurality of
hardware-based processing nodes. Each hardware-based processing node can comprise one or
more memory modules storing and managing one or more memory objects, wherein each
memory object is created natively within the memory module, each memory object is accessed
using a single memory reference instruction without Input/Output (I/O) instructions, and each
memory object is managed by the memory module at a single memory layer. Physical
addressing of both memory and storage of the object memory fabric can be managed with each
of the one or more memory objects through an object name space of the object memory fabric.
The memory module can manage both storage and memory without distinction through the one
or more memory objects. Managing both storage and memory without distinction through the
one or more memory objects can comprise managing all of the one or more memory objects as
memory regardless of an underlying physical storage media. Each hardware-based processing
node can also comprise a node router communicatively coupled with each of the one or more
memory modules of the node and adapted to route memory objects or portions of memory
objects between the one or more memory modules of the node. The object memory fabric can
further comprise one or more inter-node routers communicatively coupled with each node router,

wherein each of the plurality of nodes of the object memory fabric is communicatively coupled

10

15

20

25

WO 2016/118564 PCT/US2016/014024

with at least one of the inter-node routers and adapted to route memory objects or portions of

memory objects between the plurality of nodes.

[0021] The one or more memory objects can be accessed and managed across the object
memory fabric through the object name space of the object memory fabric. The object name
space is unconstrained by the physical addresses managed by the one or more memory objects.
Each memory object and properties of each memory object can be maintained on any one or
more of the plurality of nodes in the object memory fabric and managing the memory objects can
include maintaining the memory objects and properties of the memory objects as the memory
objects are moved, split, or duplicated between nodes. In some implementations, at least one
hardware-based processing node can comprise a commodity server, the one or more memory
modules of the commodity server can comprise at least one Dual In-line Memory Module
(DIMM) card installed within the commodity server. In such cases, the communication interface
can comprise a Peripheral Component Interconnect Express (PCI-e) card. Additionally or
alternatively, at least one hardware-based processing node can comprise a mobile computing

device, a single chip, and/or other form factor.

[0022] According to yet another embodiment, a method for storing and managing one or more
memory objects in an object memory fabric can comprise creating each memory object natively
within a memory module of a hardware-based processing node of the object memory fabric,
accessing each memory object using a single memory reference instruction without Input/Output
(I/0) instructions, managing each memory object within the memory module at a single memory
layer, and managing physical addressing of both memory and storage of the object memory
fabric with each of the one or more memory objects through an object name space of the object
memory fabric. Both storage and memory can be managed by the memory module without
distinction through the one or more memory objects and the object name space is unconstrained
by the physical addresses managed by the one or more memory objects. Managing both storage
and memory without distinction through the one or more memory objects can comprise
managing all of the one or more memory objects as memory regardless of an underlying physical
storage media. The object memory fabric can comprise a plurality of hardware-based processing

nodes and the one or more memory objects can be accessed and managed across the object

10

15

20

WO 2016/118564 PCT/US2016/014024

memory fabric through the object name space of the object memory fabric. Each memory object
and properties of each memory object can be maintained on any one or more of the plurality of
nodes in the object memory fabric and managing the memory objects can include maintaining
the memory objects and properties of the memory objects as the memory objects are moved,

split, or duplicated between nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] FIG. 1 is a block diagram illustrating an example of the separation data storage,
memory, processing, network, and cloud computing within prior art commodity servers and

network components.

[0024] FIG. 2 is a block diagram illustrating components of an exemplary distributed system in

which various embodiments of the present invention may be implemented.

[0025] FIG. 3 is a block diagram illustrating an exemplary computer system in which

embodiments of the present invention may be implemented.

[0026] FIG. 4 is a block diagram illustrating an exemplary object memory fabric architecture

according to one embodiment of the present invention.

[0027] FIG. 5 is a block diagram illustrating an exemplary memory fabric object memory

according to one embodiment of the present invention.

[0028] FIG. 6 is a block diagram illustrating an exemplary object memory dynamics and

physical organization according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0029] In the following description, for the purposes of explanation, numerous specific details
are set forth in order to provide a thorough understanding of various embodiments of the present

invention. It will be apparent, however, to one skilled in the art that embodiments of the present

10

15

20

25

WO 2016/118564 PCT/US2016/014024

invention may be practiced without some of these specific details. In other instances, well-

known structures and devices are shown in block diagram form.

[0030] The ensuing description provides exemplary embodiments only, and is not intended to
limit the scope, applicability, or configuration of the disclosure. Rather, the ensuing description
of the exemplary embodiments will provide those skilled in the art with an enabling description
for implementing an exemplary embodiment. It should be understood that various changes may
be made in the function and arrangement of elements without departing from the spirit and scope

of the invention as set forth in the appended claims.

[0031] Specific details are given in the following description to provide a thorough
understanding of the embodiments. However, it will be understood by one of ordinary skill in
the art that the embodiments may be practiced without these specific details. For example,
circuits, systems, networks, processes, and other components may be shown as components in
block diagram form in order not to obscure the embodiments in unnecessary detail. In other
instances, well-known circuits, processes, algorithms, structures, and techniques may be shown

without unnecessary detail in order to avoid obscuring the embodiments.

[0032] Also, it is noted that individual embodiments may be described as a process which is
depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block
diagram. Although a flowchart may describe the operations as a sequential process, many of the
operations can be performed in parallel or concurrently. In addition, the order of the operations
may be re-arranged. A process is terminated when its operations are completed, but could have
additional steps not included in a figure. A process may correspond to a method, a function, a
procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its
termination can correspond to a return of the function to the calling function or the main

function.

[0033] The term “machine-readable medium” includes, but is not limited to portable or fixed
storage devices, optical storage devices, wireless channels and various other mediums capable of
storing, containing or carrying instruction(s) and/or data. A code segment or machine-

executable instructions may represent a procedure, a function, a subprogram, a program, a

10

15

20

25

WO 2016/118564 PCT/US2016/014024

routine, a subroutine, a module, a software package, a class, or any combination of instructions,
data structures, or program statements. A code segment may be coupled to another code
segment or a hardware circuit by passing and/or receiving information, data, arguments,
parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed,
forwarded, or transmitted via any suitable means including memory sharing, message passing,
token passing, network transmission, etc. Various other terms used herein are now defined for

the sake of clarity.

[0034] Virtual memory is a memory management technique that gives the illusion to each
software process that memory is as large as the virtual address space. The operating system in
conjunction with differing degrees of hardware manages the physical memory as a cache of the
virtual address space, which is placed in secondary storage and accessible through Input/Output

instructions. Virtual memory is separate from, but can interact with, a file system.

[0035] A single level store is an extension of virtual memory in which there are no files, only
persistent objects or segments which are mapped into a processes’ address space using virtual
memory techniques. The entire storage of the computing system is thought of as a segment and
address within a segment. Thus at least three separate address spaces, 1.e., physical memory
address/node, virtual address/process, and secondary storage address/disk, are managed by

software.

[0036] Object storage refers to the way units of storage called objects are organized. Every
object consists of a container that holds three things: actual data; expandable metadata; and a
globally unique identifier referred to herein as the object address. The metadata of the object is
used to define contextual information about the data and how it should be used and managed

including relationship to other objects.

[0037] The object address space is managed by software over storage devices, nodes, and
network to find an object without knowing its physical location. Object storage is separate from

virtual memory and single level store, but can certainly inter-operate through software.

10

15

20

25

WO 2016/118564 PCT/US2016/014024

[0038] Block storage consists of evenly sized blocks of data with an address based on a physical

location and without metadata.

[0039] A network address is a physical address of a node within an IP network that is associated

with a physical location.

[0040] A node or processing node is a physical unit of computing delineated by a shared physical

memory that be addressed by any processor within the node.

[0041] Object memory is an object store directly accessible as memory by processor memory
reference instructions and without implicit or explicit software or Input/Output instructions
required. Object capabilities are directly provided within the object memory to processing

through memory reference instructions.

[0042] An object memory fabric connects object memory modules and nodes into a single object
memory where any object is local to any object memory module by direct management, in

hardware, of object data, meta-data and object address.

[0043] An object router routes objects or portions of objects in an object memory fabric based on
an object address. This is distinct from a conventional router which forwards data packets to

appropriate part of a network based on a network address.

[0044] Embodiments may be implemented by hardware, software, firmware, middleware,
microcode, hardware description languages, or any combination thereof. When implemented in
software, firmware, middleware or microcode, the program code or code segments to perform
the necessary tasks may be stored in a machine readable medium. A processor(s) may perform

the necessary tasks.

[0045] Embodiments of the invention provide systems and methods for managing processing,
memory, storage, network, and cloud computing to significantly improve the efficiency and
performance of processing nodes. Embodiments described herein can be implemented in a set of

hardware components that, in essence, change the way in which processing, memory, and

10

10

15

20

25

WO 2016/118564 PCT/US2016/014024

storage, network, and cloud computing are managed by breaking down the artificial distinctions
between processing, memory, storage and networking in today’s commodity solutions to
significantly improve the efficiency and performance of commodity hardware. For example, the
hardware elements can include a standard format memory module, such as a (DIMM) and a set
of one or more object routers. The memory module can be added to commodity or “off-the-
shelf” hardware such a server node and acts as a big data accelerator within that node. Object
routers can be used to interconnect two or more servers or other nodes adapted with the memory
modules and help to manage processing, memory, and storage across these different servers.
Nodes can be physically close or far apart. Together, these hardware components can be used
with commodity servers or other types of computing nodes in any combination to implement the

embodiments described herein.

[0046] According to one embodiment, such hardware components can implement an object-
based memory which manages the objects within the memory and at the memory layer rather
than in the application layer. That is, the objects and associated properties are implemented and
managed natively in memory enabling the object memory system to provide increased
functionality without any software and increasing performance by dynamically managing object
characteristics including, but not limited to persistence, location and processing. Object

properties can also propagate up to higher application levels.

[0047] Such hardware components can also eliminate the distinction between memory
(temporary) and storage (persistent) by implementing and managing both within the objects.
These components can eliminate the distinction between local and remote memory by
transparently managing the location of objects (or portions of objects) so all objects appear
simultaneously local to all nodes. These components can also eliminate the distinction between
processing and memory through methods of the objects to place the processing within the

memory itself.

[0048] According to one embodiment, such hardware components can eliminate typical size
constraints on memory space of the commodity servers imposed by address sizes. Rather,
physical addressing can be managed within the memory objects themselves and the objects can

in turn be accessed and managed through the object name space.

11

10

15

20

25

WO 2016/118564 PCT/US2016/014024

[0049] Embodiment described herein can provide transparent and dynamic performance
acceleration, especially with big data or other memory intensive applications by reducing or
eliminating overhead typically associated with memory management, storage management,
networking and data directories. Rather, management of the memory objects at the memory
level can significantly shorten the pathways between storage and memory and between memory
and processing, thereby eliminating the associated overhead between each. Various additional
details of embodiments of the present invention will be described below with reference to the

figures.

[0050] FIG. 2 is a block diagram illustrating components of an exemplary distributed system in
which various embodiments of the present invention may be implemented. In the illustrated
embodiment, distributed system 200 includes one or more client computing devices 202, 204,
206, and 208, which are configured to execute and operate a client application such as a web
browser, proprietary client, or the like over one or more network(s) 210. Server 212 may be
communicatively coupled with remote client computing devices 202, 204, 206, and 208 via

network 210.

[0051] In various embodiments, server 212 may be adapted to run one or more services or
software applications provided by one or more of the components of the system. In some
embodiments, these services may be offered as web-based or cloud services or under a Software
as a Service (SaaS) model to the users of client computing devices 202, 204, 206, and/or 208.
Users operating client computing devices 202, 204, 206, and/or 208 may in turn utilize one or
more client applications to interact with server 212 to utilize the services provided by these
components. For the sake of clarity, it should be noted that server 212 and database 214, 216 can
correspond to server 105 described above with reference to FIG. 1. Network 210 can be part of
or an extension to physical network 115. It should also be understood that there can be any
number of client computing devices 202, 204, 206, 208 and servers 212, each with one or more

databases 214, 216.

[0052] In the configuration depicted in the figure, the software components 218, 220 and 222
of system 200 are shown as being implemented on server 212. In other embodiments, one or

more of the components of system 200 and/or the services provided by these components may

12

10

15

20

25

WO 2016/118564 PCT/US2016/014024

also be implemented by one or more of the client computing devices 202, 204, 206, and/or 208.
Users operating the client computing devices may then utilize one or more client applications to
use the services provided by these components. These components may be implemented in
hardware, firmware, software, or combinations thereof. It should be appreciated that various
different system configurations are possible, which may be different from distributed system
200. The embodiment shown in the figure is thus one example of a distributed system for

implementing an embodiment system and is not intended to be limiting.

[0053] Client computing devices 202, 204, 206, and/or 208 may be portable handheld devices
(e.g., an iPhone®, cellular telephone, an iPad®, computing tablet, a personal digital assistant
(PDA)) or wearable devices (e.g., a Google Glass® head mounted display), running software
such as Microsoft Windows Mobile®, and/or a variety of mobile operating systems such as i0S,
Windows Phone, Android, BlackBerry 10, Palm OS, and the like, and being Internet, e-mail,
short message service (SMS), Blackberry®, or other communication protocol enabled. The
client computing devices can be general purpose personal computers including, by way of
example, personal computers and/or laptop computers running various versions of Microsoft
Windows®, Apple Macintosh®, and/or Linux operating systems. The client computing devices
can be workstation computers running any of a variety of commercially-available UNIX® or
UNIX-like operating systems, including without limitation the variety of GNU/Linux operating
systems, such as for example, Google Chrome OS. Alternatively, or in addition, client
computing devices 202, 204, 206, and 208 may be any other electronic device, such as a thin-
client computer, an Internet-enabled gaming system (e.g., a Microsoft Xbox gaming console with
or without a Kinect® gesture input device), and/or a personal messaging device, capable of

communicating over network(s) 210.

[0054] Although exemplary distributed system 200 is shown with four client computing
devices, any number of client computing devices may be supported. Other devices, such as

devices with sensors, etc., may interact with server 212.

[0055] Network(s) 210 in distributed system 200 may be any type of network familiar to those
skilled in the art that can support data communications using any of a variety of commercially-

available protocols, including without limitation TCP/IP (Transmission Control Protocol/Internet

13

WO 2016/118564 PCT/US2016/014024

Protocol), SNA (Systems Network Architecture), IPX (Internet Packet Exchange), AppleTalk,
and the like. Merely by way of example, network(s) 210 can be a Local Area Network (LAN),
such as one based on Ethernet, Token-Ring and/or the like. Network(s) 210 can be a wide-area
network and the Internet. It can include a virtual network, including without limitation a Virtual
Private Network (VPN), an intranet, an extranet, a Public Switched Telephone Network (PSTN),
an infra-red network, a wireless network (e.g., a network operating under any of the Institute of
Electrical and Electronics (IEEE) 802.11 suite of protocols, Bluetooth®, and/or any other
wireless protocol); and/or any combination of these and/or other networks. Elements of such
networks can have an arbitrary distance, i.e., can be remote or co-located. Software Defined
Networks (SDNs) can be implemented with a combination of dumb routers and software running

on servers.

[0056] Server 212 may be composed of one or more general purpose computers, specialized
server computers (including, by way of example, Personal Computer (PC) servers, UNIX®
servers, mid-range servers, mainframe computers, rack-mounted servers, etc.), server farms,
server clusters, or any other appropriate arrangement and/or combination. In various
embodiments, server 212 may be adapted to run one or more services or software applications
described in the foregoing disclosure. For example, server 212 may correspond to a server for

performing processing described above according to an embodiment of the present disclosure.

[0057] Server 212 may run an operating system including any of those discussed above, as
well as any commercially available server operating system. Server 212 may also run any of a
variety of additional server applications and/or mid-tier applications, including HyperText
Transport Protocol (HTTP) servers, File Transfer Protocol (FTP) servers, Common Gateway
Interface (CGI) servers, JAVA® servers, database servers, and the like. Exemplary database
servers include without limitation those commercially available from Oracle, Microsoft, Sybase,

International Business Machines (IBM), and the like.

[0058] In some implementations, server 212 may include one or more applications to analyze
and consolidate data feeds and/or event updates received from users of client computing devices
202, 204, 206, and 208. As an example, data feeds and/or event updates may include, but are not

limited to, Twitter® feeds, Facebook® updates or real-time updates received from one or more

14

10

15

20

25

WO 2016/118564 PCT/US2016/014024

third party information sources and continuous data streams, which may include real-time events
related to sensor data applications, financial tickers, network performance measuring tools (e.g.,
network monitoring and traffic management applications), clickstream analysis tools, automobile
traffic monitoring, and the like. Server 212 may also include one or more applications to display
the data feeds and/or real-time events via one or more display devices of client computing

devices 202, 204, 206, and 208.

[0059] Distributed system 200 may also include one or more databases 214 and 216.
Databases 214 and 216 may reside in a variety of locations. By way of example, one or more of
databases 214 and 216 may reside on a non-transitory storage medium local to (and/or resident
in) server 212. Alternatively, databases 214 and 216 may be remote from server 212 and in
communication with server 212 via a network-based or dedicated connection. In one set of
embodiments, databases 214 and 216 may reside in a Storage-Area Network (SAN). Similarly,
any necessary files for performing the functions attributed to server 212 may be stored locally on
server 212 and/or remotely, as appropriate. In one set of embodiments, databases 214 and 216
may include relational databases that are adapted to store, update, and retrieve data in response to
commands, e.g., MySQL-formatted commands. Additionally or alternatively, server 212 can
provide and support big data processing on unstructured data including but not limited to Hadoop
processing, NoSQL databases, graph databases etc. In yet other implementations, server 212
may perform non-database types of bog data applications including but not limited to machine

learning.

[0060] FIG. 3 is a block diagram illustrating an exemplary computer system in which
embodiments of the present invention may be implemented. The system 300 may be used to
implement any of the computer systems described above. As shown in the figure, computer
system 300 includes a processing unit 304 that communicates with a number of peripheral
subsystems via a bus subsystem 302. These peripheral subsystems may include a processing
acceleration unit 306, an I/O subsystem 308, a storage subsystem 318 and a communications
subsystem 324. Storage subsystem 318 includes tangible computer-readable storage media 322

and a system memory 310.

15

10

15

20

25

WO 2016/118564 PCT/US2016/014024

[0061] Bus subsystem 302 provides a mechanism for letting the various components and
subsystems of computer system 300 communicate with each other as intended. Although bus
subsystem 302 is shown schematically as a single bus, alternative embodiments of the bus
subsystem may utilize multiple buses. Bus subsystem 302 may be any of several types of bus
structures including a memory bus or memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. For example, such architectures may include an Industry
Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association (VESA) local bus, Peripheral Component
Interconnect (PCI) bus, which can be implemented as a Mezzanine bus manufactured to the

IEEE P1386.1 standard, or PCI enhanced (PCle) bus.

[0062] Processing unit 304, which can be implemented as one or more integrated circuits (e.g.,
a conventional microprocessor or microcontroller), controls the operation of computer system
300. One or more processors may be included in processing unit 304. These processors may
include single core or multicore processors. In certain embodiments, processing unit 304 may be
implemented as one or more independent processing units 332 and/or 334 with single or
multicore processors included in each processing unit. In other embodiments, processing unit
304 may also be implemented as a quad-core processing unit formed by integrating two dual-

core processors into a single chip.

[0063] In various embodiments, processing unit 304 can execute a variety of programs in
response to program code and can maintain multiple concurrently executing programs or
processes. At any given time, some or all of the program code to be executed can be resident in
processor(s) 304 and/or in storage subsystem 318. Through suitable programming, processor(s)
304 can provide various functionalities described above. Computer system 300 may additionally
include a processing acceleration unit 306, which can include a Digital Signal Processor (DSP), a

special-purpose processor, and/or the like.

[0064] 1/O subsystem 308 may include user interface input devices and user interface output
devices. User interface input devices may include a keyboard, pointing devices such as a mouse
or trackball, a touchpad or touch screen incorporated into a display, a scroll wheel, a click wheel,

a dial, a button, a switch, a keypad, audio input devices with voice command recognition

16

10

15

20

25

WO 2016/118564 PCT/US2016/014024

systems, microphones, and other types of input devices. User interface input devices may
include, for example, motion sensing and/or gesture recognition devices such as the Microsoft
Kinect® motion sensor that enables users to control and interact with an input device, such as the
Microsoft Xbox® 360 game controller, through a natural user interface using gestures and
spoken commands. User interface input devices may also include eye gesture recognition
devices such as the Google Glass® blink detector that detects eye activity (e.g., ‘blinking” while
taking pictures and/or making a menu selection) from users and transforms the eye gestures as
input into an input device (e.g., Google Glass®). Additionally, user interface input devices may
include voice recognition sensing devices that enable users to interact with voice recognition

systems (e.g., Siri® navigator), through voice commands.

[0065] User interface input devices may also include, without limitation, three dimensional
(3D) mice, joysticks or pointing sticks, gamepads and graphic tablets, and audio/visual devices
such as speakers, digital cameras, digital camcorders, portable media players, webcams, image
scanners, fingerprint scanners, barcode reader 3D scanners, 3D printers, laser rangefinders, and
eye gaze tracking devices. Additionally, user interface input devices may include, for example,
medical imaging input devices such as computed tomography, magnetic resonance imaging,
position emission tomography, medical ultrasonography devices. User interface input devices
may also include, for example, audio input devices such as MIDI keyboards, digital musical

instruments and the like.

[0066] User interface output devices may include a display subsystem, indicator lights, or non-
visual displays such as audio output devices, etc. The display subsystem may be a Cathode Ray
Tube (CRT), a flat-panel device, such as that using a Liquid Crystal Display (LCD) or plasma
display, a projection device, a touch screen, and the like. In general, use of the term "output
device" is intended to include all possible types of devices and mechanisms for outputting
information from computer system 300 to a user or other computer. For example, user interface
output devices may include, without limitation, a variety of display devices that visually convey
text, graphics and audio/video information such as monitors, printers, speakers, headphones,

automotive navigation systems, plotters, voice output devices, and modems.

17

10

15

20

25

WO 2016/118564 PCT/US2016/014024

[0067] Computer system 300 may comprise a storage subsystem 318 that comprises software
elements, shown as being currently located within a system memory 310. System memory 310
may store program instructions that are loadable and executable on processing unit 304, as well

as data generated during the execution of these programs.

[0068] Depending on the configuration and type of computer system 300, system memory 310
may be volatile (such as Random Access Memory (RAM)) and/or non-volatile (such as Read-
Only Memory (ROM), flash memory, etc.) The RAM typically contains data and/or program
modules that are immediately accessible to and/or presently being operated and executed by
processing unit 304. In some cases, system memory 310 can comprise one or more Double Data
Rate fourth generation (DDR4) Dual Inline Memory Modules (DIMMSs). In some
implementations, system memory 310 may include multiple different types of memory, such as
Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM). In
some implementations, a Basic Input/Output System (BIOS), containing the basic routines that
help to transfer information between elements within computer system 300, such as during start-
up, may typically be stored in the ROM. By way of example, and not limitation, system memory
310 also illustrates application programs 312, which may include client applications, Web
browsers, mid-tier applications, Relational Database Management Systems (RDBMYS), etc.,
program data 314, and an operating system 316. By way of example, operating system 316 may
include various versions of Microsoft Windows®, Apple Macintosh®, and/or Linux operating
systems, a variety of commercially-available UNIX® or UNIX-like operating systems (including
without limitation the variety of GNU/Linux operating systems, the Google Chrome® OS, and
the like) and/or mobile operating systems such as 10S, Windows® Phone, Android® OS,
BlackBerry® 10 OS, and Palm® OS operating systems.

[0069] Storage subsystem 318 may also provide a tangible computer-readable storage medium
for storing the basic programming and data constructs that provide the functionality of some
embodiments. Software (programs, code modules, instructions) that when executed by a
processor provide the functionality described above may be stored in storage subsystem 318.

These software modules or instructions may be executed by processing unit 304. Storage

18

10

15

20

25

WO 2016/118564 PCT/US2016/014024

subsystem 318 may also provide a repository for storing data used in accordance with the present

invention.

[0070] Storage subsystem 300 may also include a computer-readable storage media reader 320
that can further be connected to computer-readable storage media 322. Together and, optionally,
in combination with system memory 310, computer-readable storage media 322 may
comprehensively represent remote, local, fixed, and/or removable storage devices plus storage
media for temporarily and/or more permanently containing, storing, transmitting, and retrieving

computer-readable information.

[0071] Computer-readable storage media 322 containing code, or portions of code, can also
include any appropriate media known or used in the art, including storage media and
communication media, such as but not limited to, volatile and non-volatile, removable and non-
removable media implemented in any method or technology for storage and/or transmission of
information. This can include tangible computer-readable storage media such as RAM, ROM,
Electronically Erasable Programmable ROM (EEPROM), flash memory or other memory
technology, CD-ROM, Digital Versatile Disk (DVD), or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other
tangible computer readable media. This can also include nontangible computer-readable media,
such as data signals, data transmissions, or any other medium which can be used to transmit the

desired information and which can be accessed by computing system 300.

[0072] By way of example, computer-readable storage media 322 may include a hard disk
drive that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk
drive that reads from or writes to a removable, nonvolatile magnetic disk, and an optical disk
drive that reads from or writes to a removable, nonvolatile optical disk such as a CD ROM,
DVD, and Blu-Ray® disk, or other optical media. Computer-readable storage media 322 may
include, but is not limited to, Zip® drives, flash memory cards, Universal Serial Bus (USB) flash
drives, Secure Digital (SD) cards, DVD disks, digital video tape, and the like. Computer-
readable storage media 322 may also include, Solid-State Drives (SSD) based on non-volatile
memory such as flash-memory based SSDs, enterprise flash drives, solid state ROM, and the
like, SSDs based on volatile memory such as solid state RAM, dynamic RAM, static RAM,

19

10

15

20

25

WO 2016/118564 PCT/US2016/014024

DRAM-based SSDs, Magnetoresistive RAM (MRAM) SSDs, and hybrid SSDs that use a
combination of DRAM and flash memory based SSDs. The disk drives and their associated
computer-readable media may provide non-volatile storage of computer-readable instructions,

data structures, program modules, and other data for computer system 300.

[0073] Communications subsystem 324 provides an interface to other computer systems and
networks. Communications subsystem 324 serves as an interface for receiving data from and
transmitting data to other systems from computer system 300. For example, communications
subsystem 324 may enable computer system 300 to connect to one or more devices via the
Internet. In some embodiments communications subsystem 324 can include Radio Frequency
(RF) transceiver components for accessing wireless voice and/or data networks (e.g., using
cellular telephone technology, advanced data network technology, such as 3G, 4G or Enhanced
Data rates for Global Evolution (EDGE), WiFi (IEEE 802.11 family standards, or other mobile
communication technologies, or any combination thereof), Global Positioning System (GPS)
receiver components, and/or other components. In some embodiments communications
subsystem 324 can provide wired network connectivity (e.g., Ethernet) in addition to or instead
of a wireless interface. In some cases, communications subsystem 324 can be implemented in

whole or in part as one or more PCle cards.

[0074] In some embodiments, communications subsystem 324 may also receive input
communication in the form of structured and/or unstructured data feeds 326, event streams 328,

event updates 330, and the like on behalf of one or more users who may use computer system

300.

[0075] By way of example, communications subsystem 324 may be configured to receive data
feeds 326 in real-time from users of social networks and/or other communication services such
as Twitter® feeds, Facebook® updates, web feeds such as Rich Site Summary (RSS) feeds,

and/or real-time updates from one or more third party information sources.

[0076] Additionally, communications subsystem 324 may also be configured to receive data in
the form of continuous data streams, which may include event streams 328 of real-time events

and/or event updates 330, that may be continuous or unbounded in nature with no explicit end.

20

10

15

20

25

WO 2016/118564 PCT/US2016/014024

Examples of applications that generate continuous data may include, for example, sensor data
applications, financial tickers, network performance measuring tools (e.g. network monitoring
and traffic management applications), clickstream analysis tools, automobile traffic monitoring,

and the like.

[0077] Communications subsystem 324 may also be configured to output the structured and/or
unstructured data feeds 326, event streams 328, event updates 330, and the like to one or more
databases that may be in communication with one or more streaming data source computers

coupled to computer system 300.

[0078] Computer system 300 can be one of various types, including a handheld portable device
(e.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA), a wearable device (e.g., a
Google Glass® head mounted display), a PC, a workstation, a mainframe, a kiosk, a server rack,

or any other data processing system.

[0079] Due to the ever-changing nature of computers and networks, the description of
computer system 300 depicted in the figure is intended only as a specific example. Many other
configurations having more or fewer components than the system depicted in the figure are
possible. For example, customized hardware might also be used and/or particular elements
might be implemented in hardware, firmware, software (including applets), or a combination.
Further, connection to other computing devices, such as network input/output devices, may be
employed. Based on the disclosure and teachings provided herein, a person of ordinary skill in

the art will appreciate other ways and/or methods to implement the various embodiments.

[0080] As introduced above, embodiments of the invention provide systems and methods for
managing processing, memory, storage, network, and cloud computing to significantly improve
the efficiency and performance of processing nodes such as any of the servers or other computers
or computing devices described above. Embodiments described herein can be implemented in a
set of hardware components that, in essence, change the way in which processing, memory,
storage, network, and cloud are managed by breaking down the artificial distinctions between
processing, memory, storage and networking in today’s commodity solutions to significantly

improve the performance of commodity hardware. For example, the hardware elements can

21

10

15

20

25

WO 2016/118564 PCT/US2016/014024

include a standard format memory module, such as a Dual Inline Memory Module (DIMM)),
which can be added to any of the computer systems described above. For example, the memory
module can be added to commodity or “off-the-shelf” hardware such a server node and acts as a
big data accelerator within that node. The components can also include one or more object
routers. Object routers can include, for example, a PCI express card added to the server node
along with the memory module and one or more external object routers such as rack mounted
routers, for example. Object routers can be used to interconnect two or more servers or other
nodes adapted with the memory modules and help to manage processing, memory, and storage
across these different servers Object routers can forward objects or portions of objects based on
object addresses and participate in operation of the object memory fabric. Together, these
hardware components can be used with commodity servers or other types of computing nodes in

any combination to implement an object memory fabric architecture.

[0081] FIG. 4 is a block diagram illustrating an exemplary object memory fabric architecture
according to one embodiment of the present invention. As illustrated here, the architecture 400
comprises an object memory fabric 405 supporting any number of applications 410a-g. As will
be described in greater detail below, this object memory fabric 405 can comprise any number of
processing nodes such as one or more servers having installed one or more memory modules as
described herein. These nodes can be interconnected by one or more internal and/or external
object routers as described herein. While described as comprising one or more servers, it should
be noted that the processing nodes of the object memory fabric 405 can comprise any of a variety
of different computers and/or computing devices adapted to operate within the object memory

fabric 405 as described herein.

[0082] According to one embodiment, the object memory fabric 405 provides an object-based
memory which manages memory objects within the memory of the nodes of the object memory
fabric 405 and at the memory layer rather than in the application layer. That is, the objects and
associated properties can be implemented and managed natively in the nodes of the object
memory fabric 405 to provide increased functionality without any software and increasing
efficiency and performance by dynamically managing object characteristics including, but not

limited to persistence, location and processing. Object properties can also propagate to the

22

10

15

20

25

WO 2016/118564 PCT/US2016/014024

applications 410a-g. The memory objects of the object memory fabric 405 can be used to
eliminate typical size constraints on memory space of the commodity servers or other nodes
imposed by address sizes. Rather, physical addressing can be managed within the memory
objects themselves and the objects can in turn be accessed and managed through the object name
space. The memory objects of the object memory fabric 405 can also be used to eliminate the
distinction between memory (temporary) and storage (persistent) by implementing and managing
both within the objects. The object memory fabric 405 can also eliminate the distinction between
local and remote memory by transparently managing the location of objects (or portions of
objects) so all objects appear simultaneously local to all nodes. The memory objects can also
eliminate the distinction between processing and memory through methods of the objects to
place the processing within the memory itself. In other words, embodiments of the present
invention provide a single-level memory that puts the computes with the storage and the storage
with the computes, directly and thereby eliminating numerous levels of software overhead

communicating across these levels and the artificial overhead of moving data to be processed.

[0083] In these ways, embodiments of the object memory fabric 405 and components thereof
as described herein can provide transparent and dynamic performance acceleration, especially
with big data or other memory intensive applications by reducing or eliminating overhead
typically associated with memory management, storage management, networking, data
directories, and data buffers at both the system and application software layers. Rather,
management of the memory objects at the memory level can significantly shorten the pathways
between storage and memory and between memory and processing, thereby eliminating the

associated overhead between each.

[0084] Embodiments provide coherent, hardware-based, infinite memory managed as memory
objects with performance accelerated in-memory, spanning all nodes, and scalable across all
nodes. This enables transparent dynamic performance acceleration based on the object and end
application. Using an architecture according to embodiments of the present invention,
applications and system software can be treated the same and as simple as a single, standard
server but additionally allowing memory fabric objects to capture heuristics. Embodiments

provide multiple dimensions of accelerated performance including locality acceleration.

23

10

15

20

25

WO 2016/118564 PCT/US2016/014024

According to one embodiment, object memory fabric metadata associated with the memory
objects can include triggers which enable the object memory fabric architecture to localize and
move data to fast dram memory ahead of use. Triggers can be a fundamental generalization that
enables the memory system to execute arbitrary functions based on memory access. Various
embodiments can also include an instruction set which can provide a unique instruction model
for the object memory fabric based on the triggers defined in the metadata associated with each
memory object and that supports core operations and optimizations and allows the memory
intensive portion of applications to be more efficiently executed in a highly parallel manner

within IMF.

[0085] Embodiments can also decrease software path-length by substituting a small number of
memory references for a complex application, storage and network stack. This can be
accomplished when memory and storage is directly addressable as memory under embodiments
of the present invention. Embodiments can additionally provide accelerated performance of high
level memory operations. For many cases, embodiments of the object memory fabric
architecture can eliminate the need to move data to the processor and back to memory, which is

extremely inefficient for today’s modern processors with three or more levels of caches.

[0086] FIG. 5 is a block diagram illustrating an exemplary memory fabric object memory
according to one embodiment of the present invention. More specifically, this example
illustrates an application view of how memory fabric object memory can be organized. Memory
fabric object address space 500 can be a 128 bit linear address space where the object ID
corresponds to the start of the addressable object. Objects 510 can be variable size from 2'* to
2% bytes. The address space 500 can efficiently be utilized sparsely within and across objects as
object storage is allocated on a per block basis. The size of the object space 500 is meant to be
large enough that garbage collection is not necessary and to enable disjoint systems to be easily

combined.

[0087] Object metadata 505 associated with each object 510 can be transparent with respect to
the object address space 500 and can utilize the object memory fabric to manage objects and
blocks within objects and can be accessible at appropriate privilege by applications 515a-g

through Application Program Interfaces (APIs) of the object memory fabric. This API provides

24

10

15

20

25

WO 2016/118564 PCT/US2016/014024

functions for applications to set up and maintain the object memory fabric, for example by using
modified Linux libc. With a small amount of additional effort applications such as a SQL
database or graph database can utilize the API to create memory objects and provide and/or
augment object metadata to allow the object memory fabric to better manage objects. Object
metadata 505 can include object methods, which enable performance optimization through
dynamic object-based processing, distribution, and parallelization. Metadata can enable each

object to have a definable security policy and access encapsulation within an object.

[0088] According to embodiments of the present invention, applications 515a-g can now
access a single object that captures it’s working and/or persistent data (such as AppO 515a) or
multiple objects for finer granularity (such as App1 515b). Applications can also share objects.
Object memory 500 according to these embodiments can physically achieves this powerfully
simple application view with a combination of physical organization, which will be described in
greater detail below with reference to FIG. 6, and object memory dynamics. Generally speaking,
the object memory 500 can be organized as a distributed hierarchy that creates hierarchical
neighborhoods for object storage and applications 515a-g. Object memory dynamics interact
and leverage the hierarchal organization to dynamically create locals of objects and applications
(object methods) that operate on objects. Since object methods can be associated with memory
objects, as objects migrate and replicate on the memory fabric, object methods naturally gain
increased parallelism as object size warrants. The hierarchy in conjunction with object dynamics
can further create neighborhoods of neighborhoods based on the size and dynamics of the object

methods.

[0089] FIG. 6 1is a block diagram illustrating an exemplary object memory dynamics and
physical organization according to one embodiment of the present invention. As illustrated in
this example, an object memory fabric 600 as described above can include any number of
processing nodes 605 and 610 communicatively coupled via one or more external object routers
615. Each node 605 and 610 can also include an internal object router 620 and one or more
memory modules. Each memory module 625 can include a node object memory 635 supporting
any number of applications 515a-g. Generally speaking, the memory module 625, node object

router 620 and inter-node object router 615 can all share a common functionality with respect to

25

10

15

20

25

WO 2016/118564 PCT/US2016/014024

the object memory 635 and index thereof. In other words, the underlying design objects can be
reused in all three providing a common design adaptable to hardware of any of a variety of
different form factors and types in addition to those implementations described here by way of

example.

[0090] More specifically, a node can comprise a single node object router 620 and one or more
memory modules 625 and 630. According to one embodiment, a node 605 can comprise a
commodity or “off-the-shelf” server, the memory module 625 can comprise a standard format
memory card such as a Dual-Inline Memory Module (DIMM) card, and the node object router
620 can similarly comprise a standard format card such as a Peripheral Component Interconnect
express (PCle) card. The node object router 620 can implement an object index covering the
objects/blocks held within the object memory(s) 635 of the memory modules 625 and 630 within
the same node 605. Each memory module 625 and 630 can hold the actual objects and blocks
within objects, corresponding object meta-data, and object index covering objects currently
stored local to that memory module. Each memory module 625 and 630 can independently
manage both dram memory (fast and relatively expensive) and flash memory (not as fast, but
much less expensive) in a manner that the processor (not shown) of the node 605 thinks that
there is the flash amount of fast dram. The memory modules 625 and 630 and the node object
router 620 can both manage free storage through a free storage index implemented in the same
manner as for other indexes. Memory modules 625 and 630 can be directly accessed over the
standard DDR memory bus by processor caches and processor memory reference instructions.

In this way, the memory objects of the memory modules 625 and 630 can be accessed using only
conventional memory reference instructions and without implicit or explicit Input/Output (I/0)

instructions.

[0091] Objects within the object memory 635 of each node 625 can be created and maintained
through an object memory fabric API (not shown). The node object router 620 can communicate
with the API through a modified object memory fabric version of libc and an object memory
fabric driver (not shown). The node object router 620 can then update a local object index, send
commands toward a root, i.e., towards the inter-node object router 615, as required and

communicate with the appropriate memory module 625 or 630 to complete the API command

26

10

15

20

25

WO 2016/118564 PCT/US2016/014024

locally. The memory module 625 or 630 can communicate administrative requests back to the

node object router 620 which can handle them appropriately.

[0092] According to one embodiment, the internal architecture of the node object router 620
can be very similar to the memory module 625 with the differences related to routing
functionality such as managing a node memory object index and routing appropriate packets to
and from the memory moduels 625 and 630 and the inter-node object router 615. That is, the
node object router 620 can have additional routing functionality but does not need to actually

store memory objects.

[0093] The inter-node object router 615 can be considered analogous to an IP router.

However, the first difference is the addressing model used. IP routers utilize a fixed static
address per each node and routes based on the destination IP address to a fixed physical node.
However, the inter-node object router 615 of the object memory fabric 600 utilizes a memory
fabric object address (OA) which specifies the object and specific block of the object. Objects
and blocks can dynamically reside at any node. The inter-node object router 615 can route OA
packages based on the dynamic location(s) of objects and blocks and track object/block location
dynamically in real time. The second difference is that the object router can implement the
object memory fabric distributed protocol which provides the dynamic nature of object/block
location and object functions, for example including, but not limited, to triggers. The inter-node
object router 615 can be implemented as a scaled up version of node object router 620 with
increased object index storage capacity, processing rate and overall routing bandwidth. Also,
instead of connecting to a single PCle or other bus or channel to connect to memory modules,
inter-node object router 615 can connect to multiple node object routers and/or multiple other
inter-node object routers. According to one embodiment, a node object router 620 can
communicate with the memory modules 625 and 630 with direct memory access over PCle and
the memory bus (not shown) of the node 605. Node object routers of different nodes 605 and
610 can in turn connect with one or more inter-node object routers 615 over a high-speed
network (not shown) such as 25/100GE fiber that uses several layers of Gigabit Ethernet protocol
or object memory fabric protocol tunneled through standard IP, for example. Multiple inter-node

object routers can connect with the same network.

27

10

15

20

25

WO 2016/118564 PCT/US2016/014024

[0094] In operation, the memory fabric object memory can physically achieve its powerfully
simple application view described above with reference to FIGs. 4 and 5 with a combination of
physical organization and object memory dynamics. According to one embodiment and as
introduced above with reference to FIG. 5, the memory fabric object memory can be organized
as a distributed hierarchy that creates hierarchical neighborhoods for object storage and
applications 515a-g. The node object routers can keep track of which objects and portions of
objects are local to a neighborhood. The actual object memory can be located on nodes 605 or

610 close to applications 515a-g and memory fabric object methods.

[0095] Also as introduced above, object memory dynamics can interact and leverage the
hierarchal organization to dynamically create locals of objects and applications (object methods)
that operate on objects. Since object methods can be associated with objects as objects migrate
and replicate across nodes, object methods naturally gain increased parallelism as object size
warrants. This object hierarchy, in conjunction with object dynamics, can in turn create

neighborhoods of neighborhoods based on the size and dynamics of the object methods.

[0096] For example, AppO 515a spans multiple memory modules 625 and 630 within a single
level object memory fabric neighborhood, in this case node 605. Object movement can stay
within that neighborhood and its node object router 620 without requiring any other
communication links or routers. The self-organizing nature along the hierarchy defined
neighborhoods provides efficiency from a performance and minimum bandwidth perspective. In
another example, Appl (A1) 515b can have the same characteristic but in a different
neighborhood, i.e., in node 610. App2 (A2) 515¢ can be a parallel application across a two-level
hierarchy neighborhood, i.e., nodes 605 and 610. Interactions can be self-contained in the

respective neighborhood.

[0097] In the foregoing description, for the purposes of illustration, methods were described in
a particular order. It should be appreciated that in alternate embodiments, the methods may be
performed in a different order than that described. It should also be appreciated that the methods
described above may be performed by hardware components or may be embodied in sequences
of machine-executable instructions, which may be used to cause a machine, such as a general-

purpose or special-purpose processor or logic circuits programmed with the instructions to

28

10

WO 2016/118564 PCT/US2016/014024

perform the methods. These machine-executable instructions may be stored on one or more
machine readable mediums, such as CD-ROMs or other type of optical disks, floppy diskettes,
ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, flash memory, or other types of
machine-readable mediums suitable for storing electronic instructions. Alternatively, the

methods may be performed by a combination of hardware and software.

[0098] While illustrative and presently preferred embodiments of the invention have been
described in detail herein, it is to be understood that the inventive concepts may be otherwise
variously embodied and employed, and that the appended claims are intended to be construed to

include such variations, except as limited by the prior art.

29

10

15

20

25

WO 2016/118564 PCT/US2016/014024

WHAT IS CLAIMED IS:

1. A hardware-based processing node of an object memory fabric, the

processing node comprising:

a memory module storing and managing one or more memory objects, wherein:
each memory object is created natively within the memory module,
each memory object is accessed using a single memory reference

instruction without Input/Output (I/O) instructions,
each memory object is managed by the memory module at a single

memory layer, and
physical addressing of both memory and storage of the object
memory fabric is managed with each of the one or more memory objects through

an object name space of the object memory fabric.

2. The hardware-based processing node of claim 1, wherein the memory
module manages both storage and memory without distinction through the one or more memory

objects.

3. The hardware-based processing node of claim 2, wherein managing both
storage and memory without distinction through the one or more memory objects comprises
managing all of the one or more memory objects as memory regardless of an underlying physical

storage media.

4. The hardware-based processing node of claim 1, wherein the object
memory fabric comprises a plurality of hardware-based processing nodes and wherein the one or
more memory objects are accessed and managed across the object memory fabric through the

object name space of the object memory fabric.

5. The hardware-based processing node of claim 4, wherein each memory
object and properties of each memory object are maintained on any one or more of the plurality

of nodes in the object memory fabric, wherein managing the memory objects includes

30

10

15

20

WO 2016/118564 PCT/US2016/014024

maintaining the memory objects and properties of the memory objects as the memory objects are

moved, split, or duplicated between nodes

6. The hardware-based processing node of claim 1, wherein the object name

space is unconstrained by the physical addresses managed by the one or more memory objects.

7. The hardware-based processing node of claim 1, wherein the hardware-

based processing node comprises a Dual In-line Memory Module (DIMM) card.

8. The hardware-based processing node of claim 1, wherein the hardware-
based processing node comprises a commodity server and wherein the memory module

comprises a Dual In-line Memory Module (DIMM) card installed within the commodity server.

9. The hardware-based processing node of claim 8, further comprising a

communication interface coupled with the object memory fabric.

10. The hardware-based processing node of claim 9, wherein the

communication interface comprises a Peripheral Component Interconnect Express (PCI-e) card.

11. The hardware-based processing node of claim 1, wherein the hardware-

based processing node comprises a mobile computing device.

12. The hardware-based processing node of claim 1, wherein the hardware-

based processing node comprises a single chip.

13. An object memory fabric comprising:
a plurality of hardware-based processing nodes, each hardware-based processing
node comprising:
one or more memory modules storing and managing one or more
memory objects, wherein each memory object is created natively within the
memory module, each memory object is accessed using a single memory

reference instruction without Input/Output (I/O) instructions, each memory object

31

10

15

20

25

WO 2016/118564 PCT/US2016/014024

is managed by the memory module at a single memory layer, and physical

addressing of both memory and storage of the object memory fabric is managed

with each of the one or more memory objects through an object name space of the

object memory fabric, and

a node router communicatively coupled with each of the one or

more memory modules of the node and adapted to route memory objects or

portions of memory objects between the one or more memory modules of the

node; and

one or more inter-node routers communicatively coupled with each node router,
wherein each of the plurality of nodes of the object memory fabric is communicatively coupled
with at least one of the inter-node routers and adapted to route memory objects or portions of

memory objects between the plurality of nodes.

14. The object memory fabric of claim 13, wherein the memory module

manages both storage and memory without distinction through the one or more memory objects.

15. The object memory fabric of claim 14, wherein managing both storage and
memory without distinction through the one or more memory objects comprises managing all of

the one or more memory objects as memory regardless of an underlying physical storage media.

16. The object memory fabric of claim 13, wherein the one or more memory
objects are accessed and managed across the object memory fabric through the object name

space of the object memory fabric.

17. The object memory fabric of claim 16, wherein each memory object and
properties of each memory object are maintained on any one or more of the plurality of nodes in
the object memory fabric, wherein managing the memory objects includes maintaining the
memory objects and properties of the memory objects as the memory objects are moved, split, or

duplicated between nodes

18. The object memory fabric of claim 13, wherein the object name space is

unconstrained by the physical addresses managed by the one or more memory objects.

32

10

15

20

WO 2016/118564 PCT/US2016/014024

19. The object memory fabric of claim 12, wherein at least one hardware-
based processing node comprises a commodity server and wherein the one or more memory
modules of the commodity server comprise at least one Dual In-line Memory Module (DIMM)

card installed within the commodity server.

20. The object memory fabric of claim 13, wherein the communication

interface comprises a Peripheral Component Interconnect Express (PCI-e) card.

21. The object memory fabric of claim 13, wherein at least one hardware-

based processing node comprises a mobile computing device.

22. The object memory fabric of claim 13, wherein at least one hardware-

based processing node comprises a single chip.

23. A method for storing and managing one or more memory objects in an
object memory fabric, the method comprising:

creating each memory object natively within a memory module of a hardware-
based processing node of the object memory fabric;

accessing each memory object using a single memory reference instruction
without Input/Output (I/O) instructions;

managing each memory object within the memory module at a single memory
layer; and

managing physical addressing of both memory and storage of the object memory
fabric with each of the one or more memory objects through an object name space of the object

memory fabric.

24, The method of claim 23, wherein the memory module manages both

storage and memory without distinction through the one or more memory objects.

33

10

WO 2016/118564 PCT/US2016/014024

25. The method of claim 24, wherein managing both storage and memory
without distinction through the one or more memory objects comprises managing all of the one

or more memory objects as memory regardless of an underlying physical storage media.

26. The method of claim 23, wherein the object memory fabric comprises a
plurality of hardware-based processing nodes and wherein the one or more memory objects are
accessed and managed across the object memory fabric through the object name space of the

object memory fabric.

27. The method of claim 26, wherein each memory object and properties of
each memory object are maintained on any one or more of the plurality of nodes in the object
memory fabric, wherein managing the memory objects includes maintaining the memory objects
and properties of the memory objects as the memory objects are moved, split, or duplicated

between nodes

28. The method of claim 23, wherein the object name space is unconstrained

by the physical addresses managed by the one or more memory objects.

34

PCT/US2016/014024

1/6

WO 2016/118564

(My Joud)
1 'Ol

LO)|
~
~

MIoMIBN (eo1sAud

abelo)g

uonejussaidoy abeiolg

MS
MJOMIBN

uonejussoIday
WIBISASSllH

UULEUD sl o
9segeled]

uonejussaidey ddy

(a1eym) AiojosuiQg

® @& @ @

S S
ddy | ddy

® @ & & & & & @& @

ddy

JaAIBg Alipowiion

= NS
SJOMION

= abeio)g

Uonejussaiday abeio)g

G uoneuesaIday
Wa1sAsali

= UONEjUasaItoy
aseqele(]

“uonejussaiday ddy

(19ym) Alojoaliq

W QON&@

ddy

@ & ® 8 & 2 & & @&

Janiag Allpowwion)

001 \v

WO 2016/118564

D

DATABASE

214

PCT/US20
2/6

DATABASE
216

|

COMPONENT
218

COMPONENT
220

|

COMPONENT
222

|

SERVER
212

i

NETWORK(S)

210
208

16/014024

g

206

FIG. 2

WO 2016/118564

PCT/US2016/014024

3/6

AA

€ Old

["[33 8zt 143
saLvadn| fswvadls| | sa3aad
IN3aAg IN3aAg vivQ
1743

WN3LSASANS SNOILYIINNNNOD

81¢
WILSASANS IOVHOLS
[443
91¢ vIaap IOvHOLS
W3LSAS ONILYYIHO Idvavay
-43LNdNOD
V1€
v1vQ WYH¥90Nd
>TE 0ce
che ¥3avay viaaw
SINVYD0Yd NOILYDI1ddY JovioLs
0I¢ 31avavay
H¥3LNdNOD

AHOWIN WILSAS

c0¢

30¢
W3LsSASANS O/

90¢
1INN
NOILVYI 1300y

ONISS300Hd

e 43
LINN LINN
ONISSIO0Yd ang ONISSIOONd ang
IHOVD IHOVD IHOVD
340D 34090 340D
¥0¢€

LINN ONISS300™d

PCT/US2016/014024

¥ "Old

boLv 017t o0LY poLy 0Ly qoLty eoLy

Qﬁaﬂu QQ< Qﬂdﬂ\ QQ< Qﬁlﬂ\ Qﬁaﬂu 80068080 q QQ<

4/6

10
D
<

WO 2016/118564

PCT/US2016/014024

5/6

WO 2016/118564

0lLs

PGIa, 81S, GG, psie o9GIS 45 LG, BG[G.
9 G 4 € (4 A I
ddy ddy ddy ddy ddy ddy ddy
A AX. ® 2T 15, ey
K %. h . ~ - Y m L) %.a, -,
\\ o M 5 - ‘A % M oeo% «eeoo
; . ~ ' ; L
Nm. PRl . “ % H ~ .o.a
. e - o, AN / H . fii ",
.N P >, ~, N m @%.u. a s,ao
L % Y & v Y)

20ed

H

S

PCT/US2016/014024

6/6

WO 2016/118564

oGlg

9 "OId

o

S |

w7/

qsls oG1lg qsls oG1g eGglSg pPsLS oG1g qs1s EGLS
Mr =N A e (A e — 1
N,acs m\ @ Naoaa m‘_ m Neaes Q ,.V‘ mw LR N m\ @
1/ VAN v vV Y 2187 ddy ddy | |ddy | | ddy
AIOUIBN RIOWIBIN AIOWIBIN €9
1olao epon]!” [118lao spoN 10340 SPON Aowepy 108lg0 epoN

a//y K\\m omw\\\ \xf/(
19IN0Y 029 jo1n0Y
G 18[00)\ 199[q0
519 190y
1500
009
o
s\%\%x

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 16/14024

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 13/00 (2016.01)

CPC

- GO6F13/18, GO6F13/1642, GO6F 13/1605, GO6F9/52, GO6F 15/167, GO6F3/067, GO6F3/0605, GO6F3/0659, GO6F3/0613
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed b
IPC(8): GO6F 13/00 (2016.01); CPC: GO6F13/18, GO6F 13/1642, c,yo

GO6F3/0659, GO6F3/0613, GO6F3/0689

Cl

lassification symbols

6F 13/1605, GO6F9/52, GO6F15/167, GO6F3/067, GOGF 3/0605,

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 711/151, 711/154, 709/224, 709/218, 709/229, 709/201, 709/217, 709/223, 709/218, 709/226

Electronic data base consulted during the intemmational search (néme of

data base and, where practicable, search terms used)

PatBase, ProQuest Dialog, Google Web, Google Patents (Search terms: memory object, buffer, cache, data object, commodity server,
computer, processor, DIMM, interconnect express, PCI, PCIE, native,
instruction, address, memory layer, mobile commodity computer, mobile processing node, etc.)

create, node router, switch, memory fabric, memory reference

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2005/0273571 A1 (Lyon et al.) 08 December 2005 (08.12.2005), para. {0023]-[0024], [0029], | 1-6, 13-18, 23-28
- {0031], [0038], [0041], [0046], and [0074], and Figs. 2 and 8, and claims 1 and 13.
Y 7-12,19-22
Y US 2014/0165196 A1 (Dalal et al.) 12 June 2014 (12.06.2014), para. [0024]-[0025], [0029], 7-10, 19-20
{0034}, [0036], and [0102]-[0103], and Fig. 1.
Y US 5,664,207 A (Crumpler et al.) 02 September 1997 (02.09.1997), col. 6, In. 22-34 and 56-57, | 11, 21
and Figs. 1-2.
Y US 2014/0317352 A1 (Kleen) 23 October 2014 (23.10.2014), para. [0015], [0026], and [0028]. 12,22
A US 2012/0017037 A1 (Riddle et al.) 19 January 2012 (19.01.2012), entire document. 1-28

I:] Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date]

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means .

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y™ document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

05 March 2016 (05.03.2016)

Date of mailing of the international search report

28 MAR 2016

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - wo-search-report

