OVERTRAVEL SWITCH ACTUATOR
Eric L. Long, Highland Park, Ill., assignor to Cherry
Electrical Products Corporation, Highland Park, Ill.,
a corporation of Illinois
Filed Aug. 7, 1967, Ser. No. 658,877
Int. Cl. H01H 21/04
U.S. Cl. 200—67
2 Claims

ABSTRACT OF THE DISCLOSURE
A snap-action switch actuator constructed of telescoping
sections yieldably separated by an internal spring hav-
ing a compression resistance equal to the tension of a
switch blade overcentering coil spring, which coil spring
is deformed out of its normal longitudinal plane by one of
the actuator sections, as such section is moved through
its pretravel, and before the second section of the actuator
continues its overtravel telescopic movement.

SUMMARY OF THE INVENTION
The two-piece telescopic switch actuator has an internal
spring yieldably maintaining the parts in an extended
relation with each other. One part of the actuator has a
prescribed pretravel, which is the distance it moves to
effect actuation of the switch, and with the remaining
part of the actuator having a continued telescopic over-
travel, which is a distance of movement beyond that neces-
sary to effect actuation of the switch. The internal spring
between the two parts of the actuator has a compression
resistance at least equal to the tension of the switch blade
actuating spring such that the switch blade actuating spring
is deformed by the pretravel movement of one part of
the actuator before there is a telescopical movement
between the parts of the actuator as the second part continues in
its overtravel.

The invention will be best understood by reference to
the accompanying drawings in which:
FIG. 1 is a side elevational view of the switch with
the overtravel switch actuator in its normal or rest posi-
tion.
FIG. 2 is a side elevational view similar to FIG. 1 but
showing the switch actuator in its pretravel position and
with the switch components in their actuated position.
FIG. 3 is a side elevational view similar to FIG. 2 but
showing the actuator in its full telescopic overtravel posi-
tion, and
FIG. 4 is a perspective exploded view of the telescopic
switch actuator.

The overtravel switch actuator is associated with a
snap-action switch containing in a switch housing 10 which
includes a case 11 and a complementary side cover, not
shown. The case 11 is divided into upper and lower com-
partments 12 and 13. A slot 14 is formed in one side wall
15 of the lower compartment 13 in which is positioned a
combination terminal and pivot post plate 16. A pair of
parallelly extending slots 17 and 18 are formed in the
opposite side wall 19 of the compartment 13 and have
positioned therein spaced apart fixed terminals 20 and 21.
A coil spring 22 has one end connected as at 23 to the
plate 16 and the other end connected to a movable switch
blade 24. The switch blade 24 has one end pivotally con-
ected to the pivot posts of the plate 16 and is held under
compression thereagainst through the tension of the coil
spring 22. The upper and lower compartments 12 and 13
are separated by a wall 25 which has an opening 26 formed
therein providing open communication between the com-
partments 12 and 13. The opening 26 formed in the wall
25 is in alignment with an opening 27 formed in the top
wall 28 of the case 11. The opening 27 provides an in-
ternal counterbore 29, the purpose and function of which
will hereinafter be made apparent.

A two-piece actuator 30 is provided and includes a
circular top section 31 which provides an enlarged head
32 having a diameter equal to the width of the counter-
bore 29 so that the enlarged head 32 will be received
therein and guided thereby when moved therethrough.
The top section 31 is provided with an internal square cut
bore 33 which extends upwardly through the enlarged
head 32.

The actuator 30 includes a second section 34 which is
substantially square in cross section, and of a length
slightly longer than the section 31 of the actuator 30.
The arrangement is such that one end of the second sec-
ction 34 of the actuator 30 will be disposed in the square
bore 33 of the first section 31. Between the ends of the
square bore 33 formed in section 31 and the inserted
end of the second section 34 there is disposed an expan-
sion spring 35. This spring normally maintains the sec-
tions of the actuator 30 in the positions shown in FIG. 1.

When an actuating force is applied to the switch actua-
tor, sections 31 and 34 thereof, by reason of the expa-
sion spring 35 therebetween, will move as a single unit,
and as the expansion spring 35 is of a slightly greater ten-
sion than the coil spring 22, the movement of the actua-
tor 30 will deform the coil spring 22 below the point of
pivotal connection between the blade 24 and the pivot
posts of the plate 16 to cause the blade 24 to pivot in a
downward direction with a snap action out of contact with
terminal 17 and into contact with terminal 18. At this
point the exposed end of the second section 34 of the
actuator 30 will have moved through its pretravel and be
brought on the plate 16 where further movement will be
arrested.

Continued movement of the actuator 30 is achieved
when the section 31 is caused to continue in an overtravel
movement, compressing spring 35, permitting section 34
to be telescoped into the bore 33 of the section 31 as
seen in FIG. 3.

It should be noted that during the initial movement of
the actuator 30 or the pretravel movement of the second
section 34 such section is guided by the walls defining
the opening 26 formed in the wall 25, and by the fact
that the enlarged head 32 of section 31 of the actuator
is being guided by the side walls of the counterbore 29.
Thus during the critical pretravel movement of the actua-
tor which results in the actuation of the switch, the
sections of the actuator are positively guided and re-
strained in their directional movement. The section 31
is guided during its overtravel movement by the fact
that its circular wall is passing through and guided by
the opening 27 formed in the top wall 28 of the housing
as well as the fact that a greater length of the second
section 34 is being projected into the square bore 33 of
section 31 to prevent any lateral deflection thereof as it
moves into the position shown in FIG. 3.

While I have illustrated and described the preferred
form of construction for carrying my invention into effect,
this is capable of variation and modification without
departing from the spirit of the invention. I, therefore,
do not wish to be limited to the precise details of construc-
tion set forth, but desire to avail myself of such variations
and modifications as come within the scope of the ap-
pended claims.

Having thus described my invention, what I claim as
new and desire to protect by Letters Patent is:
1. An overtravel actuator for a switch having a housing
for the switch components which includes an overcenter-
ing mechanism having a coil spring for pivotally moving
a switch blade between fixed terminals and to yieldably
maintain a switch actuator in position relative thereto, wherein the improvement comprises:

(a) a two-piece actuator carried by the housing and disposed substantially perpendicular to the longitudinal plane of a coil spring,
(b) an opening formed in a top wall of the housing, and having communication with an enlarged internal counter bore formed in the under surface of such top wall,
(c) said two-piece actuator having a substantially hollow first part of a size equal to said opening and journaled therethrough with said first part having at one end a circumferentially extending enlarged head of a size equal to said counter bore so as to be guidingly movable therethrough,
(d) a second part of said actuator positioned within the housing and having one end projected into said first part of said two-piece actuator and its opposite end in contact with the coil spring,
(e) a second opening provided within the housing in alignment with said opening formed in the top wall and through which said second part of said actuator is guidingly moved within the housing and perpendicular to the coil spring,
(f) a compression spring disposed in said hollow first part of said actuator telescopically connecting said first and second parts of said actuator with said spring having a compression resistance equal to the tension of the coil spring so that initial movement of both parts of said actuator through their respective guide openings effects movement of the coil spring out of its longitudinal plane before telescopic movement between said first and second parts of said actuator, and
(g) fixed means in the path of movement of said second part of said actuator for arresting further movement thereof after the coil spring of the switch is deformed out of its normal longitudinal plane and for effecting telescopic movement of said second part within said first part of said actuator against said compression spring.

2. The overtravel actuator of claim 1 further defined by having said first and second parts of said actuator formed into different shapes with the shape of said first part conforming to the opening formed in the top wall of the housing, and the shape of the second part conforming to the configuration of said second opening provided within the housing with said openings cooperating to guide their respective actuator parts and to prevent lateral deflection and axial rotation therebetween as they are moved through the housing, and with said enlarged head adapted to bear against the end surface of said counter bore to resist separation of said first and second parts of said actuator in one direction under expansion of said compression spring positioned therebetween.

References Cited

UNITED STATES PATENTS
2,354,027 7/1944 Kaminsky.
2,418,222 4/1947 Fetter.
3,073,923 1/1963 Anderson et al.

ROBERT K. SCHAEFER, Primary Examiner
D. SMITH, Jr., Assistant Examiner