wo 20097102304 A1 || 10D 0 O OO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization /g]I) 0M)F 0001000)0 D0 0 A 0
International Bureau S,/ 0
(43) Int tional Publication Dat \,'/_) (10) International Publication Number
nternational Publication Date NS
e
20 August 2009 (20.08.2009) PCT WO 2009/102304 Al
(51) International Patent Classification: (72) Inventors; and
GO6F 9/00 (2006.01) (75) Inventors/Applicants (for US ornly): ROTH, Ron, M.
21) Int tional Application Number: [IL/IL]; 33 Ruth Street, 34404 Haifa (IL). VONTOBEL,
(21) International Application Num er'PCT US2008/002836 Pascal, O. [CH/US]; 1501 Page Mill Road, Palo Alto,
California 94304-1100 (US).

(22) International iling Date: 008 (03.03 2008, (74 Agent: LEHMANN, Eileen; Hewlett-Packard Company,
are (03.03.) Intellectual Property Administration, P.O. Box 272400,

(25) Filing Language: English M/S 35, Fort Collins, Colorado 80527-2400 (US).
(26) Publication Language: English (81) Designated States (unless otherwise indicated, for every
L. kind of national protection available). AE, AG, AL, AM,
(30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
12/070,074 14 February 2008 (14.02.2008) us CA. CH. CN. CO. CR. CU. CZ. DE. DK. DM. DO. DZ.
(71) Applicant (for all designated States except US): EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN,
HEWLETT-PACKARD DEVELOPMENT COMPA- HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
NY, L.P. [US/US]; 11445 Compaq Center Drive West, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
Houston, TX 77070 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,

NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR DETECTION AND CORRECTION OF PHASED-BURST ERRORS, ERASURES,
SYMBOL ERRORS, AND BIT ERRORS IN A RECEIVED SYMBOL STRING

schemes that are well suited for correcting phased bursts of errors or erasures as well as additional
symbol errors and bit errors. Each encoding-and-decoding scheme that represents an embodiment
of the present invention is constructed from two or more component error-correcting codes and a
mapping function f (-). The composite error-correcting codes that represent embodiments of the
Receive Kinformation | 45 Present invention can correct longer phased bursts or a greater number of erasures in addition to

symbals single-bit errors and symbol errors, respectively, than either of the component codes alone, and are
more efficient than previously developed ECC-based encoding-and-decoding schemes for correct-
ing phased bursts of symbol errors and erasures combined with additional bit errors and symbol er-
Tors.

CD (57) Abstract: Embodiments of the present invention include ECC-based encoding-and-decoding
Encode

A 4

Encode K; of the K
information symbols
using code C; to 1503
produce vector v

Encode K; of the K
information symbols
using code C; to —~1504
produce vector v

}

Set vector w = fu) + v | ~—1505

!

Set codeword C = uww | ——1506

Figure 15A

WO 2009/102304 A1 W00 0T 0 AR 00

84)

SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG,
US,UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI
(BF, BI, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

WO 2009/102304

10

15

20

25

30

PCT/US2008/002836

METHOD AND SYSTEM FOR DETECTION AND CORRECTION OF
PHASED-BURST ERRORS, ERASURES, SYMBOL ERRORS, AND BIT
ERRORS IN A RECEIVED SYMBOL STRING

TECHNICAL FIELD

The present invention is related to correction of errors or erasures that

* occur in symbol strings passed through an error-and-erasure-introducing channel,

including electronic transmission of the symbol string or storage of the symbol strings

in, and retrieval of the symbol strings from, an electronic memory.

BACKGROUND OF THE INVENTION

The field of error-correcting codes ("ECCs") has been well studied and
researched for over 50 years. Many different types of encoding-and-decoding
schemes based on error-correcting codes have been developed for application to many
different problem domains. ECC-based encoding-and-decoding schemes generally
involve introduction of redundant information into an encoded information stream to
allow various types of errors subsequently introduced in the information stream to be
detected and corrected. As with most computational techniques, there are a variety of
advantages, disadvantages, efficiencies, and- inefficiencies associated with any
particular encoding-and-decoding scheme applied to any particular problem domain.
For example, as the amount of redundant information added to an information stream
increases, the quantities and types of errors that can be detected and corrected within
the information stream generally increases, but the information, or space, efficiency of
transmission of the information stream decreases due to the increasihg overhead of
the redundant information. Space inefficiencies can also result from the need to
create and maintain large amounts of data needed for encoding or decoding, such as

decoding tables, discussed below. As another example, a symbol efficient code may

~ involve complex computation, and may therefore be computationally, or time,

inefficient. The overall efficiency of a code is related to the sum of the space and
time efficiencies of the code, but space efficiency is often obtained at the expense of
time efficiency, and vice versa. Certain types of ECC-based encoding-and-decoding

schemes are better suited to detecting and correcting certain types of errors, and may

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

be less well suited for detecting and correcting other types of errors. As new problem
domains are recognized, .Or as new problem domains emerge as a result of the
development of new types of technologies, continued development of new ECCs and
ECC-based encoding-and-decoding schemes well suited for the newly recognized
problem domains or newly developed technologies are needed in order to provide for

efficient and accurate error detection and correction.

SUMMARY OF THE INVENTION

Embodiments of the present invention include ECC-based encoding-
and-decoding schemes that are well suited for correcting phased bursts of errors or
erasures as well as additional symbol errors and bit errors. Each encoding-and-
decoding scheme that represents an embodiment of the present invention is

constructed from two or more component error-correcting codes and a mapping

function £ (+). The composite error-correcting codes that represent embodiments of

the present invention can correct longer phased bursts or a greater number of erasures
in addition to singl.e-bit errors and symbol errors, respectively, than either of the
component codes alone, and are more efficient than previously developed ECC-based
encoding-and-decoding schemes for correcting phased bursts of symbol errors and
erasures combined with additional bit errors and symbol errors.

According to one embodiment of the present invention, encoding of
information into a composite-code codeword is carried out by receiving K;
information symbols and encoding the K; information symbols by a first component
code C, encoder to produce a C; codeword u of length N, symbols. Then, K;
information symbols are encoded by a second component code C; encoder to produce

a codeword v of length N,. A vector w of length N, symbols is obtained by adding a

non-identity mapping of u, f (u), to v. Finally, a composite-code-C codeword is

generated by concatenating u and w together.
According to one embodiment of the present invention, decoding of a
composite-code codeword is carried out by decoding component-code codewords. A

component-code-C; codeword u of length N, containing K; information symbols and

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

a modified component-code-C, codeword of length N,, w = v + f{u), generated,
during encoding, from a component-code-C, codeword v containing K, information
symbols, where K = K; + K; and N = N, + N,, and a non-identity mapping function,

f(+), are extracted from a’composite-code-C codeword. An estimated component-

code-C, codeword v and an estimated error word eare then generated from the
modified component-code-C, codeword by applying a C, decoder to the modified
component-code-C, codeword. Which of a number of types of expected errors that
may occur subsequent to encoding of the composite-code-C codeword is determined
from the error word €. When more than a first threshold number of erasures and
erasures have occurred, but less than a second threshold number of errors have
occurred, the determined errors are assigned to either the component-code-C;
codeword or to the modified component-code-C, codeword, and when assigned to the
component-code-C; codeword, are corrected. Other error and erasure occurrences are
marked. An estimated component-code-C; codeword 1 is obtained by applying a C,
decoder to the estimated component-code-C; codeword u. Finally, K; information
symbdls are extracted from the estimated component-code-C; codeword uand K>
information symbols are extracted from the estimated component-code-C, codeword

v to produce K extracted information symbols.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a basic problem to which- ECC-based encoding-
and-decoding schemes are applied. _

Figure 2 illustrates various different views of a digitally encoded
information stream.

Figure 3A illustrétes the vector space V of all possible codewords
produced by a systematic linear block code that encodes information into codewords
of length ».

Figure 3B shows an exemplary code, or vector subspace, of the vector
space V shown in Figure 3A.

Figure 4 shows the distance between any two codewords v and w,
D(v,w).

WO 2009/102304

10

15

20

25

PCT/US2008/002836

Figure 5 illustrates encoding and transmission of a vector u of k
information bits by a systematic linear block code.

Figure 6 illustrates encoding of the information-bit vector u to produce
codeword v, as discussed with reference to Figure 5.

Figures 7A-B show an exemplary systematic generator matrix G and
an exemplary systematic parity-check matrix H for a systematic linear block code.

Figure 8 shows a property of the transpose of the parity-check matrix,
H'

Figure 9 illustrates a portion of the decoding process for a systematic
linear block code.

Figﬁre 10 illustrates a decoding table that can be constructed for any
systematic linear block code over GF(2).

Figure 11 shows a portion of the table of elements for GF(2).

Figure 12 illustrates the basic characteristics of a composite code that
represents one embodiment of the present invention.

Figure 13 illustrates the characteristics of the symbol-to-symbol

mapping function f (-) used in embodiments of the present invention.

Figure 14 shows two different implementations of the symbol-to-
symbol mapping function f ().

Figure 15A provides a high-level control-flow diagram for encoding of
information bits into a composite-code codeword according to one embodiment of the
present invention.

Figure 15B illustrates construction of the composite code C[72,66,5]
that represents one embodiment of the preseht invention.

Figure 16 illustrates a method of encoding a composite-code codeword
that can be carried out repeatedly on an input stream of information symbols to
produce an output stream of composite-code codewords.

Figure 17A illustrates the notion of a sub-block within a codeword of

the composite code that represents one embodiment of the present invention.

WO 2009/102304

10

15

20

25

30

PCT/US2008/002836

Figure 17B illustrates the various different types of errors that the
composite code that represents one embodiment of the present invention is designed
to detect and correct.

Figure 18 provides a high-level control-flow diagram for decoding of a
composite code that represents one embodiment of the present invention.

Figures 19-20 provide a control-flow diagram that illustrates one

embodiment of the decoding process for composite codes that represent embodiments

of the present invention.

Figure 21 illustrates the information received for each step of a
decoding method for the composite code that represents one embodiment of the
present invention. ,

Figure 22 shows a block diagram of a physical memory device in
which embodiments of the present invention may be employed.

Figure 23 illustrates mapping between codeword symbols and DRAM
units in a bank of DRAM units that together comprise the electronic data storage

component of the physical memory device illustrated in Figure 22.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to error-correcting codes ("ECCs")
and ECC-based encoding-and-decoding schemes well suited for detecting and
correcting phased bursts of symbol errors and/or erasures and additional single-bit
errors and symbol errors, respectively, in a symbol string passed through an erasufe-
and-érror-introducing channel. The present invention is discussed, below, in three
subsections. In a first subsection, an overview of one family of error-correcting codes
is provided. These error-correcting codes are examples of component ECCs that may
be used to construct the composite ECCs that represent embodiments of the present
invention, although many additional types of ECCs may be used as components for
the composite ECCs. In a following subsection, a brief summary of groups and fields
is provided. Finally, in a third subsection, composite codes and composite-code-

based encoding-and-decoding schemes to which the present invention is directed are

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

described, with detailed descriptions of encoding and decoding methods for one

disclosed composite code.

Systematic Linear Block Codes

Figure 1 illustrates a basic problem to which ECC-based .encoding-
and-decoding schemes are applied. In Figure 1, a binary-encoded information stream
102 is input to a memory, communications system, or other electronic device,
subsystem, or system 104 that exhibits characteristics of an error-introducing channel
105. Subsequently, the digitally encoded information stream is extracted 106 from
the memory, communications system, or other electronic device, subsystem, or
system 104. It is desirable, and generally necessary, that the extracted information
stream 106 be identical to the originally input information stream 102. In order to
achieve error-free recovery of information input to the memory, communications
system, or other electronic device, subsystem, or system 104, an encoder 108 can be
used to introduce redundant information into the information stream and decoder 110
can be used to employ the redundant information to detect and correct any errors
introduced by the error-introducing-channel characteristics of the memory,
communications system, or other electronic device, subsystem, or system 104. In
Figure 1, the binary-encoded information stream is represented in a left-to-right
direction 102 when input and in a right-to-left direction when extracted 106.
However, in general discussions of ECC-based encoding-and-decoding schemes, an
encoded information stream is generally represented in left-to-right order, regardless
of whether the information stream represents an input information stream or a
received information stream, with the understanding that encoded information is
generally transmitted sequentially, bit-by-bit, or byte-by-byte, and then reassembled
on reception.

Error-introducing-channel characteristics may be exhibited by an
electronic communications medium, such as a fiber-optic cable with a transmitting
port on one end and a receiving port at the other end, an Ethernet link with Ethernet
ports and controllers included in computing devices that are connected by the

Ethernet link, and in other familiar electronic-communications media. Alternatively,

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

error-introducing-channel characteristics may be exhibited by an information-storage
device or component, including different types of electric memories, a mass-storage
device, or a physical data-storage medium, such as a DVD or CD. In the casé of a
communications medium, an information stream initially input to a transmission port
may be subsequently received as a corrupted information stream by a receiving port,
with errors introduced into the information stream by port-processing components,
noise in the transmission medium, and other such error-introducing phenomena. In
the case of a storage medium, an initial information stream input to the storage
medium may be subsequently retrieved from the storage medium in a corrupted form,
with errors introduced into the information stream by storage-component controllers
and other processing components, by noise and transmission media, and by electronic,
magnetic, and/or optical instabilities in the storage media.

There are various types of errors that may corrupt an encoded
information stream. Random bit or symbol errors may result in alteration of the bit or
symbol values of certain bits and symbols in the information stream, with the bits or
symbols in the information stream having a known or estimable probability of
corruption. Burst errors result in corruption in runs of adjacent bits and/or symbols.
Many different types of systematic errors, in addition to burst errors, may also occur.

Figure 2 illustrates various different views of a digitally encoded
information stream. A digitally encoded information stream can be viewed as an
ordered sequence of bit values, or, in other words, the information stream comprises a
long, linear array of bit values. Alternatively, the same encoded information stream
can be viewed as the ordered sequence of symbols, each symbol comprising a fixed
number of bit values. For example, in Figure 2, the binary encoded information
stream 202 can be alternately viewed as an ordered sequence of four-bit symbols 204.
The value "9" shown in Figure 2 for the second symbol 206 in the ordered sequence
of symbols corresponds to the ordered set of bit values 208-211 in the bit-value
representation of the encoded information stream 202. In yet another view, the
encoded information stream may be viewed as an ordered sequence of blocks 212,
each block including an ordered sequence of a fixed number of symbols. Finally, an

information stream may be encoded, by a systematic linear block code, to include

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

redundant information to allow for errors to be subsequently detected and corrected.
The encoded information stream 214 comprises an ordered sequence of blocks, or
codewords, each codeword corresponding to a block in the information stream. For
example, the codeword 216 of the encoded information stream corresponds to the
block of symbols 218 in the block-view of the information stream 212. Each
codeword includes an additional symbol 220-222, represented in Figure 2 by the
characters R', R", and R''. This extra symbol represents the redundant information
included in the information stream by one type of systematic linear block code. In
alternative types of linear block codes, each codeword may comprise a first, selected
number of information symbols as well as a second selected number of additional
symbols representing added redundant information, with the ratio of redundant
information symbols to information symbols generally correlated with the number of
errors or erasures that may be detected and the number of errors or erasures that may
be corrected.

One commonly used type of ECC is a systematic linear block code
over a finite field GF(g), where g represents the number of symbols in a field ovér
which the code is defined. When q is a power of 2, 2", the symbols of the field are
represented as m-tuples. When m is equal to 8, symbols are cbnveniently represented
as bytes. The notation "GF(2)" stands for the binary Galois field with two elements,
or symbols, "0" and "1." Given a fixed number of bits in each encoded block, or
codeword, produced by a systematic linear block code over GF(2), all of the possible
codewords together comprise a vector space. A vector space has certain algebraic
properties, including being commutative under addition, closure under scalar
multiplication, and is distributive and associative with respect to vector addition and
scalar multiplication of vectors. Figure 3A illustrates the vector space V of all
possible bit vectors of length n over GF(2). A particular systematic linear block code
C‘ that produces codewords of length » is a k-dimensional vector subspace of V, the
vector subspace having all of the properties of a vector space. Figure 3B shows an
exemplary code, or vector subspace, of the vector space V shown in Figure 3A. Each
k-dimensional vector in the vector subspace represents k bits of information from an

information stream. The k bits of information are supplemented, by the systematic

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

linear block code, with » = n-k additional bits to produce a codeword. There is one
particular pattern of » additional bits, or parity bits, for each different possible k-

dimensional vector of information bits. Thus, a systematic linear block code

~ comprises 2* different n-bit vectors of the vector space V that constitute a vector

subspace. For a systematic linear block code over GF(q), rather than bits, each vector
containing » symbols, of which k symbols are information symbols and » - k£ symbols
are redundant information used for detecting and correcting errors. The vector
subspace comprising the codewords of the systematic linear block code over GF(q)
contains ¢* vectors.

An important characteristic of an ECC is the minimal distance d
between any two codewords of the code. Figure 4 shows the distance between any
two codewords v and w, D(v,w), of an ECC over GF(2). The vector v is a 12-bit
codeword 402 and w is a second 12-bit codeword 404. Subtracting w from v by
modulo 2 subtraction, equivalent to a bit-by-bit XOR operation, produces the
difference between v and w, v - w, 406. In the case of an ECC over GF(2), the
number of bits with bit value "1" in the vector v - w 406 is equal to the distance
between v and w, D(v,w). In the general case of an ECC over GF(g), the number of
non-zero positions in the difference vector v - w is the distance between the two
codewords v and w. The weight of any particular codeword v, W(v), is the number of
non-zero positions in the codeword. Thus, D(v,w) = W(v - w) = 3 in the example
shown in Figure 4.

Figure 5 illustrates encoding and transmission of a vector u of k
information symbols by a g-ary systematic linear block code. The k information
symbols are considered to be a k-dimensional vector u 502. A systematic linear block
code encodes the k& information symbols, represented by the vector u, as a vector v of
length k+ r=n 504. A systematic linear block code places r check symbols, or parity
symbols, together in a subvector of vector v having length r, generally either at the
beginning or the end of vector v. In the exdmple shown in Figure 5, and continued in
subsequent figures, the parity symbols pg, py, . . . , pr.s 506 are shown in the initial
part of vector v, and the k information symbols 508 follow. The codeword v is then

transmitted through a communications medium or stored to, and retrieved from, a

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

10

storage medium to produce the corresponding received word x 510. When no errors
occur in transmission or storage, x = v. However, when random transmission or
storage errors occur, X # v. In many cases, the recipient of the vector x cannot
compare x with the initial, corresponding vector v in order to ascertain whether errors
have or have not occurred. Therefore, the recipient of vector x assumes that each
symbol, or bit, in x may have been corrupted with some probability of corruption.
Therefore, the symbols in x are primed, in Figure 5, to indicate that the symbols may
have been corrupted ‘with a known or estimable probability of corruption. Thus,
symbol py 512 in codeword v corresponds to symbol py 514 in the received word x.

Figure 6 illustrates encoding 6f the information-bit vector u to produce
codeword v, as discussed with reference to Figure 5. A k x n matrix G 602 can be
found, for a given systematic linear block code, to generate a unique codeword v
corresponding to each possible information-symbol vector u. As shown in Figure 6,
u 604 is multiplied by G 606 to produce the codeword v 608 corresponding to u. The
matrix G is called a generator matrix for the systematic linear block code. The matrix
G consists of k linearly independent codewords of the systematic linear block code C.
Thus, codewords for systematic linear block codes are easily and mechanically
generated from corresponding blocks of information symbols by matrix
multiplication. In fact, each matrix G defines a systematic linear block code.

Figures 7A-B show an exemplary systematic generator matrix G and
an exemplary systematic parity-check matrix H for a systematic linear block code.
The generator matrix G 702, as shown in Figure 7A, can be spatially partitioned into
a parity-bit matrix P 704 of dimension £ x r, and a &k x k identity matrix I 706. The
parity-bit matrix. P, during matrix multiplication of u x G, generates the r parity
symbols of v, and the identity matrix I; 706 generates the k£ information symbols of u
within the codeword v.

For each systematic linear block code, there is a parity-check matrix H
corresponding to the generator matrix G. Figure 7B illustrates the form of the parity-
check matrix H. As can be seen in Figure 7B, the parity-check matrix is an r x n
matrix that can be spatially partitioned into an » x r identity matrix -I, 710 and the

transpose of the parity-check matrix P* 712. Any particular systematic linear block

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

11

code is completely specified either by a generator matrix G or by the parity-check
matrix H corresponding to the generator matrix G. The parity-check matrix H is
itself a generator for a linear code, with each codeword including » information
symbols. The linear code generated by the parity-check matrix is the dual code of the
systematic linear block code C generated by the generator matrix G. Figure 8 shows a
property of the transpose of the parity-check matrix, H'. As shown in Figure 8, the
transpose of the parity-check matrix, H' 802, when used to multiply a codeword v of
the systematic linear block code C, always generates the all-zero vector, 0, of
dimension » 806. In other words, for each codeword v of systematic linear block code
C: ,

v-H =0

Figure 9 illustrates a portion of the decoding process for a systematic
linear block code. As discussed above, the received word x 902 may contain errors
with respect to the corresponding, initially transmitted or stored codeword v 904.v As
discussed above, subtracting v from x, in the case that both v and x are known,
produces a resultant vector 906 in which a non-additive-identity symbol ("1" in the
case of GF(2)) appears at every position at which vectors x and v differ. Thus,x-v =
e, where e is referred to as the "error vector," essentially a map of occurred errors Of
course, in general, only x is known. Thus, x equals v + e, where both v and e are
generally unknown. Multiplication of the received word x 908 by the transpose of the
parity-check matrix, H', 910, produces an r-dimension vector s 912 referred to as the
"syndrome" of x. The syndrome of x is equal to e-H". Thus:

s=e-H =xH"

Figure 10 illustrates a decoding table that can be constructed for any
systematic linear block code over GF(q). As shown in Figure 10, a ¢" x qk table,
called the "standard array,” 1002 can be constructed for any systematic linear block
code. The first row 1004 of the standard array is an ordered sequence of the
codewords vy, vy, vy, . .., vqk_l. The codeword vy is the all-zero-symbol code vector
(0, 0,..., 0). Each column i of the standard array can be considered to contain all
possible recéived words x; corresponding to the codeword v; in the first element of the

column. In other words, the set of all possible received words V has ¢" elements, and

WO 2009/102304 PCT/US2008/002836

10

15

20

25

12

is partitioned into g¢* partitions, each partition corresponding to a codeword of the
systematic linear block code C, with any received word x considered to correspond to
the codeword associated with the partition of all possible codewords to which x

belongs. For example, all of the elements of the first column 1006 of the standard

array {el,ez,...,ez,_l} correspond to all possible error vectors that, when added to the

all-zero codeword vy, produce received words that are decoded to the all-zero
codeword vg.

As discussed with reference to Figure 9, multiplication of a received
word x by the transpose of the parity-check matrix H' produces a syndrome vector s
equal to eH". The syndromes computed for all of the elements in each row of the
standard array are therefore identical, depending only on e and H'. Therefore,
information contained in the standard array, for decoding purposes, can be
compressed into a decoding table 1008 that shows the association between each
recognized error pattern e; and the syndrome corresponding to that error pattern eH'.
Decoding of codewords of a systematic linear block code is, like encoding, carried out

by a relatively conceptually simple process:

=xHT

X

=e in decoding table associated with s,

[

e
v=x+¢
However, although conceptually simple, designing codes that can be efficiently
decoded is a decidedly non-trivial task. Decoding tables, for example, are impractical
for codes with medium and large g, r and/or n parameters, since the size of the
decoding table 1008 is proportional to 2(¢")(n). Thus, great effort is generally
undertaken to design codes with properties that allow for decoding algorithms that are
both space and time efficient.
As can be seen in the standard array shown in Figure 10, by increasing

the number of parity symbols included in each codeword, a larger number of different

. .r .
error patterns may be recognized. However, as the ratio — increases, the space
n

efficiency of encoding decreases. In general, the error patterns recognized by a

systematic linear code are chosen to be the most probable error patterns. For random-

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

13

bit errors, the error vectors with least weight are generally the most probable error
patterns. For other types of errors, different sets of error patterns may be more
probable.

- While systematic linear block codes over GF(2) have been discussed,
above, systematic linear block codes, including Reed-Solomon codes, can be
analogously constructed over any field GF(g). Often, it is convenient to construct
systematic linear block codes over extension fields of GF(2), generally specified as

GF(2™), where m is an integer greater than 1.

Groups and Fields

In this subsection, an overview of groups and fields is provided. A
group is a set of elements, over which a binary operation * is defined. The group is
closed under the binary operation *. In other words, for any two elements of the
group a; and a, a1*a; = a;, where g; is also an element of the group. The binary
operation * is associative, so that:

(a, *az)*as =q *(02 *as)
A group has a unique identity element e such that, for every element a; in the group,

there is an inverse element a;”:
a*a'=a'*a =e
A group is commutative, or Abelian, when, for any pair of elements ag; and a;:
a*a,=a*q,

A field is a commutative gfoup with respect to two different binary
operations. One operation may be denoted "+," with the identity element for the
operation +, e, equal to 0, and the other operation may be denoted "*," with e«, the
idehtity element for the operation *, equal to 1. Furthermore, the operation * is
distributive:

a*(b+c)=a*b+a*c

GF(2) is a binary field, with the + operation equivalent to modulo-2

addition, or the binary XOR operation, and the * operation equivalent to modulo-2

multiplication, or the Boolean AND operation. GF(q) is a field over the elements

WO 2009/102304 PCT/US2008/002836

10

15

20

14

{0,1, ..., g-1} where g is a prime number. The field GF(¢™) is an extension field of

GF(q), where the elements are defined as polynomials with coefficients in GF(g).
GF(2™) is an extension field of GF(2) where elements are polynomials with
coefficients in GF(2).

A polynomial p(&) of degree mis primitive when the smallest positive
integer n for which p(&) divides &” + 1 is equal to n = 2™-1. The extension field

GF(2™) can be represented as a field F of polynomial elements, as follows:

GF(2")=F={o.La.a’,. . ,a”}
where « is a third symbol, in addition to 1 and 0;
p()=0
a¥'=1; and
a? ' +1=0.
For the operation * in F: '
e =1

=1 m_i_
(a,) =az i~1

For the operation + in F:

e,=0

-a' =a
In addition to representing the elements of F as powers of a, each element in F can
also be represented as a polynomiai with binary coefficients:

- d'=a,+a,ata,a+va, o™

Addition of elements of F is easily carried out by polynomial addition, and
multiplication of elements of F is easily carried out by adding exponents of the
elements expressed as powers of a.

For an extension field, such as GF(2%), a table can be constructed for
each element in GF(2%), each entry of which shows the powers representation of the
element, the polynomial representation of the element, and a tuple of binary values
comprising the coefficients of the polynomial representation of the element. Figure

11 shows a portion of the table of elements for GF(2%). The first column 1102 of the

WO 2009/102304 PCT/US2008/002836

10

15

20

25

15

table 1100 shows the powers representation of the elements of GF(2%), the middle
column 1103 provides the polynomial representation for the elements, and the final
column 1104 shows the 8-bit binary-coefficient-tuple representation of each element.
Additional tables can be constructed for multiplication and addition operations. Thus,
the field GF(28) can be expressed asAa set of 256 elements, each element an 8-bit
tuple, with multiplication, addition, and subtraction operations specified by tables
based on operations performed on the underlying polynomials. It is important to note
that the multiplication, subtraction, and addition operations for the 8-bit element of
GF(2%) are not equivalent to familiar binary arithmetic operations supported by
electronic computers. As one example, in binary arithmetic:
00100000+10111000=11011000

but in GF(2%) addition: ‘

a® =00100000 = ¢ -

a® =10111000 = 1+a?* + &’ +a*

a’+a=a” =1+’ +a* =10011000

The example of GF(2%) is provided, because, in one disclosed
embodiment of the' present invention, a composite code over GF(2%) is constructed
from two component codes over GF(2%). Each symbol in a codeword can b;: viewed
as an 8-bit tuple that represents an element of GF(2®). Note that there are 256
elements in GF(2®%). Thus, every possible 8-bit tuple is an element of GF(2%). In
general, for encoding and decoding purposes, information bytes are considered to be
symbols in GF(2%), but prior to encoding and following decoding, the information
bytes are viewed as standard binary-encoded bytes. In the following discussion of
the present invention, example codes over GF(2%) are discussed, but, the methods of
the present invention can be applied to creation of composite codes over any field
GF(gq). It turns out, for computing efﬁciéncy, composite codes over GF(2™) are
desirable, for efficiency in symbol representation and efficiency in computational

operations.

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

16

Embodiments of the Present Invention

The present invention is directed to a family of composite error-

correcting codes that are constructed using at least two component codes and a

function f(+), described below, that maps symbols of a field over which the

composite code is defined to other symbols of the field. In the following discussion,
one particular composite code from the family of composite codes that represent
embodiments of the present invention is discussed. The discussed composite code is
a code over 8-bit symbols of the extension field GF(28). However, composite codes
can be analogously constructed for symbols of an arbitrary field GF(q) or GF(q™),
using component codes constructed for symbols of the arbitrary field.

Figure 12 illustrates the basic characteristics of a composite code that
represents one embodiment of the present invention. The composite code is
constructed over GF(2*) and produces codewords of length N = 72, where N is the
length, in 8-bit symbols. An exemplary codeword 1202 is shown in Figure 12. The
codeword contains K = 66 information symbols and R = 6 parity-check symbols. The
minimum distance between codewords is D = 5 symbols. The composite code can
also be viewed as a code over GF(2). An exemplary codeword of the composite code

over GF(2) 1210 is also shown in Figure 12. When viewed as a code over GF(2),

~ each codeword has n = 576 bits of which k£ = 528 bits 1212 are information bits and r

= 48 bits 1214 are parity-check bits. The minimum distance between codewords is in
the range 5<d < 40 , depending on the nature of the particular component codes used
to construct the code. A linear block code Having the characteristics N = 72, K = 66,
and D = 5 would be expected to be able to detect and correct (D - 1) /2 =2 symbol
errors or 4 symbol erasures. However, the composite code that represents an
embodiment of the present invention can correct a larger number of symbol errors
when they occur in bursts, a larger number of erasures, and a number of symbol errors
and bit errors in addition to error bursts and erasures.

Coding and decoding methods for the composite code that represents

one embodiment of the present invention relies on a symbol-to-symbol mapping

function f(+). Figure 13 illustrates the characteristics of the symbol-to-symbol

WO 2009/102304 PCT/US2008/002836

10

15

20

25

17

mapping function f(+) used in embodiments of the present invention. In Figure 13,

a sequence of 256 8-bit symbols representing the 256 elements of GF(2%) 1302 is
partially displayed. The second through ninth symbols of GF(2%), referred to as the
set "M," 1304 include those symbols with 8-bit-tuple representations that each
includes only a single bit with bit value "1." These 8-bit vectors in the set M
correspond to GF(2%) elements {1, a!, o, . . ., o’} in the representation of GF(2%)
shown in Figure 11. Any function f (-) that maps symbols of GF(2%) to other
symbols of GF(2%) can be employed for coding and decoding of the composite code

that represents an embodiment of the present invention, providing that the function
£ (¢) is linear, has a strict inverse function f (-)~l , and maps any symbol of the set M
to a symbol of GF(2®) that is not in the set M:

flueM)->u'eM

Bf"(u):f‘l(f(u))zu

. Figure 14 shows two different implementations of the symbol-to-

symbol mapping function f(+). In one implementation, f(u) may be implemented
as multiplication of a bit-vector representatién of symbol u by an m x m matrix 1402,

where m is the m of the binary extension field GF(2™) over which the code is

constructed, in the current case, 8. In an alternative embodiment, a lookup table 1404
can be preparéd to provide f (u) values for each possible symbol u. In the case of
GF(2%) symbols, the symbol represented by the bit-vector u can be used as a numeric
byte value to index the lookup table.

In alternative embodiments, the mapping function f (-) may be a

different function. In general, the purpose of f(+) is to map certain types of error-

word symbols to alternative symbol values, to allow the occurrence of errors of that
type to be assigned either to an estimated C; codeword or to a C; codeword extracted

from a composite-code codeword during decoding. All embodiments of the present

invention employ a non-identity mapping function £ ().

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

18
The function f(+) may be applied to symbols, as discussed above, or
may be applied to a vector of symbols. For example, the function f (-) may be

applied to an entire codeword u to produce a modified codeword f (u), with the

symbol function f (-) applied to each symbol of the codeword to generate eéch

corresponding symbol of the modified codeword.

Figure 15A provides a high-level control-flow diagram for encoding of
information bits into a composite-code codeword according to one embodiment of the
present invention. In step 1502, K; information symbols are received. In step 1503,
K, information symbols are encoded by a first component code C; encoder to produce
a C codewbrd u of length N; symbols. In step 1504, K, information symbols are
encoded by a second component code C, encoder to produce a codeword v of length
N;. In step 1505, a vector w of length N> symbols is obtained by adding a non-

identity mapping of u, f(u), to v. Finally, in step 1506, a composite-code-C

codeword is generated by concatenating u and w together, the composite-code-C
codeword having a length N = N; + N; and containing K= K; + K, information
symbols. _ » _

Figure 15B illustrates construction of the composite code C[72,66,5]
that represents one embodiment of the present invention. As discussed above, the
composite code relies on two component codes. The component codes may be Reed-
Solomon codes, systematic linear-block codes defined over GF(g), binary systematic
linear block codes, or other types of codes. In the disclosed embodiment, the first
component code C; produces codewords with N; = 36, K, = 34, and D, = 3 and the
second component C, has the characteristics N, = 36, K, = 32; and D, = 5. Itis
assumed that C, can detect and correct s1 symbol erasures and ¢1 symbol errors,
where s1 + 2¢t1 < D,, and that C, can detect and correcf s2 symbol erasures and 12
symbol errors, where s2 + 212 < D,. In fact, such codes are well known. '

As shown in Figure 15B, C, encodes K; = 34 information symbols
1512 to produce a 36-symbol C, codeword u 1516 and C; encodes K, = 32
information symbols 1514 to produce a 36-symbolfC2 codeword v 1518. These

codewords are combined to create a codeword of the composite code C [72,66,5] that

WO 2009/102304 PCT/US2008/002836

10

15

20

25

19

represents one embodiment of the present invention. Thus, K; + K; = 32 + 34 = 66
information symbols are encoded into each 72-symbol codeword of the composite

code that represents one embodiment of the present invention. Both C; codeword u

and C; codeword v have N = 36 symbols. The function f (-) is applied successively
to each symbol in u to produce a vector f(u) 1520. The vector f(u) is then added
to the C, codeword v 1522 to produce the vector w = f(u) + v 1524. Then, the

codeword u 1516 is concatenated with w = f (u) + v to produce an N = 72 codeword

1526 of the composite code that represents one embodiment of the present invention.
When the symbols of this codeword are transmitted or stored, the symbols from u and
w alternate in the transmitted symbols, as shown in the sequence of transmitted

symbols 1528, with symbol uy 1530 first transmitted and symbol wﬂ_11532 last
2

transmitted. Figure 16 illustrates a method of encoding a composite-code
codeword that can be carried out repeatedly on an input stream of information
symbols to produce an output stream of composite-code codewords. In step 1602, K|
+ K, information symbols are received for encoding. In step 1604, the first K;
information symbols are encoded by a C, encoder to produce a C; codeword u. In

step 1606, the next K information symbols are encoded by a C; encoder to produce a

C, codeword v. In step 1608, the vector w = f(u) + v is generated from u and v
using the symbol-to-symbol mapping function f (-) Finally, in step 1610, u and w

are concatenated together to produce a composite-code codeword. The encoding of a
composite-code codeword by the method illustrated in Figure 16 can be carried out
repeatedly on an input stream of information symbols to produce an output stream of
composite-code codewords.

The above method of computing vector w generates a non-systematic

code C. A systematic code C can be obtained by precoding. Precoding is carried out

by extracting a prefix of length K, from f(u), prefix(f(u)), and creating a vector a

comprising the next K, information symbols from the input stream. A word v' is then

produced as: v' =a - prefix (f (u)) . Finally, v' is used as the K information symbols

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

20

that are encoded into a C; codeword v", and v'' is then used to compute vector w by:
w= f(u) +v"

In alternative embodiments of the present invention, composite-code
codewords can be produced by other methods. The order of encoding using
component codes may differ, the component codes may differ, and different symbol-
to-symbol mapping functions may be employed. Alternative composite codes within
the family of composite codes that represent embodiments of the present invention
may have different characteristics N, K, and D, depending on the underlying code
characteristic of the component codes C; and C,. In alternative embodiments of the
present invention, each component code may itself be generated from two»or more
underlying component codes.

Figure 17A illustrates the notion of a sub-block within a codeword of
the composite code that represents one embodiment of the present invention. As
shown in Figure 17, a composite-code codeword 1702 can be viewed as containing 8-
bit symbols, such as symbol 1704 alternatively shown expanded into an 8-bit symbol
vector 1706. Each pair of symbols, such as the pair of symbols 1708-1709, can be
together viewed as a sub-block 1710. Thus, a composite-code codeword can be
viewed alternatively as an ordered sequence of bits, an ordered sequence of 8-bit
symbols, or as ordered sequence of sub-blocks.

Figure 17B illustrates the various different types of errors that the
composite code that represents one embodiment of the present invention is designed
to detect and correct. An important additional parameter of the composite code is the

parameter L, a largest integer less than D/2. For various types of alternative

composite codes, the value L may be fixed within the range of integers 1 < L < % A

first type of error is referred to as a "phased-burst" error. A phased-burst error is
illustrated in the first word 1712 shown in Figure 17B. A phased-burst error is any
number of corrupted symbols within a block of adjacent symbols comprising L sub-
blocks. As shown in the word 1712 in Figure 17B, four symbols, shown with cross-
hatching 1714-1717 are corrupted, and all four symbols fall within a block

comprising sub-blocks 4 and 5. It is assumed that a codeword containing a phased-

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

21

burst error does not contain any sub-block erasures. In the case of the phased-burst
error, when all four symbols within a block are corrupted, there is a small probability
that the composite code may not be able to correct the errors. However, this small
probability is smaller than the probability that a Reed-Solomon code with equivalent
redundancy cannot correct the errors, and the composite codes of the current
invention are more time efficient than Reed-Solomon codes with equivalent
redundancy. When less than four symbols within the block are corrupted, all of the
corrupted symbols can be corrected.

A tS error type is illustrated in the second codeword 1730 shown in
Figure 17B. The tS error type includes up to L - t sub-block erasures and t corrupted
symbols. In the example shown in Figure- 17B, there is a single sub-block erasure
1722 and a single additional corrupted symbol 1724, so thatt =1 and L — t =1 erased
sub-block. Alternatively, there may be two erased sub-blocks and no additional
corrupted symbols or two corrupted symbofs and no additional erased sub-blocks. A
third type of error condition to which the composite codes of the present invention are
directed are 1R errors in which up to L sub-blocks are erased and one additional 1-bit
error has occurred. The third codeword 1736 in Figure 17B illustrates a 1R error in
which two sub-blocks 1738-1739 are erased and a single-bit error 1740 occurs in
symbol 1742.

One motivation for development of the composite codes that represent
embodiments of the present invention is for error correction of a newly developed
type of electronic memory. Because of the construction of this memory, the majority
of expected errors include phased-burst errors, tS-type errors, and 1R-type errors.
Error correction is carried out in hardware in these electronic-memory systems, and
therefore the error correction componeﬁt represents a significant design and
manufacturing overhead. For this reason, designers and manufacturers wish to use as
efficient a code as possible for detecting and correcting the expected phased-burst, tS,
and IR errors. The composite codes that represent embodiments of the present
invention successfully detect and correct these expected error types using less parity-
check symbols than would be needed by a conventional Reed-Solomon code for an

equal number of information symbols.

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

22

Figure 18 provides a high-level control-flow diagram for decoding of a
composite code that represents one embodiment of the present invention. In step
1802, a composite-code-C codeword of length N, containing K information symbols,
is received. In steps 1804-1806, a cdmponent—code-Cl codeword u of length N;
containing K; information symbols and a modified component-code-C, codeword of
length N;, w = v + Au), generated, during encoding, from a component-code-C,
codeword v containing K information symbols, where K = K; + K, and N = N; + N,

and a non-identity mapping function, f(+), are extracted from the composite-code-C

codeword and an estimated component-code-C, codeword v and an estimated error
word € are generated from the modified component-code-C, codeword by applying a
C; decoder to the modified component-code-C, codeword. In step 1808, which of a
number of types of expected errors occurred subsequent to encoding of the
composite-code-C codeword is determined from the error word € . When more than a
first threshold number of erasures and erasures have occurred, but less than a second
threshold number of errors have occurred, as determined in step 1816, the determined
errors are assigned to either the component-code-C; codeword or to the modified
component-code-C, codeword, and when assigned to the component-code-C; -
codeword, are corrected in steps 1818 and 1820. Other error and erasure occurrences
are noted, in steps 1810, 1812, and 1814. In step 1822, an estimated component-
code-C, codeword uis obtained by applying a C, decoder to the estimated
component-code-C; codeword u. Finally, in step 1824, K, information symbols are
extracted from the estimated component-code-C, codeword uand K; information
symbols are extracted from the estimated component-code-C, codeword v to produce
K extracted information symbols.

Next, decoding of a received composite-code codeword is discussed.
Figures 19-20 provide a control-flow diagram that illustrates one embodiment of the
decoding process for composite codes that represent embodiments of the present
invention. First, in step 1902, a composite-code C codeword is received. The

received word can be viewed as two parts:

[u,1w,]

WO 2009/102304 PCT/US2008/002836

10

15

20

25

23

where u, is the received u, or u +¢,

w, is the received w, or f(u) +v +e,

Next, in step 1903, the addition of f(u) to v or v" during encoding is reversed by:

v,=—f(u,)+w,
Next, in step 1904, the computed word v, is decoded using a C, decoder to produce
estimated codeword v and estimated error word e :
C;'(v,)>Vandé

where € = -f (¢,) + ¢,
where the function-like symbol C;' (-) represents decoding by a decoder for

component code C,.

If the C, decoding of v, fails, as determined in step 1905, decoding of
the composite-code codeword fails. Next, in a series of conditional steps, Boolean
flags representing phased-burst ("PB"), tS, and 1R errors are set to indicate whether or
not these types of errors appear to have occﬁrred within the received word. Note that
the notation " _1R" is used for the IR flag, below, to be consistent with later-discussed
pseudocode. It should be noted that the presence of erased sub-blocks is generally
indicated by a separate, out-of-band erasure indication that is not part of the received
word. When no erasures have occurred and when all symbol errors have occurred
within L adjacent sub-blocks lined with a block boundary, as determined in step 1906
and as discussed above with reference to Figure 17B, then the flag PB is set TRUE in
step 1908. Otherwise the flag PB is set to FALSE, in step 1910. When the flag PB
contains the value FALSE and when the number of erased sub-blocks and the number
of any additional non-zero symbols in the estimated error vector € sum to a value less
than or equal to L, as determined in step 1912, then the flag tS is set TRUE in step
1914. Otherwise the flag tS is set to be FALSE in step 1916. When both PB and tS
contain the Boolean value FALSE, and when the number of erased sub-blocks is less
than or equal to L and at most only one additional. 1-bit symbol error has been found
in the error vector €, as determined in step 1917B, then the flag IR is set TRUE in
step 1919. Otherwise the flag _IR is set to be FALSE in step 1920. A 1-bit error is

detected when a non-zero symbol s in the estimated error vector € is either an

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

24

element of the set M or -s is mapped to the set M by the symbol-to-symbol

function ' (), alternatively expressed as:
seMorf™(-s)eM
Thus, f(+) maps a single-bit error that occurs in u, to a symbol with more than two

bits with bit value "1," so that a single-bit error in u, can be distinguished from a
single-bit error in v,. Coding resumes in the flow-control diagram of Figure 20. If
none of the three Boolean flags PB, tS, and _1R are set to TRUE, as determined in
step 2002, then the decoder returns a FALSE value in step 2004. Otherwise, vector u
is set to the first half of the received C codeword u, in step 2006. If the flag 1R is
set to TRUE, as determined in step 2008, then if a single non-zero symbol s, is found
in the estimated error vector € at position y and s, is not an element of the set M, as
determined in step 2010, the symbol at the same position y in u is replaced with the
original symbol from which the inversely mapped negative error symbol is subtracted
by GF(2%) subtraction in step 2012. Steps 2008, 2010, and 2012 allow for detection
of a single-bit error in addition to L sub-block erasures. When the non-zero € symbol
sy is an element of M, then the single-bit error occurred in the latter half of the

received word, or, in other words, in v,. However, when s, can be mapped to M by

F! (—sr) , the single-bit error occurred in the first portion of the C codeword. In that

case, the error is corrected in step 2012. Next, if the Boolean flag PB contains the
value TRUE, as determined in step 2014, and if there are non-zero symbols in €, as
determined in step 2016, then the symbols in the block containing the errors are
marked as erased in step 2018. If the flag tS contains the Boolean value TRUE, as
determined in step 2020, and if there are any non-zero symbols in € outside of any
detected erasures, as determined in step 2022, then those additional symbol errors are
marked as erasures in step 2024. In step 2026, a C, decoder is applied to u to
produce the estimated original vectoru. If the C; decoder fails, as determined in step
2027, composite-code decoding fails. Otherwise, in step 2028, K; symbols are
extracted from u and K symbols are extracted from v that together form a sequence
of K decoded information symbols that are returned in step 2030. As in the case of
step 1904, should the C, decoder fail, in step 2026, then decoding fails.

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

35

25

Next, a C++-like pseudocode implementation of a decoding method
for decoding the above-described composite code that represents one embodiment of
the present invention is provided. Figure 21 illustrates the information received for
each step of a decoding method for the composite code that represents one
embodiment of the present invention. Received information includes an erasure map
2102 with a single bit for each symbol in the codeword indicating whether or not the
symbol has been erased. The received information includes an erasure map 2102 that
includes a bit flag for each symbol of a received word indicating whether or not the
symbol has been erased, and a received word 2104 that, as discussed above, includes
a first portion 2106 u, which equals u + e;, although u and e, are not known, and a
second part 2108 v, which equals F(u) + v + 5, although u, v, and e, are not known.

The pseudocode implementation first includes a number of constant

integer declarations:

1 const int C1K = 34;
2 const int C2K = 32;
3 const int CK = C1K + C2K;
4 const int C1R = 2;
5 const int C2R = 4;
6 constint CR = C1R + C2R,;
7 const int C1D = 3;
7 const int C2D = 5;
8constintCD=2*C1D>C2D?C2D:2* C1D;
9 constint N = CR + CK; '
10 const int L = floor ((CD-1) / 2);
11 const int symPSubBIlk = 2;
12 const int Nsub = N / symPSubBIk;
13 constint N2 =N/ 2;
14 const int blkPlus = N2 / symPSubBIk;
15 constintb = 8;

These constants include the basic parameters for composite code C and component
codes C1 and C2, discussed above, including: (1) CIK, C2K, and CK, the number of
information symbols in the codewords of C1, C2, and C, respectively; (2) CIR, C2R,
and CR, the number of parity-check symbols in codewords of Cl1, C2, and C,
respectively; (3) the minimum distance between codewords CID, C2D, and CD for
codewords of C1, C2, and C, respectively; (4) a constant N, the number of symbols in
a codeword of the composite code C; (5) the number L, equal to the largest integer

less than (CD-1)/2 in the disclosed implementation, as discussed above; (6) N2, the

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

35

26

number of symbols in codewords of component code C1 and C2, where N2 = N/2;
symPSubBlk. the number of symbols per sub-block; (7) blkPlus, that, when added to
the sub-block index of a block in a first portion of a composite codeword, generates
the sub-block index of the corresponding sub-block of a second portion of the
composite codeword; and (8) a constant b, the number of bits in a symbol, or,
equivalently, a number equal to m in the expression GF(2™) for the field over which
the composite code C is constructed.

Next, type definitions are provided: (1) for a codeword symbol; (2) C,
C1, and C2 codewords; and (3) erasure maps for C, C1, and C2 codewords:

1 typedef unsigned char symbol; // b <= 8 only
2 typedef symbol C_WORDIN];

3 typedef symbo! C1_WORD[NZ2];

4 typedef symbol C2_WORDI[N2]J;

5 typedef bool C_ERASURE_WORDIN]J;

6 typedef bool C1_ERASURE_WORDI[NZ]J;

7 typedef bool C2_ERASURE_WORD([N2];

It should be noted that the C++ type "unsigned char" can only be used to represent a
symbol when the constant b is less than or equal to 8. When b = §, the unsigned-char
data type, also referred to as a "byte," is exactly the size needed to represent each
symbol expressed as a tuple of binary coefficients, and thus GF(2%) is a most .
convenient field over which to construct a code, for computational efficiency.

Next, a declaration is provided for the set M which includes all
symbols with 8-bit-tuple representations that include only a single bit with the bit
value "1." This declaration employs the fact that the tuples in set M correspond to

bytes, in normal binary byte-value representations, to powers of two:

1 const symbol M[b] = {1, 2, 4, 8, 16, 32, 64, 128}; // elements of GF(2"b) with a
/I single-bit tuple representation
Next, declarations for five functions are provided:

1 bool C1(C1_WORD c1Word, C1_ERASURE_WORD erasures,

2 C1_WORD decodedC1Word, C1_WORD errors);
3 bool C2(C2_WORD c2Word, C2_ERASURE_WORD erasures,
4 C2_WORD decodedC2Word, C2_WORD errors);

5 symbol f(symbol a);
6 symbol finverse(symbol a);
7 symbol GF2bSubtraction(symbol y, symbol z);

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

35

27

The first two functions are decoders for component codes C1 and C2. These two

functions receive a codeword and erasure map and return a decoded codeword and an

error word, as described above. The function f(+) and the function f7'(s),

discussed above, are declared on lines 5 and 6 of the above code block. Finally, on
line 7, a GF(2%) subtraction function for subtracting a GF(2®) symbol z from a GF(2%)
symbol y is provided. As discussed above, it is assumed that component codes CI
and C2 exist, and that encoders and decoders are available for these component codes.
No implementations are provided for the above five functions, as the decoder

implementations depend on the particular component codes selected for use in

constructing a composite code, because the functions f(+) and f™'(+)are

straightforwardly implemented, the implementations depending on the field over
which the composite code is defined, and because GF(2b) subtraction is well known.

Next, a number of class declarations are provided. First, three classes
that represent an input symbol stream, an input erasure stream, and an output symbol
stream are provided:

1 class symbolStream

2{

3 public:

4 bool start();

5 bool getNext(int num, symbol* buffer);
6}

1 class erasureStream

2{

3 public:

4 bool start(); ,

5 bool getNext(int num, bool* buffer);
6}

1 class outputStream

2

3 public:

4 bool start();

5 void outputNext(int num, symbol* buffer);
6 void finish();

7h

The various streams can be started and then accessed in order to input or output

specified numbers of symbols. Implementations are not provided for these classes,

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

35

40

28

since stream input and output is both well known, operating-system dependent, and
possibly hardware-platform dependent.
Next, a class declaration for a class "C-decoder" is provided:

1 class C_decoder

2{
3 private:
4 symbolStream s;
5 erasureStream Er;
6 outputStream out;
7
8 void delnterleave(C_WORD ¢, C_ERASURE_WORD er);
9 boo! decodeNextBlock(C_WORD ¢, C_ERASURE_WORD er,
10 ‘ symbol* buffer);
11
12 public:
13 bool decode();
14 };

The class "C_decoder"' includes three private data members s, Er, and out that
represent instances of the symbol stream, erasure stream, and output stream classes,
respectively. The class "C_decoder" includes two private function members, declared
on lines 8-10. The first private function member, "delnterleave," transforms n
symbols received from an input stream into a C codeword by deinterleaving the
symbols that are interleaved, as discussed with reference to Figure 15 (specifically
1518 in Figure 15). The private function member "decodeNextBlock" receives a C
codeword and a corresponding erasure map and outputs K decoded information
symbols to an output stream. The single public function member "decode," declared
on line 13, continuously decodes symbols from an input stream and outputs
corresponding decoded information symbols to an output stream.
Implementation of the function member "decode" is next provided:

1 bool C_decoder::decode()

s.start();

Er.start();

out.start();

C_WORDc¢;
C_ERASURE_WORD er;
symbol buffer[CK];

20 OWO~NOOODRWN
~—

= N

while (s.getNext(N, c) && Er.getNext(N, er))
{

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

35

40

45

29
12 delnterleave (c, en);
13 if ({\decodeNextBlock(c, er, buffer)) return false;
14 out.outputNext(CK, buffer);
15
16 return (true);
17}

In the while-loop of lines 10-15, the function member "decode" extracts a next

- codeword and corresponding erasure map from the input streams ¢ and Er,

deinterleaves the input symbols on line 12, decodes the codeword on line 13, and
outputs corresponding decoded information symbols on line 14. This loop continues
until either decoding fails, on line 13, or until there are no additional coded symbols
available from the information stream, as determined on line 10.

Next, an implementation of the function member "decodeNextBlock"

is provided:

1 bool C_decoder::decodeNextBIock(C_WORD ¢, C_ERASURE_WORD er,
2 symbol* buffer)
3{
4 symbol* ur = &(c[0]);
5 symbol* wr = &(c[N2]);
6
7 bool* er1 = &(er[0)]);
8 bool* er2 = &(er[N2]);
9

10 C1_WORD uHat, uPrime, e1Hat;

1 C2_WORD vHat, vr, e2Hat;

12 _

13 bool PB, tS, _1R, erased;

14

15 symbol gamma;

16

17 inti, j, blkindex, gammalndex;
18 int erasures]|L];

19 -int numErasures = 0;

20 int nonZeroSymbols[L];

21 int numNonZeroSymbols = 0;

22

23 for(i=0;i< N2;i++)

24 vr{i] = -f(ur[i]) + wrfi]; /ivr = v + -f(e1) + 2
25

26 if (IC2(vr, er2, vHat, e2Hat)) return false;

27

28 for(i=0;i<N;it+)

29

{
30 if (er[i])

WO 2009/102304

10

15

20

25

30

35

40

45

50

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72

73
74
75
76
77
78
79
80
81
82

30
{ .
blkindex = (i / symPSubBIlk) * symPSubBIk;
if ((i = blkindex) && er[blkindex]) continue;
if (numErasures == L) return false;
else erasures[numErasures++] = blkindex;
}

}

for (i=0;i < N2; i++)
erased = false;
blkindex = (i / symPSubBIk) * symPSubBIk;
for (j = 0; j < numErasures; j++)

if (erasures[j] == blkIindex || erasures[j] == blkindex + blkPlus)
erased = true; break;

}
if (erased)

i = ((blkiIndex + 1) * symPSubBIk) - 1;
else

if (e2Hat]i] != 0)

if (numNonZeroSymbols == L) return faise;
else nonZeroSymbols[numNonZeroSymbols++] = i;

}
if (numErasures == 0)

if (numNonZeroSymbols == 0) PB = true;
else if (nonZeroSymbols[numNonZeroSymbols - 1] -
nonZeroSymbols[0] <= L)
PB = true;
else PB = false;

}

if ('\PB && numNonZeroSymbols + numErasures < L) tS = true;
else tS = false;

if (\PB && itS && numNonZeroSymbols == 1)

{
gammalndex = nonZeroSymbols[0];
gamma = 0,
if (e2Hatjgammatndex] == 0) _1R = true;
else
_1R = false;

for(i=0;i<b;i++)

if (e2Hat{[gammalndex] == M[i]))

PCT/US2008/002836

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

35

40

45

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118}

31

_1R =true;
break;
}
gamma = finverse(-e2Hat[gammaindex});
if (gamma = M[i])
{

_1R =true;
break;
}

gamma = 0;

}
if (\PB && 1S && I_1R) return false;

for (i = 0; i < N2; i++) uPrimefi] = urfi];

if (PB)
for (i = 0; i < numErasures; i++)
for (j = 0; j < symPSubBIk; j++)
er[i + j] = true;
if (tS)

for (i = 0; i < numNonZeroSymbols; i++)
er1[nonZeroSymboIs[i]] = true;

uPrime[i] = GF2bSubtraction(uPrime[i], gamma);
if (\C1(uPrime, er1, uHat, e1Hat)) return false; "
for (i = 0; i < C1K; i++) *buffer++ = uPrimel[i];

for (i = 0; i < C2K; i++) *buffer++ = vHat[i];
return true;

The function member "decodeNextBlock" receives a composite-code codeword c,

corresponding erasure map er, and a symbol buffer in which to place the decoded

information symbols corresponding to received word c¢. On lines 4-5 symbol pointers

ur and wr are declared to point to the first and second halves of the received word C.

These symbol pointers ur and wr correspond to u, and w, in Figure 21. Similarly, on

lines 7-8, erasure-map pointers er! and er2 are declared to point to the portions of the

received erasure word er corresponding to the first half and the second half of the

received word C, respectively.

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

32

On lines 10-21, a number of local variables are declared. These local
variables have names corresponding to the notation used in the above discussions of
the composite code, component codes, composite-code encoding, and composite-code
decoding. For example, the variable vHat, declared on line 11, represent the
estimated decoded codeword v discussed above. The arrays "erasures" and
"nonZeroSymbols," declared on lines 18 and 20, respectively, contain the indices of
erased sub-blocks and the indices of additional errors detected in the erasure map and
the estimated error vector e2Hat, respectively. The use of the local variables is
clarified by their use, described below, in the function member "decodeNextBlock."

On lines 23-24, the vector "vr" is computed as vr = wr - f{ur). On line
26, vr is decoded to produce v and €, referred in the code as "vHat" and "e2Hat,"
respectively. In the for-loop of lines 28-37, indices of all erased sub-blocks are
determined and stored in the array "erasures." Note that if the number of sub-block
erasures is greater than L, the decode routine fails, since only up to L erasures can be
detected and corrected by the composite code implemented in the pseudocode. Note
also that if the C2 decoder, invoked on line 26, fails, then decoding fails. Next, in the
Jfor-loop of lines 39-58, any errors in €, represented by non-zero symbols, apart from
any detected erased sub-blocks are noted, and the indices of the non-zero symbols
corresponding to the errors are stored in the array "nonZeroSymbols."

On lines 60-67, the Boolean flag PB is set to TRUE or FALSE,
depending on whether or not a phased-burst error is detected in the codeword. PB is
set to TRUE when there are no erasures and when either there are no additional error
symbols or all of the error symbols occur within a single block composed of L
adjacent sub-blocks. Recall that the function member "decodeNextBlock" will have
already failed if there are more than L erased sub-blocks. Next, on lines 69-70, the
Boolean flag S is set to TRUE or FALSE, depending on whether or not a S-type
error is detected in the received word. The flag ¢S is set to TRUE when PB is FALSE
and the number of erased sub-blocks added to the number of additional error symbols
produces a sum less than or equal to L. .

Next, on lines 72-96, the Boolean flag 1R is set to TRUE or FALSE.
The Boolean flag _IR is set to TRUE when there is a single additional 1-bit error, or

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

33

no additional errors, along with up to L erased sub-blocks. Note that decoding has
already failed, on line 34, if more than L erased sub-blocks were detected. An error

symbol represents a 1-bit error when either the error symbol is a member of the set M,
as determined on line 81, or an inverse mapping by f -l (+) of the GF(2%)-additive

inverse of the symbol value of the error symbol maf)s to M, as determined on line 88.

When all of the Boolean flags are FALSE, as determined on line 98,
then decoding fails. Otherwise, uPrime is set to the first portion of the received word
con line 100. When PB is TRUE, all symbols of all sub-blocks containing errors are
marked as erasures, on lines 102-105. When ¢S is TRUE, then all additional error
symbols are marked as erasures, on lines 107-109. When a 1-bit additional error is
detected in the first portion of the codeword, on line 88, then, on line 109, uPrime is
altered to correct the area by subtraction of the inversely mapped inverse symbol
value from uPrime, on line 111. Finally, on line 113, uPrime is decoded by the C1
decoder. If the C1 decoder fails, then decoding fails. Otherwise, the information
symbols in uPrime and vHat are placed in the buffer for return to the member
function "decode."

As mentioned above, composite codes that represent embodiments of
the present invention may be constructed to efficiently detect and correct specific
types of error and erasure patterns and occurrences. For example, suppose that it is
desired to detect and correct up to L erased sub-blocks and ¢ additional random single-
bit errors in a symbol. When L <D/ and L + 2¢ < D2, and when a linear code C' over
GF(2) exists with C'N equal to 2*b, dimension K' = b, and minimum codeword
distance D' > 2 * ¢t + 1, where C is defined by a parity check matrix H' = [I | -A],
and where -A is invertible, then the above described composite code can be used to
detect up to L = 2 erased sub-blocks and ¢ = 2 additional random single-bit errors, in
the case of the above-discussed composite code. Note that -A is a b x b matrix over

GF(2). In this case, the symbol-to-symbol mapping function f(-) is defined to be:
f(9)=u,-A" where u; is a symbol of GF(2%, in the case of the above-discussed

composite code. The condition "L < DI and L + 2t < D2" ensures that the C2

decoder can successfully decode v,. The condition related to linear code C' ensures

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

34

that f(») will successfully map a symbol u; with one or two random-bit errors to a

different symbol distinguishable from a one-or-two-random-bit-error corrupted
symbol, so that the composite-code decoder can determine in which of the two halves
of the codeword that a one-or-two-random-bit corruption occurred. In the current

case, a non-zero symbol &= - f(€,,)+e , in the C2 error word écan be used to

generate a syndrome for C', s = ¢ H”, and the syndrome s can then be used to select a
corresponding C' error word €' that comprises the concatenation of €, and - f(€,,).

Thus, a random-two-bit-error corrupted symbol in € can be attributed to the first half
or the second half of a composite-code codeword.

Figure 22 shows a block diagram of a physical memory device in
which embodiments of the present invention may be employed. The memory 2202
includes a bank of individual DRAM component memories 2204-2208, a bus
controller and logic for receiving and transmitting data 2210, an encoder 2212 for
applying a composite code to data values prior to storage in the memory, and a
decoder 2214 for decoding encoded values retrieved from the memory. Memory
operations include storing a block of data Words 2216 identified by an address and
size, in words, 2218 into the memory and retrieving a block of words 2220 identified
by an address and size, in words, 2222 from the memory.

Figure 23 illustrates mapping between codeword symbols and DRAM
units in a bank of DRAM units that together comprise the electronic data storage
component of the physical memory device illustrated in Figure 22. In one
embodiment, each word received for storage in the memory is encoded to a
composite-code codeword 2303 by the encoder component of the memory (2212 in
Figure 22), which can be viewed as an array of blocks, such as block 2304, each block
comprising a number of sub-blocks, such as sub-block 2306. Each block is mapped
into a corresponding DRAM, as indicated by double-headed arrows 2308-2313 in
Figure 23. Thus, for example, a DRAM failure would result in a phased-burst error
spanning a block of the codeword. The composite codes of the present invention are
designed to correct the most probable failure modes of the memory. For example, the

above-discussed composite code can correct for a single DRAM failure, several sub-

WO 2009/102304 PCT/US2008/002836

10

15

20

25

30

35

several sub-block and symbol failures in several DRAMS. By using the composite
code, the probability of a memory error, already quite low due to the low probability
of a memory-component error, is substantially lowered by correcting for any of the
most probable component errors.

Although the present invention has been described in terms
of particular embodiments, it is not intended that the invention be limited to these

embodiments. Modifications within the spirit of the invention will be apparent to

‘those skilled in the art. For example, as discussed above, any number of different

component codes may be combined to create a composite code, providing that

suitable symbol-to-symbol mapping functions f(+) can be found to map certain

errors to corresponding symbols that pass through component-code encodings. The
encoding and decoding methods for composite codes may be implemented in
software, firmware, hardware, or a combination of two or more of software, firmware,
and hardware. Software implementations may employ any of a variety of different
programming languages, modular organizations, control structures, data structure, and
may vary by any of many other such programming parameters. Composite codes of
the present invention may be devised for efficient detection and correction of many
different types of error and erasure patterns and occurrences. In alternative
embodiments of the present invention, different symbol-to-symbol mapping functions
may be employed to determine the location of certain types of errors in a composite-
code codeword. In still alternative embodiments of the present invention, the
mapping function f(¢) may map pairs of symbols to other pairs of symbbls, or may
map other portions of a codeword to different values.

The foregoing description, for purposes of explanation, used specific
nomenclature to provide a thorough understanding of the invention. However, it will
be apparent to one skilled in the art that the specific details are not required in order to
practice the invention. The foregoing descriptions of specific embodiments of the
present invention are presented for purpose of illustration and description. They are
not intended to be exhaustive or to limit the invention to the precise forms disclosed.
Many modifications and variations are possible in view of the above teachings. The

embodiments are shown and described in order to best explain the principles of the

WO 2009/102304 PCT/US2008/002836

36

invention and its practical applications, to thereby enable others skilled in the art to
best utilize the invention and various embodiments with various modifications as are
suited to the particular use contemplated. It is intended that the scope of the invention

be defined by the following claims and their equivalents:

WO 2009/102304 PCT/US2008/002836

37

CLAIMS

1. A method for encoding K information symbols, the method comprising:

using a first component code C; to encode K; information symbols in a C; codeword u
of length N, symbols;

using a second component code C, to encode K, information symbols in a C,
codeword v of length N;

generating a vector w of length N, symbols by adding a non-identity mapping of u,

f(u),tov; and

generating a composite-code-C codeword by concatenating u and w together, the

composite codeword of length N = N, + N, containing K= K + K information symbols.

2. The method of claim 1 wherein component codes C; and C; and composite code C are

linear block codes over GF(q) containing symbols that each comprises an element of GF(q).

3. The method of claim 1 wherein component codes C; and C, and composite code C are
linear block codes over GF(2®%) containing symbols that each comprises an 8-bit element of
GF(2%.

4. The method of claim 3 wherein:
N; equals 36 symbols;
K, equals 34 symbols;
N; equals 36 symbols;
K; equals 32 symbols;
N =72 symbols; and
K =66 symbols.

5. The method of claim 1 wherein the non-identity mapping f(+) is applied, symbol-by-

symbol, to each symbol u; in vector u and maps each symbol value equal to a particular type

of expected error-word symbol value to a different symbol value that can be used to

WO 2009/102304 PCT/US2008/002836

38

subsequently identify’ whether or not an error of the expected type, detected on decoding of

the C codeword, has occurred in u or in w.

6. The method of claim 1 wherein there is an inverse function F7(s) such

thatf"(f(u))=u.

7. The method of claim 1 wherein the non-identity mapping f(+) maps a symbol u;, a

bit-tuple representation of which includes only a single bit having binary value "1," to a

different symbol f (u,.) , a bit-tuple representation of which includes at least two bits having

binary value "1."

8. A memory device that includes an encoder that encodes words received for storage in

the memory by the method of claim 1.

9. Computer instructions encoded in a computer-readable medium for encoding K

information symbols by the method of claim 1.

10. A method for decoding a composite-code-C codeword of length N, containing K
information symbols, to extract the K information symbols, the method comprising: |

extracting, from the composite-code-C codeword, a component-code-C; codeword of
length N; containing K; information symbols and a modified component-code-C; codeword
of length N, generated, during encoding, from a component-code-C, codeword containing K
information symbols, where K = K; + K; and N = N; + N;, and a non-identity mapping
function, f(+);

generating an estimated component-code-C, codeword v and an estimated error word
€ from the modified component-code-C; codeword by applying a C, decoder to the modified
component-code-C; codeword;

determining, from the error word €, which of a number of types of expected errors

occurred subsequent to encoding of the composite-code-C codeword;

WO 2009/102304 PCT/US2008/002836

39

when more than a first threshold number of erasures and erasures have occurred, but
less than a second threshold number of errors have occurred, assigning determined errors to
either the component-code-C, codeword or to the modified component-code-C, codeword;

| correcting any of the determined errors in the component-code-C; codeword that can

be corrected based on the estimated component-code-C, codeword v and an estimated error
word €

generating an estimated component-code-C, codeword a by applying a C; decoder to
the component-code-C; codeword; and

extracting K; information symbols from the estimated component-code-C; codeword
nand K, information symbols from the estimated component-code-C, codeword v to

produce K extracted information symbols.

11. The method of claim 10 wherein component codes C; and C; and composite code C
are linear block codes over GF(q) containing symbols that each comprises an element of
GF(g).

12. The method of claim 10 wherein component codes C; and C; and composite code C
are linear block codes over GF(28) containing symbols that each comprises an 8-bit element
of GF(2%).

13. The method of claim 12 wherein:
Nj equals 36 symbols;
K; equals 34 symbols;
N; equals 36 symbols;
K; equals 32 symbols;
N =72 symbols; and
K =66 symbols.

14. The method of claim 10 wherein determining, from the error word €, which of a
number of types of expected errors occurred subsequent to encoding of the composite-code-C

codeword further comprises:

WO 2009/102304 PCT/US2008/002836

40

considering an additionally received indication of erased symbols in the composite-
code-C codeword to determine whether any of a number of different types of errors occurred

in the composite-code-C codeword following encoding of the composite-code-C codeword.

15. The method of claim 10 wherein the number of different types of errors include:

a phased burst error, comprising only erroneous symbols within a threshold number of
adjacent sub-blocks of symbols within the composite-code-C codeword;

a type tS error, comprising up to a threshold number of erased sub-blocks of symbols
and additional erroneous symbols; and

a type 1R error, comprising up to a first threshold number of erased sub-blocks and

up to a second hreshold number of additional single-bit errors.

16. The method of claim 15 wherein assigning determined errors to either the component-
code-C; codeword or to the component-code-C, codeword further includes:

for each non-zero symbol in the error word ¢ indicative of an expected type of error,
assigning an error of the expected type of error to the estimated component-code-C;

codeword v; and

for each non-zero symbols in the error word €, €, that can each be mapped by an
inverse of a non-identity mapping f(+), /™' (+), to a symbol indicative of an expected type

of error, assigning an error of the expected type of error to the component-code-C; codeword.

17. The method of claim 15 wherein the non-identity mapping f () maps a symbol &, a

bit-tuple representation of which includes only a single bit having binary value "1," to a

symbol f(é,), a bit-tuple representation of which includes at least two bits having binary

value "1."

18. The method of claim 15 wherein correcting any of the determined errors in the
component-code-C; codeword that can be corrected based on the estimated component-code-

C, codeword v and an estimated error word € further includes:

WO 2009/102304 PCT/US2008/002836

41

marking sub-blocks containing erasures as being erased in the component-code-C;

codeword; and
correcting any symbols in the component-code-C; codeword corresponding to error-
word symbols that can be mapped by an inverse of a non-identity mapping f™'(+) to a

symbol indicative of an expected type of error.

19. A memory device that includes a decoder that decodes words retrieved from a

memory component of the memory device by the method of claim 10.

20. Compute instructions encoded in a computer-readable medium for encoding K

information symbols by the method of claim 10.

PCT/US2008/002836
1/25

WO 2009/102304

L 8inbi

NS/ “}---f
| | i

hoshooohsqwoppsoochs»hmuwv

I
| |
Jepoous 1 ! “
e e ' “ |

' ! ,

I __\/I\ GOl

co-- == - “ _m:cmco“
o Butonpojus

AM“»»»hsooohhwchoshooohhoh " “ “ -wEmEm“
| I -pue-iola !
“ Japooap “ L [

mov\

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/002836

WO 2009/102304

2/25

Z 9inbi4

iz
NNJ PNJ H ONJ wrNH
AN \. .
wd 9 L €l Y 9 ol o L 6
A% SNH
9]) 9 b oL Ll 6
0T
H @OJ
N
9 L €l 9 p ol 1 6
NONH
0L1LO0VILO0LOLI0KL000KLO00LOLLLOLLOOLOLLO
L o122 mowf
80z

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/002836

Figure 3B

k-dimensional vector subspace of V

C=

3/25
gEEEERENE
llllllli?Dg
I
T 11T &

LL
TTITIITT]

T OOLILILLITH

(TITTTLg L
EEEEEENEE:
ITT 1% [LILIIL0
N 1 A B B
T rm. OO
(TTTTTITT] [(TTTTTT]
(TTITTLT] EEEEEENE
T (TTITTTT]J
(TTTTT1TT] 3

SUBSTITUTE SHEET (RULE 26)

WO 2009/102304

PCT/US2008/002836
4/25
v= o(1({1]0|011}1(0|0O[1]|0]1
\402

w= 0|1(0|0f{0[O0O|1(1]0]|1(0]|1

k404
V-w o(of1(0(0|1|0|1(0}0]|0]|0

406

Figure 4

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/002836

WO 2009/102304

5/25

G a.nbi4

0Ls
143 J
x tos <
R/ 7 o | | So | o | | 20| | b |Vid ed | M| od | x
210jS J0 Jlwsuel}
990G
A— N~ ClS
VU=LY+d fad Q4 GHd pd Gl T4 f4d 4 |t z 1 o
T ¢ ? Y 7
V1p lp 9 Sp ¥n tp [4s] 52} Op bd ed vd od A
- - - . _ J
Y
SHQ uojewIojul ¥ SHQ %08Y0 4
$0S \ % 2pooud
808G
o 4L 9§ ¥ € Z L 0
S)q uoijewoul ¥ Vo ip Sp Sp Yo Ep | 2 \p Op n

c0s \

SUBSTITUTE SHEET (RULE 26)

WO 2009/102304 PCT/US2008/002836

6/25

L L
: ;
o
(e . .
©
\ bz
50
~ -
A 53
r N\
e o o o e . L] o
f S — — 85 50 &3 50 <
(“_I I [y E (S L ®0,
Y S .
— -
A I S R || &
=< 1] [B .
. | =
<
] - | _— o
LQ\ &
| - .] S
g
= = S — | L 2]
F
>=
1
0 T
o 2
(O\
ol p
L]
>N
<
->°-

SUBSTITUTE SHEET (RULE 26)

WO 2009/102304 PCT/US2008/002836

7125

706
704
N N
l_FTOO_PO_A_._.__.TDO;I_{_—G—O_——._'_—._—]I ~N
| |
|PloPia « o v Pip 0010 s - |
| Poo 10 0 1 :
I N [] L] [] ' * [] L]
G= I I . I >k
I I * [) [] N I
I . I l
| I |
Prwo] Paed 00 0
P L o
Figure 7A
n
A
|
10 1 e 0||:’o.1 Pi1 P21 e o Pk1,1|
lo o « o« « 0l :
| . . . I [] [] L] L]
H=|| : e . o

. . |
| . . . I ° . . . :
{0 0O O 1" Por1 Piet Porge o Pk1,r-1|

____________________ J S
N " L

710 Flgure 7B 712

SUBSTITUTE SHEET (RULE 26)

WO 2009/102304 PCT/US2008/002836

8/25
o
o
©
O ~—
(e o]
o
o
o
o
(]
o
n ©
=== R e oo
| | |)
I I e by
| = [A - -
| | o
|L _______ JI_ __________________ g L
L}
V
—~O0
o0
-
|

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/002836

WO 2009/102304

SUBSTITUTE SHEET (RULE 26)

[(——————-- /]
|]
I 1
! |
6 91nbi4 i “
“ _
T S
| |
“ “ .
= “ “ ® ” “Ip...oo%'""d ... 'd)dd
) |
m ")
i 1 806
.
L
| |
0 | _
S e 4
o P
0l6 906 —~_ °
. 0000L0 " 000L00
706 —~_ 4
206 —~_ , X

PCT/US2008/002836

WO 2009/102304

10/25

8001
/

a|qe} Buipooap

hm_-\m o T4
.wH.HN_w [4%-
._.m_ 3| Il
(HO2| Ola
(H9 | %
(HE | %o
hm:. L
Hmwa %
hmwo 53
(HP | "
(H9 | f
HW@ | B
(HP |
H% | %

Ul

0l ainbi4

Aelle piepuejs

K S N T R TN I TN B
L 4 N L L 4 4 4
- - r. J . - - - « -«
fT%»») . T3 SA|ClaPA | TlaEA|TIagTA [Clayla| TlD
A , p FENYN IEYON INEYGN TN [P N B
Oy, Py ’ ' 0131 SA [0layba |Ola1£A [O1a4Za (01 14| oOIp
A .
A ,. p 63154 | 604+PA | 6a15A | b042A | Sa41A | 60
w0+ T»N>)) wv+m> mv+v> mu+m> w0+m> m0+_> 83
PN ,. , L34+SA | Lo4+¥A | La+fa | Lo+2a | Ltatla Ly
9+ 4 , r YN ERENEENEENENNEES
s3+ %A F. p. S34SA | Sa4vA | Sa4fA | Sa42A | So4+1a Sa
A , . ZEYON EFTON I YON TN YN R
RN ' ’ €154 | fo4bA | fo4fA | fa4lA | fayla £a
. —
O+ ZYONEEENEENEZENEERNES
EWREIN f 19454 | 1a4PA | 10454 | 10424 [toria | o
by | . sa | A | A | 4 | A | 04
9001

<001

140]0)°

SUBSTITUTE SHEET (RULE 26)

WO 2009/102304 PCT/US2008/002836
11/125
GF(2%)

0 0 00000000

1 1 10000000

a' a 01000000

o? o 00100000

o’ o’ 00010000

o of 00001000

o’ o’ 00000100

oS b 00000010

o’ o’ 00000001

a? 1+ +o®+at 10111000

o’ a+o’+at+o 01011100

10 oot a 00101110 | ~—1100
a!! S+’ +al+a’ 00010111

ol l+a®+a®+a+a’ 10110011

" l+a+a?+a’ 11100001

't | +a+a 11001000

3
0> l+a+o®+a 11100010
a2 a+at+o’+a 01110001
\ 1103 \ 1104
1102

Figure 11

SUBSTITUTE SHEET (RULE 26)

WO 2009/102304 PCT/US2008/002836

12/25

f1214

R =48
/1206
=6

Q@
o
<
Vi
©
Vi
[T]
©
N
5 ~
I I
< <

] 1204

Figure 12

/1212
K =528
66

1210

1202f

GF(2%)

)
L
O

SUBSTITUTE SHEET (RULE 26)

WO 2009/102304 PCT/US2008/002836

13/25

([el-[-[-]e[e]e]-]

[=|=le[e]<[e]o]e]
[=i~[=]e]e]e]o]-]
J [=lel=[lefo]|<]~]

[o]ele]-[o]~]|-]||

BREEEEEE

(o[=le]-[=]~]|o]o]

) 1302

~
GF(2°
Figure 13

(L=lel-|~[-[e]o]e]

[e[e[e]o]e]o]o]-]

[e]elefe[o]e]-]o]

[o[e]e]e]o]-]|o]o]

[o[o]o]e]-[o]o]o]

M—1304

[o[e]o]-|o]|e]o]e]

GF(2% -M

)\ [elel=]e]e]e]e]e]

[o[=[o]o]o]e]e]e]

S(ueM)>u'eM

Eif'l(u):f'l(f(u))= u

\ [~[elele]e]o]|e[e]
{[e[e]e]e]eo]o]o]

SUBSTITUTE SHEET (RULE 26)

WO 2009/102304 PCT/US2008/002836

14/25

r_
- = ¥
< -~
B [o
s | —
NS =
~ N —
— L
v
o . y)
T q- A Y
F) L
N
o - 2
<t
h 2ad 1 —
[
— = L | s
—

SUBSTITUTE SHEET (RULE 26)

WO 2009/102304

15/25

< Encode >

Receive K information
symbols

Encode K, of the K
information symbols
using code C, to
produce vector v

A

Encode K of the K
information symbols
using ccde C; to
produce vector v

Set vectorw =fu) +v

Set codeword C = u/iw

Figure 15A

—~1502

—~—1503

—1504

—1605

—~—1506

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/002836

PCT/US2008/002836

WO 2009/102304

a6l aunbi4 8BS

—— OAOpA LA 'AM CA TAA EA Em ...T| ~_||

- 9261 ommr\ Nmﬁ\
N / | e 5'99 ‘2210 e enennon
LT LT LT L
N ~ A ~"
A+ (ny=m NNQ/ A
vmmr/ . \)@/\l/ \omﬁ

LTI T PO \ (LI

LT LTI e

16/25

oy |
LTI T T OO = (O T T T T T I T LTI T T] = A
wrmr\ _m_mmﬁm_wo 9lGlL \ Hm.vmﬁmfo
[TTITIIT :_:______:_________ T ___:__:_______:______
v_‘mr\ . . N_.m_‘\ vmuv}

SUBSTITUTE SHEET (RULE 26)

WO 2009/102304

17125

(o)

Receive next K1 + K>
symbols to encode

Y

C4 encoder to produce
aC, codeword u

A

Encode next K>
symbols by C, encoder
to produce a C,
codaword v

Generatew=flu) +v

A

Combine u and w by
concatenation to
produce C codeword

Figure 16

Encode K; symbols by

—~1602

—~—1604

—~1606

———1608

—1610

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/002836

PCT/US2008/002836

WO 2009/102304

- 18725

V.1 @inbi

90.1
10j0aA Joquifs JIg-g

L9GPEZLO oLLZL

c0L1 ,/))/ 320|g-qns
) X N // \\ —A
jot L | | { (1y
¢ > ¢ > — — — —> —

¥OLL B0ZL g0y

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/002836

WO 2009/102304

19/25

o g/1 8inbi4
EH—”E . mmxt‘

10113 J1q | + SYO0[q-qns pasesd 7 o1 dn = [
LT

|1

ZplL 6ELL 8tLll

oeLl
$Y00[q-qns PaseId 1 -7 01 dn pue SIOLd [OQUIAS } =) w

L L T T T T T T A T T e [T LTI

vcll Zell
s10110 utureyuoo 3001q-qns {| -7 (1+£) = 1-7+74 1+ 7/ 0+ 7/} 151nq paseyd s v ez too
:__§______:
N_‘N_‘\I\\ L9svezlLo
oLzl
mvwwt
4 YA% 2=
z=I

SUBSTITUTE SHEET (RULE 26)

WO 2009/102304

20/25

(Decode)

y

—1802

Receive C codeword

Extract from C
vectors uand w

——1804

A 4

V' =w - f(u) apply C;
decoderto v' to

produce
vande

—~—1806

A

Determine from
e errors that
occurred in

C codeword

all errors in one
sub-block

PCT/US2008/002836

Return
SUcCCess

1824

Extract K information
bit from

tandv

A

1822

Decode U to
produce

A

U

if erasures and
errors less than
a threshold

Mark erasures and
errors

4

Less than
irst threshold number
of erasures and less than a
second threshold of guess.
number
2

Return
failure

Figure 18

SUBSTITUTE SHEET (RULE 26)

> 1820

e

Y Correct
U

WO 2009/102304 PCT/US2008/002836

21/25

=

v

Receive word [ujw)]
wherew,=flu)+v +e —1902

v

v, = w,- fu) —~1903
v

C'z1 (v,)-» vandé

=-f(e1)*e,

C;
failed?

No /
orasures and
all errors within L
adjacent sub-blocks PB = true

aligned with
block boundal
?

PB = false —~1910
o 1914

false and
umbers at any non-zerd

symbols in €
and number of sub-block
erasures <L

decode Il

1919

PB
false and
tS false and number o
erased sub-blocks < L and only
at most one additional symbol

error sy has been found in
eatywiths e Mor sy
=0or-f(-sy)e

_IR =false _IR=true

Figure 19

SUBSTITUTE SHEET (RULE 26)

WO 2009/102304

Extract C;K
-~ symbols from G
and C,K symbols
from v to form CK
symbols

A

PCT/US2008/002836

22/25

(Decodelll)

. y
Continue decode |
with computed
values for u,v,, v,
¢, PB, tS, IR

2004

2002

Return false

u'=u, —~—2006

?012
U‘[7]l=
v[a]-7" (-s7)
2018

/

Mark symbols in v'
corresponding to L
adjacent sub-block
aligned with L
boundary as
erasures

2024

/

Mark symbols in
v'corresponding to

positions of erasures
ine as erasures

Errors
in & in addition to
erasures

Cl(uw)>i |—~—2026

Cf failed ? Return false

Figure 20

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/002836

WO 2009/102304

23/25

b

I

LZ @Inbi4

woNvN ooN_.N

@+ A +\Aﬁvn_ ="A PIOM 9pOD SAIFDD) ‘e +\=(u ‘'n
4 Y A
CLC L R T T T T T LT T T T T T
-N \ 0

voLe

dew ainseis aAl@2al

-r____________________:___::__o_
-~

c0le

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/002836

WO 2009/102304

24/25

80¢cc

AV A4

2z @Inbi4

LN Wvdd

€ WwvHa

¢ N\vdd

I Wvdd

0 AvYd

viec

Jepooep

N\

N\ A~

18podUe
.

[AX44

0ccce

SPIOM
ejep

2z15/s801ppE

I —zzzz

—0lcc

\(0

splom

elep

azis/ssalppe

+—8122

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/002836

WO 2009/102304

25/25

glec—

L-N Avdd "

£z aInbi4
Z20ee 90¢¢
} %00ig-qns N 0001G-qns

(.}\ A v A —A /.}}.}}.}}

L L T T & T 7]

. J_ S\ J A\ AN J

Y h'd hd 7 Y :
02019 f
voed
cLee— bLLee— oLec— 60€C— 80€C—
" ¥ Wvdd € WVHd ¢ NvVyda I Wwvdd 0 Wvda

SUBSTITUTE SHEET (RULE 26)

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US2008/002836

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8, GO6F 11/00, GO6F 11/10, HO3M 13/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPI, e-Korean Intellectual Property Office Patent Search System.
Keywords : encode, information, symbol, length, and composite

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to ¢laim No.

A US 2002/0099996 A1 (MASAYUKI DEMURA, HIRONOBU NAGURA, TETSUYA

TAMURA, KEISUKE TANAKA(JP)) Jul.25,2002
Abstract

Fig.1 - fig.10
Claims 12,512

A US 2007/0011598 A1 (Hitachi Global Storage Technologies Netherlands B.V.(NL)) Jan.11,2007

Abstract

Fig.1A - fig4

A EP 0793 174 B1 (SUN MICROSYSTEMS, INC.(US)) May.07,2003
The paragraphs [0028]-[0031] in the detailed description

Fig.1 and fig.2

The paragraphs [0030]-[0071] in the detailed description

The paragraphs [0027]-[0045] in the detailed description

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international ~ "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search

23 JUNE 2008 (23.06.2008)

Date of mailing of the international search report

23 JUNE 2008 (23.06.2008)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo-
gu, Daejeon 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.

PARK, Sung Ho

82-42-481-5743

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2008/002836
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2002-0099996 A1 25.07.2002 CN 1225491 A 11.08. 1999
JP 11-274941 A2 08.10. 1999
JP 3165099 B2 14.05.2001
KR 10-1989-0072241 27.09. 1999
W 451185 A 21.08.2001
US 6553533 BB 22.04.2003
US 2007-011598 A1 11.01.2007 CN 1881477 A 20.12.2006
EP 0793174 B1 07.05.2003 JP 10-031628 A2 03.02. 1998
SG 76501 A1 21.11.2000
US 5781568 A 14.07.1998

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - wo-search-report
	Page 70 - wo-search-report

