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METHOD AND SYSTEM FOR BACKGROUND 
REPLICATION OF DATA OBJECTS 

Matter enclosed in heavy brackets appears in the 
original patent but forms no part of this reissue specifica- 5 
tion; matter printed in italics indicates the additions 
made by reissue. 

PRIORITY CLAIM 

This application is a reissue application of U.S. Pat. No. 
8,099,492, which was issued Jan. 17, 2012, from U.S. appli 
cation Ser: No. 12/195,073, filed Aug. 20, 2008, which is a 
continuation of prior application Ser. No. 10/429.278, filed 
May 2, 2003 now U.S. Pat. No. 7,418,494 which claims 
priority to U.S. Provisional Application 60/398.488 filed Jul. 
25, 2002. This application claims priority to said application 
Ser. Nos. 12/195,073, 10/429,278 and 60/398,488. Further, 
the specification of application Ser. Nos. 12/195,073, 10/429, 
278 and 60/398,488 are hereby incorporated by reference 
herein in their entirety. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
Embodiments disclosed herein generally relate to methods 

and systems for data transmission. More specifically, 
embodiments relate to methods and systems of background 
transmission of data objects. 

2. Description of the Relevant Art 
TCP congestion control has seen an enormous body of 

work since publication of Jacobson's seminal paper on the 
topic. Jacobson’s work sought to maximize utilization of 
network capacity, to share the network fairly among flows, 
and to prevent pathological scenarios like congestion col 
lapse. Embodiments presented herein generally seek to 
ensure minimal interference with regular network traffic. 
Some embodiments seek to achieve high utilization of net 
work capacity. 

Congestion control mechanisms in existing transmission 
protocols generally include a congestion signal and a reaction 
policy. The congestion control algorithms in popular variants 
of TCP (Reno, NewReno, Tahoe, SACK) typically use packet 
loss as a congestion signal. In steady state, the reaction policy 
may use additive increase and multiplicative decrease 
(AIMD). In an AIMD framework, the sending rate may be 
controlled by a congestion window that is multiplicatively 
decreased by a factor of two upon a packet drop and is 
increased by one packet per packet of data acknowledged. It 
is believed that AIMD-type frameworks may contribute sig 
nificantly to the robustness of the Internet. 

In the Proceedings of the Second USENIX Symposium on 
Internet Technologies and Systems (October 1999), Duch 
amp proposes a fixed bandwidth limit for prefetching data. In 
“A Top-10 Approach to Prefetching on the Web” (INET 
1998), Markatos and Chronaki adopt a popularity-based 
approach in which servers forward the N most popular docu 
ments to clients. A number of studies propose prefetching an 
object if the probability of its access before it is modified is 
higher than a threshold. The primary performance metric in 
these studies is increase in hit rate. End-to-end latency while 
many clients are actively prefetching and interference with 
other applications are generally not considered. 

SUMMARY OF THE INVENTION 

In embodiments presented herein, an operating system 
may manage network resources in order to provide a simple 
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2 
abstraction of near Zero-cost background replication. Such a 
self-tuning background replication layer may enable new 
classes of applications by (1) simplifying applications, (2) 
reducing the risk of being too aggressive and/or (3) making it 
easier to reap a large fraction of spare bandwidth to gain the 
advantages of background replication. Self-tuning resource 
management may assist in coping with network conditions 
that change significantly over seconds (e.g., changing con 
gestion), hours (e.g., diurnal patterns), months (e.g., technol 
ogy trends), etc. 

In an embodiment presented herein, a communications 
protocol (referred to herein as “TCP-Nice' or simply "Nice') 
may reduce interference caused by background flows on fore 
ground flows. For example, a TCP-Nice system may modify 
TCP congestion control to be more sensitive to congestion 
than traditional protocols (e.g., TCP-Reno or TCP-Vegas). A 
TCP-Nice system may also detect congestion earlier and/or 
react to congestion more aggressively than traditional proto 
cols. Additionally, a TCP-Nice system may allow much 
Smaller effective minimum congestion windows than tradi 
tional protocols. These features of TCP-Nice may inhibit the 
interference of background data flows (e.g., prefetch flows) 
on foreground data flows (e.g., demand flows) while achiev 
ing reasonable throughput. In an embodiment, an implemen 
tation of Nice may allow senders (e.g., servers) to select Nice 
or standard Reno congestion control on a connection-by 
connection basis. Such an embodiment may not require modi 
fications at the receiver. 

In an embodiment, a method of sending data over a net 
work may include receiving a request for one or more data 
packets. One or more data packets may be sent in response to 
the received request. The data packets may include all or 
portions of desired data objects and/or pointers to desired data 
objects. The time that a first data packet was sent may be 
determined. An acknowledgement of receipt of at least one 
data packet may be received. The time that the acknowledge 
ment of receipt of the data packet was received may be deter 
mined. An estimate of network congestion may be deter 
mined. For example, the estimate of network congestion may 
be based at least in part on the time the data packet was sent 
and the time the acknowledgement of receipt of the data 
packet was received. If the estimate of network congestion 
indicates the existence of significant network congestion, 
then the network sending rate may be reduced. 

In an embodiment, the network sending rate is controlled 
by a congestion window that represents the maximum num 
ber of packets or bytes that may be sent but not yet acknowl 
edged. In Such an embodiment, to reduce the network sending 
rate, the size of the congestion window may be reduced. 

In an embodiment, the network sending rate may be 
reduced by at least a multiplicative factor if significant net 
work congestion is detected. For example, in an embodiment, 
the size of the congestion window may be reduced by at least 
a multiplicative factor if significant network congestion is 
detected. For example, the size of the congestion window 
may be reduced to one half of its previous size. The size of the 
congestion window may determine the amount of low priority 
(e.g., prefetch) data desired to be in transit at any one time or 
the rate at which one or more data packets are sent (e.g., the 
delay between sending one data packet and the next data 
packet or between sending one group of data packets and the 
next group of data packets). In an embodiment, the conges 
tion window may be reduced to a non-integer size. For 
example, the window may be reduced to less than one. In Such 
an embodiment, the method may send one new data packet 
during an interval spanning more than one round trip time. 
For example, to affect a congestion window of 4, one packet 
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is sent every four round trip time intervals. In an embodiment, 
at least two packets are sent at once even when the congestion 
window size is below two packets; this embodiment ensures 
that a receiver using TCP “delayed acknowledgements' gen 
erally receives two packets at a time, avoiding delayed 5 
acknowledgement time-outs. For example, to affect a conges 
tion window of/4, two packets are sent every eight round trip 
intervals. 

In an embodiment, Nice congestion control is imple 
mented at user level by calculating a user-level congestion 10 
window that may be smaller than the TCP congestion win 
dow. In Such an embodiment, code running at user level may 
restrict the amount of data that has been sent and not yet 
received to not exceed the user level congestion window. In 
one embodiment, user level code monitors the amount of data 15 
that have been received by sending user-level acknowledge 
ments when data are received. In another embodiment, user 
level code monitors the amount of data that have been 
received by detecting the receipt of TCP acknowledgements: 
for example packet filter tools, such as Berkeley Packet Filter, 20 
provide a means to monitor low level network traffic of this 
sort. In a user level embodiment, the user level code may 
monitor network congestion by monitoring round trip times 
between sending data and receiving acknowledgements. 

In an embodiment, determining the estimate of network 25 
congestion may include determining a round trip time of a 
first data packet and determining the estimate of network 
congestion based on the round trip time and the size of the 
congestion window. A round trip time may refer to an elapsed 
time between the time that a data packet is sent and the time 30 
that the acknowledgement of receipt of the data packet is 
received. In an alternative embodiment, determining the esti 
mate of network congestion may include determining a num 
ber of round trip times measured during an interval that 
exceeds a determined threshold round trip time. Significant 35 
network congestion may be determined to exist if the number 
of round trip times that exceed the threshold round trip time 
during the interval exceeds a threshold number. In an embodi 
ment, significant network congestion may be determined to 
exist if the number of round trip times that exceeds the thresh- 40 
old round trip time during the interval exceeds a fraction of 
the difference between an estimated congested round trip 
time and an estimated uncongested round trip time. 
An estimate of uncongested round trip time may be based 

on a minimum round trip time for a data packet that has been 45 
detected (e.g., within a specific time period). Other estimates 
of uncongested round trip time may also be used, such as a 
decaying running average of minimum round trip times or a 
round trip time that represents a percentile of detected round 
trip times (e.g., the 1 or 5" percentile of round trip times). 50 
Similarly, the estimate of congested round trip time may be 
based on a minimum round trip time, an average or decaying 
average maximum round trip time or a percentile of maxi 
mum roundtrip times (e.g., the 99" or 95" percentile of round 
trip times). Alternatively, rather than using congested or 55 
uncongested round trip times, congested or uncongested end 
to-end throughput of the network may be measured (or deter 
mined). 

For example, in an embodiment, significant congestion 
may be determined to exist if the estimate of network con- 60 
gestion exceeds a determined fraction of the estimated bottle 
neck queue buffer capacity. In an embodiment, the buffer 
capacity may be known orestimated a priori. In other embodi 
ments, the buffer capacity may be estimated based on mea 
Surements. For example, the uncongested round trip time may 65 
be taken as an estimate of the empty-queue round trip time 
and the congested round trip time may be taken as an estimate 

4 
of the full-queue round trip time, and congestion is deter 
mined if over an interval some first fraction of measured 
round trip time exceeds the uncongested round trip time plus 
some second fraction times the difference between the con 
gested and uncongested round trip times. 

In an embodiment, the method may also include increasing 
the size of the congestion window based on the estimate of 
network congestion (e.g., if significant to congestion is not 
detected). In such embodiments, the size of the congestion 
window may be increased linearly or multiplicatively. For 
example, the size of the congestion window may be increased 
by one data packet per round trip time interval. 

In an embodiment, a method of sending data packets via a 
network may include determining end-to-end network per 
formance (e.g., based on round trip times and/or throughput). 
An estimate of network congestion may be determined based 
at least in part on the end-to-end network performance. If 
significant network congestion is determined to exist, then the 
size of a congestion window may be reduced. 

In some embodiments, a method of sending a plurality of 
data packets via a network may include sending a first plural 
ity of data packets over a network using a first protocol and 
sending a second plurality of data packets over the network 
using a second protocol. The first plurality of data packets 
may include one or more high priority data packets (e.g., 
demand packets, such as data packet requested by a user). The 
second plurality of data packets may include one or more low 
priority data packets (e.g., prefetch data packets, such as data 
packets not explicitly requested by the user). The second 
protocol may be configured so that the sending of the second 
plurality of data packets does not interfere with the sending of 
the first plurality of data packets. For example, the second 
protocol may be configured to reduce the size of a congestion 
window associated with the second plurality of data packets 
in order to inhibit sending the second plurality of data packets 
from interfering with sending the first plurality of data pack 
etS. 
A system for sending data packets over a network may 

include at least one server coupled to the network. At least one 
server coupled to the network may be configured to send high 
priority data packets via the network using a first protocol. 
Additionally, at least one server coupled to the network may 
be configured to send low priority data packets via the net 
work using a second protocol. The server configured to send 
high priority data packets and the server configured to send 
low priority data packets may be the same server or different 
servers. For example, one server may be configured respond 
to requests using the first protocol or the second protocol on a 
connection-by-connection basis. The second protocol may be 
configured to inhibit low priority data packets from interfer 
ing with the sending of high priority data packets. 
A system for sending data packets over a network may 

include at least one server coupled to the network. At least one 
server coupled to the network may be configured to send 
demand data packets via the network using a first protocol. 
Additionally, at least one server coupled to the network may 
be configured to send prefetch data packets via the network 
using a second protocol. The server configured to send 
demand data packets and the server configured to send 
prefetch data packets may be the same server or different 
servers. For example, one server may be configured respond 
to requests using the first protocol or the second protocol on a 
connection-by-connection basis. The second protocol may be 
configured to inhibit prefetch data packets from interfering 
with the sending of demand data packets. 
A system for sending data packets over a network may 

include a hint server coupled to the network. The hint server 
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may be configured to send hint lists via the network during 
use. Hint lists provide information referring to data to be 
prefetched. In an embodiment, hint lists contain one or more 
references to data that may be prefetched. In an embodiment, 
items on the hint list may be items likely to be referenced in 
the future by a demand request. The hint server may be 
configured to determine an estimate of probability of one or 
more data objects on at least one server being requested as a 
demand request. Determination of the estimate of the prob 
ability of one or more data objects being requested in a 
demand request may be based on factors such as past history 
of demand access by all clients, past history of access by a 
class of clients, past history of access by the client fetching a 
hint list, a priori estimates of object importance or object 
popularity, links embedded in recently viewed pages, and the 
like. Suitable algorithms, such as prediction by partial match 
ing, markov chains, breadth first search, top-10 lists, and 
hand-constructed lists of objects, will be known by those 
ordinarily skilled in the art. 
The hint lists sent by the hint server may be sized to inhibit 

prefetching of hint list objects from causing congestion on the 
prefetch server or demand server. The hint lists sent by the 
hint server may also be sized to utilize a significant portion of 
available prefetch server capacity for prefetching of hint list 
objects. In an embodiment, hint list sizing determines the 
number of client nodes that are allowed to prefetch in an 
interval. For example, some number N of clients may be given 
non-Zero hint list sizes while any remaining clients during an 
interval may be given Zero hint list sizes to inhibit their 
prefetching during an interval. In an embodiment, hint lists 
are sized by the hint server including different numbers of 
references to data that may be prefetched. In an embodiment, 
hint lists are sized by the hint server including metadata that 
controls prefetching aggressiveness such as the rate that 
prefetching may occur or the number of objects that may be 
prefetched before the metadata is refreshed. In an embodi 
ment, hint lists are sized by a separate server sending meta 
data that controls prefetching aggressiveness. For example, a 
client may receive a hint list from a hint server and a prefetch 
count or prefetch rate from a separate server. 

In an embodiment, a front-end application may be included 
between the network and at least one server. The front-end 
application may be configured to determine whether a 
received request is a prefetch request or a demand request 
during use. If the request is a demand request, the front-end 
application may route the request to a demand server. If the 
request is a prefetch request, the front-end application may be 
configured to provide a redirection data object in response to 
the request. 

In an embodiment, at least one server may be a demand 
server. A demand server may include one or more data objects 
associated via one or more relative references. In certain 
embodiments, at least one server may be a prefetch server. A 
prefetch server may include one or more duplicate data 
objects associated via one or more absolute references. The 
one or more duplicate data objects may include data objects 
that are substantially duplicates of a data object of the demand 
SeVe. 

In an embodiment, the system may also include a monitor 
coupled to the network. The monitor may be configured to 
determine an estimate of server congestion during use. Server 
congestion may include demand server congestion or 
prefetch server congestion or both. In an embodiment, a 
monitor determines server congestion by monitoring server 
statistics such as CPU load, average response time, queue 
length, IO's per second, memory paging activity, cache hit 
rate, internal Software module load, or server throughput. In 
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6 
an embodiment, a monitor determines server congestion by 
requesting at least one object from the server and measuring 
the response time from when each object is requested until 
when it is received; in such an embodiment, if over an interval 
more than a first fraction of requests take longer than a second 
fraction (which may be greater than 1.0) times a benchmark 
time, then server congestion may be determined. In an 
embodiment, a benchmark time is an average, exponentially 
decaying average, minimum, or percentile (e.g., 5%-tile or 
25%-tile) time measured on earlier fetches. In an embodi 
ment, a single benchmark time is maintained for all objects 
fetched. In another embodiment, a list of candidate objects 
are used for monitor fetching and different benchmark times 
are maintained for each item on the list. 

In an embodiment, server congestion estimates may be 
used to control the aggressiveness of prefetching. In an 
embodiment, server congestion estimates may affect the siz 
ing of hint lists. For example, in an embodiment, a prefetch 
budget for an interval may be computed by starting with an 
initial prefetch budget value and multiplicatively decreasing 
it when the monitor detects server congestion and additively 
increasing it when the monitor detects no server congestion. 

In an embodiment, clients repeatedly request hint list sizes 
over an interval and the hint server provides non-zero hint list 
sizes to up to the prefetch budget of those requests and Zero 
hint list sizes to other requests during the interval. In an 
embodiment, the non-Zero hint list size is a small number 
(e.g., 1 or 2 objects or documents) in order to ensure that 
clients given non-Zero hint list sizes only prefetch for a short 
amount of time before updating their hint list size; this 
arrangement may increase the responsiveness of the system to 
changes in load. 

In an embodiment, a hint server may have a list of items for 
a client to prefetch and may send a client a first part of that list. 
Subsequently, the hint server may send a client Subsequent 
parts of the list. In an embodiment, a list of items for a client 
to prefetch may be ordered to increase the benefit/cost of 
prefetching items early on the list. For example, items may be 
sorted by importance such as probability of demand refer 
ence, probability of demand reference divided by object size, 
or probability of demand reference divided by object genera 
tion cost. In an embodiment, the size of a part of the list sent 
to a client depends on the current hint list size. 

In an embodiment, a method of sending data packets may 
include providing a transmission pathfortransmission of data 
packets between two or more computer systems. The trans 
mission path may include at least one router buffer. An esti 
mate of congestion along the transmission path may be deter 
mined at a time when at least one router buffer is not full. For 
example, the estimate of congestion may be determined as 
previously described. If significant congestion is determined 
to exist according to the estimate of congestion, then the size 
of the congestion window may be reduced by at least a mul 
tiplicative factor. 

In some embodiments, an estimate of a queue size of at 
least one router buffer may be determined. In such a case, if 
the queue size exceeds a specified fraction of a capacity of at 
least one router buffer, the congestion window may be 
reduced. 

In certain embodiments, a method of sending data packets 
may include determining an estimate of congestion along a 
transmission path of one or more data packets. If significant 
congestion exists based on the estimate of congestion, then 
the size of a congestion window may be reduced to a non 
integer value. For example, the congestion window may be 
reduced to less than one. 
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In an embodiment, a method of prefetching data may 
include sending a request for one or more data packets (e.g., 
based on input received from a user) and receiving one or 
more requested data packets and one or more prefetch hints. 
A prefetch hint may include a suggestion to prefetch one or 
more data packets. The method may include determining if 
one or more prefetch hints refer to one or more data packets 
available in a local memory (e.g., browser cache). The 
method may also include determining one or more data pack 
ets to prefetch. For example, a local memory may be searched 
for one or more data packets referred to by one or more 
prefetch hints. One or more data packets that do not exist in 
the local memory may be prefetched. 

After determining one or more data packets to prefetch, a 
request for one or more prefetch data packets may be sent. 
Upon receipt of one or more requested prefetch data packets, 
an acknowledgement of receipt of the packets may be sent. 
Additionally, the received packets may be stored in a local 
memory. If one or more of the received data packets includes 
a pointer, then a data packet (or data object) referenced by the 
pointer may be requested. 

After receiving one or more data packets, one or more 
received data packets may be displayed to a user. Addition 
ally, if the user requests access to one or more other data 
objects while prefetch data packets are being received, the 
method may include ceasing to receive the prefetch data 
packets. 

In an embodiment, a method of determining a hint list may 
include receiving an indication of server congestion and 
receiving a reference list. The reference list may include a list 
of data objects (or files) previously requested by one or more 
users. The hint list may be determined based at least in part on 
the reference list. For example, the hint list may be deter 
mined by determining one or more data objects that have a 
probability of a demand request that is greater than a thresh 
old based at least in part on the reference list. One or more 
data objects having a relatively high probability of receiving 
a demand request may be referenced in the hint list. Addition 
ally, the size of the hint list may be based at least in part on the 
indication of server congestion. The size of the hint list may 
be further based on the size of one or more data objects 
identified on the hint list. 
The hint list may be sent to a client that sent the reference 

list. In an embodiment, the hint list may be sent to the client in 
an order that causes an inline object to be prefetched before a 
data object that refers to the inline object. 
The hint list may be sent to a client in parts. In an embodi 

ment, a first part of the hint list is sent to a client. Subse 
quently, Subsequent parts are sent to a client. In an embodi 
ment, objects on the hint list are ordered so that more 
important or more valuable objects appear earlier on the hint 
list than less important and/or less valuable objects. 

In an embodiment, the indication of server congestion may 
include a recommended hint list size. For example, the rec 
ommended hint list size may include a number of data objects 
recommended for prefetching or may be Zero to Suspend 
prefetching for an interval. In an embodiment, Some clients 
are sent Zero hint list sizes and some non-Zero hint list sizes 
such that some fraction of clients prefetch and some other 
fraction do not over an interval. 

In an embodiment, a method of determining network con 
gestion may include sending one or more requests for one or 
more data objects. For example, a request may to be sent for 
a file on a server. In another example, the server may be 
pinged. At least one data packet associated with one or more 
requested data objects may be received. An estimate of net 
work congestion may be determined based at least in part on 
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8 
the round trip time of at least one received data packet. Addi 
tionally, a prefetch rate appropriate for the estimated network 
congestion may be determined. In an embodiment, two or 
more requests for data objects may be sent. For example, a 
number of requests may be sent over a length of time. The 
requests may be distributed (e.g., periodically, arbitrarily or 
randomly) throughout the length of time. 
The method may determine network congestion as previ 

ously described. Alternatively, a number of round trip times 
may be determined. If more than a threshold number of data 
packets received experienced significant network delays, 
then significant congestion may be determined to be present. 
In such a case, the prefetch rate may be decreased. If fewer 
than a threshold number of data packets experience signifi 
cant network delays, then no significant network congestion 
may be determined to be present. Therefore, in some embodi 
ments, the prefetch rate may be increased. In certain embodi 
ments, determining a prefetch rate appropriate for the esti 
mated network congestion may include determining whether 
a previous change in the prefetch rate has had sufficient time 
to affect network congestion. After a prefetch rate has been 
determined, a signal including the prefetch rate may be sent. 

In an embodiment, a method of providing data objects over 
a network may include receiving a request for one or more 
data objects. The method may determine whether the request 
comprises a demand request or a prefetch request. If the 
request comprises a prefetch request, then the method may 
return a redirection data object corresponding to one or more 
requested data objects. The redirection data object may cause 
a request to be sent to a prefetch server. If the request com 
prises a demand request, then the method may route the 
request to a demand server. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Advantages of embodiments presented herein will become 
apparent upon reading the following detailed description and 
upon reference to the accompanying drawings in which: 

FIG. 1 depicts an embodiment of a network diagram of a 
wide area network Suitable for implementing various 
embodiments; 

FIG. 2 depicts an embodiment of a computer system Suit 
able for implementing various embodiments; 
FIG.3 depicts dynamics of a Nice queue system; 
FIG.4 depicts experimental results showing spare capacity 

vs. latency; 
FIG. 5 depicts experimental results showing number of 

background flows vs. latency; 
FIG. 6 depicts experimental results showing number of 

background flows vs. background throughput; 
FIG. 7 depicts experimental results showing threshold vs. 

foreground latency; 
FIG. 8 depicts experimental results showing spare capacity 

vs. latency; 
FIG. 9 depicts experimental results showing number of 

background flows vs. latency; 
FIG. 10 depicts experimental results showing number of 

background flows vs. background throughput; 
FIG. 11 depicts experimental results showing spare capac 

ity vs. latency; 
FIG. 12 depicts experimental results showing number of 

background flows vs. latency; 
FIG. 13 depicts experimental results showing number of 

background flows vs. background throughput; 
FIG. 14A depicts experimental results showing large flow 

transfer performance for various systems over a modem; 
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FIG. 14B depicts experimental results showing large flow 
transfer performance for various systems over a cable 
modem; 

FIG. 14C depicts experimental results showing large flow 
transfer performance for various systems between London, 
England and Austin, Tex.; 

FIG. 14D depicts experimental results showing large flow 
transfer performance for various systems between Delaware 
and Austin, Tex.; 

FIG. 15A depicts experimental results showing large flow 
transfer performance over time for various systems using a 
modem; 

FIG. 15B depicts experimental results showing large flow 
transfer performance over time for various systems using a 
cable modem; 

FIG. 15C depicts experimental results showing large flow 
transfer performance over time for various systems between 
London, England and Austin, Tex.; 

FIG. 15D depicts experimental results showing large flow 
transfer performance over time for various systems between 
Delaware and Austin, Tex.; 

FIG. 16 depicts experimental results showing average 
response time for various methods from a particular server 
group; 

FIG. 17 depicts experimental results showing average 
response time for various methods from a particular server 
group; 

FIG. 18 depicts experimental results showing ideal send 
rates in a model of a Tivoli system selected using a Nice 
method; 

FIG. 19A depicts an embodiment of a one-connection 
architecture for a prefetching system; 

FIG. 19B depicts an embodiment of a two-connection 
architecture for a prefetching system; 

FIGS. 20A and 20B depict the request load on a sampled 
server averaged over 1-second and 1-minute intervals, 
respectively; 

FIG. 21 depicts an embodiment of a monitored prefetching 
system; 

FIG. 22 depicts a graph of experimental results showing 
demand response times with varying request arrival rates for 
several cases; 

FIG. 23 depicts a graph of experimental results showing 
prefetch and demand bandwidths at various demand request 
rates for a pfrate of 1: 

FIG. 24 depicts a graph of experimental results showing 
prefetch and demand bandwidths at various demand request 
rates for a pfrate of 5; 

FIG. 25 depicts a graph of experimental results showing 
average demand response time and prefetch bandwidth for 
several cases; 

FIGS. 26A and 26B depict experimental results showing 
demand rate and pfrate on a monitored server averaged over 
1-second and 1-minute intervals, respectively; 
FIG.27 depicts a graph of experimental results showing hit 

rates as a function of prefetch aggressiveness for several 
system configurations; 

FIG. 28A depicts an embodiment of a one-connection 
architecture for a prefetching system; 

FIG. 28B depicts an embodiment of a two-connection 
architecture for a prefetching system; 

FIG. 29 depicts an embodiment of program code that may 
be added to one or more HTML documents for use with a 
prefetching system; 

FIG. 30 depicts an embodiment of program code of a 
pfalways.html file; 
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10 
FIG. 31 depicts an embodiment of program code of a 

pflist.html file; 
FIG. 32 depicts a graph of experimental results showing 

throughput for several cases as a function of prefetch aggres 
siveness for a files size of 10 KB; 

FIG. 33 depicts a graph of experimental results showing 
throughput for several cases as a function of prefetch aggres 
siveness for a file size of 50 KB, and 

FIG. 34 depicts a graph of experimental results showing 
average demand response time for different system configu 
rations. 

While the invention is susceptible to various modifications 
and alternative forms, specific embodiments thereof are 
shown by way of example in the drawings and will herein be 
described in detail. It should be understood, however, that the 
drawing and detailed description thereto are not intended to 
limit the invention to the particular form disclosed, but on the 
contrary, the intention is to cover all modifications, equiva 
lents and alternatives falling within the spirit and scope of the 
present invention as defined by the appended claims. 

DETAILED DESCRIPTION 

FIG. 1 illustrates a wide area network (“WAN') according 
to one embodiment. WAN 102 may be a network that spans a 
relatively large geographical area. The Internet is an example 
of WAN 102. A wireless phone network with data transfer 
capability is an example of WAN 102. And a system compris 
ing both the Internet and a wireless phone network coupled 
together so that wireless phones may access data from Inter 
net servers is an example of WAN 102. WAN 102 typically 
includes a plurality of computer systems that may be inter 
connected through one or more networks. Although one par 
ticular configuration is shown in FIG. 1. WAN 102 may 
include a variety of heterogeneous computer systems and 
networks that may be interconnected in a variety of ways and 
that may run a variety of software applications. 
One or more local area networks (“LANs) 104 may be 

coupled to WAN 102. LAN 104 may be a network that spans 
a relatively small area. Typically, LAN 104 may be confined 
to a single building or group of buildings. Each node (i.e., 
individual computer system or device) on LAN 104 may have 
its own CPU with which it may execute programs, and each 
node may also be able to access data and devices anywhere on 
LAN 104. Thus, LAN 104 may allow many users to share 
devices (e.g., printers) and data stored on file servers. LAN 
104 may be characterized by a variety of types of topology 
(i.e., the geometric arrangement of devices on the network), 
of protocols (i.e., the rules and encoding specifications for 
sending data, and whether the network uses a peer-to-peer or 
client/server architecture), and of media (e.g., twisted-pair 
wire, coaxial cables, fiber optic cables, and/or radio waves). 

Each LAN 104 may include a plurality of interconnected 
computer systems and optionally one or more other devices 
Such as one or more workstations 110a, one or more personal 
computers 112a, one or more laptop or notebook computer 
systems 114, one or more server computer systems 116 and/ 
or one or more network printers 118. As illustrated in FIG. 1, 
an example LAN 104 may include one of each computer 
systems 110a, 112a, 114, and 116, and one printer 118. LAN 
104 may be coupled to other computer systems and/or other 
devices and/or other LANs 104 through WAN 102. 
One or more mainframe computer systems 120 may be 

coupled to WAN 102. As shown, mainframe 120 may be 
coupled to a storage device or file server 124 and mainframe 
terminals 122a, 122b, and 122c. Mainframe terminals 122a, 
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122b, and 122c may access data stored in the storage device or 
file server 124 coupled to or included in mainframe computer 
system 120. 
WAN 102 may also include computer systems connected 

to WAN 102 individually and not through LAN 104 (e.g., 
workstation 110b and personal computer 112b). For example, 
WAN 102 may include computer systems that may be geo 
graphically remote and connected to each other through the 
Internet. 

FIG. 2 illustrates an embodiment of computer system 150 
that may be suitable for implementing various embodiments 
described herein. Each computer system 150 typically 
includes components such as CPU 152 with an associated 
memory medium such as floppy disks 160. The memory 
medium may store program instructions for computer pro 
grams. The program instructions may be executable by CPU 
152. Computer system 150 may further include a display 
device Such as monitor 154, an alphanumeric input device 
such as keyboard 156, and a directional input device such as 
mouse 158. Computer system 150 may be operable to execute 
computer programs to implement various embodiments dis 
closed herein. 
Computer system 150 may include a memory medium on 

which computer programs according to various embodiments 
may be stored. The term “memory medium is intended to 
include an installation medium (e.g., a CD-ROM or floppy 
disks 160), a computer system memory (e.g., DRAM, 
SRAM, EDO RAM, Rambus RAM), or a non-volatile 
memory (e.g., magnetic media Such as a hard drive or optical 
media). The memory medium may also include other types of 
memory or combinations thereof. In addition, the memory 
medium may be located in a first computer which executes the 
programs or may be located in a second computer which 
connects to the first computer over a network. In the latter 
instance, the second computer may provide program instruc 
tions to the first computer for execution. Also, computer 
system 150 may take various forms such as a personal com 
puter system, mainframe computer system, workstation, net 
work appliance, Internet appliance, personal digital assistant 
("PDA), television system or other device. In general, the 
term "computer system” may refer to any device having a 
processor that executes instructions from a memory medium. 
The memory medium may store a software program or 

programs operable to implement various embodiments dis 
closed herein. The Software program(s) may be implemented 
in various ways, including, but not limited to, procedure 
based techniques, component-based techniques, and/or 
object-oriented techniques. For example, the Software pro 
grams may be implemented using ActiveX controls, C++ 
objects, JavaBeans, Microsoft Foundation Classes (“MFC), 
browser-based applications (e.g., Java applets), traditional 
programs, or other technologies or methodologies, as desired. 
A CPU such as host CPU 152 executing code and data from 
the memory medium may include a means for creating and 
executing the Software program or programs according to the 
embodiments described herein. 

Various embodiments may also include receiving or stor 
ing instructions and/or data on a carrier medium. Suitable 
carrier media may include storage media or memory media as 
described above. Carrier media may also include signals such 
as electrical, electromagnetic, or digital signals, conveyed via 
a communication medium (e.g., WAN 102, LAN 104 and/or 
a wireless link). 

Application performance and availability may be 
improved by aggressive background replication. As used 
herein, “background replication” refers to distributing data 
(e.g., across a network) to where it may be needed before it is 
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requested. In certain embodiments, background replication 
may involve hand tuning a network. However, given the rapid 
fluctuations of available network bandwidth and changing 
resource costs due to technology trends, hand tuning appli 
cations may risk (1) complicating applications, (2) being too 
aggressive and interfering with other applications, or (3) 
being too timid and not gaining the benefits of background 
replication. As used herein. “prefetching refers to a particu 
lar form of background replication involving background 
replication of one or more data objects from a server to a 
cache. Generally, a data object may be prefetched with the 
goal of decreasing how long a user must wait to access the 
prefetched object(s). For example, in the case of a user brows 
ing the Internet, a second web page may be prefetched while 
the user is viewing a first web page. Thus, if the user desires 
to view the second web page, the second web page (now 
loaded into the browser's cache) may be displayed more 
quickly than if the browser had to request the second web 
page from a server. 

In an embodiment, an operating system may manage net 
work resources in order to provide a simple abstraction of 
near Zero-cost background replication. For example, a system 
referred to herein as TCP-Nice or Nice, may limit the inter 
ference inflicted by background flows on foreground flows. 
Microbenchmarks and case study applications suggest that, 
in practice, TCP-Nice interferes little with foreground flows 
while reaping a large fraction of spare network bandwidth and 
simplifying application construction and deployment. For 
example, in one microbenchmark, when demand flows con 
sumed half of the available bandwidth, Nice flows consumed 
50-80% of the remaining bandwidth without increasing aver 
age latencies of demand packets by more than 5%. If the same 
background flows are transmitted with TCP Reno, they can 
hurt foreground latencies by up to two orders of magnitude. 
Research indicates that aggressive prefetching (e.g., back 
ground replication of selected data objects) may improve 
demand performance by a factor of about three when Nice 
manages resources. However, the same prefetching may hurt 
demand performance by a factor of six under standard net 
work congestion control. 

Application performance and availability may be 
improved by aggressive background replication. A broad 
range of applications and services may be able to trade 
increased network bandwidth consumption and disk space for 
improved service latency, improved availability, increased 
scalability, and/or support for mobility. Many of these ser 
vices have potentially unlimited bandwidth demands where 
incrementally more bandwidth consumption provides incre 
mentally better service. For example, a web prefetching sys 
tem may improve its hit rate by fetching objects from a 
virtually unlimited collection of objects that have non-zero 
probability of access or by updating cached copies more 
frequently as data change. Similarly, in peer-to-peer replica 
tion systems, Yu and Vandat Suggest a direct trade-off 
between the aggressiveness of update propagation and Ser 
Vice availability. Technology trends Suggest that “wasting 
bandwidth and storage to improve latency and availability 
will become increasingly attractive in the future. For 
example, per-byte network transport costs and disk storage 
costs are low and have been improving at about 80-100% per 
year. Conversely, network availability and network latencies 
improve slowly, and long latencies and failures waste human 
time. 

Current operating systems and networks typically do not 
provide good Support for aggressive background replication. 
In particular, because background transfers compete with 
foreground requests, aggressive replication can hurt overall 
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performance and availability by increasing network conges 
tion. Applications should therefore carefully balance the ben 
efits of replication against the risk of both self-interference (in 
which applications hurt their own performance) and cross 
interference (in which applications hurt performance of other 
applications). Often, applications attempt to achieve this bal 
ance by setting “magic numbers” (e.g., the prefetch threshold 
in certain prefetching algorithms) that have little obvious 
relationship to system goals (e.g., availability or latency) or 
constraints (e.g., current spare network bandwidth or server 
capacity). 

In embodiments presented herein, an operating system 
may manage network resources to provide a simple abstrac 
tion of near Zero-cost background replication. Such a self 
tuning background replication layer may enable new classes 
of applications by (1) simplifying applications, (2) reducing 
the risk of being too aggressive, and/or (3) making it easier to 
reap a large fraction of spare bandwidth to gain advantages of 
background replication. Self-tuning resource management 
may assist in coping with network conditions that change 
significantly over periods of seconds (e.g., changing conges 
tion), hours (e.g., diurnal patterns), and/or months (e.g., tech 
nology trends). In an embodiment, network resources may be 
managed rather than processors, disks, and memory because 
networks are shared across applications, users, and organiza 
tions and therefore are believed to pose the most critical 
resource management challenge to aggressive background 
replication. In some embodiments, network resources may be 
managed in addition to one or more additional resources, such 
as processors, disks, and memory. 
A TCP-Nice system may reduce interference inflicted by 

background flows on foreground flows. For example, a TCP 
Nice system may modify TCP congestion control to be more 
sensitive to congestion than traditional protocols (e.g., TCP 
Reno or TCP-Vegas). A TCP-Nice system may also detect 
congestion earlier and/or react to congestion more aggres 
sively than traditional protocols. Additionally, a TCP-Nice 
system may allow Smaller effective minimum congestion 
windows than traditional protocols. In an embodiment, these 
features of TCP-Nice may limit the interference of back 
ground flows on foreground flows while achieving reasonable 
throughput in practice. In an embodiment, an implementation 
of Nice may allow senders (e.g., servers) to select Nice or a 
traditional congestion control protocol on a connection-by 
connection basis. Such an embodiment may not require modi 
fications at the receiver. 

It may be desirable to minimize impact on foreground 
flows while reaping a significant fraction of available spare 
network capacity. Nice has been evaluated in this regard using 
theory, microbenchmarks, and application case studies. 
Embodiments presented herein are believed to be less aggres 
sive than Reno. Additionally, in a simplified network model, 
it is believed that Nice flows interfere with Reno flows’ band 
width by a factor that falls exponentially with the size of the 
buffer at the bottleneck router independent of the number of 
Nice flows in the network. 
As used herein, microbenchmarks may include both net 

work simulations (using ns) to stress test the protocol and 
Internet measurements to examine the systems behavior 
under realistic conditions. Simulation results indicate that 
Nice may avoid interfering with traditional congestion con 
trol protocol flows (e.g., TCP-Reno, TCP-Vegas, etc.) across 
a wide range of background transfer loads and spare network 
capacity situations. For example, when there are 16 continu 
ously backlogged background flows competing with demand 
HTTP cross traffic averaging 12 open connections and con 
suming half of the bottleneck bandwidth, the background 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
flows slow down the average demand packet by less than 5% 
and reap over 70% of the spare network bandwidth. Con 
versely, 16 backlogged Reno (or Vegas) flows slow demand 
requests by more than an order of magnitude. 

Internet microbenchmarks may measure the performance 
of simultaneous foreground and background transfers across 
a variety of Internet links. Based on studies discussed herein, 
it is believed that background flows may cause little interfer 
ence to foreground traffic (e.g., average latency and band 
width of the foreground flows are substantially the same 
whether foreground flows compete with background flows or 
not). It is also believed that there is sufficient spare capacity 
that background flows may reap significant amounts of band 
width throughout the day. During one study, for example, 
Nice flows between London, England and Austin, Tex. aver 
aged more than 80% of the bandwidth achieved by Reno 
flows during most hours. During the worst hour of the study it 
was observed that the Nice flows still saw more than 30% of 
the bandwidth of the Reno flows. 

Studies disclosed herein also examine the end-to-end 
effectiveness, the simplicity, and the usefulness of Nice. Two 
services were studied. A first system studied included a HTTP 
prefetching client and server and used Nice to regulate the 
aggressiveness of prefetching. A second system studied 
included a model of a Tivoli Data Exchange system for rep 
licating data across large numbers of hosts. In both studies, 
Nice: (1) simplified the application by eliminating magic 
numbers; (2) reduced the risk of interfering with demand 
transfers; and (3) improved the effectiveness of background 
transfers by using significant amounts of bandwidth when 
spare capacity exists. For example, in a prefetching case 
study, applications that prefetch aggressively, demonstrated 
improved performance by a factor of 3 when Nice is used. If 
the applications prefetched using TCP-Reno instead, how 
ever, the prefetching overwhelmed the network and increased 
total demand response times by more than a factor of six. 

Congestion control mechanisms in existing transmission 
protocols generally include a congestion signal and a reaction 
policy. The congestion control algorithms in popular variants 
of TCP (Reno, NewReno, Tahoe, SACK) typically use packet 
loss as a congestion signal. Insteady state, the reaction policy 
may use additive increase and multiplicative decrease 
(AIMD). In an AIMD framework, the sending rate may be 
controlled by a congestion window that is multiplicatively 
decreased by a factor of two upon a packet drop and is 
increased by one per window of data acknowledged. It is 
believed that AIMD-type frameworks may contribute signifi 
cantly to the robustness of the Internet. 

With respect to minimizing interference, however this con 
gestion signal (a packet loss) arrives too late to avoid damag 
ing other flows. In particular, overflowing a buffer (or filling 
a RED router enough to cause it to start dropping packets) 
may trigger losses in other flows, forcing them to back off 
multiplicatively and lose throughput. 

Certain traditional congestion protocols attempt to detect 
incipient congestion (e.g., TCP-Vegas). To detect incipient 
congestion due to interference, round trip delays of packets 
may be monitored. Increasing round trip delays may be used 
as a signal of congestion. By monitoring round trip delays, 
each Vegas flow tries to keep between C. (typically 1) and B 
(typically 3) packets buffered at the bottleneck router. As used 
herein, a “bottleneck router refers to a router (either actual or 
virtual) which accounts for much of the round trip delay 
experienced by a data packet. If fewer than C. packets are 
queued, Vegas increases the window by one unit (typically 
one data packet) per received acknowledgement. If more than 
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B packets are queued, the method decreases the window by 
one unit per received acknowledgement. Vegas does this esti 
mation as follows: 

ninRTT 

where E is the Expected throughput 

W 
A = observedRTT 

wherein A is the Actual throughput 

Diff=E - A 

if (Diffs TT) 
W = W - 1 

else if (Diff > ) 
W = W - 1 

Bounding the difference between the actual and expected 
throughput translates to maintaining between C. and B packets 
in the bottleneck router. Vegas may have some drawbacks as 
a background replication protocol. For example: 
1. Vegas competes for throughput approximately fairly with 
Reno. 
2. Vegas attempts to back off when the number of queued 
packets from its flows increase. However, it does not neces 
sarily back off when the number of packets enqueued by other 
flows increases. 
3. Each Vegas flow tries to keep C. and B (e.g., between about 
1 to 3) packets in the bottleneck queue; hence, a collection of 
background flows could cause significant interference. 

Note that even setting C. and B to very Small values may not 
prevent Vegas from interfering with cross traffic. The linear 
decrease on the “Diff>f trigger may not be responsive 
enough to inhibit interference with other flows. This expec 
tation has been confirmed by simulations and real world 
experiments, and also follows as a conclusion from theoreti 
cal analysis. 
The TCP-Nice includes components not present in Vegas. 

For example, in an embodiment, TCP-Nice may include: 1) a 
more sensitive congestion detector; 2) multiplicative reduc 
tion in response to incipient congestion (e.g., increasing 
round trip times); and 3) the ability to reduce the congestion 
window below one. 

In an embodiment, a Nice flow may signal congestion 
when significant queuing is detected. In an embodiment, con 
gestion may be signaled before dropping of demand packets 
from the queue impacts a foreground flow. For example, Nice 
may indicate significant queuing before the router queue fills 
for a drop-tail router. In another example, Nice may indicate 
significant queuing in a random early detection (RED) router 
before the router queue fills enough to start probabilistically 
dropping packets or soon after the router starts probabilisti 
cally dropping packets. In some embodiments, a Nice flow 
may monitor round trip delays, estimate the total queue size at 
the bottleneck router, and signal congestion when this total 
queue size exceeds a fraction of the estimated maximum 
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16 
queue capacity. For example, a Nice flow may use minRTT 
(the minimum observed round trip time) as an estimate of the 
round trip time when queues are empty. The Nice flow may 
use maxRTT (the maximum observed round trip time) as an 
estimate of the round trip time when the bottleneck queue is 
full. If more than fractions of the packets Nice sends during a 
RTT (round trip time) window encounter delays exceeding 
minRTT+(maxRTT-minRTT) threshold, the detector may 
signal congestion. In an embodiment, minRTT and maxRTT 
may be initialized by assuming that the first round trip delay 
is minRTT and setting the maxRTT to 2*minRTT. In another 
embodiment, Nice filters minRTT and maxRTT measure 
ments to eliminate statistically insignificant measurements 
(e.g., outliers). For example, the longest 10% of round trip 
times and/or the shortest 10% of round trip times may be 
ignored. Such moving measures may have their limitations. 
For example, if the network is in a state of persistent conges 
tion, a bad estimate of minRTT may be obtained. However, 
past studies have indicated that a good estimate of the mini 
mum round trip delay may typically be obtained in a short 
time. Route changes during a transfer may also contribute to 
inaccuracies in RTT estimates. However, Such changes are 
believed to be relatively uncommon. It is also believed that to 
route changes may be handled by weighting recent measure 
ments more heavily than older measurements. For example, 
exponentially decaying averages for minRTT and maxRTT 
estimates may be maintained. 
Some systems have signaled congestion when encounter 

ing delays exceeding minRTT*(1+threshold'). Expressing 
the threshold in terms of the difference between minRTT and 
maxRTT makes the problem more mathematically tractable 
and reduces the need to hand-tune threshold for different 
networks. 

In an embodiment, when a Nice flow signals congestion, it 
reduces its congestion window by a multiplicative factor. For 
example, in one embodiment, when a Nice flow signals con 
gestion, the current congestion window is halved. In contrast, 
Vegas reduces its window by one packet each round that 
encounters long round trip times. A Vegas window is halved 
only if packets are lost (i.e., Reno-like behavior). In an 
embodiment, limiting interference with demand flows may 
include detecting when queues exceed a threshold and back 
ing off multiplicatively. Experimental results show that such 
methods may achieve reasonable throughput in practice. 

FIG.3 shows a queue at a bottleneck router that routes Nice 
flows with a threshold t and fractions Round trip delays of 
packets are indicative of the current queue size. In an embodi 
ment, the Nice congestion avoidance mechanism may be 
written as: 

per ack operation: 
if(curRTT > (1 - t)min RTT + t max RTT) 

numCong++: 
per round operation: 

if(numCong> f W) 
W – W/2: 
numCong = 0; 

else { 
if ... congestion avoidance of a traditional protocol follows 

If the congestion condition does not trigger, Nice may utilize 
the congestion avoidance rules of a traditional protocol (e.g., 
TCP-Vegas or TCP-Reno). Additionally, if a packet is lost, 
Nice may utilize the congestion avoidance rules of a tradi 
tional protocol. 



US RE44,837 E 
17 

In an embodiment, TCP-Vegas congestion control rules 
may be used as the traditional protocol and both Nice and 
Vegas congestion control rules operate on a common conges 
tion window variable. This embodiment was utilized for the 
experiments described below. In another embodiment, TCP- 5 
Reno congestion control rules may be used as the traditional 
protocol. 

In another embodiment, two separate limits are maintained 
on sending rates. One limit is maintained by the traditional 
protocol and a separate limit is maintained by Nice. The 10 
system is organized so that the actual sending rate is the 
minimum of the two limits. For example, in an embodiment, 
a user-level control algorithm maintains a congestion window 
for each connection in accordance with the Nice rules and a 
kernel-level control algorithm maintains a congestion win- 15 
dow in accordance with Reno rules. The user level control 
algorithm ensures that packets are submitted to the kernel 
TCP congestion control algorithm at a rate not exceeding the 
Nice-limited rate, and then kernel congestion control algo 
rithm ensures that packets are submitted to the network at a 20 
rate not exceeding the Reno-limited rate; together these con 
trols ensure that packets are not Submitted to the network at a 
rate exceeding the minimum of the Nice and Reno limited 
rates. 

In certain embodiments, Nice congestion control may to 25 
allow the window sizes to multiplicatively decrease below 
one if so dictated by the congestion trigger and response. To 
affect window sizes less than one, a packet may be sent out 
after waiting for the appropriate number of Smoothed round 
trip delays. In these circumstances, ack-clocking may be lost, 30 
but the flow continues to send at most as many packets into the 
network as it gets out. In this phase, the packets act as network 
probes waiting for congestion to dissipate. By allowing the 
window to go below one, Nice retains the non-interference 
property even for a large number of flows. Both analysis and 35 
experiments indicate that this optimization may reduce inter 
ference, particularly when testing against several background 
flows. 

In an embodiment, a Nice system may be implemented by 
extending an existing version of the Linux kernel that Sup- 40 
ports Vegas congestion avoidance. Like Vegas, microsecond 
resolution timers may be used to monitor round trip delays of 
packets to implement a congestion detector. 

Typically, a Linux TCP implementation may maintain a 
minimum window size of two in order to avoid delayed 45 
acknowledgements by receivers that attempt to send one 
acknowledgement for every two packets received. To allow 
the congestion window to go to one or below one, a new timer 
may be added that runs on a per-socket basis when the con 
gestion window for the particular socket (flow) is below two. 50 
In this phase, the flow waits for the appropriate number of 
RTTs before sending two packets into the network. Thus, a 
window sized at /16 of a data packet sends out two packets 
after waiting for 32 smoothed round trip times. In an embodi 
ment, the minimum window size may be limited. For 55 
example, in certain embodiments, the minimum window size 
may be limited to /4s. 

In an embodiment, congestion detection may include a 
number of configurable parameters such as, but not limited to, 
fraction and threshold. For example, the congestion detector 60 
may signal congestion when more than fraction 0.5 packets 
during an RTT encounter delays exceeding threshold=0.2. 
Experimental data indicate that interference of Nice flows 
with demand flows is relatively insensitive to the fraction 
parameter chosen. Since, in some embodiments, packets are 65 
sent in bursts, most packets in a round observe similar round 
trip times. 

18 
A simple API may be provided to designate a flow as a 

background flow through an option in the “setsockopt” sys 
tem call. By default, flows may be considered foreground 
flows for experimental purposes. 

Analysis indicates that under a simplified network model, 
for long transfers, the reduction in the throughput of Reno 
flows may be asymptotically bounded by a factor that falls 
exponentially with the maximum queue length of the bottle 
neck router irrespective of the number of Nice flows present. 
The following analysis assumes a simplified fluid approxi 

mation and synchronous network model. The analysis may 
apply, for example, to long background flows. The analysis 
also assumes long foreground Reno flows. The analysis fur 
ther assumes that a Nice sender accurately estimates the 
queue length during the previous epoch at the end of each 
RTT epoch. These assumptions apply only to the formal 
analysis of the Nice protocol, and are not intended to limit 
embodiments presented herein in any way. The Nice protocol 
is believed to work well under more general circumstances 
(as demonstrated by experimental results presented herein). 
A simplified fluid approximation model of the network 

may be used to model the interaction of multiple flows using 
separate congestion control algorithms. This model may 
assume infinitely small packets. For purposes of the model, 
the network itselfmay be simplified to a source, a destination, 
and a single bottleneck. The bottleneck router may perform 
drop-tail queuing. 

Let L denote the service rate of the queue and B the buffer 
capacity at the queue. Let t be the round trip delay of packets 
between the Source and destination excluding all queuing 
delays. A fixed number of connections may be considered, 
including 1 following Reno and m following Nice. Each of the 
connections may have one continuously backlogged flow 
between a source and a destination. Lettbe the Nice threshold 
and q t B be the corresponding queue size that triggers 
multiplicative backoff for Nice flows. The connections may 
be homogeneous (i.e., they may experience the same propa 
gation delay t). Moreover, the connections may be synchro 
nized so that in the case of buffer overflow, all connections 
may simultaneously detect a loss and multiply their window 
sizes by Y. The congestion avoidance phase of the model is 
described herein to analyze the steady-state behavior. 
A bound on the reduction in the throughput of Reno flows 

due to the presence of Nice flows may be obtained by analyz 
ing the dynamics of the bottleneck queue. To do so, the 
duration of the flows may be divided into periods. In each 
period, the decrease in the number of Reno packets processed 
by the router due to interfering Nice packets may be bounded. 

Let W(t) and W(t) denote the total number of outstanding 
Reno and Nice packets in the network at time t, respectively. 
W(t), the total window size, is W.(t)+W,(t). These window 
sizes may be traced across periods. The end of one period and 
the beginning of the next period may be marked by a packet 
loss. Upon packet loss, each flow may reduce its window size 
by a factor of Y. Thus, W(t)=ut--B just before a loss and 
W(t)=(uT-B)*y just after the packet loss. Let to be the begin 
ning of one Such period after a loss. Consider the case when 
W(t)=(t+B)*Y<ut and mdl. For ease of analysis it may be 
assumed that the “Vegas B' parameter for the Nice flows is 0. 
That is, the Nice flows may additively decrease upon observ 
ing round trip times greater than T. The window dynamics in 
any period may be split into three intervals as described 
below. 

Additive Increase. Additive Increase: In this interval to 
t, both Reno and Nice flows may increase linearly. W(t) 
increases from W(t) to W(t)=t, at which point the queue 
starts building. 
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Additive Increase, Additive Decrease: This interval It, t 
is marked by additive increase of W. Additionally, in 
embodiments where TCP-Vegas is used as the traditional 
protocol, W., may additively decrease of as the “Diff>f rule 
triggers the underlying Vegas controls for the Nice flows. The 
end of this interval is marked by W(t)-ut-q. 

Additive Increase, Multiplicative Decrease: In this interval 
It, t, W(t) may multiplicatively decrease in response to 
observing queue lengths above q. The rate of decrease of 
W(t), however, may be bounded by the rate of increase of 
W(t), as any faster decrease may cause the queue size to drop 
below q. At the end of this interval W(t)=Et-B. At this 
point, each flow may decrease its window size by a factor of 
Y, thereby entering into the next period. 
To quantify the interference experienced by Reno flows in 

the presence of Nice flows, differential equations may be 
formulated to represent the variation of the queue size in a 
period. The values of W, and W, at the beginning of periods 
may stabilize after several losses, so that the length of a period 
converges to a fixed value. It is then straightforward to com 
pute the total amount of Reno flow sent out in a period. The 
interference I, defined as the fractional loss in throughput 
experienced by Reno flows because of the presence of Nice 
flows, may be given as follows. 

Theorem 1: The interference I is given by: 

The derivation of Iindicates that all three design features of 
Nice may contribute to reducing interference. The interfer 
ence falls exponentially with B(1-t) or B-q, which reflects 
the time that Nice may multiplicatively back offbefore packet 
losses occur. Intuitively, multiplicative decrease may allow 
any number of Nice flows to get out of the way of additively 
increasing demand flows. The dependence on the ratio B/m 
Suggests that as the number of demand flows approaches the 
maximum queue size, the non-interference property may start 
to break down. Such a breakdown may not be surprising, as 
each flow barely gets to maintain one packet in the queue and 
TCP Reno is known to to behave anomalously under such 
circumstances. In a well designed network, when B>m, the 
dependence on the thresholdt may be weak. That is, interfer 
ence may be small when t is Small. Therefore, careful tuning 
of the exact value of t in this region may be unnecessary. 
Analysis indicates that the above bound on I may hold even 
for the case when mid-1. 

Experiments were conducted to test the non-interference 
properties of Nice. Additionally, the experiments determined 
whether Nice gets any useful bandwidth for the workloads 
considered. Using controlled ns simulations, the system was 
stress tested by varying network configurations and loads to 
extreme values. Nice methods were also systematically com 
pared to other methods. In general, the experiments indicated 
that: 

Nice flows cause almost no interference irrespective of the 
number of flows. 

Nice flows may utilize a significant fraction of the available 
spare bandwidth. 

Nice methods may outperform other existing protocols, 
including Reno, Vegas, and Vegas with reduced C. and B 
parameters. 

All of the simulation experiments were conducted using ns 
2.1 b8a. A barbell topology was used in which NTCP senders 
transmit through a shared bottleneck link L to an equal num 
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ber of receivers. The router connecting the senders to L 
becomes the bottleneck queue. The routers performed drop 
tail first-in-first-out queuing. The router buffer size was set to 
50 packets. Each packet was 1024 bytes in size. The propa 
gation delay was set to 50 ms. The capacity of the link was 
varied to simulate different amounts of spare capacity. 
A 15 minute section of a Squid proxy trace logged at UC 

Berkeley was used as the foreground traffic over L. The num 
ber offlows fluctuated as clients entered and left the system as 
specified by the trace. On average, there were about 12 active 
clients. In addition to this foreground load, permanently 
backlogged background flows were introduced. For the initial 
set of experiments, the bandwidth of the link was fixed to 
twice the average demand bandwidth of the trace. The pri 
mary metric used to measure interference was the average 
round trip latency of a foreground packet (i.e., the time 
between its being first sent and the receipt of the correspond 
ing ack, inclusive of retransmissions). The total number of 
bytes transferred by the background flows was used as the 
measure of utilization of spare capacity. 
The performance of the background protocol was com 

pared to several other strategies for sending background 
flows. For example, router prioritization that services a back 
ground packet only if there are no queued foreground packets 
was used for comparison. Router prioritization may be con 
sidered the ideal strategy with respect to performance for 
background flow transmission. In some cases, however, 
router prioritization may require modification to existing net 
works and routers, and thus may be impractical to deploy and 
use. In addition, Vegas (C=1, B-3), Reno, Vegas (C.-0, B=0), 
and rate-limited Reno (which sets a maximum transmission 
bandwidth on each flow) were used for comparison. 

Experiment 1: In this experiment, the number of back 
ground flows was fixed to 8 and the spare capacity, S, was 
varied. To achieve a spare capacity S, the bottleneck link 
bandwidth L was set to (1+S)*averageIDemandBW, where 
averageDemandBW is the total number of bytes transferred 
in the trace divided by the duration of the trace. FIG. 4 is a plot 
the average latency of foreground packets as a function of 
spare capacity in the network. Different lines represent dif 
ferent runs of the experiments using different protocols for 
background flows. It can be seen that the Nice is hardly 
distinguishable from the router prioritization, whereas the 
other protocols cause a significant increase in foreground 
latency. Note that the Y-axis is on a log scale, indicating that 
in some cases Reno and Vegas increase foreground packet 
latencies by two orders of magnitude. 

Experiment 2: In this experiment the spare capacity, S, of 
the network was fixed at 1. The number of background flows 
was varied. The bottlenecklink bandwidth, L, was set to twice 
the bandwidth needed by demand flows. FIG. 5 is a plot of the 
latency of foreground packets versus the number of back 
ground flows. Even with 100 background Nice flows, the 
latency of foreground packets is hardly distinguishable from 
the ideal case when routers provide strict prioritization. On 
the other hand, Reno and Vegas background flows can cause 
latency of demand flows to increase by orders of magnitude. 
FIG. 6 is a plot of the number of bytes successfully transmit 
ted by the background flows. A single Nice background flow 
reaped about half the spare bandwidth available under router 
prioritization. This background throughput improved with 
increasing number of Nice background flows but remained 
below router prioritization. Note that although Reno and 
Vegas obtained better throughputs, even for a small number of 
flows each went beyond the router prioritization line. This 
indicates that the Reno and Vegas flows stole bandwidth from 
foreground traffic. 
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These experiments were also performed where the Nice 
congestion window was not allowed to fall below 1. In these 
cases, when the number of background flows exceeded about 
10, the latency of foreground flows began to increase notice 
ably. The increase in foreground flow latency was about a 5 
factor of two when the number of background flows was 64. 

Experiment 3: In this experiment the effect of the Nice 
threshold and fraction parameters was tested. FIG. 7 shows 
the latency of foreground packets as a function of the thresh 
old for the same trace as above, with S=1 and 16 background 10 
flows. As the threshold value increased, the interference 
caused by Nice increased until the protocol finally reverted to 
Vegas behavior as the threshold approached 1. Nice demon 
strated low interference over a large range of threshold values, 
Suggesting that the threshold value may not need to be manu- 15 
ally tuned for each network. Similarly, no significant change 
in foreground latency was found as the trigger fraction was 
varied from 0.1 to 0.9. 

Experiment 4a: Nice flows were compared to simple rate 
limited Reno flows. The foreground traffic was again mod- 20 
eled by the Squid trace and the experiment performed was 
identical to experiment 1. 

FIG. 8 is a plot of the average latency of foreground packets 
as a function of the spare capacity in the network. The various 
lines represent rate-limited background flows with the limits 25 
corresponding to a window size of 1, 2, 4 and 16. It can be 
seen that even a flow with a rate limit of 1 caused slightly 
greater interference than Nice. This result is not Surprising 
since Nice is equipped to reduce its window size below one 
when it deems necessary to minimize interference. All other 30 
flows with higher rates performed much worse and resulted in 
up to two orders of magnitude of increase in latency. 

Experiment 4b. In this experiment the spare capacity of the 
network, S, was fixed at 1. The bottleneck link bandwidth, L, 
was set at twice the bandwidth needed by demand flows. The 35 
number of background flows was varied. This experiment 
was otherwise identical to experiment 2. FIG.9 is a plot of the 
latency of foreground packets versus the number of back 
ground flows. Even flows limited to a window size of 1 caused 
up to two orders of magnitude of increase in latency when 40 
there were 64 background flows present. Nice, on the other 
hand, was hardly distinguishable from the router prioritiza 
tion line even for 100 background flows. FIG. 10 is a plot of 
the number of bytes the background flows that managed to get 
across. A single Nice background flow achieved more 45 
throughput thana flow rate-limited to a window size of 8. This 
single Nice flow obtained about 10 times as much throughput 
as a flow rate-limited to a window of one, but still caused 
lower interference, as seen in FIG.9. With increasing number 
of flows, the rate-limited flows showed a linear (X-axis is on 50 
a log-scale) increase in throughput while the throughput 
obtained by Nice increased more slowly. However, all the 
rate-limited flows sooner or later crossed the router prioriti 
zation line, or stole bandwidth from the foreground flows. 
Nice, on the other hand, remained below the router prioriti- 55 
zation line and reaped between 60-80% of the spare band 
width. 

Experiment 5a: In this experiment the foreground traffic 
was modeled as a set of user datagram protocol (UDP) 
Sources transmitting in an on/offmanner in accordance with 60 
a Pareto distribution. The burst time and idle time were each 
set to 250 ms, and the value of the shape parameter set to 1.5. 
The experiments performed were otherwise identical to the 
experiments involving trace-based traffic (e.g., spare capacity 
and the number of background flows were varied). 65 

FIG. 11 shows average latency of foreground packets as a 
function of spare capacity in the network. The Nice flows 
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caused less latency overhead than Reno or Vegas. However, 
the difference is not as dramatic as in the case in which the 
foreground traffic was a trace following TCP Suggesting that 
Nice may be less well-suited to environments in which the 
traffic is unpredictable. 

Experiment 5b: In this experiment the capacity of the net 
work was fixed at S=2. The bottleneck link bandwidth, L, was 
set at four times the bandwidth needed by demand flows. The 
number of background flows was varied. FIG. 12 is a plot of 
the latency of foreground packets versus the number of back 
ground flows. Though Nice outperformed Reno and Vegas, it 
did not match router prioritization as closely. However, Nice 
continued to show graceful degradation with the number of 
background flows because of its ability to decrease its win 
dow size below one. FIG. 13 is a plot of the number of bytes 
the background flows managed to get across. A single Nice 
flow obtained about 70% of the spare bandwidth available 
under router prioritization. This background throughput 
improved with increasing number of background flows, but 
remained below router prioritization. Thus, Nice may reap a 
significant fraction of the spare capacity even when the fore 
ground traffic is unpredictable. 

Controlled experiments were also performed in which a 
Nice implementation was tested over a variety of Internet 
links. The experiments focused on answering three questions. 
First, in a less controlled environment than ns simulations, 
does Nice still avoid interference? Second, are there enough 
reasonably long periods of spare capacity on real links for 
Nice to reap reasonable throughput? Third, are any such 
periods of spare capacity spread throughout the day, or is the 
usefulness of background transfers restricted to nights and 
weekends? 
The experimental results suggest that Nice works for a 

range of networks including, but not limited to, a modem, a 
cable modem, a transatlantic link, and a fast WAN. In particu 
lar, it appears that Nice avoids interfering with other flows and 
that it may achieve throughputs that are significant fractions 
of the throughputs that would be achieved by Reno through 
out the day. 
A measurement client program connected to a measure 

ment server program at exponentially distributed random 
intervals. At each connection time, the client chose one of six 
actions: Reno/NULL, Nice/NULL, Reno/Reno, Reno/Nice, 
Reno/Reno8, or Reno/Nice8. Each action consisted of a “pri 
mary transfer (denoted by the term left of the 7) and Zero or 
more “secondary transfers” (denoted by the term right of the 
/). Reno terms indicate flows using standard TCP-Reno con 
gestion control. Nice terms indicate flows using Nice conges 
tion control. For secondary transfers, NULL indicates actions 
that initiate no secondary transfers to compete with the pri 
mary transfer. An 8 at the end of the right term indicates 
actions that initiate eight (rather than the default one) second 
ary transfers. The transfers are of large files with sizes chosen 
to require approximately 10 seconds for a single Reno flow to 
compete on the network under study. In addition, during these 
actions and during periods of inactivity, clients pinged the 
server to measure latency for individual packet transfers. 
A server that supported Nice was positioned at the Univer 

sity of Texas at Austin, in Austin,Tex. Clients were positioned 
as follows: (1) in Austin connected to the internet via a 56.6K 
dial in modem bank (modem), (2) in Austin connected via a 
commercial ISP cable modem (cable modem), (3) in a com 
mercial hosting center in London, England connected to mul 
tiple backbones including an OC12 and an OC3 to New York 
(London), and (4) at the University of Delaware, which con 
nects to the University of Texas via an Abilene OC3 (Dela 
ware). All of the computers ran Linux. The server was a 450 
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MHz. Pentium II with 256MB of memory. The clients ranged 
from 450-1000 MHz and all had at least 256MB of memory. 
Approximately 50 probes per client/workload pair were gath 
ered. 

FIGS. 14A, 14B, 14C and 14D Summarize the results of the 
large-transfer experiments. In FIGS. 14A, 14B, 14C and 14D, 
each bar represents average transfer time observed for the 
specified combination of primary and secondary transfers. 
The narrow vertical lines represent the minimum and maxi 
mum values observed during multiple runs of each combina 
tion. On each of the networks, the throughput of Nice flows 
was a significant fraction of the total throughput, suggesting 
that periods of spare capacity are often long enough for Nice 
to detect and make use of them. During Reno/Nice and Reno/ 
Nice8 actions, the primary (Reno) flow achieved similar 
throughput to the throughput seen during the control Renof 
NULL sessions. In particular, on a modem network, when 
Reno flows competed with a single Nice flow, the Rcno flows 
received on average 97% of the average bandwidth received 
when there was no competing Nice flow. On a cable modem 
network, when Reno flows competed with eight Nice flows, 
the Reno flows received 97% of the bandwidth received when 
there where no competing flows. Conversely, Reno/Rcno and 
Rcno/Rcno8 showed the expected fair sharing of bandwidth 
among Reno flows, which reduced the bandwidth achieved by 
the primary flow. 

FIGS. 15A, 15B, 15C, 15D show the hourly average band 
width achieved by the primary flow for the different combi 
nations listed above. The data indicate that Nice may achieve 
useful amounts of throughput throughout the day. 
Many studies have published promising results that Sug 

gest that prefetching (also known as “pushing data) content 
could significantly improve web cache hit rates by reducing 
compulsory and consistency misses. However, few such sys 
tems have been deployed. 

Typically, prefetching algorithms are tuned with a thresh 
old parameter to balance the potential benefits of prefetching 
data against the bandwidth costs of fetching the data and the 
storage costs of keeping the data until the data is used. In an 
embodiment, an object is prefetched if the estimated prob 
ability that the object will be referenced before it is modified 
exceeds a threshold. One study calculates reasonable thresh 
olds given network costs, disk costs, and human waiting time 
values and concludes that most algorithms in the literature 
have been far too conservative in setting their thresholds. 
Furthermore, the estimated 80-100% per year improvements 
in network and disk capacity/cost mean that a value that is 
correct today may be off by an order of magnitude in 3-4 
years. 

In an embodiment, a system may include one or more 
servers which send demand data and prefetch data to one or 
more clients. In Such an embodiment, demand data may be 
sent using a first congestion control protocol Such as TCP 
Reno and prefetch data may be sent using a second congestion 
control protocol such as TCP Nice. 

In an embodiment, a list of objects to be prefetched is 
generated and stored at the server. In Such an embodiment, 
servers may piggyback lists of Suggested objects in a new 
HTTP reply header when serving requests. In this embodi 
ment, a list is generated using a prediction algorithm Such as 
hand-generation by a user, Markov prediction, prediction by 
partial matching, or by another algorithm. Clients receiving a 
prediction list may discard old predictions and then issue 
prefetch requests for objects from the new list. This division 
of labor allows servers to use global information and appli 
cation-specific knowledge to predict access patterns. The 
division of labor may also allow clients to filter requests 
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through their caches to avoid repeatedly fetching an object. In 
Some embodiments, servers generate prefetch lists and send 
the listed objects to the client without first sending the list to 
the client. In certain embodiments, clients generate a list of 
objects to prefetch and request those objects from the server. 
In some embodiments, a machine separate from the client and 
the server generates a prefetch list and sends this list to the 
client or the server. 

In an embodiment, after a server stores a prefetch list, it 
transmits one or more elements from the list to the client using 
the prefetch congestion control algorithm (e.g., TCP-Nice). 
In one embodiment, elements are sent in order, with objects of 
higher benefit (e.g., higher likelihood of being referenced) 
sent before objects of lower benefit. In some embodiments, 
elements are sent in order with objects of high benefit/cost 
(e.g., high likelihood of being accessed and/or Small size) sent 
before objects with low benefit/cost. In one embodiment, 
prefetch and demand data are transmitted on separate logical 
channels (e.g., separate TCP connections, with Reno conges 
tion control for the demand connections and Nice congestion 
control for the prefetch connection). In certain embodiments, 
the same connection is used for both demand and prefetch 
traffic. In such embodiments, the congestion control algo 
rithm may be set to Reno when demand packets are transmit 
ted. The congestion control algorithm may be set to Nice 
when prefetch data packets are transmitted. 
To evaluate prefetching performance, a standalone client 

may be used that reads a trace of HTTP requests, simulates a 
local cache, and issues demand and prefetch requests. For 
example, a client written in Java may pipeline requests across 
HTTP/1.1 persistent connections. To ensure that demand and 
prefetch requests use separate TCP connections, a server may 
direct prefetch requests to a different port than demand 
requests. A disadvantage of this approach is that it does not fit 
with the standard HTTP caching model. In an embodiment, a 
modified client may recognize that URLs with two different 
ports on the same server are the same. In another embodi 
ment, an HTTP wrapper object may be fetched from a 
demand server where the wrapper object contains a reference 
to the corresponding URL on the prefetch server port so that 
when the demand object is selected for display, the prefetched 
object is displayed instead. In another embodiment, a Nice 
implementation may be modified to allow a server to switch a 
single connection between Reno and Nice congestion con 
trol. Several methods of deploying a perfecting system are 
described in more detail below. 
An experiment was conducted in which predictions were 

generated at clients (using knowledge from the trace to simu 
late server knowledge) rather than sending predictions across 
the network. This simplification allowed the use of an 
unmodified Apache server. The modification slightly reduced 
network traffic for prefetching, but the impact on overall 
performance was believed to be small. If servers have large 
prediction lists to send to clients, they may send Small num 
bers of predictions in the headers of demand replies and 
“chain the rest of the predictions in headers of prefetch 
replies. 
A Squid proxy trace from 9 regional proxies was collected 

during January 2001. Each trace record included the URL, the 
anonymized client IP address, and the time of the request. The 
network interference near the server was studied by examin 
ing Subsets of the trace corresponding to popular groups of 
related servers. For example, a series of cnn servers (e.g., 
cnn.com, www.cnn.com, cnnfn.com, etc.) was used. 
The network interference study compared relative perfor 

mance for different resource management methods for a 
given set of prefetching methods. The study did not try to 
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identify an optimal prefetching method. Several suitable 
prefetching algorithms are known to those familiar with the 
art (e.g., Markov, prediction by partial matching or hand 
generation). Nor did the study attempt to precisely quantify 
the absolute improvements available from prefetching. A 
simple prediction by partial matching (PPM) algorithm, 
PPM-n/w, that uses a client’s n most recent requests to the 
server group for non-image data to predict cacheable (e.g., 
non-dynamically generated) URLs that will appear during a 
Subsequent window that ends after the with non-image request 
to the server group was used. This algorithm is limited 
because it uses neither link topology information nor server 
specific semantic knowledge. For simplicity, it was assumed 
that all non-dynamically generated data (e.g., data not includ 
ing a suffix indicating that a program was executed) were 
cacheable and unchanging for the 1-hour duration of the 
experiments. Also, to allow variation in demand, the trace was 
broken into per-client, per-hour sections. Each section was 
treated as coming from a different client during the same 
simulated hour. Since prefetching methods and server work 
loads are likely to vary widely, these assumptions may yield 
a simple system that falls within the range of prediction 
effectiveness that a simple service might experience. 
A conservative variation of the PPM-n/w algorithm was 

used with parameters similar to those found in the literature 
for HTTP prefetching. The algorithm used n=2, w=5 and set 
the prefetch threshold to 0.25. To prevent prefetch requests 
from interfering with demand requests, requests are issued at 
least 1 second after a demand reply is received. In addition, an 
aggressive variation of the PPM-n/w algorithm was used with 
parameters set at n=2, w=10. This variation truncates prefetch 
proposal lists with a threshold probability of 0.00001. 
Prefetch requests are issued immediately after receipt. 
Two client machines were connected to a server machine 

via a cable modem. Eight virtual clients were run on each 
client machine. Each client had a separate cache and separate 
HTTP/1.1 demand and prefetch connections to the server. For 
the demand traffic to consume about 10% of the cable modem 
bandwidth, the six busiest hours from the trace were selected 
and divided among trace clients each hour randomly across 
four of the virtual clients. In each of the seven trials, all the 16 
virtual clients ran the same prefetching method (i.e., none, 
conservative-Reno, aggressive-Reno, conservative-Nice, or 
aggressive-Nice). 

FIG. 16 shows the average cumulative demand transfer 
times perceived by the clients for all the files fetched on 
demand from the CNN server. In FIG. 16, when clients did 
conservative prefetching using either protocol (Nice or Reno) 
the latency reductions were comparable. When aggressive 
prefetching using Reno was initiated, however, the latency 
increased by an order of magnitude. Clients using aggressive 
Nice prefetching continued to see further latency reductions. 
FIG. 16 shows that Nice may effectively utilize spare band 
width for prefetching without affecting demand requests. 

FIG. 17 represents the effect of prefetching over a modem. 
The setup was the same as previously described with refer 
ence to FIG. 16 with the cable modem replaced by a modem 
(i.e., less spare bandwidth was available). FIG. 17 shows that 
while the Reno and Nice protocols were comparable in ben 
efits during conservative prefetching, aggressive prefetching 
using Reno hurt the clients significantly by increasing the 
latencies three-fold. The latency was not increased with Nice. 
A model of the Tivoli Data Exchange system was studied 

for replicating data across large numbers of hosts. This sys 
tem distributes data and programs across thousands of client 
machines using a hierarchy of replication servers. Both non 
interference and good throughput are believed to be important 
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metrics for Such a system. In particular, data transfers should 
not interfere with interactive use of target machines. Transfers 
may be large, and time may be critical. Additionally, transfers 
may go to a large number of clients using a modest number of 
simultaneous connections. Thus, each data transfer should be 
completed as quickly as possible. For example, after Con 
gress makes last minute changes to tax laws, the IRS must 
rapidly distribute new documentation to auditors. The system 
must cope with complex topologies including thousands of 
clients, LAN/WAN/modem links, and mobile clients whose 
bandwidths may change drastically over time. The system 
typically uses two parameters at each replication server to 
tune the balance between non-interference and throughput. 
One parameter throttles the maximum rate that the server will 
send data to a single client. The other parameter throttles the 
maximum total rate (across all clients) that data is sent. 

Choosing rate limiting parameters may require some 
knowledge of network topology. In selecting rate limiting 
parameter values, a trade-off may be required between over 
whelming slow clients and slowing fast clients (e.g., distrib 
uting a 300 MB Office application suite would take nearly a 
day if throttled to use less than half a 56.6 Kb/s modem). A 
more complex system may allow a maximum bandwidth to be 
specified on a per-client basis, but such a system may be 
prohibitively complex to configure and maintain. 

Nice may provide an attractive self-tuning abstraction. 
Using Nice, a sender may send at the maximum speed 
allowed by the connection. Results below are for a standalone 
server and client. 
The servers and clients were the same were used in the 

Internet measurements previously described. The servers and 
clients ran simple programs that transferred data in patterns to 
model data transfer in the Tivoli system. Large transfers were 
initiated from the server. During each transfer, the ping round 
trip time between the client and the server was measured. 
When running Reno, the client throttle parameter was varied. 
The total server bandwidth limit was set to an effectively 
infinite value. When running Nice, both the client and server 
bandwidth limits were set to effectively infinite values. 

FIG. 18 shows a plot of ping latencies (representative of 
interference) as a function of the completion time of transfers 
to clients over different networks. With Reno, completion 
times decreased with increasing throttle rates, but ping laten 
cies increased. In contrast, Nice picked good sending rates 
without the need for any manual tuning, and ping latencies 
were low. 

In some embodiments, variations of Nice may be deployed 
which allow different background flows to be more or less 
aggressive compared to one another while remaining timid 
with respect to competing foreground flows. 

Prioritizing packet flows may be easier with router support. 
Certain router prioritization queues, such as those proposed 
for DiffServe service differentiation architectures, are 
capable of completely isolating foreground flows from back 
ground flows while allowing background flows to consume 
nearly the entire available spare bandwidth. Unfortunately, 
these solutions are of limited use for someone trying to deploy 
a background replication service today because few applica 
tions are deployed solely in environments where router pri 
oritization is installed or activated. Embodiments presented 
herein demonstrate that an end-to-end strategy need not rely 
on router support to make use of available network bandwidth 
without interfering with foreground flows. 

Router Support may also be used to relay network conges 
tion information to end-points. Examples of this approach 
include random early detection (RED), explicit congestion 
notification (ECN) and Packeteer's rate controlling scheme 
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based on acknowledgement streaming. These systems raise 
issues in the context of Nice. For example, by Supplying 
better congestion information, routers may improve the per 
formance of protocols like Nice. 

Applications may limit the network interference they cause 
in various ways. For example: 

Coarse-grain scheduling (e.g., diurnal patterns): Back 
ground transfers may be scheduled during hours where 
there is little foreground traffic. For example, network 
backup is commonly scheduled for early mornings. 
Studies have observed appreciable savings in latency by 
performing updates of prefetched data during the night 
time alone. Other studies have discussed bandwidth 
Smoothing techniques by selectively distributing traffic 
across the course of a day. 

Rate limiting: Senders can pace the rate at which bytes are 
sent with simple logic, and receivers can limit senders by 
limiting their maximum advertised TCP receive win 
dow. For example, Some have proposed window-based 
rate controlling approaches for prefetching data. Overall 
latency may be improved using this approach, and the 
traffic shaping may lead to less bursty traffic and Smaller 
queue lengths. The rate-controlling approach spreads 
prefetched data in the time interval between the end of 
one request and the beginning of the next request. For 
example, the Tivoli Data Exchange system limits per 
destination and total bandwidth consumption by each 
distribution server. 

Application tuning: Applications may limit the amount of 
data sent by varying application-level parameters. For 
example, many prefetching algorithms estimate a prob 
ability of an object being referenced and only prefetch 
the object if the probability exceeds a threshold. 

Self-tuning Support for background replication may have a 
number of advantages over existing application-level 
approaches (e.g., Nice may operate over fine time scales). 
Thus, self-tuning Support for background replication may 
provide reduced interference (by reacting to spikes in load) as 
well as higher average throughput (by using a large fraction of 
spare bandwidth) than static hand-tuned parameters. This 
property may reduce the risk and increase the benefits avail 
able to background replication while simplifying design. 
Additionally, Nice may provide useful bandwidth throughout 
the day in many environments. 

In an embodiment, a non-intrusive web prefetching system 
may avoid interference between prefetch and demand 
requests at the server as well as in the network by utilizing 
only spare resources. Additionally, in certain embodiments, 
Such a system may be deployable without any modifications 
to the browsers, the HTTP protocol and/or the network. 

Despite the potential benefits, prefetching systems have 
not been widely deployed because of at least two concerns: 
interference and deployability. First, if a prefetching system 
is too aggressive, it may interfere with demand requests to the 
same service (self-to interference) or to other services (cross 
interference) and hurt overall system performance. Second, if 
a system requires modifications to the existing HTTP proto 
col, it may be impractical to deploy. For example, the large 
number of deployed clients makes it difficult to change cli 
ents, and the increasing complexity of servers makes it diffi 
cult to change servers. 

Embodiments disclosed herein provide a prefetching sys 
tem that: (1) causes little or no interference with demand 
flows by effectively utilizing only spare resources on the 
servers and the network; and (2) is deployable with no modi 
fications to the HTTP protocol and/or the existing infrastruc 
ture. To avoid interference, the system may monitor the server 
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load externally and tune the prefetch aggressiveness of the 
clients accordingly. Such a system may utilize TCP-Nice. 
Additionally, in certain embodiments, the system may utilize 
a set of heuristics to control the resource usage on the clients. 
To work with existing infrastructure, the system may be 
implemented by modifying html pages to include JavaScript 
code that issues prefetch requests and by augmenting the 
server infrastructure with several simple modules that require 
no knowledge of or modifications to the existing servers. 

Additionally, certain embodiments include a self-tuning 
architecture for prefetching that eliminates the traditional 
“threshold’ magic number that is often used to limit the 
interference of prefetching on demand requests. In Such 
embodiments, the architecture separates prefetching into two 
different tasks: (i) prediction and (ii) resource management. 
The predictor may propose prioritized lists of high-value 
documents to prefetch. The resource manager may decide 
how many of those documents can be prefetched and sched 
ule the prefetch requests to avoid interference with demand 
requests and other applications. Separating prefetching into 
prediction and resource management may have a number of 
advantages. First, it may simplify deployment and operation 
of prefetching systems by eliminating the need to select an 
appropriate threshold for an environment and update the 
threshold as conditions change. Second, it may reduce the to 
interference caused by prefetching by throttling aggressive 
ness during periods of high demand load. Third, it may 
increase the benefits of prefetching by prefetching more 
aggressively than would otherwise be safe during periods of 
low and moderate load. 

In certain embodiments, a prefetching system may be 
deployed that substantially ignores the problem of interfer 
ence. Such embodiments may be augmented relatively easily 
to avoid server interference. Extending Such a system to also 
avoid network interference may be more involved. However, 
doing so appears feasible even under the constraint of not 
modifying current infrastructure. At the client, additional 
interference may be taken to include prefetch data displacing 
more valuable data (e.g., demand data). This issue may be 
mitigated using several methods discussed herein. 

It may be desirable for services that prefetch to balance the 
benefits they get against the risk of interference. Interference 
may include, but is not limited to: self-interference, in which 
a prefetching service hurts its own performance by interfering 
with its demand requests; cross-interference, in which the 
service hurts the performance of other applications on the 
prefetching client, other clients; or both. 

Interference may occur at one or more resources in the 
system. For example: 

Server: Prefetching may consume extra resources on the 
server such as CPU time, memory space and disk I/Os. 

Network: Prefetching may cause extra data packets to be 
transmitted over the Internet and hence may consume 
network bandwidth, potentially increasing router queue 
delays and network congestion. 

Client: Prefetching may lead to extra resource require 
ments even at the client. CPU, memory, and disk usage 
on clients may increase depending on how aggressively 
the client prefetches. A client browser's memory and 
disk caches may be polluted by aggressive prefetching. 

A common way of achieving balance between the benefits 
and costs of prefetching is to select a threshold probability 
and fetch objects whose estimated probability of use before 
the object is modified or evicted from the cache exceeds that 
threshold. There are at least two concerns with such “magic 
number based approaches. First, it may be difficult for even 
an expert to set thresholds to optimum values to balance costs 
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and benefits. Although the thresholds may relate closely to the 
benefits of prefetching, they have little obvious relationship to 
the costs of prefetching. Second, appropriate thresholds to 
balance costs and benefits may vary over time as client, net 
work and server load conditions change over seconds. For 
example, the costs and/or benefits of prefetching may change 
over a matter of seconds (e.g., due to changing workloads or 
network congestion), hours (e.g., due to diurnal patterns), 
and/or months (e.g., due to technology trends). 

In an embodiment, a self-tuning resource management 
layer that inhibits prefetching from interfering with demand 
requests may be desirable to solve or mitigate the concerns 
described above. Such an embodiment may simplify the 
design of prefetching systems by separating the tasks of pre 
diction and resource management. In Such an embodiment, at 
any given time, prediction algorithms may specify arbitrarily 
long lists of the most beneficial objects to prefetch. The 
resource management layer may issue requests for these 
objects in a manner that inhibits interference with demand 
requests or other system activities. In addition to simplifying 
system design, such an embodiment may have performance 
advantages over static prefetch thresholds. First, such a sys 
tem may reduce interference by reducing prefetching aggres 
siveness when resources are scarce. Second, such a system 
may increase the benefits of prefetching when resources are 
plentiful by allowing more aggressive prefetching than would 
otherwise be possible. 
Some proposed prefetching mechanisms suggest modify 

ing the HTTP/1.1 protocol to create a new request type for 
prefetching. An advantage of extending the protocol may be 
that clients, proxies, and servers could then distinguish 
prefetch requests from demand requests and potentially 
schedule them separately to prevent prefetch requests from 
interfering with demand requests. However, Such mecha 
nisms may not be easily deployable because modifying the 
protocol may require modifying the widely deployed infra 
structure that Supports the current protocol. Furthermore, as 
web servers evolve and increase in their complexity by Span 
ning multiple machines, content delivery networks (CDNs), 
database servers, dynamic content generation Subsystems, 
etc., modifying CPU, memory, and disk scheduling to sepa 
rate prefetch requests may become increasingly complex. 

In an embodiment, a client browser may match requests to 
documents in the browsers caches based on (among other 
parameters) the server name and the file name of the object on 
the server. Thus, files of the same name served by two differ 
ent server names may be considered different. Additionally, 
browsers may multiplex multiple client requests to a given 
server on one or more persistent connections. 

In certain embodiments, as depicted in FIGS. 19A and 
19B, clients may receive a list of documents to prefetch from 
a Hint Server. As used herein, a list of documents recom 
mended for prefetching may be referred to as a “hint list.” 
Clients may send their access histories to the hint server. The 
hint server may use either online or offline prediction algo 
rithms to compute hint lists consisting of probable documents 
that clients may request in the future. Note that in some 
embodiments the hint server is logically separate from the 
content server, demand server, or prefetch server but is physi 
cally located on the same machine. In other embodiments, the 
hint server executes on a separate machine. 

FIG. 19A depicts an embodiment of a one-connection sys 
tem architecture. In a one-connection architecture, client 
1900 may fetch both demand and prefetch requests from the 
same content server 1902. Files to prefetch may be identified 
by hint server 1904. Since browsers may multiplex requests 
over established connections to the servers, and since current 
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browsers typically do not differentiate between demand and 
prefetch requests, each TCP connection may have interleaved 
prefetch and demand requests and responses. In some 
embodiments, browsers may distinguish between demand 
and prefetch requests and send prefetch requests and demand 
requests on different network connections between the con 
tent server and the client. 

Sharing connections may allow prefetch requests to inter 
fere with demand requests for network and server resources. 
If interference can be avoided, this system architecture may 
be easily deployable. In particular, objects fetched from the 
same server share the domain name of the server. Therefore, 
unmodified client browsers may be able use cached 
prefetched objects to service demand requests. 

FIG. 19B depicts an embodiment of a two-connection sys 
tem architecture. In the two-connection architecture, client 
1900 fetches demand and prefetch requests from different 
servers (e.g., content server 1906 and prefetch server 1908). 
This architecture thus segregates demand and prefetch 
requests on separate network connections. The two-connec 
tion architecture may allow the demand and prefetch servers 
to be hosted either on different machines or on the same one. 
For example, two application servers listening on different 
TCP ports may be hosted on a single machine. 

Although, the two-connection architecture may provide 
additional options for reducing interference, the two-connec 
tion architecture appears to be more complicated to deploy 
than the one-connection architecture. For example, objects 
with the same names fetched from the different servers may 
be considered different by the browsers. Therefore, some 
browsers may not correctly use the prefetched objects to 
service demand requests. In one embodiment, this challenge 
may be addressed by modifying the client to allow an object 
in the cache that was fetched from a prefetch server to satisfy 
demand requests for the same object fetched from a demand 
server. In another embodiment, this challenge may be 
addressed by providing a “wrapper' object from the demand 
server that refers to an object from the prefetch server such 
that when the wrapper object is selected for display, the 
prefetched object is displayed. 

Either a one-connection or a two-connection architecture 
may be more desirable depending on the circumstances. For 
example, if server load is a primary concern and networkload 
is known not to be a major issue, then the one-connection 
architecture may be simpler to implement than the two-con 
nection architecture. For example, if the browser can be 
modified to separate prefetch and demand requests on differ 
ent connections, then the one connection architecture may be 
simple and effective. For example, if the HTTP protocol is 
modified to allow out-of order delivery of requested objects 
then a single connection could be used for both demand and 
prefetch requests with demand requests not waiting behind 
prefetch requests and with Nice congestion control used 
when prefetch requests are being served on the connection. 
The two-connectionarchitecture, however, may manage both 
network and server interference without modifying current 
browsers or servers. 

It is believed that an ideal system for avoiding server inter 
ference would cause no delay to demand requests in the 
system and would utilize significant amounts of any spare 
resources on servers for prefetching. The system would cope 
with and take advantage of changing workload patterns over 
various timescales. HTTP request traffic arriving at a server is 
often bursty. The burstiness may be observable at several 
scales of observation. Peak rates may exceed the average rate 
by factors of 8 to 10. For example, FIGS. 20A and 20B show 
the request load on an IBM server hosting a major sporting 
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event during 1998 averaged over 1-second and 1-minute 
intervals, respectively. Although Such burstiness favors 
prefetching when the servers are not loaded (e.g., to make use 
of the spare resources), the prefetching system should grace 
fully back off when the demand load on the servers increases. 
As used herein, the prefetch aggressiveness of a prefetching 
scheme may be referred to as the “pfrate.” The pfrate repre 
sents the number of files to prefetched for each demand file 
served. 

In various embodiments, several methods may be used to 
inhibit prefetching from interfering with demand requests at 
servers. For example, such methods may include, but are not 
limited to, local scheduling, a separate prefetch infrastruc 
ture, and end-to-end monitoring. 

Local server scheduling may help in the use of the spare 
capacity of existing infrastructures for prefetching. In prin 
ciple, existing schedulers for CPUs, memories, etc. may pre 
vent low-priority prefetch requests from interfering with 
high-priority demand requests. Since these schedulers are 
intimately tied to the operating system, they may be efficient 
in utilizing spare capacity for prefetch requests even over fine 
time scales. Local scheduling may be applicable to either 
one-connection or two-connection architecture. 

For certain services, server scheduling may not be easily 
deployable for at least two reasons. First, although several 
available operating systems support CPU schedulers that can 
provide strict priority Scheduling, few provide memory/cache 
or disk schedulers that isolate prefetch requests from demand 
requests. Second, even if an operating system provides the 
needed Support, existing servers may require modification to 
associate prefetch and demand requests with scheduling pri 
orities as they are serviced. 
A method of avoiding server interference may include 

using separate servers to serve prefetch and demand requests 
to achieve complete isolation of prefetch and demand flows. 
In an embodiment, such a system may be used as a third-party 
“prefetch distribution network” to supply geographically dis 
tributed prefetch servers in a manner analogous to existing 
content distribution networks. 

End-to-end monitoring periodically measures the response 
time of servers and adjusts the pfrate accordingly. For 
example, the pfrate may be increased when measured 
response time is low (indicating that the serves have spare 
capacity). Pfrate may be decreased when the measured 
response time is high (indicating that the servers are heavily 
loaded). In certain embodiments, end-to-end monitoring may 
be implemented without making changes to existing servers. 
End-to-end monitoring may be used in either one-connection 
or two-connection architecture. End-to-end monitoring may 
provide less precise scheduling than local schedulers that 
have access to the internal state of servers and operating 
systems. A particular concern is whether such an approach 
can be configured to react to changing loads at fine times 
cales. An embodiment of an end-to-end monitoring system is 
disclosed herein. The efficacy of the end-to-end monitoring 
system is evaluated in comparison to server Scheduling. 

FIG. 21 illustrates an embodiment of a monitor controlled 
prefetching system. In this embodiment, monitor 1910 con 
trols the size of the hint lists given out by the hint server 1904 
based on the server load. In an embodiment, monitor 1910 
sends probe packets to server 1902 at random times and 
measures the response times perceived by the probe packets. 
In an embodiment, the probe packets are regular HTTP 
requests to representative objects on server 1902. One con 
cern with using probe packets may be determining an appro 
priate rate at which probing is done. High rates may make the 
monitor more reactive to server load, but also add extra load 
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on server 1902. On the other hand, low probe rates may make 
the monitor slow in reacting, and thus affect demand requests. 
In an embodiment, the probe rate is selected to balance these 
COCS. 

In an embodiment, if a probe packet indicates response 
times exceeding a first threshold, the pfrate is reduced. Simi 
larly, if the response times are under a second threshold, the 
pfrate is increased. To implement Such an embodiment, 
appropriate thresholds should be selected. Different thresh 
olds may be used for different probe objects so that different 
paths can be probed through server 1902. Additionally, incre 
ment/decrement rates (e.g., how much the pfrate is changed 
for various response times) should balance the risk of causing 
interference against the risk of not using available spare 
capacity. In an embodiment, multiplicative decrease (e.g., 
reducing the pfrate by /2 when congestion is detected) and 
additive increase (e.g., increasing the prefetch rate by one unit 
when congestion is not detected) is used. For stability, the 
system may limit the rate at which pfrate is adjusted so that 
the effects of previous adjustments are observed before new 
adjustments are made. In an embodiment, the pfrate is 
adjusted at most once per average round trip request time. 

In an embodiment, a monitoring system may be configured 
to collect five response-time samples spaced randomly 
between about 100 and 120 milliseconds. In such an embodi 
ment, if all the five samples lie below a threshold, the hint list 
size may be incremented. If any sample exceeds the thresh 
old, the hint list size may be reduced by one. Additionally, the 
sample count may be reset so that a new set of five samples is 
collected. 
A challenge in studying web services may be that prefetch 

demands, prefetching strategy and/or prefetching effective 
ness of the web services may vary widely. As a result, it may 
not be practical to simulate application-specific prefetching 
and adaptation. To enable evaluation of a prefetching system, 
prefetch prediction policies may be ignored. Rather, prefetch 
systems may be evaluated while prefetching sets of dummy 
data from arbitrary URLs at the server. The goal of such 
experiments may be to compare the effectiveness of different 
resource managementalternatives in avoiding serverinterfer 
ence with the ideal case (e.g., when no prefetching is done). 
Resource management alternatives may be compared with 
respect to metrics including, but not limited to: (i) cost (e.g., 
the amount of interference in terms of demand response 
times), and (ii) benefit (e.g., the amount of bandwidth utilized 
for prefetching). 
A number of different systems were considered in the 

experiments described herein. The systems included: an ideal 
case, no-avoidance cases, a prefetching with monitor control 
case, and a local scheduling case. The ideal case refers to a 
system wherein no prefetching is done or a separate infra 
structure is used for prefetching. The no-avoidance cases 
refer to prefetching with no interference avoidance. In the 
studied no-avoidance cases, the pfrate was assigned a con 
stant value of either 1 or 5. Prefetching with monitor control 
refers to a case in which the pfrate was allowed to vary from 
Zero to a high maximum value (e.g., 100). The pfrate was 
varied based on monitored response times. Local scheduling 
refers to using a simple server scheduling policy. For 
example, in the experiments, the unix nice utility was used as 
the scheduling utility. Two different http servers on one 
machine were used. One server ran at a lower priority (+19) to 
handle prefetch requests. The other server ran at a normal 
priority to handle demand requests. This implementation of 
server Scheduling was intended as a comparison for monitor 
ing schemes. It is believed that more Sophisticated local 
schedulers may closely approximate the ideal case. 
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For experimentally evaluating the first three systems (i.e., 
the ideal case, the no-avoidance cases, and the prefetching 
with monitor control case), one server was set up to serve both 
demand and prefetch requests. However, it is noted that these 
systems may be used in either one-connection or two-con 
nectionarchitecture. To evaluate the last system (i.e., the local 
scheduling case), two different servers were configured to 
serve demand and prefetch requests, respectively. However, it 
is noted that in certain embodiments, the general approach of 
local scheduling could be applied to one-connection archi 
tecture as well. 
Two different workloads were used in the experiments. The 

first workload generated demand requests to the server at a 
constant rate. The second workload was a one hour Subset of 
the IBM sporting event server trace discussed with reference 
to FIGS. 20A and 20B. The trace was scaled up in time by a 
factor of two. Thus, requests were generated at twice the rate 
of the original trace. 
The experimental setup included the Apache HTTP server 

running on a machine including a 450 MHZ Pentium II pro 
cessor and 128MB of memory. The client load was generated 
using httperf running on four different Pentium III 930 MHz 
machines. Each of the machines used the Linux operating 
system. 

FIG. 22 shows the demand response times with varying 
request arrival rates. As shown in FIG. 22, both the monitor 
case and the Nice cases closely approximated the behavior of 
the ideal case in not affecting the demand response times. 
However, the no-avoidance cases with fixed pfrate values 
significantly damaged both the demand response times and 
the maximum demand throughput. 

FIGS. 23 and 24 show the bandwidth achieved by prefetch 
requests and their effect on the demand bandwidth with vary 
ing demand request rate. For different values of pfrate, the 
no-avoidance case may adversely affect the demand band 
width. However, both the Nice and monitor schemes reap 
significant bandwidth without large decreases in the demand 
bandwidth. Further, at higher request rates, monitor outper 
forms Nice by conservatively setting the pfrate to very low 
values (almost Zero). In the experimental setup, Nice could 
not meet expected performance because the Linux Scheduler 
only prioritizes processes on a coarse granularity. Even with 
the lowest possible priority values for prefetch requests, the 
CPU time allotted for demand requests can not be more than 
forty times the CPU time allotted for prefetch requests (with 
Nice values of -20 and +19 for demand and prefetch pro 
cesses, respectively). Difficulties encountered as a result of 
course granularity may be avoided by using more Sophisti 
cated CPU schedulers. 

Results of experiments utilizing the IBM sporting event 
server workload are shown in FIG. 25. In FIG. 25, the bars for 
pfrate 1, 2,5 and 10 correspond to results for the no-avoidance 
case with the pfrate set according to 1, 2, 5 and 10, respec 
tively. For the monitor case, the performance results are 
shown for various threshold values (e.g., 2 ms, 8 ms and 15 
ms). For the Nice case, the performance results are shown for 
pfrate settings of 1 and 10. 

FIG. 25 shows that the no-avoidance scheme may be sen 
sitive to the fixed value of pfrate. At lower values of pfrate, the 
no-avoidance Scheme may prefetch too little. As the pfrate 
increases, the no-avoidance scheme may achieve more 
prefetch bandwidth but may also start interfering with 
demand requests. If pfrate is fixed at a high value, then the 
demand response time interference may rise sharply. The 
monitor scheme appears to be somewhat sensitive to the 
threshold value. However, the monitor scheme seems to have 
a range of acceptable threshold values. Compared to the no 
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avoidance scheme, the monitoring scheme achieved more 
prefetch bandwidth for a given response time cost. The Nice 
scheme also outperformed the no-avoidance method. 

FIGS. 26A and 26B illustrate the capability of the monitor 
to adapt in a timely manner to changes in server load. A 
selected run of the monitor on the trace is displayed. The 
monitor has a threshold setting of 8 ms. FIG. 26A depicts one 
second averages of the pfrate settings by the monitor against 
the changes in the demand load pattern for the first three 
minutes of the workload. FIG. 26B depicts one minute aver 
ages of the pfrate settings by the monitor against the changes 
in the demand load pattern for the entire workload. FIGS. 26A 
and 26B illustrate the ability of the monitor in controlling the 
pfrate. For example, note that even though the average pfrate 
setting established by the monitor in this case is 4.79, the 
monitor outperforms the no-avoidance scheme with a fixed 
pfrate value of 5 in both response time and prefetch band 
width (as shown in FIG. 25). 

Mechanisms to avoid network interference may be 
deployed on clients, intermediate routers and/or servers. For 
example, clients may reduce the rate at which they receive 
data from the servers using TCP control mechanisms. How to 
set the parameters of such TCP control mechanisms or how to 
deploy them given existing infrastructure is not clear. Router 
prioritization may avoid interference effectively, since rout 
ers have more information of the state of the network. Router 
prioritization, however, may not be easily deployable in the 
foreseeable future. In an embodiment, server based network 
interference avoidance methods may be used. For example, 
TCP-Nice may be used. As previously described, experimen 
tal evidence under a range of conditions and workloads indi 
cates that Nice may cause little or no network interference 
related to prefetch. Additionally, Nice may utilize a large 
fraction of the spare capacity in the network. 

Nice may be deployed in two-connection architecture 
without modifying the internals of servers by configuring 
systems to use Nice for all connections made to/from the 
prefetch server. A prototype of Nice currently runs on Linux 
and porting Nice to other operating systems may be straight 
forward. In other embodiments, Nice may be used in non 
Linux environments by putting a Linux machine running 
Nice in front of the prefetch server and configuring the Linux 
machine to serve as a reverse proxy or a gateway. In other 
embodiments, Nice may be used in a non-Linux environment 
by porting Nice to the other operating system. In other 
embodiments, Nice may be used in a non-Linux environment 
by implementing Nice at user level. 

In an embodiment, Nice may also be deployed in one 
connection architecture. For example, the Nice implementa 
tion may allow a connection’s congestion control algorithm 
to switch between standard TCP (e.g., Reno) (when serving 
demand requests) and Nice (when serving prefetch requests). 
In providing Such an implementation, care may be taken to 
ensure that Switching modes does not cause packets already 
queued in the TCP socket buffer to inherit the new mode. For 
example, ensuring that packets are sent out in the appropriate 
modes may require an extension to Nice and coordination 
between the application and the Nice implementation. Addi 
tionally, care may be taken to ensure that demand requests do 
not become queued behind prefetch requests, thereby causing 
demand requests to perceive increased latencies. Demand 
request queuing may result from the standard HTTP/1.1 pipe 
lining procedure which causes replies to be sent in the order 
requests were received. One way to avoid interference may be 
to quash all the prefetch requests queued in front of the 
demand request. For example, an error message (e.g., with 
HTTP response code 204 indicating no content) with a short 
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lifetime may be sent as a response to the quashed prefetch 
requests. Additionally, servers may be modified to tell the 
TCP layer when to use standard TCP and when to use Nice. 
There have also been proposals in the literature to extend the 
HTTP protocol to allow replies to be sent in an order different 
than requests. 

Prefetching may interfere with client performance in at 
least two ways. First, processing prefetch requests may con 
Sume CPU cycles and, for instance, delay rendering of 
demand pages. Second, prefetched data may displace demand 
data from the client cache and thus hurt demand hit rates for 
the prefetching service or other services. 
As with the server interference issues discussed above, in 

certain embodiments, client CPU interference may be miti 
gated by modifying the client browser (and, perhaps, the 
client operating system) to use a local CPU scheduler to 
ensure that prefetch processing never interferes with demand 
processing. In some embodiments, client CPU interference 
may be mitigated by ensuring that prefetch processing does 
not begin until after the loading and rendering of the demand 
pages. Although this approach may not reduce cross-interfer 
ence with other applications at the client, it may avoid a 
potentially common cause of self-interference of the 
prefetches triggered by a page delaying the rendering of that 
page. 

Similarly, in certain embodiments, a storage scheduling 
algorithm may be used to balance caching prefetched data 
against caching demand data. Storage scheduling algorithms 
may typically require modifications to the cache replacement 
algorithm. For example, Patterson’s Transparent Informed 
Prefetching algorithm, Cao's integrated prefetching and 
caching algorithm, and Chandra etals cache replacement 
algorithm published at the 2001 WorldWideWeb Conference 
describe approaches for scheduling prefetching and demand 
data that coexist in a cache. 

In some embodiments, a system may place a limit on the 
ratio of prefetched bytes to demand bytes sent to a client. In 
other embodiments, a system may set the Expires HTTP 
header to a value in the near future (e.g., one day in the future) 
to encourage Some clients to evict prefetched documents 
earlier than they may otherwise. Certain embodiments may 
include both limiting the ratio of prefetch bytes to demand 
bytes sent to a client, and causing clients to evict prefetched 
documents early. Although these methods may utilize tuned 
thresholds, there is reason to expect that performance will not 
be too sensitive to these parameters. For example, magnetic 
disk memory media tend to have a large capacity. This capac 
ity is growing at about 100% per year. Additionally, modest 
sized memory media may be effectively infinite for many 
client web cache workloads. Thus, it is believed that available 
caches may have room to absorb relatively large amounts of 
prefetch data with little interference. In another example, hit 
rates tend to fall relatively slowly as available memory 
shrinks. This may suggest that relatively large amounts of 
unused prefetch data will have a relatively small effect on 
demand hit rate. 

FIG. 27 illustrates the extent to which limiting the ratio of 
prefetched bytes to demand bytes sent to a client and setting 
the Expires HTTP header to a value in the near future may 
limit the interference of prefetching on hit rates. The experi 
ment used to generate FIG. 27 utilized a 28-day trace of 8000 
unique clients from 1996 at the University of California at 
Berkley. The experiment simulated the hit rates of 1 MB, 10 
MB and 30 MB per-client caches. Note that these cache sizes 
are relatively small given, for example, Internet Explorers 
default behavior of using 3% of a disk’s capacity (e.g., 300 
MB of a 10GB hard drive) for web caching. The x-axis shows 
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the number of bytes of dummy prefetch data per byte of 
demand data that are fetched after each demand request. For 
the experiment, 20% of services used prefetching at the speci 
fied aggressiveness and 80% did not prefetch. The demand hit 
rate of the non-prefetching to services was plotted. Ideally, 
the demand hit rates should be unaffected by prefetching. As 
FIG. 27 shows, the hit rates tended to fall gradually as 
prefetching increased. The decrease in hit rates became 
Smaller as larger cache sizes were used. If, for example, a 
client cache had 30 MB and 20% of services prefetched 
aggressively enough so that each service prefetched tentimes 
as much prefetch data as the client referenced demand data, 
demand hit rates fell from 29.9% to 28.7%. 

FIGS. 28A and 28B depict alternative embodiments of a 
prefetching mechanism for one-connection and two-connec 
tion architectures, respectively. In an embodiment, the one 
connection system may include an unmodified browser and 
server 1902 that acts as both the demand server and the 
prefetch server. The monitor may control the size of hint lists 
given out by hint server 1904. In an embodiment, the two 
connection system may include an unmodified browser and 
two or more servers. In such an embodiment, one server may 
act as prefetch server 1908 and a second server may act as 
demand server 1906. In an embodiment, prefetch server 1908 
may be a copy of demand server 1906. Prefetch server 1908 
may run either on a separate machine or on the same machine, 
but on different ports than the demand server 1906. Front-end 
2802 in front of demand server 1906 may be used to intercept 
certain requests and return appropriate redirection objects as 
described below. Such an embodiment may eliminate the 
need to make any modifications to the original demand server. 
In certain embodiments, the front-end may be integrated with 
the demand server. 

In an embodiment of a one-connection prefetching system, 
one or more HTML documents may be augmented with 
Supplemental program code. For example, Supplemental pro 
gram code may include JavaScript code. Alternatively, a Zero 
pixel frame that loads the prefetched objects may be used 
instead of JavaScript. Alternatively, the refresh header in 
HTTP/1.1 could also be exploited to iteratively prefetch a list 
of objects by setting the refresh time to a very small value. For 
example, FIG. 29 depicts exemplary JavaScript code. One or 
more Java applets could have been used instead of the Java 
Script in FIG. 29. 
An embodiment of a prefetch method deployable on one 

connection architecture is illustrated in FIG. 28A. The 
method may include a client requesting one or more demand 
documents. One or more of the demand documents may be 
augmented with code as described above. When a demand 
document is received and finishes loading in the browser, a 
pageOnload function may be called This function may call 
getPfist.() The getPflist() function may be defined in pfal 
ways.html code (shown in FIG. 30). The pfalways.html code 
may request the file pflist.html (shown in FIG. 31) from the 
hint server using the name of the enclosing document, the 
name of the previous document in history (the enclosing 
document's referrer) and TURN=1 as arguments. The predic 
tion module in the hint server may generate a list of docu 
ments to be prefetched in pflist.html. When pflist.html loads 
with TURN=i, the preload.() function in the body of pflist.h- 
tml may request the current list of documents to be prefetched 
from the server. 

After the current list of prefetch documents has been 
loaded, the myOnload.() function may call the getMore() 
function to replace pflist.html by fetching a new version with 
TURN=i-1. Thus, a long list of prefetch suggestions may be 
“chained as a series of short lists. When the hint server has 



US RE44,837 E 
37 

sent everything it wants to, it may return apflist.html that does 
not include a call to the getMore() function. 

In the exemplary code in FIG. 29, the windows onload 
function is replaced with a function that first executes the 
windows original onload function (if any) and then executes 
a function pageOnDoad which begins prefetching. Those 
familiar with the art will be aware that in JavaScript, a win 
dow’s onload function is executed after the window has been 
loaded and rendered to the screen. The pageOnload function 
calls a function getPFlist embedded in a HTML Frame object 
called myiframe. This function is called with an argument 
document.referrer, which in JavaScript refers to the URL of 
the current document (e.g., the document represented in FIG. 
29). In this embodiment, the function getPFlist is stored in a 
file pfalways.html, an embodiment of which is illustrated in 
FIG. 30. 

In the exemplary code illustrated in FIG.30, the JavaScript 
getPFList function replaces the current frame's contents 
(e.g., pfalways.html) with a new document. In this embodi 
ment, the new document is: “http://hint-servers/pflist.html+ 
PCOOKIE=<document-referrerd+<prevref>+TURN=1” 
where <hint-servers is the identity of the hint server (e.g., a 
server DNS name or IP address and port), <document-refer 
rero is the name of the current document (e.g., the URL of 
pfalways.html), and <prevref> is the argument passed in to 
getPFList (e.g., the URL of the document depicted in FIG. 
29). Thus, the hint server receives a request that includes the 
name of the enclosing demand document, which may be used 
to construct histories of demand document reference patterns 
by prefetch prediction algorithms. Finally, the TURN=1 
argument in the new document.location is used to segment 
hint lists into pieces: TURN=1 means that the first piece of the 
relevant hint list should be sent. 

In the exemplary code illustrated in FIG.31, the JavaScript 
code includes a preload function. This function thus calls 
preload on a list of URLs to be prefetched. The preload 
function loads each of these objects into the cache. Note that 
in JavaScript, this is accomplished by creating an Image 
object for each URL to be fetched regardless of the URLs 
actual type. Once all specified objects have been prefetched, 
preload returns. At this point, JavaScript has completed load 
ing the body of the document, so it calls the documents 
onload function which in this case is called myOnload. The 
preload.()call in the myOnload function in FIG. 31 is only 
utilized for the two-connection case and is discussed below. 
MyOnLoad calls getMore. GetMore replaces the current 
frame with a new document in a manner similar to what is 
done in pfalways in FIG. 30. Note that the effect of this 
procedure is to repeatedly load code similar to that in FIG.31, 
but each time (a) different URLs are designated for prefetch 
ing, and (b) each time TURN is incremented. Thus, a series of 
iterations may each fetch a different Small piece of a larger 
hint list. This iteration may end when a new demand docu 
ment FIG. 29 is loaded or when the hint server runs out of 
things to prefetch and returns an empty pflist.html file rather 
than a file like that in FIG. 31. 

In the case of a demand request for a document previously 
prefetched, the client may retrieve the document from the 
cache just as with any other cache hit. 

In an embodiment, a prefetching method deployable in a 
two-connection architecture may include the same basic 
mechanisms for prefetching described above. Because 
browsers may cache documents using the server name and 
document name, however, additional steps may be required to 
ensure that demand requests for previously prefetched 
objects (e.g., objects that are now cached) can be serviced by 
the prefetched objects. 
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For example, to use a prefetched document in the cache 

when a demand request arrives for it, a redirection object may 
be retrieved from the demand server. After receiving a 
prefetched document from the prefetch server, a request for 
the same object may be sent to the demand server. The 
demand server may respond with a redirection object (also 
called a "wrapper') that points to the corresponding docu 
ment on the prefetch server. In this way, when a demand 
request arrives later for the prefetched document, the corre 
sponding wrapper stored in the cache may redirect the request 
to the prefetched document, which is also found in the cache. 

In an embodiment, a copy of content on the demand server 
may be made for the prefetch server. Relative links in the 
prefetch server may be changed to absolute links to the 
demand server. Absolute links to inline objects may be 
changed to be absolute links to the prefetch server. In an 
embodiment, no change is made to the content of the demand 
server (except that in Some embodiments Supplemental code 
may be added to one or more files on the server). In an 
embodiment, the new call to preload in the code depicted in 
FIG. 31 may be intercepted by the front end that returns the 
corresponding wrapper. 

In an additional embodiment, a predictor module on the 
hint server may be modified such that inline objects are sent 
before the HTML files that refer to them. Such an embodi 
ment may prevent demand requests from being incorrectly 
sent to the prefetch server in case of partial transfer of 
prefetch documents. 

In certain embodiments, after getting prefetched docu 
ments from the prefetch server, the myOnLoad( ) code 
depicted in FIG. 31 may also send a request for the corre 
sponding HTML file to the demand server to obtain a suitable 
redirection object. The HTTP/1.1 “referrer field for this 
request may be set to the current file pflist.html, thus distin 
guishing it from regular demand requests. 

In certain embodiments, the front-end may allow regular 
demand requests to pass through to the demand server. How 
ever, when a request for a wrapper is received, the front-end 
may return an appropriate redirection object. As previously 
mentioned, the front-end may detect a request for a wrapper 
by observing the referrer field. A redirection object may 
include a short JavaScript file that sets its document. location 
property to the prefetched objects URL. 

In an embodiment in which a previously prefetched docu 
ment is requested as a demand document, a client implement 
ing methods as described above may check cache to deter 
mine if the document is already present in cache. The client 
may identify the redirection object in the cache. The redirec 
tion object may replace itself with the prefetched document 
from the cache. Inline objects in the prefetched document 
may point to objects from the prefetch server which are also 
found in the cache. Links in the prefetched document may 
point to objects in the demand server. 

In such embodiments, it is feasible that a prefetched object 
might be evicted from the cache before a wrapper that refers 
to the evicted object. Such a chain of events may cause the 
client to send a demand request for the evicted object to the 
prefetch server. However, the likelihood of such incidents 
may be reduced by setting the expiration time of the wrapper 
to a value smaller than the prefetched object. 

In an embodiment, for each prefetched document, a wrap 
per may be fetched from the demand server to enable redi 
rection. Since wrappers are small in size (e.g., about 200 
bytes), overhead of serving wrappers may be minimal. In an 
embodiment, a wrapper is sent only for a complete document 
(including inline objects), not for every prefetched object. As 
an alternative to using wrapper objects, the client may main 
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tain state to store information about whether a document has 
already been prefetched. Server content could be augmented 
with a code to execute on a links onClick event that checks a 
database before requesting a document from the demand 
server or prefetch server. Methods of maintaining state infor 
mation on the client are known in the art. 

In an embodiment, the hint server may use any prediction 
algorithm. Since each client may fetch a pflist.html for each 
HTML document, the hint server may see a trace of all HTML 
documents requested by each client. The hint server may 
therefore maintain a detailed history of client behavior and 
use a standard algorithm proposed in the literature or an 
algorithm using more service specific information. 

In an embodiment, a hint server may “chain” prediction 
lists to avoid overwhelming a client with a long hint list. Hint 
servers may send a small number of predictions to clients and 
wait for the clients to request more predictions. In a perfectly 
non-interfering environment, the length of the hint lists may 
only be limited by sizes beyond which no useful predictions 
can be generated. To limit client cache pollution, however, the 
length of hint lists may be otherwise limited. The ordering of 
predictions in the list generated by servers may be such that 
inline objects are requested before the referring page itself. 
This may reduce the possibility of a concurrent demand 
request for the same document being incorrectly sent to the 
prefetch server. 

Experiments were conducted using a prefetching system 
configured in two-connection architecture as shown in FIG. 
28B. The system included a computer system using Apache's 
HTP server software running on two different ports on the 
same machine. One port was used to serve demand requests 
and one port was used to serve prefetch requests. The front 
end was implemented as a module combined with the server 
(i.e., the Apache process). The hint server was implemented 
in Java. The hint server ran on a separate machine from the 
prefetch and demand servers. The hint server used offline 
created prediction lists generated using the PPM algorithm. 
The monitor ran as a separate thread on same machine as the 
hint server. The content munger was also implemented in 
Java. All of the content was munged offline. 
An experiment was conducted to evaluate the overhead 

incurred by requiring the demand server to serve redirection 
wrapper objects as described with reference to one embodi 
ment of the two-connectionarchitecture. Four different cases 
were tested, including: 1) no modifications to the server; 2) 
server modifications, but no prefetching; 3) prefetching files; 
and 4) prefetching wrappers. The experiment measured the 
Sustained throughput (in connections/second) by the server 
for each case. Results for each case are depicted in FIGS. 32 
and 33. 
The difference between plots for case 1 and case 2 in FIGS. 

32 and 33 illustrates the overhead of executing the front-end 
logic added before the server to check the referrer field and 
send wrappers accordingly. For both case 1 and case 2 plots, 
httperffetches one 10 KB file per connection in FIG. 14 and 
one 50 KB file per connection in FIG. 15. The case 3 plot 
shows the throughput of the demand server when serving 
actual files for different values of pfrate. The case 4 plot 
shows the throughput of the demand server when serving 
wrappers corresponding to requested files for different values 
of pfrate. As the pfrate is varied, the throughput falls in both 
case 3 and case 4. The case 4 plot falls less steeply, however, 
because the wrapper size is much smaller than the actual file. 
Comparing FIGS. 32 and 33 shows that the overhead is less 
burdensome for larger file sizes. It is believed that the experi 
ment is pessimistic since wrappers need only be sent with 
.html documents and not with all fetched objects. Thus, the 
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number of wrappers served in an actual system may be con 
siderably smaller than the number of wrappers served in the 
tested system. It is also noted that embodiments presented 
herein which include end-to-end monitoring may detect the 
additional load of serving the wrappers and throttle the 
prefetching as needed. 

Additional experiments were conducted to compare three 
system configurations at a fixed pfrate. The system configu 
rations included a prefetch case including a monitor and 
TCP-Nice, a no-prefetch case system with no prefetching, 
and a no-avoidance prefetch case with prefetching but inter 
ference avoidance scheme. For these experiments, the client 
was a Sony Laptop with an AMD Athlon 1 GHZ processor and 
256 MB of memory. The client was connected to the Internet 
through a cable modem link. The HTTP server was the same 
machine as for the previous experiments. The Hint Server ran 
on a Pentium III 930 MHZ machine with 256 MB of RAM 
loaded with the Red Hat Linux 7.1 package. On an unloaded 
network, the round trip time from client to server was about 
10 ms and the bandwidth was about 1 Mbps. The workload 
consisted of demand accesses made by 41 clients in a one 
hour subset of the IBM sporting event server trace. This 
workload contains 1590 unique files, and the network 
demand bandwidth is about 77 kbps. 
The average demand response times observed using the 

different system configurations are shown in FIG. 34. Both 
the prefetch case and the no-avoidance prefetch case achieved 
hit rates of 88.3% (compared to 49.7% for the no-prefetch 
case). The prefetch case caused less interference, however, 
resulting in significantly better miss times, and leading to a 
25% reduction in end-to-end response times. 

In this experiment, the loads on the network and server 
were light enough to result in performance improvements due 
to prefetching even without a monitor or interference avoid 
ance scheme. Aggressive prefetching without a monitor, how 
ever, may cause response times to increase by a factor of 4. 

Embodiments presented herein include end-to-end con 
gestion control methods optimized to support background 
transfers. The end-to-end methods may nearly approximate 
the ideal router-prioritization strategy by (a) inhibiting inter 
ference with demand flows and (b) utilizing significant frac 
tions of available spare network bandwidth. The methods are 
designed to Support massive replication of data and services, 
where hardware (e.g., bandwidth, disk space, and processor 
cycles) is consumed to help humans be more productive. 
Massive replication systems may be designed as if bandwidth 
were essentially free. Nice provides a reasonable approxima 
tion of Such an abstraction. 

While the present invention has been described with refer 
ence to particular embodiments, it will be understood that the 
embodiments are illustrated and that the invention scope is 
not so limited. Any variations, modifications, additions and 
improvements to the embodiments described are possible. 
These variations, modifications, additions and improvements 
may fall within the scope of the invention as detailed within 
the following claims. 
What is claimed is: 
1. A method of controlling data transmission over a com 

munication network, the method comprising: 
sending, by a device, one or more data packets over the 

communication network in view of a congestion win 
dow representative of a congestion state of the commu 
nication network; 

determining, by the device, a time that a first data packet 
Was Sent; 

receiving, by the device, an acknowledgement of receipt of 
at least the first data packet; 
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determining, by the device, a time that the acknowledge 
ment of receipt of the first data packet was received; 

determining, by the device, an estimate of network conges 
tion based at least in part on the time the first data packet 
was sent and the time the acknowledgement of receipt of 
the first data packet was received; and 

if the estimate of network congestion exceeds a congestion 
threshold, then reducing a size of the congestion win 
dow, 

wherein round trip times are indicative of a bottleneck 
queue size and wherein the congestion threshold repre 
sents a number of round trip times that exceed the bottle 
neck queue size. 

2. The method of claim 1, wherein said determining, by the 
device, the estimate of network congestion includes: 

determining, by the device, a number of round trip times, 
received during an interval, that exceed a threshold 
round trip time, 

wherein a round trip time includes an elapsed time between 
a time that a data packet is sent and a time that an 
acknowledgement of receipt of the data packet is 
received. 

3. The method of claim 2, wherein the congestion threshold 
further represents a percentage of round trip times that exceed 
the threshold round trip time during the interval. 

4. The method of claim 1, wherein said reducing, by the 
device, the size of the congestion window includes reducing, 
by the device, the size of the congestion window by at least a 
multiplicative factor. 

5. The method of claim 1, wherein the congestion window 
determines an amount of prefetch data to be in transit at any 
one time. 

6. The method of claim 1, wherein said sending, by the 
device, one or more data packets includes sending, by the 
device, one or more pointers to one or more requested data. 

7. The method of claim 1, wherein said sending, by the 
device, one or more data packets includes sending, by the 
device, one or more requested data packets. 

8. The method of claim 1, wherein said determining, by the 
device, the estimate of network congestion includes deter 
mining, by the device, a number of round trip times received 
during an interval that exceed a threshold round trip time, 

wherein a round trip time includes an elapsed time between 
a time that a data packet is sent and a time that an 
acknowledgement of receipt of the data packet is 
received, and 

wherein the congestion threshold is determined to be 
exceeded if the number of round trip times exceeding the 
threshold round trip time during the interval exceeds a 
threshold fraction of a number of round trip times mea 
Sured. 

9. The method of claim 1, further comprising increasing, 
by the device, the size of the congestion window if the esti 
mate of network congestion does not exceed the congestion 
threshold. 

10. The method of claim 1, further comprising linearly 
increasing, by the device, the size of the congestion window 
if the estimate of network congestion does not exceed the 
congestion threshold. 

11. The method of claim 1, further comprising increasing, 
by the device, the size of the congestion window by a deter 
mined number of data packets per determined number of 
round trip times if the estimate of network congestion does 
not exceed the congestion threshold. 

12. The method of claim 1, further comprising increasing, 
by the device, the size of the congestion window by a deter 
mined number of data packets and by a determined multipli 
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cative factor per determined number of round trip times if the 
estimate of network congestion does not exceed the conges 
tion threshold. 

13. The method of claim 1, wherein said sending, by the 
device, includes sending the first data packet and a second 
data packet, wherein a time period between said sending the 
second data packet and said sending the first data packet is 
determined based on the size of the congestion window. 

14. The method of claim 1, wherein the bottleneck queue 
size includes a buffer size at a bottleneck router that accounts 
for round trip delay of a data packet. 

15. An article of manufacture, comprising: 
a non-transitory computer readable medium; and 
a plurality of programming instructions stored on the non 

transitory computer readable medium and configured to 
cause a processor to: 
determine a time that a first data packet was sent; 
determine a time that an acknowledgement of receipt of 

the first data packet was received; 
determine an estimate of network congestion based at 

least in part on the time the first data packet was sent 
and the time the acknowledgement of receipt of the 
first data packet was received; and 

if the estimate of network congestion exceeds a conges 
tion threshold, then reduce a size of a congestion 
window to be used for future packet transmission, 

wherein round trip times are indicative of a bottleneck 
queue size and wherein the congestion threshold rep 
resents a number of round trip times that exceed the 
bottleneck queue size. 

16. The article of manufacture of claim 15, wherein the 
plurality of programming instructions are further configured 
to cause the processor to: 

determine a number of round trip times received during an 
interval that exceed a threshold round trip time, 

wherein a round trip time includes an elapsed time between 
a time that a data packet is sent and a time that an 
acknowledgement of receipt of the data packet is 
received, and 

wherein the plurality of programming instructions are fur 
ther configured to cause the processor to determine the 
estimate of network congestion using at least the number 
of round trip times received during the interval. 

17. The article of manufacture of claim 16, wherein the 
congestion threshold further represents a percentage of round 
trip times that exceed the threshold round trip time during the 
interval. 

18. The article of manufacture of claim 15, wherein the 
plurality of programming instructions are further configured 
to cause the processor to: 

determine a number of round trip times received during an 
interval that exceed a threshold round trip time, 

wherein a round trip time includes an elapsed time between 
a time that a data packet is sent and a time that an 
acknowledgement of receipt of the data packet is 
received, and 

wherein the congestion threshold is determined to be 
exceeded if the number of round trip times that exceed 
the threshold round trip time during the interval exceeds 
a threshold fraction of a number of round trip times 
measured. 

19. The article of manufacture of claim 15, wherein the 
plurality of programming instructions are further configured 
to cause the processor to determine a time period to send a 
second data packet based at least in part on the size of the 
congestion window. 
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20. The article of manufacture of claim 15, wherein the 
bottleneck queue size includes a buffer size at a bottleneck 
router that accounts for round trip delay of a data packet. 

21. An apparatus, comprising: 
a network device that includes a memory and that further 

includes: 
a network interface module to couple the network device 

to a communication network; and 
a communications module coupled to the network inter 

face module and configured to: 
transmit one or more packets over the communication 

network to one or more receivers in view of a con 
gestion window representative of a congestion state 
of the communication network; 

receive acknowledgements of receipt of the one or 
more packets; 

determine a round trip time using a time that a first 
packet was sent and a time that a corresponding 
acknowledgement was received; 

determine an estimate of network congestion for the 
communication network based at least in part on 
the determined round trip time; and 

if the estimate of network congestion exceeds a con 
gestion threshold, then reduce a size of a conges 
tion window to be used for future transmission, 

wherein round trip times are indicative of a bottleneck 
queue size and wherein the congestion threshold 
represents a number of round trip times that exceed 
the bottleneck queue size. 

22. The apparatus of claim 21, wherein the congestion 
threshold further represents a percentage of round trip times 
that exceed a threshold round trip time during an interval. 

23. The apparatus of claim 21, wherein the communica 
tions module is further configured to determine the estimate 
of network congestion based on a number of round trip times 
received during an interval that exceed a threshold round trip 
time, 

wherein a round trip time includes an elapsed time between 
a time that a packet is sent and a time that an acknowl 
edgement of receipt of the packet is received, and 

wherein the congestion threshold is determined to be 
exceeded if the number of round trip times that exceed 
the threshold round trip time during the interval exceeds 
a threshold fraction of a number of round trip times 
measured. 

24. The apparatus of claim 21, wherein the bottleneck 
queue size includes a buffer size at a bottleneck router that 
accounts for round trip delay of a packet. 

25. An apparatus, comprising: 
means for sending one or more data packets over a com 

munication network, in view of a congestion window 
representative of a congestion state of the communica 
tion network; 

means for determining a time that a first data packet was 
Sent; 

means for receiving an acknowledgement of receipt of at 
least the first data packet; 

means for determining a time that the acknowledgement of 
receipt of the first data packet was received; 

means for determining an estimate of network congestion 
based at least in part on the time the first data packet was 
sent and the time the acknowledgement of receipt of the 
first data packet was received; and 

means for reducing the size of the congestion window if the 
estimate of network congestion exceeds a congestion 
threshold, 
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wherein round trip times are indicative of a bottleneck 

queue size and wherein the congestion threshold repre 
sents a number of round trip times that exceed the bottle 
neck queue size. 

26. The apparatus of claim 25, wherein the means for 
reducing the size of the congestion window reduces the size 
of the congestion window by at least a multiplicative factor. 

27. The apparatus of claim 25, wherein the means for 
determining the estimate of network congestion determines a 
number of round trip times received during an interval that 
exceed a threshold round trip time, 

wherein a round trip time includes an elapsed time between 
a time that a data packet is sent and a time that an 
acknowledgement of receipt of the data packet is 
received, and 

wherein the congestion threshold is determined to be 
exceeded if the number of round trip times that exceed 
the threshold round trip time during the interval exceeds 
a threshold fraction of a number of round trip times 
measured. 

28. The apparatus of claim 25, further comprising means 
for increasing the size of the congestion window if the esti 
mate of network congestion does not exceed the congestion 
threshold. 

29. The apparatus of claim 25, further comprising means 
for linearly increasing the size of the congestion window if 
the estimate of network congestion does not exceed the con 
gestion threshold. 

30. A method of controlling data transmission over a com 
munication network, the method comprising: 

determining, by a device, an estimate of network conges 
tion based at least in part on a time a first data packet 
was sent and a time an acknowledgement of receipt of 
the first data packet was received and 

if the estimate of network congestion exceeds a congestion 
threshold, then modifying a sending rate based at least 
in part on a reduced size of a congestion window, 

wherein round trip times are indicative of a bottleneck 
queue size and wherein the congestion threshold repre 
sents a number of round trip times that exceed the bottle 
neck queue size. 

31. The method of claim 30, wherein said determining, by 
the device, the estimate of network congestion includes: 

determining, by the device, a number of round trip times, 
received during an interval, that exceed a threshold 
round trip time, 

wherein a round trip time includes an elapsed time between 
a time that a data packet is sent and a time that an 
acknowledgement of receipt of the data packet is 
received. 

32. The method of claim 31, wherein the congestion thresh 
old further represents a percentage of round trip times that 
exceed a threshold round trip time during the interval. 

33. The method of claim 30, filrther comprising reducing, 
by the device, a size of the congestion window by at least a 
multiplicative factor: 

34. The method of claim 30, wherein the congestion win 
dow determines an amount of prefetch data to be in transit at 
any one time. 

35. The method of claim 30, further comprising sending, by 
the device, the first data packet over a communication net 
work in view of the congestion window, wherein the sending 
includes sending one or more requested data packets or one 
or more pointers to the One or more requested data. 

36. An article of manufacture, comprising: 
a non-transitory computer readable medium, and 
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a plurality of programming instructions stored on the non 
transitory computer readable medium and configured to 
cause an apparatus, in response to execution of the 
instructions by a processor of the apparatus, to: 

determine an estimate of network congestion of a commu 
nication network based at least in part on a time a data 
packet was sent and a time an acknowledgement of 
receipt of the data packet was received and 

if the estimate of network congestion exceeds a congestion 
threshold, then modify a send rate based at least in part 
on a reduced size of a congestion window, 

wherein round trip times are indicative of a bottleneck 
queue size and wherein the congestion threshold repre 
sents a number of round trip times that exceed the bottle 
neck queue size, 

wherein the congestion threshold is exceeded if a number 
of round trip times that exceed a threshold round trip 
time exceeds a threshold number; 

wherein a round trip time includes an elapsed time between 
the time that the data packet is sent and the time that the 
acknowledgement is received 

wherein the threshold round trip time is a fraction of a 
difference between an estimated congested round trip 
time and an estimated uncongested round trip time, and 

wherein the reduced size of the congestion window is less 
than one data packet if the congestion threshold is 
exceeded. 

37. The article of manufacture of claim 36, wherein the 
plurality of programming instructions are further configured 
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to cause the apparatus, in response to execution of the 
instructions by the processor to: 

determine a number of round trip times received during an 
interval that exceed a threshold round trip time, 

wherein said determine an estimate of network congestion 
comprises determine the estimate of network congestion 
using at least the number of round trip times received 
during the interval. 

38. An apparatus, Comprising: 
a network device that includes a memory and that further 

includes: 
a network interface module to couple the network device to 

a communication network, and 
a communications module coupled to the network interface 

module and configured to: 
determine an estimate of network congestion for the Com 

munication network based at least in part on a round trip 
time determined using a time that a data packet was sent 
and a time that a corresponding acknowledgement was 
received and 

if the estimate of network congestion exceeds a congestion 
threshold, then modifi a send rate based at least in part 
on a reduced size of a congestion window, 

wherein round trip times are indicative of a bottleneck 
queue size and wherein the congestion threshold repre 
sents a number of round trip times that exceed the bottle 
neck queue size. 


