
(19) United States
(12) Reissued Patent

Dahlin et al.
(10) Patent Number:
(45) Date of Reissued Patent:

USOORE44837E

US RE44,837 E
Apr. 8, 2014

(54) METHOD AND SYSTEM FOR BACKGROUND
REPLICATION OF DATA OBJECTS

(71) Applicant: Intellectual Ventures Holding 40 LLC,
Las Vegas, NV (US)

(72) Inventors: Michael D. Dahlin, Bellevue, WA (US);
Arunkumar Venkataramani, Austin,
TX (US); Ravindranath Kokku,
Bangalore (IN); Praveen Yalagandula,
San Francisco, CA (US)

(73) Assignee: Intellectual Ventures Holding 40 LLC,
Las Vegas, LA (US)

(21) Appl. No.: 13/686,853

(22) Filed: Nov. 27, 2012
Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 8,099.492

Issued: Jan. 17, 2012
Appl. No.: 12/195,073
Filed: Aug. 20, 2008

U.S. Applications:
(63) Continuation of application No. 10/429.278, filed on

May 2, 2003, now Pat. No. 7,418,494.
(60) Provisional application No. 60/398.488, filed on Jul.

25, 2002.

(51) Int. Cl.
G06F 5/73 (2006.01)
G06F 15/16 (2006.01)
H04L 5/22 (2006.01)

(52) U.S. Cl.
USPC 709/224; 709/223; 709/232; 709/233;

370/229; 370/230

Local Area
NetWork

(58) Field of Classification Search
USPC 709/223 226, 230 235, 238 242:

370/229. 235
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,038,606 A 3/2000 Brooks et al.
6,076,114. A 6/2000 Wesley
6,397.258 B1 5/2002 Tsuji et al.
6,700,876 B1 3/2004 DiNicola et al.
6,757,255 B1 6/2004 Aoki et al.
6,909,693 B1 6/2005 Firoiu et al.
6,934,745 B2 8, 2005 Krautkremer
7,000,025 B1 2/2006 Wilson

(Continued)
OTHER PUBLICATIONS

Office Action for U.S. Appl. No. 10/429.278, mailed Nov. 17, 2006,
15 pages.

(Continued)

Primary Examiner — Joshua Joo
(74) Attorney, Agent, or Firm — Schwabe, Williamson &
Wyatt, P.C.

(57) ABSTRACT

In an embodiment, a system and method may manage net
work resources to provide a near Zero-cost background rep
lication of data. Such a system may be inhibited from causing
interference with foreground data flows. Such a system may
also utilize a large fraction of spare network bandwidth. A
system configured to implement Such a method may include
one or more servers and at least one client in communication
via a network. Additionally the system may include a hint
server, a monitor and/or a front-end application between a
demand server and the network.

38 Claims, 22 Drawing Sheets

Wide Area
Network

102.

US RE44,837 E
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

7,035,214 B1
7,096,265 B2
7,248,564 B1*

2002.00998.54 A1
2002fO145976 A1
2002fO150048 A1
2002fO1546O2 A1
2002fO184403 A1
2003/0074393 A1
2003/0107512 A1
2003.0128692 A1
2003.0128711 A1
2003,0223366 A1
2006/0129693 A1
2010/0202294 A1

OTHER PUBLICATIONS

4/2006 Seddigh et al.
8/2006 Simpson et al.
7/2007 Grosdidier et al. 370,235
7/2002 Jorgensen
10/2002 Meyer et al.
10, 2002 Ha et al.
10/2002 Garcia-Luna-Aceves et al.
12/2002 Dahlin et al.
4, 2003 Peart
6, 2003 McFarland et al.
7/2003 Mitsumori et al.
7/2003 Olariu et al.
12/2003 Jeffries et al.
6/2006 LeCroy et al.
8, 2010 Mullendore et al.

Office Action for U.S. Appl. No. 10/429.278, mailed Aug. 10, 2007,
20 pages.
Notice of Allowance for U.S. Appl. No. 10/429.278, mailed Apr. 29.
2008, 7 pages.
“The Network Simulator—ns—2.” retrieved from http://www.isi.
edu/nsnamins on Mar. 23, 2011, 2 pages.
“WAN Optimization, Secure Web Gateway & Application Perfor
mance Monitoring.” Blue Coat Systems 2010, retrieved from http://
www.packeteer.com on Mar. 23, 2011, 1 page.
K. Ramakrishnan et al., “The Addition of Explicit Congestion Noti
fication (ECN) to IP” The Internet Society, Sep. 1, 2001, 63 pages.
“Tivoli Data Exchange, Seamless Solution for Efficient and Secure
Information Sharing.” IBM Corp., 2001, 4 pages.
Home page of Akamai, Inc., Akamai Technologies 2007, retrieved
from http://www.akamai.com on Mar. 23, 2011, 1 page.
Mark Crovella et al., “The Network Effects of Prefetching.” Com
puter Science Department, Boston University, Jul. 10, 1997. 22
pageS.
Mike Dahlin, “Technology Trends Data.” 2000, retrieved from http://
www.cs.utexas.edu/users/dahlin/techTrends on Mar. 23, 2011, 1
page.
R. Fielding et al., “Hypertext Transfer Protocol HTTP/1.1.” Stan
dards Track. The Internet Society, Jun. 1999,129 pages.
James Griffioen et al., “Automatic Prefetching in a WAN.” IEEE
Workshop on Advances in Parallel and Distributed Systems, Oct.
1993, 5 pages.
R. Hugo Patterson et al., “Informed Prefetching and Caching.”
School of Computer Science, Carnegie Mellon University, Pitts
burgh, PA, May 11, 1995, 26 pages.
Yang Richard Yang et al., “General AIMD Congestion Control.”
Department of Computer Sciences, the University of Texas at Austin,
Austin TX. May 9, 2000, 34 pages.
Haifeng Yu et al., “The Costs and Limits of Availability for Repli
cated Services.” Department of Computer Science, Duke University,
Oct. 2001, 14 pages.
Odlyzko et al., “Internet growth: Myth and reality, use and abuse.”
Nov. 22, 2000, pp. 1-8.
Venkataramani et al., “TCP Nice: Self-tuning Network Support for
Background Applications.” 2007, 23 pages.
Wessels et al., “ICP and the Squid Web Cache.” the National Science
Foundation, Aug. 13, 1997, 25 pages.
Acharya et al., “A study of Internet Round-trip Delay'. Dec. 1996;
18 pages.
Aggarwal et al., “Understanding the Performance of TCP Pacing.”
Proc. of the IEEE INFOCOMM 2000 Conference on Computer
Communications, Mar. 2000; pp. 1157-1165.
Anderson et al., “System Support for Bandwidth Management and
Content Adaptation in Internet Applications.” Proc. USENIX OSDI
Conf. San Diego, CA, Oct. 2000.
Bansal et al., “Binomial Congestion Control Algorithms.” IEEE
INFOCOMM, 2001; pp. 1-10.

Bonald, Thomas, “Comparison of TCP Reno and TCP Vegas via
Fluid Approximation.” Nov. 1998, pp. 1-34.
Brakmo. Lawrence, End-to-End Congestion Detection and Avoid
ance in Wide Area Networks, Ph.D. Dissertation, University of Ari
Zona Lawrence Sivert Brakmo 1996, pp. 1-78.
Belani et al., “The Crisis Wide Area Security Architecture.” Proceed
ings of the Seventh Usenix Security Symposium, Jan. 1998; 14 pages.
Breslau et al., “Web Caching and Zipf-like Distribution: Evidence
and Implications.” IEEE INFOCOMM, Mar. 1999: pp. 1-9.
Chandra, Web workloads influencing disconnected Services access,
Masters of Arts Thesis, May 2001; 80 pages.
Chandra et al., “End-to end Wan Service Availability.” ACM
SIGCOMM, Vancouver Canada, Sep. 1998; 12 pages.
Chandra et al., “Resource management for Scalable disconnected
access to web services.” May 2001; 11 pages.
Cho et al., “Synchronizing a database to Improve Freshness.” Oct. 25.
1999: pp. 1-30.
Chiu et al., “Analysis of Increase and Decrease Algorithms for Con
gestion Avoidance in ComputerNetworks.” Computer Networks and
ISDN Systems, 1989, vol. 17: pp. 1-14 (Elsevier Science Publishers,
B.V., North-Holland).
Cleary et al., “Data Compression Using Adaptive Coding and Partial
String Matching.” IEEE Transactions on Communications, 1984,
vol. Com.-32, No. 4; pp. 396-402.
Dahlin et al., "A Quantitative Analysis of Cache Policies for Scalable
Network File Systems.” Proceedings of the SIGMETRICS Confer
ence on Measurement and Modeling of Computer Systems, May
1994; pp. 1-13.
Dahlin, “Interpreting Stale Load Information.” IEEE Transaction on
Parallel and Distributed Systems, vol. 11 Oct. 2001: pp. 1-34.
Dahlin, “Support for Data-intensive Applications in Large-scale Sys
tems.” NSF Workshop on New Challenges and Directions for Sys
tems Research, Jul. 1997; 4 pages.
Dahlin et al., “Using Mobile Extensions to Support Disconnected
Services.” University of Texas Department of Computer Sciences
(TR-2000-20) Jun. 2000; pp. 1-15.
Dahlin, "PRACTI replication for Large-Scale Systems.” University
of Texas at Technical Report, 04-28, Jun. 2004, pp. 1-17.
Duchamp, Dan, “Prefetching Hyperlinks.” Proceedings of USITS
99: The 2nd USENIX Symposium on Internet Technologies & Sys
tems, Oct. 14, 1999, 13 pages.
Dykes et al., “A Viability Analysis of Cooperative Proxy Caching.”
IEEE, Apr. 2001; 10 pages.
Floyd et al., “Equation-Based Congestion Control for Unicast Appli
cations: the Extended Version.” SIGCOMM 2000, Aug. 2000, pp.
1-12.
Floyd et al., “Random Equation Detection Gateways for Congestion
Avoidance.” IEEE, Aug. 1993; pp. 1-22.
Goyal et al., “A Hierarchical CPU Scheduler for Multimedia Oper
ating Systems.” USENIX 2nd Symposium OS Design and Imple
mentation (OSDI '96), 1996; 14 pages.
Gray et al., “Rules of Thumb in Data Engineering.” IEEE, 2000; pp.
1-8.
Gwertzman et al., “The Case for Geographical Push-Caching.” Pro
ceedings of the Fifth Workshop on Hot Topics in Operating Systems
(HotOS-V), 1995; pp. 1-4.
Hengartner et al., “TCP Vegas Revisited.” Proceedings of IEEE
INFOCOMM, Mar. 2000; 10 pages.
Howard et al., “Scale and Performance in a Distributed File System.”
ACM Transaction on Computer Systems, 1998, vol. 6, No. 1; pp.
51-81.
Jacobson et al., “Congestion Avoidance and Control.” Nov. 1998; pp.
1-25.
Jain, 'A Delay-based Approach for Congestion Avoidance in Inter
connected Heterogeneous ComputerNetworks.” Apr. 1989; pp. 1-16.
Korupolu et al., "Coordinated placement and Replacement for Large
Scale Distributed Caches.” Proceedings of the 1999 Workshop on
Internet Applications, Jun. 1999, 11 pages.
Kroeger et al., “Exploring the Bounds of Web Latency Reduction
From Caching and Prefetching.” USENIX Symposium on Internet
Technologies and Systems, Dec. 1997; 11 pages.

US RE44,837 E
Page 3

(56) References Cited

OTHER PUBLICATIONS

Kumar, “Conformance Testing of Protocols Represented as Commu
nicating finite State Machine.” Bachelor of Technology Project
Report, Apr. 2001; 42 pages.
Lumb et al., “Towards Higher Disk Head Utilization: Extracting Free
Bandwidth From Busy Disk Drives.” Appears in Proc. of the 4th
Symposium on Operating Systems Design and Implementation,
2000; 16 pages.
Malzahn et al., “On Bandwidth Smoothing.” 4th International Web
Caching Workshop, 1999; 12 pages.
Markatos et al., “A top 10 Approach for Prefetching the Web.” Pro
ceedings of INET'98: Internet Global Summit, Jul. 1998; 20 pages.
Martin et al., “Small Byzantine Quorum Systems.” Dependable Sys
tems and networks (DSNO2), Jun. 2002; 10 pages.
Morris, “TCP Behavior with Many Flows.” Presented at the IEEE
International Conference on Networks Protocols, Oct. 1997; pp. 1-7.
Padmanabhan et al. “Using Predictive Prefetching to Improve World
WideWeb Latency.” 1996, ACM Computer Communication Review,
vol. 27. No. 3, 14 pages.
Paxon, "End to End Routing Behavior in the Internet.” May 1996; pp.
1-26.
Popek et al., “Replication in Ficus Distributed File Systems.” Pro
ceedings of the Workshop on Management of Replicated Data, Nov.
1990, pp. 20-25.
Ramakrishnan et al., “Network Working Group: Standards Track.”
Sep. 2001; 63 pages.
Rejaie et al., “RAP: An End-to-end Rate-based Congestion Control
Mechanism for Realtime Streams on the Internet.” 1999: pp. 1-8.
Sanghi et al., “Experimental Assessment End-to-end Behavior on
Internet.” Computer Science Technical Report Series; vol. CS-TR
2909, 1992; 19 pages.
Shenoy et al., "Cello: A Disk Scheduling Framework for Next Gen
eration Operating Systems.” Proceedings of Sigmetrics, 1998; pp.
1-13.
Terry et al., “Managing Update Conflicts in Bayou, a Weakly Con
nected Replicated Storage System.” SIGOPS, Dec. 1995; pp. 172
183.
Tewari et al., “Design Considerations for Distributed Caching on the
Internet.” Proceedings of the 19" the International Conference on
Distributed Computing Systems, May 1999: pp. 1-13.
Vahdat et al., “Active Names: Flexible Location and Transport of
Wide-Area Resources.” Proceedings of the 1999 USENIX Sympo
sium on Internet Technology and Systems (USITS99), Oct. 1999; 15
pageS.
Vahdat et al., “WebOS: Operating System Services for Wide Area
Applications.” Seventh Symposium on High Performance Distrib
uted Computing Systems, Jul. 1998; 12 pages.
Venkataramani et al., “System Support for Background Replication.”
Technical Report TR-02-03 Computer Sciences, UT Austin, May
2002: pp. 1-18.

Venkataramani et al., “Bandwidth Constrained Placement in a
WAN.” Proceedings of the twentieth annual ACM Symposium on
Principles of distributed computing 2001; 10 pages.
Venkataramani et al., “The Potential Costs and Benefits of Long-term
Prefetching for Content Distribution.” Technical Report 2001, Uni
versity of Texas at Austin, pp. 1-9.
Wang et al., “A New Congestion Control Scheme: Slow Start and
Search (TRI-S).” SIGCOMM, 1991; 7 pages.
Wang et al., “A dual-window model for flow and congestion control.”
Distrib. Sys. Enging. 1994, vol. 1, pp. 162-172. (UK).
Wang et al., “Experience with a Distributed File System Implemen
tation.” Technical Report, 1998; pp. 1-30.
Yalagandula et al., “Transparent Mobility with Minimal Infrastruc
ture.” Technical Report, University of Texas at Austin, Jul. 2001; pp.
1-14.
Yin et al., “Engineering Server-Driven Consistency in Large Scale
Dynamic Web Services.” Proceedings of the 10th International World
WideWeb Conference (WWW10) May 2001; 13 pages.
Yin et al., “Volume Leases for Consistency in Large-Scale Systems.”
IEEE Transactions on Knowledge and Data Engineering Special
issue on Web Technologies, 1999, vol. 11; pp. 1-23.
Yin et al., “Using Leases to Support Server-Driven Consistency in
Large-Scale Systems.” Proceedings of the 18th International Confer
ence on Distributed Computing Systems, May 1998; 9 pages.
Yin et al., “Byzantine Fault-Tolerant Confidentiality.” Future Direc
tions in Distributed Computing Workshop, Jun. 2002: pp. 1-4.
Yin et al., “Hierarchical Cache Consistency in a WAN.” Proceedings
of the 1999 USENIX Symposium on Internet Technologies and Sys
tems (USITS99), Oct. 1999; 11 pages.
Zhang et al., “The Stationarity of Internet Path Properties: Routing,
Loss, and Throughput.” May 2000; pp. 1-4.
Office Action for U.S. Appl. No. 12/195,073, dated Jan. 3, 2011.
Office Action for U.S. Appl. No. 12/195,073, dated Jun. 2, 2011.
Notice of Allowance for U.S. Appl. No. 12/195,073, dated Sep. 26,
2011.
Brakmo et al., “TCP vegas: New Techniques for Congestion Detec
tion and Avoidance.” ACM SIGCOMM Conference, 1994; 11 pages.
Odlyzko et al., “Internet growth: Myth and reality, use and abuse.”
Information Impacts Magazine, Nov. 2000, pp. 1-8.
Venkataramani et al., “TCP Nice: Self-tuning Network Support for
Background Applications.” Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI) 2002, Spon
sored by USENIX. Boston, MA. Dec. 9-11, 2002, pp. 2-22.
Yalagandula et al., “COPE: Consistent 0-Administration Personal
Environment.” IEEE 6th International Workshop on Object Oriented
Real-Time Dependable Systems, Jan. 2001; pp. 1-7.
Acharya et al., “A Study of Internet Round-trip Delay'. Dec. 1996; 18
pageS.

* cited by examiner

U.S. Patent Apr. 8, 2014 Sheet 1 of 22 US RE44,837 E

s
(S
CN
CN

5 &
at 9 (N

S is did
is 2

D
f CO
W .

a vr
(O
ry

OO

-
3 a
s SS U g
-

val

O
l

U.S. Patent Apr. 8, 2014 Sheet 2 of 22 US RE44,837 E

Additive Linear i Multiplicative
Increase Decrease Decrease

U.S. Patent Apr. 8, 2014 Sheet 3 of 22 US RE44,837 E

Vegas-Nice --
ROUter Prio --

Reno -- rv--
0.1 is Vegas -0-

s Vegas-O--

1S
3. O.O.
a.
s

0.001
-

O.OOO1

e-0,
Spare Capacity

FIG. 4

O. 1
Vegas-Nice --
Router Prio --

Reno -- W---

O. O O

1 e-O5
1 1O OO

Num BG flows
FIG. 5

U.S. Patent Apr. 8, 2014 Sheet 4 of 22 US RE44,837 E

90OOO

8OOOO

7OOOO

6OOOO

5OOOO

4OOOO

3OOOO

2OOOO Vegas-Nice --
RoutePrio -X- enO ----V---.

1 OOOO Vegas -0-
O Vegas-O--

1 1O OO
Num BG flows

F.G. 6

O.OO2

O.OO 18

O.OO6

O.OO4

O,OO 12

O.OO1

O.OOO8

OOOO6

O.OOO4

O.OOO2

O O.2 O4. O.6 O.8 1
Threshold

FIG. 7

U.S. Patent Apr. 8, 2014 Sheet 5 of 22 US RE44,837 E

Vegas-Nice --
Router Prio ----x---

O.S Rate-limit 1 --------
'SSS Rate-limit 2 -----D---

SNSS- Rate-limit 4 - - - - -
S SS S. Rate-limit 8 - - e - -
9 O.O. NS S. Rate-limit 16 -----O---

O,OO1 c

O.OOO

1e-05
O. 1 1 1 O 1 OO

Spare Capacity
FIG. 8

O. Vegas-Nice --
Router Prio -------w-r
Rate-limit 1 ---------
Rate-limit 2 -------- ...a

00 Rate-limit 4 - - - - - 33/
Rate-limit 8 - - e - - 2- 1 - '

Rate-limit 16 -----0----

O O O1

1 10 OO
Nunn BG flows

FIG. 9

U.S. Patent Apr. 8, 2014 Sheet 6 of 22 US RE44,837 E

Vegas-Nice --
Router Prio ---------
Rate-limit 1 ---------
Rate-innit 2 ----0----
Rate-limit 4 - - - - -
Rate-limit 8 - - e - -

Rate-limit 16 --O----
1. 10 1 OO

Nunn BG flows

FIG. 1 O

O.O1
Vegas-Nice ---
Router Prio ---------

Reno ---------
Vegas -------

Vegas-0 - - - - -
O.OO1

O.OOO

e-O5
O. 1 O OO

Spare Capacity

FIG. 11

U.S. Patent Apr. 8, 2014 Sheet 7 of 22 US RE44,837 E

O.OO1

O, O O O1

Vegas-Nice --
Router Prio restors

RenO -------
Vegas ----0-

Vegas-0 - - - - -
1 1 O 1 OO

Num BG flows

FIG, 12

1e-05

8OOOO

7OOOO Esses susussus

6OOOO

S. 5OOOO
4OOOO

3OOOO

20OOO Vegas-Nice --
Router Prio --------

1OOOO Reno -------

Num BG flows

US RE44,837 E Sheet 9 of 22 Apr. 8, 2014 U.S. Patent

FIG. 14C
ÑN?1830'N ou3B RNATION 30|N |:||TinNoue H

Nice flow
O Reno flow

London

O CO

FIG. 14D

O Reno flow

Delaware

Nice flow

15

10

5

O

US RE44,837 E Sheet 10 of 22 Apr. 8, 2014 U.S. Patent

Modem

Oo
LO

1 OO

50

O

(spuoo.es u) sauu?? J??Sue). 1

US RE44,837 E Sheet 11 of 22 Apr. 8, 2014 U.S. Patent

London

Reno flow
------ Nice foW

O CN

FIG. 15C
Time

Reno flow
------ Nice foW

Delaware

--~~~~::~~~~~' -------? ? -1.-1.------- - W ---------- A-1- essa

FIG. 15D
Time

US RE44,837 E Sheet 12 of 22 Apr. 8, 2014 U.S. Patent

Cable Modem

spu000s u) sau? Je?suel? pueuued

es

FIG. f6

22

Wdd-1669-80|N
Modern

3OOO

2OOO

1 OOO

FIG. 1 7 Wdd-1667-30|N

U.S. Patent Apr. 8, 2014 Sheet 13 of 22 US RE44,837 E

OOOO Reno-Cablemodem --
Nice-cablemodem --------

Reno-Abilene --------
Nice-Abilene --

1 OOO Reno-London ----
Nice-London - -o- -
RenO-Modem ----O----
Nice-Modem --- a---

b OO

O

5O 1 OO 15O 20O 25O 3OO 350 4OO 45O

Completion Time (seconds) FIG. 18

Demand/Prefetch 1902
Requests

1900

1906

Demand Server
Recuests 1

Requests

1900
Hint List

1904

U.S. Patent Apr. 8, 2014 Sheet 14 of 22 US RE44,837 E

18O

16O

140

12O

1OO

O 1 OOOO 3OOOO SOOOO 7OOOO 90OOO
Interval (seconds)

FIG. 20A

12O

100

O 2OO 4OO 6OO 800 1 OOO 12OO 400 1600
Interval (minutes)

FIG. 20B

U.S. Patent Apr. 8, 2014 Sheet 15 of 22 US RE44,837 E

1902
Demand/Prefetch

Requests Content
Server

Hint Lists Request Samples

Hint List ... ()
191O

FIG. 21

No Prefetching, pf=0 - -
No Avoidance, pf=1 --x----
No Avoidance, pf -5 -------

Nice, pf=1 --O-
Nice, pf=5 --

Monitor-o-

2OO 3OO

Rate (num of conns/sec)
FIG. 22

U.S. Patent Apr. 8, 2014 Sheet 16 of 22 US RE44,837 E

1OO No Prefetching --
Demand: No Avoidance -...--...
Prefetch: No Avoidance

8O Demand: Nice -O-
Prefetch: Nice --

g Der Thand. Monitor -o- .
S Prefetch: Monitor - -o- .

60
S
S 40
"O

(s

2O

O

1OO
No Prefetching --

Demand: No Avoidance ---X----
Prefetch: No Avoidance --------

8O Demand: Nice -O-
Prefetch: Nice --

g Demand: Monitor-o-.
O w ---

60 Prefetch: Monitor - - - -

t
CS
is 40
TO
C
s

20

O 1OO 20O 3OO 4OO 5OO 600 7OO 800
Rate

U.S. Patent Apr. 8, 2014 Sheet 18 of 22 US RE44,837 E

6.5
demand rate

avg pfrate -----------

5 .5

5

4-5

O 5 1 O 15 2O 25 3O

FIG. 26B
Time (minutes)

deal LRU 1 MB -
ideal LRU 1 OMB ---------
deal LRU 3OMB - - - -

LRU 1 MB --
LRU 1 OMB --------
LRU 3OME - - - -

LRU-expire 24h 1MB --
LRU-expire 24h 10MB ------
LRU-expire 24h 30MB ----

1 1 O
Prefetch Aggressiveness

O. 15

O. 1

FIG. 27

U.S. Patent Apr. 8, 2014 Sheet 19 of 22 US RE44,837 E

1902 Demand/Prefetch
Reduests

Reference Lists

Hint Lists (g)
F.G. 28A

1906

Demand
Requests

PrefetcNS'''
Requests 1908 Fileset

FIG. 28E3

U.S. Patent Apr. 8, 2014 Sheet 20 of 22 US RE44,837 E

<HTML CHEAD) <! -- existing header goes here -- >
(SCRIPT LANGUAGE="JavaScript">
function pageOnload() {

my iframe. getPFlist (document referrer);
k/SCRIPTX KAIIEADX CODY3.

g! -- existing body goes here -- >
if (null Fa window. onload) {

Window. onload a page OnLoad () ;)
else -
war origfin a window. onload;
window. onload = function () origfin (); pageOnload ();};}

CIFRAME SRC="pfalways.html" name="myiframe"
width=0 height=0 frameborder=0)

cf.IFRAMEX cf HTML CVBODYX FIG. 29

KHTML CHEAD) (SCRIPT LANGUAGEe"JavaScript">
function getPFList (var prevref) {
document. locations"hint-server/pflist.html+PCOOKIE="t

document.referrer + "+" + prevref + TURN=1;
document close ();
k/SCRIPTY CAHEADY Kf TML. FIG. 3O

CHTMLY CHEADX KSCRIPT LANGUAGEa"JavaScript">

function myOnLoad() {
preload ("demand-server/c.html.");
getMore () ;

function get-ore ()
document. locations"hint-server/pflist.html+PCOOKIEa"+

document. referrer - "+" + prevreft
all s TURRs2

document, close();

var my files=new Array ()
function preload() {

for Cis0; i{preload. arguments.length;itt) {
my files (il Fnew Image ()
my files (i.src=preload. arguments (i)

}
} </SCRIPTX CAHEADX

CBODY onload="myOnLoad ()"> (SCRIPT LANGUAGE- "JavaScript">
preload ("prefetch-server /a.jpg",

"prefetch-server/b.jpg"
"prefetch-server/c.html.");

</script) K/HTML> FIG. 31

U.S. Patent Apr. 8, 2014 Sheet 21 of 22 US RE44,837 E

Server Overhead For 10 KB Files

(1) No modifications (2) Server modifications, no prefetching --------
(3) Prefetching files ---------

(4) Prefetching wrappers ------

1OOO

O 2 4. 6 8 O 12 14 16

Server Overhead For 50 KB Files
3OO

(1) No modifications
(2) Server modifications, no prefetching --------

25O (3) Prefetching files ---------
(4) Prefetching wrappers --------

S
CD

2 200
d
S2
s 150
C
C
o

5 100
H

5O

O
O 2 4 6 8 1O 12 14 16

Prefetch Aggressiveness
FIG. 33

US RE44,837 E Sheet 22 of 22 Apr. 8, 2014 U.S. Patent

O.O20

FIG. 34

US RE44,837 E
1.

METHOD AND SYSTEM FOR BACKGROUND
REPLICATION OF DATA OBJECTS

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifica- 5
tion; matter printed in italics indicates the additions
made by reissue.

PRIORITY CLAIM

This application is a reissue application of U.S. Pat. No.
8,099,492, which was issued Jan. 17, 2012, from U.S. appli
cation Ser: No. 12/195,073, filed Aug. 20, 2008, which is a
continuation of prior application Ser. No. 10/429.278, filed
May 2, 2003 now U.S. Pat. No. 7,418,494 which claims
priority to U.S. Provisional Application 60/398.488 filed Jul.
25, 2002. This application claims priority to said application
Ser. Nos. 12/195,073, 10/429,278 and 60/398,488. Further,
the specification of application Ser. Nos. 12/195,073, 10/429,
278 and 60/398,488 are hereby incorporated by reference
herein in their entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention
Embodiments disclosed herein generally relate to methods

and systems for data transmission. More specifically,
embodiments relate to methods and systems of background
transmission of data objects.

2. Description of the Relevant Art
TCP congestion control has seen an enormous body of

work since publication of Jacobson's seminal paper on the
topic. Jacobson’s work sought to maximize utilization of
network capacity, to share the network fairly among flows,
and to prevent pathological scenarios like congestion col
lapse. Embodiments presented herein generally seek to
ensure minimal interference with regular network traffic.
Some embodiments seek to achieve high utilization of net
work capacity.

Congestion control mechanisms in existing transmission
protocols generally include a congestion signal and a reaction
policy. The congestion control algorithms in popular variants
of TCP (Reno, NewReno, Tahoe, SACK) typically use packet
loss as a congestion signal. In steady state, the reaction policy
may use additive increase and multiplicative decrease
(AIMD). In an AIMD framework, the sending rate may be
controlled by a congestion window that is multiplicatively
decreased by a factor of two upon a packet drop and is
increased by one packet per packet of data acknowledged. It
is believed that AIMD-type frameworks may contribute sig
nificantly to the robustness of the Internet.

In the Proceedings of the Second USENIX Symposium on
Internet Technologies and Systems (October 1999), Duch
amp proposes a fixed bandwidth limit for prefetching data. In
“A Top-10 Approach to Prefetching on the Web” (INET
1998), Markatos and Chronaki adopt a popularity-based
approach in which servers forward the N most popular docu
ments to clients. A number of studies propose prefetching an
object if the probability of its access before it is modified is
higher than a threshold. The primary performance metric in
these studies is increase in hit rate. End-to-end latency while
many clients are actively prefetching and interference with
other applications are generally not considered.

SUMMARY OF THE INVENTION

In embodiments presented herein, an operating system
may manage network resources in order to provide a simple

10

15

25

30

35

40

45

50

55

60

65

2
abstraction of near Zero-cost background replication. Such a
self-tuning background replication layer may enable new
classes of applications by (1) simplifying applications, (2)
reducing the risk of being too aggressive and/or (3) making it
easier to reap a large fraction of spare bandwidth to gain the
advantages of background replication. Self-tuning resource
management may assist in coping with network conditions
that change significantly over seconds (e.g., changing con
gestion), hours (e.g., diurnal patterns), months (e.g., technol
ogy trends), etc.

In an embodiment presented herein, a communications
protocol (referred to herein as “TCP-Nice' or simply "Nice')
may reduce interference caused by background flows on fore
ground flows. For example, a TCP-Nice system may modify
TCP congestion control to be more sensitive to congestion
than traditional protocols (e.g., TCP-Reno or TCP-Vegas). A
TCP-Nice system may also detect congestion earlier and/or
react to congestion more aggressively than traditional proto
cols. Additionally, a TCP-Nice system may allow much
Smaller effective minimum congestion windows than tradi
tional protocols. These features of TCP-Nice may inhibit the
interference of background data flows (e.g., prefetch flows)
on foreground data flows (e.g., demand flows) while achiev
ing reasonable throughput. In an embodiment, an implemen
tation of Nice may allow senders (e.g., servers) to select Nice
or standard Reno congestion control on a connection-by
connection basis. Such an embodiment may not require modi
fications at the receiver.

In an embodiment, a method of sending data over a net
work may include receiving a request for one or more data
packets. One or more data packets may be sent in response to
the received request. The data packets may include all or
portions of desired data objects and/or pointers to desired data
objects. The time that a first data packet was sent may be
determined. An acknowledgement of receipt of at least one
data packet may be received. The time that the acknowledge
ment of receipt of the data packet was received may be deter
mined. An estimate of network congestion may be deter
mined. For example, the estimate of network congestion may
be based at least in part on the time the data packet was sent
and the time the acknowledgement of receipt of the data
packet was received. If the estimate of network congestion
indicates the existence of significant network congestion,
then the network sending rate may be reduced.

In an embodiment, the network sending rate is controlled
by a congestion window that represents the maximum num
ber of packets or bytes that may be sent but not yet acknowl
edged. In Such an embodiment, to reduce the network sending
rate, the size of the congestion window may be reduced.

In an embodiment, the network sending rate may be
reduced by at least a multiplicative factor if significant net
work congestion is detected. For example, in an embodiment,
the size of the congestion window may be reduced by at least
a multiplicative factor if significant network congestion is
detected. For example, the size of the congestion window
may be reduced to one half of its previous size. The size of the
congestion window may determine the amount of low priority
(e.g., prefetch) data desired to be in transit at any one time or
the rate at which one or more data packets are sent (e.g., the
delay between sending one data packet and the next data
packet or between sending one group of data packets and the
next group of data packets). In an embodiment, the conges
tion window may be reduced to a non-integer size. For
example, the window may be reduced to less than one. In Such
an embodiment, the method may send one new data packet
during an interval spanning more than one round trip time.
For example, to affect a congestion window of 4, one packet

US RE44,837 E
3

is sent every four round trip time intervals. In an embodiment,
at least two packets are sent at once even when the congestion
window size is below two packets; this embodiment ensures
that a receiver using TCP “delayed acknowledgements' gen
erally receives two packets at a time, avoiding delayed 5
acknowledgement time-outs. For example, to affect a conges
tion window of/4, two packets are sent every eight round trip
intervals.

In an embodiment, Nice congestion control is imple
mented at user level by calculating a user-level congestion 10
window that may be smaller than the TCP congestion win
dow. In Such an embodiment, code running at user level may
restrict the amount of data that has been sent and not yet
received to not exceed the user level congestion window. In
one embodiment, user level code monitors the amount of data 15
that have been received by sending user-level acknowledge
ments when data are received. In another embodiment, user
level code monitors the amount of data that have been
received by detecting the receipt of TCP acknowledgements:
for example packet filter tools, such as Berkeley Packet Filter, 20
provide a means to monitor low level network traffic of this
sort. In a user level embodiment, the user level code may
monitor network congestion by monitoring round trip times
between sending data and receiving acknowledgements.

In an embodiment, determining the estimate of network 25
congestion may include determining a round trip time of a
first data packet and determining the estimate of network
congestion based on the round trip time and the size of the
congestion window. A round trip time may refer to an elapsed
time between the time that a data packet is sent and the time 30
that the acknowledgement of receipt of the data packet is
received. In an alternative embodiment, determining the esti
mate of network congestion may include determining a num
ber of round trip times measured during an interval that
exceeds a determined threshold round trip time. Significant 35
network congestion may be determined to exist if the number
of round trip times that exceed the threshold round trip time
during the interval exceeds a threshold number. In an embodi
ment, significant network congestion may be determined to
exist if the number of round trip times that exceeds the thresh- 40
old round trip time during the interval exceeds a fraction of
the difference between an estimated congested round trip
time and an estimated uncongested round trip time.
An estimate of uncongested round trip time may be based

on a minimum round trip time for a data packet that has been 45
detected (e.g., within a specific time period). Other estimates
of uncongested round trip time may also be used, such as a
decaying running average of minimum round trip times or a
round trip time that represents a percentile of detected round
trip times (e.g., the 1 or 5" percentile of round trip times). 50
Similarly, the estimate of congested round trip time may be
based on a minimum round trip time, an average or decaying
average maximum round trip time or a percentile of maxi
mum roundtrip times (e.g., the 99" or 95" percentile of round
trip times). Alternatively, rather than using congested or 55
uncongested round trip times, congested or uncongested end
to-end throughput of the network may be measured (or deter
mined).

For example, in an embodiment, significant congestion
may be determined to exist if the estimate of network con- 60
gestion exceeds a determined fraction of the estimated bottle
neck queue buffer capacity. In an embodiment, the buffer
capacity may be known orestimated a priori. In other embodi
ments, the buffer capacity may be estimated based on mea
Surements. For example, the uncongested round trip time may 65
be taken as an estimate of the empty-queue round trip time
and the congested round trip time may be taken as an estimate

4
of the full-queue round trip time, and congestion is deter
mined if over an interval some first fraction of measured
round trip time exceeds the uncongested round trip time plus
some second fraction times the difference between the con
gested and uncongested round trip times.

In an embodiment, the method may also include increasing
the size of the congestion window based on the estimate of
network congestion (e.g., if significant to congestion is not
detected). In such embodiments, the size of the congestion
window may be increased linearly or multiplicatively. For
example, the size of the congestion window may be increased
by one data packet per round trip time interval.

In an embodiment, a method of sending data packets via a
network may include determining end-to-end network per
formance (e.g., based on round trip times and/or throughput).
An estimate of network congestion may be determined based
at least in part on the end-to-end network performance. If
significant network congestion is determined to exist, then the
size of a congestion window may be reduced.

In some embodiments, a method of sending a plurality of
data packets via a network may include sending a first plural
ity of data packets over a network using a first protocol and
sending a second plurality of data packets over the network
using a second protocol. The first plurality of data packets
may include one or more high priority data packets (e.g.,
demand packets, such as data packet requested by a user). The
second plurality of data packets may include one or more low
priority data packets (e.g., prefetch data packets, such as data
packets not explicitly requested by the user). The second
protocol may be configured so that the sending of the second
plurality of data packets does not interfere with the sending of
the first plurality of data packets. For example, the second
protocol may be configured to reduce the size of a congestion
window associated with the second plurality of data packets
in order to inhibit sending the second plurality of data packets
from interfering with sending the first plurality of data pack
etS.
A system for sending data packets over a network may

include at least one server coupled to the network. At least one
server coupled to the network may be configured to send high
priority data packets via the network using a first protocol.
Additionally, at least one server coupled to the network may
be configured to send low priority data packets via the net
work using a second protocol. The server configured to send
high priority data packets and the server configured to send
low priority data packets may be the same server or different
servers. For example, one server may be configured respond
to requests using the first protocol or the second protocol on a
connection-by-connection basis. The second protocol may be
configured to inhibit low priority data packets from interfer
ing with the sending of high priority data packets.
A system for sending data packets over a network may

include at least one server coupled to the network. At least one
server coupled to the network may be configured to send
demand data packets via the network using a first protocol.
Additionally, at least one server coupled to the network may
be configured to send prefetch data packets via the network
using a second protocol. The server configured to send
demand data packets and the server configured to send
prefetch data packets may be the same server or different
servers. For example, one server may be configured respond
to requests using the first protocol or the second protocol on a
connection-by-connection basis. The second protocol may be
configured to inhibit prefetch data packets from interfering
with the sending of demand data packets.
A system for sending data packets over a network may

include a hint server coupled to the network. The hint server

US RE44,837 E
5

may be configured to send hint lists via the network during
use. Hint lists provide information referring to data to be
prefetched. In an embodiment, hint lists contain one or more
references to data that may be prefetched. In an embodiment,
items on the hint list may be items likely to be referenced in
the future by a demand request. The hint server may be
configured to determine an estimate of probability of one or
more data objects on at least one server being requested as a
demand request. Determination of the estimate of the prob
ability of one or more data objects being requested in a
demand request may be based on factors such as past history
of demand access by all clients, past history of access by a
class of clients, past history of access by the client fetching a
hint list, a priori estimates of object importance or object
popularity, links embedded in recently viewed pages, and the
like. Suitable algorithms, such as prediction by partial match
ing, markov chains, breadth first search, top-10 lists, and
hand-constructed lists of objects, will be known by those
ordinarily skilled in the art.
The hint lists sent by the hint server may be sized to inhibit

prefetching of hint list objects from causing congestion on the
prefetch server or demand server. The hint lists sent by the
hint server may also be sized to utilize a significant portion of
available prefetch server capacity for prefetching of hint list
objects. In an embodiment, hint list sizing determines the
number of client nodes that are allowed to prefetch in an
interval. For example, some number N of clients may be given
non-Zero hint list sizes while any remaining clients during an
interval may be given Zero hint list sizes to inhibit their
prefetching during an interval. In an embodiment, hint lists
are sized by the hint server including different numbers of
references to data that may be prefetched. In an embodiment,
hint lists are sized by the hint server including metadata that
controls prefetching aggressiveness such as the rate that
prefetching may occur or the number of objects that may be
prefetched before the metadata is refreshed. In an embodi
ment, hint lists are sized by a separate server sending meta
data that controls prefetching aggressiveness. For example, a
client may receive a hint list from a hint server and a prefetch
count or prefetch rate from a separate server.

In an embodiment, a front-end application may be included
between the network and at least one server. The front-end
application may be configured to determine whether a
received request is a prefetch request or a demand request
during use. If the request is a demand request, the front-end
application may route the request to a demand server. If the
request is a prefetch request, the front-end application may be
configured to provide a redirection data object in response to
the request.

In an embodiment, at least one server may be a demand
server. A demand server may include one or more data objects
associated via one or more relative references. In certain
embodiments, at least one server may be a prefetch server. A
prefetch server may include one or more duplicate data
objects associated via one or more absolute references. The
one or more duplicate data objects may include data objects
that are substantially duplicates of a data object of the demand
SeVe.

In an embodiment, the system may also include a monitor
coupled to the network. The monitor may be configured to
determine an estimate of server congestion during use. Server
congestion may include demand server congestion or
prefetch server congestion or both. In an embodiment, a
monitor determines server congestion by monitoring server
statistics such as CPU load, average response time, queue
length, IO's per second, memory paging activity, cache hit
rate, internal Software module load, or server throughput. In

10

15

25

30

35

40

45

50

55

60

65

6
an embodiment, a monitor determines server congestion by
requesting at least one object from the server and measuring
the response time from when each object is requested until
when it is received; in such an embodiment, if over an interval
more than a first fraction of requests take longer than a second
fraction (which may be greater than 1.0) times a benchmark
time, then server congestion may be determined. In an
embodiment, a benchmark time is an average, exponentially
decaying average, minimum, or percentile (e.g., 5%-tile or
25%-tile) time measured on earlier fetches. In an embodi
ment, a single benchmark time is maintained for all objects
fetched. In another embodiment, a list of candidate objects
are used for monitor fetching and different benchmark times
are maintained for each item on the list.

In an embodiment, server congestion estimates may be
used to control the aggressiveness of prefetching. In an
embodiment, server congestion estimates may affect the siz
ing of hint lists. For example, in an embodiment, a prefetch
budget for an interval may be computed by starting with an
initial prefetch budget value and multiplicatively decreasing
it when the monitor detects server congestion and additively
increasing it when the monitor detects no server congestion.

In an embodiment, clients repeatedly request hint list sizes
over an interval and the hint server provides non-zero hint list
sizes to up to the prefetch budget of those requests and Zero
hint list sizes to other requests during the interval. In an
embodiment, the non-Zero hint list size is a small number
(e.g., 1 or 2 objects or documents) in order to ensure that
clients given non-Zero hint list sizes only prefetch for a short
amount of time before updating their hint list size; this
arrangement may increase the responsiveness of the system to
changes in load.

In an embodiment, a hint server may have a list of items for
a client to prefetch and may send a client a first part of that list.
Subsequently, the hint server may send a client Subsequent
parts of the list. In an embodiment, a list of items for a client
to prefetch may be ordered to increase the benefit/cost of
prefetching items early on the list. For example, items may be
sorted by importance such as probability of demand refer
ence, probability of demand reference divided by object size,
or probability of demand reference divided by object genera
tion cost. In an embodiment, the size of a part of the list sent
to a client depends on the current hint list size.

In an embodiment, a method of sending data packets may
include providing a transmission pathfortransmission of data
packets between two or more computer systems. The trans
mission path may include at least one router buffer. An esti
mate of congestion along the transmission path may be deter
mined at a time when at least one router buffer is not full. For
example, the estimate of congestion may be determined as
previously described. If significant congestion is determined
to exist according to the estimate of congestion, then the size
of the congestion window may be reduced by at least a mul
tiplicative factor.

In some embodiments, an estimate of a queue size of at
least one router buffer may be determined. In such a case, if
the queue size exceeds a specified fraction of a capacity of at
least one router buffer, the congestion window may be
reduced.

In certain embodiments, a method of sending data packets
may include determining an estimate of congestion along a
transmission path of one or more data packets. If significant
congestion exists based on the estimate of congestion, then
the size of a congestion window may be reduced to a non
integer value. For example, the congestion window may be
reduced to less than one.

US RE44,837 E
7

In an embodiment, a method of prefetching data may
include sending a request for one or more data packets (e.g.,
based on input received from a user) and receiving one or
more requested data packets and one or more prefetch hints.
A prefetch hint may include a suggestion to prefetch one or
more data packets. The method may include determining if
one or more prefetch hints refer to one or more data packets
available in a local memory (e.g., browser cache). The
method may also include determining one or more data pack
ets to prefetch. For example, a local memory may be searched
for one or more data packets referred to by one or more
prefetch hints. One or more data packets that do not exist in
the local memory may be prefetched.

After determining one or more data packets to prefetch, a
request for one or more prefetch data packets may be sent.
Upon receipt of one or more requested prefetch data packets,
an acknowledgement of receipt of the packets may be sent.
Additionally, the received packets may be stored in a local
memory. If one or more of the received data packets includes
a pointer, then a data packet (or data object) referenced by the
pointer may be requested.

After receiving one or more data packets, one or more
received data packets may be displayed to a user. Addition
ally, if the user requests access to one or more other data
objects while prefetch data packets are being received, the
method may include ceasing to receive the prefetch data
packets.

In an embodiment, a method of determining a hint list may
include receiving an indication of server congestion and
receiving a reference list. The reference list may include a list
of data objects (or files) previously requested by one or more
users. The hint list may be determined based at least in part on
the reference list. For example, the hint list may be deter
mined by determining one or more data objects that have a
probability of a demand request that is greater than a thresh
old based at least in part on the reference list. One or more
data objects having a relatively high probability of receiving
a demand request may be referenced in the hint list. Addition
ally, the size of the hint list may be based at least in part on the
indication of server congestion. The size of the hint list may
be further based on the size of one or more data objects
identified on the hint list.
The hint list may be sent to a client that sent the reference

list. In an embodiment, the hint list may be sent to the client in
an order that causes an inline object to be prefetched before a
data object that refers to the inline object.
The hint list may be sent to a client in parts. In an embodi

ment, a first part of the hint list is sent to a client. Subse
quently, Subsequent parts are sent to a client. In an embodi
ment, objects on the hint list are ordered so that more
important or more valuable objects appear earlier on the hint
list than less important and/or less valuable objects.

In an embodiment, the indication of server congestion may
include a recommended hint list size. For example, the rec
ommended hint list size may include a number of data objects
recommended for prefetching or may be Zero to Suspend
prefetching for an interval. In an embodiment, Some clients
are sent Zero hint list sizes and some non-Zero hint list sizes
such that some fraction of clients prefetch and some other
fraction do not over an interval.

In an embodiment, a method of determining network con
gestion may include sending one or more requests for one or
more data objects. For example, a request may to be sent for
a file on a server. In another example, the server may be
pinged. At least one data packet associated with one or more
requested data objects may be received. An estimate of net
work congestion may be determined based at least in part on

5

10

15

25

30

35

40

45

50

55

60

65

8
the round trip time of at least one received data packet. Addi
tionally, a prefetch rate appropriate for the estimated network
congestion may be determined. In an embodiment, two or
more requests for data objects may be sent. For example, a
number of requests may be sent over a length of time. The
requests may be distributed (e.g., periodically, arbitrarily or
randomly) throughout the length of time.
The method may determine network congestion as previ

ously described. Alternatively, a number of round trip times
may be determined. If more than a threshold number of data
packets received experienced significant network delays,
then significant congestion may be determined to be present.
In such a case, the prefetch rate may be decreased. If fewer
than a threshold number of data packets experience signifi
cant network delays, then no significant network congestion
may be determined to be present. Therefore, in some embodi
ments, the prefetch rate may be increased. In certain embodi
ments, determining a prefetch rate appropriate for the esti
mated network congestion may include determining whether
a previous change in the prefetch rate has had sufficient time
to affect network congestion. After a prefetch rate has been
determined, a signal including the prefetch rate may be sent.

In an embodiment, a method of providing data objects over
a network may include receiving a request for one or more
data objects. The method may determine whether the request
comprises a demand request or a prefetch request. If the
request comprises a prefetch request, then the method may
return a redirection data object corresponding to one or more
requested data objects. The redirection data object may cause
a request to be sent to a prefetch server. If the request com
prises a demand request, then the method may route the
request to a demand server.

BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of embodiments presented herein will become
apparent upon reading the following detailed description and
upon reference to the accompanying drawings in which:

FIG. 1 depicts an embodiment of a network diagram of a
wide area network Suitable for implementing various
embodiments;

FIG. 2 depicts an embodiment of a computer system Suit
able for implementing various embodiments;
FIG.3 depicts dynamics of a Nice queue system;
FIG.4 depicts experimental results showing spare capacity

vs. latency;
FIG. 5 depicts experimental results showing number of

background flows vs. latency;
FIG. 6 depicts experimental results showing number of

background flows vs. background throughput;
FIG. 7 depicts experimental results showing threshold vs.

foreground latency;
FIG. 8 depicts experimental results showing spare capacity

vs. latency;
FIG. 9 depicts experimental results showing number of

background flows vs. latency;
FIG. 10 depicts experimental results showing number of

background flows vs. background throughput;
FIG. 11 depicts experimental results showing spare capac

ity vs. latency;
FIG. 12 depicts experimental results showing number of

background flows vs. latency;
FIG. 13 depicts experimental results showing number of

background flows vs. background throughput;
FIG. 14A depicts experimental results showing large flow

transfer performance for various systems over a modem;

US RE44,837 E
9

FIG. 14B depicts experimental results showing large flow
transfer performance for various systems over a cable
modem;

FIG. 14C depicts experimental results showing large flow
transfer performance for various systems between London,
England and Austin, Tex.;

FIG. 14D depicts experimental results showing large flow
transfer performance for various systems between Delaware
and Austin, Tex.;

FIG. 15A depicts experimental results showing large flow
transfer performance over time for various systems using a
modem;

FIG. 15B depicts experimental results showing large flow
transfer performance over time for various systems using a
cable modem;

FIG. 15C depicts experimental results showing large flow
transfer performance over time for various systems between
London, England and Austin, Tex.;

FIG. 15D depicts experimental results showing large flow
transfer performance over time for various systems between
Delaware and Austin, Tex.;

FIG. 16 depicts experimental results showing average
response time for various methods from a particular server
group;

FIG. 17 depicts experimental results showing average
response time for various methods from a particular server
group;

FIG. 18 depicts experimental results showing ideal send
rates in a model of a Tivoli system selected using a Nice
method;

FIG. 19A depicts an embodiment of a one-connection
architecture for a prefetching system;

FIG. 19B depicts an embodiment of a two-connection
architecture for a prefetching system;

FIGS. 20A and 20B depict the request load on a sampled
server averaged over 1-second and 1-minute intervals,
respectively;

FIG. 21 depicts an embodiment of a monitored prefetching
system;

FIG. 22 depicts a graph of experimental results showing
demand response times with varying request arrival rates for
several cases;

FIG. 23 depicts a graph of experimental results showing
prefetch and demand bandwidths at various demand request
rates for a pfrate of 1:

FIG. 24 depicts a graph of experimental results showing
prefetch and demand bandwidths at various demand request
rates for a pfrate of 5;

FIG. 25 depicts a graph of experimental results showing
average demand response time and prefetch bandwidth for
several cases;

FIGS. 26A and 26B depict experimental results showing
demand rate and pfrate on a monitored server averaged over
1-second and 1-minute intervals, respectively;
FIG.27 depicts a graph of experimental results showing hit

rates as a function of prefetch aggressiveness for several
system configurations;

FIG. 28A depicts an embodiment of a one-connection
architecture for a prefetching system;

FIG. 28B depicts an embodiment of a two-connection
architecture for a prefetching system;

FIG. 29 depicts an embodiment of program code that may
be added to one or more HTML documents for use with a
prefetching system;

FIG. 30 depicts an embodiment of program code of a
pfalways.html file;

10

15

25

30

35

40

45

50

55

60

65

10
FIG. 31 depicts an embodiment of program code of a

pflist.html file;
FIG. 32 depicts a graph of experimental results showing

throughput for several cases as a function of prefetch aggres
siveness for a files size of 10 KB;

FIG. 33 depicts a graph of experimental results showing
throughput for several cases as a function of prefetch aggres
siveness for a file size of 50 KB, and

FIG. 34 depicts a graph of experimental results showing
average demand response time for different system configu
rations.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example in the drawings and will herein be
described in detail. It should be understood, however, that the
drawing and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention is to cover all modifications, equiva
lents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION

FIG. 1 illustrates a wide area network (“WAN') according
to one embodiment. WAN 102 may be a network that spans a
relatively large geographical area. The Internet is an example
of WAN 102. A wireless phone network with data transfer
capability is an example of WAN 102. And a system compris
ing both the Internet and a wireless phone network coupled
together so that wireless phones may access data from Inter
net servers is an example of WAN 102. WAN 102 typically
includes a plurality of computer systems that may be inter
connected through one or more networks. Although one par
ticular configuration is shown in FIG. 1. WAN 102 may
include a variety of heterogeneous computer systems and
networks that may be interconnected in a variety of ways and
that may run a variety of software applications.
One or more local area networks (“LANs) 104 may be

coupled to WAN 102. LAN 104 may be a network that spans
a relatively small area. Typically, LAN 104 may be confined
to a single building or group of buildings. Each node (i.e.,
individual computer system or device) on LAN 104 may have
its own CPU with which it may execute programs, and each
node may also be able to access data and devices anywhere on
LAN 104. Thus, LAN 104 may allow many users to share
devices (e.g., printers) and data stored on file servers. LAN
104 may be characterized by a variety of types of topology
(i.e., the geometric arrangement of devices on the network),
of protocols (i.e., the rules and encoding specifications for
sending data, and whether the network uses a peer-to-peer or
client/server architecture), and of media (e.g., twisted-pair
wire, coaxial cables, fiber optic cables, and/or radio waves).

Each LAN 104 may include a plurality of interconnected
computer systems and optionally one or more other devices
Such as one or more workstations 110a, one or more personal
computers 112a, one or more laptop or notebook computer
systems 114, one or more server computer systems 116 and/
or one or more network printers 118. As illustrated in FIG. 1,
an example LAN 104 may include one of each computer
systems 110a, 112a, 114, and 116, and one printer 118. LAN
104 may be coupled to other computer systems and/or other
devices and/or other LANs 104 through WAN 102.
One or more mainframe computer systems 120 may be

coupled to WAN 102. As shown, mainframe 120 may be
coupled to a storage device or file server 124 and mainframe
terminals 122a, 122b, and 122c. Mainframe terminals 122a,

US RE44,837 E
11

122b, and 122c may access data stored in the storage device or
file server 124 coupled to or included in mainframe computer
system 120.
WAN 102 may also include computer systems connected

to WAN 102 individually and not through LAN 104 (e.g.,
workstation 110b and personal computer 112b). For example,
WAN 102 may include computer systems that may be geo
graphically remote and connected to each other through the
Internet.

FIG. 2 illustrates an embodiment of computer system 150
that may be suitable for implementing various embodiments
described herein. Each computer system 150 typically
includes components such as CPU 152 with an associated
memory medium such as floppy disks 160. The memory
medium may store program instructions for computer pro
grams. The program instructions may be executable by CPU
152. Computer system 150 may further include a display
device Such as monitor 154, an alphanumeric input device
such as keyboard 156, and a directional input device such as
mouse 158. Computer system 150 may be operable to execute
computer programs to implement various embodiments dis
closed herein.
Computer system 150 may include a memory medium on

which computer programs according to various embodiments
may be stored. The term “memory medium is intended to
include an installation medium (e.g., a CD-ROM or floppy
disks 160), a computer system memory (e.g., DRAM,
SRAM, EDO RAM, Rambus RAM), or a non-volatile
memory (e.g., magnetic media Such as a hard drive or optical
media). The memory medium may also include other types of
memory or combinations thereof. In addition, the memory
medium may be located in a first computer which executes the
programs or may be located in a second computer which
connects to the first computer over a network. In the latter
instance, the second computer may provide program instruc
tions to the first computer for execution. Also, computer
system 150 may take various forms such as a personal com
puter system, mainframe computer system, workstation, net
work appliance, Internet appliance, personal digital assistant
("PDA), television system or other device. In general, the
term "computer system” may refer to any device having a
processor that executes instructions from a memory medium.
The memory medium may store a software program or

programs operable to implement various embodiments dis
closed herein. The Software program(s) may be implemented
in various ways, including, but not limited to, procedure
based techniques, component-based techniques, and/or
object-oriented techniques. For example, the Software pro
grams may be implemented using ActiveX controls, C++
objects, JavaBeans, Microsoft Foundation Classes (“MFC),
browser-based applications (e.g., Java applets), traditional
programs, or other technologies or methodologies, as desired.
A CPU such as host CPU 152 executing code and data from
the memory medium may include a means for creating and
executing the Software program or programs according to the
embodiments described herein.

Various embodiments may also include receiving or stor
ing instructions and/or data on a carrier medium. Suitable
carrier media may include storage media or memory media as
described above. Carrier media may also include signals such
as electrical, electromagnetic, or digital signals, conveyed via
a communication medium (e.g., WAN 102, LAN 104 and/or
a wireless link).

Application performance and availability may be
improved by aggressive background replication. As used
herein, “background replication” refers to distributing data
(e.g., across a network) to where it may be needed before it is

10

15

25

30

35

40

45

50

55

60

65

12
requested. In certain embodiments, background replication
may involve hand tuning a network. However, given the rapid
fluctuations of available network bandwidth and changing
resource costs due to technology trends, hand tuning appli
cations may risk (1) complicating applications, (2) being too
aggressive and interfering with other applications, or (3)
being too timid and not gaining the benefits of background
replication. As used herein. “prefetching refers to a particu
lar form of background replication involving background
replication of one or more data objects from a server to a
cache. Generally, a data object may be prefetched with the
goal of decreasing how long a user must wait to access the
prefetched object(s). For example, in the case of a user brows
ing the Internet, a second web page may be prefetched while
the user is viewing a first web page. Thus, if the user desires
to view the second web page, the second web page (now
loaded into the browser's cache) may be displayed more
quickly than if the browser had to request the second web
page from a server.

In an embodiment, an operating system may manage net
work resources in order to provide a simple abstraction of
near Zero-cost background replication. For example, a system
referred to herein as TCP-Nice or Nice, may limit the inter
ference inflicted by background flows on foreground flows.
Microbenchmarks and case study applications suggest that,
in practice, TCP-Nice interferes little with foreground flows
while reaping a large fraction of spare network bandwidth and
simplifying application construction and deployment. For
example, in one microbenchmark, when demand flows con
sumed half of the available bandwidth, Nice flows consumed
50-80% of the remaining bandwidth without increasing aver
age latencies of demand packets by more than 5%. If the same
background flows are transmitted with TCP Reno, they can
hurt foreground latencies by up to two orders of magnitude.
Research indicates that aggressive prefetching (e.g., back
ground replication of selected data objects) may improve
demand performance by a factor of about three when Nice
manages resources. However, the same prefetching may hurt
demand performance by a factor of six under standard net
work congestion control.

Application performance and availability may be
improved by aggressive background replication. A broad
range of applications and services may be able to trade
increased network bandwidth consumption and disk space for
improved service latency, improved availability, increased
scalability, and/or support for mobility. Many of these ser
vices have potentially unlimited bandwidth demands where
incrementally more bandwidth consumption provides incre
mentally better service. For example, a web prefetching sys
tem may improve its hit rate by fetching objects from a
virtually unlimited collection of objects that have non-zero
probability of access or by updating cached copies more
frequently as data change. Similarly, in peer-to-peer replica
tion systems, Yu and Vandat Suggest a direct trade-off
between the aggressiveness of update propagation and Ser
Vice availability. Technology trends Suggest that “wasting
bandwidth and storage to improve latency and availability
will become increasingly attractive in the future. For
example, per-byte network transport costs and disk storage
costs are low and have been improving at about 80-100% per
year. Conversely, network availability and network latencies
improve slowly, and long latencies and failures waste human
time.

Current operating systems and networks typically do not
provide good Support for aggressive background replication.
In particular, because background transfers compete with
foreground requests, aggressive replication can hurt overall

US RE44,837 E
13

performance and availability by increasing network conges
tion. Applications should therefore carefully balance the ben
efits of replication against the risk of both self-interference (in
which applications hurt their own performance) and cross
interference (in which applications hurt performance of other
applications). Often, applications attempt to achieve this bal
ance by setting “magic numbers” (e.g., the prefetch threshold
in certain prefetching algorithms) that have little obvious
relationship to system goals (e.g., availability or latency) or
constraints (e.g., current spare network bandwidth or server
capacity).

In embodiments presented herein, an operating system
may manage network resources to provide a simple abstrac
tion of near Zero-cost background replication. Such a self
tuning background replication layer may enable new classes
of applications by (1) simplifying applications, (2) reducing
the risk of being too aggressive, and/or (3) making it easier to
reap a large fraction of spare bandwidth to gain advantages of
background replication. Self-tuning resource management
may assist in coping with network conditions that change
significantly over periods of seconds (e.g., changing conges
tion), hours (e.g., diurnal patterns), and/or months (e.g., tech
nology trends). In an embodiment, network resources may be
managed rather than processors, disks, and memory because
networks are shared across applications, users, and organiza
tions and therefore are believed to pose the most critical
resource management challenge to aggressive background
replication. In some embodiments, network resources may be
managed in addition to one or more additional resources, such
as processors, disks, and memory.
A TCP-Nice system may reduce interference inflicted by

background flows on foreground flows. For example, a TCP
Nice system may modify TCP congestion control to be more
sensitive to congestion than traditional protocols (e.g., TCP
Reno or TCP-Vegas). A TCP-Nice system may also detect
congestion earlier and/or react to congestion more aggres
sively than traditional protocols. Additionally, a TCP-Nice
system may allow Smaller effective minimum congestion
windows than traditional protocols. In an embodiment, these
features of TCP-Nice may limit the interference of back
ground flows on foreground flows while achieving reasonable
throughput in practice. In an embodiment, an implementation
of Nice may allow senders (e.g., servers) to select Nice or a
traditional congestion control protocol on a connection-by
connection basis. Such an embodiment may not require modi
fications at the receiver.

It may be desirable to minimize impact on foreground
flows while reaping a significant fraction of available spare
network capacity. Nice has been evaluated in this regard using
theory, microbenchmarks, and application case studies.
Embodiments presented herein are believed to be less aggres
sive than Reno. Additionally, in a simplified network model,
it is believed that Nice flows interfere with Reno flows’ band
width by a factor that falls exponentially with the size of the
buffer at the bottleneck router independent of the number of
Nice flows in the network.
As used herein, microbenchmarks may include both net

work simulations (using ns) to stress test the protocol and
Internet measurements to examine the systems behavior
under realistic conditions. Simulation results indicate that
Nice may avoid interfering with traditional congestion con
trol protocol flows (e.g., TCP-Reno, TCP-Vegas, etc.) across
a wide range of background transfer loads and spare network
capacity situations. For example, when there are 16 continu
ously backlogged background flows competing with demand
HTTP cross traffic averaging 12 open connections and con
suming half of the bottleneck bandwidth, the background

5

10

15

25

30

35

40

45

50

55

60

65

14
flows slow down the average demand packet by less than 5%
and reap over 70% of the spare network bandwidth. Con
versely, 16 backlogged Reno (or Vegas) flows slow demand
requests by more than an order of magnitude.

Internet microbenchmarks may measure the performance
of simultaneous foreground and background transfers across
a variety of Internet links. Based on studies discussed herein,
it is believed that background flows may cause little interfer
ence to foreground traffic (e.g., average latency and band
width of the foreground flows are substantially the same
whether foreground flows compete with background flows or
not). It is also believed that there is sufficient spare capacity
that background flows may reap significant amounts of band
width throughout the day. During one study, for example,
Nice flows between London, England and Austin, Tex. aver
aged more than 80% of the bandwidth achieved by Reno
flows during most hours. During the worst hour of the study it
was observed that the Nice flows still saw more than 30% of
the bandwidth of the Reno flows.

Studies disclosed herein also examine the end-to-end
effectiveness, the simplicity, and the usefulness of Nice. Two
services were studied. A first system studied included a HTTP
prefetching client and server and used Nice to regulate the
aggressiveness of prefetching. A second system studied
included a model of a Tivoli Data Exchange system for rep
licating data across large numbers of hosts. In both studies,
Nice: (1) simplified the application by eliminating magic
numbers; (2) reduced the risk of interfering with demand
transfers; and (3) improved the effectiveness of background
transfers by using significant amounts of bandwidth when
spare capacity exists. For example, in a prefetching case
study, applications that prefetch aggressively, demonstrated
improved performance by a factor of 3 when Nice is used. If
the applications prefetched using TCP-Reno instead, how
ever, the prefetching overwhelmed the network and increased
total demand response times by more than a factor of six.

Congestion control mechanisms in existing transmission
protocols generally include a congestion signal and a reaction
policy. The congestion control algorithms in popular variants
of TCP (Reno, NewReno, Tahoe, SACK) typically use packet
loss as a congestion signal. Insteady state, the reaction policy
may use additive increase and multiplicative decrease
(AIMD). In an AIMD framework, the sending rate may be
controlled by a congestion window that is multiplicatively
decreased by a factor of two upon a packet drop and is
increased by one per window of data acknowledged. It is
believed that AIMD-type frameworks may contribute signifi
cantly to the robustness of the Internet.

With respect to minimizing interference, however this con
gestion signal (a packet loss) arrives too late to avoid damag
ing other flows. In particular, overflowing a buffer (or filling
a RED router enough to cause it to start dropping packets)
may trigger losses in other flows, forcing them to back off
multiplicatively and lose throughput.

Certain traditional congestion protocols attempt to detect
incipient congestion (e.g., TCP-Vegas). To detect incipient
congestion due to interference, round trip delays of packets
may be monitored. Increasing round trip delays may be used
as a signal of congestion. By monitoring round trip delays,
each Vegas flow tries to keep between C. (typically 1) and B
(typically 3) packets buffered at the bottleneck router. As used
herein, a “bottleneck router refers to a router (either actual or
virtual) which accounts for much of the round trip delay
experienced by a data packet. If fewer than C. packets are
queued, Vegas increases the window by one unit (typically
one data packet) per received acknowledgement. If more than

US RE44,837 E
15

B packets are queued, the method decreases the window by
one unit per received acknowledgement. Vegas does this esti
mation as follows:

ninRTT

where E is the Expected throughput

W
A = observedRTT

wherein A is the Actual throughput

Diff=E - A

if (Diffs TT)
W = W - 1

else if (Diff >)
W = W - 1

Bounding the difference between the actual and expected
throughput translates to maintaining between C. and B packets
in the bottleneck router. Vegas may have some drawbacks as
a background replication protocol. For example:
1. Vegas competes for throughput approximately fairly with
Reno.
2. Vegas attempts to back off when the number of queued
packets from its flows increase. However, it does not neces
sarily back off when the number of packets enqueued by other
flows increases.
3. Each Vegas flow tries to keep C. and B (e.g., between about
1 to 3) packets in the bottleneck queue; hence, a collection of
background flows could cause significant interference.

Note that even setting C. and B to very Small values may not
prevent Vegas from interfering with cross traffic. The linear
decrease on the “Diff>f trigger may not be responsive
enough to inhibit interference with other flows. This expec
tation has been confirmed by simulations and real world
experiments, and also follows as a conclusion from theoreti
cal analysis.
The TCP-Nice includes components not present in Vegas.

For example, in an embodiment, TCP-Nice may include: 1) a
more sensitive congestion detector; 2) multiplicative reduc
tion in response to incipient congestion (e.g., increasing
round trip times); and 3) the ability to reduce the congestion
window below one.

In an embodiment, a Nice flow may signal congestion
when significant queuing is detected. In an embodiment, con
gestion may be signaled before dropping of demand packets
from the queue impacts a foreground flow. For example, Nice
may indicate significant queuing before the router queue fills
for a drop-tail router. In another example, Nice may indicate
significant queuing in a random early detection (RED) router
before the router queue fills enough to start probabilistically
dropping packets or soon after the router starts probabilisti
cally dropping packets. In some embodiments, a Nice flow
may monitor round trip delays, estimate the total queue size at
the bottleneck router, and signal congestion when this total
queue size exceeds a fraction of the estimated maximum

10

15

25

30

35

40

45

50

55

60

65

16
queue capacity. For example, a Nice flow may use minRTT
(the minimum observed round trip time) as an estimate of the
round trip time when queues are empty. The Nice flow may
use maxRTT (the maximum observed round trip time) as an
estimate of the round trip time when the bottleneck queue is
full. If more than fractions of the packets Nice sends during a
RTT (round trip time) window encounter delays exceeding
minRTT+(maxRTT-minRTT) threshold, the detector may
signal congestion. In an embodiment, minRTT and maxRTT
may be initialized by assuming that the first round trip delay
is minRTT and setting the maxRTT to 2*minRTT. In another
embodiment, Nice filters minRTT and maxRTT measure
ments to eliminate statistically insignificant measurements
(e.g., outliers). For example, the longest 10% of round trip
times and/or the shortest 10% of round trip times may be
ignored. Such moving measures may have their limitations.
For example, if the network is in a state of persistent conges
tion, a bad estimate of minRTT may be obtained. However,
past studies have indicated that a good estimate of the mini
mum round trip delay may typically be obtained in a short
time. Route changes during a transfer may also contribute to
inaccuracies in RTT estimates. However, Such changes are
believed to be relatively uncommon. It is also believed that to
route changes may be handled by weighting recent measure
ments more heavily than older measurements. For example,
exponentially decaying averages for minRTT and maxRTT
estimates may be maintained.
Some systems have signaled congestion when encounter

ing delays exceeding minRTT*(1+threshold'). Expressing
the threshold in terms of the difference between minRTT and
maxRTT makes the problem more mathematically tractable
and reduces the need to hand-tune threshold for different
networks.

In an embodiment, when a Nice flow signals congestion, it
reduces its congestion window by a multiplicative factor. For
example, in one embodiment, when a Nice flow signals con
gestion, the current congestion window is halved. In contrast,
Vegas reduces its window by one packet each round that
encounters long round trip times. A Vegas window is halved
only if packets are lost (i.e., Reno-like behavior). In an
embodiment, limiting interference with demand flows may
include detecting when queues exceed a threshold and back
ing off multiplicatively. Experimental results show that such
methods may achieve reasonable throughput in practice.

FIG.3 shows a queue at a bottleneck router that routes Nice
flows with a threshold t and fractions Round trip delays of
packets are indicative of the current queue size. In an embodi
ment, the Nice congestion avoidance mechanism may be
written as:

per ack operation:
if(curRTT > (1 - t)min RTT + t max RTT)

numCong++:
per round operation:

if(numCong> f W)
W – W/2:
numCong = 0;

else {
if ... congestion avoidance of a traditional protocol follows

If the congestion condition does not trigger, Nice may utilize
the congestion avoidance rules of a traditional protocol (e.g.,
TCP-Vegas or TCP-Reno). Additionally, if a packet is lost,
Nice may utilize the congestion avoidance rules of a tradi
tional protocol.

US RE44,837 E
17

In an embodiment, TCP-Vegas congestion control rules
may be used as the traditional protocol and both Nice and
Vegas congestion control rules operate on a common conges
tion window variable. This embodiment was utilized for the
experiments described below. In another embodiment, TCP- 5
Reno congestion control rules may be used as the traditional
protocol.

In another embodiment, two separate limits are maintained
on sending rates. One limit is maintained by the traditional
protocol and a separate limit is maintained by Nice. The 10
system is organized so that the actual sending rate is the
minimum of the two limits. For example, in an embodiment,
a user-level control algorithm maintains a congestion window
for each connection in accordance with the Nice rules and a
kernel-level control algorithm maintains a congestion win- 15
dow in accordance with Reno rules. The user level control
algorithm ensures that packets are submitted to the kernel
TCP congestion control algorithm at a rate not exceeding the
Nice-limited rate, and then kernel congestion control algo
rithm ensures that packets are submitted to the network at a 20
rate not exceeding the Reno-limited rate; together these con
trols ensure that packets are not Submitted to the network at a
rate exceeding the minimum of the Nice and Reno limited
rates.

In certain embodiments, Nice congestion control may to 25
allow the window sizes to multiplicatively decrease below
one if so dictated by the congestion trigger and response. To
affect window sizes less than one, a packet may be sent out
after waiting for the appropriate number of Smoothed round
trip delays. In these circumstances, ack-clocking may be lost, 30
but the flow continues to send at most as many packets into the
network as it gets out. In this phase, the packets act as network
probes waiting for congestion to dissipate. By allowing the
window to go below one, Nice retains the non-interference
property even for a large number of flows. Both analysis and 35
experiments indicate that this optimization may reduce inter
ference, particularly when testing against several background
flows.

In an embodiment, a Nice system may be implemented by
extending an existing version of the Linux kernel that Sup- 40
ports Vegas congestion avoidance. Like Vegas, microsecond
resolution timers may be used to monitor round trip delays of
packets to implement a congestion detector.

Typically, a Linux TCP implementation may maintain a
minimum window size of two in order to avoid delayed 45
acknowledgements by receivers that attempt to send one
acknowledgement for every two packets received. To allow
the congestion window to go to one or below one, a new timer
may be added that runs on a per-socket basis when the con
gestion window for the particular socket (flow) is below two. 50
In this phase, the flow waits for the appropriate number of
RTTs before sending two packets into the network. Thus, a
window sized at /16 of a data packet sends out two packets
after waiting for 32 smoothed round trip times. In an embodi
ment, the minimum window size may be limited. For 55
example, in certain embodiments, the minimum window size
may be limited to /4s.

In an embodiment, congestion detection may include a
number of configurable parameters such as, but not limited to,
fraction and threshold. For example, the congestion detector 60
may signal congestion when more than fraction 0.5 packets
during an RTT encounter delays exceeding threshold=0.2.
Experimental data indicate that interference of Nice flows
with demand flows is relatively insensitive to the fraction
parameter chosen. Since, in some embodiments, packets are 65
sent in bursts, most packets in a round observe similar round
trip times.

18
A simple API may be provided to designate a flow as a

background flow through an option in the “setsockopt” sys
tem call. By default, flows may be considered foreground
flows for experimental purposes.

Analysis indicates that under a simplified network model,
for long transfers, the reduction in the throughput of Reno
flows may be asymptotically bounded by a factor that falls
exponentially with the maximum queue length of the bottle
neck router irrespective of the number of Nice flows present.
The following analysis assumes a simplified fluid approxi

mation and synchronous network model. The analysis may
apply, for example, to long background flows. The analysis
also assumes long foreground Reno flows. The analysis fur
ther assumes that a Nice sender accurately estimates the
queue length during the previous epoch at the end of each
RTT epoch. These assumptions apply only to the formal
analysis of the Nice protocol, and are not intended to limit
embodiments presented herein in any way. The Nice protocol
is believed to work well under more general circumstances
(as demonstrated by experimental results presented herein).
A simplified fluid approximation model of the network

may be used to model the interaction of multiple flows using
separate congestion control algorithms. This model may
assume infinitely small packets. For purposes of the model,
the network itselfmay be simplified to a source, a destination,
and a single bottleneck. The bottleneck router may perform
drop-tail queuing.

Let L denote the service rate of the queue and B the buffer
capacity at the queue. Let t be the round trip delay of packets
between the Source and destination excluding all queuing
delays. A fixed number of connections may be considered,
including 1 following Reno and m following Nice. Each of the
connections may have one continuously backlogged flow
between a source and a destination. Lettbe the Nice threshold
and q t B be the corresponding queue size that triggers
multiplicative backoff for Nice flows. The connections may
be homogeneous (i.e., they may experience the same propa
gation delay t). Moreover, the connections may be synchro
nized so that in the case of buffer overflow, all connections
may simultaneously detect a loss and multiply their window
sizes by Y. The congestion avoidance phase of the model is
described herein to analyze the steady-state behavior.
A bound on the reduction in the throughput of Reno flows

due to the presence of Nice flows may be obtained by analyz
ing the dynamics of the bottleneck queue. To do so, the
duration of the flows may be divided into periods. In each
period, the decrease in the number of Reno packets processed
by the router due to interfering Nice packets may be bounded.

Let W(t) and W(t) denote the total number of outstanding
Reno and Nice packets in the network at time t, respectively.
W(t), the total window size, is W.(t)+W,(t). These window
sizes may be traced across periods. The end of one period and
the beginning of the next period may be marked by a packet
loss. Upon packet loss, each flow may reduce its window size
by a factor of Y. Thus, W(t)=ut--B just before a loss and
W(t)=(uT-B)*y just after the packet loss. Let to be the begin
ning of one Such period after a loss. Consider the case when
W(t)=(t+B)*Y<ut and mdl. For ease of analysis it may be
assumed that the “Vegas B' parameter for the Nice flows is 0.
That is, the Nice flows may additively decrease upon observ
ing round trip times greater than T. The window dynamics in
any period may be split into three intervals as described
below.

Additive Increase. Additive Increase: In this interval to
t, both Reno and Nice flows may increase linearly. W(t)
increases from W(t) to W(t)=t, at which point the queue
starts building.

US RE44,837 E
19

Additive Increase, Additive Decrease: This interval It, t
is marked by additive increase of W. Additionally, in
embodiments where TCP-Vegas is used as the traditional
protocol, W., may additively decrease of as the “Diff>f rule
triggers the underlying Vegas controls for the Nice flows. The
end of this interval is marked by W(t)-ut-q.

Additive Increase, Multiplicative Decrease: In this interval
It, t, W(t) may multiplicatively decrease in response to
observing queue lengths above q. The rate of decrease of
W(t), however, may be bounded by the rate of increase of
W(t), as any faster decrease may cause the queue size to drop
below q. At the end of this interval W(t)=Et-B. At this
point, each flow may decrease its window size by a factor of
Y, thereby entering into the next period.
To quantify the interference experienced by Reno flows in

the presence of Nice flows, differential equations may be
formulated to represent the variation of the queue size in a
period. The values of W, and W, at the beginning of periods
may stabilize after several losses, so that the length of a period
converges to a fixed value. It is then straightforward to com
pute the total amount of Reno flow sent out in a period. The
interference I, defined as the fractional loss in throughput
experienced by Reno flows because of the presence of Nice
flows, may be given as follows.

Theorem 1: The interference I is given by:

The derivation of Iindicates that all three design features of
Nice may contribute to reducing interference. The interfer
ence falls exponentially with B(1-t) or B-q, which reflects
the time that Nice may multiplicatively back offbefore packet
losses occur. Intuitively, multiplicative decrease may allow
any number of Nice flows to get out of the way of additively
increasing demand flows. The dependence on the ratio B/m
Suggests that as the number of demand flows approaches the
maximum queue size, the non-interference property may start
to break down. Such a breakdown may not be surprising, as
each flow barely gets to maintain one packet in the queue and
TCP Reno is known to to behave anomalously under such
circumstances. In a well designed network, when B>m, the
dependence on the thresholdt may be weak. That is, interfer
ence may be small when t is Small. Therefore, careful tuning
of the exact value of t in this region may be unnecessary.
Analysis indicates that the above bound on I may hold even
for the case when mid-1.

Experiments were conducted to test the non-interference
properties of Nice. Additionally, the experiments determined
whether Nice gets any useful bandwidth for the workloads
considered. Using controlled ns simulations, the system was
stress tested by varying network configurations and loads to
extreme values. Nice methods were also systematically com
pared to other methods. In general, the experiments indicated
that:

Nice flows cause almost no interference irrespective of the
number of flows.

Nice flows may utilize a significant fraction of the available
spare bandwidth.

Nice methods may outperform other existing protocols,
including Reno, Vegas, and Vegas with reduced C. and B
parameters.

All of the simulation experiments were conducted using ns
2.1 b8a. A barbell topology was used in which NTCP senders
transmit through a shared bottleneck link L to an equal num

5

10

15

25

30

35

40

45

50

55

60

65

20
ber of receivers. The router connecting the senders to L
becomes the bottleneck queue. The routers performed drop
tail first-in-first-out queuing. The router buffer size was set to
50 packets. Each packet was 1024 bytes in size. The propa
gation delay was set to 50 ms. The capacity of the link was
varied to simulate different amounts of spare capacity.
A 15 minute section of a Squid proxy trace logged at UC

Berkeley was used as the foreground traffic over L. The num
ber offlows fluctuated as clients entered and left the system as
specified by the trace. On average, there were about 12 active
clients. In addition to this foreground load, permanently
backlogged background flows were introduced. For the initial
set of experiments, the bandwidth of the link was fixed to
twice the average demand bandwidth of the trace. The pri
mary metric used to measure interference was the average
round trip latency of a foreground packet (i.e., the time
between its being first sent and the receipt of the correspond
ing ack, inclusive of retransmissions). The total number of
bytes transferred by the background flows was used as the
measure of utilization of spare capacity.
The performance of the background protocol was com

pared to several other strategies for sending background
flows. For example, router prioritization that services a back
ground packet only if there are no queued foreground packets
was used for comparison. Router prioritization may be con
sidered the ideal strategy with respect to performance for
background flow transmission. In some cases, however,
router prioritization may require modification to existing net
works and routers, and thus may be impractical to deploy and
use. In addition, Vegas (C=1, B-3), Reno, Vegas (C.-0, B=0),
and rate-limited Reno (which sets a maximum transmission
bandwidth on each flow) were used for comparison.

Experiment 1: In this experiment, the number of back
ground flows was fixed to 8 and the spare capacity, S, was
varied. To achieve a spare capacity S, the bottleneck link
bandwidth L was set to (1+S)*averageIDemandBW, where
averageDemandBW is the total number of bytes transferred
in the trace divided by the duration of the trace. FIG. 4 is a plot
the average latency of foreground packets as a function of
spare capacity in the network. Different lines represent dif
ferent runs of the experiments using different protocols for
background flows. It can be seen that the Nice is hardly
distinguishable from the router prioritization, whereas the
other protocols cause a significant increase in foreground
latency. Note that the Y-axis is on a log scale, indicating that
in some cases Reno and Vegas increase foreground packet
latencies by two orders of magnitude.

Experiment 2: In this experiment the spare capacity, S, of
the network was fixed at 1. The number of background flows
was varied. The bottlenecklink bandwidth, L, was set to twice
the bandwidth needed by demand flows. FIG. 5 is a plot of the
latency of foreground packets versus the number of back
ground flows. Even with 100 background Nice flows, the
latency of foreground packets is hardly distinguishable from
the ideal case when routers provide strict prioritization. On
the other hand, Reno and Vegas background flows can cause
latency of demand flows to increase by orders of magnitude.
FIG. 6 is a plot of the number of bytes successfully transmit
ted by the background flows. A single Nice background flow
reaped about half the spare bandwidth available under router
prioritization. This background throughput improved with
increasing number of Nice background flows but remained
below router prioritization. Note that although Reno and
Vegas obtained better throughputs, even for a small number of
flows each went beyond the router prioritization line. This
indicates that the Reno and Vegas flows stole bandwidth from
foreground traffic.

US RE44,837 E
21

These experiments were also performed where the Nice
congestion window was not allowed to fall below 1. In these
cases, when the number of background flows exceeded about
10, the latency of foreground flows began to increase notice
ably. The increase in foreground flow latency was about a 5
factor of two when the number of background flows was 64.

Experiment 3: In this experiment the effect of the Nice
threshold and fraction parameters was tested. FIG. 7 shows
the latency of foreground packets as a function of the thresh
old for the same trace as above, with S=1 and 16 background 10
flows. As the threshold value increased, the interference
caused by Nice increased until the protocol finally reverted to
Vegas behavior as the threshold approached 1. Nice demon
strated low interference over a large range of threshold values,
Suggesting that the threshold value may not need to be manu- 15
ally tuned for each network. Similarly, no significant change
in foreground latency was found as the trigger fraction was
varied from 0.1 to 0.9.

Experiment 4a: Nice flows were compared to simple rate
limited Reno flows. The foreground traffic was again mod- 20
eled by the Squid trace and the experiment performed was
identical to experiment 1.

FIG. 8 is a plot of the average latency of foreground packets
as a function of the spare capacity in the network. The various
lines represent rate-limited background flows with the limits 25
corresponding to a window size of 1, 2, 4 and 16. It can be
seen that even a flow with a rate limit of 1 caused slightly
greater interference than Nice. This result is not Surprising
since Nice is equipped to reduce its window size below one
when it deems necessary to minimize interference. All other 30
flows with higher rates performed much worse and resulted in
up to two orders of magnitude of increase in latency.

Experiment 4b. In this experiment the spare capacity of the
network, S, was fixed at 1. The bottleneck link bandwidth, L,
was set at twice the bandwidth needed by demand flows. The 35
number of background flows was varied. This experiment
was otherwise identical to experiment 2. FIG.9 is a plot of the
latency of foreground packets versus the number of back
ground flows. Even flows limited to a window size of 1 caused
up to two orders of magnitude of increase in latency when 40
there were 64 background flows present. Nice, on the other
hand, was hardly distinguishable from the router prioritiza
tion line even for 100 background flows. FIG. 10 is a plot of
the number of bytes the background flows that managed to get
across. A single Nice background flow achieved more 45
throughput thana flow rate-limited to a window size of 8. This
single Nice flow obtained about 10 times as much throughput
as a flow rate-limited to a window of one, but still caused
lower interference, as seen in FIG.9. With increasing number
of flows, the rate-limited flows showed a linear (X-axis is on 50
a log-scale) increase in throughput while the throughput
obtained by Nice increased more slowly. However, all the
rate-limited flows sooner or later crossed the router prioriti
zation line, or stole bandwidth from the foreground flows.
Nice, on the other hand, remained below the router prioriti- 55
zation line and reaped between 60-80% of the spare band
width.

Experiment 5a: In this experiment the foreground traffic
was modeled as a set of user datagram protocol (UDP)
Sources transmitting in an on/offmanner in accordance with 60
a Pareto distribution. The burst time and idle time were each
set to 250 ms, and the value of the shape parameter set to 1.5.
The experiments performed were otherwise identical to the
experiments involving trace-based traffic (e.g., spare capacity
and the number of background flows were varied). 65

FIG. 11 shows average latency of foreground packets as a
function of spare capacity in the network. The Nice flows

22
caused less latency overhead than Reno or Vegas. However,
the difference is not as dramatic as in the case in which the
foreground traffic was a trace following TCP Suggesting that
Nice may be less well-suited to environments in which the
traffic is unpredictable.

Experiment 5b: In this experiment the capacity of the net
work was fixed at S=2. The bottleneck link bandwidth, L, was
set at four times the bandwidth needed by demand flows. The
number of background flows was varied. FIG. 12 is a plot of
the latency of foreground packets versus the number of back
ground flows. Though Nice outperformed Reno and Vegas, it
did not match router prioritization as closely. However, Nice
continued to show graceful degradation with the number of
background flows because of its ability to decrease its win
dow size below one. FIG. 13 is a plot of the number of bytes
the background flows managed to get across. A single Nice
flow obtained about 70% of the spare bandwidth available
under router prioritization. This background throughput
improved with increasing number of background flows, but
remained below router prioritization. Thus, Nice may reap a
significant fraction of the spare capacity even when the fore
ground traffic is unpredictable.

Controlled experiments were also performed in which a
Nice implementation was tested over a variety of Internet
links. The experiments focused on answering three questions.
First, in a less controlled environment than ns simulations,
does Nice still avoid interference? Second, are there enough
reasonably long periods of spare capacity on real links for
Nice to reap reasonable throughput? Third, are any such
periods of spare capacity spread throughout the day, or is the
usefulness of background transfers restricted to nights and
weekends?
The experimental results suggest that Nice works for a

range of networks including, but not limited to, a modem, a
cable modem, a transatlantic link, and a fast WAN. In particu
lar, it appears that Nice avoids interfering with other flows and
that it may achieve throughputs that are significant fractions
of the throughputs that would be achieved by Reno through
out the day.
A measurement client program connected to a measure

ment server program at exponentially distributed random
intervals. At each connection time, the client chose one of six
actions: Reno/NULL, Nice/NULL, Reno/Reno, Reno/Nice,
Reno/Reno8, or Reno/Nice8. Each action consisted of a “pri
mary transfer (denoted by the term left of the 7) and Zero or
more “secondary transfers” (denoted by the term right of the
/). Reno terms indicate flows using standard TCP-Reno con
gestion control. Nice terms indicate flows using Nice conges
tion control. For secondary transfers, NULL indicates actions
that initiate no secondary transfers to compete with the pri
mary transfer. An 8 at the end of the right term indicates
actions that initiate eight (rather than the default one) second
ary transfers. The transfers are of large files with sizes chosen
to require approximately 10 seconds for a single Reno flow to
compete on the network under study. In addition, during these
actions and during periods of inactivity, clients pinged the
server to measure latency for individual packet transfers.
A server that supported Nice was positioned at the Univer

sity of Texas at Austin, in Austin,Tex. Clients were positioned
as follows: (1) in Austin connected to the internet via a 56.6K
dial in modem bank (modem), (2) in Austin connected via a
commercial ISP cable modem (cable modem), (3) in a com
mercial hosting center in London, England connected to mul
tiple backbones including an OC12 and an OC3 to New York
(London), and (4) at the University of Delaware, which con
nects to the University of Texas via an Abilene OC3 (Dela
ware). All of the computers ran Linux. The server was a 450

US RE44,837 E
23

MHz. Pentium II with 256MB of memory. The clients ranged
from 450-1000 MHz and all had at least 256MB of memory.
Approximately 50 probes per client/workload pair were gath
ered.

FIGS. 14A, 14B, 14C and 14D Summarize the results of the
large-transfer experiments. In FIGS. 14A, 14B, 14C and 14D,
each bar represents average transfer time observed for the
specified combination of primary and secondary transfers.
The narrow vertical lines represent the minimum and maxi
mum values observed during multiple runs of each combina
tion. On each of the networks, the throughput of Nice flows
was a significant fraction of the total throughput, suggesting
that periods of spare capacity are often long enough for Nice
to detect and make use of them. During Reno/Nice and Reno/
Nice8 actions, the primary (Reno) flow achieved similar
throughput to the throughput seen during the control Renof
NULL sessions. In particular, on a modem network, when
Reno flows competed with a single Nice flow, the Rcno flows
received on average 97% of the average bandwidth received
when there was no competing Nice flow. On a cable modem
network, when Reno flows competed with eight Nice flows,
the Reno flows received 97% of the bandwidth received when
there where no competing flows. Conversely, Reno/Rcno and
Rcno/Rcno8 showed the expected fair sharing of bandwidth
among Reno flows, which reduced the bandwidth achieved by
the primary flow.

FIGS. 15A, 15B, 15C, 15D show the hourly average band
width achieved by the primary flow for the different combi
nations listed above. The data indicate that Nice may achieve
useful amounts of throughput throughout the day.
Many studies have published promising results that Sug

gest that prefetching (also known as “pushing data) content
could significantly improve web cache hit rates by reducing
compulsory and consistency misses. However, few such sys
tems have been deployed.

Typically, prefetching algorithms are tuned with a thresh
old parameter to balance the potential benefits of prefetching
data against the bandwidth costs of fetching the data and the
storage costs of keeping the data until the data is used. In an
embodiment, an object is prefetched if the estimated prob
ability that the object will be referenced before it is modified
exceeds a threshold. One study calculates reasonable thresh
olds given network costs, disk costs, and human waiting time
values and concludes that most algorithms in the literature
have been far too conservative in setting their thresholds.
Furthermore, the estimated 80-100% per year improvements
in network and disk capacity/cost mean that a value that is
correct today may be off by an order of magnitude in 3-4
years.

In an embodiment, a system may include one or more
servers which send demand data and prefetch data to one or
more clients. In Such an embodiment, demand data may be
sent using a first congestion control protocol Such as TCP
Reno and prefetch data may be sent using a second congestion
control protocol such as TCP Nice.

In an embodiment, a list of objects to be prefetched is
generated and stored at the server. In Such an embodiment,
servers may piggyback lists of Suggested objects in a new
HTTP reply header when serving requests. In this embodi
ment, a list is generated using a prediction algorithm Such as
hand-generation by a user, Markov prediction, prediction by
partial matching, or by another algorithm. Clients receiving a
prediction list may discard old predictions and then issue
prefetch requests for objects from the new list. This division
of labor allows servers to use global information and appli
cation-specific knowledge to predict access patterns. The
division of labor may also allow clients to filter requests

10

15

25

30

35

40

45

50

55

60

65

24
through their caches to avoid repeatedly fetching an object. In
Some embodiments, servers generate prefetch lists and send
the listed objects to the client without first sending the list to
the client. In certain embodiments, clients generate a list of
objects to prefetch and request those objects from the server.
In some embodiments, a machine separate from the client and
the server generates a prefetch list and sends this list to the
client or the server.

In an embodiment, after a server stores a prefetch list, it
transmits one or more elements from the list to the client using
the prefetch congestion control algorithm (e.g., TCP-Nice).
In one embodiment, elements are sent in order, with objects of
higher benefit (e.g., higher likelihood of being referenced)
sent before objects of lower benefit. In some embodiments,
elements are sent in order with objects of high benefit/cost
(e.g., high likelihood of being accessed and/or Small size) sent
before objects with low benefit/cost. In one embodiment,
prefetch and demand data are transmitted on separate logical
channels (e.g., separate TCP connections, with Reno conges
tion control for the demand connections and Nice congestion
control for the prefetch connection). In certain embodiments,
the same connection is used for both demand and prefetch
traffic. In such embodiments, the congestion control algo
rithm may be set to Reno when demand packets are transmit
ted. The congestion control algorithm may be set to Nice
when prefetch data packets are transmitted.
To evaluate prefetching performance, a standalone client

may be used that reads a trace of HTTP requests, simulates a
local cache, and issues demand and prefetch requests. For
example, a client written in Java may pipeline requests across
HTTP/1.1 persistent connections. To ensure that demand and
prefetch requests use separate TCP connections, a server may
direct prefetch requests to a different port than demand
requests. A disadvantage of this approach is that it does not fit
with the standard HTTP caching model. In an embodiment, a
modified client may recognize that URLs with two different
ports on the same server are the same. In another embodi
ment, an HTTP wrapper object may be fetched from a
demand server where the wrapper object contains a reference
to the corresponding URL on the prefetch server port so that
when the demand object is selected for display, the prefetched
object is displayed instead. In another embodiment, a Nice
implementation may be modified to allow a server to switch a
single connection between Reno and Nice congestion con
trol. Several methods of deploying a perfecting system are
described in more detail below.
An experiment was conducted in which predictions were

generated at clients (using knowledge from the trace to simu
late server knowledge) rather than sending predictions across
the network. This simplification allowed the use of an
unmodified Apache server. The modification slightly reduced
network traffic for prefetching, but the impact on overall
performance was believed to be small. If servers have large
prediction lists to send to clients, they may send Small num
bers of predictions in the headers of demand replies and
“chain the rest of the predictions in headers of prefetch
replies.
A Squid proxy trace from 9 regional proxies was collected

during January 2001. Each trace record included the URL, the
anonymized client IP address, and the time of the request. The
network interference near the server was studied by examin
ing Subsets of the trace corresponding to popular groups of
related servers. For example, a series of cnn servers (e.g.,
cnn.com, www.cnn.com, cnnfn.com, etc.) was used.
The network interference study compared relative perfor

mance for different resource management methods for a
given set of prefetching methods. The study did not try to

US RE44,837 E
25

identify an optimal prefetching method. Several suitable
prefetching algorithms are known to those familiar with the
art (e.g., Markov, prediction by partial matching or hand
generation). Nor did the study attempt to precisely quantify
the absolute improvements available from prefetching. A
simple prediction by partial matching (PPM) algorithm,
PPM-n/w, that uses a client’s n most recent requests to the
server group for non-image data to predict cacheable (e.g.,
non-dynamically generated) URLs that will appear during a
Subsequent window that ends after the with non-image request
to the server group was used. This algorithm is limited
because it uses neither link topology information nor server
specific semantic knowledge. For simplicity, it was assumed
that all non-dynamically generated data (e.g., data not includ
ing a suffix indicating that a program was executed) were
cacheable and unchanging for the 1-hour duration of the
experiments. Also, to allow variation in demand, the trace was
broken into per-client, per-hour sections. Each section was
treated as coming from a different client during the same
simulated hour. Since prefetching methods and server work
loads are likely to vary widely, these assumptions may yield
a simple system that falls within the range of prediction
effectiveness that a simple service might experience.
A conservative variation of the PPM-n/w algorithm was

used with parameters similar to those found in the literature
for HTTP prefetching. The algorithm used n=2, w=5 and set
the prefetch threshold to 0.25. To prevent prefetch requests
from interfering with demand requests, requests are issued at
least 1 second after a demand reply is received. In addition, an
aggressive variation of the PPM-n/w algorithm was used with
parameters set at n=2, w=10. This variation truncates prefetch
proposal lists with a threshold probability of 0.00001.
Prefetch requests are issued immediately after receipt.
Two client machines were connected to a server machine

via a cable modem. Eight virtual clients were run on each
client machine. Each client had a separate cache and separate
HTTP/1.1 demand and prefetch connections to the server. For
the demand traffic to consume about 10% of the cable modem
bandwidth, the six busiest hours from the trace were selected
and divided among trace clients each hour randomly across
four of the virtual clients. In each of the seven trials, all the 16
virtual clients ran the same prefetching method (i.e., none,
conservative-Reno, aggressive-Reno, conservative-Nice, or
aggressive-Nice).

FIG. 16 shows the average cumulative demand transfer
times perceived by the clients for all the files fetched on
demand from the CNN server. In FIG. 16, when clients did
conservative prefetching using either protocol (Nice or Reno)
the latency reductions were comparable. When aggressive
prefetching using Reno was initiated, however, the latency
increased by an order of magnitude. Clients using aggressive
Nice prefetching continued to see further latency reductions.
FIG. 16 shows that Nice may effectively utilize spare band
width for prefetching without affecting demand requests.

FIG. 17 represents the effect of prefetching over a modem.
The setup was the same as previously described with refer
ence to FIG. 16 with the cable modem replaced by a modem
(i.e., less spare bandwidth was available). FIG. 17 shows that
while the Reno and Nice protocols were comparable in ben
efits during conservative prefetching, aggressive prefetching
using Reno hurt the clients significantly by increasing the
latencies three-fold. The latency was not increased with Nice.
A model of the Tivoli Data Exchange system was studied

for replicating data across large numbers of hosts. This sys
tem distributes data and programs across thousands of client
machines using a hierarchy of replication servers. Both non
interference and good throughput are believed to be important

10

15

25

30

35

40

45

50

55

60

65

26
metrics for Such a system. In particular, data transfers should
not interfere with interactive use of target machines. Transfers
may be large, and time may be critical. Additionally, transfers
may go to a large number of clients using a modest number of
simultaneous connections. Thus, each data transfer should be
completed as quickly as possible. For example, after Con
gress makes last minute changes to tax laws, the IRS must
rapidly distribute new documentation to auditors. The system
must cope with complex topologies including thousands of
clients, LAN/WAN/modem links, and mobile clients whose
bandwidths may change drastically over time. The system
typically uses two parameters at each replication server to
tune the balance between non-interference and throughput.
One parameter throttles the maximum rate that the server will
send data to a single client. The other parameter throttles the
maximum total rate (across all clients) that data is sent.

Choosing rate limiting parameters may require some
knowledge of network topology. In selecting rate limiting
parameter values, a trade-off may be required between over
whelming slow clients and slowing fast clients (e.g., distrib
uting a 300 MB Office application suite would take nearly a
day if throttled to use less than half a 56.6 Kb/s modem). A
more complex system may allow a maximum bandwidth to be
specified on a per-client basis, but such a system may be
prohibitively complex to configure and maintain.

Nice may provide an attractive self-tuning abstraction.
Using Nice, a sender may send at the maximum speed
allowed by the connection. Results below are for a standalone
server and client.
The servers and clients were the same were used in the

Internet measurements previously described. The servers and
clients ran simple programs that transferred data in patterns to
model data transfer in the Tivoli system. Large transfers were
initiated from the server. During each transfer, the ping round
trip time between the client and the server was measured.
When running Reno, the client throttle parameter was varied.
The total server bandwidth limit was set to an effectively
infinite value. When running Nice, both the client and server
bandwidth limits were set to effectively infinite values.

FIG. 18 shows a plot of ping latencies (representative of
interference) as a function of the completion time of transfers
to clients over different networks. With Reno, completion
times decreased with increasing throttle rates, but ping laten
cies increased. In contrast, Nice picked good sending rates
without the need for any manual tuning, and ping latencies
were low.

In some embodiments, variations of Nice may be deployed
which allow different background flows to be more or less
aggressive compared to one another while remaining timid
with respect to competing foreground flows.

Prioritizing packet flows may be easier with router support.
Certain router prioritization queues, such as those proposed
for DiffServe service differentiation architectures, are
capable of completely isolating foreground flows from back
ground flows while allowing background flows to consume
nearly the entire available spare bandwidth. Unfortunately,
these solutions are of limited use for someone trying to deploy
a background replication service today because few applica
tions are deployed solely in environments where router pri
oritization is installed or activated. Embodiments presented
herein demonstrate that an end-to-end strategy need not rely
on router support to make use of available network bandwidth
without interfering with foreground flows.

Router Support may also be used to relay network conges
tion information to end-points. Examples of this approach
include random early detection (RED), explicit congestion
notification (ECN) and Packeteer's rate controlling scheme

US RE44,837 E
27

based on acknowledgement streaming. These systems raise
issues in the context of Nice. For example, by Supplying
better congestion information, routers may improve the per
formance of protocols like Nice.

Applications may limit the network interference they cause
in various ways. For example:

Coarse-grain scheduling (e.g., diurnal patterns): Back
ground transfers may be scheduled during hours where
there is little foreground traffic. For example, network
backup is commonly scheduled for early mornings.
Studies have observed appreciable savings in latency by
performing updates of prefetched data during the night
time alone. Other studies have discussed bandwidth
Smoothing techniques by selectively distributing traffic
across the course of a day.

Rate limiting: Senders can pace the rate at which bytes are
sent with simple logic, and receivers can limit senders by
limiting their maximum advertised TCP receive win
dow. For example, Some have proposed window-based
rate controlling approaches for prefetching data. Overall
latency may be improved using this approach, and the
traffic shaping may lead to less bursty traffic and Smaller
queue lengths. The rate-controlling approach spreads
prefetched data in the time interval between the end of
one request and the beginning of the next request. For
example, the Tivoli Data Exchange system limits per
destination and total bandwidth consumption by each
distribution server.

Application tuning: Applications may limit the amount of
data sent by varying application-level parameters. For
example, many prefetching algorithms estimate a prob
ability of an object being referenced and only prefetch
the object if the probability exceeds a threshold.

Self-tuning Support for background replication may have a
number of advantages over existing application-level
approaches (e.g., Nice may operate over fine time scales).
Thus, self-tuning Support for background replication may
provide reduced interference (by reacting to spikes in load) as
well as higher average throughput (by using a large fraction of
spare bandwidth) than static hand-tuned parameters. This
property may reduce the risk and increase the benefits avail
able to background replication while simplifying design.
Additionally, Nice may provide useful bandwidth throughout
the day in many environments.

In an embodiment, a non-intrusive web prefetching system
may avoid interference between prefetch and demand
requests at the server as well as in the network by utilizing
only spare resources. Additionally, in certain embodiments,
Such a system may be deployable without any modifications
to the browsers, the HTTP protocol and/or the network.

Despite the potential benefits, prefetching systems have
not been widely deployed because of at least two concerns:
interference and deployability. First, if a prefetching system
is too aggressive, it may interfere with demand requests to the
same service (self-to interference) or to other services (cross
interference) and hurt overall system performance. Second, if
a system requires modifications to the existing HTTP proto
col, it may be impractical to deploy. For example, the large
number of deployed clients makes it difficult to change cli
ents, and the increasing complexity of servers makes it diffi
cult to change servers.

Embodiments disclosed herein provide a prefetching sys
tem that: (1) causes little or no interference with demand
flows by effectively utilizing only spare resources on the
servers and the network; and (2) is deployable with no modi
fications to the HTTP protocol and/or the existing infrastruc
ture. To avoid interference, the system may monitor the server

10

15

25

30

35

40

45

50

55

60

65

28
load externally and tune the prefetch aggressiveness of the
clients accordingly. Such a system may utilize TCP-Nice.
Additionally, in certain embodiments, the system may utilize
a set of heuristics to control the resource usage on the clients.
To work with existing infrastructure, the system may be
implemented by modifying html pages to include JavaScript
code that issues prefetch requests and by augmenting the
server infrastructure with several simple modules that require
no knowledge of or modifications to the existing servers.

Additionally, certain embodiments include a self-tuning
architecture for prefetching that eliminates the traditional
“threshold’ magic number that is often used to limit the
interference of prefetching on demand requests. In Such
embodiments, the architecture separates prefetching into two
different tasks: (i) prediction and (ii) resource management.
The predictor may propose prioritized lists of high-value
documents to prefetch. The resource manager may decide
how many of those documents can be prefetched and sched
ule the prefetch requests to avoid interference with demand
requests and other applications. Separating prefetching into
prediction and resource management may have a number of
advantages. First, it may simplify deployment and operation
of prefetching systems by eliminating the need to select an
appropriate threshold for an environment and update the
threshold as conditions change. Second, it may reduce the to
interference caused by prefetching by throttling aggressive
ness during periods of high demand load. Third, it may
increase the benefits of prefetching by prefetching more
aggressively than would otherwise be safe during periods of
low and moderate load.

In certain embodiments, a prefetching system may be
deployed that substantially ignores the problem of interfer
ence. Such embodiments may be augmented relatively easily
to avoid server interference. Extending Such a system to also
avoid network interference may be more involved. However,
doing so appears feasible even under the constraint of not
modifying current infrastructure. At the client, additional
interference may be taken to include prefetch data displacing
more valuable data (e.g., demand data). This issue may be
mitigated using several methods discussed herein.

It may be desirable for services that prefetch to balance the
benefits they get against the risk of interference. Interference
may include, but is not limited to: self-interference, in which
a prefetching service hurts its own performance by interfering
with its demand requests; cross-interference, in which the
service hurts the performance of other applications on the
prefetching client, other clients; or both.

Interference may occur at one or more resources in the
system. For example:

Server: Prefetching may consume extra resources on the
server such as CPU time, memory space and disk I/Os.

Network: Prefetching may cause extra data packets to be
transmitted over the Internet and hence may consume
network bandwidth, potentially increasing router queue
delays and network congestion.

Client: Prefetching may lead to extra resource require
ments even at the client. CPU, memory, and disk usage
on clients may increase depending on how aggressively
the client prefetches. A client browser's memory and
disk caches may be polluted by aggressive prefetching.

A common way of achieving balance between the benefits
and costs of prefetching is to select a threshold probability
and fetch objects whose estimated probability of use before
the object is modified or evicted from the cache exceeds that
threshold. There are at least two concerns with such “magic
number based approaches. First, it may be difficult for even
an expert to set thresholds to optimum values to balance costs

US RE44,837 E
29

and benefits. Although the thresholds may relate closely to the
benefits of prefetching, they have little obvious relationship to
the costs of prefetching. Second, appropriate thresholds to
balance costs and benefits may vary over time as client, net
work and server load conditions change over seconds. For
example, the costs and/or benefits of prefetching may change
over a matter of seconds (e.g., due to changing workloads or
network congestion), hours (e.g., due to diurnal patterns),
and/or months (e.g., due to technology trends).

In an embodiment, a self-tuning resource management
layer that inhibits prefetching from interfering with demand
requests may be desirable to solve or mitigate the concerns
described above. Such an embodiment may simplify the
design of prefetching systems by separating the tasks of pre
diction and resource management. In Such an embodiment, at
any given time, prediction algorithms may specify arbitrarily
long lists of the most beneficial objects to prefetch. The
resource management layer may issue requests for these
objects in a manner that inhibits interference with demand
requests or other system activities. In addition to simplifying
system design, such an embodiment may have performance
advantages over static prefetch thresholds. First, such a sys
tem may reduce interference by reducing prefetching aggres
siveness when resources are scarce. Second, such a system
may increase the benefits of prefetching when resources are
plentiful by allowing more aggressive prefetching than would
otherwise be possible.
Some proposed prefetching mechanisms suggest modify

ing the HTTP/1.1 protocol to create a new request type for
prefetching. An advantage of extending the protocol may be
that clients, proxies, and servers could then distinguish
prefetch requests from demand requests and potentially
schedule them separately to prevent prefetch requests from
interfering with demand requests. However, Such mecha
nisms may not be easily deployable because modifying the
protocol may require modifying the widely deployed infra
structure that Supports the current protocol. Furthermore, as
web servers evolve and increase in their complexity by Span
ning multiple machines, content delivery networks (CDNs),
database servers, dynamic content generation Subsystems,
etc., modifying CPU, memory, and disk scheduling to sepa
rate prefetch requests may become increasingly complex.

In an embodiment, a client browser may match requests to
documents in the browsers caches based on (among other
parameters) the server name and the file name of the object on
the server. Thus, files of the same name served by two differ
ent server names may be considered different. Additionally,
browsers may multiplex multiple client requests to a given
server on one or more persistent connections.

In certain embodiments, as depicted in FIGS. 19A and
19B, clients may receive a list of documents to prefetch from
a Hint Server. As used herein, a list of documents recom
mended for prefetching may be referred to as a “hint list.”
Clients may send their access histories to the hint server. The
hint server may use either online or offline prediction algo
rithms to compute hint lists consisting of probable documents
that clients may request in the future. Note that in some
embodiments the hint server is logically separate from the
content server, demand server, or prefetch server but is physi
cally located on the same machine. In other embodiments, the
hint server executes on a separate machine.

FIG. 19A depicts an embodiment of a one-connection sys
tem architecture. In a one-connection architecture, client
1900 may fetch both demand and prefetch requests from the
same content server 1902. Files to prefetch may be identified
by hint server 1904. Since browsers may multiplex requests
over established connections to the servers, and since current

5

10

15

25

30

35

40

45

50

55

60

65

30
browsers typically do not differentiate between demand and
prefetch requests, each TCP connection may have interleaved
prefetch and demand requests and responses. In some
embodiments, browsers may distinguish between demand
and prefetch requests and send prefetch requests and demand
requests on different network connections between the con
tent server and the client.

Sharing connections may allow prefetch requests to inter
fere with demand requests for network and server resources.
If interference can be avoided, this system architecture may
be easily deployable. In particular, objects fetched from the
same server share the domain name of the server. Therefore,
unmodified client browsers may be able use cached
prefetched objects to service demand requests.

FIG. 19B depicts an embodiment of a two-connection sys
tem architecture. In the two-connection architecture, client
1900 fetches demand and prefetch requests from different
servers (e.g., content server 1906 and prefetch server 1908).
This architecture thus segregates demand and prefetch
requests on separate network connections. The two-connec
tion architecture may allow the demand and prefetch servers
to be hosted either on different machines or on the same one.
For example, two application servers listening on different
TCP ports may be hosted on a single machine.

Although, the two-connection architecture may provide
additional options for reducing interference, the two-connec
tion architecture appears to be more complicated to deploy
than the one-connection architecture. For example, objects
with the same names fetched from the different servers may
be considered different by the browsers. Therefore, some
browsers may not correctly use the prefetched objects to
service demand requests. In one embodiment, this challenge
may be addressed by modifying the client to allow an object
in the cache that was fetched from a prefetch server to satisfy
demand requests for the same object fetched from a demand
server. In another embodiment, this challenge may be
addressed by providing a “wrapper' object from the demand
server that refers to an object from the prefetch server such
that when the wrapper object is selected for display, the
prefetched object is displayed.

Either a one-connection or a two-connection architecture
may be more desirable depending on the circumstances. For
example, if server load is a primary concern and networkload
is known not to be a major issue, then the one-connection
architecture may be simpler to implement than the two-con
nection architecture. For example, if the browser can be
modified to separate prefetch and demand requests on differ
ent connections, then the one connection architecture may be
simple and effective. For example, if the HTTP protocol is
modified to allow out-of order delivery of requested objects
then a single connection could be used for both demand and
prefetch requests with demand requests not waiting behind
prefetch requests and with Nice congestion control used
when prefetch requests are being served on the connection.
The two-connectionarchitecture, however, may manage both
network and server interference without modifying current
browsers or servers.

It is believed that an ideal system for avoiding server inter
ference would cause no delay to demand requests in the
system and would utilize significant amounts of any spare
resources on servers for prefetching. The system would cope
with and take advantage of changing workload patterns over
various timescales. HTTP request traffic arriving at a server is
often bursty. The burstiness may be observable at several
scales of observation. Peak rates may exceed the average rate
by factors of 8 to 10. For example, FIGS. 20A and 20B show
the request load on an IBM server hosting a major sporting

US RE44,837 E
31

event during 1998 averaged over 1-second and 1-minute
intervals, respectively. Although Such burstiness favors
prefetching when the servers are not loaded (e.g., to make use
of the spare resources), the prefetching system should grace
fully back off when the demand load on the servers increases.
As used herein, the prefetch aggressiveness of a prefetching
scheme may be referred to as the “pfrate.” The pfrate repre
sents the number of files to prefetched for each demand file
served.

In various embodiments, several methods may be used to
inhibit prefetching from interfering with demand requests at
servers. For example, such methods may include, but are not
limited to, local scheduling, a separate prefetch infrastruc
ture, and end-to-end monitoring.

Local server scheduling may help in the use of the spare
capacity of existing infrastructures for prefetching. In prin
ciple, existing schedulers for CPUs, memories, etc. may pre
vent low-priority prefetch requests from interfering with
high-priority demand requests. Since these schedulers are
intimately tied to the operating system, they may be efficient
in utilizing spare capacity for prefetch requests even over fine
time scales. Local scheduling may be applicable to either
one-connection or two-connection architecture.

For certain services, server scheduling may not be easily
deployable for at least two reasons. First, although several
available operating systems support CPU schedulers that can
provide strict priority Scheduling, few provide memory/cache
or disk schedulers that isolate prefetch requests from demand
requests. Second, even if an operating system provides the
needed Support, existing servers may require modification to
associate prefetch and demand requests with scheduling pri
orities as they are serviced.
A method of avoiding server interference may include

using separate servers to serve prefetch and demand requests
to achieve complete isolation of prefetch and demand flows.
In an embodiment, such a system may be used as a third-party
“prefetch distribution network” to supply geographically dis
tributed prefetch servers in a manner analogous to existing
content distribution networks.

End-to-end monitoring periodically measures the response
time of servers and adjusts the pfrate accordingly. For
example, the pfrate may be increased when measured
response time is low (indicating that the serves have spare
capacity). Pfrate may be decreased when the measured
response time is high (indicating that the servers are heavily
loaded). In certain embodiments, end-to-end monitoring may
be implemented without making changes to existing servers.
End-to-end monitoring may be used in either one-connection
or two-connection architecture. End-to-end monitoring may
provide less precise scheduling than local schedulers that
have access to the internal state of servers and operating
systems. A particular concern is whether such an approach
can be configured to react to changing loads at fine times
cales. An embodiment of an end-to-end monitoring system is
disclosed herein. The efficacy of the end-to-end monitoring
system is evaluated in comparison to server Scheduling.

FIG. 21 illustrates an embodiment of a monitor controlled
prefetching system. In this embodiment, monitor 1910 con
trols the size of the hint lists given out by the hint server 1904
based on the server load. In an embodiment, monitor 1910
sends probe packets to server 1902 at random times and
measures the response times perceived by the probe packets.
In an embodiment, the probe packets are regular HTTP
requests to representative objects on server 1902. One con
cern with using probe packets may be determining an appro
priate rate at which probing is done. High rates may make the
monitor more reactive to server load, but also add extra load

10

15

25

30

35

40

45

50

55

60

65

32
on server 1902. On the other hand, low probe rates may make
the monitor slow in reacting, and thus affect demand requests.
In an embodiment, the probe rate is selected to balance these
COCS.

In an embodiment, if a probe packet indicates response
times exceeding a first threshold, the pfrate is reduced. Simi
larly, if the response times are under a second threshold, the
pfrate is increased. To implement Such an embodiment,
appropriate thresholds should be selected. Different thresh
olds may be used for different probe objects so that different
paths can be probed through server 1902. Additionally, incre
ment/decrement rates (e.g., how much the pfrate is changed
for various response times) should balance the risk of causing
interference against the risk of not using available spare
capacity. In an embodiment, multiplicative decrease (e.g.,
reducing the pfrate by /2 when congestion is detected) and
additive increase (e.g., increasing the prefetch rate by one unit
when congestion is not detected) is used. For stability, the
system may limit the rate at which pfrate is adjusted so that
the effects of previous adjustments are observed before new
adjustments are made. In an embodiment, the pfrate is
adjusted at most once per average round trip request time.

In an embodiment, a monitoring system may be configured
to collect five response-time samples spaced randomly
between about 100 and 120 milliseconds. In such an embodi
ment, if all the five samples lie below a threshold, the hint list
size may be incremented. If any sample exceeds the thresh
old, the hint list size may be reduced by one. Additionally, the
sample count may be reset so that a new set of five samples is
collected.
A challenge in studying web services may be that prefetch

demands, prefetching strategy and/or prefetching effective
ness of the web services may vary widely. As a result, it may
not be practical to simulate application-specific prefetching
and adaptation. To enable evaluation of a prefetching system,
prefetch prediction policies may be ignored. Rather, prefetch
systems may be evaluated while prefetching sets of dummy
data from arbitrary URLs at the server. The goal of such
experiments may be to compare the effectiveness of different
resource managementalternatives in avoiding serverinterfer
ence with the ideal case (e.g., when no prefetching is done).
Resource management alternatives may be compared with
respect to metrics including, but not limited to: (i) cost (e.g.,
the amount of interference in terms of demand response
times), and (ii) benefit (e.g., the amount of bandwidth utilized
for prefetching).
A number of different systems were considered in the

experiments described herein. The systems included: an ideal
case, no-avoidance cases, a prefetching with monitor control
case, and a local scheduling case. The ideal case refers to a
system wherein no prefetching is done or a separate infra
structure is used for prefetching. The no-avoidance cases
refer to prefetching with no interference avoidance. In the
studied no-avoidance cases, the pfrate was assigned a con
stant value of either 1 or 5. Prefetching with monitor control
refers to a case in which the pfrate was allowed to vary from
Zero to a high maximum value (e.g., 100). The pfrate was
varied based on monitored response times. Local scheduling
refers to using a simple server scheduling policy. For
example, in the experiments, the unix nice utility was used as
the scheduling utility. Two different http servers on one
machine were used. One server ran at a lower priority (+19) to
handle prefetch requests. The other server ran at a normal
priority to handle demand requests. This implementation of
server Scheduling was intended as a comparison for monitor
ing schemes. It is believed that more Sophisticated local
schedulers may closely approximate the ideal case.

US RE44,837 E
33

For experimentally evaluating the first three systems (i.e.,
the ideal case, the no-avoidance cases, and the prefetching
with monitor control case), one server was set up to serve both
demand and prefetch requests. However, it is noted that these
systems may be used in either one-connection or two-con
nectionarchitecture. To evaluate the last system (i.e., the local
scheduling case), two different servers were configured to
serve demand and prefetch requests, respectively. However, it
is noted that in certain embodiments, the general approach of
local scheduling could be applied to one-connection archi
tecture as well.
Two different workloads were used in the experiments. The

first workload generated demand requests to the server at a
constant rate. The second workload was a one hour Subset of
the IBM sporting event server trace discussed with reference
to FIGS. 20A and 20B. The trace was scaled up in time by a
factor of two. Thus, requests were generated at twice the rate
of the original trace.
The experimental setup included the Apache HTTP server

running on a machine including a 450 MHZ Pentium II pro
cessor and 128MB of memory. The client load was generated
using httperf running on four different Pentium III 930 MHz
machines. Each of the machines used the Linux operating
system.

FIG. 22 shows the demand response times with varying
request arrival rates. As shown in FIG. 22, both the monitor
case and the Nice cases closely approximated the behavior of
the ideal case in not affecting the demand response times.
However, the no-avoidance cases with fixed pfrate values
significantly damaged both the demand response times and
the maximum demand throughput.

FIGS. 23 and 24 show the bandwidth achieved by prefetch
requests and their effect on the demand bandwidth with vary
ing demand request rate. For different values of pfrate, the
no-avoidance case may adversely affect the demand band
width. However, both the Nice and monitor schemes reap
significant bandwidth without large decreases in the demand
bandwidth. Further, at higher request rates, monitor outper
forms Nice by conservatively setting the pfrate to very low
values (almost Zero). In the experimental setup, Nice could
not meet expected performance because the Linux Scheduler
only prioritizes processes on a coarse granularity. Even with
the lowest possible priority values for prefetch requests, the
CPU time allotted for demand requests can not be more than
forty times the CPU time allotted for prefetch requests (with
Nice values of -20 and +19 for demand and prefetch pro
cesses, respectively). Difficulties encountered as a result of
course granularity may be avoided by using more Sophisti
cated CPU schedulers.

Results of experiments utilizing the IBM sporting event
server workload are shown in FIG. 25. In FIG. 25, the bars for
pfrate 1, 2,5 and 10 correspond to results for the no-avoidance
case with the pfrate set according to 1, 2, 5 and 10, respec
tively. For the monitor case, the performance results are
shown for various threshold values (e.g., 2 ms, 8 ms and 15
ms). For the Nice case, the performance results are shown for
pfrate settings of 1 and 10.

FIG. 25 shows that the no-avoidance scheme may be sen
sitive to the fixed value of pfrate. At lower values of pfrate, the
no-avoidance Scheme may prefetch too little. As the pfrate
increases, the no-avoidance scheme may achieve more
prefetch bandwidth but may also start interfering with
demand requests. If pfrate is fixed at a high value, then the
demand response time interference may rise sharply. The
monitor scheme appears to be somewhat sensitive to the
threshold value. However, the monitor scheme seems to have
a range of acceptable threshold values. Compared to the no

10

15

25

30

35

40

45

50

55

60

65

34
avoidance scheme, the monitoring scheme achieved more
prefetch bandwidth for a given response time cost. The Nice
scheme also outperformed the no-avoidance method.

FIGS. 26A and 26B illustrate the capability of the monitor
to adapt in a timely manner to changes in server load. A
selected run of the monitor on the trace is displayed. The
monitor has a threshold setting of 8 ms. FIG. 26A depicts one
second averages of the pfrate settings by the monitor against
the changes in the demand load pattern for the first three
minutes of the workload. FIG. 26B depicts one minute aver
ages of the pfrate settings by the monitor against the changes
in the demand load pattern for the entire workload. FIGS. 26A
and 26B illustrate the ability of the monitor in controlling the
pfrate. For example, note that even though the average pfrate
setting established by the monitor in this case is 4.79, the
monitor outperforms the no-avoidance scheme with a fixed
pfrate value of 5 in both response time and prefetch band
width (as shown in FIG. 25).

Mechanisms to avoid network interference may be
deployed on clients, intermediate routers and/or servers. For
example, clients may reduce the rate at which they receive
data from the servers using TCP control mechanisms. How to
set the parameters of such TCP control mechanisms or how to
deploy them given existing infrastructure is not clear. Router
prioritization may avoid interference effectively, since rout
ers have more information of the state of the network. Router
prioritization, however, may not be easily deployable in the
foreseeable future. In an embodiment, server based network
interference avoidance methods may be used. For example,
TCP-Nice may be used. As previously described, experimen
tal evidence under a range of conditions and workloads indi
cates that Nice may cause little or no network interference
related to prefetch. Additionally, Nice may utilize a large
fraction of the spare capacity in the network.

Nice may be deployed in two-connection architecture
without modifying the internals of servers by configuring
systems to use Nice for all connections made to/from the
prefetch server. A prototype of Nice currently runs on Linux
and porting Nice to other operating systems may be straight
forward. In other embodiments, Nice may be used in non
Linux environments by putting a Linux machine running
Nice in front of the prefetch server and configuring the Linux
machine to serve as a reverse proxy or a gateway. In other
embodiments, Nice may be used in a non-Linux environment
by porting Nice to the other operating system. In other
embodiments, Nice may be used in a non-Linux environment
by implementing Nice at user level.

In an embodiment, Nice may also be deployed in one
connection architecture. For example, the Nice implementa
tion may allow a connection’s congestion control algorithm
to switch between standard TCP (e.g., Reno) (when serving
demand requests) and Nice (when serving prefetch requests).
In providing Such an implementation, care may be taken to
ensure that Switching modes does not cause packets already
queued in the TCP socket buffer to inherit the new mode. For
example, ensuring that packets are sent out in the appropriate
modes may require an extension to Nice and coordination
between the application and the Nice implementation. Addi
tionally, care may be taken to ensure that demand requests do
not become queued behind prefetch requests, thereby causing
demand requests to perceive increased latencies. Demand
request queuing may result from the standard HTTP/1.1 pipe
lining procedure which causes replies to be sent in the order
requests were received. One way to avoid interference may be
to quash all the prefetch requests queued in front of the
demand request. For example, an error message (e.g., with
HTTP response code 204 indicating no content) with a short

US RE44,837 E
35

lifetime may be sent as a response to the quashed prefetch
requests. Additionally, servers may be modified to tell the
TCP layer when to use standard TCP and when to use Nice.
There have also been proposals in the literature to extend the
HTTP protocol to allow replies to be sent in an order different
than requests.

Prefetching may interfere with client performance in at
least two ways. First, processing prefetch requests may con
Sume CPU cycles and, for instance, delay rendering of
demand pages. Second, prefetched data may displace demand
data from the client cache and thus hurt demand hit rates for
the prefetching service or other services.
As with the server interference issues discussed above, in

certain embodiments, client CPU interference may be miti
gated by modifying the client browser (and, perhaps, the
client operating system) to use a local CPU scheduler to
ensure that prefetch processing never interferes with demand
processing. In some embodiments, client CPU interference
may be mitigated by ensuring that prefetch processing does
not begin until after the loading and rendering of the demand
pages. Although this approach may not reduce cross-interfer
ence with other applications at the client, it may avoid a
potentially common cause of self-interference of the
prefetches triggered by a page delaying the rendering of that
page.

Similarly, in certain embodiments, a storage scheduling
algorithm may be used to balance caching prefetched data
against caching demand data. Storage scheduling algorithms
may typically require modifications to the cache replacement
algorithm. For example, Patterson’s Transparent Informed
Prefetching algorithm, Cao's integrated prefetching and
caching algorithm, and Chandra etals cache replacement
algorithm published at the 2001 WorldWideWeb Conference
describe approaches for scheduling prefetching and demand
data that coexist in a cache.

In some embodiments, a system may place a limit on the
ratio of prefetched bytes to demand bytes sent to a client. In
other embodiments, a system may set the Expires HTTP
header to a value in the near future (e.g., one day in the future)
to encourage Some clients to evict prefetched documents
earlier than they may otherwise. Certain embodiments may
include both limiting the ratio of prefetch bytes to demand
bytes sent to a client, and causing clients to evict prefetched
documents early. Although these methods may utilize tuned
thresholds, there is reason to expect that performance will not
be too sensitive to these parameters. For example, magnetic
disk memory media tend to have a large capacity. This capac
ity is growing at about 100% per year. Additionally, modest
sized memory media may be effectively infinite for many
client web cache workloads. Thus, it is believed that available
caches may have room to absorb relatively large amounts of
prefetch data with little interference. In another example, hit
rates tend to fall relatively slowly as available memory
shrinks. This may suggest that relatively large amounts of
unused prefetch data will have a relatively small effect on
demand hit rate.

FIG. 27 illustrates the extent to which limiting the ratio of
prefetched bytes to demand bytes sent to a client and setting
the Expires HTTP header to a value in the near future may
limit the interference of prefetching on hit rates. The experi
ment used to generate FIG. 27 utilized a 28-day trace of 8000
unique clients from 1996 at the University of California at
Berkley. The experiment simulated the hit rates of 1 MB, 10
MB and 30 MB per-client caches. Note that these cache sizes
are relatively small given, for example, Internet Explorers
default behavior of using 3% of a disk’s capacity (e.g., 300
MB of a 10GB hard drive) for web caching. The x-axis shows

10

15

25

30

35

40

45

50

55

60

65

36
the number of bytes of dummy prefetch data per byte of
demand data that are fetched after each demand request. For
the experiment, 20% of services used prefetching at the speci
fied aggressiveness and 80% did not prefetch. The demand hit
rate of the non-prefetching to services was plotted. Ideally,
the demand hit rates should be unaffected by prefetching. As
FIG. 27 shows, the hit rates tended to fall gradually as
prefetching increased. The decrease in hit rates became
Smaller as larger cache sizes were used. If, for example, a
client cache had 30 MB and 20% of services prefetched
aggressively enough so that each service prefetched tentimes
as much prefetch data as the client referenced demand data,
demand hit rates fell from 29.9% to 28.7%.

FIGS. 28A and 28B depict alternative embodiments of a
prefetching mechanism for one-connection and two-connec
tion architectures, respectively. In an embodiment, the one
connection system may include an unmodified browser and
server 1902 that acts as both the demand server and the
prefetch server. The monitor may control the size of hint lists
given out by hint server 1904. In an embodiment, the two
connection system may include an unmodified browser and
two or more servers. In such an embodiment, one server may
act as prefetch server 1908 and a second server may act as
demand server 1906. In an embodiment, prefetch server 1908
may be a copy of demand server 1906. Prefetch server 1908
may run either on a separate machine or on the same machine,
but on different ports than the demand server 1906. Front-end
2802 in front of demand server 1906 may be used to intercept
certain requests and return appropriate redirection objects as
described below. Such an embodiment may eliminate the
need to make any modifications to the original demand server.
In certain embodiments, the front-end may be integrated with
the demand server.

In an embodiment of a one-connection prefetching system,
one or more HTML documents may be augmented with
Supplemental program code. For example, Supplemental pro
gram code may include JavaScript code. Alternatively, a Zero
pixel frame that loads the prefetched objects may be used
instead of JavaScript. Alternatively, the refresh header in
HTTP/1.1 could also be exploited to iteratively prefetch a list
of objects by setting the refresh time to a very small value. For
example, FIG. 29 depicts exemplary JavaScript code. One or
more Java applets could have been used instead of the Java
Script in FIG. 29.
An embodiment of a prefetch method deployable on one

connection architecture is illustrated in FIG. 28A. The
method may include a client requesting one or more demand
documents. One or more of the demand documents may be
augmented with code as described above. When a demand
document is received and finishes loading in the browser, a
pageOnload function may be called This function may call
getPfist.() The getPflist() function may be defined in pfal
ways.html code (shown in FIG. 30). The pfalways.html code
may request the file pflist.html (shown in FIG. 31) from the
hint server using the name of the enclosing document, the
name of the previous document in history (the enclosing
document's referrer) and TURN=1 as arguments. The predic
tion module in the hint server may generate a list of docu
ments to be prefetched in pflist.html. When pflist.html loads
with TURN=i, the preload.() function in the body of pflist.h-
tml may request the current list of documents to be prefetched
from the server.

After the current list of prefetch documents has been
loaded, the myOnload.() function may call the getMore()
function to replace pflist.html by fetching a new version with
TURN=i-1. Thus, a long list of prefetch suggestions may be
“chained as a series of short lists. When the hint server has

US RE44,837 E
37

sent everything it wants to, it may return apflist.html that does
not include a call to the getMore() function.

In the exemplary code in FIG. 29, the windows onload
function is replaced with a function that first executes the
windows original onload function (if any) and then executes
a function pageOnDoad which begins prefetching. Those
familiar with the art will be aware that in JavaScript, a win
dow’s onload function is executed after the window has been
loaded and rendered to the screen. The pageOnload function
calls a function getPFlist embedded in a HTML Frame object
called myiframe. This function is called with an argument
document.referrer, which in JavaScript refers to the URL of
the current document (e.g., the document represented in FIG.
29). In this embodiment, the function getPFlist is stored in a
file pfalways.html, an embodiment of which is illustrated in
FIG. 30.

In the exemplary code illustrated in FIG.30, the JavaScript
getPFList function replaces the current frame's contents
(e.g., pfalways.html) with a new document. In this embodi
ment, the new document is: “http://hint-servers/pflist.html+
PCOOKIE=<document-referrerd+<prevref>+TURN=1”
where <hint-servers is the identity of the hint server (e.g., a
server DNS name or IP address and port), <document-refer
rero is the name of the current document (e.g., the URL of
pfalways.html), and <prevref> is the argument passed in to
getPFList (e.g., the URL of the document depicted in FIG.
29). Thus, the hint server receives a request that includes the
name of the enclosing demand document, which may be used
to construct histories of demand document reference patterns
by prefetch prediction algorithms. Finally, the TURN=1
argument in the new document.location is used to segment
hint lists into pieces: TURN=1 means that the first piece of the
relevant hint list should be sent.

In the exemplary code illustrated in FIG.31, the JavaScript
code includes a preload function. This function thus calls
preload on a list of URLs to be prefetched. The preload
function loads each of these objects into the cache. Note that
in JavaScript, this is accomplished by creating an Image
object for each URL to be fetched regardless of the URLs
actual type. Once all specified objects have been prefetched,
preload returns. At this point, JavaScript has completed load
ing the body of the document, so it calls the documents
onload function which in this case is called myOnload. The
preload.()call in the myOnload function in FIG. 31 is only
utilized for the two-connection case and is discussed below.
MyOnLoad calls getMore. GetMore replaces the current
frame with a new document in a manner similar to what is
done in pfalways in FIG. 30. Note that the effect of this
procedure is to repeatedly load code similar to that in FIG.31,
but each time (a) different URLs are designated for prefetch
ing, and (b) each time TURN is incremented. Thus, a series of
iterations may each fetch a different Small piece of a larger
hint list. This iteration may end when a new demand docu
ment FIG. 29 is loaded or when the hint server runs out of
things to prefetch and returns an empty pflist.html file rather
than a file like that in FIG. 31.

In the case of a demand request for a document previously
prefetched, the client may retrieve the document from the
cache just as with any other cache hit.

In an embodiment, a prefetching method deployable in a
two-connection architecture may include the same basic
mechanisms for prefetching described above. Because
browsers may cache documents using the server name and
document name, however, additional steps may be required to
ensure that demand requests for previously prefetched
objects (e.g., objects that are now cached) can be serviced by
the prefetched objects.

10

15

25

30

35

40

45

50

55

60

65

38
For example, to use a prefetched document in the cache

when a demand request arrives for it, a redirection object may
be retrieved from the demand server. After receiving a
prefetched document from the prefetch server, a request for
the same object may be sent to the demand server. The
demand server may respond with a redirection object (also
called a "wrapper') that points to the corresponding docu
ment on the prefetch server. In this way, when a demand
request arrives later for the prefetched document, the corre
sponding wrapper stored in the cache may redirect the request
to the prefetched document, which is also found in the cache.

In an embodiment, a copy of content on the demand server
may be made for the prefetch server. Relative links in the
prefetch server may be changed to absolute links to the
demand server. Absolute links to inline objects may be
changed to be absolute links to the prefetch server. In an
embodiment, no change is made to the content of the demand
server (except that in Some embodiments Supplemental code
may be added to one or more files on the server). In an
embodiment, the new call to preload in the code depicted in
FIG. 31 may be intercepted by the front end that returns the
corresponding wrapper.

In an additional embodiment, a predictor module on the
hint server may be modified such that inline objects are sent
before the HTML files that refer to them. Such an embodi
ment may prevent demand requests from being incorrectly
sent to the prefetch server in case of partial transfer of
prefetch documents.

In certain embodiments, after getting prefetched docu
ments from the prefetch server, the myOnLoad() code
depicted in FIG. 31 may also send a request for the corre
sponding HTML file to the demand server to obtain a suitable
redirection object. The HTTP/1.1 “referrer field for this
request may be set to the current file pflist.html, thus distin
guishing it from regular demand requests.

In certain embodiments, the front-end may allow regular
demand requests to pass through to the demand server. How
ever, when a request for a wrapper is received, the front-end
may return an appropriate redirection object. As previously
mentioned, the front-end may detect a request for a wrapper
by observing the referrer field. A redirection object may
include a short JavaScript file that sets its document. location
property to the prefetched objects URL.

In an embodiment in which a previously prefetched docu
ment is requested as a demand document, a client implement
ing methods as described above may check cache to deter
mine if the document is already present in cache. The client
may identify the redirection object in the cache. The redirec
tion object may replace itself with the prefetched document
from the cache. Inline objects in the prefetched document
may point to objects from the prefetch server which are also
found in the cache. Links in the prefetched document may
point to objects in the demand server.

In such embodiments, it is feasible that a prefetched object
might be evicted from the cache before a wrapper that refers
to the evicted object. Such a chain of events may cause the
client to send a demand request for the evicted object to the
prefetch server. However, the likelihood of such incidents
may be reduced by setting the expiration time of the wrapper
to a value smaller than the prefetched object.

In an embodiment, for each prefetched document, a wrap
per may be fetched from the demand server to enable redi
rection. Since wrappers are small in size (e.g., about 200
bytes), overhead of serving wrappers may be minimal. In an
embodiment, a wrapper is sent only for a complete document
(including inline objects), not for every prefetched object. As
an alternative to using wrapper objects, the client may main

US RE44,837 E
39

tain state to store information about whether a document has
already been prefetched. Server content could be augmented
with a code to execute on a links onClick event that checks a
database before requesting a document from the demand
server or prefetch server. Methods of maintaining state infor
mation on the client are known in the art.

In an embodiment, the hint server may use any prediction
algorithm. Since each client may fetch a pflist.html for each
HTML document, the hint server may see a trace of all HTML
documents requested by each client. The hint server may
therefore maintain a detailed history of client behavior and
use a standard algorithm proposed in the literature or an
algorithm using more service specific information.

In an embodiment, a hint server may “chain” prediction
lists to avoid overwhelming a client with a long hint list. Hint
servers may send a small number of predictions to clients and
wait for the clients to request more predictions. In a perfectly
non-interfering environment, the length of the hint lists may
only be limited by sizes beyond which no useful predictions
can be generated. To limit client cache pollution, however, the
length of hint lists may be otherwise limited. The ordering of
predictions in the list generated by servers may be such that
inline objects are requested before the referring page itself.
This may reduce the possibility of a concurrent demand
request for the same document being incorrectly sent to the
prefetch server.

Experiments were conducted using a prefetching system
configured in two-connection architecture as shown in FIG.
28B. The system included a computer system using Apache's
HTP server software running on two different ports on the
same machine. One port was used to serve demand requests
and one port was used to serve prefetch requests. The front
end was implemented as a module combined with the server
(i.e., the Apache process). The hint server was implemented
in Java. The hint server ran on a separate machine from the
prefetch and demand servers. The hint server used offline
created prediction lists generated using the PPM algorithm.
The monitor ran as a separate thread on same machine as the
hint server. The content munger was also implemented in
Java. All of the content was munged offline.
An experiment was conducted to evaluate the overhead

incurred by requiring the demand server to serve redirection
wrapper objects as described with reference to one embodi
ment of the two-connectionarchitecture. Four different cases
were tested, including: 1) no modifications to the server; 2)
server modifications, but no prefetching; 3) prefetching files;
and 4) prefetching wrappers. The experiment measured the
Sustained throughput (in connections/second) by the server
for each case. Results for each case are depicted in FIGS. 32
and 33.
The difference between plots for case 1 and case 2 in FIGS.

32 and 33 illustrates the overhead of executing the front-end
logic added before the server to check the referrer field and
send wrappers accordingly. For both case 1 and case 2 plots,
httperffetches one 10 KB file per connection in FIG. 14 and
one 50 KB file per connection in FIG. 15. The case 3 plot
shows the throughput of the demand server when serving
actual files for different values of pfrate. The case 4 plot
shows the throughput of the demand server when serving
wrappers corresponding to requested files for different values
of pfrate. As the pfrate is varied, the throughput falls in both
case 3 and case 4. The case 4 plot falls less steeply, however,
because the wrapper size is much smaller than the actual file.
Comparing FIGS. 32 and 33 shows that the overhead is less
burdensome for larger file sizes. It is believed that the experi
ment is pessimistic since wrappers need only be sent with
.html documents and not with all fetched objects. Thus, the

10

15

25

30

35

40

45

50

55

60

65

40
number of wrappers served in an actual system may be con
siderably smaller than the number of wrappers served in the
tested system. It is also noted that embodiments presented
herein which include end-to-end monitoring may detect the
additional load of serving the wrappers and throttle the
prefetching as needed.

Additional experiments were conducted to compare three
system configurations at a fixed pfrate. The system configu
rations included a prefetch case including a monitor and
TCP-Nice, a no-prefetch case system with no prefetching,
and a no-avoidance prefetch case with prefetching but inter
ference avoidance scheme. For these experiments, the client
was a Sony Laptop with an AMD Athlon 1 GHZ processor and
256 MB of memory. The client was connected to the Internet
through a cable modem link. The HTTP server was the same
machine as for the previous experiments. The Hint Server ran
on a Pentium III 930 MHZ machine with 256 MB of RAM
loaded with the Red Hat Linux 7.1 package. On an unloaded
network, the round trip time from client to server was about
10 ms and the bandwidth was about 1 Mbps. The workload
consisted of demand accesses made by 41 clients in a one
hour subset of the IBM sporting event server trace. This
workload contains 1590 unique files, and the network
demand bandwidth is about 77 kbps.
The average demand response times observed using the

different system configurations are shown in FIG. 34. Both
the prefetch case and the no-avoidance prefetch case achieved
hit rates of 88.3% (compared to 49.7% for the no-prefetch
case). The prefetch case caused less interference, however,
resulting in significantly better miss times, and leading to a
25% reduction in end-to-end response times.

In this experiment, the loads on the network and server
were light enough to result in performance improvements due
to prefetching even without a monitor or interference avoid
ance scheme. Aggressive prefetching without a monitor, how
ever, may cause response times to increase by a factor of 4.

Embodiments presented herein include end-to-end con
gestion control methods optimized to support background
transfers. The end-to-end methods may nearly approximate
the ideal router-prioritization strategy by (a) inhibiting inter
ference with demand flows and (b) utilizing significant frac
tions of available spare network bandwidth. The methods are
designed to Support massive replication of data and services,
where hardware (e.g., bandwidth, disk space, and processor
cycles) is consumed to help humans be more productive.
Massive replication systems may be designed as if bandwidth
were essentially free. Nice provides a reasonable approxima
tion of Such an abstraction.

While the present invention has been described with refer
ence to particular embodiments, it will be understood that the
embodiments are illustrated and that the invention scope is
not so limited. Any variations, modifications, additions and
improvements to the embodiments described are possible.
These variations, modifications, additions and improvements
may fall within the scope of the invention as detailed within
the following claims.
What is claimed is:
1. A method of controlling data transmission over a com

munication network, the method comprising:
sending, by a device, one or more data packets over the

communication network in view of a congestion win
dow representative of a congestion state of the commu
nication network;

determining, by the device, a time that a first data packet
Was Sent;

receiving, by the device, an acknowledgement of receipt of
at least the first data packet;

US RE44,837 E
41

determining, by the device, a time that the acknowledge
ment of receipt of the first data packet was received;

determining, by the device, an estimate of network conges
tion based at least in part on the time the first data packet
was sent and the time the acknowledgement of receipt of
the first data packet was received; and

if the estimate of network congestion exceeds a congestion
threshold, then reducing a size of the congestion win
dow,

wherein round trip times are indicative of a bottleneck
queue size and wherein the congestion threshold repre
sents a number of round trip times that exceed the bottle
neck queue size.

2. The method of claim 1, wherein said determining, by the
device, the estimate of network congestion includes:

determining, by the device, a number of round trip times,
received during an interval, that exceed a threshold
round trip time,

wherein a round trip time includes an elapsed time between
a time that a data packet is sent and a time that an
acknowledgement of receipt of the data packet is
received.

3. The method of claim 2, wherein the congestion threshold
further represents a percentage of round trip times that exceed
the threshold round trip time during the interval.

4. The method of claim 1, wherein said reducing, by the
device, the size of the congestion window includes reducing,
by the device, the size of the congestion window by at least a
multiplicative factor.

5. The method of claim 1, wherein the congestion window
determines an amount of prefetch data to be in transit at any
one time.

6. The method of claim 1, wherein said sending, by the
device, one or more data packets includes sending, by the
device, one or more pointers to one or more requested data.

7. The method of claim 1, wherein said sending, by the
device, one or more data packets includes sending, by the
device, one or more requested data packets.

8. The method of claim 1, wherein said determining, by the
device, the estimate of network congestion includes deter
mining, by the device, a number of round trip times received
during an interval that exceed a threshold round trip time,

wherein a round trip time includes an elapsed time between
a time that a data packet is sent and a time that an
acknowledgement of receipt of the data packet is
received, and

wherein the congestion threshold is determined to be
exceeded if the number of round trip times exceeding the
threshold round trip time during the interval exceeds a
threshold fraction of a number of round trip times mea
Sured.

9. The method of claim 1, further comprising increasing,
by the device, the size of the congestion window if the esti
mate of network congestion does not exceed the congestion
threshold.

10. The method of claim 1, further comprising linearly
increasing, by the device, the size of the congestion window
if the estimate of network congestion does not exceed the
congestion threshold.

11. The method of claim 1, further comprising increasing,
by the device, the size of the congestion window by a deter
mined number of data packets per determined number of
round trip times if the estimate of network congestion does
not exceed the congestion threshold.

12. The method of claim 1, further comprising increasing,
by the device, the size of the congestion window by a deter
mined number of data packets and by a determined multipli

5

10

15

25

30

35

40

45

50

55

60

65

42
cative factor per determined number of round trip times if the
estimate of network congestion does not exceed the conges
tion threshold.

13. The method of claim 1, wherein said sending, by the
device, includes sending the first data packet and a second
data packet, wherein a time period between said sending the
second data packet and said sending the first data packet is
determined based on the size of the congestion window.

14. The method of claim 1, wherein the bottleneck queue
size includes a buffer size at a bottleneck router that accounts
for round trip delay of a data packet.

15. An article of manufacture, comprising:
a non-transitory computer readable medium; and
a plurality of programming instructions stored on the non

transitory computer readable medium and configured to
cause a processor to:
determine a time that a first data packet was sent;
determine a time that an acknowledgement of receipt of

the first data packet was received;
determine an estimate of network congestion based at

least in part on the time the first data packet was sent
and the time the acknowledgement of receipt of the
first data packet was received; and

if the estimate of network congestion exceeds a conges
tion threshold, then reduce a size of a congestion
window to be used for future packet transmission,

wherein round trip times are indicative of a bottleneck
queue size and wherein the congestion threshold rep
resents a number of round trip times that exceed the
bottleneck queue size.

16. The article of manufacture of claim 15, wherein the
plurality of programming instructions are further configured
to cause the processor to:

determine a number of round trip times received during an
interval that exceed a threshold round trip time,

wherein a round trip time includes an elapsed time between
a time that a data packet is sent and a time that an
acknowledgement of receipt of the data packet is
received, and

wherein the plurality of programming instructions are fur
ther configured to cause the processor to determine the
estimate of network congestion using at least the number
of round trip times received during the interval.

17. The article of manufacture of claim 16, wherein the
congestion threshold further represents a percentage of round
trip times that exceed the threshold round trip time during the
interval.

18. The article of manufacture of claim 15, wherein the
plurality of programming instructions are further configured
to cause the processor to:

determine a number of round trip times received during an
interval that exceed a threshold round trip time,

wherein a round trip time includes an elapsed time between
a time that a data packet is sent and a time that an
acknowledgement of receipt of the data packet is
received, and

wherein the congestion threshold is determined to be
exceeded if the number of round trip times that exceed
the threshold round trip time during the interval exceeds
a threshold fraction of a number of round trip times
measured.

19. The article of manufacture of claim 15, wherein the
plurality of programming instructions are further configured
to cause the processor to determine a time period to send a
second data packet based at least in part on the size of the
congestion window.

US RE44,837 E
43

20. The article of manufacture of claim 15, wherein the
bottleneck queue size includes a buffer size at a bottleneck
router that accounts for round trip delay of a data packet.

21. An apparatus, comprising:
a network device that includes a memory and that further

includes:
a network interface module to couple the network device

to a communication network; and
a communications module coupled to the network inter

face module and configured to:
transmit one or more packets over the communication

network to one or more receivers in view of a con
gestion window representative of a congestion state
of the communication network;

receive acknowledgements of receipt of the one or
more packets;

determine a round trip time using a time that a first
packet was sent and a time that a corresponding
acknowledgement was received;

determine an estimate of network congestion for the
communication network based at least in part on
the determined round trip time; and

if the estimate of network congestion exceeds a con
gestion threshold, then reduce a size of a conges
tion window to be used for future transmission,

wherein round trip times are indicative of a bottleneck
queue size and wherein the congestion threshold
represents a number of round trip times that exceed
the bottleneck queue size.

22. The apparatus of claim 21, wherein the congestion
threshold further represents a percentage of round trip times
that exceed a threshold round trip time during an interval.

23. The apparatus of claim 21, wherein the communica
tions module is further configured to determine the estimate
of network congestion based on a number of round trip times
received during an interval that exceed a threshold round trip
time,

wherein a round trip time includes an elapsed time between
a time that a packet is sent and a time that an acknowl
edgement of receipt of the packet is received, and

wherein the congestion threshold is determined to be
exceeded if the number of round trip times that exceed
the threshold round trip time during the interval exceeds
a threshold fraction of a number of round trip times
measured.

24. The apparatus of claim 21, wherein the bottleneck
queue size includes a buffer size at a bottleneck router that
accounts for round trip delay of a packet.

25. An apparatus, comprising:
means for sending one or more data packets over a com

munication network, in view of a congestion window
representative of a congestion state of the communica
tion network;

means for determining a time that a first data packet was
Sent;

means for receiving an acknowledgement of receipt of at
least the first data packet;

means for determining a time that the acknowledgement of
receipt of the first data packet was received;

means for determining an estimate of network congestion
based at least in part on the time the first data packet was
sent and the time the acknowledgement of receipt of the
first data packet was received; and

means for reducing the size of the congestion window if the
estimate of network congestion exceeds a congestion
threshold,

5

10

15

25

30

35

40

45

50

55

60

65

44
wherein round trip times are indicative of a bottleneck

queue size and wherein the congestion threshold repre
sents a number of round trip times that exceed the bottle
neck queue size.

26. The apparatus of claim 25, wherein the means for
reducing the size of the congestion window reduces the size
of the congestion window by at least a multiplicative factor.

27. The apparatus of claim 25, wherein the means for
determining the estimate of network congestion determines a
number of round trip times received during an interval that
exceed a threshold round trip time,

wherein a round trip time includes an elapsed time between
a time that a data packet is sent and a time that an
acknowledgement of receipt of the data packet is
received, and

wherein the congestion threshold is determined to be
exceeded if the number of round trip times that exceed
the threshold round trip time during the interval exceeds
a threshold fraction of a number of round trip times
measured.

28. The apparatus of claim 25, further comprising means
for increasing the size of the congestion window if the esti
mate of network congestion does not exceed the congestion
threshold.

29. The apparatus of claim 25, further comprising means
for linearly increasing the size of the congestion window if
the estimate of network congestion does not exceed the con
gestion threshold.

30. A method of controlling data transmission over a com
munication network, the method comprising:

determining, by a device, an estimate of network conges
tion based at least in part on a time a first data packet
was sent and a time an acknowledgement of receipt of
the first data packet was received and

if the estimate of network congestion exceeds a congestion
threshold, then modifying a sending rate based at least
in part on a reduced size of a congestion window,

wherein round trip times are indicative of a bottleneck
queue size and wherein the congestion threshold repre
sents a number of round trip times that exceed the bottle
neck queue size.

31. The method of claim 30, wherein said determining, by
the device, the estimate of network congestion includes:

determining, by the device, a number of round trip times,
received during an interval, that exceed a threshold
round trip time,

wherein a round trip time includes an elapsed time between
a time that a data packet is sent and a time that an
acknowledgement of receipt of the data packet is
received.

32. The method of claim 31, wherein the congestion thresh
old further represents a percentage of round trip times that
exceed a threshold round trip time during the interval.

33. The method of claim 30, filrther comprising reducing,
by the device, a size of the congestion window by at least a
multiplicative factor:

34. The method of claim 30, wherein the congestion win
dow determines an amount of prefetch data to be in transit at
any one time.

35. The method of claim 30, further comprising sending, by
the device, the first data packet over a communication net
work in view of the congestion window, wherein the sending
includes sending one or more requested data packets or one
or more pointers to the One or more requested data.

36. An article of manufacture, comprising:
a non-transitory computer readable medium, and

US RE44,837 E
45

a plurality of programming instructions stored on the non
transitory computer readable medium and configured to
cause an apparatus, in response to execution of the
instructions by a processor of the apparatus, to:

determine an estimate of network congestion of a commu
nication network based at least in part on a time a data
packet was sent and a time an acknowledgement of
receipt of the data packet was received and

if the estimate of network congestion exceeds a congestion
threshold, then modify a send rate based at least in part
on a reduced size of a congestion window,

wherein round trip times are indicative of a bottleneck
queue size and wherein the congestion threshold repre
sents a number of round trip times that exceed the bottle
neck queue size,

wherein the congestion threshold is exceeded if a number
of round trip times that exceed a threshold round trip
time exceeds a threshold number;

wherein a round trip time includes an elapsed time between
the time that the data packet is sent and the time that the
acknowledgement is received

wherein the threshold round trip time is a fraction of a
difference between an estimated congested round trip
time and an estimated uncongested round trip time, and

wherein the reduced size of the congestion window is less
than one data packet if the congestion threshold is
exceeded.

37. The article of manufacture of claim 36, wherein the
plurality of programming instructions are further configured

10

15

25

46
to cause the apparatus, in response to execution of the
instructions by the processor to:

determine a number of round trip times received during an
interval that exceed a threshold round trip time,

wherein said determine an estimate of network congestion
comprises determine the estimate of network congestion
using at least the number of round trip times received
during the interval.

38. An apparatus, Comprising:
a network device that includes a memory and that further

includes:
a network interface module to couple the network device to

a communication network, and
a communications module coupled to the network interface

module and configured to:
determine an estimate of network congestion for the Com

munication network based at least in part on a round trip
time determined using a time that a data packet was sent
and a time that a corresponding acknowledgement was
received and

if the estimate of network congestion exceeds a congestion
threshold, then modifi a send rate based at least in part
on a reduced size of a congestion window,

wherein round trip times are indicative of a bottleneck
queue size and wherein the congestion threshold repre
sents a number of round trip times that exceed the bottle
neck queue size.

