
(19) United States
(12) Patent Application Publication

Kobata

US 2004OO59799A1

(10) Pub. No.: US 2004/0059799 A1
(43) Pub. Date: Mar. 25, 2004

(54) SMART INTERNET INFORMATION
DELIVERY SYSTEM

(75) Inventor: Hiroshi Kobata, Brookline, MA (US)
Correspondence Address:
FISH & RICHARDSON P.C.
1425 K STREET, N.W.
11TH FLOOR
WASHINGTON, DC 20005-3500 (US)

(73) ASSignee: Atabok Japan, Inc., a Japan corpora
tion

(21) Appl. No.: 10/352,243

(22) Filed: Jan. 28, 2003

Related U.S. Application Data

(63) Continuation of application No. 09/170,431, filed on
Oct. 13, 1998, now Pat. No. 6,631,405, which is a

continuation of application No. 08/755,029, filed on
Nov. 22, 1996, now Pat. No. 5,845,074.

Publication Classification

(51) Int. Cl. ... G06F 15/16
(52) U.S. Cl. .. 709/219; 709/203

(57) ABSTRACT

A Smart delivery System is provided for transmitting video,
audio, hyper-text and web documents to end users via the
internet over telephone lines, fiber optics, Satellite linkS, or
other direct communications on a non-real time discontinu
ous basis in which the Server providing the information
periodically ascertains whether the end user terminal is busy.
If So, the transmission to the end user is terminated and the
information is stored until such time as the “busy” indication
is terminated. In one embodiment, the indication for the end
user of incoming information is in the form of an icon
generated on-screen on which the user can click to obtain the
Sought-after information.

BASI APOEDCT-APP/CATIO. SCEAAFI
7t

AEGISTRADIO AOP
Affairs.Aff

A.

(OHAY

2HEBERSHE
SFIAAFA.S.

If
1. GISTRAFI

AS
CAAA
A. E.

.AN/AIO
AHIAAFI (EEI/

FREF COSACT0. (f-00)
A/NAIf IAF
OY EF0IIPNAS,

se El

f?

Ali/WAft
PPEFERENCE SFI

A.

(PAY

74

AF/E SPICES

(PAY

6. CAER PIA
(HGHAEff/EPY
tREAir AFCA, F
Siffiti/0 SAPWC
(PIF (HAAGA

4. (CFRY
ACT (0770
IPA, AEFAf

thp)f0Y SET
AIRACTIVAt Y

5. ACT/WF SERVICES
ACTIVE COOECTIO, ADVARIISFMF/

DEE/WAPY THFSCAEF
(OPDF fitfif

(SIR-C//08, HFDICAL CARE
HAGAZIE DEL/VERY(0/S/BSCRIBE)

VOICE, PICTURE, MDEO, O.F.

CISAA

• SHARI At/ERY
76 f(0, 0 HEAESAIp

CESIf...?

E.

I ’91, „I

US 2004/0059799 A1

WIWO () {};

Patent Application Publication Mar. 25, 2004 Sheet 1 of 5

2. ‘5)/, /

US 2004/0059799 A1

pupuuuu00

os!G WOH-00 espoga?uG KW Jaunduloo ÁW

Patent Application Publication Mar. 25, 2004 Sheet 2 of 5

Patent Application Publication Mar. 25, 2004 Sheet 3 of 5 US 2004/0059799 A1

42 1.
AVA7 M/O/2A

- 5722,467a
(HAap 2/26

FIG. 3
WA/AWAWO7 A//5Y
AP/5AAAY / COW

oom-1/V/AAC24/4/

t- FIG. 5

US 2004/0059799 A1 Patent Application Publication Mar. 25, 2004 Sheet 4 Of 5

9 ’5)I, H.

/

{//

US 2004/0059799 A1

SMART INTERNET INFORMATION DELIVERY
SYSTEM

FIELD OF INVENTION

0001. This invention relates to transmission of informa
tion over the internet or like network and more particularly
to a System for providing end users with Video, audio,
hyper-text, and web content on a periodic basis based on the
ability of the terminal at the end user to accept and display
the information.

BACKGROUND OF THE INVENTION

0002 Transmission technology exists which allows a
content provider to Send information including video, audio,
hyper-text and web documents to end users over telephone
lines, through fiber optics, through Satellite transmissions or
through other direct connections. Such content including
documents, program material, advertising, etc. has, in the
past, been provided on a real time basis in which an end user
is denied access to the information if an application is
running on his/her corresponding terminal. Moreover,
another impediment to realtime information transfer is net
work bandwidth which severely limits the ability to transmit
realtime data. This is especially true of full-frame video, as
well as JPEG pictures.
0003. The above makes exceedingly difficult the task of
providing advertising, motion pictures, or other information
dense data to Subscribers who seek it. Even if the data were
available, there is presently no System for accessing this data
by the end user unless the user endlessly clicks through
folders and windows, which requires the end users to
execute many "pull” operations, Such as opening a web
browser, Selecting a command, etc. in order to pull up the
required information.
0004. The problems with such transmission technology
centers around the limited capacity or Volume of the network
to transmit information which can be practically delivered to
end users due to the infrastructure Surrounding the net, Such
as CPU speed and network throughput. The result is that for
entities to provide information to individual users on a
requested basis, the information is not as easily accessible as
changing the channels on a television. The reason, unlike the
television Scenario in which the only constraint is the time
of the program Such as news, drama, etc., is that end users
on the network must be made aware of the arrival and
location of data to be able to access it. Moreover, this must
be done on a system which is bandwidth-limited and over
loaded with applications that are running at the end user's
terminal.

0005 Thus, the problem of providing realtime on-line
access to information from a provider is that if an application
is running on the user's terminal, it is difficult to hold the
information coming from the Server, much less to provide
the user with notice of the arrival of information and its
contents at a glance.
0006 Thus, the problem with a real time system includes
the difficulty of a Subscriber expecting certain information to
be able to have the information at his/her fingertips without
getting out of the particular application running on his/her
computer to await the arrival of the data.
0007 Moreover, while indications of incoming data have
been provided in the past, there was no way for the user to

Mar. 25, 2004

be able to select which data he/she wishes to access other
than by a cumberSome process of accessing window after
window until the Sought-after information becomes avail
able.

SUMMARY OF THE INVENTION

0008 Rather than providing a realtime or continuous
transmission of information to network users, in the Subject
invention the System ascertains whether or not the intended
recipient's computer is busy or not. In one embodiment, the
server periodically checks the “busyness” of the network
and the end user's terminal prior to transmitting Stored
information to this user. Thereafter, the server immediately
after ascertaining that the network Subscriber is capable of
receiving the messages, Sends out the message to the par
ticular network address.

0009. At the same time, the subject invention provides a
change in the methodology of transmitting information by
indicating that the information which has been subscribed to
is available through the utilization of an on-screen icon.
What this means to the end user is that rather than having to
click through numerous windows to obtain the information
for which he/she has subscribed, in the subject invention all
that is necessary is to click on the appropriate icon on the
Screen, at which time the information from the server which
has been locally Stored is opened and presented to the user,
thereby providing an ease of access to the information
heretofore not possible.
0010. The subject invention therefore ensures to infor
mation providers that they will not have any bandwidth
limitations imposed on them. Thus, there are theoretically no
limitations related to information capacity or Volume of the
system in order to provide the information to the subscribers.
0011. The information required can take as much time as
a week to be provided to local Storage, and can be provided
at Such times as the user's terminal is not busy. By Sending
information only when the user terminal is not busy, there is
no limitation on the amount of information that can be
provided and Stored locally.
0012 Information providers can therefore provide a ser
Vice Such as renting VideoS through the internet, Selling CD
music through the internet, and providing information which
is recordable on CDS by recording and playback devices at
the user's terminal. Moreover, information providers can
Sell daily news as an electronic package and can provide
audio/video/document advertising or catalogs to be deliv
ered at off peak hours when applications are not running on
the Subscriber's computers.
0013 End users can easily identify the arrival of infor
mation and data and watch it by Simply double-clicking the
icon provided on the Screen. The Subject System therefore
provides exceptionally easy operation for the accessing of
Subscribed-for information which increases the number of
users and provides TV-like entertainment on demand
through the Subject non-realtime process.
0014. In summary, advertisement and program material
can be announced through the utilization of on-Screen icons
which are always presented on-screen and not in folders.
The Smart delivery technology is non-realtime So as to be
able to locally Store only those ads or program material the
subscriber wants to see, followed by the delivery of the

US 2004/0059799 A1

material with full frame video and audio. As will be appre
ciated, the information provider can provide an icon along
with information to permit direct access by the user.
0.015. In one embodiment, a specialized algorithm is
provided for ascertaining whether or not the user's CPU is
busy. The system is divided between the client side and the
Server Side, with the client Side maintaining a count repre
Senting the time that the CPU is occupied by applications
running at the client Side. This is done over a period Such as
five Seconds to generate a number reflecting “user State',
plus Kernel State, plus Context Switches, thus to derive a
value in terms of X mScc/5 Sec. This value is compared with
criteria indicating if the CPU is too busy. If So, a signal is
provided over the net to Stop transmitting data, with a hold
Signal being provided to the Server Side to interrupt any
information being provided to the particular user.
0016. The subject system also keeps track of the network
occupation during the same preceding five Seconds, with
network occupation being a function of the data transmitted
in terms of kilobytes for the last five seconds. This second
number is compared with a Second criteria utilized to
indicate full occupation of the network. If the network
occupation is above a predetermined level, a hold signal is
sent from the client side to the server side. If the second
number is less than that indicating full occupation, file
transfer is slowed or Stopped So as to not interfere with other
running applications or data transferS.
0.017. In summary, if interference is sensed, then the
Second hold signal is provided to the server side to wait for
a Send mode signal which is generated from the client Side
and transmitted to the Server Side to Send the remaining data.
Thereafter, an end-of-data Signal is transmitted from the
Server Side to the client Side. After receipt of the end-of-data
Signal, the client Side transmits a “data transfer complete'
Signal to the Server Side indicating that the icon for the
transmitted information exists on-Screen at the client Screen.
Thus, at the point that the on-screen icon exists at the client
Side there is an indication Sent to the Server Side of the
receipt of data at the client Side and that the information is
Stored locally at the client Side.
0.018 Put another way, the server links the network to the
Screen of the user's terminal and places the icon on the
Screen indicating to the user that the message has been
delivered and is locally Stored, Simultaneously indicating the
existence of a message. The icon can be placed on the Screen
even after being held, for instance, until a specific day Such
as a birthday.

BRIEF DESCRIPTIONS OF THE DRAWINGS

0019. These and other features of the subject invention
will be better understood taken in conjunction with the
Detailed Description in conjunction with the Drawings of
which;
0020 FIG. 1 is a block diagram of the Subject system
indicating non-real time transmission of data to an end user's
terminal from a Server which checks the network and
terminal busy condition in order to inhibit the sending of
data until Such time as both the terminal and network can
accommodate the transfer;
0021 FIG. 2 is a front view of a terminal indicating the
provision of an icon by the Subject System in which the

Mar. 25, 2004

icon's existence indicates the existence of data from a server,
clicking on the icon providing the end user with the trans
mitted data;
0022 FIG. 3 is a more detailed block diagram of the
system of FIG. 1 indicating the client side and the server
Side, with a System for establishing network and terminal
busy,
0023 FIG. 4 is a diagrammatic illustration of the screen
of FIG. 3 in which an icon Such as that associated with
advertising is presented in the lower left corner of the Screen;
0024 FIG. 5 is a screen shot of a commercial running on
the screen of the terminal FIG.3 after having been selected
through clicking on the icon of FIG. 4;
0025 FIG. 6 is a diagram of the subject system indicat
ing the utilization of a Subscriber System in which a client
Subscribes to a Service which provides requested informa
tion or data from a Server, followed by authorization and
activation, followed by the Smart delivery of information
based on the system described in FIGS. 3, 4, and 5; and,
0026 FIG. 7 is a flow chart indicating a system for
ascertaining the State of the client Side and network as to the
busyness of the two.

DETAILED DESCRIPTION

0027 Referring now to FIG. 1, in the subject system a
provider 10 provides data through non-real time transmission
12, with a direct indication of the arrival of the information
14 being provided at an end user's screen 16. In this
example, the direct indication that information exists from
the provider is provided by icon 18.

0028. The non-realtime transmission, as mentioned
before, permits full-frame video, JPEG and MPEG trans
missions, and in fact, any other information-dense transmis
Sion to be sent from the provider to the end user at Such times
as the network and the end user can accommodate the
transmission.

0029. This is accomplished in one embodiment through a
network/terminal busy detector 20 which both checks the
network busyneSS and the State of the computer at the user's
terminal through a unit 22 which periodically checks both
the network occupation and the state of the CPU at the client
Side. Upon Sensing a busy condition as illustrated by arrow
24, a hold signal is sent at 26 to inhibit the transmission of
the provider's information and to store it at the server, with
the remaining information to be sent only when a “not busy”
indication 28 is generated. Upon receipt of the “not busy”
Signal, the information is Sent as illustrated at 30, or at least
that portion of the information that has not already been Sent.
When this information is sent, an "end-of-data” state is
Sensed at 32 and if the data is complete, icon 18 on Screen
16 is activated as illustrated at 34, indicating to the end user
that he is in receipt of information from the provider.
0030) Such an indication is illustrated at FIG. 2 which is
a Screen shot of a typical computer Screen, with the existence
of icon 18 indicating that data has been Sent and is now
available to the end user. This is not a real time System, but
rather one in which the data is Stored locally at the user's
CPU to accommodate information-dense transmissions Such
as full-frame video, audio, and JPEG or other pictures as
well as Straight textual data.

US 2004/0059799 A1

0031. By merely double clicking on the icon, the end user
is then presented with the data from the provider, which data
may be on a subscription or other basis. When the data is
provided on a Subscription basis, it is only transmitted to the
user upon activation of the System and end user authentica
tion. What this means is that on a Subscription basis, costly
data can be Securely transmitted and Stored locally, with
access to the data being by merely double clicking on the
CO.

0032. As will be appreciated, what this presents to the
user is a simplified System for accessing data which he has
paid for or authorized to be sent. No longer must the user
click through a number of windows or folders in order to be
able to access the data for which he has paid.
0.033 More specifically, and referring now to FIG. 3, a
network 40 connects provider 42 through its associated
server 44 to a terminal 46 driven by local storage 48 and an
icon drive 50 under control of signals to and from the server.
It will be appreciated that through a System to be described
hereinafter terminal 46 can indicate that it is running an
application and is therefore busy, or at least too busy to
accept incoming messages. This is accomplished through
the generation of a busy signal 52 which may be in the form
of a hold signal transmitted over the network to server 44
which detects this busy Signal along with a signal indicating
the degree of network occupation. If an application is
running on the client Side Such as to prevent the inflow of
information to the CPU at the client side, or if the network
occupation is too high, then Server 44 Stores and holds the
content to be transmitted from the provider to the client until
such time as the “busyness” factor drops below a predeter
mined level. At this time, Server 44 transmits Video, audio,
hyper-text or other information to local Storage 48 via
network 40 So that this information can be accessed at the
convenience of the user through the double clicking on the
CO.

0034. This double clicking on the icon is illustrated in
FIG. 4 to be an icon indicating, for instance, a commercial
Such as a Bud Light commercial, the icon being indicated at
60. Upon double clicking as by arrow 62 on this icon, the
user is presented with the full commercial as illustrated at 64
in FIG. 5. What will be appreciated is that the multi-media
transmission from the Server can be accessed by the end user
by a simple button click on an icon provided by the Server
and thus the provider. What is eliminated by this system is
annoyance of the end user because the network cannot
accommodate the transmission of the data, much leSS receipt
of the data by his/her CPU.
0035) Referring now to FIG. 6, one such system for the
authorization and Subscription to Such a Service is illustrated
in which the client registers for membership as illustrated at
70, with activation and a preference set being recorded at 72
to provide the active services 74. This is accomplished by
the customer 76 providing a registration card and telephone
number to the provider, in this case, company 78, which in
turn mails a membership software disk 80 back to customer
76.

Mar. 25, 2004

0036 Upon receipt of the software disk, the customer
loads the Software in an activation Step as illustrated at 82
which provides the information back to company 78. The
company then provides a confirmation notice 80 back to
customer 76 to confirm an active connection, an IP address
and modem option Set for the interactive communication
between the customer and the provider.

0037. Thereafter, company 78, through its server, pro
vides the information and active Services requested as illus
trated at 82 with the delivery being a so-called Smart
delivery in that it is provided to the customer locally and
Stored only when the customer is ready to receive the
information. Its existence is also indicated to the user by an
on-Screen icon which remains on the customer's Screen upon
booting of his/her System.

0038. When the customer seeks to download or read out
this information, the customer merely clicks on the icon
which results in the presentation of the associated informa
tion. Simultaneously, and for billing purposes a Signal is sent
back to the company as illustrated at 84 to charge the
customer for the Services that he/she has requested.

0039) Referring now to FIG. 7, one type of system for
ascertaining the “busyness” of both the terminal and the
network is illustrated. Here, on the client side as illustrated
at 90 the CPU occupation time of the software running is
counted during the preceding five Seconds and a number is
developed reflective of user State, plus Kernel State, plus
Context switches. This is compared at 92 with criteria
indicating a reasonable occupation or threshold, at which
time the server is provided with a signal at 94 to indicate that
the terminal and the CPU associated therewith is busy. This
is a hold signal 96 which is sent over the network to the
server side at 98 to request a hold mode in which the
information to be sent is inhibited at 100 until Such time as
the hold mode Signal is extinguished or deleted.

0040 Additionally, on the client side, network occupa
tion is also sensed at 102 which counts the number of bits
and incoming data and compares it at 104 with a preset
criteria indicating network occupation. When the network is
too busy to accommodate the incoming transmission, a
Second hold signal is generated at 106 to hold the transmis
sion at 108. At this time, a second hold operation at 110 is
transmitted back to unit 100 to prevent the transmission of
the information. ASSuming both of the criteria mentioned
above are met, a Send Signal is transmitted at 112 to the
server side which is received at 114 to instruct unit 100 to
Send either all of the original data or that portion of the data
which has not previously been Sent. After the client Side has
received the data, there is a link to the Screen which presents
an icon indicating receipt of information at the client Side,
with the client Side then Sending a “message-complete'
signal at 116 over line 118 back to unit 114 to indicate to the
Server that the message transfer has been completed.

0041 A program listing for the system is now presented:

25, 2004 US 2004/0059799 A1 Mar

// attpsock. h : interface of the CAtpSocket class

#ifndef ATPSOCKH - - '
define ATPSOCKH

it include 'stdafx.h"
include "afxsock.h"
include callback, h"
include "idfserver. h."

typedief long AtpConrJID;

class AtpConnection (publiic:
enum AtpState (
CONNECTING, A / Connection just created
WAITING, f / Connection established; waiting for transfer RECEIVING // Transfering data
PAUSED, f / Transfer paused for some reason
CLOSNG A / Connection will be closed) ;

AtpConn UID uid;
AtpState state;
CString host;
IDFle idf // Valid only if RECEIVING, PAUSED, or CLOSING);

f / MS compiler buggy: this HAS to be a constant in the class it define bufsize 1024

class CAtpSocket : public CAsyncSocket
(
private:
CAtpSocket (const CAtpsockets rsrc); // no implementation
Void operators (const CAtpSocket& rSrc.); f / no implementation
w/ Construction public:
CAtpSocket (ISockCallback, IAtpcal back);

void Initialize (IDFServer server) ;
// Attributes private :
long data-len;
char buf bufsize, data;
CString line, recvbuf, send-buf;

-l2

US 2004/0059799 A1

public:

// Connection state
enurn ATPCONTROL,

enurn ATP START,

ATPDATA) atprinode:

ATPLOGIN, ATP RCPT,
ATPFILE, ATPBLKSI2E, ATP READY) atpstate;

AtpConnection conn;

ISockcallback mpSCB;
IAtpCallback "mpCB;
IAtpProgressCallback mp PCB;

CString ffrom, fuser;
CString finane;
long fsize, fchksum, fbsize;
cTime folate;

long fiblk, fiblksize;

IDFServer "idfs;
DFile idf;

W/ Overridable callbacks
protected:

virtual void OnReceive (int nErrorCode);
virtual void OnSend (int nerrorCode);
virtual void onClose (int nError Code);

w/ Implementation

virtual -CAtpSocket () ;

ifdef DEBUG
virtual void Assert Valid () const;
virtual void Dump (CDumpContext& dc) const;

tendif

private:
void
void

void
void
void

InitNewFile();
FindIDFile();

Fatal Error (int nError Code);
Send String (CString data) ;
Try ToSend ();

CString ExtractLine ();
CString ExtractWord ();

BOOL
BOOL

void
void
void
void

void
void
void
void
void
void
void
void
void
void

fendilf

handleControl ();
handleData ();

SendResponse (int num);
Send Response (int num, CString msg);
Send Response (int num, long arg);
SendMultilineResponse (int nun,

handleComunand From ();
handlecommanduser ();
handlieCommand Name () ;
handlecommandiFile ();
handleCommand BlkSize () ;
handleCommand Ready ();
handleCommand Data ();
handle CommandAbort ();
handleCorunandReset ();
handleCommand Exit () ;

fa ATPSOCKH

CString data);

Mar. 25, 2004

25, 2004 US 2004/0059799 A1 Mar. 25

ATPRESPONSE (200, Command Okay)
ATP RESPONSE (202, Command not implemented superfluous-at-this-site)
ATPRESPONSE (500, Syntax error-command unrecognized)
ATPRESPONSE (50l., Syntax error-in-parameters-Or-arguments)
ATPRESPONSE (502, Command not implemented)
ATP RESPONSE (503, Bad sequence-of-commands)
ATP RESPONSE (312, File-status)
ATP RESPONSE (220, ATP server-ready)
ATP RESPONSE (221, Closing control-connection)
ATP RESPONSE (521, Emergency closing-of-control-connection) ATP RESPONSE (222, Block-size-accepted)
ATP RESPONSE (422, Block size-not-acceptable)
ATP RESPONSE (522, Block size already-set permanently)
ATP RESPONSE (223, File completed)
ATPRESPONSE (323. Block requested)
ATPRESPONSE (423, Machine busy Pleases tall)
ATPRESPONSE (523, Local error)
ATPRESPONSE (224, Data transferaborted)
ATPRESPONSE (424, Local file error)
ATPRESPONSE 125, data transfer starting)
ATPRESPONSE (225, Data transfer completed)
ATPRESPONSE (228, File in tormation cleared)
ATPRESPONSE (230, Userloggedin)
ATPRESPONSE (530, Not loggedlin)
ATPRESPONSE (233, Recipient okay)
ATPRESPONSE (533, Unknown recipient)
ATPRESPONSE (354, File information okayawating completion)
ATPRESPONSE (254, File information-okay)
ATPRESPONSE (554, File has already been uploaded)
ATPRESPONSE (000, Jnknown Response)

// a tpdata. h : essential definitions for the ATP protocol
#ifndef ATPDATAH
#define ATPDATAH
// Commands

const char AtpCommands () = (
* FROM, USER", "NAME", "FILE, MoDE,
TYPE", "BLKSIZE", "READY", "DATA, NBORT ". RESET", "EXIT

const int ATPUNKNOWN ID = -1;
enurn AtpCommand ID

ATPFROMID,
ATPUSERID,
ATPNAMEID,
ATPFILEID,
ATP MODEID,
ATP TYPEID,
ATPBLKSIZEID,
ATP READYID,
ATPDATAID,
ATPABORTId,
ATPRESETID,
ATPEXITID,
ATPIDNUM

);

struct AtpResponse (
int id;
char *message;

);

// JRW Macros to define AtpResponses entries
define ATP_RESPONSE (value, symbol) \

const int atpf symbol = (value ;
include atpdata def. h.

undef ATPRESPONSE
fdefine ATP RESPONSE (value, symbol) v

(a tpi symbol, symbol " . "),
AtpResponse AtpResponses () = (
include atpdata def. h."

fendif // ATPDATAH

US 2004/0059799 A1 Mar. 25, 2004

// a tipsock.cpp. ; implementation of the CAtpSocket class

(include Ks todlib.h>
finclude 'stdafx.h"
include kassert.h>

include "atpsock. h"

include a tpdata.h

CAtpSocket: : CAtpSocket (ISockCallback pSCB. IntpCallback pCB) (
m pCB = pcB;
m pSCB e. pSCB;
atp_mode = ATPCONTROL.;
atp state re ATP-START;
idf = NULL;
ides = NULL;
data = NULL;

InitNewFile ();

void CAtpSocket : ; Initialize (IDFServer server) {
idfs = server;
Send Response (atpaTP server ready);

}

//
// CAtpSocket Overridable callbacks

void CAtpSocket :: OnReceive (int nError Code) {
CAsyncSocket :: OnReceive (nErrorCode) ;

int len;

if (nError Code) (
FatalError (nError Code) ;
return;

)

// Read all the available data in the buffer
while (1)

len se Receive (buf, bufsize) ;
if (len len. == SOCKETERROR) break; -
CString trip (buf, len) ;
recvbuf + = trip;

BOOL ret = TRUE;
while (ret)

switch (atp mode) (
case ATP CONTROL:

ret = handlecontrol () ;
break;

case ATPDATA:
ret a handleData () ;
break;

)
return;

)

void CAtpSocket :: OnSend (int nError Code) (
CAsyncSocket :: OnSend (nError Code);
if (nErrorCode) {
FatalError (nErrorcode) ;
return;

)

Try"ToSend ();
)

void CAtpSocket: :onclose (int nErrorcode) {
CAsyncSocket: : OnClose (nErrorCode) ;
npSCB->ProcessClose (this);

)

/
// CSocket Implementation

US 2004/0059799 A1

CAtpSocket: : -CAtpSocket () - (

)

if (data delete data;
data NJ;

void CAtpSocket: : Fatal Error (int nErrorCode)

void CAtpSocket: : TryToSend ()

void CAtpSocket: : SendString (CString diata)

CString CAtpSocket: : ExtractLine ()

CString CAtpSocket: : ExtractWord ()

BOOL CAtpSocket: : handleControl ()

nError Code;

int len, strlen;

strlen a send buf. Get Length ();
if stren = 0) return;
const char * bufptr = (LPCTSTR)
len = Send (bufptir, strlen) ;

(

send buf;

if (len == SOCKETERROR) return;
send buf = send buf. Mid len) ;

send buf + = data;
TryToSend ();

CString trip;

int pos c recvbuf. Find (" \r \n");
if (pos C 0) return trip;
trip = recvbuf. Left (pos+2);
recvbuf = recv-buf. Mid (pos+2);
return tip;

CString trip;

line. Trinleft ();
int pos z line. Find (' ') :
if (pos C 0) pos = line. Get Length () - l;
tmp = line. Left (pos -l) ;
line = line. Mid (post-l) ;
trip. TrimRight ();
return trip;

line = ExtractLine ();
if (line. Is Empty ()) return FALSE;
line = line. Left (line. GetLength () -2);
line. TrinRight () ;

CString command as ExtractWord ();
int commandid = ATPUNKNOWN ID:
for (int i = 0; i < ATPIDNUM;

if (! command. CompareNoCase (AtpCommands (i)})
commandid = i ;
break;

switch (commandid) {
case ATPUNKNOWN ID:

Send Response (atpSyntax error command unrecognized) ;
break;

case ATPFROMID:
handleCommand From () ;
break

case ATPLUSER ID:
hardleCommand User () ;
break;

case ATPNAMEID:
handleCommand Nairne () ;
break;

case ATPFILEID:
handleCommand File ();
break;

case ATPBLKSIZE ID:
handlecommandiblkSize ();

i++)

(

Mar. 25, 2004

US 2004/0059799 A1

break;
case ATP READY D:

handlecommand Ready ();
break;

case ATP DATA ID:
handlecommandidata ()
break

)

case ATP ABORT ID:
handlecommand Abort ()
break;

case ATPRESET ID:
handleCommand Reset () ;
break;

case ATPEXIT ID:
handleCommand Exit () ;
break;

case ATP MODEID:
case ATP TYPE ID:
default:

Mar. 25, 2004

Ponse (atpcommand-not-implemented-super fluous at this site break;
)
return TRUE.

BOQL CAtpSocket: ; handledata () (
long rest a fiblksize - datalen:

if (recV-buf, Get Length () < rest)
rest recv-buf. GetLength () ;

mercpy (data + data en recV-buf, rest) ; EeCV-buf = recvbuf. Mid (rest),
data-len += rest;
if (data-len as fblksize)

idf->WriteBlock (fiblk,
fblk = -

data);

Send Response (atpData transfer-completed);
atP-node = ATP CONTROL

// making finalization explicit
long blk c. idf->GetEmpty Block ().
if (blk < 0) idf->Finalize () ;
return TRUE;

}
return. FALSE

void CAtpSocket: : handlecommand From
CString from, pass;

if (a tp state is ATP-START) { SendResponse (atpBase
return

if (line. Is Empty ()) (
EPsetpsyntax-error-in-parameters_or_arguments return;

from Extractword ()
pass = line
line. Empty ();

?t no authentication so
ffrom = from

Guence-of-commands);

far

Send Response tatpuser logged in
atp-state = ATPLOGIN

void CAtpSocket: : handlecommanduser () t CString to;

if (atp-state is ATPLOGIN) (
SeResponse (atpBad sequence of commands . . .
return

US 2004/0059799 A1

if line. Its Empty ()) (
SendResponse (atpSyntax error-in-parameters-or-arguments) ;
return

)
to - ExtractWord ();
if (! line. Is Empty ()) {
SendResponse (atpSyntax-error-in-parameters-or-arguments) :
return;

10

f / no recipient verification yet
fuser = to;
SendResponse (atpRecipient okay);
atpstate = ATP RCPT;

InitNewFile () ;

void CAtpSocket: : InitNewFile ()
frame = " :
fsize = 0
fbsize = 0;
fochkisurn c 0;
idf = NULL;
folk = - 1

void CAtpSocket: ; handlecommand Name ()
CString name;

if (a tip state
SendResponse (atpBad sequence of commands);
return;

is ATP RCPT)

if (line. Is Empty ()) (
SendResponse (atpSyntax error in parameters or arguments) ;
return;

name = line;
line. Empty () ;

// ++ Check validity here
frname - nartne:
if (fsize > 0)
SendResponse (atpFileinformation okay) ;
atpstate =

}
else
SendResponse (at pFile information okayawating completion);

(

ATPFILE;

void CAtpSocket: : handlecommand File ()
long size, chksun;
CString timp;

if (atp state
SendResponse (atpBadsequence of commands) ;
return

= ATP RCPT)

if (line. Is Empty ()) (
SendResponse (atpSyntax-error in parameters or arguments) ;
return;

)

trip is ExtractWord ();
size = atol trip) ;
chksum = 0

tmp = ExtractWord ();
if (i trip. Is Empty ())
chksum = atol (trip) ;

fsize = size;
fchksum = chksun;

if (! finane. Is Empty ()) (
SendResponse (atpFile information okay);

(

(

Mar. 25, 2004

US 2004/0059799 A1 Mar. 25, 2004
11

atp state = ATP-FILE;

else
send Response (atpFile-information-okayawating-completion):

void CAtpsocket: : FindIDFile () (
if if) return;

IDFile “idftmp = new IDF i) e (fname, fsize, fchksum) ;
DFle odidf = idfs ->Findi le (idf trip) ;

if (oldid f = NULL } {
delete id ftp;
idf = oldidf;

)
else

idf = idf tinp;

void CAtpSocket: : handleCommand BlkSize () (
CString trip;
long bsize, shosize;

if (atpstate = ATPFILE} (
Send Response (atpBadsequence of commands);
retirr;

if (line. Is Empty ()) (
SendResponse (atpSyntax error in parameters or arguments) :
return;

trip = ExtractWord ();
bsize = a to trip) ;

FindIDFile () ;

if (idlf->Is Finalized () idf-> Is Bound ()) {
shosize = idf->GetBlockSize ();
if (shosize s = bsize) . . .
Send Response (a tpblock size accepted, sbsize) ;
fbsize = bsize;
atp state = ATPBLKSI2E.;

) else
Send Response (atpBlock size already set permanently, shosize) ;

return;

shesize = idf->SetBlockSize (bsize) ;
if sosize = bsize)

f / suggested size from the IDFile implementation
SendResponse (at pblock size not acceptable, shsize) ;
return;

fbsize is bsize;
Send Response (atpBlock size accepted, fbsize) ;
atp state e ATPBLKS2E

idfs->Adidf // -- 4 error checking here perhaps
f / (although this is verified at a later stage)

void CAtpSocket :: handleCornmand Ready () (
assert (fbsize > 0 & idf = NULL);

if (atpstate = ATPBLKSIZE) {
SendResponse (atpBad sequence of corunands);
return;

if (! idf-> Is Bound () idfs -> Add (idf)) {
Send Response (434) ;
return

)

long blk = idf-sGetEmptyBlock ();

US 2004/0059799 A1 Mar. 25, 2004
12

if (blk C. O)
SendResponse (at pFile completed) ;
idf->Finalize () i.
return;

)

fblksize = idf->GetBlockSize (blk) ;
long stall = n poB->RequestTransfer (fblksize) ;
if (stall < 0)

f / The control proc will invoke a reply later
return

if (stall > 0) {
Send Response (atpMachine busy Please-stall, stall) ;
return;

)

if (data) delete () data;
data = new ethar (fblksize):

if (: data) {
Send Response (at pocal-error);
return

)

fblk = blk;
Send:Response (atp Block requested, fblk) ;
atpstate as ATPREADY;

)

void cAtpSocket: : handlecommand Data () { CString trip;
long bsize;

assert fiblk >= 0 & & fiblk C = (f size-l) / fbsize);

if (a tipstate is ATPRENLY) {
Send Response (atpBadisequence of commands);
return;

trip s ExtractWord (); . . .
bsize s a toll (trip) ;

if (bsize l = fblksize) {
SendResponse (a tpblock size-not-acceptable, fiblksize) ;
return;

)

long stall a ripCB->RequestTransfer (fblksize):
if (stall K 0)

// The control proc will invoke a reply later
return

if (stall > 0) {
Send Response (atpMachine-busy. Pleases tall, stall) ;
return;

)

Send Response (atpData transfer starting);
datalen O:
atpmode e ATPDATA;
atpstate c. ATPBLKSK2E;

)

void CAtpSocket: : handlecommand Abort () (
if (atpstate is ATPREADY) {
Send Response (atpBadisequence of commands);
etc.

)
folk -
Send Response (atpData transferaborted);
atpstate a TPBLKS2E;

)

void CAtpSocket: ; handleCommand Reset () (

Mar. 25, 2004 US 2004/0059799 Al 13

if (atpstate == ATP START atp-state ce ATPLOGIN) { Send Response (atpBad-sequence-of-cortunands) ; return
)

Send Response (atpFile intormation-cleared) : InitiewFile () ;
atp state = ATP RCPT;

void CAtpSocket :: handleCommand Exit () {
Send Response (atpClosing-control-connection); Close () ;
atpstate = ATPSTART;

void CAtpSocket :: Send Response (int nurn) {
for (int i = 0; ; i4+)
if (AtpResponses (i) .id == num ! AtpResponses (i.i.d.) { CString trip;

timp. GetBuffer (lo24) ;
trip. Format ("td is Wr Wn, nun, AtpResponses (i) . message) ; Send String (trip) ;
return;

void CAtpSocket: : Send Response (int nurn, CString Insg) { CString timp;
tnp. GetBuffer (1024);
timp. Format ($d s\r Win", nurn, msg); Send String trip) ;

)

void CAtpSocket: : Send Response (int num, long arg) { for (int i = 0; ; i++)
if (AtpResponses (i) .id == num AtpResponses Ei) . id) { CString timp;

trip. GetBuffer (1024);
tmp. Format ("to (ld) is \r \n", nun, arg, AtpResponses (i) . message); Send String (trip);
return;

)

void CAtpSocket: ; SendMultiline Response (int num, CString data) (for (int i = 0; ; i + 4-)
if (AtpResponses (i) .id == nun AtpResponses (i). id) { CString trip:
tmp. GetBuffer (81.96);
timp. Format (" 'd- is Wr \ns Wr \nd s",

num, AtpResponses i) . message, data,
nurn, AtpResponses (i.message) ; Send String (tinp);

return;
)

ifdef DEBUG
void CAtpSocket: : AssertValid () const (

)

void CAtpSocket: : Dump (CDumpContexts dc) const (

)
fendif //DEBUG

CAsyncSocket: : Assertvalid ();

CAsync Socket: ; Dump (dic); a

25, 2004 US 2004/0059799 A1 Mar. 25
14

WW
// C++ header file
f / (c) 1996 ACS

iifndef IDFSERVERH
#define IDFSERVERH

include "stdafx.h."
it include "callback. h"
include options. h"

class IDFile
private :

IDFile (const IDFile) ; // no implementation
void operators (const IDFile &); // no implementation

public:
IDFile () ;
IDFile (IIDF.Callback "pCB, CString idfname);
IDFile (CString name, long size, long chksum = 0);
-IDFile ();

BOOL operator== (const IDFile& comp) const;
BOOL SetFileInfo (CString name, long size, long chksum = 0);
long GetBlockSize (long blk = -l) const;
long SetBlockSize (long bsize) ;
BOOL. Is Bound () const;
BOOL CreateIDF (IIDFCallback "pCB, CString tempdir) ;
long GetBlock Nunn () const;
long GetEmptyBlock Nurn () const;

BOOL GetBlockState (long bnurn) const;
long GetEmptyBlock () const;
BOOL WriteBlock (long bnum, const void buf);
BOOL is Finalized () const;
BOOL Finalize () ;

public:
friend CDumpContext& operator C-C (CDulpContext& cout, const IDFile & idf);

private :
friend CArchives operator& C (CArchive& cout, const IDFiles idf);
friend CArchive& operator>> (CArchive& cin, IDFiles idf);

private:
IIDFCallback "mpCB;

public:
// file info
CString finane, tempname;
long fsize, fchksurn;
long fbsize;

private:
// internal state
BOOL fibound finalized;
CFile idfille, "f file;

long btable len, first-free, empty num;
int. 'btable;

private:
void initialize ();
void Store ();
void Restore (CString idfname);

) ;

class IDFServer { private:
IDFServer (cornst OFServer) ; // no implementation
void operators (const IDFServers) ; // no implementation

Mar. 25, 2004 US 2004/0059799 A1 15

public: A.

DFServer(IIDFcallback "pCB, Coptions opts) : -DFServer ();

IDFile FindEDFile (IDFile "idf) ; bool. Add (IDFile idf):
// Implementation : private:
IDFCallback mpcB; Coptions options;
CP trArray idfs;

private :
void Load IDFiles (CString dir) ;

);

fend if A / IDFSERVER-H-
w/ End of headers

// callbäck definitions
A/
f/ C++ header file
AW (c) 396 ACS
//

#ifndef CALLBACKH
A define CALLBACKH

// Callback for socket connections.
// Classes using sockets should inherit this.
class SockCallback . . . public:
virtual void Process Pending Accept (CN syncSocket sock) (sock;) ;
virtual void Processhccept Error (CAsync Socket sock, int in Error Code) (sock; nErrorCode 3 virtual void Process Pending Data (CAsyncSocket “sock) (sock; };
virtual void ProcessClose (CAsyncSocket sock) (sock;)

A? Callback for IDF observers
class IdFile;
class IIdF.Callback public :
virtual void Processdownloaded file (IDFile "idf) idf; };
virtual void Process WrittenBlock (IDFile idf) idf;););

// Callback for ATP protocol controllers class IAtpCallback (public:
// Verifyuser should be in IDFServer, actually
//virtual BOOL Verify User (CString from, CString user) (return TRUE:)
// Return suggested stall in seconds. 0 = OR - -
virtual long RequestTransfer (long size) (size; return 0;));

class AtpConnection;

// To be inherited by the Atp observer class IAtpProgressCallback (public:
) virtual void Process ConnectionState (const AtpConnection conn) ;

// To be inherited by the Atp Socket controller class AtpStateCallback
virtual BOOL, GetConnectionState long uid, AtpConnection & conn); virtual int GetAllConnection States (AtpConnection & conn));

endif / / CALLBACKH
7 End of headers

Mar. 25, 2004 US 2004/0059799 A1 16

// IDFServer.cpp : Implementation of the IDFServer and IDFile classes // c-- 4 code file
// (c) 1996 ACS
//

Ainclude stdafx.h"
Airnclude IDFServer. h.

A / IDFile Implementation

IdFile: :ofile () {
Initialize () ;

)

IDFile: : IDFile (CString name, long size, long chksun) {
Initialize () ;

nate - name;
f size = size;
fchksum = chksurn;

IDFile: : IDFile (IIDFCallback pCB, CString idfname) { Initialize ();
m pcB = poB
Restore (idfname) ;

IDFile: : -IDFile () (
if (f file) delete ffile;
if (id file) delete idfille;
if (btable) delete b table;

}

void IDFile: ; Initialize () {
fbound c f finalized - FALSE s

idfille = ffile - NULL;
btable = NULL;

fname tempname = "" ; -
f size = fbsize = fchksum = 0;
b table-len as first free is 0;)

void IDFile: : Store () (
if (fbound & & f finalized) return;
idfille-> SeekToBegin () ;
CArchive id farehive (id file, CArchive: : store);
id farchive a < this
id farchive. Flush () : // JRW Archive file
idfille -->Flush (); // TRW IDF file.
idfille->SetLength (id file->GetPosition ()) ;

void IDFile: : Restore (CString idfname) { CFileException ei
id file s new CFile ():
if (! idfile->Open (idfname, CFile::rnodecreate CFile: ; modenotruncate

CFile: : modeReadWrite CFile:: shareDenyWrite, see)) (delete id file;
idfille = NULL;
throw new CFileException ();

) - -

id file->SeekToBegin ();
Carchive id farchive (id file, CArchive: ; load);
id farchive >> * this;

if f bound)
f file is new CFile () ;
if (f file--> Open (tempname, CFile: : modeCreate CFile: : modeNoTruncate

CFile::mode write CFile: : shareDenywrite, &e)) { - delete f file;
ffile = NULL;
throw new CFileException () ;

US 2004/0059799 A1 Mar. 25, 2004
17

BOOL IDFile: : operator== (const IDFile& comp} consti (
return (fname == comp. frname & & f size == Comp, f size & &

Echksum as corp. fohksum);
)

BOOL IDFile: ; SetFile:Info (CString name, long size, long chksun)
if (fbound f finalized) return FALSE;
finane = name;
fsize = size;
fohiksun e chks unt;
return TRUE;

long IDFile: : SetBlockSize (long bsize) {
if (fbound & & lf finalized)

fbsize = bsize;
return fbsize;

)

BOOL IDFile: ; sBound () const (
return fibound

)

BOOL IDFile: ; CreateIDF (IIDFCallback “pcB, CString tempdir) {
if (fbound f finalized) return FALSE;
if (finane. Is Empty () fsize K = 0 fbsize <= 0) return FALSE;
(pCB = pcB;

CFile:Exception e.

// open the real file
char trip (MAX PATH):
if (! GetTempFileName (tempdir, finaume, O, trnp)) return FalSE; tempname = trip;

f file = new CFile ();
if (!ffile->Open (tempname, cFile: : modecreate cFile:: modewrite

CFile: : share DenyWrite, &e)) {
delete ffile;
ffile = NULL;
return FALSE

try
f file->SetLength (fsize) ;

} catch (CFileException e) {
delete ffile;
f file = NULL;
return FALSE;

)

id file a new CFile () ;
if (! idfille-> Open (tempname + " ... idf",

CFile::modecreate CFile::modeReadWrite CFile: : sharedenyWrite, &e)) {
delete ffie
delete id file;
ffile = id file = NULL; -
return FALSE;

fbound s TRUE;

empty-num = b table-len = (fsize + fbsize-1) / fbsize;
first-free = 0;
btable at new int (btable len);
for (int i = 0; i < btable len; it +)

otable (i) = 0;

try {
Store ();

US 2004/0059799 A1 18

) catch (CFileException e) {
// + + all set, but cannot save status for some reason

return TRUE;
}

long IDFile: ; GetBlockNum () const (
return btablel en;

)

long IDFile: : GetEmptyBlockNun () const (
return erpty nun;

)

int IDFile: : GetBlockState (long bonun) const (
if (bnum < 0 bnum > = b table len) return -1;
return btable (bnum);

long IDFile: : GetBlockSize (long bnum) const (
if (bn == (fsize-1) /fbsize)
return fsize - fbsizebnum;

else
return fbsize;

)

long IDFile: : GetEmptyBlock () const {
if (f finalized first-free > = b table len) return - l; return first free;

BOOL IDFile: : Write Block (long brium, const void buf) {
if (f finalized) retirrh TRUE;
if (! fbound) return FALSE;
if (bnum < 0 brium > = b table-len) return FALSE:
if (btable (brium)) return TRUE; try (
ffile->Seek (bnum fbsize, CFile: ; begin);
if (binurt + 1 < btable len)

f file->write (buf, fbsize) ;
else

f file->Write (buf, fsize fbsize) ;
f file->Flush (); // JRW Temp file.

} catch (CFile:Exception e) {
return FALSE;

// data written, update status
btable bnum) = l;
empty num- -;
if (bnum == first free)
while (first free K btable-len & & b table (first free)) first-free++;

if (npCB) m pCB-> Process written Block (this);

// If file is completed attempt finalization
// or not: make that explicit, finalization can
f / be time intensive - - better take care of the
// protocol first.
//
// if empty num)
// Finalize () ;

e try (
Store () ;

} catch (CFile:Exception e) (
wa ++ Status cannot be saved

)
return TRUE;

BOOL IDFile: : Is Finalized () cost
return f finalized;

Mar. 25, 2004

US 2004/0059799 A1 Mar. 25, 2004
19

BOOL IDFile: : Finalize () (
if (f finalized & & IT pCB)
mpCB->Process DownloadedFile (this) ;

if (! fbound) return FALSE;
if (first free < btable len) return FhlSE;
try (

f file->Close () ;
} catch (CFile:Exception e) {

return FALSE;
)

fbound = FALSE;
ffinalized TRUE;

delete () bt able;
btable = NULL;
bitablellen = first-free = 0;
delete ffile;
ffile = NULL;

if (rn pCB) in pCB-> Process Downloaded File (this);
return TRUE;

// IDFile Serialization

CDumpContext& operator << (CDurnpContext cout, const IDFile& idf) {
idf; -

return Cout;

CArchive& operator << (CArchive & cout, const IDFile & idf) {
// Magic number
cout CC 'I' C-C 'D' << 'F' << 'l' : -

cout << idf. floound C-C idf. f finalized;
cout K-C idlf. fsize << idf.fchksun C< idf.fbsize;
cout C< idf.btable lien << idf. first-free << idf. empty nurn;
for (int i = 0; i < idf.btable len; i++}

, cout KC idf.btable (i) ;

cout. WriteString (idf. frname + \r Vin") ;
cout. WriteString (idf. terpname + "Wr Vn } :
return cout

CArchive & operator>> (CArchive & cin, IDFile & idf) (
if (id f. ffile) delete idf. ffie;
idf. f file = NULL;
if idf.btable) delete idf.btable;
idf.btable = NULL;

char magic 4) :
cir >> magic O >> tagic l) >> magic (2) >> Tragic (3);
if (magic 0} = 'I' magic (1) = 'D'

magic (2) = 'F' magic (3) = 'l')
throw new CF ille Exception () ;

cin >> idf.fbound >> idf. f finalized;
cin >> idf. fsize >> idf. fohksum >> idf. fbsize;
cin >> idf.btablelen >> idf. first-free >> idf. empty num;
if (idf.btable len)

idf.btable = new in tidf.btable len);
for (int i = 0; i < idf.btable en;... it 4-4)

cin >> idf.btable (i) ;

cin. Read String (idf. frname);
cin. ReadString (idf. temprame);
return cin:

US 2004/0059799 A1 20 Mar. 25, 2004

// IDFServer Implementation

IDF server: ; IDFServer (IIDFCallback pCB, Coptions opts) {
in pCB as pCB;
options = opts;

CFile:Status fstat;
if (CFile: : GetStatus (options-> IDF DIRECTORY, fstat))

if (f stat. mattribute & CFile: : directory} {
Load.IDFiles (options -> IDF DIRECTORY):
return;

throw new CFileException () ;
}

IDFServer: : -IDFSever () {
for (int is 0; i < idfs. GetSize () : i ++)
delete (Dfile idfs i;

idfs. Remove Al;
)

void IDFServer: : Load IDFiles (CString dir) {
WIN32.FIND DATA foata;
HANDLE searchip tr;

searchptr = Find FirstFile (dir + \\ . . idf, & ?ciata) ;
if (search.ptr = = INVALID HANDLEVALUE) return; do

// verify attributes: is it a writable file?
if (fdata. dwfile attributes & FILEATTRIBUTE_DIRECTORY
fdata.dwFile:Attributes & FILEATTRIBUTE READONLY) continue;

CString filename = dir + \\ + folata. cFileName;
// verify age and delete if too old
CTime time (fdata. ftestWriteTime);
if ((CTime: ; GetCurrentTime () - ftime). GetTotal Seconds () > options->IDF RECLAIMTIME} (
CFile: : Remove (filename);
continue; -

) . . " try {
IDFile *id file = new IDFile (m.pCB, filename);
Add (idfie) ;

} catch (CFileException e) {
// well, tough, nothing we can do if we can't read the file) catch (C.ArchiveException e) {

)
} while (FindNextFile (search.ptr & feata));
FindClose (searchip tr) ;

}

BOOL IDFServer: : Add (IDFile "idf) {
if (idlf->Is Bound () && idf->IsFinalized ()) {
if (! idf->CreateIDF (mpCB. options -> IDF DIRECTORY) }

return FALSE;
)
idfs. Add idf);
return TRUE.

)

IDFile IDFServer; : FindioFile (IDFile idf) (
for (int i = 0; i C idfs. GetSize (); it. 4-)

th- if (* (IDFile *) idfs (i) as idf)
return (IDFile) ids (i);

return NULL;
)

// End of code

25, 2004 US 2004/0059799 A1 Mar. 25,
21

f/
f / C++ header file
f / (c) 1996 ACS
Af

fifndef PACKFILEH
define PACKFILEH
include stdafx. h."

typedef WORD UINT6:
typedef DWORD UINT32

// Oh, how I wish VC++ could Place constants in classes
const INT32 zipfile. Locsig = 0x0403.4 b50L
Const UINT16 2ipFile Methodstore O;
const UINTS Zipfille-Flag Encrypted l; const UINT16 ZipFile:Flag Extheader 8;
class 2ipFile : private cFile
public:

Zipfile (int hFile) ;
ZipFile (CString frname, UINT nopen Flags = CFile: : modeRead); virtual -ZipFile () ;

BOOL ExtractFiles (CString dir) ;
private :

struct ZipFileHeader
UINT32 sig;
UINT16 xxx1.
UINT16 flags;
UINF16 method:
UINT32 time; . . "
UINT32 circ;
UINT32 csize
UINT32 osize
UINT16 namelen
UINT16 extralen

} :

struct 2ipExtheader
char buf (16);

) ;

struct 2ipEncryptHeader
char buf (12),

) ;

2ipFileHeader ReadHeader () ;
UINT16 Readshort ()
UINT32 ReadLong () :

tendif // -PACKFILEH

// End of headers

25, 2004 US 2004/0059799 A1 Mar
22

//
// C++ code file
// (c) 1996 ACS
Af

include "stdafx.h.
include "packfile. h "

zipFile: : zipfile (int hFile)
CFile (hile)

)

2ipFile: : zipFile (CString finame, UINT nopen Flags)
: CFile (finane, nopen Flag S) {

}

ZipFile: : - Zipfile () (
-CFile();

)

BOOL. ZipFile: : ExtractFiles (CString dir)
int num = 0;
BOOL badeof, skip ;
const long bufsize = 16384;
char bufbuf size) ;

2ipFileHeader head;
ZipEncryptheader enci enc;
ZipExtheader ext; ext;
try (

SeekToBegin ();

badeof = skip = FALSE;
while (1) {
head = ReadHeader ()
if (head. Sig = 2ipFile:LocSig) break;
bade of = TRUE;
Tu-4;

// skip encryption header if present
if (head. flags & 2.ipFile:Flag Encrypted) { -
skip is TRUE;
Seek (sizeof (enc), CFile: : current) ;

skip E skip (head. method is 2ipFile MethodStore);
skip = skip (head.csize = head.osize) ;
// read filename
if (Read (buf, head. namelen) = head. namelen) break;

// convert the filename to standard form
// create directories if needed
CString finame = dir;
if (! skip) {
CString trip (buf, head. namelen) ; int pos;
while ((pos = trup. Findoneof ("A WW)) > = 0) {

fname = finane + \ \" + trip, Left (pos);
trap = timp. Mid (pos+l) ;

OWORD attrib = GetFile:Attributes (fname);
if (! (attrib & FILEATTRIBUTEDIRECTORY)
(attrib == -l & & CreateDirectory (fname, NULL))) { skip = TRUE;

break;

fname = finane + \\" + trip;
)

f / create destination file -- a
CFile file;
skip = skip file. Open (frame, CFile: ; modeCreate CFile: ; modewrite) ;
// transfer contents
if (skip)
Seek (head.csize CFile: : current);

US 2004/0059799 A1 Mar. 25, 2004
23

else (
int left a head.csize;
while (left)

int lien = Read (buf, left < bufsize 2 left : bufsize) ;
if (len = c 0) break;
left - set len;
file. Write (buf, len) ;

file. Close ():

// skip extended header
if head. flags & 2ipFile:Flag Exth eader)
Seek (head. extralen. CFile: : current);

bade of = FALSE
)

) catch (CFile:Exception e) {
return FALSE;

return (bade of SS num);
)

Zipfile : : zipFileHeader ZipFile: : ReadHeader () (
ZipfileHeader head;

head, sig s Read Long () ;
head. xxx e ReadShort () ;
head. flags = Read Short () ;
head. method = ReadShort ();
head. time = Read Long () ;
head. Crc = Read Long ();
head. Csize = Readong ();
head.osize = Read Long () :
head...namelen = ReadShort () ;
head. extralien - Read Short () :
return head;

UINT6 Zipfille: ; ReadShort () (
unsigned char buf (2) ;
Read (buf, 2) .
return UINT16 (((UINT16) buf(0)) UINT16 ((((UINT16) buf (1) << 8) ;) ;

UINT32 zipFile: : Readillong () (
UINT32 lo = ReadShort () ;
UINT32 hi = ReadShort () << 16;
return lo hi;

}

fa End of code

// Clientl. h : main header file for the CLIENT1 application
//

fifndef AFXWINH
terror include 'stdafx.h' before including this file for PCH
tendlif

include resource.h" f / main symbols
finclude callback.h"
include options. h.
include "idfserver.h
(include atpsock.h
include socket control. h"

Mar. 25, 2004 US 2004/0059799 A1 24

f / A? CCient:
f / See Clientl.cpp for the implementation of this class ww.

class collientl: public CW in App, IIDFCallback
public:

CClientl();
// Overrides
f / Class Wizard generated virtual function overrides
f / ((AFXVIRTUAL (CClientil) public:
virtual BOOL Initnstance () ;
//))AFXVIRTUAL

// Implementation
public:
virtual void Process Downloaded File (IDFile idf);

private:
Coptions "moptions;
IDFServer midfserver;
SocketControl matpser ver;
// ((AFX MSG (CClient)
// NOTE - the ClassWizard will add and remove member functions here.
WA DO NOT EDIT what you see in these blocks of generated code //) AFX MSG
DECLAREMESSAGEMAP () ;);

f / Afy/

US 2004/0059799 A1 Mar. 25, 2004
25

fy clientl.cpp : Defines the class behaviors for the application.
Aw

include stdafx.h"
(include 'stdlib.h."

// include <shlguid.h>
extern C {
is include Cwinnetwk.h>
it include Cshellapi.h>
include <shlobj.h>
finclude Cobjbase.h>
include Cinitguid, h>

)
finclude 'winnlis, h"

include "Client1.h
include "Clientolg.h"
include "packfile.h"
include ProcessMonitor. h. v? RW 96105

fifdef DEBUG
fidefine new DEBUG NEW
fundef THIS FILE
static char THES_FILE) a FILE:
tendilf

f /
f / CClientil

BEGIN MESSAGEMAP (CClient, CWinApp)
// ((AFXMSGMAP (CClientl)
// NOTE - the ClassWizard will add and remove mapping macros here.
WA DO NOT EDIT what you see in these blocks of generated code //)) AFX MSG
ONCOMMAND (ID HELP, CWin App: : OnHelp)

END MESSAGEMAP () ;

f /
// CClientil construction

CClientl: : CClientil ()

// TODO: add construction code here,
// Place all significant initialization in Initinstance

/
// The one and only CClientil object
CClientil the App;

///www//w////www/ A///www.f//w//wwwf///w////////
WA CClientil initialization

BOOL CClientil : ; Initinstance ()

if (AfxSocketInit ())
(
AfxMessageBox (IDPSOCKETSINIT FAILED);
return FALSE;

}

CoInitialize (NULL);
// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

ifdef AFXDL.
Enable3d.controls () // Call this when using MFC in a shared DLL, -else

Ele3d.controls static (); // Call this when linking to MFC statically eradif

CClientlog dlg.
mplainWind s &dlg;

in options new Coptions () ;

Mar. 25, 2004 US 2004/0059799 A1 26

matpserver e new SocketControl () ;
midfserver = new IDFServer (this, moptions) ;
if (matpserver-> Initialize (midfserver)) (
Afx MessageBox ("Cannot bind to socket) ;
return FALSE;

Hifdef PROCESS MONITOR
if (StartMonitorThread ())

AfxMessageBox ("Cannot start monitor thread ' ') ; return FALSE,

& endif w/ PROCESS MONITOR

int nResponse = dlg. DoModal ();
if (nResponse as IDOK) {

a / Todd : Place code here to handle when the dialog is f / dismissed with OK

)
else if (nResponse == IDCANCEL)

ww TODO: Place code here to handle when the dialog is
f / dismissed with Cancel

}

// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump. return FALSE

BOOL File:Exists (LPCSTR lipszPath)
return GetFile:Attributes lipszPath) = -l) ;)

HRESULT CreateLink (LPCSTR lipszPathobj, LPCSTR lipsz PathLink,
LPCSTR lipszdesc, LPCSTR lipszIcon)

HRESULT hires; . . .
IShellink psi = NULL;

// Get a pointer to the IShell Link interface.
hires = CoCreatenstance (CLSIdShell Link, NULL, w

CLSCTX INPROCSERVER, IIDIShell Link, (void ' ') &psil) ;
if (psi)

IPersistFile" ppf E NULL;

// Set the path to the shortcut target, and add the // description.
psil->SetPath (lpszPathobi);
psil->SetDescription (lipszdesc);

if (lipszIcon lipszIcon } {
af Add one of our icons
char rynane MAX PATH):
GetModuleFileName (NULL, my name, MAX PATH) ;
hires = psil->Set IconLocation (myname, l); // need a constant ere)

else
hires - psil->SetIconLocation (lpszIcon, O);

Os // Query IShell link for the IPersistFile interface for saving the // shortcut in persistent storage.
hires = psil->QueryInterface (IIDIPersistFile, (void ' ') &ppf) ;
if (ppf) { ... "
WORD wsz MAX PATH) ;

// Ensure that the string is ANSI.
MultibyteToWideChar (CPACP, O, lipsz Pathink, -l, -

wisz, MAXPATH) ;

// Save the link by calling IPersistFile: : Save.

Mar. 25, 2004 US 2004/0059799 A1 27

hires a ppf-> Save (ws 2, TRUE) ;
ppf->Release () :

)
pslas Release ();

return hires;
)

void CClientil : ; Process Downloaded File (IDFile idf) {
//AfxMessageBox ("File " + idf->fname + downloaded as " + idf-> tempname);
CString dirpath s m options -> IDF DIRECTORY + \ \" 4 idlf-> fname; CreateDirectory (dirpath, NULL);
2ipFile zip (idf->tempname);
zip. ExtractFiles (dirpath);
// system (unzip -o \"" + idf->tempname + \" -d V" " + dirpath + \");
CString rootpath is dirpath + "WVroot.htm";
if (File:Exists rootpath)) return;

CString iconpath a dirpath + "VVrooticon. ico;
if (File:Exists (iconpath)) iconpath is " " :
LPITEMIDLIST idlist;
char desktop (MAXPATH) ;
HRESULT res; .

res e SHGetSpecial FolderLocation (NULL, CSIDL DESKTOPDIRECTORY, &idlist); if .. (res is NOERROR) return;
if (! SHGetPathFrom DList (idlist, desktop)) return;
CString linkpath F desktop
linkpath + s \ \" -- idf-> frame + " .. link";

Createllink (rootpath, linkpath, idf->finane, iconpath); return;

Af
f / C+ 4 header file
// (c) 1996 ACS

difndef SOCKETCONTROL. H.
(define SOCKETCONTROL.H.
include 'stdafx.h"
include "cailback. h.
include 'ls tn sock. h.
include "atpsock.h"

const ATP PORT a 608;

class SocketControl : public ISockCallback, IAtpCallback (public:
SocketControl () ;
virtual -SocketControl () :

virtual void Process Pending Accept (CAsyncSocket sock);
virtual void Process Close (CAsyncSocket sock); - -

BOOI. Initialize (IDFServer idfs) :
private :

IDFServer midfs
CListeningSocket Tlsock;
CP triarray Insockets, ritodelete;) ;

fendif // SOCKETCONTROL.H.
// End of headers

US 2004/0059799 A1 Mar. 25, 2004
28

f/
f / C++ code file
// (c) 1996 ACS
A/ -

include stdafx.h"
include "SocketControl.h"

socket control :: SocketControl () (
mlsock E NULL;

)

socketcontrol: : --SocketControl () (
if mlsock) delete in-lsock:
rulsock E NULL;

)

Bool socketcontrol : ; Initialize (IDFServer 'idfs) (
midfs s idfs;
In sock s new cListening Socket (this) :
if (mlsock->create (ATP-PORT) & & milsock-> Listen ())

return TRUE;
return FALSE;

}

void socketcontrol: ; Process Pending Accept (CAsyngSocket *sock) (
// for (int i = 0; i < m_todelete. GetSize () : it *)
// delete it todelete (i) ;
//mtodelete. Removerall () :
CAtpSocket atpsock is new CAtpSocket (this, this) ;
if sock->Accept (atp-sock)) (
atpsock-> Initialize (midfs) ;
m sockets. Add (atp-sock);

else
delete atp-sock;

void socketcontrol: ; Processclose (CASyncSocket "sock)
int size = m sockets. GetSize () :

for (int i = 0; i < size i++)
if (n-sockets (i) == Sock) {
m sockets. Removeat (i) ;
mitodelete. Add (sock);

)
)

// End of code

// listinsock. h : interface of the CListening Socket class A/

fifndef LSTNSOCKH
#define STNSOCKH
class SockCallback As

class ClisteningSocket : public CSocket
(

DECLAREDYNAMIC (CisteningSocket) ; private :
CisteningSocket (const CListening Socket & rSrc); wn no implementation
void operator a (const Cistening Socket& rSrc); f/ no implementation

// Construction
public:

CListeningSocket (ISockCallback pCB) ;
w/ Attributes public:

ISockCallback mpCB;
// Overridable callbacks
protected: ... "

virtual void on Accept (int nError Code) ;
wf Implementation
public:

virtual -CListeningSocket ();

difdef DEBUG
virtual void Assertvalid () const;
virtual void Dump (CDumpContext& dc) cohst;

endif
);
endif 77 LSTNSOCKH

Mar. 25, 2004 US 2004/0059799 A1 29

// listinsock.cpp : implementation of the CListeningSocket class
finclude 'stdafx.h."
i include "ls tnsock, h"
include "callback. h"

CListeningSocket: : Cistening Socket (ISockCallback pCB)
in pCB = pCB;

}

f / f / CListeningSocket Overridable cailbacks
void Cistening Socket :: On Accept (int nError Code)

CSocket: : OnAccept (nErrorCode);
if (nErrorCode)

In pCB->Process PendingAccept (this);
else
mpCB->ProcessAcceptError (this, nErrorCode);

f // CSocket Implementation

CListening Socket: : -CListening Socket ()

tifdef DEBUG
void C.Listening Socket : : Assert Valid () const

CSocket: : AssertWalid () ;)

void clisteningSocket: ; Dump (CDumpContexts dc) const
CSocket: ; Dump (dc);

}
endif / ADEBUG

IMPLEMENT:DYNAMIC (CListeningSocket. CSocket)

US 2004/0059799 A1 Mar. 25, 2004
30

include (stdio.h>
include Cios tream.h>
include Cwinsock.h>
include <string.h>

const long default block 16384;
const long inbuf-size = 1024 :
long inbuf-len ;
char inbuf inbuf-size +1) :
char * databu f = NULL;

enurn atpierrors (
EATPNOERROR - 0,
EATP TIMEOUT,
EATPBUFFEROVERFLOW,
EATP CANNOTCONNECT,
EATP UNEXPECTEDEXIT,
EATPBADFILE,
EATPFILENOTACCEPTED,
EATP PROTOCOL,
EATPLOGINFAILED,
EATP RECIPIENT'UNKNOWN,
EATP MACHINEBUSY

);

SOCKET. AtpSocket ();
int AtpConnect (SOCKET sock, char addr);
int. AtpLogin (SOCKET Bock, char login, char *passwd, char * recipient);
int. AtpsendFile (SOCKET sock, char * finame, char "rname); void Atpouit (SOCKET sock);

int main (int argc, char argv ()) (
if (argc (2) {

cout C-C argv 0 << <machinex C file>, <file> . . .) \n"; return 0;

WSAndATA wsadata;
if (WSAStartup (MAKEWORD (l, i), &wsaData)) {
cerr Ca Cannot find usable winsock. dill. Wn";
return l;

)

in buflen is 0; -
inbuf (O) at O;
SOCKET sock is AtpSocket ();
if (sock s= INVALID SOCKET) {
cerr C< Cannot open a socket. Wn;

-

return

int ret = AtpConnect (sock, argv (l)) ;
if (ret) (
cer r << Cannot establish connection with " << argv (1) << \n"; return 1 ;

if (ret = AtpLogin (sock, "ttonchev", "", kobata)) (
cerr << Cannot login onto remote machine (" << ret C & "). Vn'. return 1 ;

)

for (int i = 2; i < argc; i +)
if (re t = AtpSend File (sock, argv (i), argvi) }} (

switch (ret)
case EATPBADFILE:

cerr << "Error: Cannot open file << argvi) << * \n"; continue;
case EATPFILENOTACCEPTED:

cer r << Error: File " << argv (i) Cz not accepted Win"; continue;
case EATPUNEXPECTEDEXIT :

cerr CC Error: Connection closed by foreign host. Vn"; return l;
default:

cerr << Error: Cannot send file << argv (i) CC " \n"; continue;

s

US 2004/0059799 A1 Mar. 25, 2004
31

break
)
else
cer r << "File << argv ti) << sent. Vin;

Atpquit sock);
WSACleanup () ;
return 0;

)

SOCKET. AtpSocket () {
sockaddrin sin;
SOCKET sock = socket (PFINET, SOCKSTREAM, 0) ;
if (sock ss INVALID SOCKET) return sock;
sin. sinfamily = AFINET:
sin. sin addr. saddr = 0;
sin. Sinport = 0;
if (bind (sock, (sockaddr) & sin, sizeof (sin))) {
closes ocket sock);
return INVALID-SOCKET;)

return sock;
)

int AtpConnect (SOCKET sock, char addr) {
Sockaddrin sin;

unsigned long ipaddr s inet addr (addr) ;
if (ipaddr c e INADDR-NONE) {
hostent *hinfo is gethostby name (addr);
if (!hinfo) return -1;
ipaddr = “ ((long) hinfo->h_addr list (0));

sin. sinfamily AFINET;
sin. sin addr. saddr e i paddr;
sin. sin port = htons (608) ;

return connect (sock, sockaddr *) &sin, sizeof (sin)) ;
)

int AtpWaitForLine (SOCKET sock, long timeout 30) {
timeval tout; •
tout... tv sec e timeout:
tout, tv usec a 0.

fdset socks et
FDZERO & sockset) ;
FDSET (sock, & socks et;

while (strs tr (inbuf, Wr Vn } } {
if (inbuflen se inbufsize) return EATPBUFFEROVERFLOW;
if (is elect (sock+l, & sockset, NULL, NULL, & tout))

return EATPTIMEOUT;
int len = recv (sock, inbuf+inbuf-len, inbufsize-inbuflen, O);
if (len see SOCKETERROR) continue;
if (len see O) return EATP UNEXPECTEDEXIT
inbuflen + = len;
inbuf (inbuf-len) = 0;

return EATPNOERROR;
)

int AtpGetReplyCode () (
return (inbuf(0) - 'O') * 100 + (inbuf (1) - 'O') * 10 + inbuf (2) - " O';

- int. AtpGetCodeFamily (int code) {
return (code A OO)

long AtpGetReply argument () { ... s.
int code; w
long arg = -l;
s scanif (inbuf, "d (ld)", &code, & arg);
return arg; -

void AtpClearline () (
char lend;

US 2004/0059799 A1 Mar. 25, 2004
32

if (lend a strstr (inbuf, "Vir Vin") } {
end + 2

chair buf (100);
strincipy (buf, inbuf, lend-inbuf);
buf lend-inbuf) 0;
cerr ca buf;

for (int is 0; i <= inbuf-len - (lend - inbuf) ; it +)
inbuf i) = lend (i);

inbufler s = (lend - inbuf) ;
}

)

int AtpReadcode (SOCKET sock, int *code, long "arg = NULL) {
int ret = AtpWaitForLine (sock);
if (ret) return ret;
code = AtpGetReplyCode ();

if (arg)
arg - AtpGetReply Argument () ;

AtpClearLine () ;
return EATP NOERROR;

}

int AtpSendBuffer (SOCKET sock, char "buf, long len) (
if (len C 100) cerr << buf;

while (len > 0) {
int sent = send (sock, buf, len, 0) ;
if (sent s = SOCKETERROR) return EATPUNEXPECTEDEXIT;
len - = sent;
buf += sent;

)
return EATPNOERROR

)

int. AtpLogin (SOCKET sock, char login, char passwd, char * recipient) (
int ret, code
char buf (100);

ret = AtpReadCode (sock, &code) ;
if (ret) return ret;
if (code 1 = 220) return EATP PROTOCOL.;

sprintf buf, "FROM is is Wr Win", login, passwd) :
ret = AtpSend Buffer (sock, buf, strlen (buf));
if (ret) return ret;

ret F AtpReadCode (sock, &code) ;
if (ret) return ret;
if (AtpGetCodeFamily (code) = 2) return EATPLOGINFAILED;
sprintf (buf, "USER ts\r\n", recipient);
ret e AtpSendBuffer (sock, buf, strlen (buf));
if (ret) return ret;

ret : AtpReadCode (sock, &code) ;
if (ret) return ret;
if (AtpGetCodeFamily (code) is 2) return EAT PRECIPIENTUNKNOWN;
return EATPNOERROR;

)

int AtpSendFile (SOCKET sock, char *fname, char *rname) {
const stablksize = 16384:
long fisize, fiblksize, fiblknum;
int ret, code:
long delay, arg;
char buf (200); - -

FILE fin a fopen (fname, "rb") ;
if (fin) return EATPBADFILE:
if (f seek (fin, O, SEEKEND))
return EATPBADFILE;

fsize = ftel (fin);
rewind (fin) ;

f / Identify the file

US 2004/0059799 A1 Mar. 25, 2004
33

sprintif (buf, NAME is \ryn , rname):
ret a Atpsend Buffer (sock, buf, strlen (buf))
if (ret) return rat;

ret as AtpReadCode (Gock, code)
if (ret) return ret;
if (Atpgetcode Family (code) > 3) return EATP-FILENOTACCEPTED
sprintf (buf, "FILE sld \r \n", fsize) ;
ret . Atpsend Buffer (sock, buf, strlen (buf));
if (ret) return ret

ret a AtpReadCode (sock, &code)
if (ret) return ret;
if (AtpoetCodeFamily (code) is 2) return EATP-FILENOTACCEPTED;
f / Negotiate block size
fblksize r as tdiblkarize

for (int 0 i < 3 i++) {
sprintf (buf, BLKSIZE Ald \r Vn, fblksize)
ret or AtpSendbuffer (ock, buf, strlen (buf))
if (ret) return ret;

ret es AtpReadCode (sock, & code, Garg);
if (ret) return ret
f / if (code and 222) break
if (code as 422 code as 522)

fiblkaize s arg
else
break

)

if (code 222) return EATPPROTOCOL.;
fblknurn a (f size-l) / fiblksize 4

f / Transfer file
while (l) (

A / Get a block request
sprintf (buf, "READY Mr Vin") ;
ret AtpSendbuffer (sock, buf, strlen (buf))
if (ret) return ret

ret to AtpReadCode (sock, & code, & arg) w
if (ret) return ret
if (code an a 223) break
switch (code) (
case 323 :
break

case (23 :
delay is argi
if (delay > 15) return EATPMACHINEBUSY
Sleep (delay 1000)
continue

case 523
return EATPMACHINEBUSY;

default:
return EATPPROTOCOL.

long blk is arg;
long asize at (blk+1 a fiblknum) 7 fiblksize (fsize - fiblkasize blk)
w/ Load block
if (data buf) delete () data buf
data buf is new charasize

if (seek (fin, fiblksize blk, SEEKSET)) -
return EATPBAOFE

long en fread (datablf , , size, fin)
if (len a size)

return EATPBADFILE
s

// Send block w
sprintf (buf, "DATA tildVir Vin", size) :
ret a AtpSend Buffer (sock, buf, strlen (buf))
if (ret) return ret

ret a AtpReadCode (sock, &code, & arg)
if (ret) return ret

US 2004/0059799 A1 34 Mar. 25, 2004

switch (code) (
Case 422 :

return EATP PROTOCOL:
case 423 :
delay = arg;
if (delay > 15) return EATPMACHINEBUSY
Sleep (delay OOO)
continue;

Case 523 :
return EATPMACHINEBUSy:

Case 25
break;

default:
return EATPPROTOCOL.

)

et F AtpSend Buffer (sock, data buf, size):
if (ret) return ret;
et F AtpReadcode (sock, & Code) ;

if (ret) return ret;

return EATPNOERROR
}

Void Atpquit (SOCKET sock) (
char buf is "ExITVr\ne
AtpSend Buffer (sock, buf, strlen (buf) };
close socket sock);

}

US 2004/0059799 A1

0042. Having now described a few embodiments of the
invention, and Some modifications and variations thereto, it
should be apparent to those skilled in the art that the
foregoing is merely illustrative and not limiting, having been
presented by the way of example only. Numerous modifi
cations and other embodiments are within the Scope of one
of ordinary skill in the art and are contemplated as falling
within the scope of the invention as limited only by the
appended claims and equivalents thereto.
What is claimed is:

1. A System for transmitting video, audio, hypertext and
web documents over the internet from a server under the
control of an information provider to an end user having a
terminal coupled by the associated CPU to the internet,
comprising,

means at Said Server for transmitting Said Video, audio,
hypertext or web document to Said end user only when
the CPU at said terminal is not busy whereby said
transmission is non-real time.

2. The System of claim 1 wherein Said means at Said Server
for transmitting Said Video, audio, hypertext or web docu
ments includes means for detecting internet occupation and

Mar. 25, 2004

for inhibiting Said transmission until Such time as the
network bandwidth can accommodate Said transmission
regardless of a non-busy CPU at said terminal.

3. The system of claim 1 wherein said CPU generates a
signal indicating that said CPU is not busy and further
including means for coupling Said Signal to Said Server over
Said internet to permit said means for transmitting Said
Video, audio, hypertext or web document to Said end user
when said CPU is not busy.

4. The System of claim 1 and further including means
coupled to Said CPU for Storing the Video, audio, hypertext,
or web document Sent by Said Server, and means under the
control of Said Server and Said CPU for generating an
on-Screen icon at Said terminal when Said Server has Suc
cessfully transmitted Said video, audio, hypertext br web
document to said end user and is stored at said CPU.

5. The system of claim 4 and further including means at
Said terminal for Selecting Said icon and for presenting Said
Video, audio, hypertext or web document to Said end user
responsive thereto.

