MULTIPHASE SIGNAL GENERATOR

Inventor: Antoine Tasso, Immeuble Steiger, Corniche du Fleuve, Beyrouth, France

Filed: Feb. 20, 1973
Appl. No.: 333,609

Foreign Application Priority Data
Feb. 28, 1972 France 72.06688

Int. Cl. G08g 1/07, H03k 5/13
Field of Search 328/129, 48, 75, 130; 340/41, 31 R; 307/293, 283, 225 R, 225 B

References Cited
3,165,702 1/1965 Grijsceals et al. 328/75

3,525,980 8/1970 Schmidt et al. 340/41
3,713,026 1/1973 Kubo 328/130 X

Primary Examiner—John S. Heyman
Attorney, Agent, or Firm—Sughrue, Rothwell, Mion, Zinn & Macpeak

ABSTRACT

Multiphase signal generator having cyclic operation, for example for controlling signal lights at a highway crossroads. A digit assembly counts clock pulses and controls output amplifiers. Moreover, it successively selects impedances each controlling the clock pulse frequency during one or several phases of the cycle. These impedances are adjustable individually. A fast auxiliary clock enables certain phases of the cycle to be shortened as a function of outside signals.

11 Claims, 7 Drawing Figures
FIG. 1

CLOCK → OH → CCp → DR → EN → FREQUENCY DIVIDER

CONTROL CIRCUIT

CC → CC1

DECODER

DF → DC → CA → STEPPING SWITCH

FIG. 2

BS1 → BS2 → BSp → CC

RG1 → RG2 → RGp → D1 → D2

BC

R1 → OH → UJT

CH

R2
MULTIPHASE SIGNAL GENERATOR

The present invention concerns a multiphase signal generator, that is, a generator whose function is to feed several output terminals by supplying them with output signals which succeed one another in a predetermined order. More exactly, these output signals may assume two predetermined values. One of these values may, for example, enable the bringing into action of a device controlled by one of these output terminals, the other of these values setting that device in the rest state. It may then be said, to simplify the description, that the output signal exists when it has the first of these values, and does not exist when it has the second.

Such a multiphase signal generator may be used more particularly in a traffic control unit for controlling the various traffic lights of a highway crossroads. The various lights which control the traffic in the same direction form a group, and there are several groups. Each of the outputs of the multiphase signal generator then controls the switching on and switching off of the light(s) of a determined colour taken in one or possibly several of these groups of traffic lights.

Multiphase signal generators used up till now had the disadvantage of not enabling the duration of the various phases of their operating cycle to be controlled independently and conveniently. Certain of these generators, of the electronic type, comprised, for example, a clock pulse oscillator feeding a frequency divider which itself feeds a decoder supplying output signals. A clock pulse oscillator feeding a ring type step by step switch which may itself control power circuits at the output have also been used with like aims in view.

The aim of the present invention is, more particularly, to overcome the above mentioned disadvantage.

It has for its object a multiphase signal generator suitable for feeding a number of output terminals by supplying to each of these output terminals an output signal existing during operating periods and not existing outside these operating periods, the order of succession of these operating periods of the various output signals being predetermined. This generator comprises in a known manner a system such as a clock oscillator receiving a frequency control signal and defining successive instants, for example by supplying clock pulses whose frequency of recurrence is controlled by that frequency control signal, and a digit assembly receiving and counting the said clock pulses, supplying the said output signals at the said output terminals, and making the said operation periods begin and end when it has counted predetermined numbers of clock pulses. This generator is characterised in that the said digit assembly feeds, moreover a number q of selection terminals by supplying to each of these terminals a selection signal existing during selection periods and not existing outside these periods, one selection signal at the most existing at any instant on these selection terminals as a whole, these selection periods beginning and ending when that digit assembly has counted predetermined numbers of clock pulses. That generator comprise moreover, a control circuit connected up to the said selection terminals and supplying the said frequency control signal, to the said clock pulse oscillator, that control circuit comprising adjustable elements equal in number to the said number p and each capable of assuming various adjustment values, each of these adjust-

able elements corresponding to one of the said selection terminals and vice-versa, so that the value of the said frequency control signal be controlled during each of the said selection periods, by the adjusting value of that of those adjustable elements which corresponds to the selection terminal on which a selection signal exists.

That multiphase signal generator may easily be produced in an entirely electronic configuration, so as to operate in a cyclic way. Each cycle may comprise any number of phases each having a duration which may be controlled independently, that is, without influence on the other phases. That generator makes it possible to control power output circuits which are in any number, independently from the number of phases. Each of these power output circuits may be brought into action during the duration of only one or several phases of the cycle, these phases being consecutive or otherwise.

That generator may be compared, if it operates in a cyclic manner, to a motor which could operate at a continually adjustable speed, each revolution being divided into several sections corresponding to the previously mentioned phases, and the speed of the motor possibly being controlled, for each of these sections, between certain limits. That motor could drive a shaft which could bear any number of cams. These cams could each control a switch and each have a profile which is distinct and easy to modify. Moreover, the generator according to the invention is deprived of inertia if it is produced in an electronic configuration. Its operation is completely controlled by clock pulses supplied by clock pulse oscillator. The independent adjusting of the duration of the various phases is obtained according to the invention by the use of several distinct adjusting means corresponding to distinct phases of operation. These adjusting means control the frequency of the clock pulse oscillator and are successively brought into action by the actual operation of the generator, when the latter reaches the corresponding phases. More exactly, the adjusting means are brought into action by selection signals developed from the clock pulses. These selection signals determine, at each instant which of various adjusting means is in action. It will be seen that a functional loop is thus produced, the clock pulse oscillator controlling the operation of a digit assembly and that digit assembly itself controlling the frequency of the clock pulse oscillator.

By means of FIGS. 1 to 7 enclosed herewith, embodiments of the present invention will be described herebelow by way of examples having no limiting character.

FIG. 1 is a block diagram of a generator according to the invention.

FIG. 2 is an electronic diagram of a part of the generator in FIG. 1.

FIGS. 3 and 4 are operation diagrams of the generator in FIGS. 1 and 2.

FIG. 5 is an electronic diagram of a part of the generator in FIG. 1.

FIG. 6 is a block diagram of a generator according to the invention, including, besides the elements of the generator in FIG. 1, complementary elements enabling a better adapting to the embodiment of a highway traffic control unit.

FIG. 7 is an electronic diagram of a part of the generator in FIG. 6.

Corresponding elements in these various figures bear, in all these latter, the same reference letters or
3,801,835

numerals, an electrical conductor possibly being designated by the same reference letters, or numerals, as the signal it transmits, and as the diagram showing the variations in that signal.

The multiphase signal generator according to the invention which will be described by way of an example may be used for controlling highway traffic signals at a road junction, connected with a power output circuit. These traffic signals may be divided into three groups, and for each of these groups, it is required to control the lighting of the green, yellow and red lamps being controlled according to a set colour diagram, which may be different for each group.

FIG. 1 shows a clock pulse oscillator OH, whose period T is easily adjusted, for example, by setting a resistor. That clock pulse oscillator supplies clock pulses to a frequency divider DF. It may be a mode formed by flip-flops connected up in series. For the application indicated above, where speeds are very low in relation to the possibilities of the electronic components, an asynchronous binary fitting of conventional type gives good results. It is known that six flip-flop are sufficient for obtaining a division by 64 and in general way, that a number a of flip-flops enables a division of frequency by the power in the order of a of the number 2. The outputs of the flip-flops of the frequency divider DF feed a counting decoder DC. That decoder consists of logic gates of the AND type whose inputs are connected to the flip-flops of the frequency divider DF. These gates may be, for example, of a conventional diode type. The frequency divider DF and the counting decoder DC form a counting assembly making it possible to count the clock pulses up to a number n, equal, if the number of flip-flops of the frequency divider DF is a, to the power whose order is a of the number 2. The duration of an operation cycle of the generator according to the invention is then determined by the number n and the values of the period of the clock pulse oscillator OH. The frequency divider DF is arranged in a conventional way so that when n clock pulses have been received, the flip-flops return to their original state, that is, each time the counting assembly has counted n clock pulses, it returns automatically to zero. This is obviously necessary to enable cyclic operation. It is however quite evident that other types of counting assembly could be used, provided that if cyclic operation is required, the counting assembly return to zero at the end of a certain number of clock pulses n. The choice of the number n depends on the intended applications, and more particularly on the relations between the various values which the durations of the various phases should be able to assume. More exactly, this number should be chosen so that the relation of the maximum required value of the period of the clock pulse oscillator OH at the minimum required value of that same period be sufficiently low for the producing of that adjustable period oscillator to be easy. It may be observed, in this respect, that an increase of the number n increases the price of the generator as a whole only in very slight proportions, for a single complementary flip-flop enables that number to be doubled.

The interposing of insulating or adapting elements may be necessary between the outputs of the frequency divider DF and the counting decoder DC according to the components used for producing these two elements. Such elements are not shown. In a general way, it must be understood that each time insulating, adapting or sign reversing elements must be interposed between elements shown here by blocks, these elements are not shown, to simplify the drawing and the description. The inserting of such elements is indeed possible to the man skilled in the art.

The outputs of the AND gates of the counting decoder DC, equal in number to a number m, are connected to an equal number of inputs of a ring type step by step switch CA. Each of these outputs sends out, during each cycle, a counting pulse to the corresponding input of that switch. The latter forms a certain number of stages, equal to m, each provided with an output. Each counting pulse received by the ring type step by step switch CA brings one of these stages into action, that is, when the ring type step by step switch receives a counting pulse on an input corresponding to a stage, that stage comes into action and supplies at its output, a phase signal beginning with that counting pulse. That phase signal ends with the following counting pulse, which, moreover, brings the following stage into action, this resulting in the sending out of another phase signal to the following output of the switch, and so on, in a cyclic manner.

The existence of a phase signal at an output means that a continuous potential, for example 1 volt, is applied to that output, and the non-existence of such a phase signal means that another potential for example 12 volts, is applied to that same output. Of course, the values of the electric potentials used may be very diverse, according to the components used.

The producing of such a ring type step by step switch is within the competence of the man skilled in the art. That switch may be, for example, produced for the above mentioned application, and in compliance with FIG. 5, by means of controlled rectifiers such as thyristors, which make it possible to obtain sufficient power at the output. It comprises a number m of inputs such as 501, 502 and 503 and an equal number of outputs such as 511, 512 and 513. Each of these inputs is connected through a rectifier such as 521 and a resistor such as 531 to the gate of a thyristor such as 541, 542 or 543. The cathode of that thyristor is connected up to a common negative feed terminal 591 which is, moreover connected up to the gate of that thyristor through a resistor such as 551. The anode of that thyristor is connected up to a common positive feed terminal 592 through a charge resistor such as 561, as well as to an output such as 511. The anodes of the thyristors such as 541, 542 and 543 are connected up in a ring by means of capacitors such as 571, 572 and 573 so that the anode of each of these thyristors, for example the thyristor 541, be connected up on the one hand, to the anode of the preceding thyristor, for example the thyristor 542 and on the other hand, to the anode of the following thyristor, for example the thyristor 543. Each of the thyristors such as 541, 542 and 543 constitutes a stage of the ring type step by step switch CA.

The operation of that switch may be described, assuming that at the outset, all the thyristors are extinguished. When an input such as 503 receives a counting pulse, the corresponding thyristor such as 543 is fired. When the following counting pulse is applied to the following input such as 501, the following thyristor such as 541 is fired in its turn, this causing a lowering of the potential of its anode. That lowering is transmitted through a capacitor such as 571 to the anode of the thyristor such as 543, previously fired, and causes the ex-
tistinguishing of the latter. A negative phase signal then appears at the corresponding output such as S11, and on that output only, until a counting pulse applied to a subsequent input such as S02 causes the firing of a thyristor such as S42, the applying of a phase signal on an output such as S12, the extinguishing of the thyristor such as S41, and the ending of the phase signal at the output such as S11.

The outputs of the ring type step by step switch CA feed the inputs of two decoders, an output decoder DS and a selection decoder DR. These two decoders comprise logic gates of the OR, type the number of these gates being p for the selection decoder and q for the output decoder. The number p is at the most equal to the previously mentioned number m. Each of the inputs of each of these gates is connected to an output of the ring type step by step switch CA. The outputs of the OR type gates of the output decoder DS in numbers equal to p may constitute the previously mentioned output terminals of the generator. These output terminals may however also be provided with power switches, the existence of a signal at the output of one of the OR gates of the output decoder DS then resulting in the closing of such a controlled switch by that gate. These controlled power switches may, for example, be of the type known by the name of TRIAC. These switches taken as a whole constitute the output circuit CS shown in the figure. Each of these switches is connected up in series to an alternating current voltage source and a coloured lamp of one of the traffic lights. The previously mentioned output signals may then be considered as constituted by the alternate voltages applied to these lamps.

The assembly comprising the frequency divider DF, the counting decoder DC, the ring type step by step switch CA, the output decoder DS and the selection decoder DR constitutes the previously mentioned digit assembly, which is designated in FIG. 1 by the reference EN.

The outputs of the OR gates equal in numbers to p, of the selection decoder DR, constitute the previously mentioned selection terminals. They are each connected to an input of a control circuit CC comprising a number p of adjustable resistors. The first terminal of each of these adjustable resistors is connected up to a corresponding selection terminal. The second terminals of these resistors are all connected up to the control terminal of the clock pulse oscillator OH and enable the previously mentioned frequency control signal to be supplied, the intensity of that signal depending on the value of the adjustable resistor to which a selection signal is supplied. The control circuit CC could however be constituted by elements other than resistors; for example, by capacitances or by adjustable induction coils, or by a combination of such adjustable elements, that is, more generally by adjustable impedances. It could also be constituted by potential sources or adjustable current sources, or even, in the case where the generator according to the invention could be not electronic but fluidic, by sources of pressure, which are, for example adjustable. It is necessary only for the adjustable elements of the control circuit CC to be equal in numbers to the number p and to be able each to assume various adjustment values. Each element must be arranged so that its adjustment value controls the value of the frequency control signal, that is, the period of the clock pulse oscillator OH, during a selection period corresponding to that element. That selection period is defined by the existence of a selection signal on the selection terminal corresponding to that element.

It may be observed that when the adjustment of one of the adjustable elements of the control circuit CC is effected manually or automatically, the frequency of the clock pulse oscillator OH is modified during the selection period corresponding to that adjustable element, and only during that period. Now, the duration of each selection period is equal to the product of the number of clock pulses comprised between the two counting pulses which determine the beginning and the end of that selection period, by the clock pulse oscillator period during that selection period, that number of clock pulses being predetermined by the arranging of the counting decoder DC and of the selection decoder DR. Therefore, the duration of each selection period is thus controlled independently of the duration of the other selection periods. By a suitable choice of the arranging of the selection periods in relation to the various output signals, it may be observed that it is thus possible to affect the duration of these output signals with great versatility. Adjusting knobs CC1 and CCP, enabling the manual adjusting of the adjustable elements of the circuit CC have been shown in the figure.

The generator according to the invention has, moreover, the advantage of being economical, for the number of adjusting elements may easily be made much lower than the number of distinct phases which may be defined taking the output signals as a basis.

FIG. 2 shows the electronic diagram of the clock pulse oscillator OH and of the control circuit CC. The clock pulse oscillator OH essentially consists of a unijunction transistor UJT, whose two bases are connected, the one to a suitable positive potential source through a resistor R1 and the other to the earth through a resistor R2. The emitter of that transistor is connected up to the earth through a capacitor CH, as well as, on the other hand, to a control circuit CC. Thus is constituted a relaxation oscillator of a conventional type, whose period is controlled by the current charging the capacitor CH from the control circuit CC. The clock pulses are sampled at the terminals of the resistor R2. The adjustable elements of the control circuit CC are adjustable resistor RG1, RG2 . . . RGp. Rectifiers D1, D2, . . . Dp are connected up in series to these adjustable resistors. The previously mentioned selection terminals are shown at BS1, BS2 . . . BSp. Such an oscillator may just as well be produced by means of a diode having four layers which suddenly becomes conductive when the voltage applied between its terminals reaches a predetermined upper threshold and remains conductive as long as that voltage does not go down below a predetermined lower threshold.

During each of the previously mentioned selection periods, the selection decoder DR applies a positive potential to one and only one, of the selection terminals BS1, BS2, . . . BSp. The charge current of the capacitor CH is then determined by the product of that positive potential by the value of the adjustable resistor RG1, RG2, . . . or RGp which corresponds to the selection terminal in consideration.

The potentials applied to the various selection terminals during the various selection periods are all the
same in the example described. But it is quite evident that in other embodiments, it would be possible to assign different values to these potentials.

The insulation diodes such as D1, D2, . . . Dp make it possible to insulate the various selection terminals from one another.

If the ratio between the maximum and minimum values of the recurrence period of the clock pulses is too great, or if during which the period of the pulses could be affected by means of simple adjustable resistors it is possible to effect selection switching not only on adjustable resistors, but also on adjustable capacitors which would moreover fulfill the function of the capacitor CH. The circuit thereof would obviously be rather complicated.

With reference to FIGS. 3 and 4, the operation of the generator according to the invention will now be described in the case where it is applied to the controlling of three groups of three-coloured traffic lights. Each of these groups of lights corresponds to the traffic in one direction. In this example, the following values have been adopted for the various previously mentioned numbers:

\[n = 64 \]
\[m = 15 \]
\[p = 8 \]
\[g = 9 \]

FIGS. 3 and 4 show a diagram indicating the clock pulses sent out by the clock pulse oscillator OH. Six diagrams B1 to B6 show output signals of the flip-flops composing the frequency divider DF, the diagrams IC1 to IC5 show the counting pulses reaching the output of the counting decoder DC and applied to the inputs of the ring type step by step switch CA. The diagrams SP1 to SP15 show the phase signals reaching the outputs of the ring type step by step switch CA. The diagrams SS1 to SS8 show the selection signals supplied by the selection decoder DR and applied to the control circuit CC. The diagrams V1, V2, V3, J1, J2, J3, R1, R2, R3, represent, respectively, the output signals applied by the output decoder DS, across the output circuit CS, to the green lamps of the three groups of traffic lights, to the yellow lamps of these three groups and, lastly, to the red lamps of these same groups, respectively, it being understood that the arrangements enabling yellow flashing lights to be obtained are not distinguished here from those enabling continuous yellow lights to be obtained. The diagram F1, F2 and F3 show the colours of the lights of the first, second and third groups respectively, it being understood that the colour green is shown by square shading, the colour yellow is shown by inclined shading and the colour red is shown by horizontal shading. In these figures, the successive phases of the operating cycle of the multiphase signal generator are designated by the references S1, S2, . . . S15. The operation of the multiphase signal generator according to the invention will now be described by means of these various diagrams:

The m counting pulses supplied by the counting decoder DC (diagrams IC) correspond to the clock pulses (diagram H) of order O, 2, 4, 7, 9, 21, 23, 25, 28, 30, 42, 44, 46, 49 and 51 and limit the phases S1, S2, etc. up to S15 during which the period of the oscillator OH assumes the values T1, T2, . . . T15.

The selection decoder DR makes it possible to control the duration of: the phases S2, S4, S7, S9, S12 and S14 by the adjustable element RG1 of the control circuit CC during the existence of the selection signal SS1;

The phases S1, S6 and S11 by the element RG2 during the existence of the selection signal SS2;

And the phases S3, S5, S8, S10, S13 and S15 by the elements RG3, RG4, RG5, RG6, RG7 and RG8 during the existence of the selection signals SS3, SS6, SS4, SS7, SS5 and SS8 respectively. An output signal exists at the output terminal when the order is:

1/ During the phases S5 and S6 — (diagram V1)
2/ During the phases S10 and S11 — (diagram V2)
3/ During the phases S1 and S15 — (diagram V3)
4/ During the phases S1, S2 and S14 — (diagram J3)
5/ During the phases S4, S6 and S7 — (diagram J1)
6/ During the phases S9, S11 and S12 — (diagram J2)
7/ During the phases S1, S2, S3, S4, S8, S9, S10, S11, S12, S13, S14 and S15 — (diagram R1)
8/ During the phases S1, S2, S3, S4, S5, S6, S7, S8, S9, S13, S14 and S15 — (diagram R2)
9/ During the phases S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13 and S14 — (diagram R3)

The phases S5, S10 and S15 of the system correspond to the green periods of the three channels. It must be possible to regulate their durations in general between 5 and 50 seconds each, all other values being, moreover, possible according to conditions of use. This means that it must be possible to vary T5, T10 and T15 between 0.4 and 5 seconds approximately, and to adjust them separately or independently.

The phases S3, S8 and S13 of the system correspond to the three "all red" periods. It must be possible to regulate their durations in general between 1 and 10 seconds each. This means that it must be possible for T3, T8, T13 to vary between 0.3 and 4 seconds approximately, and that they must be adjustable separately and independently.

The phases S2, S4, S7, S9, S12 and S14 correspond to the "YELLOW" periods, these periods occurring, the ones immediately after the green periods, the others during the end of the "RED" periods. Their durations are all the same, and it must be possible to regulate them in general between 1 and 5 seconds. This means that: T2=T4=T7=T19=T12=T14=Tj, and that it must be possible to regulate Tj between 0.5 and 3 seconds approximately.

Lastly, the phases S1, S6 and S11 correspond to the "yellow" flashing periods which occur during the end of the green periods. Their durations are all the same and it must be possible to regulate them, in general, between 1 and 5 seconds. This means that T1=T6=T11=Tjc, and that it must be possible to regulate Tjc between 0.5 and 3 seconds approximately.

It is often useful, when no vehicle is driving in one of the directions leading to a cross-roads, to shorten the period during which traffic is authorized in that direction. It is a known method to use, for that purpose, detection elements such as electrical conductor loops sunk into the roadway, which supply a detection signal each time a vehicle drives on the roads surveyed by these detection elements. By means of FIG. 6, an embodiment of the invention enabling the use of such detection signals will be described, it being understood that all the elements already described with reference
to FIG. 1 are again used but will not be again described for they are arranged and operate in an unchanged manner. Moreover, in FIG. 6, lamps such as 601 and 602, fed between the terminals of the output circuit CS and a common conductor PH, have been shown. The traffic may be controlled by the switching on and off of these lamps.

In the embodiment in FIG. 6, the frequency divider DF receives, through a gate 604 of the OR type, not only the pulses supplied by the clock pulse oscillator OH, but also these, of the same type, which may be supplied by a fast oscillator OHR having a very much higher fixed recurrence frequency, a hundred c/s for example. The operating or non operating of that fast oscillator is controlled by the generator. The result of this is that when the fast oscillator OHR is brought into operation, the duration of the various phases is made extremely short, that is, the cycle goes very fast, until the generator reaches a phase where it controls the stopping of that fast oscillator. Of course, the same result could be obtained by modifying control circuit CC and the clock pulse oscillator OH so as to be able to control, from that oscillator, a frequency of a hundred c/s which is the equivalent of an incorporation of the fast oscillator OHR in the clock pulse oscillator OH.

The fast oscillator OHR is controlled by a bistable circuit FT so that this oscillator may function or not function according to whether that circuit is in its energized state, or in its rest state, respectively. This circuit may be energised by a starting up pulse supplied by a time delay circuit T itself controlled by a reset circuit RAZ.

As long as the circuit RAZ supplies a reset signal, the circuit T may not supply any starting up pulse. From the instant when the circuit RAZ ceases to supply a reset signal, the circuit T allows a predetermined lapse of time to pass. That lapse is manually adjustable between a half second and 20 seconds, for example and it may be supposed that it is equal to ten seconds to facilitate the description. The adjusting of that lapse of time may be effected by means of an adjusting knob 620. At the end of that lapse of time, that circuit T supplies a release pulse.

The circuit RAZ is controlled by a gate 606, of the OR type, so that a reset signal be supplied when a signal exists at one of the inputs of that gate. Three inputs of that gate 606 are connected up to the outputs of three gates 608, 610 and 612, of the AND type, which receive, at their first inputs, such as the inputs 609 and 611, the detection signals supplied by three detection elements L1, L2 and L3 and on their second inputs, the signals V1, V2 and V3 respectively, supplied by the output decoder DS and which correspond to the "GREEN" periods on the roads surveyed by the detection elements L1, L2, L3 respectively.

The result of this is that if there is a vehicle on the road surveyed by the element L1, for example, during the "GREEN" period corresponding to that road, the detection element L1 sends out a signal which, through the gate 606, the circuit RAZ, the circuit T and the circuit FT prevents the fast oscillator OHR from operating. During that "GREEN" period, the circuit T supplies a starting up pulse which starts up the operation of the fast oscillator OHR only if no vehicle has been detected during 10 seconds. This starting up causes the acceleration of the operating cycle of the generator and the end of the "GREEN" period comes almost immediately. The operation of the fast oscillator OHR must then be stopped. For that purpose, the bistable circuit FT is reset in its rest state by the output signal of a gate 614, of the NOR type, which receives the signals V1, V2 and V3 and which supplies an output signal when none of these signals is applied. With the aim of ensuring the resetting to zero of the time delay starting up circuit T at the beginning of each "GREEN" period, the gate 606 receives the signals J1, J2 and J3 supplied by the output decoder DS. Quite evidently, this aim could quite as well be achieved by using other signals, providing they are applied in all the intervals between "GREEN" periods. Such other signals could be supplied for example by the counting decoder DC.

With reference to FIG. 7, an embodiment of the circuits RAZ, T, FT and OHR previously mentioned will now be described, these circuits being supplied between a negative terminal 702 and a positive terminal 704.

The circuit RAZ comprises a thyristor 706 whose cathode is connected up to the terminal 702 and whose gate is connected up, through resistors 708 and 710, on the one hand to the terminal 702 and on the other hand to the input terminal 712 connected up to the output of the gate 606, so that when that gate supplies a positive output signal, the thyristor 706 is fired. It then short-circuits a capacitor 714, which is connected up between its anode and the terminal 702, which forms a part of the time delay circuit T. The latter is thus reset to zero.

It comprises, moreover, a unijunction transistor 716 whose emitter is connected up on the one hand to the anode of the thyristor 706 and on the other hand through an adjustable resistor 718 in series with a fixed resistor 719, to a conductor 720 transmitting the positive feed potential. The two bases of the transistor 716 are connected up through resistors 722 and 724, the one to the conductor 720, the other to the terminal 702, the latter base being, moreover connected up through a connection capacitor 726 to the bistable flip-flop circuit FT. When the capacitor 714 is not short-circuited by the thyristor 706, it is charged, with a speed depending on the resistor 718, until the transistor 716 suddenly becomes conductive, this causing the discharging of that capacitor into the resistor 724 and the sending of a positive starting up pulse to the circuit FT. The latter comprises a thyristor 728 whose gate is connected up to the terminal 702 through a resistor 730 and on the other hand to the capacitor 726. The cathode of that thyristor is connected up to the terminal 702 and its anode, through a resistor 732 to the conductor 720. A negative energising signal appears on this anode when the thyristor 728 is fixed by a starting up pulse applied to its gate, this corresponding to the passing of the circuit FT to its energised state. This circuit may be reset in its rest state by extinguishing of the thyristor 728, by bringing back the potential of the conductor 720 to that of the terminal 702 to which it is connected by a resistor 734. For that purpose, the conductor 720 is connected up to the output of a gate 614 and whose emitter is connected up to the conductor 720. The applying of a negative potential to that base ensures the extinguishing of the thyristor 728.
Moreover, it also prevents the operation of the circuit Q and as will be seen further on, of the fast oscillator OHR, this changing nothing of what has previously been explained, since in that case, that oscillator cannot, in any case, operate, due to the non existence of an energising signal.

The negative energising signal supplied by the thyristor 728 is applied, through a resistor 738, to the base of a transistor 740, whose emitter is connected up to the terminal 702 and whose collector is connected up, through resistor 742, to the conductor 720. Thus a positive energising signal, by means of which a charge current may be supplied, through a resistor 744, to a capacitor 746 forming a part of the fast oscillator OHR, is obtained on that collector. The fast oscillator comprises, moreover, a unijunction transistor 748 one of whose bases is connected up to the conductor 720 through a resistor 750 and whose other base is connected up to the terminal 702 through a resistor 752. The emitter of the transistor 748 is connected up to the resistor 744, so as to constitute a relaxation oscillator of the same type as the one which constitutes the clock pulse oscillator OH., with a greater recurrence frequency. The clock pulses arrearing at the terminals of the resistor 752, are applied to the output terminal 754 connected up to an input of the gate 604.

According to the embodiment in FIG. 6 described above, it appears obviously that the operation of the system, while remaining cyclic, ceases to be periodic, for the time which passes during a complete cycle depends on the traffic.

The multiphase signal generator which has just been described may be used not only for producing a traffic control unit, as in the example chosen, but also for producing illuminated publicity where special effects may be obtained due to the existence of periods whose duration may be adjusted, or of automatic telephone reply systems, or even of the driving of machines having several functions operating in a cyclic way, it being understood that yet other applications are evidently possible.

It must be understood that the invention is in no way limited to the embodiment described and illustrated, which has been given only by way of example. Without going beyond the scope of the invention, some arrangements may be changed or some means may be replaced by equivalent means.

More particularly, it is possible to energise the ring type step by step switch CA directly from the clock pulse oscillator OH, without passing through a frequency divider such as DF and a counting decoder such as DC, on condition that the frequency of the oscillator OH may vary between limits sufficiently far apart. In the example of application described, its period should vary from half a second to a hundred seconds.

Moreover, the control circuit CC, the clock pulse oscillator OH and the digit assembly EN may possibly not constitute physically distinct units and be integrated in a time delay circuit assembly.

It is, however, clear that the operation of the clock pulse oscillator OH remains unchanged, that is, that this time delay circuit assembly constitutes a clock system whose operation is the definition of a sequence of clock instances, connected to a part of a digit assembly whose function is to effect switching operations at clock instances having predetermined orders.

I claim:

1. Multiphase signal generator suitable for feeding a number q of output terminals by supplying to each of said output terminals an output signal existing during operating periods and not existing outside said operating periods, the order of succession of the said operating periods of the various output signals being predetermined, said generator comprising a clock system means adapted to receive a duration control signal and responsive to said duration control signal for producing clock instants separated by time intervals whose duration is controlled by said duration control signal, a digit assembly means for counting the said clock instants, for supplying the said output signals at the said output terminals, and for controlling the start and stop times of said operating periods in response to the counting of predetermined numbers of clock instants, said digit assembly means comprising a number p of selection terminals, means for supplying to each of said selection terminals a selection signal existing during selection periods and not existing outside said selection periods, one selection signal at the most existing any instant on said selection terminals as a whole, said selection periods beginning and ending when said digit assembly means have counted predetermined numbers of clock instants, the said generator further comprising, control circuit means connected to the said selection terminals for supplying said duration control signal to said clock system means said control circuit means comprising adjustable elements equal in number to said number p and each capable of assuming various adjustment values, each said adjustable element corresponding to one of said selection terminals so that the value of said duration control signal is controlled during each of the said selection periods by the adjusting value of the one of said adjustable elements which corresponds to the selection terminal on which a selection signal exists.

2. The generator according to claim 1, wherein said clock system comprises a clock pulse oscillator for generating clock pulses which define said clock instants, said clock pulses being connected to said digit assembly means, the said duration control signal being a frequency control signal controlling the recurrence frequency of the said clock pulse oscillator, and wherein said adjustable elements are adjustable impedances (RG1, RG2), a first terminal of each of said impedances being connected to the said selection terminal corresponding thereto, the second terminals of these impedances all being connected to a common control terminal (BC) of the said clock pulse oscillator (OH) to supply said frequency control signal to said oscillator, the said selection signals being constituted by potentials suitable for supplying a frequency control current to the said clock pulse oscillator (OH) through said adjustable impedances (RG1, RG2), that control current constituting the said frequency control signal having a value controlled by the adjustment values of the said adjustable impedances.

3. The generator according to claim 2, wherein said adjustable impedances are adjustable resistors (RG1, RG2), the said selection signals being constituted by continuous potentials, an insulation rectifier (D1, D2) being connected in series with each of said adjustable resistors in the suitable direction for enabling the said frequency control current to pass.

4. The generator according to claim 3, wherein said clock pulse oscillator (OH) comprises a unijunction
transistor (UJT) whose emitter is connected to the said frequency control terminal BC and to a first terminal of a capacitor CH, the two bases of said transistor and the second terminal of said capacitor being connected to direct current potential sources, means being provided for producing the said clock pulses from the relaxation oscillations of the circuit thus formed.

5. The generator according to claim 4 wherein the said digit assembly counts the said clock pulses from zero until a number n greater than the said numbers p and q, and starts again from zero, whereby that generator operates in a cyclic manner.

6. The generator according to claim 5, wherein said digit assembly comprises:

a) a counting assembly means (DF DC) for receiving and counting said clock pulses and supplying counting pulses each time it has counted predetermined numbers of clock pulses, the number m of these predetermined numbers being less than the said number n and at least equal to the said number p;

b) a ring type step by step switch means (CA) for receiving the said counting pulses, provided with outputs at least equal in number to the said number m, and capable of supplying, on each of these outputs, a phase signal beginning with one said counting pulse and ending with the following counting pulse, these phase signals succeeding one another in a cyclic manner on said outputs in a predetermined succession order;

c) an output decoder means (DS) comprising logic gates of the OR type, each of the inputs of each of these gates being connected to a said output of the ring type step by step switch means (CA), the outputs of these gates constituting the said output terminals of the generator; and

d) a selection decoder means (DR) comprising logic gates of the OR type, each of the inputs of each of these gates being connected to a said output of the ring type step by step switch means (CA), the outputs of these gates constituting the said selection terminals.

7. The generator according to claim 6, wherein said counting assembly comprises:

a) a frequency divider (DF) receiving the said clock pulses and constituted by flip-flops which are a in number, n being at the most equal to the \(a^n\) power of the number two;

b) a counting decoder (DC) consisting of logic gates of the AND type, the inputs of these gates being connected to the said flip-flops, the output of each of these gates being connected to a distinct input of the said ring type step by step switch (CA) to supply to that switch one of the said counting pulses.

8. The generator according to claim 6, wherein each of the said output terminals is provided with a controlled power switch set in its conductive state by the applying of one said output signal on that output terminal, and then suitable for allowing an alternate current to pass.

9. The generator according to claim 6, further comprising:

at least one detection terminal (609) capable of receiving a detection signal;

a logic circuit (608, 606, 614, FT) receiving on the one hand the said detection signal and on the other hand at least one auxiliary signal (V1) supplied by the said digit assembly (EN), that auxiliary signal beginning and ending when that digit assembly (EN) has counted predetermined numbers of clock pulses, that logic circuit being capable of supplying an energization signal when it receives the said auxiliary signal without receiving the said detection signal, and

a fast oscillator (OHR) for supplying to the said digit assembly clock pulses at a recurrence frequency greater than the frequencies which the said clock pulse oscillator (OH) supplies when it receives the said control signal, said fast oscillator being controlled by the said logic circuit so as to operate only when the said energization signal is supplied by said logic circuit.

10. The generator according to claim 9, wherein said logic circuit (608, 606, 114, FT) comprises means (T) for the said energization signal to be supplied only after a predetermined lapse of time has passed from the instant when that logic circuit receives the said auxiliary signal without receiving the said detection signal.

11. The generator according to claim 9, comprising:

at least two detection terminals (609, 611) capable of receiving at least a first and a second said detection signal;

the said digit assembly (EN), capable of supplying at least a first and a second said auxiliary signal (V1, V2) corresponding to the said first and second detection signals, respectively;

the said logic circuit (608, 610, 606, 614, FT) receiving the said auxiliary and detection signals, capable of supplying the said energization signal when it receives only one of the said auxiliary signals without receiving at the same time, the corresponding detection signal.
UNITED STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 3,801,835
DATED : April 2, 1974
INVENTOR(S) : ANTOINE TASSO

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

IN THE HEADING

Under the section entitled "Inventor:" delete "France" and insert --Lebanon--

Signed and sealed this 1st day of July 1975.

(Seal)
Attest:
RUTH C. MASON
Attesting Officer

C. MARSHALL DANN
Commissioner of Patents
and Trademarks