The present invention relates to compounds which have agonist activity at the glucagon, GIP and GLP-1 receptors, and to their use in the treatment of metabolic disorders.
GLUCAGON-GLP-1-GIP TRIPLE AGONIST COMPOUNDS

Field of the Invention

The invention relates to compounds having agonist activity at the glucagon, GIP and GLP-1 receptors, and to their use in the treatment of metabolic disorders.

Background of the Invention

Diabetes and obesity are increasing health problems globally and are associated with various other diseases, particularly cardiovascular diseases (CVD), obstructive sleep apnea, stroke, peripheral artery disease, microvascular complications and osteoarthritis. There are 246 million people worldwide with diabetes, and by 2025 it is estimated that 380 million will have diabetes. Many have additional cardiovascular risk factors including high/aberrant LDL and triglycerides and low HDL. Cardiovascular disease accounts for about 50% of the mortality in people with diabetes, and the morbidity and mortality rates relating to obesity and diabetes underscore the medical need for efficacious treatment options.

Pre-proglucagon is a 158 amino acid precursor polypeptide that is processed in different tissues to form a number of different proglucagon-derived peptides, including glucagon, glucagon-like peptide-1 (GLP-1 or GLP1), glucagon-like peptide-2 (GLP-2) and oxyntomodulin (OXM), which are involved in a wide variety of physiological functions, including glucose homeostasis, insulin secretion, gastric emptying, and intestinal growth, as well as the regulation of food intake. Glucagon is a 29-amino acid peptide that corresponds to amino acids 33 through 61 of pre-proglucagon, while GLP-1 is produced as a 37-amino acid peptide that corresponds to amino acids 72 through 108 of pre-proglucagon.

When blood glucose begins to fall, glucagon, a hormone produced by the pancreas, signals the liver to break down glycogen and release glucose, causing blood glucose levels to rise toward a normal level. In addition to controlling glucose homeostasis, glucagon reduces body weight probably through inhibition of food intake and stimulation of energy expenditure and/or lipolysis. GLP-1 has different biological activities compared to glucagon. Its actions include stimulation of insulin synthesis and secretion, inhibition of glucagon secretion, and inhibition of food intake. GLP-1 has been shown to reduce hyperglycemia (elevated glucose levels) in diabetic patients. Exendin-4, a peptide from lizard venom that shares about 50% amino acid identity with GLP-1, activates the GLP-1 receptor and likewise has been shown to reduce hyperglycemia in diabetic patients.
Glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino acid gastrointestinal regulatory peptide that, like GLP-1, stimulates insulin secretion from pancreatic \(p(b) \) cells in the presence of elevated blood glucose levels. It is derived by proteolytic processing from a 133-amino acid precursor, preproGIP.

Interestingly, novel glucagon-GLP-1 dual acting receptor agonists are currently in pre-clinical development (see, e.g., WO201 1/006497). In comparison to GLP-1 analogues, glucagon-GLP-1 dual agonists are associated with more profound and sustained body weight loss in animal models on top of the improvements in glycemic control. Thus, glucagon based drugs may have promise for the treatment of type 2 diabetes mellitus and/or obesity.

Incretins are gastrointestinal hormones that regulate blood glucose by enhancing glucose-stimulated insulin secretion (Drucker, DJ and Nauck, MA, Lancet 368: 1696-705 (2006)). Two of the above mentioned peptides are known as incretins: GLP-1 and GIP. The discovery of the incretins has led to the development of two new classes of drugs for the treatment of diabetes mellitus. Thus, injectable GLP-1 receptor agonists, and small molecule compounds (oral DPP-4 inhibitors) that inhibit enzymatic inactivation of both endogenous GLP-1 and GIP, are now on the market (GLP-1 receptor agonists: Byetta™, Bydureon™, Lixisenatide™ and Liraglutide™, and DPP-4 inhibitors: Januvia™, Galvus™, Onglyza™ and Trajenta™). Apart from the acute effects of GLP-1 and GIP on insulin secretion, the two peptides also have long term effects. Evidence from several labs indicates that GLP-1 R agonists protect pancreatic \(\beta \)-cells by inhibiting apoptosis and enhancing proliferation. For instance, the study by Farilla et al. showed that GLP-1 had anti-apoptotic effects in human islets (Farilla, L, Endocrinology 144: 5149-58 (2003)). Such effects have not been reported for GIP until recently. In 2010, Weidenmaier et al. reported that a DPP-4 resistant GIP analogue has anti-apoptotic effects (Weidenmaier, SD, PLOS One 5(3): e9590 (2010)). Interestingly, in a mice model of diabetes and obesity the combination of the GLP-1 receptor agonist Liraglutide and an acylated GIP analogue show superior effects compared to treatment with Liraglutide or GIP analogue alone (Gault, VA, Clinical Science 121 : 107-1 17 (2011)).

Chronic treatment with the GLP-1 receptor agonists causes significant weight loss in diabetic humans. Interestingly, extended use of DPP-4 inhibitors in similar patients does not consistently change body weight. Evidence suggests (Matthias Tschop oral presentation at ADA (American Diabetes Association), 2011) that body weight loss associated with GLP-1 agonist treatment is enhanced when GLP-1 and GIP are co-administered. In rodents, co-administration of GLP-1 and GIP results in greater body weight loss than GLP-1 treatment alone(Finan, Sci Transl Med. 2013; 5(209):209ra151 . Irwin N et al, 2009, Regul Pept; 153: 2
Thus, in addition to improving blood glucose, GIP may also enhance GLP-1-mediated body weight loss. In the same presentation it was also shown that combining glucagon, GLP-1 and GIP receptor agonism led to further body weight loss in DIO mice.

By combining glucagon, GLP-1 and GIP receptor agonism in novel inventive peptides it is anticipated that superior glycemic control and body weight loss can be achieved. Such peptides are likely to have strong incretin actions and improved β-cell preservation from the GLP-1 and GIP components, and have improved body weight loss from all three components by stimulating energy expenditure, lipolysis and reducing food intake.

Summary of the Invention

Broadly, the present invention concerns Glucagon-GLP-1-GIP triple agonists (referred to in this specification as "triple agonists") which comprise one or more substitutions as compared to wild-type glucagon and which may have the property of an altered, preferably increased GIP and GLP-1 receptor activity, e.g. as assessed in in vitro efficacy assays. In the present invention it has been found that Glucagon-GLP-1-GIP triple acting receptor agonists are superior to existing and marketed GLP-1 analogues because the triple agonists offer improved glycemic control, possible islet and β-cell preservation and enhanced body weight loss. The Glucagon-GLP-1-GIP triple agonists could be used as therapeutics for both type 2 diabetes mellitus, obesity and related disorders.

The invention provides a triple agonist having the general formula I:

wherein

R₁ is H- (i.e., hydrogen), C₄₋₄ alkyl, acetyl, formyl, benzoyl, trifluoroacetyl or pGlu;
X₂ is Aib, Gly, Ala, D-Ala, Ser, N-Me-Ser, Ac₃c, Ac₄c or Ac₅c;
X₁₀ is Tyr or Leu;
X₁₂ is Lys, Ile or Ψ;
X₁₃ is Ala, Tyr or Aib;
X₁₅ is Asp or Glu;
X₁₆ is Ser, Glu, Lys or Ψ;
X₁₇ is Lys or Ψ
X₁₉ is Gln or Ala;
X₂₀ is Lys, His, Arg or Ψ;
X₂₁ is Ala, Asp or Glu;
X23 is Val or lie;
X24 is Asn, Glu or Ψ;
X27 is Leu, Glu or Val;
X28 is Ala, Ser, Arg or Ψ;
X29 is Aib, Ala, Gin or Lys;
X30 is Lys, Gly, or is absent;

Y1 is Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser, Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser, Lys-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser, Lys-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser, Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser, or is absent;

Ψ is a residue of Lys, Arg, Orn or Cys in which the side chain is conjugated to a lipophilic substituent;

and

R² is -NH₂ or -OH;
or a pharmaceutically acceptable salt or solvate thereof.

In some embodiments, Ψ is present at one of positions X12, X16 and X17.

In some embodiments, the compound contains only one residue Ψ, which may be present at any one of positions X12, X16, X17, X20, X24 or X28. For example, it may be present at one of X12, X16 and X17.

In some embodiments, the compound may possess one or more of the following sets of residues:
K12 and Y13; 112 and Y13; K12 and A13; 112 and A13; or Ψ 12 and Y13;
D15 and S16; D15 and E16; E15 and K16; D15 and Ψ 16; E15 and S16; or E15 and Ψ 16;
A19, H20, and D21; A19, K20, and D21; A19, R20, and D21; Q19, K20, and E21; A19, K20, and E21; or Q19, R20, and A21; but especially A19, H20, and D21; A19, R20, and D21 or Q19, R20, and A21;
I23 and E24; V23 and E24; or V23 and N24;
L27, R28, and A29; L27, S28, and A29; L27, A28, and Q29; E27, S28, and A29; or V27, and A28, and Aib29;

5 E15 and K17;

E15 and Ψ17;

E15 and Ψ17 and Q19;

10 Q19 and E24;

E16 and Ψ17 and Q19; and/or

K16 and Ψ17 and Q19.

Any one of these sets of residues, or combinations thereof, may be combined with:

Aib2, Ser2 or Ac4c2, especially Aib2; and/or

20 Tyr10 or Leu10, especially Tyr10.

Positions 1 to 29 may have the sequence

YSQGTFTSDYLSKAAHDFVEWLLRA;
YSΩΘΤΦΤΔΨΚΑΑΗDFVEWLLRA;

Y-Aib-QGFTFTDSIYLSKAAHDFVEWLLSA;
Y-Aib-QGFTFTDSIYLDKEKAAHDFVEWLLSA;
Y-Aib-QGFTFTDSIYLEKKAAHDFVEWLLSA;
Y-Aib-QGFTFTDSIYLEKAAHDFVEWLLSA;

Y-Aib-QGFTFTDSIYLDKKAHDFVEWLLSA;
Y-Aib-QGFTFTDSIYLDKCAAHDFVEWLLSA;

Y-Aib-QGFTFTDSIYLDSTAAHDFVEWLLSA;
Y-Aib-QGFTFTDSIYLDSTAAHDFVEWLLSA;

Y-Aib-QGFTFTDSIYLDSTAAHDFVEWLLSA;
Y-Aib-QGFTFTDSIYLDSTAAHDFVEWLLSA;
Y-Aib-QGFTFTDSIYLDSTAAHDFVEWLLSA;
Y-Aib-QGFTFTDSIYLDSTAAHDFVEWLLSA;

Y-Aib-QGFTFTDSIYLDSTAAHDFVEWLLSA;
Alternatively, positions 1 to 29 may differ at up to 4 positions, e.g. at 1, 2, 3 or 4 positions, from any of the specific sequences shown above, within the constraints of Formula 1.

For example, positions 1 to 29 may differ at up to 4 positions, e.g. at 1, 2, 3 or 4 positions from one of the following sequences:

Y-Aib-QGTFTSDYSIYLEKTAKEFVEWLLSA;

Y-Aib-QGTFTSDYSKALEKTAKEFVEWLLSA;

Y-Aib-QGTFTSDYSSYLDETAAKEFVEWLLSA;

Y-Aib-QGTFTSDYSIYLDSTAAHDFVEWLLRA;

Y-Aib-QGTFTSDYSIYLDSTAAHDFVEWLLRA;

Y-Aib-QGTFTSDYS!YLDSTAAHDFVEWLLRA;

Y-Aib-QGTFTSDYSIYLDSTAAHDFVEWLLRA;

Y-Aib-QGTFTSDYSIYLDSTAAHDFVEWLLRA;

Y-Aib-QGTFTSDYSIYLDSTAAHDFVEWLLRA;

Y-Aib-QGTFTSDYSIYLDSTAAHDFVEWLLRA;

Y-Aib-QGTFTSDYSIYLDSTAAHDFVEWLLRA;

Y-Aib-QGTFTSDYSIYLDSTAAHDFVEWLLRA;

YSQG{1}FTSDSKYL{2}D-K(Hexadecanoyl-is{3}oGlu)-{4}AAHDFVEWLLRA;
The peptide backbone of Formula I may have the sequence:

Y-Aib-QGTFTSDYSIYLDE-K(Hexadecanoyl-isoGlu)-AAHDFVEWLLSA;
Y-Aib-QGTFTSDYSIYLDS-K(Hexadecanoyl-isoGlu)-AAHDFVEWLLSA;
Y-Aib-QGTFTSDSKYLDS-K(Hexadecanoyl-isoGlu)-AAHDFVEWLLSA;
Y-Aib-QGTFTSDSYILEK-K(Hexadecanoyl-isoGlu)-AAKDFVEWLLSA;
Y-Aib-QGTFTSDSYILEY-K(Hexadecanoyl-isoGlu)-AAKDFEIVWLLSA;
Y-Aib-QGTFTSDYS-K(Hexadecanoyl-isoGlu)-YLEKKAAKEFVEWLLSA;
Y-Aib-QGTFTSDYSYLDE-K(Hexadecanoyl-isoGlu)-AAKDFVEWLLSA;
Y-Aib-QGTFTSDSYILEK-K(Hexadecanoyl-isoGlu)-AAKDFVEWLLSA;
Y-Aib-QGTFTSDSYILEY-K(Hexadecanoyl-isoGlu)-AAKDFEIVWLLSA;
Y-Aib-QGTFTSDYSYICH-K(Hexadecanoyl-isoGlu)-AAKDFEIVWLLSA;
Y-Aib-QGTFTSDYSILA-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;
Y-Aib-QGTFTSDYSIYLD-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;
Y-Aib-QGTFTSDYSIALD-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;
Y-Aib-QGTFTSDYSIALDK-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;
Y-Aib-QGTFTSDYSIYLDS-K(Hexadecanoyl-isoGlu)-AAHDFVEWLLSA;
Y-Aib-QGTFTSDSYILEK-K(Hexadecanoyl-isoGlu)-AAKDFVEWLLSA;
Y-Aib-QGTFTSDSYILEY-K(Hexadecanoyl-isoGlu)-AAKDFEIVWLLSA;
Y-Aib-QGTFTSDYSYICH-K(Hexadecanoyl-isoGlu)-AAKDFEIVWLLSA;
Y-Aib-QGTFTSDYSILA-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;
Y-Aib-QGTFTSDYSIYLD-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;
Y-Aib-QGTFTSDYSIALD-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;
Y-Aib-QGTFTSDYSIALDK-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;
Y-Ac4c-QGTFTSDYSIYLDE-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;
Y-Ac4c-QGTFTSDYSIYLD-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;
Y-Ac4c-QGTFTSDYSIALD-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;
Y-Ac4c-QGTFTSDYSIALDK-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;

The peptide backbone of Formula I may have the sequence:
Y-Ac4c-QGTFTSDYSIYLDKTAQRAFVEWLLAQGPSSGAPPPS.

Alternatively, the peptide backbone sequence may differ at up to 5 positions from one of the sequences shown above, within the constraints of Formula I. For the avoidance of doubt, a sequence satisfying the definition of Y1 is regarded as a single position. Typically the compound differs from the reference sequence at only 4 positions in X1 to X29. Thus, if the compound differs from the reference sequence at 5 positions, one of those positions is generally X30 or Y1.

In particular, the peptide backbone sequence may differ at up to 5 positions from one of the sequences:

Y-Aib-QGTFTSDYSIYLEK4 AAKEFVEWLLSAGPSSGAPPPS;

Y-Aib-QGTFTSDYSSYLDETAAHDFVEWLLSA; or

Y-Aib-QGTFTSDYSIALE^AQRAFVEWLLAQK.

The peptide backbone of Formula I may have the sequence:

YSQGTFTSDYSKYLD-K(Hexadecanoyl-isoglu)-KAAHDFVEWLLRA;

Y-Aib-QGTFTSDYSIYLD-E-K(Hexadecanoyl-isoglu)-AAHDFVEWLLSA;
Y-Aib-QGTFTSDYSIYLD-S-K(Hexadecanoyl-isoglu)-AAHDFVEWLLSA;

Y-Aib-QGTFTSDYSKYLDS-K(Hexadecanoyl-isoglu)-AAHDFVEWLLSA;
Y-Aib-QGTFTSDYSIYLD-EK-(Hexadecanoyl-isoglu)-AAKAEFVEWLLSA;
Y-Aib-QGTFTSDYSKYSYLD-K(Hexadecanoyl-isoglu)-YLEKKAKEFVEWLLSA;
Y-Aib-QGTFTSDYSIYLD-EK-(Hexadecanoyl-isoglu)-AAKEFVEWLLSAGPSSGAPPPS;
Y-Aib-QGTFTSDYSIYLD-EK((17-carboxy-heptadecanoyl)-isoglu-Peg3-Peg3)-AAKEFVEWLLSAGPSSGAPPPS;

Y-Aib-QGTFTSDYSIYLDK-K((17-carboxy-heptadecanoyl)-isoglu-Peg3-Peg3)-AQRFAVFVEWLLAQGPSSGAPPPS;
Y-Aib-QGTFTSDYSIYLDK-K((17-carboxy-heptadecanoyl)-isoglu)-AQRFAVFVEWLLAQGPSSGAPPPS;
Y-Aib-QGTFTSDYSIYLDK-K((Octadecanoyl-isoglu-Peg3-Peg3)-
AAKEFVEWLLSAGPSSGAPPPS;

Y-Aib-QGTFTSDYSIYLDK-K((17-carboxy-heptadecanoyl)-isoglu-Peg3-Peg3)-AAKEFVEWLLSAGPSSGAPPPS;
Certain of the Y1 groups, when present, may provide increased stability in vivo, e.g. in serum, and so may contribute to the half life of the GIP analogue. Without wishing to be bound by theory, it is believed that these groups may help to stabilize the three dimensional conformation of the molecule and/or provide resistance to proteolytic degradation.

For example, the Y1 sequences Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser, Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser, Lys-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser, Lys-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser, Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser and Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser have homology with a C-terminal portion of the Exendin-4 molecule and appear to contribute to the stability of the molecule without concomitantly providing significant levels of GLP-1 agonist activity.

The invention further provides a nucleic acid encoding a peptide having the sequence X1-X30 of Formula I. Also provided is an expression construct (also known as an expression vector) comprising a nucleic acid of the invention in operable linkage with suitable regulatory
elements to direct expression of the peptide, e.g. transcription and translation. The invention also provides a host cell comprising a nucleic acid or expression construct and capable of expressing, and optionally secreting, the peptide.

The peptide may itself be a compound of the invention, e.g. when the peptide contains only naturally occurring amino acids (i.e. proteinogenic amino acids), does not contain a residue Ψ, and where R^1 and R^2 are H- and -OH respectively. Alternatively, the peptide may be a precursor of a compound of the invention.

The invention further provides a pharmaceutical composition comprising a triple agonist as described herein, or a pharmaceutically acceptable salt or solvate thereof, in admixture with a carrier, preferably a pharmaceutically acceptable carrier. The triple agonist may, for example, be a pharmaceutically acceptable acid addition salt.

The pharmaceutical composition may be formulated as a liquid suitable for administration by injection or infusion, or which is formulated to cause slow release of said triple agonist.

The invention further provides a therapeutic kit comprising a triple agonist as described herein, and a device comprising a triple agonist as described herein.

The invention further provides a triple agonist as described herein, or a pharmaceutically acceptable salt or solvate thereof, for use in a method of medical treatment, e.g. for use in the treatment and/or prevention of a metabolic disorder.

The invention further provides the use of a triple agonist as described herein, or a pharmaceutically acceptable salt or solvate thereof, in the preparation of a medicament for the treatment and/or prevention of a metabolic disorder.

The invention further provides a method of prevention and/or treatment of a metabolic disorder in a subject, comprising administering a triple agonist as described herein, or a pharmaceutically acceptable salt or solvate thereof, to the subject.

The metabolic disorder may be diabetes or a diabetes related disorder, or obesity or an obesity related disorder. The link between obesity and diabetes is well known, so these conditions are not necessarily separate or mutually exclusive.
Diabetes related disorders include insulin resistance, glucose intolerance, increased fasting glucose, pre-diabetes, type 1 diabetes, type 2 diabetes, gestational diabetes hypertension, dyslipidemia, bone related disorders and combinations thereof.

Diabetes related disorders also include atherosclerosis, arteriosclerosis, coronary heart disease, peripheral artery disease and stroke; or conditions associated with atherogenic dyslipidemia, blood fat disorders, elevated blood pressure, hypertension, a prothrombotic state and a proinflammatory state.

Bone related disorders include, but are not limited to osteoporosis and increased risk of bone fracture.

The blood fat disorder may be selected from high triglycerides, low HDL cholesterol, high LDL cholesterol, and plaque buildup in artery walls, or a combination thereof.

The prothrombotic state may be selected from high fibrinogen levels in the blood and high plasminogen activator inhibitor-1 levels in the blood.

The proinflammatory state may be an elevated C-reactive protein level in the blood.

Obesity related disorders include obesity linked inflammation, obesity linked gallbladder disease and obesity induced sleep apnea, or may be associated with a condition selected from atherogenic dyslipidemia, blood fat disorders, elevated blood pressure, hypertension, a prothrombotic state, and a proinflammatory state, or a combination thereof.

Detailed Description of the Invention

Unless otherwise defined herein, scientific and technical terms used in this application shall have the meanings that are commonly understood by those of ordinary skill in the art.

Generally, nomenclature used in connection with, and techniques of, chemistry, molecular biology, cell and cancer biology, immunology, microbiology, pharmacology, and protein and nucleic acid chemistry, described herein, are those well known and commonly used in the art.

Definitions

Unless specified otherwise, the following definitions are provided for specific terms, which are used in the above written description.
Throughout this specification, the word "comprise" or variations such as "comprises" or "comprising" will be understood to imply the inclusion of a stated integer (or components) or group of integers (or components), but not the exclusion of any other integer (or components) or group of integers (or components).

The singular forms "a," "an," and "the" include the plurals unless the context clearly dictates otherwise.

The term "including" is used to mean "including but not limited to." "Including" and "including but not limited to" are used interchangeably.

The terms "patient," "subject," and "individual" may be used interchangeably and refer to either a human or a non-human animal. These terms include mammals such as humans, primates, livestock animals (e.g., bovines, porcines), companion animals (e.g., canines, felines) and rodents (e.g., mice and rats).

The term "solvate" in the context of the present invention refers to a complex of defined stoichiometry formed between a solute (in casu, a peptide conjugate or pharmaceutically acceptable salt thereof according to the invention) and a solvent. The solvent in this connection may, for example, be water, ethanol or another pharmaceutically acceptable, typically small-molecular organic species, such as, but not limited to, acetic acid or lactic acid. When the solvent in question is water, such a solvate is normally referred to as a hydrate.

The term "agonist" as employed in the context of the invention refers to a substance (ligand) that activates the receptor type in question.

Throughout the description and claims the conventional one-letter and three-letter codes for natural (or "proteinogenic") amino acids are used, as well as generally accepted three letter codes for other (non-natural or "non-proteinogenic") a-amino acids, such as Aib (a-aminoisobutyric acid), Orn (ornithine) and D-Ala (D-alanine). All amino acid residues in peptides of the invention are preferably of the L-configuration except where explicitly stated.

Among sequences disclosed herein are sequences incorporating an "H-" moiety at the amino terminus (N-terminus) of the sequence, and either an "-OH" moiety or an "-NH2" moiety at the carboxy terminus (C-terminus) of the sequence. In such cases, and unless otherwise indicated, an "H-" moiety at the N-terminus of the sequence in question indicates a hydrogen atom (i.e. R1 = H-), corresponding to the presence of a free primary or secondary amino
group at the N-terminus, while an "-OH" or an "-NH2" moiety at the C-terminus of
the sequence (i.e. R² = -OH or -NH₂) indicates a carboxy (-COOH) group or an amido (-CONH₂)
group at the C-terminus, respectively.

Other R¹ groups are possible at the N-terminus, including pyroglutamic acid (pGlu; (S)-(−)-2-
pyrrolidone-5-carboxylic acid), C1-4 alkyl, acetyl, formyl, benzoyl and trifluoroacetyl.

Receptor agonist activity

As mentioned above, the compounds described herein are Glucagon-GIP-GLP 1 dual
receptor agonists. That is to say, they have agonist activity at all three of the glucagon
receptor, the GIP receptor and the GLP-1 receptor.

The term "agonist" as employed in the context of the invention refers to a substance (ligand)
that is capable of binding to a particular receptor and activating signaling by that receptor.

Thus a GIP receptor agonist is capable of binding to the GIP receptor (designated GIP-R) and
activating signaling by that receptor, e.g. by generation of cAMP or inducing Ca²⁺ release.
A agonist activity at the GIP receptor may therefore be measured by assessing GIP receptor
signalling, which may may, for example, be measured via cAMP production or Ca²⁺ release.

The cDNA sequence encoding the human GIP receptor has GenBank accession no.
BC101673.1 (Gl:75516688). The encoded amino acid sequence (including signal peptide) is:

1 MTSPILQLL LRLSLCGLLL QRAETGSKQ TAGELYQRWE RYRRECQETL AAAEPPSGLA
61 CNGSFDMYVC WDYAAPNATA RASCWPYLPM HHHVAAFVVL RQCGSDQGWG LWRDHTQCEN
121 PKEKNEAFLDQ RLILERLQVM YTVGYSLSLA TLLALLILS LFRLHHTCRN YIHINLFTSF
181 MLRAAIALSR DRLPPRPGPY LGDQALALWN QALAACRATQ IVTQYCVGAN YTWWLVGEGVY
241 LHSLLVLVGG SEEGHFYYYL LLGWAPALF VIPWVIVRYL YENTQCWERN EVKAIWWIIR
301 TPILMTLIN FLIFIRILGI LLSKLTRQTM RCRDYRLRLA RSTLTVFLL GVHEVVFPAPV
361 TEQQARGALR FAKLGFEIFL SSFQGFLVSV LYCFINKEVQ SEIRRGWHHC RLRRSLGEEQ
421 RQLPERAFRA LPSSGSPGVE PTSRGLSSGT LPGPGNEASR ELESYC
481 (GenBank AAI01674.1 Gl:75516689). This may be employed in any assays to determine
GIP signalling.

Similarly the compounds have agonist activity at the GLP-1 receptor (GLP-1 -R), i.e. they are
capable of binding to the GLP-1 receptor and activating signaling by that receptor, e.g. by
generation of cAMP or inducing Ca²⁺ release. Agonist activity at the GLP-1 receptor may
Therefore be measured by assessing GLP-1 receptor signalling, which may, for example, be measured via cAMP production or Ca2+ release.

The GLP-1 receptor may have the sequence of the human glucagon-like peptide 1 receptor (GLP-1 R) having primary accession number P43220. The precursor protein (including signal peptide) has primary accession number NP_0020533; Gl: 166795283 and has sequence:

```
1 MAGAPGPLRL ALLLLGMVGR AGPRPQGATV SLWETVQKWR EYRRQCRQSL TEDPPATDL
61 FCNRTFDEYA CWPDEPGVSFR VNVSCFVWLPL WASSVPQGHV YRFCTAEGIW LQKDNUSSLPFW
121 RDLSECEEESK RGERSSPEEQ LLFLYIIITV GYALSFSAV LIAASDLLFR HLHCTRYNH
181 LNLFASFLIR ALSVFIKDAAK LWKMYSTAAQ QHQWDGLLSS QDLSCLRLVF LLMQYCCAAN
241 YYWLLVEGVY LLTILAFSVL SEQMIFRLYV SIGWGVPLLS VVPWGIVYKL YEDEGCWTRN
301 SNNNYWLIIR LFPLFAIGVNN FLFIRVVICI WSKLKANLM CKTDICLRLA KSTLTLLPLL
361 GTHEVIFAFV MDEHARGTLIR FIKLFTELSFP TSPFQGVMAVIE YCFVNCVEQF LEFRRSNERW
15 421 RLEHLHQQRD SSMKPLKCFI SSSLSSGATAG SSMYDATCQA SCS.
```

Similarly the compounds have agonist activity at the glucagon receptor (Glu-R), i.e. they are capable of binding to the glucagon receptor and activating signaling by that receptor, e.g. by generation of cAMP or inducing Ca2+ release. Agonist activity at the glucagon receptor may therefore be measured by assessing glucagon receptor signalling, which may, for example, be measured via cAMP production or Ca2+ release.

The glucagon receptor may have the sequence of the human glucagon receptor (Glu-R) having primary accession number P47871. The precursor protein (including signal peptide) has primary accession number NP_000151; Gl: 4503947, and has the sequence:

```
1 MPPCQPQRPL LLLLLLACQ PQQPSAQVMY FLFEKWKLYG DQCHHNLSLL PPTELVCNR
61 TFDKYSWPD TPANTTANIS CPFYLYPWWHK VQHRLFVFKC GPDQWVRGQP RGQFWDRASQ
121 CQMDGEIEV QKEVARKYSS FQVNYTVGYS LSGGLALLAL AILGGLSKHL CTRNAHANL
181 FASFVLKASS VLVIDGLLRT RYSQKIGDDL SVSTWLSGDA VAGCRVAAVF MQYGVANVY
241 WLVLEGYLYH NLGLATLPE RSFSSLYLGI WGWAPMLFVV PWAHKLFE NVQCGWTSNDN
301 MGFWLWRFF VFALILINFF IFVRIYQLLV AKLRARQMQH TDYFKRALKS TLTIILPLLG
361 HEVVFAPFVT BEAQGLRLSA KLFDFLLSFQ PGQLLAVLY CFIHKEVQSE LRARNHRWRL
421 GKVLEWERNT SNHRASSSPG HGPSKELQF GRRGGQSQDSS AETPLAGGLP RLAEAPF
```

In all cases, where sequences of precursor proteins are referred to, it should of course be understood that assays may make use of the mature protein, lacking the signal sequence.

The compounds of the present invention have at least one GIP, one glucagon, and one GLP-1 biological activity, in particular in treatment of metabolic diseases such as diabetes and obesity. This can be assessed, e.g., in in vivo assays, for example as described in the examples, in which the blood glucose level or another biological activity is determined after a test animal has been treated or exposed to a triple agonist. In particular, compounds of the invention may be capable of improving glycaemic control when administered to a diabetic
subject. Additionally or alternatively, they may be capable of reducing body weight when administered to an overweight or obese subject. In either case, the effect may be superior to that obtained with an equivalent quantity (by mass, or molar ratio) of wild type human GIP or GLP-1 in comparable subjects when given according to a comparable dosing regime.

Activity in *in vitro* assays may also be used as a measure of the compounds’ activity. Typically the compounds have activity at the glucagon, GLP-1 and GIP receptors (designated GCG-R, GLP-1-R and GIP-R respectively). EC50 values may be used as a numerical measure of agonist potency at a given receptor. An EC50 value is a measure of the concentration of a compound required to achieve half of that compound’s maximal activity in a particular assay. Thus, for example, a compound having EC50 [GLP-1 R] lower than the EC50 [GLP-1 R] of native GIP in a particular assay may be considered to have higher potency at the GLP-1 R than GIP. In some embodiments of the present invention, the EC50 GLP-1-R and/or EC50 GIP-R and/or EC50 GCG-R is below 1.0 nM, below 0.9 nM, below 0.8 nM, below 0.7 nM, below 0.6 nM, below 0.5 nM, below 0.4 nM, below 0.3 nM, below 0.2 nM, below 0.1 nM, below 0.09 nM, below 0.08 nM, below 0.07 nM, below 0.06 nM, below 0.05 nM, below 0.04 nM, below 0.03 nM, below 0.02 nM, below 0.01 nM, below 0.009 nM, below 0.008 nM, below 0.007 nM, below 0.006 nM, or below 0.005 nM, e.g. when assessed using the assay described in Example 2.

Lipophilic group

The compound of the invention may comprise a residue Ψ, i.e. a residue selected from Lys, Arg, Orn and Cys in which the side chain is conjugated to a lipophilic substituent.

Without wishing to be bound by any particular theory, it is thought that the substituent binds plasma proteins (e.g. albumin) in the blood stream, thus shielding the compounds of the invention from enzymatic degradation and renal clearance and thereby enhancing the half-life of the compounds. It may also modulate the potency of the compound, e.g. with respect to the GIP receptor, the glucagon receptor and/or the GLP-1 receptor.

The substituent is conjugated to the functional group at the distal end of the side chain from the alpha-carbon. The normal ability of the Lys, Arg, Orn or Cys side chain to participate in interactions mediated by that functional group (e.g. intra- and inter-molecular interactions) may therefore be reduced or completely eliminated by the presence of the substituent. Thus, the overall properties of the compound may be relatively insensitive to changes in the actual amino acid present as residue Ψ. Consequently, it is believed that any of the residues Lys,
Arg, Orn and Cys may be present at any position where Ψ is permitted. However, in certain embodiments, it may be advantageous that the amino acid component of Ψ is Lys.

Thus, Ψ is a residue of Lys, Arg, Orn or Cys in which the side chain is conjugated to a substituent having the formula \(-Z^1\) or \(-Z^2\) \(-Z^1\).

\(-Z^1\) is a fatty chain having at a terminus a connection \(-X-\) to Ψ or to \(Z^2\);

wherein
\(-X-\) is a bond, \(-CO-\), \(-SO-\), or \(-SO2-\);

and, optionally, \(Z^1\) has a polar group at the end of the chain distal from connection \(-X-\); said polar group comprising a carboxylic acid or a carboxylic acid bioisostere, a phosphonic acid, or a sulfonic acid group;

and wherein \(-Z^2\), if present, is a spacer of formula:

\[
\begin{array}{c}
\cdots \quad \text{Y-V-X-} \\
\cdots \quad n \\
\end{array}
\]

connecting \(Z^1\) to Ψ;

wherein:

each Y is independently \(-NH\), \(-NR\), \(-S\) or \(-O\), where \(R\) is alkyl, a protecting group or forms a linkage to another part of the spacer \(Z^2\);

each X is independently a bond, \(-CO-\), \(-SO-\), or \(-SO2-\);

with the proviso that when Y is \(-S\), the X to which it is bound is a bond;

each V is independently a bivalent organic moiety linking Y and X;

and \(n\) is 1-10.

The group \(Z^1\)

\(Z^1\) is a fatty chain having a connection to Ψ or to \(Z^2\), referred to herein as \(-X-\). \(-X-\) may be, for example, a bond, acyl \((-CO-)\), sulfinyl \((-SO-)\), or sulfonyl \((-SO2-)\). When \(Z^1\) is bound directly to Ψ, that is, when \(Z^2\) is not present, preferably \(-X-\) is acyl \((-CO-)\), sulfinyl \((-SO-)\), or sulfonyl \((-SO2-)\). Most preferably, \(-X-\) is acyl \((-CO-)\).
Z may further have a polar group, said polar group being located at the end of the chain distal from the connection -X-. In other words, the connection is located at the α-position with respect to the polar group. The polar group may be bound directly to the terminus of the fatty chain, or may be bound via a linker.

Preferably, the polar group is an acidic or weakly acid group, for example a carboxylic acid or a carboxylic acid bioisostere, a phosphonate, or a sulfonate. The polar group may have a pKa of between -2 and 12 in water, more preferably between 1 and 7, more preferably between 3 and 6. Certain preferred polar groups have a pKa of between 4 and 5.

For example, and not by way of limitation, the polar group may comprise a carboxylic acid (-COOH) or a carboxylic acid bioisostere, a phosphonic acid (-P(O)(OH)2), or a sulfonic acid (-SO₂OH) group.

Preferably the polar group, if present, comprises a carboxylic acid or carboxylic acid bioisostere. Suitable carboxylic acid bioisosteres are known in the art. Preferably the bioisostere has a proton having a pKa similar to the corresponding carboxylic acid. Examples of suitable bioisosteres may include, not by way of limitation, tetrazole, acylsulfomides, acylhydroxylamine, and squaric acid derivatives, as shown below (— indicates the point of attachment):

\[\text{Fatty chain as used herein refers to a moiety comprising a chain of carbon atoms, the carbon atoms being predominantly substituted with hydrogen or hydrogen-like atoms, for example, a hydrocarbon chain. Such fatty chains are often referred to as lipophilic, although it will be appreciated that substitution may alter the lipophilic properties of the overall molecule.} \]

The fatty chain may be aliphatic. It may be entirely saturated or may include one or more double or triple bonds. Each double bond, if present, may be in the E or Z configuration. The fatty chain may also have one or more cycloalkylene or heterocycloalkylene moieties in its length, and additionally or alternatively may have one or more arylene or heteroarylene moieties in its length. For example, the fatty chain may incorporate a phenylene or piperazinylene moiety in its length as, for example, shown below (wherein — represents the points of attachment within the chain).
The fatty chain may be derived from a fatty acid, for example, it may be derived from a medium-chain fatty acid (MCFA) with an aliphatic tail of 6-12 carbon atoms, a long-chain fatty acid (LCFA) with an aliphatic tail of 13-21 carbon atoms, or a very long-chain fatty acid (LCFA) with an aliphatic tail of 22 carbon atoms or more. Examples of linear saturated fatty acids from which suitable fatty chains may be derived include tridecylcic (tridecanoic) acid, myristic (tetradecanoic) acid, pentadecylic (pentadecanoic) acid, palmitic (hexadecanoic) acid, and margaric (heptadecanoic) acid. Examples of linear unsaturated fatty acids from which suitable fatty chains may be derived include myristoleic acid, palmitoleic acid, sapienic acid and oleic acid.

The fatty chain may be connected to Ψ or to Z^2 by an amide linkage, a sulfonamide linkage, a sulfonamide linkage, or by an ester linkage, or by an ether, thioether or amine linkage. Accordingly, the fatty chain may have, a bond to Ψ or to Z^2 or an acyl (-CO-), sulmyl (-SO-), or sulfonyl (-SO2-) group. Preferably, the fatty chain has a terminus having an acyl (-CO-) group and is connected to Ψ or Z^2 by an amide or ester linkage.

In some embodiments, Z^1 is a group of formula:

$$A-B-\text{Alk}-X$$

wherein

- A is hydrogen or a carboxylic acid, a carboxylic acid bioisostere, a phosphonic acid, or a sulfonic acid group;
- B is a bond or a linker;
- X is a bond, acyl (-CO-), sulmyl (-SO-), or sulfonyl (-SO2-); and
- Alk is a fatty chain that may be optionally substituted with one or more substituents. The fatty chain is preferably 6 to 28 carbon atoms in length (e.g. a Ceaalkylene), more preferably, 12 to 26 carbons in length (e.g. a Ci2-26alkylene), more preferably, 16 to 22 carbons in length (e.g. C16-22alkylene), and may be saturated or unsaturated. Preferably, Alk is saturated, that is, preferably Alk is alkylene.

Optional substituents on the fatty chain may be independently selected from fluoro, C$_1$alkyl, preferably methyl; trifluoromethyl, hydroxymethyl, amino, hydroxyl, Ci$_4$alkoxy, preferably methoxy; oxo, and carboxyl, and may be independently located at any point along the chain.
In some embodiments, each optional substituent is selected from fluoro, methyl, and hydroxy. Where more than one substituent is present, substituents may be the same or different. Preferably, the number of substituents is 0 to 3; more preferably the fatty chain is unsubstituted.

B may be a bond or a linker. When B is a linker, it may be a cycloalkylene, heterocycloalkylene, Cearylene, or Cs-heteroarylene, or Cearylene-O- or Cs-heteroarylene-O-.

When B is phenylene it may, for example, be selected from 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, preferably 1,4-phenylene (so that A-B- is a 4-benzoic acid substituent or 4-benzoic acid bioisostere). When B is phenylene-O-, it may, for example, be selected from 1,2-phenylene-O-, 1,3-phenylene-O-, 1,4-phenylene-O-, preferably 1,4-phenylene-O. Each phenylene of B may be optionally substituted with one or more substituents selected from fluoro, methyl, trifluoromethyl, amino, hydroxyl, and C4-alkoxy, preferably methoxy. It will be appreciated that substituent identity and position may be selected to subtly alter the pKa of the polar group. Suitable inductively or mesomerically electron-withdrawing or donating groups and their positional effects are known in the art. In some embodiments, B may be Cs-heteroarylene, for example, pyridinylene or thiofuranylene, and may be optionally substituted as described.

For example, in some embodiments, A-B- may be selected from:

```
A
/   \          or          \
O    .           .
```

Preferably, is H- or HOOC- and B is a bond.

It will be understood that when A is hydrogen, B is a bond and Alk is unsubstituted alkylene, A-B-Alk- is an alkyl chain of formula H3C-(CH2)r-.

In some embodiments, Z1 is an acyl group of formula:

```
A-B-Alk-(CO)-
```

or a sulfonyl group of formula:

```
A-B-Alk-(S02)-
```

Preferably, Z1 is an acyl group of formula:
A-B-alkylene-(CO)-

where A and B are as defined above.

In some embodiments, A is -COOH and B is a bond. Accordingly, certain preferred Z¹ are derived from long-chain saturated \(\alpha,\omega\)-dicarboxylic acids of formula HOOC-(CH\(_2\))\(_{2n}\)-COOH, preferably, long-chain saturated \(\alpha,\omega\)-dicarboxylic acids having an even number of carbon atoms in the aliphatic chain. In some other embodiments, A is H and B is a bond. Accordingly, certain preferred Z¹ are derived from long-chain saturated carboxylic acids of formula HOOC-(CH\(_2\))\(_{12}\)-CH3, preferably, long-chain saturated carboxylic acids having an even number of carbon atoms in the aliphatic chain.

For example, and not by way of limitation, Z¹ may be:

A- B-Ci6-2oaSkyiene-(CO)- wherein A is H or -COOH and B is a bond, for example:

17-carboxy-heptadecanoyl HOOC-(CH\(_2\))\(_{16}\)-CO-;
19-carboxy-nonadecanoyl HOOC-(CH\(_2\))\(_{18}\)-CO-;
Octadecanoyl H\(_3\)C-(CH\(_2\))\(_{16}\)-CO-;
Eicosanoyl H\(_3\)C-(CH\(_2\))\(_{18}\)-CO-;

The carboxylic acid group, if present, may be replaced by a bioisotere as detailed herein.

The group Z²

Z² is an optional spacer that connects Z¹ to the side chain of the amino acid component of \(\Psi\).

At its most general, Z², if present, is a spacer bound at one terminus by Y, which may be a nitrogen, oxygen or sulfur atom, and at the other terminus by X, which may be a bond or an acyl (-CO-), sulfinyl (-SO-) or sulfonxy (-SO\(_2\)-) or absent. Accordingly, Z² may be a spacer of formula (— indicate points of attachment):

\[\text{—Y-V-X—} \]

wherein:

Y may be -NH, -NR, -S or -O, where R may be alkyl, a protecting group or may form a linkage to another part of the spacer, with the remaining valency forming a linkage to Z¹;
X may be a bond, CO-, SO-, or SO2-, with the remaining valency forming a linkage to the side chain of the amino acid component of \(\Psi \);

V is a bivalent organic moiety linking Y and X;

and n may be 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. Where n is 2 or more, each Y, V, and X is independent of every other Y, V, and X.

Accordingly, \(Z^2 \) may be bound at each side by amide, sulfinamide, sulfonamide, or ester linkages or by amino, ether, or thioether linkages depending upon the nature of Y and X and the corresponding linking groups on \(Z^1 \) and the side chain. Where n is 2 or greater, each V may also be bound to each adjacent V by linkages as described. Preferably, linkages are amides, esters or sulfonamides, most preferably amides. Accordingly, in some embodiments, each Y is -NH or -NR and each X is CO- or SO2-. Most preferably, -X- is acyl (-CO-).

In some embodiments, \(Z^2 \) is a spacer of formula -SA-, -SB-, -SA-SB- or -SB-SA-, wherein SA and SB are as defined below.

In some embodiments, \(Z^2 \) is selected from -SA- or -SB-SA-, that is, [side chain]-Z \(^2 \)Z \(^1 \) is [side chain]-S \(_A^2 \)Z \(^1 \) or [side chain]-S \(_B^2 \)S \(_A^1 \)Z \(^1 \).

The group SA

SA may be a single amino acid residue or a residue of an amino acid derivative, especially an amino acid derivative residue having a sulfinyl or sulfonyl in place of the carboxy moiety at the C terminus. Additionally or alternatively, the single amino acid residue may have an oxygen or sulfur atom in place of the nitrogen atom at the N terminus. Preferably, SA is a single amino acid residue.

In some embodiments, the amino acid may be selected from γ-Glu, a-Glu, a-Asp, β-Asp, Ala, β-Ala (3-aminopropanoic acid), Dapa (2,3-diaminopropanoic acid), Dab (2,4-diaminobutanoic acid), and Gaba (4-aminobutanoic acid). It will be understood that where more than one carboxylic acid or amino moiety is present, connection may be at any moiety as appropriate. Any carboxylic acid or amino residues not bound within the residue may be free, that is, present as a free carboxylic acid or primary amine, or may be derivatised. Suitable derivatisation is known in the art. For example, carboxylic acid moieties may be present in SA amino acid residues as esters, for example, as methyl esters. Amino moieties may be present as alkylated amines, for example, methylated, or may be protected as amide or carbamate moieties. Other suitable amino acids include β-Ala (3-aminopropanoic acid) and Gaba (4-aminobutanoic acid) and similar \(\omega \) amino acids.
It will be understood that amino acids may be D or L, or a racemic or enantioenriched mixture. In some embodiments, the amino acid is an L-amino acid. In some embodiments, the amino acid is a D-amino acid.

In some preferred embodiments, SA has a carboxylic acid substituent, with γ-Glu, α-Glu, α-Asp, and β-Asp, and sulfanyl and sulfonyl derivatives thereof, being preferred. Accordingly, in some embodiments, the amino acid residue is:

\[
\begin{align*}
\text{HO} & \quad \begin{array}{c}
\text{O} \\
\text{NH} & \quad \begin{array}{c}
\text{X} \\
\text{a}
\end{array}
\end{array}
\end{align*}
\]

or

\[
\begin{align*}
\text{HO} & \quad \begin{array}{c}
\text{O} \\
\text{NH} & \quad \begin{array}{c}
\text{X} \\
\text{a}
\end{array}
\end{array}
\end{align*}
\]

where \(-X-\) is \(-\text{CO}-\), \(-\text{SO}-\), \(-\text{SO}_2-\), preferably \(-\text{CO}-\), and \(a\) is 1 or 2, preferably 2. In some embodiments, the carboxylic acid is an ester, and the amino acid residue is:

\[
\begin{align*}
\text{RO} & \quad \begin{array}{c}
\text{O} \\
\text{NH} & \quad \begin{array}{c}
\text{X} \\
\text{a}
\end{array}
\end{array}
\end{align*}
\]

or

\[
\begin{align*}
\text{RO} & \quad \begin{array}{c}
\text{O} \\
\text{NH} & \quad \begin{array}{c}
\text{X} \\
\text{a}
\end{array}
\end{array}
\end{align*}
\]

where \(-X-\) is \(-\text{CO}-\), \(-\text{SO}-\), \(-\text{SO}_2-\), preferably \(-\text{CO}-\), and \(a\) is 1 or 2, preferably 2, and \(R\) is Chalky! or Cearyl. Preferably \(R\) is Chalky!, preferably methyl or ethyl, more preferably ethyl.

A preferred SA group bearing a carboxylic acid is γ-Glu.

Preferably, SA is selected from Dapa or γ-Glu. Most preferably, SA is γ-Glu.

The group SB

SB may be a linker of general formula:

\[
\begin{array}{c}
P_u \\
_n
\end{array}
\]
wherein \(\text{Pu} \) is a polymeric unit and \(n \) is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. One terminus of the linker \(SB \) is an -NH, -NR, -S or -O, wherein \(R \) may be alkyl, a protecting group or may form a linkage to another part of the polymeric unit; while the other is a bond or CO-, SO- or SO2-. Accordingly, each polymeric unit \(\text{Pu} \) may be bound at each side by amide, sulfonamide, sulfonamides, or ester linkages or by amino, ether, or thioether linkages depending upon the nature of \(Y \) and \(X \) and the corresponding linking groups on \(Z^1, SA, \) and Lys.

In some embodiments, each \(\text{Pu} \) may be independently a unit of formula:

\[
\begin{array}{c}
\text{Y-V-X} \\
\end{array}
\]

wherein:

\(Y \) may be -NH, -NR, -S or -O, wherein \(R \) may be alkyl, a protecting group or may form a linkage to another part of the spacer, with the remaining valency forming a linkage to \(Z^1 \);

\(X \) may be a bond, CO-, SO-, or SO2-, with the remaining valency forming a linkage to the \(\Psi \) side chain;

and \(V \) is a bivalent organic moiety linking \(Y \) and \(X \).

In some embodiments, \(V \) is the a-carbon of a natural or unnatural amino acid, that is \(V \) is -CHR\(^A\) - , wherein \(R^{AA} \) is an amino acid side chain; or \(V \) is an optionally substituted \(C_1-6 \text{alkylene}, \) or \(V \) is a chain comprising one or more units of ethylene glycol in series, also known as PEG chain, for example, -(CH\(_2\)\(_2\)CH\(_2\))\(_{m}\)-(CH\(_2\))\(_p\)-, where \(m \) is 0, 1, 2, 3, 4, or 5, and \(p \) is 1, 2, 3, 4, or 5; when \(X \) is CO-, \(p \) is preferably 1, 3, 4, or 5. Optional alkylene substituents include fluoro, methyl, hydroxy, hydroxymethyl, and amino.

Preferred \(\text{Pu} \) units include:

(i). Single amino acid residues: \(\text{Pu}' \);
(ii). Dipeptide residues: \(\text{Pu}'' \); and
(iii). Amino-(PEG)m-carboxylic acid residues: \(\text{Pu}'''\),

and may be present in any combination or order. For example, \(SB \) may comprise one or more of each of \(\text{Pu}', \text{Pu}'', \) and \(\text{Pu}''' \) in any order, or may comprise one or more units of \(\text{Pu}' \), \(\text{Pu}'' \), and \(\text{Pu}''' \) only, or one of more units selected from \(\text{Pu}' \) and \(\text{Pu}'' \), \(\text{Pu}' \) and \(\text{Pu}''' \), or \(\text{Pu}'' \) and \(\text{Pu}''' \).
(i). Pu single amino acid residues

Each Pu may be independently selected from any natural or unnatural amino acid residue and, for example, may be selected from Gly, Pro, Ala, Val, Leu, His, Lys, Arg, Gin, Asn, a-Glu, γ-Glu, Asp, Ser, Thr, Dapa, Gaba, Aib, β-Ala, 5-aminopentanoyl, 6-aminohexanoyl, 7-aminooctanoyl, 8-aminooctanoyl, 9-aminononanoyl, and 10-aminodecanoyl. Preferably, Pu amino acid residues are selected from Gly, Ser, Ala, Thr, and Cys, more preferably from Gly and Ser.

In some embodiments, SB is -(Pu)n, wherein n is 1 to 8, more preferably 5 to 7, most preferably 6. In some preferred embodiments, SB is -(Pu)n, n is 6 and each Pu is independently selected from Gly or Ser, with a preferred sequence being -Gly-Ser-Gly-Ser-Gly-Gly-Gly-. (Hi). Pu dipeptide residues

Each Pu may be independently selected from any dipeptide residue comprising two natural or unnatural amino acid residues bound by an amide linkage. Preferred Pu dipeptide residues include Gly-Gly, Gly-Ser, Ser-Gly, Gly-Ala, Ala-Gly, and Ala-Ala, more preferably Gly-Ser and Gly-Gly.

In some embodiments, SB is -(Pu)n, wherein n is 2 to 4, more preferably 3, and each Pu is independently selected from Gly-Ser and Gly-Gly. In some preferred embodiments SB is -(Pu)n, n is 3 and each Pu is independently selected from Gly-Ser and Gly-Gly, with a preferred sequence being -(Gly-Ser)-(Gly-Ser)-(Gly-Gly).

Amino acids having stereogenic centres within Pu and Pu may be racemic, enantiopure, or enantiopure. In some embodiments, the or each amino acid is independently an L-amino acid. In some embodiments, the or each amino acid is independently a D-amino acid.

(ii). Pu amino-(PEG)m-carboxylic acid residues

Each Pu may be independently a residue of general formula:

![Diagram of general formula]

wherein m is 0, 1, 2, 3, 4, or 5, preferably 1 or 2, and p is 1, 3, 4, or 5, preferably 1.

In some embodiments, m is 1 and p is 1, that is, Pu is a residue of 8-amino-3,6-dioxaoctanoic acid (also known as (2-[2-aminoethoxy]ethoxy)acetic acid and H2N-PEG3-COOH). This residue is referred to herein as -PEG3-.
Other, longer, PEG chains are also known in the art. For example, 11-amino-3,6,9-trioxaundecanoic acid (also known as H2N-PEG4-COOH or -PEG4-).

In some embodiments, SB is \((\text{Pu})^n\), wherein \(n\) is 1 to 3, more preferably 2.

Most preferably, SB is -PEG3-PEG3-.

Preferred Combinations

It will be understood that the above preferences may be independently combined to give preferred \(-Z^1\) and \(-Z^2\) \(-Z^1\) moieties.

Some preferred \(-Z^1\) and \(-Z^2\) \(-Z^1\) moieties are shown below (in each case, — indicates the point of attachment to the side chain of the amino acid component of \(\Psi\):

(i) \([17\text{-carboxy-heptadecanoyl}]\text{-isoGlu-Peg3-Peg3}\)

(ii) \([17\text{-carboxy-heptadecanoyl}]\text{-isoGlu}\)
Octadecanoyl-isoGlu-Peg3-Peg3

(iv) Eicosanoyl-isoGlu-Peg3-Peg3

[19-carboxy-nonadecanoyl]-isoGlu-Peg3-Peg3
The skilled person will be well aware of suitable techniques for preparing the compounds employed in the context of the invention. For examples of suitable chemistry, see, e.g., WO98/08871, WO00/55184, WO00/55119, Madsen et al. (J. Med. Chem. 2007, 50, 6126-32), and Knudsen et al. 2000 (J. Med Chem. 43, 1664-1669).

Clinical utility
The compounds of the invention may provide an attractive treatment option for metabolic diseases including obesity and diabetes mellitus (diabetes). Diabetes comprises a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Acute signs of diabetes include excessive urine production, resulting compensatory thirst and increased fluid intake, blurred vision, unexplained weight loss, lethargy, and changes in energy metabolism. However, symptoms are often not severe or may be absent. The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction, and failure of various organs, notably the eyes, kidneys, nerves, heart and blood vessels. Diabetes is classified into type 1 diabetes, type 2 diabetes and gestational diabetes on the basis on pathogenetic characteristics. Type 1 diabetes accounts for 5-10% of all diabetes cases and is caused by auto-immune destruction of insulin-secreting pancreatic β-cells.

Type 2 diabetes accounts for 90-95% of diabetes cases and is a result of a complex set of metabolic disorders. However, symptoms are often not severe or may be absent. Type 2
diabetes is the consequence of endogenous insulin production becoming insufficient to maintain plasma glucose levels below diagnostic thresholds.

Gestational diabetes refers to any degree of glucose intolerance identified during pregnancy.

Pre-diabetes includes impaired fasting glucose and impaired glucose tolerance and refers to those states that occur when blood glucose levels are elevated but below the levels that are established for the clinical diagnosis for diabetes.

A large proportion of people with type 2 diabetes and pre-diabetes are at increased risk of morbidity and mortality due to the high prevalence of additional metabolic risk factors, including abdominal obesity (excessive fat tissue around the abdominal internal organs), atherogenic dyslipidemia (blood fat disorders including high triglycerides, low HDL cholesterol and/or high LDL cholesterol, which foster plaque buildup in artery walls), elevated blood pressure (hypertension) a prothrombotic state (e.g. high fibrinogen or plasminogen activator inhibitor-1 in the blood), and/or a proinflammatory state (e.g., elevated C-reactive protein in the blood).

Conversely, obesity confers an increased risk of developing pre-diabetes, type 2 diabetes as well as, e.g., certain types of cancer, obstructive sleep apnea and gall-bladder disease. Dyslipidemia is associated with increased risk of cardiovascular disease. High Density Lipoprotein (HDL) is of clinical importance since an inverse correlation exists between plasma HDL concentrations and risk of atherosclerotic disease. The majority of cholesterol stored in atherosclerotic plaques originates from LDL and hence an elevated concentration of Low Density Lipoproteins (LDL) is closely associated with atherosclerosis. The HDL/LDL ratio is a clinical risk indicator for atherosclerosis and coronary atherosclerosis in particular.

Compounds employed in the context of the invention act as glucagon-GIP-GLP1 triple agonists. The triple agonist may combine the effect of glucagon, e.g., on fat metabolism with the effect of GIP on improved glycemic control and the effect of GLP-1, e.g., on blood glucose levels and food intake. They may therefore act to accelerate elimination of excessive adipose tissue, induce sustainable weight loss, and improve glycemic control. Triple glucagon-GIP-GLP1 agonists may also act to reduce cardiovascular risk factors such as high cholesterol and such as high LDL-cholesterol.

The triple agonist compounds of the present invention may therefore be used (alone or in combination) as pharmaceutical agents for preventing weight gain, promoting weight loss, reducing excess body weight or treating obesity (e.g., by control of appetite, feeding, food...
intake, calorie intake, and/or energy expenditure and lipolysis), including morbid obesity, as well as associated diseases and health conditions including but not limited to obesity linked inflammation, obesity linked gallbladder disease and obesity induced sleep apnea. The compounds may also be used for treatment of insulin resistance, glucose intolerance, pre-diabetes, increased fasting glucose, type 2 diabetes, hypertension, dyslipidemia (or a combination of these metabolic risk factors), atherosclerosis, arteriosclerosis, coronary heart disease, peripheral artery disease and stroke. These are all conditions which may be associated with obesity. However, the effects of the compounds employed in the context of the invention on these conditions may be mediated in whole or in part via an effect on body weight, or may be independent thereof.

The triple agonist compounds may thus be used (alone or in combination) for the treatment and/or prevention of any of the diseases, disorders, or conditions described herein, including insulin resistance, glucose intolerance, increased fasting glucose, pre-diabetes, type 1 diabetes, type 2 diabetes, gestational diabetes hypertension, dyslipidemia, or a combination thereof. In certain embodiments, the diabetes related disorder is selected from atherosclerosis, arteriosclerosis, coronary heart disease, peripheral artery disease and stroke; or associated with a condition selected from atherogenic dyslipidemia, blood fat disorders, elevated blood pressure, hypertension, a prothrombotic state, and proinflammatory state, or a combination thereof. In certain embodiments, the blood fat disorder is selected from high triglycerides, low HDL cholesterol, high LDL cholesterol, plaque buildup in artery walls, or a combination thereof. In certain embodiments, the prothrombotic state is selected from high fibrinogen levels in the blood and high plasminogen activator inhibitor-1 levels in the blood. In certain embodiments, the proinflammatory state is an elevated C-reactive protein level in the blood. In certain embodiments, the obesity related disorder is selected from obesity linked inflammation, obesity linked gallbladder disease and obesity induced sleep apnea.

The triple agonist compounds may also be used for the treatment and/or prevention of any of the diseases, disorders, or conditions associated with diabetes related osteoporosis including increased risk of bone fractures. The observed increase in fracture risk is likely to be related to impaired bone quality rather than to bone mineral density. The related mechanisms, due at least in part to hyperglycemia, neuropathy, and higher incidence of hypovitaminosis D, are not yet fully understood.
The invention provides the use of a triple agonist compound as described, in the manufacture of a medicament for any of the clinical applications described in this specification. Reference to a compound for use in any such method should be construed accordingly.

In some embodiments, the invention also provides a therapeutic kit comprising a triple agonist of the invention, optionally in combination with a pharmaceutically acceptable carrier. In some embodiments, the invention provides a device comprising a triple agonist of the invention for delivery of the triple agonist to a subject.

Pharmaceutical compositions

The triple agonist compounds of the present invention, or salts or solvates thereof, may be formulated as pharmaceutical compositions prepared for storage or administration, which typically comprise a therapeutically effective amount of a compound employed in the context of the invention, or a salt or solvate thereof, in a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutical composition is formulated as a liquid suitable for administration by injection or infusion, or which is formulated to cause slow release of the triple agonist compound.

The therapeutically effective amount of a compound of the present invention will depend, e.g., on the route of administration, the type of mammal being treated, and the physical characteristics of the specific mammal under consideration. These factors and their relationship to determining this amount are well known to skilled practitioners in the medical arts. This amount and the method of administration can be tailored to achieve optimal efficacy, and may depend on such factors as weight, diet, concurrent medication and other factors, well known to those skilled in the medical arts. The dosage sizes and dosing regimen most appropriate for human use may be guided by the results obtained by the present invention, and may be confirmed in properly designed clinical trials.

An effective dosage and treatment protocol may be determined by conventional means, starting with a low dose in laboratory animals and then increasing the dosage while monitoring the effects, and systematically varying the dosage regimen as well. Numerous factors may be taken into consideration by a clinician when determining an optimal dosage for a given subject. Such considerations are known to the skilled person. The term "pharmaceutically acceptable carrier" includes any of the standard pharmaceutical carriers.

Pharmaceutically acceptable carriers for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985). For example, sterile saline and phosphate-
buffered saline at slightly acidic or physiological pH may be used. Suitable pH buffering agents may be, e.g., phosphate, citrate, acetate, lactate, maleate, tris/hydroxymethyl)aminomethane (TRIS), /-Tris(hydroxymethyl)methyl-3-amino propanesulfonic acid (TAPS), ammonium bicarbonate, diethanolamine, histidine, which in certain embodiments is a preferred buffer, arginine, lysine, or acetate or mixtures thereof. The term further encompasses any agents listed in the US Pharmacopeia for use in animals, including humans.

The term "pharmaceutically acceptable salt" refers to a salt of the compound. Salts include pharmaceutically acceptable salts, such as, e.g., acid addition salts and basic salts. Examples of acid addition salts include hydrochloride salts, citrate salts and acetate salts. Examples of basic salts include salts where the cation is selected from alkali metals, such as sodium and potassium, alkaline earth metals such as calcium, and ammonium ions +N(R^3)(R^4), where R^3 and R^4 independently designate optionally substituted Ci-e-alkyl, optionally substituted C2-a-aienyl, optionally substituted aryl, or optionally substituted heteroaryl. Other examples of pharmaceutically acceptable salts are described in "Remington's Pharmaceutical Sciences" , 17th edition. Ed. Alfonso R. Gennaro (Ed.), Mark Publishing Company, Easton, PA, U.S.A., 1985 and more recent editions, and in the Encyclopaedia of Pharmaceutical Technology.

"Treatment" is an approach for obtaining beneficial or desired clinical results. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. "Treatment" may also mean prolonging survival as compared to expected survival if not receiving treatment. "Treatment" is an intervention performed with the intention of preventing the development or altering the pathology of a disorder. Accordingly, "treatment" refers to both therapeutic treatment and prophylactic or preventative measures in certain embodiments. Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented. By treatment is meant inhibiting or reducing an increase in pathology or symptoms (e.g. weight gain, hyperglycemia) when compared to the absence of treatment, and is not necessarily meant to imply complete cessation of the relevant condition.

The pharmaceutical compositions of the invention may be in unit dosage form. In such form, the composition is divided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing
discrete quantities of the preparations, for example, packeted tablets, capsules, and powders in vials or ampoules. The unit dosage form can also be a capsule, cachet, or tablet itself, or it can be the appropriate number of any of these packaged forms. It may be provided in single dose injectable form, for example in the form of an injection pen. Compositions may be formulated for any suitable route and means of administration. Pharmaceutically acceptable carriers or diluents include those used in formulations suitable for oral, rectal, nasal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, and transdermal) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.

Subcutaneous or transdermal modes of administration may be particularly suitable for certain of the compounds described herein.

Combination therapy

In certain embodiments, a compound of the invention may be administered as part of a combination therapy with at least one other agent for treatment of diabetes, obesity, dyslipidemia, or hypertension.

In such cases, the at least two active agents may be given together or separately, and as part of the same pharmaceutical formulation or as separate formulations. Thus, the triple agonist compound (or the salt or solvate thereof) may be used in combination with an antidiabetic agent including but not limited to metformin, a sulfonylurea, a glinide, a DPP-IV inhibitor, a glitazone, or insulin. In certain embodiments, the compound or salt or solvate thereof is used in combination with insulin, DPP-IV inhibitor, sulfonylurea or metformin, particularly sulfonylurea or metformin, for achieving adequate glycemic control. In certain preferred embodiments, the compound or salt or solvate thereof is used in combination with insulin or an insulin analogue for achieving adequate glycemic control. Examples of insulin analogues include but are not limited to Lantus®, NovoRapid®, Humalog®, NovoMix®, Actraphane HM®, Levemir® and Apidra®.

In certain embodiments, the triple agonist compound or salt or solvate thereof may further be used in combination with one or more of an anti-obesity agent, including but not limited to a glucagon-like peptide receptor 1 agonist, peptide YY or analogue thereof, cannabinoid receptor 1 antagonist, lipase inhibitor, melanocortin receptor 4 agonist, or melanin concentrating hormone receptor 1 antagonist.

In certain embodiments, the triple agonist compound or salt or solvate thereof may be used in combination with an anti-hypertension agent, including but not limited to an angiotensin-
converting enzyme inhibitor, angiotensin II receptor blocker, diuretics, beta-blocker, or calcium channel blocker.

In certain embodiments, the triple agonist compound or salt thereof may be used in combination with an anti-dyslipidemia agent, including but not limited to a statin, a fibrate, a niacin and/or a cholesterol absorption inhibitor.

Nucleic acids, vectors, and host cells

The invention provides a nucleic acid encoding a peptide having the sequence X1-X30 of Formula I. Also provided is an expression construct (also known as an expression vector) comprising a nucleic acid of the invention in operable linkage with suitable regulatory elements to direct expression of the peptide, e.g. transcription and translation. The invention also provides a host cell comprising a nucleic acid or expression construct and capable of expressing, and optionally secreting, the peptide.

In some embodiments, the invention provides a method of producing a compound of the invention, the method comprising culturing the host cells described above under conditions suitable for expressing the compound and purifying the compound thus produced.

The invention also provides a nucleic acid molecule, an expression vector, or a host cell, as described above, for use in a method of medical treatment, and in particular for treatment of the metabolic disorders discussed elsewhere in this specification.

Synthesis of compounds of the invention

A nucleic acid molecule may encode a compound of the invention, a peptide having the amino acid sequence X1-X30 of Formula I, or a peptide which is a precursor of a compound of the invention.

Typically, such nucleic acid sequences will be provided as expression constructs wherein the encoding nucleic acid is in functional linkage with appropriate control sequences to direct its expression. The expression construct may be provided in the context of a host cell capable of expressing (and optionally also secreting) the = precursor, or in a cell-free expression system.

The invention provides a method of producing a triple agonist of the invention, the method comprising expressing an amino acid precursor of the triple agonist and modifying the precursor to provide the triple agonist. The modification may comprise chemical modification of a Lys, Arg or Cys residue present at a position Ψ to introduce the lipophilic moiety,
modification of the N- or C-terminus, and/or modification of any other amino acid side chains in the molecule (e.g. to introduce a non-naturally occurring amino acid residue).

The compounds of the invention may also be manufactured by standard peptide synthetic methods, e.g. by standard solid-phase or liquid-phase methodology, either stepwise or by fragment assembly, and isolating and purifying the final peptide compound product, or by any combinations of recombinant and synthetic methods.

It may be preferable to synthesize the peptide compounds of the invention by means of solid-phase or liquid-phase peptide synthesis. In this context, reference may be made to WO 98/1 1125 or, inter alia, Fields, G.B. et al., "Principles and Practice of Solid-Phase Peptide Synthesis"; in: Synthetic Peptides, Gregory A. Grant (ed.), Oxford University Press (2nd edition, 2002) and the synthesis examples herein.

Examples
The following examples demonstrate certain embodiments of the present invention. However, it is to be understood that these examples neither purport nor are they intended to be wholly definitive as to conditions and scope of this invention. The examples were carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. The following examples are presented for illustrative purposes only, and should not be construed in any way as limiting the scope of this invention.

All publications, patents, and patent applications referred to herein are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.

Example 1
The methods used in the instant invention are described below, except where expressly indicated otherwise.

General synthesis of acylated triple agonists
Solid phase peptide synthesis was performed on a OEM Liberty Peptide Synthesizer using standard Fmoc chemistry. TentaGel S Ram resin (1 g; 0.25 mmol/g) was swelled in NMP (10 ml) prior to use and transferred between tube and reaction vessel using DCM and NMP.

35
Coupling
An Fmoc-amino acid in NMP/DMF/DCM (1:1:1; 0.2 M; 5 ml) was added to the resin in a CEM Discover microwave unit together with COMU/NMP (0.5 M; 2 ml) and DIPEA/DMF (2.0 M; 1 ml). The coupling mixture was heated to 75°C for 5 min while nitrogen was bubbled through the mixture. The resin was then washed with DMF (4 x 10 ml).

Deprotection
Piperidine/NMP (20%; 10 ml) was added to the resin for initial deprotection and the mixture was heated by microwaves (30 sec; 40°C). The reaction vessel was drained and a second portion of piperidine/DMF (20%; 10 ml) was added and heated (75°C; 3 min.) again. The resin was then washed with NMP (6 x 10 ml).

Side chain acylation
Fmoc-Lys(ivDde)-OH or alternatively another amino acid with an orthogonal side chain protective group was introduced at the position of the acylation. The N-terminal of the peptide backbone was then Boc-protected using Boc20 or alternatively by using a Boc-protected amino acid in the last coupling. While the peptide was still attached to the resin, the orthogonal side chain protective group was selectively cleaved using freshly prepared hydrazine hydrate (2-4%) in NMP for 2 x 15 min. The unprotected lysine side chain was first coupled with Fmoc-Glu-OtBu or another spacer amino acid, which was deprotected with piperidine and acylated with a lipophilic moiety using the peptide coupling methodology as described above. Abbreviations employed are as follows:

COMU: 1-[(1-(cyano-2-ethoxy-2-oxoethylideneaminoxy)-dimethylamino-morpholinomethylene)]methanaminium hexafluorophosphate
ivDde: 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)3-methyl-butyl
Dde: 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-ethyl
DCM: dichloromethane
DMF: A/W-dimethylformamide
DIPEA: diisopropylethylamine
EtOH: ethanol
Et₂O: diethyl ether
HATU: A/[(dimethylamino)-1H-1,2,3-triazol[4,5-b]pyridine-1-ylmethylene]-/S/-methylmethanaminium hexafluorophosphate /V-oxide
MeCN: acetonitrile
NMP: A/V-methylpyrrolidone
TFA: trifluoroacetic acid
TIS: triisopropylsilane
Cleavage
The resin was washed with EtOH (3 x 10 ml) and Et20 (3 x 10 ml) and dried to constant weight at room temperature (r.t.). The crude peptide was cleaved from the resin by treatment with TFA/TIS/water (95/2.5/2.5; 40 ml, 2 h; r.t.). Most of the TFA was removed at reduced pressure and the crude peptide was precipitated and washed three times with diethylether and dried to constant weight at room temperature.

HPLC purification of the crude peptide
The crude peptide was purified to greater than 90% by preparative reverse phase HPLC using a PerSeptive Biosystems VISION Workstation equipped with a C-18 column (5 cm; 10 µηι) and a fraction collector and run at 35 ml/min with a gradient of buffer A (0.1% TFA, aq.) and buffer B (0.1% TFA, 90% MeCN, aq.). Fractions were analyzed by analytical HPLC and MS and relevant fractions were pooled and lyophilized. The final product was characterized by HPLC and MS.

The synthesized compounds are shown in Table 1:

<table>
<thead>
<tr>
<th>Compound No</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H-YSQGTFTSDFSKYLDKAAHDFVEWLLRA-NH2</td>
</tr>
<tr>
<td>2</td>
<td>H-Y-Aib-QGTFTSDFSKYLDK(Hexadecanoyl-isoGlu)-AAHDFVEWLLSA-NHa</td>
</tr>
<tr>
<td>3</td>
<td>H-Y-Aib-QGTFTSDFSKYLDKAAHDFVEWLLRA-NH2</td>
</tr>
<tr>
<td>4</td>
<td>H-YSQGTFTSDFSKYLD-K(Hexadecanoyl-isoGlu)-KAAHDFVEWLLRA-NH2</td>
</tr>
<tr>
<td>5</td>
<td>H-Y-Aib-QGTFTSDFSIYLDKAAHDFVEWLLSA-NH2</td>
</tr>
<tr>
<td>6</td>
<td>H-Y-Aib-QGTFTSDFSKYLDKAAHDFVEWLLSA-NH2</td>
</tr>
<tr>
<td>7</td>
<td>H-Y-Aib-QGTFTSDFSKYLDKAAHDFVEWLLSA-NH2</td>
</tr>
<tr>
<td>8</td>
<td>H-Y-Aib-QGTFTSDFSKYLDKAAHDFVEWLLSA-NH2</td>
</tr>
<tr>
<td>9</td>
<td>H-Y-Aib-QGTFTSDFSIYLDKAAHDFVEWLLSA-NH2</td>
</tr>
<tr>
<td>10</td>
<td>H-Y-Aib-QGTFTSDFSIYLDKAAHDFVEWLLSA-NH2</td>
</tr>
<tr>
<td>11</td>
<td>H-Y-Aib-QGTFTSDFSIYLDKAAHDFVEWLLSA-NH2</td>
</tr>
<tr>
<td>12</td>
<td>H-Y-Aib-QGTFTSDFSIYLDKAAHDFVEWLLRA-Nhb</td>
</tr>
<tr>
<td>13</td>
<td>H-Y-Aib-QGTFTSDFSIYLDKAAHDFVEWLLSAAGPSSGAPPPS-NH2</td>
</tr>
<tr>
<td>14</td>
<td>H-Y-Aib-QGTFTSDFSIYLDKAAHDFVEWLLSA-NH2</td>
</tr>
<tr>
<td></td>
<td>Sequence</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>H-Y-Aib-QGTFTDSYIYLE-KKAHDFVEWLLSA-NH₂</td>
</tr>
<tr>
<td>16</td>
<td>H-Y-Aib-QGTFTDSYIYLEKKAQKEFVEWLLSA-NH₂</td>
</tr>
<tr>
<td>17</td>
<td>H-Y-Aib-QGTFTSDSIYLDEKAADKFVEWLLSA-NH₂</td>
</tr>
<tr>
<td>18</td>
<td>H-Y-Aib-QGTFTSDSIYLESKAHDFVEWLLSA-NH₂</td>
</tr>
<tr>
<td>19</td>
<td>H-Y-Aib-QGTFTSDSIYLDKKAHDFVEWLLSA-NH₂</td>
</tr>
<tr>
<td>20</td>
<td>H-Y-Aib-QGTFTSDSIYLEKKAKEFVEWLLSA-NH₂</td>
</tr>
<tr>
<td>21</td>
<td>H-Y-Aib-QGTFTSDSKALDEKAAKEFVEWLLSA-NH₂</td>
</tr>
<tr>
<td>22</td>
<td>H-Y-Aib-QGTFTSDSKYLEKKAQKEFVEWLLSA-NH₂</td>
</tr>
<tr>
<td>23</td>
<td>H-Y-Aib-QGTFTSDSIYLEK-(Hexadecanoyl-isoGlu)-AAKEFVEWLLSA-NH₂</td>
</tr>
<tr>
<td>24</td>
<td>H-Y-Aib-QGTFTSDSIYLEK-(Hexadecanoyl-isoGlu)-KAAKEFVEWLLSA-NHa</td>
</tr>
<tr>
<td>25</td>
<td>H-Y-Aib-QGTFTDSYS-(Hexadecanoyl-isoGlu)-YLEKAAKEFVEWLLSA-NH₂</td>
</tr>
<tr>
<td>26</td>
<td>H-Y-Aib-QGTFTDSYKYLE-(Hexadecanoyl-isoGlu)-AAKDFIEWLESA-NHa</td>
</tr>
<tr>
<td>27</td>
<td>H-Y-Aib-QGTFTDSYIYLD-(Hexadecanoyl-isoGlu)-AAHDFVEWLLRA-NH₂</td>
</tr>
<tr>
<td>28</td>
<td>H-Y-Aib-QGTFTDSIYLD-(Hexadecanoyl-isoGlu)-AAHDFVEWLLSA-NH₂</td>
</tr>
<tr>
<td>29</td>
<td>H-Y-Aib-QGTFTDSIYLD-(Hexadecanoyl-isoGlu)-AAHDFVEWLLSA-GPSSGAPPSS-NH₂</td>
</tr>
<tr>
<td>30</td>
<td>H-Y-Aib-QGTFTDSIYLD-(Hexadecanoyl-isoGlu)-AAHDFVEWLLSA-NH₂</td>
</tr>
<tr>
<td>31</td>
<td>H-Y-Aib-QGTFTDSIYLD-(Hexadecanoyl-isoGlu)-AAKDFIEWLESA-NH₂</td>
</tr>
<tr>
<td>32</td>
<td>H-Y-Aib-QGTFTDSIYLD-(Hexadecanoyl-isoGlu)-AAKDFIEWLESA-NH₂</td>
</tr>
<tr>
<td>33</td>
<td>H-Y-Aib-QGTFTDSIYLD-(Hexadecanoyl-isoGlu)-AAKDFIEWLESA-NH₂</td>
</tr>
<tr>
<td>34</td>
<td>H-Y-Aib-QGTFTDSIYLD-(Hexadecanoyl-isoGlu)-AAKDFIEWLESA-NH₂</td>
</tr>
<tr>
<td>35</td>
<td>H-Y-Aib-QGTFTDSIYLD-(Hexadecanoyl-isoGlu)-AAKDFIEWLESA-NH₂</td>
</tr>
<tr>
<td>36</td>
<td>H-Y-Aib-QGTFTDSIYLD-(Hexadecanoyl-isoGlu)-AAKDFIEWLESA-NH₂</td>
</tr>
<tr>
<td>37</td>
<td>H-Y-Aib-QGTFTDSIYLD-(Hexadecanoyl-isoGlu)-AAKDFIEWLESA-NH₂</td>
</tr>
<tr>
<td>38</td>
<td>H-Y-Aib-QGTFTDSIYLD-(Hexadecanoyl-isoGlu)-AAKDFIEWLESA-NH₂</td>
</tr>
<tr>
<td>39</td>
<td>H-Y-Aib-QGTFTDSIYLD-(Hexadecanoyl-isoGlu)-AAKDFIEWLESA-NH₂</td>
</tr>
<tr>
<td>Peptide Sequence</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>H-Y-Aib-QGFTSDYSIYLE-K[1 7-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3]-AAKEFIEWLESA-NH2</td>
<td></td>
</tr>
<tr>
<td>H-Y-Aib-QGFTSDYSIYLE-K[1 9-carboxy-nonadecanoyl]-isoGlu-Peg3-Peg3]-AAKEFIEWLESA-NH2</td>
<td></td>
</tr>
<tr>
<td>H-Y-Aib-QGFTSDYSIALDK-K(Octadecanoyl-isoGlu-Peg3-Peg3)-AQRAFVNWLV-Aib-KPSSGAPPPS-NH2</td>
<td></td>
</tr>
<tr>
<td>H-Y-Aib-QGFTSDYSIALDK-K(Octadecanoyl-Dapa-Peg3-Peg3)-AQRAFVNWLV-Aib-KPSSGAPPPS-NH2</td>
<td></td>
</tr>
<tr>
<td>H-Y-Aib-QGFTSDYSIALDK-K(Octadecanoyl-isoGlu-Peg3-Peg3)-AQRAFVNWLV-Aib-KPSSGAPPPS-NH2</td>
<td></td>
</tr>
</tbody>
</table>

Example 2

Human GIP receptor (GIP-R), GLP-1 receptor (GLP-1-R) and glucagon receptor (GCG-R) activity assay

In vitro effects of peptide conjugates of the invention were assessed by measuring the induction of cAMP following stimulation of the respective receptor by glucagon, GIP, GLP1 or analogues of these as outlined in the invention, using the AlphaScreen® cAMP kit from Perkin-Elmer according to instructions. Briefly, HEK293 cells expressing the human GIP R,

GLP-1 R or GCG R (stable cell lines generated through transfection of the cDNA for human GIP R, GLP-1 R or GCG R and selection of stable clones) were seeded at 30,000 cells/well in 96-well microtiter plates coated with 0.01 % poly-L-lysine, and grown for 1 day in culture in 200 µl growth medium (DMEM, 10% FCS, Penicillin (100 IU/ml), Streptomycin (100 pg/ml)). On the day of analysis, growth medium was removed and the cells were washed once with 150 µl Tyrode's buffer (Tyrode's Salts (9.6 g/l), 10 mM HEPES, pH 7.4). Cells were then incubated in 100 µl Assay buffer (0.1% WW Alkali-treated Casein and 100 µM IBMX in Tyrode's Buffer) containing increasing concentrations of control and test compounds for 15 min at 37° C. The Assay buffer was removed and cells are lysed in 80 µl Lysis buffer (0.1 % w/v BSA, 5 mM HEPES, 0.3 % v/v Tween-20) per well. From each well 10 µl of lysed cells
were transferred to a 384-well plate and mixed with 15 µl bead-mix (1 Unit/15 µl anti-cAMP Acceptor Beads, 1 Unit/15 µl Donor Beads, and 1 Unit/15 µl Biotinylated cAMP in Assay Buffer). The plates were mixed and incubated in the dark for an hour at room temperature before measuring using an Envision™ plate reader (Perkin-Elmer).

Results were converted into cAMP concentrations using a cAMP standard curve prepared in KRBH buffer containing 0.1% (v/v) DMSO. The resulting cAMP curves were plotted as absolute cAMP concentrations (nM) over log (test compound concentration) and analyzed using the curve fitting program XLfit.

Parameters calculated to describe both the potency as well as the agonistic activity of each test compound on the receptors were:

EC50, a concentration resulting in a half-maximal elevation of cAMP levels, reflecting the potency of the test compound. The results are summarized in Table 2 and Table 2b. The most comprehensive data are summarized in table 2b.

Table 2. Average EC50 values on the GIP-R, GLP1-R and GCG-R respectively as compared to control peptides.

<table>
<thead>
<tr>
<th>Compound</th>
<th>GIP R (EC50 in nM)</th>
<th>GLP1 R (EC50 in nM)</th>
<th>GCG R (EC50 in nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hGIP</td>
<td>0.0038</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exendin-4</td>
<td>-</td>
<td>0.0043</td>
<td>-</td>
</tr>
<tr>
<td>glucagon</td>
<td>-</td>
<td>-</td>
<td>0.010*</td>
</tr>
<tr>
<td>1</td>
<td>0.38</td>
<td>0.033</td>
<td>0.013</td>
</tr>
<tr>
<td>2</td>
<td>0.35</td>
<td>0.089</td>
<td>0.046</td>
</tr>
<tr>
<td>3</td>
<td>0.13</td>
<td>0.015</td>
<td>0.022</td>
</tr>
<tr>
<td>5</td>
<td>0.17</td>
<td>0.0092</td>
<td>0.065</td>
</tr>
<tr>
<td>6</td>
<td>0.34</td>
<td>0.0095</td>
<td>0.018</td>
</tr>
<tr>
<td>7</td>
<td>0.42</td>
<td>0.031</td>
<td>0.086</td>
</tr>
<tr>
<td>8</td>
<td>0.20</td>
<td>0.015</td>
<td>0.042</td>
</tr>
<tr>
<td>9</td>
<td>0.056</td>
<td>0.0055</td>
<td>0.097</td>
</tr>
<tr>
<td>10</td>
<td>0.24</td>
<td>0.012</td>
<td>0.10</td>
</tr>
<tr>
<td>11</td>
<td>0.28</td>
<td>0.020</td>
<td>0.11</td>
</tr>
<tr>
<td>12</td>
<td>0.084</td>
<td>0.012</td>
<td>0.076</td>
</tr>
<tr>
<td>13</td>
<td>0.083</td>
<td>0.0099</td>
<td>0.24</td>
</tr>
<tr>
<td>14</td>
<td>0.060</td>
<td>0.013</td>
<td>0.10</td>
</tr>
<tr>
<td>15</td>
<td>0.025</td>
<td>0.016</td>
<td>0.058</td>
</tr>
<tr>
<td>17</td>
<td>0.091</td>
<td>0.011</td>
<td>0.16</td>
</tr>
<tr>
<td>18</td>
<td>0.07</td>
<td>0.021</td>
<td>0.15</td>
</tr>
<tr>
<td>19</td>
<td>0.032</td>
<td>0.013</td>
<td>0.024</td>
</tr>
</tbody>
</table>
Table 2b. Average EC50 values on the GIP-R, GLP1-R and GCG-R respectively as compared to control peptides.

<table>
<thead>
<tr>
<th>Compound</th>
<th>GIP R (EC50 in nM)</th>
<th>GLP1 R (EC50 in nM)</th>
<th>GCG R (EC50 in nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hGIP</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>Exendin-4</td>
<td>0.004</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>glucagon</td>
<td>0.415</td>
<td>0.01</td>
<td>0.008</td>
</tr>
<tr>
<td>1</td>
<td>0.033</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>2</td>
<td>0.089</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>3</td>
<td>0.015</td>
<td>0.022</td>
<td>0.022</td>
</tr>
<tr>
<td>5</td>
<td>0.009</td>
<td>0.065</td>
<td>0.065</td>
</tr>
<tr>
<td>6</td>
<td>0.010</td>
<td>0.018</td>
<td>0.018</td>
</tr>
<tr>
<td>7</td>
<td>0.031</td>
<td>0.086</td>
<td>0.086</td>
</tr>
<tr>
<td>8</td>
<td>0.015</td>
<td>0.042</td>
<td>0.042</td>
</tr>
<tr>
<td>9</td>
<td>0.006</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>10</td>
<td>0.012</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>11</td>
<td>0.02</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>12</td>
<td>0.012</td>
<td>0.076</td>
<td>0.076</td>
</tr>
<tr>
<td>13</td>
<td>0.010</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>14</td>
<td>0.013</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>0.014</td>
<td>0.058</td>
<td>0.058</td>
</tr>
<tr>
<td>17</td>
<td>0.013</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>18</td>
<td>0.021</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>19</td>
<td>0.013</td>
<td>0.024</td>
<td>0.024</td>
</tr>
<tr>
<td>20</td>
<td>0.009</td>
<td>0.057</td>
<td>0.057</td>
</tr>
<tr>
<td>21</td>
<td>0.015</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
It is anticipated that the exemplified compounds of the invention will have activities at the GCG-R that are close to that of native glucagon. At the same time, it is anticipated that they will exhibit strong GLP-1-R activation with EC50 well below 1 nM. Likewise, it is anticipated that these peptides will also exhibit strong GIP-R activity with and EC50 below or just above 1 nM.

Example 3

Pharmacokinetics of selected compounds in mice

Method

C57BL/6J mice (males with a body weight of approximately 25 g) were given a single intravenous (i. v.) bolus of each peptide to be tested.
Following administration of the selected compounds (100 or 200 nmol/kg), blood samples were drawn 0.08, 0.17, 0.5, 1, 4, 8, 16 and 24 hours post-dose. Blood samples were drawn by sublingual bleeding. The dosing vehicle was a phosphate buffer containing mannitol (pH 7.5).

At each sampling time point, samples from two mice were drawn, i.e. 16 mice were included for each compound. The mice were euthanized immediately after blood sampling by cervical dislocation. Plasma samples were analyzed after solid phase extraction (SPE) or precipitation by liquid chromatography mass spectrometry (LC-MS/MS). Mean plasma concentrations were used for calculation of the pharmacokinetic parameters using the non-compartmental approach in Phoenix WinNonlin 6.3. Plasma terminal elimination half-life (T½) was determined as \(t_{1/2} = \frac{\ln(2)}{\lambda} \) where \(\lambda \) is the magnitude of the slope of the log linear regression of the log concentration versus time profile during the terminal phase. The results are summarized in Table 3.

Table 3. Terminal elimination half-life (h) in mice following *i.v.* administration of selected compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>T½ (h.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>7.8</td>
</tr>
<tr>
<td>32</td>
<td>4.1</td>
</tr>
</tbody>
</table>
Claims:
1. A glucagon-GLP-1 -GIP triple agonist compound having the general formula I:

\[R^1 \text{-Tyr-X2-Gln-Gly-Thr-Phe-Thr-Ser-Asp-X1 0-Ser-X1 2-X1 3-Leu-X1 5-X1 6-X1 7-Ala-X1 9-X20-} \]
\[X21-\text{Phe-X23-X24-Trp-Leu-X27-X28-} \]
\[X29-X30-Y1-R^2 \] (I)

wherein
- \(R^1 \) is H-, C\(_i\)-4 alkyl, acetyl, formyl, benzoyl, trifluoroacetyl or pGlu;
- \(X2 \) is Aib, Gly, Ala, D-Ala, Ser, N-Me-Ser, Ac3c, Ac4c or Ac5c;
- \(X10 \) is Tyr or Leu;
- \(X12 \) is Lys, lie or \(\Psi \);
- \(X13 \) is Ala, Tyr or Aib;
- \(X15 \) is Asp or Glu;
- \(X16 \) is Ser, Glu, Lys or \(\Psi \);
- \(X17 \) is Lys or \(\Psi \);
- \(X19 \) is Gin or Ala;
- \(X20 \) is Lys, His, Arg or \(\Psi \);
- \(X21 \) is Ala, Asp or Glu;
- \(X23 \) is Val or He;
- \(X24 \) is Asn, Glu or \(\Psi \);
- \(X27 \) is Leu, Glu or Val;
- \(X28 \) is Ala, Ser, Arg or \(\Psi \);
- \(X29 \) is Aib, Ala, Gin or Lys;
- \(X30 \) is Lys, Gly, or is absent;

\(Y1 \) is Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser, Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser, Lys-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser, Lys-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser,Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser or Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser, or is absent;

\(\Psi \) is a residue of Lys, Arg, Orn or Cys in which the side chain is conjugated to a lipophilic substituent;

and

\(R^2 \) is -NH\(_2\) or -OH;

or a pharmaceutically acceptable salt or solvate thereof.
2. A compound according to claim 1 wherein \(\Psi \) is present at one of positions X12, X16 or X17.

3. A compound according to claim 1 or claim 2 wherein the compound contains only one residue \(\Psi \).

4. A compound according to any one of claims 1 to 3 wherein the compound possesses one or more of the following sets of residues:

- K12 and K12 and Y13; 112 and Y13; K12 and A13; s12 and A13; or \(\Psi 12 \) and Y13;
- D15 and S16; D15 and E16; E15 and K16; D15 and \(\Psi 16 \); E15 and S16; or E15 and \(\Psi 16 \);
- A19, H20, and D21; A19, K20, and D21; A19, R20, and D21; Q19, K20, and E21; A19, K20, and E21; or Q19, R20, and A21;
- L23 and E24; V23 and E24; or V23 and N24;
- L27, R28, and A29; L27, S28, and A29; L27, A28, and Q29; E27, S28, and A29; or V27, A28, and Aib29;
- E15 and K17;
- E15 and \(\Psi 17 \);
- E15, \(\Psi 17 \), and Q19;
- Q19 and E24;
- E16, \(\Psi 17 \), and Q19; or
- K16, \(\Psi 17 \), and Q19.

5. A compound according to claim 4 further comprising:

Aib2, Ser2 or Ac4c2; and/or
Tyr10; or
Leu10.
6. A compound according to any one of the preceding claims wherein positions 1 to 29 have the sequence:

YSQFTFTSDYLDKAAHDFVEWLLRA;
YSQFTFTSDYLDKAAHDFVEWLLRA;

Y-Aib-QFTFTSDYLDKCAAHDFVEWLLSA;
Y-Aib-QFTFTSDYLDKAAHDFVEWLLSA;
Y-Aib-QFTFTSDYLDKAAHDFVEWLLSA;
Y-Aib-QFTFTSDYLDKAAHDFVEWLLSA;
Y-Aib-QFTFTSDYLDKAAHDFVEWLLSA;
Y-Aib-QFTFTSDYLDKAAHDFVEWLLSA;
Y-Aib-QFTFTSDYLDKAAHDFVEWLLSA;
Y-Aib-QFTFTSDYLDKAAHDFVEWLLSA;

Y-Aib-QFTFTSDYLDKAAHDFVEWLLSA;
Y-Aib-QFTFTSDYLDKAAHDFVEWLLSA;
Y-Aib-QFTFTSDYLDKAAHDFVEWLLSA;
Y-Aib-QFTFTSDYLDKAAHDFVEWLLSA;
Y-Aib-QFTFTSDYLDKAAHDFVEWLLSA;
7. A compound according to claim 1 which differs at up to 4 positions from any of the sequences listed in claim 6.

8. A compound according to claim 7 which differs at up to 4 positions from one of the sequences:

Y-Aib-QGTFTSDYSIYLE1WAAKEFVEWLLSA;

Y-Aib-QGTFTSDYSIYLDETAHDFVEWLLSA; and

Y-Aib-QGTFTSDYSIALE^AQRAFVEWLLAQ.

9. A compound according to claim 1 wherein the peptide backbone of Formula I has the sequence:

YSQFTFTSDYSKYLDSKAHDFVEWLLRA;
YSQFTFTSDYSKYLDTKAAHDFVEWLLRA;

Y-Aib-QGTFTSDYSIYLDSKAHDFVEWLLSA;
Y-Aib-QGTFTSDYSIYLDEKAHDFVEWLLSA;
Y-Aib-QGTFTSDYSIYLDSKAHDFVEWLLSAGPSSGAPPPS;
Y-Aib-QGTFTSDYSIYLEKKAAHDFVEWLLSA;
Y-Aib-QGTFTSDYSIYLESKAHDFVEWLLSA;
Y-Aib-QGTFTSDYSIYLDKKAHDFVEWLLSA;
Y-Aib-QGTFTSDYSIYLEDE4WDFVEWLLSA;
Y-Aib-QGTFTSDYSIYLDTAAHDFVEWLLSAGPSSGAPPPS;

Y-Aib-QGTFTSDYSKYLDSM^AAHDFVEWLLSA;
Y-Aib-QGTFTSDYSKALDSKAHDFVEWLLSA;
Y-Aib-QGTFTSDYSKYLESKAHDFVEWLLSA;

Y-Aib-QGTFTSDYSIYLDSKAHDFVEWLLSA;
Y-Aib-QGTFTSDYSIYLDEKAHDFVEWLLSA;
Y-Aib-QGTFTSDYSKYLDSKAARDFVEWLLSA;

Y-Aib-QGTFTSDYSIYLEKKAAKDFVEWLLSA;
Y-Aib-QGTFTSDYSKYLEKKAQKEFVEWLLSA;
Y-Aib-QGTFTSDYSY^YLEKKAAKEFVEWLLSA;
Y-Aib-QGTFTSDYSΨYLEKKAAKEFVEWLLSA;
10. A compound according to claim 1 wherein the peptide backbone of Formula I has a sequence which differs at up to 5 positions from one of the sequences shown in claim 10.

11. A compound according to claim 10 which differs at up to 5 positions from one of the sequences:

Y-Aib-QGTFTSDYSIYLE^AAKEFVEWLLSAGPSSGAPPPS;

Y-Aib-QGTFTSDYSIYLDKTAQRAFVEWLLAQK; or

Y-Aib-QGTFTSDYSIYLDSTAAHDFVEWLLRA;

Y-Aib-QGTFTSDYSIYLEKM^AAKEFVEWLLSAGPSSGAPPPS;

Y-Aib-QGTFTSDYSIYLDKTAQRAFVEWLLAQK.

12. A compound according to any one of the preceding claims wherein Ψ is a residue of Lys in which the side chain is conjugated to a lipophilic substituent.

13. A compound according to any one of the preceding claims wherein the lipophilic substituent has the formula -Z¹ or -Z²-Z¹ wherein:

- Z¹ is a fatty chain having at a terminus a connection -X- to Ψ or to Z²;

wherein
-X- is a bond, -CO-, -SO-, or -SO2-;

and, optionally, Z1 has a polar group at the end of the chain distal from connection -X-, said polar group comprising a carboxylic acid or a carboxylic acid bioisostere, a phosphonic acid, or a sulfonic acid group;

and wherein -Z2-, if present, is a spacer of formula:

\[
\text{[-Y-V-X-]}^n
\]

connecting Z1 to Ψ;

wherein:

each Y is independently -NH, -NR, -S or -O, where R is alkyl, a protecting group or forms a linkage to another part of the spacer Z2;

each X is independently a bond, -CO-, -SO-, or -SO2-;

with the proviso that when Y is -S, the X to which it is bound is a bond;

each V is independently a bivalent organic moiety linking Y and X;

and n is 1-10.

14. A compound according to claim 13 wherein the lipophilic substituent has the formula-Z2-Z1.

15. A compound according to claim 12 or claim 14 wherein Z1 is A-B-alkylene-CO- wherein A is H or -COOH and B is a bond.

16. A compound according to claim 15 wherein Z1 is A-B-Ci6-2oalkylene-(CO)-.

17. A compound according to any one of claims 13 to 16 wherein Z1 is:

hexadecanoyl; 17-carboxy-heptadecanoyl \[\text{HOOC-(CH}_2\text{)}_{16}\text{-(CO)-}\];

19-carboxy-nonadecanoyl \[\text{HOOC-(CH}_2\text{)}_{18}\text{-(CO>-)}\];

Octadecanoyl \[\text{H}_3\text{C-(CH}_2\text{)}_{16}\text{-(CO)-}\]; or

Eicosanoyl \[\text{H}_3\text{C-(CH}_2\text{)}_{18}\text{-(CO)-}\].
18. A compound according to any one of claims 13 to 17 wherein Z2 comprises a residue selected from isoGlu or Dapa.

19. A compound according to claim 13 wherein -Z1 or -Z2 Z1 is:

(i) \([\text{17-carboxy-heptadecanoyl]}\text{-isoGlu-Peg3-Peg3}\)

(ii) \([\text{17-carboxy-heptadecanoyl]}\text{-isoGlu}\)

(iii) Octadecanoyl-isoGlu-Peg3-Peg3
(iv) Eicosanoyl-isoGlu-Peg3-Peg3

(v) [19-carboxy-nonadecanoyl]-isoGlu-Peg3-Peg3

(vi) Octadecanoyl-Dapa-Peg3-Peg3

or
(vii) Hexadecanoyl-isoGlu

20. A compound according to claim 1 wherein positions 1 to 29 have the sequence:

YSQGFTSDYSKYLD-K(Hexadecanoyl-isoGlu)-KAAHDFVEWLLRA;

Y-Aib-QGTFTSDYSIYLDE-K(Hexadecanoyl-isoGlu)-AAHDFVEWLLSA;

Y-Aib-QGTFTSDYSIYLDS-K(Hexadecanoyl-isoGlu)-AAHDFVEWLLSA;

Y-Aib-QGTFTSDYSK-Hexadecanoyl-isoGlu)-AAKDFVEWLLSA;

Y-Aib-QGTFTSDYSIYLEK-K(Hexadecanoyl-isoGlu)-AAKEFVEWLLSA;

Y-Aib-QGTFTSDYSIYLEK-K(Hexadecanoyl-isoGlu)-AAKEFVEWLLSA;

Y-Aib-QGTFTSDYSIYLEK-K(Octadecanoyl-isoGlu-Peg3-Peg3)-AAKEFVEWLLSA;

Y-Aib-QGTFTSDYSIYLEK-K[17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3]-AAKEFVEWLLSA;

Y-Aib-QGTFTSDYSIYLEK-K(Octadecanoyl-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQ;

Y-Aib-QGTFTSDYSIYLEK-K[17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3]-AQRAFVEWLLAQ;

Y-Aib-QGTFTSDYSIYLEK-K(Octadecanoyl-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQ;

Y-Aib-QGTFTSDYSIYLEK-K[17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3]-AQRAFVEWLLAQ;

Y-Aib-QGTFTSDYSIYLEK-K(Octadecanoyl-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQ;

Y-Aib-QGTFTSDYSIYLEK-K[17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3]-AQRAFVEWLLAQ;
Y-Asb-QGTFTSDYSIYLDS-K(Hexadecanoyl-isoGlu)-AAHDFVEWLLRA;
Y-Aib-QGTFTSDDSYLE-K(Octadecanoyl-isoGlu-Peg3-Peg3)-AQRAFVEWLLRA;
Y-Aib-QGTFTSDDSYLE-K[[17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3]-AQRAFVEWLLRA;

Y-Aib-QGTFTSDYSIALD-K(Octadecanoyl-isoGlu-Peg3-Peg3)-AQRAFVNWLV-Aib;
Y-Aib-QGTFTSDYSIALD-K(Octadecanoyl-Dapa-Peg3-Peg3)-AQRAFVNWLV-Aib;
Y-Aib-QGTFTSDYSIALDK-K[19-carboxy-nonadecanoyl]-isoGlu-Peg3-Peg3)-AQRAFVNWLV-Aib;

Y-Ac4c-QGTFTSDYSIYLDE-K[[19-carboxy-nonadecanoyl]-isoGlu-Peg3-Peg3)-AAKEFIEWLESA;
Y-Ac4c-QGTFTSDYSIALE-K[[19-carboxy-nonadecanoyl]-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQ; or
Y-Ac4c-QGTFTSDYSIYLDK-K(19-carboxy-heptadecanoyl-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQ.

21. A compound according to claim 1 wherein the peptide backbone of Formula I has the sequence:

YSQGTFTSDYSKYLD-K(Hexadecanoyl-isoGlu)-KAAHDFVEWLLRA;

Y-Aib-QGTFTSDYSIYLDK-K(19-carboxy-heptadecanoyl-isoGlu-Peg3-Peg3)-AAKEFIEWLESA;
Y-Aib-QGTFTSDYSIYLDK-K(19-carboxy-heptadecanoyl)-AQRAFVEWLLAQGPSSGAPPPS;
Y-Aib-QGTFTSDYSIYLDK-K(Octadecanoyl-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQGPSSGAPPPS;
Y-Aib-QGTFTSDYSIYLDK-K(eicosanoyl-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQGPSSGAPPPS;
Y-Aib-QGTFTSDYSIYLDK-K(17-carboxy-heptadecanoyl)-isoGlu-Peg3-Peg3)-AAKEFIEWLLAQGPSSGAPPPS;
Y-Aib-QGTFTSDYSIYLDK-K(17-carboxy-heptadecanoyl)-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQGPSSGAPPPS;
Y-Aib-QGTFTSDYSIYLDK-K(17-carboxy-heptadecanoyl)-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQGPSSGAPPPS;
Y-Aib-QGTFTSDYSIYLDK-K(17-carboxy-heptadecanoyl)-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQGPSSGAPPPS;
Y-Aib-QGTFTSDYSIYLDK-K(17-carboxy-heptadecanoyl)-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQGPSSGAPPPS;
Y-Aib-QGTFTSDLSIALE-K(Octadecanoyl-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQK;
Y-Aib-QGTFTSDYSKYLDE-K(Hexadecanoyl-isoGlu)-AAKDFIEWLES;
Y-Aib-QGTFTSDYSIYLDE-K(Hexadecanoyl-isoGlu)-AAKDFVEWLESA;
Y-Aib-QGTFTSDYSIYLDE-K(Hexadecanoyl-isoGlu)-AAKDFIEWLESA;
Y-Aib-QGTFTSDYSIYLDE-K(Octadecanoyl-isoGlu-Peg3-Peg3)-AAKEFIEWLESA;
Y-Aib-QGTFTSDYSIYLDE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-AAKEFIEWLESA;
Y-Aib-QGTFTSDYSIALD-K(Octadecanoyl-isoGlu-Peg3-Peg3)-AQRAFVEWLLLRA;
Y-Aib-QGTFTSDYSIALD-K(Octadecanoyl-Dapa-Peg3-Peg3)-AQRAFVNLVA-Aib-KPSSGAPPPS;
Y-Aib-QGTFTSDYSIALDK-K([19-carboxy-nonadecanoyl]-isoGlu-Peg3-Peg3)-AQRAFVEWLLRA-Aib-KPSSGAPPPS;
Y-Ac4c-QGTFTSDYSIYLDE-K([19-carboxy-nonadecanoyl]-isoGlu-Peg3-Peg3)-AAKEFIEWLESA;
Y-Ac4c-QGTFTSDYSIALE-K([19-carboxy-nonadecanoyl]-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQK;
Y-Ac4c-QGTFTSDYSIALDK-K([19-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-AQRAFVEWLLAQK.

22. A nucleic acid encoding a peptide having the sequence of Formula I.

23. An expression construct comprising a nucleic acid according to claim 22.

24. A host cell comprising a nucleic acid according to 22 or an expression construct according to claim 23 and capable of expressing, and optionally secreting, the peptide.

25. A pharmaceutical composition comprising a triple agonist compound according to any one of claims 1 to 21, or a pharmaceutically acceptable salt or solvate thereof, in admixture with a carrier.

26. A pharmaceutical composition according to claim 25 formulated as a liquid suitable for administration by injection or infusion, or formulated to cause slow release of said triple agonist compound.

27. A triple agonist compound according to any one of claims 1 to 21, or a pharmaceutically acceptable salt or solvate thereof, for use in a method of medical treatment.
28. A triple agonist compound according to any one of claims 1 to 21, or a pharmaceutically acceptable salt or solvate thereof, for use in a method of treatment and/or prevention of a metabolic disorder.

29. A triple agonist compound for use according to claim 28 wherein the metabolic disorder is diabetes or a diabetes related disorder, or obesity or an obesity related disorder.

30. A triple agonist compound for use according to claim 29 wherein the diabetes related disorder is insulin resistance, glucose intolerance, increased fasting glucose, pre-diabetes, type 1 diabetes, type 2 diabetes, gestational diabetes hypertension, dyslipidemia, bone related disorder or a combination thereof.

31. A GIP analogue or pharmaceutically acceptable salt or solvate thereof for use according to claim 30 wherein the diabetes-related disorder is osteoporosis, including increased risk of bone fracture.

32. A triple agonist compound for use according to claim 29 wherein the diabetes related disorder is atherosclerosis, arteriosclerosis, coronary heart disease, peripheral artery disease, stroke; or is a condition associated with atherogenic dyslipidemia, a blood fat disorder, elevated blood pressure, hypertension, a prothrombotic state, or a proinflammatory state.

33. A triple agonist compound for use according to claim 32 wherein the blood fat disorder is high triglycerides, low HDL cholesterol, high LDL cholesterol, plaque buildup in artery walls, or a combination thereof.

34. A triple agonist compound for use according to claim 32 wherein the prothrombotic state comprises high fibrinogen levels in the blood or high plasminogen activator inhibitor-1 levels in the blood.

35. A triple agonist compound for use according to claim 32 wherein the proinflammatory state comprises an elevated C-reactive protein level in the blood.

36. A triple agonist compound for use according to claim 32 wherein the obesity related disorder is obesity linked inflammation, obesity linked gallbladder disease or obesity induced sleep apnea, or may be associated with a condition selected from atherogenic dyslipidemia, blood fat disorders, elevated blood pressure, hypertension, a prothrombotic state, and a
proinflammatory state, or a combination thereof.
A. CLASSIFICATION OF SUBJECT MATTER

INV. C07K14/575 C07K14/435

ADD.

According to International Patent Classification (IPC) onto both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

 "A" document defining the general state of the art which is not considered to be of particular relevance

 "E" earlier application or patent but published on or after the international filing date

 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

 "O" document referring to an oral disclosure, use, exhibition or other means

 "P" document published prior to the international filing date but later than the priority date claimed

*"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*"Z" document member of the same patent family

Date of the actual completion of the international search 24 February 2015

Date of mailing of the international search report 05/03/2015

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040; Fax: (+31-70) 340-3016

Authorized officer

Stoyanov, Borislav
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2012150503 A2</td>
<td>08-11-2012</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>