(12) Nach dem Vertrag über die Internationale Zusammenarbeit auf dem Gebiet des Patentwesens (PCT) veröffentlichte Internationale Anmeldung

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(49) Veröffentlichungsnummer
WO 2005/037930 A1

(51) Internationale Patentreihennummer:
C09B 67/08,
C09D 11/00

(21) Internationales Aktenzeichen:
PCT/EP2004/011253

(22) Internationales Anmeldedatum:
8. Oktober 2004 (08.10.2004)

(25) Erfinder:
HEES, Ulrike
KLUKE, Michael
SCHÖPF, Holger
SIEMENSMEYER, Karl
WINTER, Dominik

(26) Veröffentlichungssprache:
Deutsch

(30) Angaben zur Priorität:

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US):
BASF Aktiengesellschaft [DE/DE]; 67056 Ludwigshafen (DE).

(74) Gemeinsamer Vertreter:
BASF Aktiengesellschaft; 67056 Ludwigshafen (DE).

(72) Erfinder und Anmelder (nur für US):
HEES, Ulrike
KLUKE, Michael
SCHÖPF, Holger
SIEMENSMEYER, Karl
WINTER, Dominik

Veröffentlichung:
mit internationalem Recherchenbericht
Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Titel:
FORMULATIONS AND THEIR USE IN THE COLORATION OF SUBSTRATES

(54) Bezeichnung:
FORMULIERUNGEN UND IHRE VERWENDUNG BEI DER KOLORYIERUNG VON SUBSTRATEN

(57) Abstract:
The invention relates to formulations containing (A) at least one particulate pigment which is treated according to a method comprising the following steps: (a) mixing the particulate pigment with at least one non-ionic surface-active substance; (b) dispersing the mixture of particulate pigment and non-ionic surface-active substance so obtained in an aqueous medium; (c) polymerizing at least one first monomer or copolymerizing a first mixture of comonomers in the presence of a dispersion according to b), whereby water-insoluble polymer or copolymer is formed on the surface of the particulate pigments; (d) adding at least one second comonomer or a second mixture of comonomers and copolymerization; and (B) at least one radiation-curable component.

(57) Zusammenfassung:
Formulierungen, enthaltend (A) mindestens ein Pigment in partikulärer Form, das nach einem Verfahren behandelt worden ist, welches die folgenden Schritte umfasst: (a) Vermischen von Pigment in partikulärer Form mit mindestens einem nicht-ionischen oberflächenaktiven Substanz; (b) Dispergieren der so erhältlichen Mischung von Pigment in partikulärer Form und nicht-ionischem Oberflächenaktivem Stoff in wässrigem Medium; (c) Polymerisieren mindestens eines ersten Monomers oder Copolymerisation einer ersten Mischung von Comonomeren in Gegenwart einer Dispersion nach b), wobei wasserunlösliches Polymer oder Copolymer an der Oberfläche der Pigmente in partikulärer Form gebildet wird, (d) Zugabe mindestens eines zweiten Comonomers oder einer zweiten Mischung von Comonomeren und Copolymerisation, und (B) mindestens eine strahlungshärtbare Komponente.
Formulierungen und ihre Verwendung bei der Kolorierung von Substraten

Die vorliegende Erfindung betrifft Formulierungen, enthaltend

5 (A) mindestens ein Pigment in partikulärer Form, das nach einem Verfahren behan-
delt worden ist, welches die folgenden Schritte umfasst:

(a) Vermischen von Pigment in partikulärer Form mit mindestens einem nicht-
ionischen oberflächenaktiven Stoff,

10 (b) Dispergieren der so erhältlichen Mischung von Pigment in partikulärer Form
und nicht-ionischem oberflächenaktivem Stoff in wässrigem Medium,

(c) Polymerisieren mindestens eines ersten Monomers oder Copolymerisation
einer ersten Mischung von Comonomeren in Gegenwart einer Dispersion
nach b), wobei wasserunlösliches Polymer oder Copolymer an der Oberflä-
che der Pigmente in partikulärer Form gebildet wird,

(d) Zufügen mindestens eines zweiten Comonomers oder einer zweiten Mi-
schung von Comonomeren und Copolymerisation,

und

20 (B) mindestens eine strahlungshärtbare Komponente.

Weiterhin betrifft die vorliegende Erfindung ein Verfahren zur Kolorierung von Substra-
ten und kolorierte Substrate, hergestellt unter Verwendung von behandelten Pigmente
in partiulärer Form in Gegenwart von strahlungshärtbaren Moleküle oder Molekülbau-
steinen.

An Farbbmittelzubereitungen, die in moderne Verfahren der Kolorierung von Substraten
wie beispielsweise Leder eingesetzt werden sollen, werden anspruchsvolle Anforde-
erungen gestellt. Kolorierte Substrate sollen eine hohe Brillanz der Farben aufweisen,
die Kolorierung soll dauerhaft sein, d.h. hohe Echtheiten aufweisen, wie beispielsweise
Reibechtheit und Schweißechtheit. In einigen Fällen lässt sich jedoch die Brillanz bei
Kolorierungen noch zu wünschen übrig. Dies gilt beispielsweise bei der Applizierung
Bindemittel-haltiger Farbbmittelzubereitungen, wenn man Trichromien zu erzeugen
wünscht. Man beobachtet häufig eine Migration von Pigmenten nach der Applikation,
und das kann zu Farbuneutralitäten führen. Auch beobachtet man gelegentlich uner-
wünschte Fettausschläge, die durch die Migration von Pigmenten begünstigt werden
und zu Verfärbungen und Anschmutzungen führen. Weiterhin wird beobachtet, dass
sich Mischfarben nicht oder nur schlecht erzeugen lassen und mit Pigmentmischungen
kolorierte Substrate aufgrund des unterschiedlichen Migrationsverhaltens verschiede-
ner Pigmente mit der Zeit ein ungleichmäßiges Aussehen bekommen. Außerdem lässt
sich in einigen Fällen die Haptik von bedruckten Substraten noch verbessern.
Besonders dauerhaft kolorierte Substrate erhält man, wenn man Pigmente im Anschluss an die eigentliche Kolorierung mit Hilfe eines Bindemittels fixiert und vernetzt, was man beispielsweise durch Hitzeeinwirkung, Sauerstoffeinwirkung oder durch Einwirkung von elektromagnetischer Strahlung bewerkstelligen kann.

Es bestand also die Aufgabe, Formulierungen bereit zu stellen, die zur Kolorierung von Substraten geeignet sind und die oben genannten Schwächen aus dem Stand der Technik vermeiden. Weiterhin bestand die Aufgabe, ein Verfahren zur Kolorierung von Substraten bereit zu stellen. Weiterhin bestand die Aufgabe, ein Verfahren zur Herstellung von Formulierungen bereit zu stellen, die zur Kolorierung von Substraten geeignet sind. Schließlich bestand die Aufgabe, kolorierte Substrate bereit zu stellen.

Demgemäß wurde die eingangs definierten Formulierungen gefunden.

Beispielhaft ausgewählte organische Pigmente sind

- Monoazopigmente: C.I. Pigment Brown 25; C.I. Pigment Orange 5, 13, 36 und 67; C.I. Pigment Red 1, 2, 3, 5, 8, 9, 12, 17, 22, 23, 31, 48:1, 48:2, 48:3, 48:4, 49, 49:1, 52:1, 52:2, 53, 53:1, 53:3, 57:1, 63, 112, 146, 170, 184, 210, 245 und 251; C.I. Pigment Yellow 1, 3, 73, 74, 65, 97, 151 und 183;

- Disazopigmente: C.I. Pigment Orange 16, 34 und 44; C.I. Pigment Red 144, 166, 214 und 242; C.I. Pigment Yellow 12, 13, 14, 16, 17, 81, 83, 106, 113, 126, 127, 155, 174, 176 und 188;

- Anthanthronpigmente: C.I. Pigment Red 168 (C.I. Vat Orange 3);

- Anthracchinonpigmente: C.I. Pigment Yellow 147 und 177; C.I. Pigment Violet 31;

- Anthracchinonpigmente: C.I. Pigment Yellow 147 und 177; C.I. Pigment Violet 31;

- Anthropyrimidinpigmente: C.I. Pigment Yellow 108 (C.I. Vat Yellow 20);
- Chinacridonpigmente: C.I. Pigment Red 122, 202 und 206; C.I. Pigment Violet 19;
- Chinophthalonpigmente: C.I. Pigment Yellow 138;
- Dioxazinpigmente: C.I. Pigment Violet 23 und 37;
- Flavanthonpigmente: C.I. Pigment Yellow 24 (C.I. Vat Yellow 1);
- Indanthropigmente: C.I. Pigment Blue 60 (C.I. Vat Blue 4) und 64 (C.I. Vat Blue 6);
- Isoindolinpigmente: C.I. Pigment Orange 69; C.I. Pigment Red 260; C.I. Pigment Yellow 139 und 185;
- Isoindolinonpigmente: C.I. Pigment Orange 61; C.I. Pigment Red 257 und 260; C.I. Pigment Yellow 108, 110, 173 und 185;
- Isoviolanthropigmente: C.I. Pigment Violet 31 (C.I. Vat Violet 1);
- Metallkomplexpigmente: C.I. Pigment Yellow 117, 150 und 153; C.I. Pigment Green 8;
- Perinonpigmente: C.I. Pigment Orange 43 (C.I. Vat Orange 7); C.I. Pigment Red 194 (C.I. Vat Red 15);
- Perylenpigmente: C.I. Pigment Black 31 und 32; C.I. Pigment Red 123, 149, 178, 179 (C.I. Vat Red 23), 190 (C.I. Vat Red 29) und 224; C.I. Pigment Violet 29;
- Phthalocyaninpigmente: C.I. Pigment Blue 15, 15:1, 15:2, 15:3, 15:4, 15:6 und 16; C.I. Pigment Green 7 und 36;
- Pyranthropigmente: C.I. Pigment Orange 51; C.I. Pigment Red 216 (C.I. Vat Orange 4);
- Thioindigopigmente: C.I. Pigment Red 88 und 181 (C.I. Vat Red 1); C.I. Pigment Violet 38 (C.I. Vat Violet 3);
- Triarylcarbonumpigmente: C.I. Pigment Blue 1, 61 und 62; C.I. Pigment Green 1; C.I. Pigment Red 81, 81:1 und 169; C.I. Pigment Violet 1, 2, 3 und 27; C.I. Pigment Black 1 (Anilin-schwarz);
C.I. Pigment Yellow 101 (Aldazingelb);

C.I. Pigment Brown 22.

Die erfindungsgemäßen Formulierungen können auch von Mischungen von zwei oder mehr verschiedenen behandelten Pigmenten enthalten.

Die erfindungsgemäßen Formulierungen enthalten mindestens ein Pigment, das in partikulärer Form vorliegt, d.h. in Form von Partikeln. Üblicherweise geht man sogenannten Rohpigmenten aus, das sind unbehandelte Pigmente, wie sie nach der Pigmentsynthese anfallen. Die Partikel können reguläre oder irreguläre Form aufweisen, beispielsweise können die Partikel in sphärischer oder annähernd sphärischer Form oder in Nadelform vorliegen.

In einer Ausführungsform der vorliegenden Erfindung liegen die Partikel in sphärischer oder annähernd sphärischer Form vor, d.h. das Verhältnis längster Durchmesser zu kleinstem Durchmesser liegt im Bereich von 1,0 bis 2,0, bevorzugt bis 1,5.

Erfindungsgemäße Formulierungen enthalten mindestens ein Pigment in partikulärer Form, das nach einem im Folgenden beschriebenen Verfahren behandelt worden sind und das die eingangs definierten Schritte a) bis d) umfasst.

Das oder die Pigmente in partikulärer Form werden in einem Schritt a) mit mindestens einem nicht-ionischen oberflächenaktiven Stoff vermischt.

30 Beispiele für geeignete nicht-ionische Oberflächenaktive Stoffe sind z.B. ethoxyierte Mono-, Di- und Tri-Alkylphenole (Ethoxylierungsgrad: 3 bis 50, Alkyrest: C₃-C₁₂) sowie ethoxyierte Fettalkohole (EO-Grad: 3 bis 80; Alkyrest: C₆-C₅₀). Beispiele hierfür sind die Lutensol®-Marken der BASF AG oder die Triton®-Marken der Union Carbide. Besonders bevorzugt sind ethoxyierte lineare Fettalkohole der allgemeinen Formel III

\[n-C_xH_{2x+1}-O(CH_2CH_2O)_y-H \] \hspace{1cm} \text{III} \]

wobei x ganze Zahlen im Bereich von 10 bis 24, bevorzugt im Bereich von 12 bis 20 sind. Die Variable y steht vorzugsweise für ganze Zahlen im Bereich von 5 bis 50, besonders bevorzugt 8 bis 40.
Ethoxylierte lineare Fettalkohole der allgemeinen Formel III liegen üblicherweise als Gemisch verschiedener ethoxylierter Fettalkohole mit unterschiedlichem Ethoxylie-
rungrad vor. Die Variable y steht im Rahmen der vorliegenden Erfindung für den
Mittelwert (Zahlenmittel).

Das Vermischen von Pigment in partikulärer Form und mindestens einem nicht-
ionischen oberflächenaktiven Stoff erfolgt in zum Vermischen geeigneten Geräten,
vorzugsweise in Mühlen wie beispielsweise Kugelmühlen oder Rührwerkskugelmühlen.

Als geeignete Zeitdauer für das Vermischen haben sich beispielsweise ½ Stunde bis
48 Stunden erwiesen, obwohl auch eine längere Zeitdauer denkbar ist. Bevorzugt ist
eine Zeitdauer für das Vermischen von 5 bis 24 Stunden.

Druck- und Temperaturbedingungen beim Vermischen sind im Allgemeinen unkritisch,
so hat sich beispielsweise Normaldruck als geeignet erwiesen. Als Temperaturen ha-
ben sich beispielsweise Temperaturen im Bereich von 10°C bis 100°C als geeignet
erwiesen.

Das Mengenverhältnis von Pigment in partikulärer Form zu nicht-ionischem oberflä-
chenaktiven Stoff kann in weiten Bereichen gewählt werden und kann beispielsweise
im Bereich von 10:1 bis 2:1 liegen.

Während der Durchführung von Schritt a) kann man Wasser zusetzen. Auch kann man
übliche nicht-ionische Mahlhilfsmittel zusetzen.

Der mittlere Durchmesser von Pigment in partikulärer Form liegt nach Schritt a) übli-
cherweise im Bereich von 20 nm bis 1,5 µm, bevorzugt im Bereich von 50 bis 200 nm,
besonders bevorzugt 100 nm.

In Schritt b) dispergiert man die nach Schritt a) erhaltliche Mischung von Pigment in
partikulärer Form und nicht-ionischem oberflächenaktivem Stoff in wässrigem Medium.
Zur Dispergierung kann man beliebige Vorrichtungen verwenden, beispielsweise ge-
rührte Kessel oder gerührte Kolben.

Unter wässrigen Medien werden im Sinne der vorliegenden Erfindung solche flüssigen
Medien verstanden, die Wasser als wichtige Komponente enthalten, beispielsweise
mindestens 40 Gew.-%, bevorzugt mindestens 55 Gew.-%.

In Schritt b) liegt das Gewichtsverhältnis Mischung aus Pigmentpartikeln und nicht-
ionischem oberflächenaktiven Stoff zu wässriges Medium im Allgemeinen im Bereich
von 1:2 bis 1:15, bevorzugt 1:2,5 bis 1:9.
Druck und Temperaturbedingungen für Schritt b) sind im Allgemeinen unkritisch, so sind beispielsweise Temperaturen im Bereich von 5 bis 100°C geeignet, bevorzugt 20 bis 85°C und Drücke im Bereich von Normaldruck bis 10 bar.

Durch das Dispergieren nach Schritt b) erhält man eine Dispersion.

In Schritt c) polymerisiert man mindestens ein erstes Monomer oder copolymerisiert eine erste Mischung von Comonomer in Gegenwart einer Dispersion, erhältlich nach b), wobei wasserunlösliches Polymer bzw. Copolymer an der Oberfläche der Pigmentpartikel gebildet wird.

Monomer bzw. Comonomere kann man in Substanz oder in wässriger Dispersion zugeben.

Bevorzugte Beispiele für Monomere bzw. Comonomere in Schritt c) sind vinylaromatische Verbindungen und schlecht in Wasser lösliche α,β-ungesättigte Carbonsäurederivate.

Vorzugsweise wird als vinylaromatische Verbindung mindestens eine Verbindung der allgemeinen Formel IV gewählt,
in der R^7 und R^8 unabhängig voneinander jeweils für Wasserstoff, Methyl oder Ethyl stehen, R^9 Methyl oder Ethyl bedeutet und k eine ganze Zahl von 0 bis 2 bedeutet; ganz besonders bevorzugt sind R^7 und R^9 jeweils Wasserstoff, und ganz besonders bevorzugt gilt $k = 0$.

Vorzugsweise wird als schlecht in Wasser lösliches α,β-ungesättigtes Carbonsäurederivat eine Verbindung der allgemeinen Formel I gewählt,

\[
\begin{array}{c}
\text{O} \\
\text{R}^2 \\
\text{R}^1 \\
\end{array}
\]

\[
\begin{array}{c}
\text{OR}^3 \\
\end{array}
\]

in der die Variablen wie folgt definiert sind:

R^1 gewählt aus
- unverzweigtem oder verzweigtem C₃-C₁₀-alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl; besonders bevorzugt C₃-C₄-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl und tert.-Butyl;
- oder Wasserstoff,
- ganz besonders bevorzugt sind Wasserstoff und Methyl;

R^2 gewählt aus
- unverzweigtem oder verzweigtem C₃-C₁₀-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl; besonders bevorzugt C₃-C₄-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl;
- oder ganz besonders bevorzugt Wasserstoff.

R^3 gewählt aus
In einer Ausführungsform der vorliegenden Erfindung liegt das Verhältnis von Pigment zu Menge an Monomer bzw. Comonomeren in Schritt c) im Bereich von 1:0,1 bis 1:1,2, bevorzugt im Bereich 1:0,3 bis 1:0,8.

Als Polymerisationstemperatur kann man Temperaturen im Bereich von 20 bis 100°C, bevorzugt 50 bis 85°C wählen. Die gewählte Temperatur ist abhängig von der Zerfallscharakteristik des verwendeten Initiators.
Die Druckbedingungen sind im Allgemeinen unkritisch, geeignet sind beispielsweise Drücke im Bereich von Normaldruck bis 10 bar.

Als Zeitdauer für Schritt c) haben sich beispielsweise 1 bis 30 Minuten als geeignet erwiesen, bevorzugt 2 bis 10 Minuten und besonders bevorzugt 3 bis 5 Minuten.

Natürlich kann man der Reaktionsmischung weitere Zusatzstoffe beifügen, die in der Emulsionspolymerisation üblich sind, beispielsweise Glykole, Polyethylenglykole, Schutzkolloide und Puffer/pH-Wert-Regulatoren.

Man erhält nach Schritt c) mit Polymer bzw. Copolymer umhülltes Pigment in partikulärer Form, das in Form isolierter Partikel anfällt. Man beobachtete keine messbaren oder nur äußerst geringe Anteile an Agglomeraten, beispielsweise weniger als 2 Gew.-%, bevorzugt weniger als 0,2 Gew.-%.

In einer Ausführungsform der vorliegenden Erfindung ist das in Schritt c) an der Oberfläche des Pigments in partikulärer Form gebildete Polymer bzw. Copolymer wasserunlöslich.

Man kann in einem weiteren Schritt die nach c) erhältlichen dispersierten mit Polymer bzw. Copolymer umhüllten Pigmentpartikel durch Reinigungsoperationen, beispielsweise Filtrieren, Dekantieren, Waschen isolieren und zur Ausübung von Schritt d) des erfindungsgemäßen Verfahrens redispergieren. Vorzugsweise verarbeitet man jedoch die nach c) erhältlichen dispersierten mit Polymer bzw. Copolymer umhüllten Pigmentpartikel in situ weiter.

In Schritt d) des erfindungsgemäßen Verfahrens fügt man mindestens ein zweites Monomer oder eine zweite Mischung von Comonomeren der Dispersion aus Schritt c) oder den aufgearbeiteten und redispergierten umhüllten Pigmenten zu und polymerisiert bzw. copolymerisiert.

Wünscht man ein zweites Gemisch von Comonomeren zuzufügen, so fügt man mindestens ein Comonomer zu, das von dem Monomer oder den Comonomeren aus Schritt c) verschieden ist.

5 In einer Ausführungsform der vorliegenden Erfindung verwendet man im Schritt c) eine vinylaromatische Verbindung als Monomer und im Schritt d) mindestens ein Monomer oder Comonomer, welches Polystyrol anquellen kann.

10 Ganz besonders bevorzugt fügt man mindestens ein Monomer bzw. Comonomer der allgemeinen Formel II zu,

\[
\begin{array}{c}
\text{R}^2 \text{C} = \text{O} \text{OR}^8 \\
\text{R}^4
\end{array}
\]

wobei die Variablen wie folgt definiert sind:

\(\text{R}^4\) gewählt aus
- unverzweigtem oder verzweigtem \(\text{C}_1-\text{C}_{10}\)-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl; besonders bevorzugt \(\text{C}_1-\text{C}_3\)-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl;
- oder Wasserstoff;

20 ganz besonders bevorzugt sind Wasserstoff und Methyl;

\(\text{R}^8\) gewählt aus
- unverzweigtem oder verzweigtem \(\text{C}_{1-10}\)-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl; besonders bevorzugt \(\text{C}_1-\text{C}_4\)-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl;
- oder ganz besonders bevorzugt Wasserstoff.
R6 wird gewählt aus unverzweigtem oder verzweigtem C\textsubscript{1}-C\textsubscript{10}-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl; besonders bevorzugt C\textsubscript{1}-C\textsubscript{4}-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl.

Wünscht man in Schritt d) eine Mischung von Comonomeren zuzufügen, so ist es ausreichend, wenn neben einer zugegebenen strahlungshärtbaren Komponenten (B) mindestens ein Comonomer von dem Monomer bzw. Comonomer aus Schritt c) verschieden ist. So ist es beispielsweise möglich, in Schritt c) Styrol einzusetzen und in Schritt d) eine Mischung aus Methacrylat und Styrol.

In einer Ausführungsform der vorliegenden Erfindung setzt man in Schritt c) Styrol ein und in Schritt d) eine Mischung aus Harthärtkomponenten (Komponenten, die die Härte eines Copolymerfilms erhöhen) wie z.B. Methacrylat und Styrol und einer Weichkomponenten wie z.B. Butylacrylat.

In einer Ausführungsform der vorliegenden Erfindung wählt man das zweite Monomer bzw. die zweite Mischung so, dass die Glasmantemperatur des in Schritt d) synthetisierten Polymers bzw. Copolymers über 0\textdegree C liegt. Bevorzugt liegt die Glasmantemperatur des in Schritt d) synthetisierten Polymers bzw. Copolymers über 10\textdegree C, besonders bevorzugt über 20\textdegree C.

In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung setzt man in Schritt d) ein oder mehrere Monomere bzw. Comonomere ein, gewählt aus: n-Butylacrylat, 2-Ethylhexylacrylat, Methacrylat, Ethylacrylat.

In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung setzt man in Schritt d) mindestens 10 Gew.-% n-Butylacrylat ein.

In einer Ausführungsform der vorliegenden Erfindung liegt das Gewichtsverhältnis von zweiter Mischung an Comonomeren aus Schritt d) zu Pigment aus Schritt a) im Bereich
von 0,7 zu 1 bis 10:1, bevorzugt 1,5 zu 1 bis 5 zu 1, besonders bevorzugt 1,7 zu 1 bis 3 zu 1.

Insgesamt wählt man die Menge an Comonomeren aus Schritt c) und d) des erfindungsgemäßen Verfahrens so, dass das Verhältnis Polymer bzw. Copolymer zu Pigment im Bereich von 1:1 bis 5:1, bevorzugt im Bereich von 2:1 bis 3:1 liegt.

In Schritt d) polymerisiert bzw. copolymerisiert man vorzugsweise unter den Bedingungen einer Emulsionspolymerisation. Man verwendet üblicherweise mindestens einen Initiator, wobei der oder die Initiatoren gewählt werden können aus den vorstehend genannten.

Man kann mindestens einen Emulgator einsetzen, der anionisch, kationisch oder nicht-ionisch sein kann.

Gebräuchliche nichtionische Emulgatoren sind z.B. ethoxylierte Mono-, Di- und Tri-Alkylphenoole (Ethoxylierungsgrad: 3 bis 50, Alkylrest: C₄-C₁₂) sowie ethoxylierte Fettkohole (Ethoxylierungsgrad: 3 bis 80; Alkylrest: C₆-C₃₈). Beispiele sind die Lutensol®-Marken der BASF Aktiengesellschaft und die Triton®-Marken der Union Carbide.

In einer Ausführungsform der vorliegenden Erfindung wird die Menge des Emulgators so gewählt, dass das Massenverhältnis zwischen zweitem Monomer bzw. zweiter Mischung von Comonomeren einerseits und Emulgator andererseits größer als 8:1 ist, bevorzugt größer als 15:1 und besonders bevorzugt größer als 19:1.

Die Reihenfolge der Zugabe der Reaktionspartner aus Schritt d) ist an sich unkritisch.

In einer Ausführungsform der vorliegenden Erfindung stellt man zunächst aus Wasser, Emulgator und Monomeren eine Voremulsion her. Diese Voremulsion, auch Emulsionszulauf genannt, dosiert man anschließend parallel zum Initiatorzulauf über ein getrenntes Zulaufgefäß in den Polymerisationsreaktor.

Als Polymerisationstemperatur kann man Temperaturen im Bereich von 20 bis 100°C, bevorzugt 50 bis 85°C wählen. Die gewählte Temperatur ist abhängig von der Zerfallscharakteristik des verwendeten Initiators.

Die Druckbedingungen sind im Allgemeinen unkritisch, geeignet sind beispielsweise Drücke im Bereich von Normaldruck bis 10 bar.

Als Zeitdauer für die Polymerisation bzw. Copolymerisation in Schritt d) kann man eine Zeitdauer im Bereich von 30 Minuten bis 12 Stunden wählen, bevorzugt sind 2 bis 3 Stunden. Wählt man als Comonomer in Schritt d) eine oder mehrere Verbindungen der allgemeinen Formel I, so ist auch eine Zeitdauer von 40 bis 60 Minuten denkbar.

In einer Ausführungsform der vorliegenden Erfindung kann man in Schritt d) als Comonomer bis zu 5 Gew.-%, bevorzugt 1 bis 4 Gew.-%, bezogen auf Monomere bzw. Comonomere aus Schritt d), mindestens einer Verbindung der allgemeinen Formel V

\[\text{R}^{10} \text{O} \quad \begin{array}{c} \text{X} \\ \text{R}^{11} \end{array} \\
\]

zusetzen, in der die Variablen wie folgt definiert sind:

- \(\text{R}^{10} \): gewählt aus unverzweigtem oder verzweigtem \(\text{C}_1 \text{-C}_{10} \)-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl,
neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl; besonders bevorzugt C₁₋₄-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl;
5 oder Wasserstoff;
ganz besonders bevorzugt sind Wasserstoff und Methyl;

R¹¹ gewählt aus
- unverzweigtem oder verzweigtem C₁₋₄-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-
10 Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl; besonders bevorzugt C₁₋₄-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl;
15 oder ganz besonders bevorzugt Wasserstoff.

X gewählt aus
- aus -OH, -NH₂, -NH-CH₂OH,

20 Ganz besonders bevorzugt ist R¹⁰ in Formel V gewählt aus Wasserstoff und Methyl, und R¹¹ ist Wasserstoff.

In einer weiteren Ausführungsform der vorliegenden Erfindung können in Schritt d) als Comonomere 1 bis 14 Gew.-% (Meth)acrylnitril eingesetzt werden, bezogen auf die
25 Gesamtmenge an Comonomeren.

Andere besonders geeignete Comonomere in Schritt d) sind Comonomere, die als Photoinitiator dienen können, insbesondere (Meth)acrylsäureester von Alkoholen, die als Photoinitiator von radikalischen Polymerisationen dienen können. Ganz besonders bevorzugt sind gegebenenfalls substituierte (Meth)acryloylbenzophenone der allgemeinen Formel VII.
in denen Z gewählt wird aus Wasserstoff und Hydroxyl,
B steht für einen Spacer, beispielsweise Sauerstoff, NH, -O-A\(^7\)-O-, -O-CO-A\(^7\)-O-, -CO-NH-A\(^7\)-O-, -CO-NH-CO-A\(^7\)-NH-, -O-A\(^7\)-NH-A\(^7\)-NH,
A\(^7\) gleich oder verschieden und gewählt aus C\(_2\)-C\(_{30}\)-Alkylen, bevorzugt C\(_2\)-C\(_6\)-
Alkylen, wie beispielsweise -(CH\(_2\))\(_2\)-, -(CH\(_2\))\(_3\)-CH(CH\(_3\))-, -(CH\(_2\))\(_3\)-, -(CH\(_2\))\(_2\)-CH(C\(_2\)H\(_5\))-, -(CH\(_2\))\(_4\)-, -(CH\(_2\))\(_5\)-, -(CH\(_2\))\(_6\)-,

vorzugsweise C\(_2\)-C\(_4\)-Alkylen; insbesondere -(CH\(_2\))\(_2\)-, -(CH(CH\(_3\)))\(_2\)-, -(CH\(_2\))\(_3\)-, -(CH\(_2\))\(_4\)- und -(CH\(_2\))\(_2\)-CH(C\(_2\)H\(_5\))-
und R\(^{17}\) wird gewählt aus
- unverzweigtem oder verzweigtem C\(_1\)-C\(_{10}\)-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-
Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl,
neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-
Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl; besonders bevorzugt C\(_1\)-C\(_4\)-Alkyl
wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-
Butyl;
- oder Wasserstoff;
ganz besonders bevorzugt sind Wasserstoff und Methyl.

Besonders bevorzugt sind Comonomere der Formeln P1 bis P6
in denen die Variablen wie folgt definiert sind:

R^{18} wird gewählt aus C_1- bis C_4-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl;

und C_6- bis C_{14}-Aryl, gegebenenfalls substituiert, wie Phenyl, p-Hydroxyphenyl, p-Dimethylaminophenyl, p-Methylphenyl, 1-Naphthyl, 2-Naphthyl, 9-Anthryl, 1-Anthryl, 2-Anthryl, insbesondere Phenyl,

und die übrigen Variablen wie oben stehend definiert sind.

Comonomere der allgemeinen Formeln P1 bis P4 lassen sich nach an sich bekannten Methoden herstellen. Üblich ist bei der Herstellung ein Veresterungsschritt oder Umesterungsschritt von Vorstufen der Formeln

Vorstufe P1

Vorstufe P2

und

Vorstufe P3 bzw. P4

mit Säuren oder Estern der Formel
vorzugsweise in Gegenwart von Katalysator, wobei in den Formeln die Variablen wie oben stehend definiert sind und Me für Methyl steht.

In Schritt d) kann man 0,1 bis 2 Gew.-%, bevorzugt 0,2 bis 1,5 Gew.-% mindestens eines Comonomers, das als Photoinitiator dienen kann, einpolymerisieren.

So kann man beispielsweise in Schritt d) 0,1 bis 2 Gew.-%, bevorzugt 0,2 bis 1,5 Gew.-% eines Isomereengemischs aus VII einpolymerisieren.

Erfindungsgemäße Formulierungen sind üblicherweise wässrige Dispersionen von wie vorstehend beschrieben behandeln Pigment in partikulärer Form und können einen Feststoffgehalt von 10 bis 50 Gew.-%, bevorzugt 30 bis 40 Gew.-% haben.

Erfindungsgemäße Formulierungen enthalten weiterhin mindestens eine strahlungshärtbare Komponente (B).

In einer Ausführungsform der vorliegenden Erfindung enthält eine erfindungsgemäße Formulierung als strahlungshärtbare Komponente mindestens eine Verbindung, die pro
Molekül mindestens zwei ethylenisch ungesättigte Doppelbindungen trägt, die vorzugsweise isoliert voneinander sind, d.h. sie sind nicht konjugiert. Bevorzugt handelt es sich um mindestens eine Verbindung, die mindestens zwei (Meth)acrylsäuregruppen trägt, beispielsweise mindestens zweifach mit (Meth)acrylsäure veresterte Di- oder Polycarbonsäuren, oder mindestens zweifach mit funktionellen (Meth)acrylsäure-derivaten umgesetzte Di- oder Polyisocyanate, die im folgenden auch als Urethan(meth)acrylate bezeichnet werden. Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel VI a, VI b oder VI d.

\[
\begin{align*}
\text{VI a} \\
&\text{VI b} \\
&\text{VI d}
\end{align*}
\]

In den Formeln VI a, VI b und VI d sind die Variablen wie folgt definiert:

- \(R^{13}, R^{14}\) verschieden oder vorzugsweise gleich und gewählt aus Wasserstoff und Methyl,
- \(Y^1, Y^2, Y^3, Y^4\) gleich oder verschieden und gewählt aus Schwefel, N-H und insbesondere Sauerstoff,
- \(A^1, A^2\) zwei- oder mehrfach substituierte Einheiten, gewählt aus C1-C10-Alkyl, substituiert oder unsubstituiert, wie beispielsweise \(-CH_2-,\)
- \(-CH(CH_3)-, -CH(C_2H_5)-, -CH(C_3H_7)-, -CH(CH_2)_3-, -CH(CH_2)_2-, -CH(CH_2)_-,\)
- \(-CH(CH_3)-(CH_2)_2-, -CH(CH_3)-(CH_2)_3-, -CH(CH_3)-(CH_2)_4-,\)
- \(cis-\) oder \(trans-C_4-C_10\)-Cycloalkylen, wie beispielsweise cis-1,3-Cyclopentyliden, trans-1,3-Cyclopentyliden cis-1,4-Cyclohexyliden, trans-1,4-Cyclohexyliden; und
C₆-C₁₄-Arylen, wie beispielsweise meta-Phenylen, para-Phenylen, 2,7-Naphtyliden;

wobei in Formel VI a die Variable A¹ auch für eine Einfachbindung stehen kann;

b, f ganze Zahlen, verschieden oder vorzugsweise gleich, im Bereich von 2 bis 10, bevorzugt 2 bis 4;

c, h ganze Zahlen, verschieden oder vorzugsweise gleich, im Bereich von 1 bis 10, bevorzugt 1 bis 3;

d eine ganze Zahl im Bereich von 1 bis 5 und besonders bevorzugt 1.

Vorzugsweise sind b und f, c und h, Y¹ und Y⁴, Y² und Y³ und R¹³ und R¹⁴ jeweils paarweise gleich.

Ganz besonders bevorzugt sind

Andere geeignete Verbindungen, die pro Molekül mindestens zwei ethylenisch ungesättigte Bindungen tragen, sind Verbindungen der allgemeinen Formel VI c
in denen die Variablen wie folgt definiert sind:

\[R^{15} \]
gleich oder verschieden und gewählt aus Methyl und Wasserstoff;

\[m \]
eine ganze Zahl von 0 bis 2, bevorzugt 1;

\[A^3 \]
CH₃ oder –CH₂–CH₂– oder R¹⁶–CH oder para-C₆H₄ für den Fall, dass m = 0, CH, R¹⁶–C oder 1,3,5-C₆H₃ für den Fall, dass m = 1,

und Kohlenstoff für den Fall, dass m = 2;

\[R^{16} \]
gewählt aus C₁–C₄–Alkyln, wie beispielsweise n-C₄H₈, n-C₃H₇, iso-C₂H₇ und vorzugsweise C₂H₅ und CH₃,

oder Phenyl,

\[A^4, A^6, A^8 \]
gleich oder verschieden und gewählt aus

\[C₁–C₂₀–Alkylen, \text{ wie beispielsweise } -\text{CH}_₂-, -\text{CH}(\text{CH}_₃)-, -\text{CH}(\text{C}_₂\text{H}_₅)-, -\text{CH}(\text{C}_₆\text{H}_₅)-, \]

\[-(\text{CH}_₂)₂-, -(\text{CH}_₂)₃-, -(\text{CH}_₂)₄-, -(\text{CH}_₂)₅-, -(\text{CH}_₂)₆-, -(\text{CH}_₂)₇-, -(\text{CH}_₂)₈-, -(\text{CH}_₂)₉-, \]

\[-(\text{CH}_₂)₁₀-, -(\text{CH}(\text{CH}_₃)-(\text{CH}_₂)₂-\text{CH}(\text{CH}_₃)-; \]

cis- oder trans-C₄–C₁₀–Cycloalkylen, wie beispielsweise cis-1,3-Cyclopentyliden, trans-1,3-Cyclopentyliden cis-1,4-Cyclohexyliden, trans-1,4-Cyclohexyliden;

\[C₁–C₂₀–Alkylen, \text{ in denen von einem bis zu sieben jeweils nicht benachbarte C-Atome durch Sauerstoff ersetzt sind, wie beispielsweise } -\text{CH}_₂–\text{O–CH}_₂–, \]

\[-(\text{CH}_₂)₂–\text{O–CH}_₂–, -(\text{CH}_₂)₂–\text{O–(CH}_₂)₂–, -(\text{CH}_₂)₂–\text{O–[(CH}_₂)₂–\text{O–(CH}_₂)₂–, -(\text{CH}_₂)₂–\text{O–[(CH}_₂)₂–\text{O–(CH}_₂)₂–; \]

C₁–C₂₀–Alkylen, substituiert mit bis zu 4 Hydroxygruppen, wobei in C₁–C₂₀–Alkylen von einem bis zu sieben jeweils nicht benachbarte C-Atome durch Sauerstoff ersetzt sind, wie beispielsweise -\text{CH}_₂–\text{O–CH}_₂–\text{CH(OH)–CH}_₂–,

\[-\text{CH}_₂–\text{O–}[\text{CH}_₂–\text{CH(OH)–CH}_₂]₂–, -\text{CH}_₂–\text{O–}[\text{CH}_₂–\text{CH(OH)–CH}_₂]₃–; \]

C₆–C₁₄–Arylen, wie beispielsweise para-C₆H₄.
Andere bevorzugte Beispiele für verzweigte Verbindungen mit mindestens zwei terminalen Doppelbindungen sind Polyester(meth)acrylate, erhältlich durch beispielsweise Umsetzung von hydroxylterminierten Polyestern mit einem Molekulargewicht M_n vorzugsweise im Bereich von 250 bis 4000 g/mol oder Polyethern mit einem Molekulargewicht M_w im Bereich von 400 bis 4000 g/mol, mit (Meth)acrylsäure, wie beispielsweise beschrieben in EP-B 0 126 341.

Andere bevorzugte Beispiele für verzweigte Verbindungen mit mindestens zwei terminalen Doppelbindungen sind (Meth)acrylat-Urethane, vorzugsweise als wässrige Dispersionen verfügbar, die herstellbar sind durch Umsetzung von Polyester(meth)acrylaten mit vorzugsweise aromatischen Di- oder Trisocyanaten, wie beispielsweise beschrieben in WO 98/47975.

Erfindungsgemäße Formulierungen können 0,2 bis 30 Gew.-%-, bevorzugt 1 bis 15 Gew.-% strahlungshärtbare Komponente (B) enthalten.

In einer speziellen Ausführungsform der vorliegenden Erfindung enthalten erfindungsgemäße Formulierungen mindestens eine strahlungshärtbare Komponente als Molekülbausteine. Diese spezielle Ausführungsform kann beispielsweise so verwirklicht werden, dass man ausgewählte Comonomere in Schritt d) bei der Behandlung des oder der Pigmente in partikulärer Form mit einsetzt, die für die Durchführung einer Strahlungshärtung geeignete Molekülgruppen tragen. Geeignete Comonomere sind insbesondere zur Vernetzung fähige Comonomere, die pro Molekül mindestens zwei ethylenisch ungesättigte Doppelbindungen tragen, die vorzugsweise isoliert voneinander sind, d.h. sie sind nicht konjugiert. Bevorzugt handelt es sich um mindestens ein Comonomer, das mindestens zwei (Meth)acrylsäuregruppen trägt, beispielsweise mindestens zweifach mit Methacrylsäure veresterte Di- oder Polycarbonsäuren oder Urethan(meth)acrylate. Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel VI a oder VI b, die wie vorstehend definiert sind.

In einer weiteren Ausführungsform der vorliegenden Erfindung setzt man den erfindungsgemäßen Formulierungen Filmbildungshilfsmittel zu.

In einer weiteren Ausführungsform kann man über die strahlungshärtbare(n) Komponente(n) (B) oder wahlweise über das Filmildehilfsmittel ein oder mehrere nicht einpolymerisierte Photoinitiatoren zusätzlich in das Pigment-Polymer-System einbringen.

In einer bevorzugten Ausführungsform liegt das Gewichtsverhältnis Pigment-haltige Polymerpartikel zu Pigment-freie Polymerpartikel im Bereich von 10 zu 0,1 bis 10 zu 3, bevorzugt von 10 zu 0,5 bis 10 zu 2.

In einer bevorzugten Ausführungsform sind die mittleren Radien $r(\text{Pigment-freier Polymerpartikel})$ kleiner als die mittleren Radien $r(\text{Pigment-haltiger Polymer-Partikel})$, jeweils bezogen auf das Zahlenmittel. Das Radienverhältnis

\[\frac{r(\text{Pigment-haltige Polymerpartikel})}{r(\text{Pigment-freie Polymerpartikel})} \]

kann beispielsweise im Bereich von 1,2 bis 10 liegen, bevorzugt im Bereich von 2 bis 5.

In einer Ausführungsform der vorliegenden Erfindung setzt man erfindungsgemäßen Formulierungen in Anschluss an Schritt d) mindestens einen Weichmacher (C) zu.

Vorzugsweise liegt Weichmacher (C) unter Normalbedingungen (1 atm, 20°C) in flüssiger Form vor.
Beispiele für Weichmacher (C) sind Esterverbindungen, gewählt aus den Gruppen der mit Alkanolen vollständig veresterten aliphatischen oder aromatischen Di- oder Polycarbonsäuren und der mindestens einfach mit Alkanol veresterten Phosphorsäure.

In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei Alkanolen um C\textsubscript{1}-C\textsubscript{10}-Alkanole.

Bevorzugte Beispiele für mit Alkanol vollständig veresterte aromatische Di- oder Polycarbonsäuren sind mit Alkanol vollständig veresterte Phthalsäure, Isophthalsäure und Melilthsäure; beispielhaft seinen genannt: Di-n-octlyphthalat, Di-n-nonylphthalat, Di-n-decylphthalat, Di-n-octylisophthalat, Di-n-nonylisophthalat, Di-n-decylisophthalat.

Bevorzugte Beispiele für mit Alkanol vollständig veresterte aliphatische Di- oder Polycarbonsäuren sind beispielsweise Adipinsäuredimethylster, Adipinsäurediethylster, Adipinsäuredi-n-butylester, Adipinsäurediisobutylerster, Glutarsäuredimethylster, Glutar-
säurediethylster, Glutar-
säuredi-n-butylester, Glutar-
säurediisobutylerster, Bernsteinsäuredimethylster, Bernsteinsäure-
diethylster, Bernsteinsäuredi-n-butylester Bernsteinsäurediisobutylester sowie Mischungen der vorstehend genannten Verbin-
dungen.

Bevorzugte Beispiele für mindestens einfach mit Alkanol veresterten Phosphorsäure sind C\textsubscript{1}-C\textsubscript{10}-Alkyl-di-C\textsubscript{6}-C\textsubscript{14}-Aryl-Phosphate wie Isodecyldiphenylphosphat.

Weitere geeignete Beispiele für Weichmacher (C) sind mindestens einfach mit C\textsubscript{1}-C\textsubscript{10}-Alkylcarbonsäure veresterte aliphatische oder aromatische Di- oder Polyole.

Bevorzugte Beispiele für mindestens einfach mit C\textsubscript{1}-C\textsubscript{10}-Alkylcarbonsäure veresterte aliphatische oder aromatische Di- oder Polyole ist 2,2,4-Trimethylpentan-1,3-di-monoisobutyрат.

Weitere geeignete Weichmacher (C) sind Polyester, erhielt durch Polykondensation von aliphatischer Dicarbonsäure und aliphatischem Diol, beispielsweise Adipinsäure oder Bernsteinsäure und 1,2-Propandiol, vorzugsweise mit einem M\textsubscript{w} von 200 g/mol, und Polypropylen glykolalkylphenylether, vorzugsweise mit einem M\textsubscript{w} von 450 g/mol.

Weitere geeignete Weichmacher (C) sind mit zwei verschiedenen Alkoholen veretherte Polypropylen glykole mit einem Molekulargewicht M\textsubscript{w} im Bereich von 400 bis 800 g/mol,
wobei vorzugsweise einer der Alkohole ein Alkanol, insbesondere ein C_{1-10}-Alkanol sein kann und der andere Alkohol vorzugsweise ein aromatischer Alkohol, beispielsweise o-Kresol, m-Kresol, p-Kresol und insbesondere Phenol sein kann.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Formulierungen zur Kolorierung von Substraten. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Kolorierung von Substraten unter Verwendung der erfindungsgemäßen Formulierungen, im Folgenden auch erfindungsgemäßer Kolorierungsverfahren genannt, und ein weiterer Gegenstand der vorliegenden Erfindung sind kolorierte Substrate, erhältlich durch ein erfindungsgemäßes Kolorierungsverfahren.

In einer Ausführungsform der vorliegenden Erfindung geht man zur Durchführung des erfindungsgemäßen Kolorierungsverfahrens so vor, dass man Substrate mit erfindungsgemäß behandeltem Pigment in partikulärer Form kontaktiert und danach aktinischer Strahlung aussetzt. Als aktinische Strahlung sind beispielsweise elektromagnetische Strahlen mit einem Wellenlängenbereich von 200 nm bis 450 nm geeignet. Man kann mit erfindungsgemäß behandelter Pigment in partikulärer Form kontaktierte Substrate aktinischer Strahlung mit einer Energie im Bereich von 70 mJ/cm² bis 1500 mJ/cm² aussetzen. Aktinische Strahlung kann man beispielsweise kontinuierlich oder in Form von Blitzen einbringen. Wenn man in Schritt d) Benzophenonderivate beispielsweise der Formel P1 oder P3 bis P7 einpolymerisiert hat, ist ein Anteil an UV-C-Strahlung von 250-260 nm Wellenlänge wichtig, damit die Vernetzung über die Benzophenonverbindung eintreten kann.

Substrate im Sinne der vorliegenden Erfindung sind beispielsweise

- cellulosgehaltige Materialien wie Papier, Pappe, Karton, Holz und Holzwerkstoffe, die auch lackiert oder anderweitig beschichtet sein können,
- metallische Materialien wie Foli en, Bleche oder Werkstücke aus Aluminium, Eisen, Kupfer, Silber, Gold, Zink oder Legierungen dieser Metalle, die lackiert oder anderweitig beschichtet sein können,
- silikatische Materialien wie Glas, Porzellan und Keramik, die beschichtet sein können,
- polymere Materialien jeder Art wie Polystyrol, Polymide, Polyester, Polyethylen, Polypropylen, Melaminharze, Polyacrylate, Polyacrylnitril, Polyurethane, Polycarbonat, Polyvinylchlorid, Polyvinylalkohole, Polyvinylacetate, Polyvinyl-
pyrrolidone und entsprechende Copolymere und Blockcopolymere, biologisch abbaubare Polymere und natürliche Polymere wie Gelatine,
- Lebensmittel und Kosmetika

und insbesondere Leder und Textil bzw. textile Substrate.

Unter Leder ist im Rahmen der vorliegenden Erfindung vorgegebenes, gegerbtes und gegebenenfalls nachgegerbtes Leder oder entsprechend bearbeitetes synthetisches Austauschmaterial zu verstehen, was während mindestens eines Gerbschritts bereits mit mindestens einem Farbstoff behandelt worden sein kann. Leder im Rahmen der vorliegenden Erfindung kann bereits hydrophobiert bzw. gefettet sein.

In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei dem erfindungsgemäßen Verfahren zur Kolorierung von Substraten um ein erfindungsgemäßes Verfahren zum Bedrucken von Substraten nach dem Ink-Jet-Verfahren.

und auch die aus den erfindungsgemäßen Dispersionen abgetrennten erfindungsge-
maß behandelten Pigmente.

Besonders leicht lassen erfindungsgemäße Tinten für das Ink-Jet-Verfahren dadurch
herstellen, dass man erfindungsgemäße Formulierungen mit beispielsweise Wasser
verdünnt und gegebenenfalls mit Zuschlagstoffen vermischt.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält eine erfin-
dungsgemäße Tinte für das Ink-Jet-Verfahren im Bereich von 1 bis 50 g/100 ml, bevor-
zugt 1,5 bis 15 g/100 ml erfindungsgemäß behandeltes Pigment in partikulärer Form.

Als Zuschlagstoffe können erfindungsgemäße Farbbmittelsubstanzien und insbeson-
dere erfindungsgemäße Tinten für das Ink-Jet-Verfahren organische Lösungsmittel
enthalten. Niedermolekulares Polytetrahydrofuran ist ein bevorzugter Zuschlagstoff, es
can allein oder vorzugsweise im Gemisch mit einem oder mehreren schwer ver-
dampfbaren, in Wasser löslichen oder mit Wasser mischbaren organischen Lösungs-
mitteln eingesetzt werden.

Das bevorzugt verwendete niederer molekulares Polytetrahydrofuran hat üblicherweise ein
mittleres Molekulargewicht M_w von 150 bis 500 g/mol, bevorzugt von 200 bis 300 g/mol
und besonders bevorzugt von etwa 250 g/mol (entsprechend einer Molekulargewichts-
verteilung).

Polytetrahydrofuran kann auf bekannte Weise über kationische Polymerisation von
Tetrahydrofuran hergestellt werden. Dabei entstehen lineare Polytetramethyglykolyle.

Wenn Polytetrahydrofuran im Gemisch mit weiteren organischen Lösungsmitteln als
Zuschlagstoff verwendet wird, werden hierfür im Allgemeinen schwer verdampfbare
(d.h. in der Regel bei Normaldruck einen Siedepunkt > 100°C aufweisende) und damit
eine wasserrückhaltende Wirkung besitzende organische Lösungsmittel eingesetzt, die
in Wasser löslich oder mit Wasser mischbar sind.

Als Lösungsmittel eignen sich mehrwertige Alkohole, bevorzugt unverzweigte und ver-
zweigte mehrwertige Alkohole mit 2 bis 8, insbesondere 3 bis 6, Kohlenstoffatomen,
wie Ethylenglykol, 1,2- und 1,3-Propylenlykol, Glycerin, Erythrit, Pentaerythrit, Pentite
wie Arabit, Adonit und Xylit und Hexite wie Sorbit, Mannit und Dulcit.

Beispiele für besonders bevorzugte Lösungsmittel sind 1,2- und 1,3-Propylen glykol, Glycerin, Sorbit, Diethylen glykol, Polyethylen glykol (Mₗ 300 bis 500 g/mol), Diethyl englykolmonobutylether, Triethylenglykolmonobutylether, Pyrrolidon, N-Methylpyrrolidon und N-(2-Hydroxyethyl)pyrrolidon.

Polytetrahydrofuran kann auch mit einem oder mehreren (z.B. zwei, drei oder vier) der oben aufgeführten Lösungsmitteln gemischt werden.

In einer Ausführungsform der vorliegenden Erfindung können erfindungsgemäße Tinten für das Ink-Jet-Verfahren 0,1 bis 80 Gew.-%, bevorzugt 5 bis 60 Gew.-%, besonders bevorzugt 10 bis 50 Gew.-%, und ganz besonders bevorzugt 10 bis 30 Gew.-%, nicht-wässrige Lösungsmittel enthalten.

Nicht-wässrige Lösungsmittel als Zuschlagstoffe, insbesondere auch die genannten besonders bevorzugten Lösungsmittelkombinationen, können vorteilhaft durch Harstoff (in der Regel 0,5 bis 3 Gew.-%, bezogen auf das Gewicht der Farbbindemittelzubereitung) ergänzt werden, der die wasserrückhaltende Wirkung des Lösungsmittelgemisches noch verstärkt.

Erfindungsgemäße Tinten für das Ink-Jet-Verfahren können weitere Hilfsmittel, wie sie insbesondere für wässrige Ink-Jet-Tinten und in der Druck- und Lackindustrie üblich sind, enthalten. Genannt seien z.B. Konservierungsmittel wie beispielsweise 1,2-
Benzisothiazolin-3-on (kommerziell erhältlich als Proxel-Marken der Fa. Aveca Lim.) und dessen Alkalimetallsalze, Glutardialdehyd und/oder Tetramethylolacetylenedi-
hamstoff, Protectole®, Antioxidantien, Entgaser/Entschäumer wie beispielsweise Acet-
ylendiole und ethoxyierte Acetylenoidiole, die üblicherweise 20 bis 40 mol Ethylenoxid
pro mol Acetylenio dil enthalten und gleichzeitig auch dispersierend wirken können, Mitt-
el zur Regulierung der Viskosität, Verlaufshilfsmittel, Netzmittel (z.B. benetzung wir-
kende Tenside auf der Basis von ethoxylierten oder propoxylierten Fett- oder Oxoalko-
holen, Propylenoxid/Ethylenoxid-Blockcopolymeren, Ethyoxylaten von Ölsäure oder
Alkylphenolen, Alkylphenoethersulfaten, Alkylpolyglycosiden, Alkylphosphonaten, Al-
kylphenylphosphaten, Alkylphosphaten, Alkylphenylphosphaten oder bevorzugt Po-
lyethersiloxan-Copolymeren, insbesondere alkoxylierten 2-(3-Hydroxypropyl)hepta-
methyltrisiloxanen, die in der Regel einen Block aus 7 bis 20, vorzugsweise 7 bis 12,
Ethylenoxideinheiten und einen Block aus 2 bis 20, vorzugsweise 2 bis 10 Propylen-
oxideinheiten aufweisen und in Mengen von 0,05 bis 1 Gew.-% in den Farbmittelzube-
reitungen enthalten sein können), Antiabsetzmittel, Glanzverbesserer, Gleitmittel, Haft-
verbesserer, Hautverhinderungsmittel, Mattierungsmittel, Emulgatoren, Stabilisatoren,
Hydrophobiermittel, Lichtschutzadditive, Griffverbesserer, Antistatikmittel, Basen wie
beispielsweise Triethanolamin oder Säuren, speziell Carbonsäuren wie beispielsweise
Milchsäure oder Zitronensäure zur Regulierung des pH-Wertes. Wenn diese Mittel Be-
standteil erfindungsgemäßer Farbmittelzubereitungen und insbesondere erfindungs-
gemäßer Tinten für das Ink-Jet-Verfahren sind, beträgt ihre Gesamtmenge in der Regel
2 Gew.-%, insbesondere 1 Gew.-%, bezogen auf das Gewicht der erfindungsgemäßen
Farbmittelzubereitungen und insbesondere der erfindungsgemäßen Tinten für das Ink-
Jet-Verfahren.

In einer Ausführungsform der vorliegenden Erfindung haben erfindungsgemäße Tinten
für das Ink-Jet-Verfahren eine dynamische Viskosität von 2 bis 80 mPa·s, bevorzugt 3
bis 20 mPa·s, gemessen bei 25°C.

Die Oberflächenspannung erfindungsgemäßer Tinten für das Ink-Jet-Verfahren beträgt
in der Regel 24 bis 70 mN/m, insbesondere 25 bis 60 mN/m, gemessen bei 25°C.

Der pH-Wert erfindungsgemäßer Tinten für das Ink-Jet-Verfahren liegt im allgemeinen
bei 5 bis 10, vorzugsweise bei 7 bis 9.

Ein weiterer Aspekt der vorliegenden Erfindung ist ein Verfahren zum Bedrucken von
flächigen oder dreidimensionalen Substraten nach dem Ink-Jet-Verfahren unter Ver-

Besonders geeignet sind die erfindungsgemäßen Tinten für das Bubble-Jet-Verfahren und für das Verfahren mittels eines piezoelektrischen Kristalls.

20 In einer speziellen Ausführungsform der vorliegenden Erfindung handelt es sich bei dem erfindungsgemäßen Verfahren zur Kolorierung von textilen Substraten um ein erfindungsgemäßes Verfahren zum Textildruck.

Erfindungsgemäß stellt man aus oben beschriebenen Formulierungen Färbeblätter für die Pigmentfärbung beziehungsweise Druckpasten für den Pigmentdruck her, speziell für den textilen Pigmentdruck. Gegenstand der vorliegenden Erfindung ist somit weiterhin ein Verfahren zur Herstellung von Färbeblättern für die Pigmentfärbung und zur Herstellung von Druckpasten für den Pigmentdruck sowie die erfindungsgemäßen Färbeblättern und Druckpasten, im Folgenden auch erfindungsgemäße Herstellverfahren genannt.

Das erfindungsgemäße Herstellungsverfahren enthält die Schritte, dass man mindestens eine erfindungsgemäße Dispersion mit für den Färbe- bzw. Druckprozess benötigten Hilfsmitteln mischt und den Farbmittelgehaltes durch Verdünnen mit Wasser ein-

Weiterhin können erfindungsgemäße Färbeblotten Hilfsmittel enthalten. Bevorzugte Hilfsmittel sind organische Lösemittel in Konzentrationen von 0 bis 10 Gew.-%, bevorzugt 0,1 bis 5 Gew.-%. Als Lösemittel kommen beispielsweise Polyethylenglykole und einfach veretheretes Alkyglykol oder einfach veretheretes Polyethylenglykol wie beispielsweise Diethylenglykolmono-n-butylether in Betracht.

Trockene textile Gewebe oder Gewirke, wie sie in der kontinuierlichen Pigmentfärbung eingesetzt werden, enthalten eine große Menge von Luft. Hier ist im Färbeprozess der Einsatz von Entlüftern notwendig. Entlüfter basieren beispielsweise auf Polysiloxan-Copolymeren oder auf Phosphorsäureestern. Sie können in Mengen von 0,01 bis 2 g/l in den erfindungsgemäßen Färbeblotten enthalten sein.

Weiterhin kann man erfindungsgemäßen Färbeblotten als Hilfsmittel einen oder mehrere Griffverbesserer zusetzen. Hierbei handelt es sich in der Regel um Polysiloxane.

In einer Ausführungsform der vorliegenden Erfindung liegt die dynamische Viskosität der erfindungsgemäßen Färbeflotten im Bereich von unter 100 mPa·s, gemessen bei 20°C. Die Oberflächenspannungen der erfindungsgemäßen Färbeflotten sind so einzustellen, dass ein Benetzen der Ware möglich ist. Geeignet sind Oberflächenspannungen von kleiner 50 mN/m, gemessen bei 20°C.

In einer weiteren Ausführungsform wird das Textil über eine Umlenkrolle durch einen Trog mit der Färbeflutte geführt. Anschließend wird über ein Walzenpaar, welches oberhalb der Flotte angebracht ist, überschüssige Flotte abgepresst und so ein konstanter Auftrag gewährleistet.

An den eigentlichen Färbeschritt schließt sich üblicherweise eine thermische Trocknung und Fixierung an, bevorzugt trocknet man bei Temperaturen von 50 bis 90°C über einen Zeitraum von 30 Sekunden bis 3 Minuten und fixiert anschließend durch Einwirken mit aktinischer Strahlung. Bevorzugt ist ein Verfahren zur Pigmentfärbung

Erfindungsgemäße Druckpasten können weiterhin Griffverbesserer enthalten, die üblicherweise aus Silikonen, insbesondere Polydimethylsiloxanen, und Fettsäureestern ausgewählt werden. Beispiele für kommerziell erhältliche Griffverbesserer, die den erfindungsgemäßen Druckpasten zugesetzt werden können, sind Acramin® Weichmacher SI (Bayer AG), Luprimol SIG® und Luprimol CW® (BASF Aktiengesellschaft).

In einer Ausführungsform geht das erfindungsgemäße Kolorierungsverfahren aus von vorgegebenem, gegerbtom und gegebenenfalls nachgerbetem Leder, welches bereits nach an sich bekannter Weise hydrophobiert und gefärbt sein kann.

Zunächst bringt man mindestens eine farbige Zurichtdispersion, die ein oder mehrere erfindungsgemäß behandelte Pigmente in partikulärer Form enthält, in einer Menge von 20 bis 100 g Feststoff pro m² Lederoberfläche auf das zu kolorierende Leder auf. Das Aufbringen kann durch an sich bekannte Methoden erfolgen, beispielsweise Plüsch, d.h. Auftrag mit Schwamm oder bürstenähnlicher Vorrichtung, welche mit Plüsch bzw. Samtgewebe bespannt sein kann, durch Bürsten, Rollcoating, Gießen, Spritzen oder Aufsprühen. Man kann das so behandelte Leder anschließend trocknen, beispielsweise bei einer Temperatur im Bereich von 30 bis 120°C, bevorzugt 60 bis 80°C. Das Aufbringen von mindestens einer farbigen Zurichtdispersion kann in einem oder in mehreren Schritten erfolgen, die gleich oder verschieden durchgeführt und jeweils durch eine Zwischentrocknung bei den oben genannten Temperaturen unterbrochen werden können.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält eine erfindungsgemäß eingesetzte farbige Zurichtdispersion mindestens eine erfindungsgemässe Formulierung.

Erfindungsgemäß eingesetzte farbige Zurichtdispersionen, die im Folgenden auch als erfindungsgemässe farbige Zurichtdispersionen bezeichnet werden, sind üblicherweise wässrig. Sie können weitere, nicht-wässrige Lösemittel enthalten wie beispielsweise Ethylen glykol, N-Methylpyrrolidon, 3-Methoxypropanol und Propylencarbonat. In einer bevorzugten Ausführungsform enthalten erfindungsgemässe Grundierdispersionen folgende Bestandteile:

\[\alpha_1 \] mindestens eine erfindungsgemässe Formulierung, bevorzugt 20 bis 70 Gew.-%, bezogen auf das Gesamtgewicht von erfindungsgemäßer farbiger Zurichtdispersion;

\[\beta_1 \] optional mindestens ein Wachs, wie beispielsweise oxidiertes Polyethylenwachs oder Montanwachs, bevorzugt 1 bis 15 Gew.-%, bezogen auf das Gesamtgewicht von erfindungsgemäßer farbiger Zurichtdispersion

\[\gamma_1 \] optional mindestens ein Biozid, beispielsweise als Proxel-Marken im Handel befindliche 1,2-Benzisothiazolin-3-on („BIT“) (kommerziell erhältlich als Proxel®-Marken der Fa. Avecia Lim.) und dessen Alkalimetallsalze; andere geeignete Biozide sind 2-Methyl-2H-isothiazol-3 („MIT“) und 5-Chlor-2-methyl-2H-isothiazol-3-on („CIT“). Im Allgemeinen sind 10 bis 150 ppm Biozid, bezogen auf Grundierdispersion, ausreichend.

Erfundungsgemässe farbige Zurichtdispersionen können einen Feststoffgehalt von 10 bis 80 Gew.-% haben, bevorzugt sind 20 bis 50 Gew.-%.

Anschließend kann man eine Deckschicht nach an sich bekannten Methoden aufbringen. Die Deckschicht kann aus üblichen Bestandteilen bestehen.

In einer Ausführungsform der vorliegenden Erfindung enthält die Deckschicht

\[\alpha_2 \] mindestens eine erfindungsgemässe Formulierung, bevorzugt 20 bis 70 Gew.-%, bezogen auf das Gesamtgewicht von erfindungsgemäßer Deckschicht,
36
β2) mindestens ein Wachs, wie beispielsweise oxidiertes Polyethylenwachs oder Montanwachs oder Silikonwachs, bevorzugt 1 bis 15 Gew.-%, bezogen auf das Gesamtgewicht von erfindungsgemäßer Deckschicht;
γ2) optional mindestens ein Biozid, beispielsweise gewählt aus MIT, BIT und CIT, beispielsweise in den für Grundierdispersionen genannten Mengen,
δ2) optional mindestens ein Pigment in partikulärer Form,
ε2) optional mindestens ein Verdickungsmittel.

Erfindungsgemäße Appreturdispersionen können an sich bekannte Polyurethandispersi-

Nach Aufbringen der Appretur kann man unter üblichen Bedingungen trocknen, beispielweise bei Temperaturen im Bereich von 60 bis 80°C, und anschließend nachbügeln, beispielsweise bei Temperaturen im Bereich von 140 bis 180°C. Man kann auch hydraulisch nachbügeln, beispielsweise bei vermindertem Druck und Temperaturen im Bereich von 70 bis 100°C. Es kommen konventionelle Vorrichtungen zum Bügeln in Frage wie beispielsweise Bügelpressen oder Durchlaufbügelmaschinen.

Bei dem erfindungsgemäßen Verfahren zur Zurichtung von Leder verwendet man in

\[
\text{VIII}
\]

mit Molekulargewichten \(M_w \) im Bereich von 100.000 bis 200.000 g/mol, in denen die Reste \(R^{10} \) und \(R^{11} \) gleich oder verschieden sein können und wie oben stehend definiert sind.

Ein weiterer Gegenstand der vorliegenden Erfindung sind kolorierte Substrate, erhältlich nach dem erfindungsgemäßen Kolorierungsverfahren. Erfindungsgemäße kolorierte Substrate zeichnen sich durch gute Nassreibebeizeiten aus und lassen sich auch bei tiefen Fabtönen mit sehr guter Vernetzungsausbeute (Quantenausbeute) von Photoinitiatoren herstellen.

Ein weiterer Gegenstand der vorliegenden Erfindung sind Pigmente in partikulärer Form, die nach einem Verfahren behandelt worden sind, welches die folgenden Schritte umfasst:

a) Vermischen von Pigment in partikulärer Form mit mindestens einem nicht-ionischen oberflächenaktiven Stoff,

b) Dispergieren der so erhältlichen Mischung von Pigment in partikulärer Form und nicht-ionischem oberflächenaktiven Stoff in wässrigem Medium,

c) Polymerisieren mindestens eines ersten Monomers oder Copolymerisation einer ersten Mischung von Comonomeren in Gegenwart einer Dispersion nach b), wobei wasserunlösliches Polymer oder Copolymer an der Oberfläche der Pigmente in partikulärer Form gebildet wird,

d) Hinzufügen einer zweiten Mischung von Comonomeren und Copolymerisation,

wobei die zweite Mischung von Comonomeren mindestens ein Comonomer enthält, das für die Durchführung einer Strahlungshärtung geeignete Molekülgruppen trägt.
Geeignete Comonomere sind insbesondere zur Vernetzung fähige Comonomere, die pro Molekül mindestens zwei ethylenisch ungesättigte Doppelbindungen tragen, die vorzugsweise isoliert voneinander sind, d.h. sie sind nicht konjugiert. Bevorzugt handelt es sich um mindestens ein Comonomer, das mindestens zwei (Meth)acrylsäuregruppen trägt, beispielsweise mindestens zweifach mit Methacrylsäure veresterete Di- oder Polycarbonsäuren oder Urethan(meth)acrylate. Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel VI a oder VI b, die wie vorstehend definiert sind.

Andere besonders geeignete Comonomere in Schritt d) sind Comonomere, die als Photoinitiator dienen können, insbesondere (Meth)acrylsäureester von Alkoholen, die als Photoinitiator von radicalischen Polymerisationen dienen können. Ganz besonders bevorzugt sind (Meth)acryloylbenzophenone der allgemeinen Formel VII und, die wie vorstehend definiert sind.

Die Erfindung wird durch Arbeitsbeispiele erläutert.

Allgemeine Vorbemerkungen:
Die Glastemperatur wurde mit Hilfe eines DSC-Geräts DSC822 (Serie TA8200) der Firma Mettler-Toledo mit einem Autosampler TSO 801RO bestimmt. Das DSC-Gerät war mit einem Temperaturfühler FSR5 ausgerüstet.

Es wurde nach DIN 53765 gearbeitet.

Es wurde jeweils die zweite Aufheizkurve der Auswertung zu Grunde gelegt. Abkühlen jeweils auf –110°C, Aufheizrate: 20°C/min, Aufheizen bis 150°C, 5 Minuten halten bei 150°C, anschließend Abkühlen auf –110°C, Aufheizrate: 20°C/min, Aufheizen bis 150°C.

Beispiel 1

1 a) Vermischung eines Pigments mit einem nicht-ionischen oberflächenaktiven Stoff in einer Rührwerkskugelmühle wurden miteinander vermahlen:
1800 g Pigment Blau 15:3
450 g \(n\text{-C}_{18}\text{H}_{37}\text{O(CH}_3\text{CH}_2\text{O)}_{29}\text{H} \)
24 g Glutardialdehyd
30 g Tetramethylolacetylendiamin
3696 g destilliertes Wasser

Das Vermahlen wurde fortgesetzt, bis die Pigmentpartikel einen mittleren Durchmesser von 100 nm aufwiesen. Man erhielt eine Mischung aus Pigment in partikulärer Form und nicht-ionischem oberflächenaktivem Stoff.

Bei \(n\text{-C}_{18}\text{H}_{37}\text{O(CH}_3\text{CH}_2\text{O)}_{29}\text{H} \) handelt es sich um mit Ethylenoxid ethoxyliertes Octadecanol, hergestellt nach der folgenden Vorschrift:

242 g Stearylalkohol und 0,1 mol KOH Schuppen wurden bei einer Temperatur von 100°C und einem Druck von 1 mbar in einer Zeit von 2 Stunden im Autoklaven entwässert, mit Stickstoff anschließend entspannt und 3 mal mit Stickstoff gespült und anschließend auf 130°C im Autoklaven erhitzt. Nach Erreichen der Temperatur wurden innerhalb von 3 h 20 min 1100 g Ethylenoxid kontinuierlich zudosiert bei einem Druck von bis zu 6,1 bar. Nach vollständiger Zugabe ließ man abreaktieren, bis Druckkonstanz erreicht war. Anschließend wurde auf 100°C abgekühlt und im Autoklaven bei 1 mbar 60 min ent gast und das Reaktionsprodukt bei 70°C ausgefüllt. Die Ausbeute betrug 1337 g.

1 b) Dispergieren der Mischung aus 1 a) in Wasser
In einem 1,5-Liter-Kessel mit Rührer, Stickstoff-Anschluss und drei Dosievorrichtungen wurden 267 g der Mischung aus 1 a) mit 300 g destilliertem Wasser unter Rühren dispergiert.
Man erhielt eine Dispersion von Pigmentpartikeln in wässrigem Medium.

1 c) Polymerisation
Zur Dispersion aus 1 b) gab man 7,0 g 28 Gew.-% Natriumlaurilsulfat als wässrige Lösung und 40 g Styrol zu und stellte mit Ameisensäure einen pH-Wert von 4,0 ein. Anschließend leitete man über einen Zeitraum von 15 Minuten Stickstoff durch die Dispersion. Anschließend wurde die Dispersion auf 85°C erwärmt. Danach wurden 0,3 g tert.-Butylhydroperoxid (70 Gew.-% in Wasser) und 0,2 g HO-CH\(_2\)-SO\(_2\)Na zugegeben.
Man beobachtete die Bildung eines wasserunlöslichen Polymers auf dem Pigment in partikulärer Form.
1 d) Hinzufügen einer Comonomeren-Emulsion und weitere Copolymerisation

10 Minuten nach der Zugabe von tert.-Butylhydroperoxid und HO-CH₂-SO₂Na aus
Schritt 1 c) wurde über einen Zeitraum von 135 Minuten eine Emulsion zugegeben, die
wie folgt zusammengesetzt war:

100 g vollentsalztes Wasser
12 g 28 Gew.-% wässrige Lösung von

\[\text{C}_{12}\text{H}_{25}\left[\text{O}\right]_{a}\text{OSO}_3\text{Na}^+ \]

mit \(a = 3 \)

6 g 56,5 Gew.-% wässrige Lösung von Natrium-(di-2-ethylhexylsuccinat)-sulfonat (Nat-
riumssalz von Sulfobersteinsäuredi-2-ethylhexylester)
80,0 g n-Butylacrylat
103,0 g Methylmethacrylat

2 g Acrylsäure
2 g Acrylamid als 50%ige Lösung in Wasser

Gleichzeitig mit Zulaufstart der vorstehend beschriebenen Emulsion wurde mit der Zu-
gabe einer Lösung von 6 g Na₂S₂O₅ in 50 g Wasser begonnen, und die Zugabe wurde
über einen Zeitraum von 195 Minuten durchgeführt. Während der Zugabe wurde die
Temperatur bei 85°C gehalten.

Unmittelbar nach Zulaufende der vorstehend beschriebenen Emulsion dosierte man
einer weiteren Emulsion innerhalb von 45 Minuten, bestehend aus

80 g vollentsalztem Wasser
4 g 28 Gew.-% wässrige Lösung von

\[\text{C}_{12}\text{H}_{25}\left[\text{O}\right]_{a}\text{OSO}_3\text{Na}^+ \]

mit \(a = 3 \)

2 g 56,5 Gew.-% wässrige Lösung von Natrium-(di-2-ethylhexylsuccinat)-sulfonat (Nat-
riumssalz von Sulfobersteinsäuredi-2-ethylhexylester)
1,25 g Acrylsäure

62,0 g Methylmethacrylat, enthaltend eine Mischung aus Photoinitiatoren
4,00 g FP1 = Isopropylthioxanthon
3,00 g FP2 = Ethyl-4-dimethylaminobenzoat
4,00 g FP3 = Benzildimethylketal
6,00 g FP4 = Benzophenon

FP1

FP3

FP2

FP4

Unmittelbar vor Herstellung der Emulsion wurden die Photoinitiatoren FP1 bis FP4 in Methylmethacrylat gelöst.

Nach der Beendigung der Zugabe der zweiten vorstehend beschriebenen Emulsion wurde noch 30 Minuten bei 85°C gerührt und anschließend zur chemischen Desodorierung (Restmonomerenentfernung) simultan eine Lösung von 5 g tert.-Butylhydroperoxid (70 Gew.-% in Wasser) in 11 g destilliertem Wasser und eine Lösung von 3 g HO-CH₂-O-SO₂Na in 12 g destilliertem Wasser über einen Zeitraum von 90 Minuten zudosiert.

Danach wurden als strahlungshärtbare Komponente 58 g Verbindung VI c.1 als Photovernetzer zur Dispersion tropfenweise zugegeben und die Dispersion bzw. Emulsion noch 20 Minuten gerührt. Am Schluss wurde zur Konservierung noch Biozid zugegeben (2 g Actizid MV Lösung von Thor Chemie mit 1,5% Wirkstoff, eine Mischung aus 5-Chlor-2-methyl-3(2H)-isothiazolon („CIT“) und 2-Methyl-3(2H)-isothiazolon („MIT“), verdünnnt mit 50 g Wasser).
VI c.1:

\[
\begin{align*}
\text{VI c.1}
\end{align*}
\]

5 Anschließend wurde die so erhältliche Dispersion über ein 120 μm-Netz und danach über ein 15 μm-Netz filtriert.

Man erhielt eine wässrige Dispersion, enthaltend erfindungsgemäß behandeltes Pigment in partikulärer Form. Der Feststoffgehalt betrug 35 Gew.-%, die dynamische Viskosität betrug 20 mPa·s. Die Bestimmung der Teilchendurchmesserverteilung ergab ein Maximum bei 130 nm.

Beispiel 2

2 a) Vermischung eines Pigments mit einem nicht-ionischen oberflächenaktiven Stoff
In einer Rührwerkskugelmühle wurden miteinander vermahlen:
1800 g Pigment Gelb 138
450 g n-C\textsubscript{18}H\textsubscript{37}O(CH\textsubscript{2}CH\textsubscript{2}O)\textsubscript{25}H
24 g Glutardialdehyd
30 g Tetramethylolacetylendiharnstoff
3696 g destilliertes Wasser

Das Vermahlen wurde fortgesetzt, bis die Pigmentpartikel einen mittleren Durchmesser von 100 nm aufwiesen.
Man erhielt eine Mischung aus Pigmentpartikeln und nicht-ionischem oberflächenaktiven Stoff.

2 b) Dispergieren der Mischung aus 2 a) in Wasser
In einem 1,5-Liter-Kessel mit Rührer, Stickstoff-Anschluss und drei Dosievorrichtungen wurden 267 g der Mischung aus 2 a) mit 300 g destilliertem Wasser unter Rühren dispersiert.
Man erhielt Dispersion 2 b) von Pigment in partikulärer Form in wässrigem Medium.
2 c) Polymerisation
Man gab 7,0 g 28 Gew.-% Natriumlaurylsulfat als wässrige Lösung und 40 g Styrol zu Dispersion 2 b) von Pigment in partikulärer Form und stellte mit Ameisensäure einen pH-Wert von 4,0 ein. Anschließend leitete man über einen Zeitraum von 15 Minuten Stickstoff durch die Dispersion. Anschließend wurde die Mischung auf 85°C erwärmt. Danach wurden 0,3 g tert.-Butylhydroperoxid (70 Gew.-% in Wasser) und 0,2 g zugegeben.
Man beobachtete die Bildung eines wasserunlöslichen Polymers auf den Pigmentpartikeln.

2 d) Hinzufügen einer Comonomeren in Form von Emulsionen und Copolymerisation
10 Minuten nach der Zugabe von tert.-Butylhydroperoxid und HO-CH₂-SO₂Na aus Schritt 2 c) wurde über einen Zeitraum von 135 Minuten eine Emulsion zugegeben, die wie folgt zusammengesetzt war:

100 g vollentsalztes Wasser
12 g 28 Gew.-% wässrige Lösung von

\[
\text{C}_{12}\text{H}_{25}\left(\text{O} \right)_{a}\text{OSO}_3\text{Na}^+
\]
mit \(a = 3 \)
6 g 56,5 Gew.-% wässrige Lösung von Natrium-(di-2-ethylhexylsuccinat)-sulfonat (Natriumsalz von Sulfobernsteinsäuredi-2-ethylhexylester)
80,0 g n-Butylacrylat
103,0 g Methylmethacrylat
25 g Acrylsäure
9 g einer Lösung von 3 g einpolymerisierbarem Photoinitiator P 2.1 in 6 g Xylo-
Isomerengemisch

![Chemical Structure](image)
Gleichzeitig mit Zulaufstart der vorstehend beschriebenen Emulsion wurde mit der Zugabe einer Lösung von 6 g Na₂S₂O₈ in 50 g Wasser begonnen, und die Zugabe wurde über einen Zeitraum von 195 Minuten durchgeführt. Während der Zugabe wurde die Temperatur bei 85°C gehalten.

Unmittelbar nach Zulaufende der vorstehend beschriebenen Emulsion dosierte man eine weiteren Emulsion innerhalb von 45 Minuten, bestehend aus 80 g vollentsalztem Wasser 4 g 28 Gew.-% wässrige Lösung von

\[C_{12}H_{25} \left[\begin{array}{c} O \\ \end{array} \right] a \rightarrow OSO_3 Na^+ \]

mit \(a = 3 \)

2 g 56,5 Gew.-% wässrige Lösung von Natrium-(di-2-ethylhexylsuccinat)-sulfonat (Natriumsalz von Sulfobernsteinsäuredi-2-ethylhexylester)

1,25 g Acrylsäure

62,0 g Methylmethacrylat (enthaltend eine Mischung aus Photoinitiatoren: P1, P2, P3, P4)

4,00 g FP1= Isopropylthioxanthon

3,00 g FP2= Ethyl-4-dimethyaminobenzoat

4,00 g FP3= Benzildimethylketal

6,00 g FP4= Benzophenon

Unmittelbar vor Herstellung der Emulsion wurden die Photoinitiatoren FP1 bis FP4 in Methylmethacrylat gelöst.

Nach der Beendigung der Zugabe wurde noch 30 Minuten bei 85°C gerührt und anschließend zur chemischen Desodorierung (Restmonomerenentfernung) simultan eine Lösung von 5 g tert.-Butylhydroperoxid (70 Gew.-% in Wasser) in 11 g destilliertem Wasser und eine Lösung von 3 g HO-CH₂-O-SO₂Na in 12 g destilliertem Wasser über einen Zeitraum von 90 Minuten zudosiert.

Danach wurden 58 g einer Mischung von strahlungshärtbaren Komponenten (Photovernetzern) VI.c.1 und VI.d.2, Gewichtsverhältnis 1:1, zur Dispersion tropfenweise zugegeben und die Dispersion noch 20 Minuten gerührt.

Danach wurde zur Konservierung Biozid zugegeben (2 g Actizid MV Lösung von Thor Chemie mit 1,5% Wirkstoff, Mischung aus CIT und MIT, verdünnt mit 50 g Wasser).

Anschließend wurde die so erhältliche Dispersion über ein 120 µm-Netz und danach über ein 15 µm-Netz filtriert.

Man erhielt eine wässrige Dispersion, enthaltend erfindungsgemäß behandeltes Pigment in partikulärer Form. Der Feststoffgehalt betrug 35 Gew.-%, die dynamische Viskosität betrug 18 mPa·s. Die Bestimmung der Teilchendurchmesserverteilung ergab ein Maximum bei 156 nm.

3.1. Herstellung von Tinte 3.1
Aus einer nach Beispiel 1 hergestellten Dispersion wurde eine Ink-Jet-Tinte nach dem folgenden Rezept durch Vermischen der folgenden Komponenten formuliert.

27 g Dispersion von erfindungsgemäß behandeltem Pigment in partikulärer Form nach 1 (entsprechend 10,2 g Feststoff)
1,0 g Harnstoff
3,0 g n-C₄H₉-(OCH₂CH₂)₂O-H (n-Butylglykol)
0,25 g 2,4,7,9-Tetramethyl-5-decin-4,7-diol
16,0 g Glycerin
0,25 g Ethylenglykol
52,5 g vollentsalztes Wasser

Die Mischung wurde gerührt. Man erhielt die erfindungsgemäße Tinte 3.1 und füllte sie in Ink-Jet-Kartuschen.

Die erfindungsgemäße Tinte 3.1 zeigte eine dynamische Viskosität von 4 mPa·s, gemessen bei 25°C, und war zum Verdrucken in gängigen Druckern geeignet.

Nach dem Einbau der Kartusche in einen Piezo-Drucker (Epson 3000) wurde die erfindungsgemäße Tinte 3.1 auf Baumwolle (100% Baumwolle, 250 g/m²) in Form von Mustern verdruckt.

Nach Trocknen bei 100°C und sofortiger UV-Belichtung (2 x 120 W / cm, 10 m/min, UV-Spektrum von 250-450 nm) zeigte die bedruckte Baumwolle hervorragende Gebrauchsechtheiten.

Reibechtheit trocken: 4-5 (unbelichtet 2-3)
Reibechtheit nass: 3-4 (unbelichtet 2)
Waschechtheit: 4 (unbelichtet 2-3)

Die Reibechtheiten wurden nach DIN 54021, die Waschechtheit nach DIN 54011 bestimmt.

Herstellen von Tinte 3.2

Beispiel 3.1. wurde wiederholt, jedoch wurde erfindungsgemäß behandeltes Pigment in partikulärer Form aus Beispiel 2) statt Beispiel 1) eingesetzt.

Die erfindungsgemäße Tinte 3.1 zeigte eine dynamische Viskosität von 4 mPa·s, gemessen bei 25°C, und war zum Verdrucken in gängigen Druckern geeignet.

Nach dem Einbau der Kartusche in einen Piezo-Drucker (Epson 3000) wurde die erfindungsgemäße Tinte 3.2 auf Baumwolle (100% Baumwolle, 250 g/m²) in Form von Mustern verdruckt.

Nach Trocknen bei 100°C und sofortiger UV-Belichtung (2 x 120 W / cm, 10 m/min, UV-Spektrum von 250-450 nm) zeigte die bedruckte Baumwolle hervorragende Gebrauchsechtheiten.
Patentansprüche

1. Formulierung, enthaltend

(A) mindestens ein Pigment in partikulärer Form, das nach einem Verfahren behandelt worden ist, welches die folgenden Schritte umfasst:

(a) Vermischen von Pigment in partikulärer Form mit mindestens einem nicht-ionischen oberflächenaktiven Stoff,
(b) Dispergieren der so erhältlichen Mischung von Pigment in partikulärer Form und nicht-ionischem oberflächenaktivem Stoff in wässrigem Medium,
(c) Polymerisieren mindestens eines ersten Monomers oder Copolymerisation einer ersten Mischung von Comonomeren in Gegenwart einer Dispersion nach b), wobei wasserunlösliches Polymer oder Copolymer an der Oberfläche der Pigmente in partikulärer Form gebildet wird,
(d) Zufügen mindestens eines zweiten Comonomers oder einer zweiten Mischung von Comonomeren und Copolymerisation,

und

(B) mindestens eine strahlungshärtbare Komponente.

2. Formulierung nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei der strahlungshärtbaren Komponente (B) um mindestens ein Molekül mit mindestens zwei ethylenisch ungesättigten Doppelbindungen handelt.

3. Formulierung nach Anspruch 1, dadurch gekennzeichnet, dass man in Schritt d) mindestens ein Comonomer zufügt, das als Photoinitiator dient.

4. Formulierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in Schritt d) ein Polymer oder Copolymer mit einer Glastemperatur T_g von über 0°C hergestellt wird.

5. Formulierung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei den Pigmenten in partikulärer Form um organische Pigmente handelt.

6. Formulierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es sich bei mindestens einem Monomer in Schritt c) um eine vinylaromatische Verbindung oder um eine Verbindung der allgemeinen Formel I
handelt, wobei in Formel I die Variablen wie folgt definiert sind:

- R^1 gewählt aus Wasserstoff, unverzweigtem oder verzweigtem C_1-C_{10}-Alkyl,
- R^2 gewählt aus Wasserstoff, unverzweigtem oder verzweigtem C_1-C_{10}-Alkyl,
- R^3 gewählt aus unverzweigtem oder verzweigtem C_1-C_{10}-Alkyl.

7. Formulierung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es sich bei der ersten Mischung von Comonomeren in Schritt c) um eine Mischung aus mindestens einer vinylaromatischen Verbindung und mindestens einer Verbindung der allgemeinen Formel I handelt.

8. Formulierung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man in einer Verbindung der allgemeinen Formel I R^1 und R^2 gleich Wasserstoff wählt.

9. Formulierung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man in Schritt d) als Monomer ein Monomer der allgemeinen Formel II zufügt,

![Chemical Structure](image)

wobei die Variablen in Formel II wie folgt definiert sind:

- R^4 gewählt aus Wasserstoff, unverzweigtem oder verzweigtem C_1-C_{10}-Alkyl,
- R^5 gewählt aus Wasserstoff, unverzweigtem oder verzweigtem C_1-C_{10}-Alkyl,
- R^6 gewählt aus unverzweigtem oder verzweigtem C_1-C_{10}-Alkyl.

10. Formulierung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die zweite Mischung von Comonomeren mindestens ein Monomer der allgemeinen Formel II enthält.

11. Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass in mindestens einer Verbindung der allgemeinen Formel II R^4 gleich Wasserstoff oder Methyl und R^6 gleich Wasserstoff gewählt werden.

12. Formulierung nach einem der Ansprüche 10 bis 11, dadurch gekennzeichnet, dass man in der zweiten Mischung aus Comonomeren in Schritt d) mindestens
ein Comonomer zufügt, ausgewählt aus vinylaromatischer Verbindung und einer Verbindung der allgemeinen Formel I.

13. Formulierungen nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass sie (C) mindestens einen Weichmacher enthalten.

17. Kolorierte Substrate, erhältlich nach einem Verfahren nach einem der Ansprüche 15 oder 16.

20. Pigmente in partikulärer Form, die nach einem Verfahren behandelt worden sind, welches die folgenden Schritte umfasst:

(a) Vermischen eines oder mehrerer Pigmente in partikulärer Form mit mindestens einem nicht-ionischen oberflächenaktiven Stoff,
(b) Dispergieren der so erhaltenen Mischung von Pigment in partikulärer Form und nicht-ionischem oberflächenaktiven Stoff in wässrigem Medium,
(c) Polymerisieren mindestens eines ersten Monomers oder Copolymerisation einer ersten Mischung von Comonomeren in Gegenwart einer Dispersion nach b), wobei wasserunlösliches Polymer oder Copolymer an der Oberfläche der Pigmente in partikulärer Form gebildet wird,
(d) Hinzufügen einer zweiten Mischung von Comonomeren und Copolymerisation,
wobei die zweite Mischung von Comonomeren mindestens ein Comonomer enthält, das für die Durchführung einer Strahlungshärtung geeignete Molekülgruppen trägt.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification</th>
<th>Related National Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>C09B67/08</td>
<td>C09D11/00</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>C09B C09D</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 528 602 A1 (CIBA-GEIGY AG; CIBA SPECIALTY CHEMICALS HOLDING INC) 24 February 1993 (1993-02-24) examples</td>
<td>1,15,17, 20</td>
</tr>
<tr>
<td>A</td>
<td>WO 02/48272 A1 (UCB S.A.; WANG, ZHIKAI; WU, BIN) 20 June 2002 (2002-06-20) page 3, line 26 - line 31 page 4, line 3 - line 8 example 2</td>
<td>1,15, 17-20</td>
</tr>
<tr>
<td>A</td>
<td>DE 196 80 301 C2 (FUJITSU ISOTEC LTD., TOKIO/TOKYO) 5 December 2002 (2002-12-05) the whole document</td>
<td>1,17,18, 20</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 C document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority data claimed

Date of the actual completion of the international search

28 January 2005

Date of mailing of the international search report

08/02/2005

Name and mailing address of the ISA

European Patent Office, P.B. 8818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 epo ml
Fax: (+31-70) 340-3016

Authorized officer

Ketterer, M
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DATABASE WPI Section Ch, Week 199327 Derwent Publications Ltd., London, GB; Class A18, AN 1993-216827 XP002315637 & JP 05 140208 A (DAINIPPON INK & CHEM KK) 8 June 1993 (1993-06-08) abstract</td>
<td>1,15-17, 20</td>
</tr>
<tr>
<td>A</td>
<td>DATABASE WPI Section Ch, Week 199305 Derwent Publications Ltd., London, GB; Class A12, AN 1993-039377 XP002315638 & JP 04 363309 A (BROTHER Kogyo KK) 16 December 1992 (1992-12-16) abstract</td>
<td>1,14-17</td>
</tr>
<tr>
<td>A</td>
<td>US 4 959 297 A (PALAZZOTTO ET AL) 25 September 1990 (1990-09-25) abstract; examples</td>
<td>1,15</td>
</tr>
<tr>
<td>A</td>
<td>WO 02/26892 A1 (BASF AKTIENGESELLSCHAFT; AUWETER, HELMUT; BOHN, HERIBERT; MAECHTEL, WA) 4 April 2002 (2002-04-04) page 16, line 28 - line 37</td>
<td>1,18,19</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 0528602</td>
<td>24-02-1993</td>
<td>BR 9203164 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2076143 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69225177 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69225177 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 528602 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2116318 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5222313 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5271769 A</td>
</tr>
<tr>
<td>WO 0248272</td>
<td>20-06-2002</td>
<td>AU 2602202 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2431410 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1486351 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1358282 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004537609 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004050299 A1</td>
</tr>
<tr>
<td>DE 19680301 C2</td>
<td>05-12-2002</td>
<td>DE 19680301 T0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2303376 A, B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9628518 A1</td>
</tr>
<tr>
<td>JP 63230705 A</td>
<td>27-09-1988</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 5140208 A</td>
<td>08-06-1993</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 4363309 A</td>
<td>16-12-1992</td>
<td>NONE</td>
</tr>
<tr>
<td>US 4959297 A</td>
<td>25-09-1990</td>
<td>US 4889792 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2515188 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1326579 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3850366 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3850366 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0320127 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1007563 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000972 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 1481114 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 269884 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2356802 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 50102697 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1352182 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004510026 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003177943 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0102493 A1</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSSGEGENSTANDES

IPK 7 C09B67/08 C09D11/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfung (Klassifikationssystem und Klassifikationszeichen)

IPK 7 C09B C09D

Recherchierte aber nicht zum Mindestprüfung gehören Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WI Data, PAJ, INSPEC

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

Kategorie Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 196 80 301 C2 (FUJITSU ISOTEC LTD., TOKIO/TOKYO) 5. Dezember 2002 (2002-12-05) das ganze Dokument</td>
<td>1,17,18, 20</td>
</tr>
</tbody>
</table>

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

X Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen:
 * "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 * "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 * "L" Veröffentlichung, die genannt ist, ist ein Prioritätsanspruch zweifelhaft auszuscheiden zu lassen, oder durch die das Veröffentlichungsdatum einer andern im Recherchenbericht genannten Veröffentlichung belegt wird, wenn solt oder die aus einem anderen besonderen Grund angegeben ist (wie ausführlich)
 * "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Aufstellung oder anderes Maßnahmen bezieht
 * "P" Veröffentlichung die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

*" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern zum Verständnis der Erfindung zugrundeliegendes Prinzip oder der ihr zugrundeliegende Theorie angegeben ist

**X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann ohne aufgrund dieser Veröffentlichung, nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

***Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahliegend ist

Datum des Abschlusses der internationalen Recherche

28. Januar 2005

Abenddatum des internationalen Recherchenberichts

08/02/2005

Name und Postanschrift der Internationalen Recherchenbehörde

European Patent Office, P.B. 8916 Patentliaan 2 NL - 2280 HJ Rijswijk
Tel (+31-70) 340-2040, Tx 31 851 epos nl, Fac. (+31-70) 340-3018

Bevollmächtigter Beisitzer

Ketterer, M
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Verbreitung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DATABASE WPI</td>
<td>1,14,17, 18</td>
</tr>
<tr>
<td></td>
<td>Section Ch, Week 198844</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Derwent Publications Ltd., London, GB;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class A82, AN 1988-312248</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XP002315636</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& JP 63 230705 A (TOYOBO KK)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zusammenfassung</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DATABASE WPI</td>
<td>1,15-17, 20</td>
</tr>
<tr>
<td></td>
<td>Section Ch, Week 199327</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Derwent Publications Ltd., London, GB;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class A18, AN 1993-216827</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XP002315637</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& JP 05 140208 A (dainippom INK & CHEM KK)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zusammenfassung</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DATABASE WPI</td>
<td>1,14-17</td>
</tr>
<tr>
<td></td>
<td>Section Ch, Week 199305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Derwent Publications Ltd., London, GB;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class A12, AN 1993-039377</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XP002315638</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& JP 04 363309 A (BROTHER KOGYO KK)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zusammenfassung</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 4 959 297 A (PalaZZotto ET al)</td>
<td>1,15</td>
</tr>
<tr>
<td></td>
<td>Zusammenfassung; Beispiele</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 02/26892 A1 (BASF AKTIENGESELLSCHAFT; Auweter, Helmut; Bohn, Heribert; Maechtle, WA)</td>
<td>1,18,19</td>
</tr>
<tr>
<td></td>
<td>Seite 16, Zeile 28 - Zeile 37</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DATABASE WPI</td>
<td>1,14-17, 20</td>
</tr>
<tr>
<td></td>
<td>Section Ch, Week 200122</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Derwent Publications Ltd., London, GB;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class A96, AN 2001-159265</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XP002315639</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& JP 2001 072887 A (KAO CORP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zusammenfassung</td>
<td></td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(en) der Patentfamilie</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>EP 0528602 A1</td>
<td>24-02-1993</td>
<td>BR 9203164 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2076143 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69225177 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69225177 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 528602 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2116318 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5222313 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5271769 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2431410 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1486351 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1358282 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004537609 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004050299 A1</td>
</tr>
<tr>
<td>DE 19680301 C2</td>
<td>05-12-2002</td>
<td>DE 19680301 T0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2303376 A,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9628518 A1</td>
</tr>
<tr>
<td>JP 63230705 A</td>
<td>27-09-1988</td>
<td>KEINE</td>
</tr>
<tr>
<td>JP 5140208 A</td>
<td>08-06-1993</td>
<td>KEINE</td>
</tr>
<tr>
<td>JP 4363309 A</td>
<td>16-12-1992</td>
<td>KEINE</td>
</tr>
<tr>
<td>US 4959297 A</td>
<td>25-09-1990</td>
<td>US 4889792 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2515188 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1326579 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3850366 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3850366 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0320127 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1007563 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000972 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 1481114 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 269884 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2355802 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 50102697 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1332182 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004510026 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003177943 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0102493 A1</td>
</tr>
</tbody>
</table>