
International Bureau

(10) International Publication Number WO 2016/100546 A1

(51) International Patent Classification:

 A61K 31/165 (2006.01)
 A61K 31/4406 (2006.01)

 A61K 31/216 (2006.01)
 A61K 31/496 (2006.01)

 A61K 31/401 (2006.01)
 A61K 31/5375 (2006.01)

 A61K 31/4402 (2006.01)
 A61K 31/5377 (2006.01)

 A61K 31/402 (2006.01)
 A61P 35/00 (2006.01)

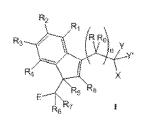
(21) International Application Number:

PCT/US2015/066154

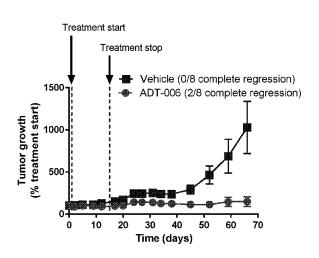
English

(22) International Filing Date:

16 December 2015 (16.12.2015)


- (25) Filing Language:
- (26) Publication Language: English
- (30) Priority Data:

14/571,690 16 December 2014 (16.12.2014) US


- (71) Applicant: ADT PHARMACEUTICALS, INC. [US/US]; 31691 Shoal Water Dr., Orange Beach, Alabama 36561 (US).
- (72) Inventors: PIAZZA, Gary A; 28487 Beau Chene Ct., Daphne, Alabama 36526 (US). CHEN, Xi; 441 Matzek Dr., Hoover, Alabama 35226 (US). KEETON, Adam B; 316 Fern Avenue, Gardendale, Alabama 35071 (US). BOYD, Michael R; 31691 Shoal Water Dr., Orange Beach, Alabama 36561 (US).
- (74) Agents: PILLAI, Xavier et al.; Two Prudential Plaza, Suite 4900, 180 N. Stetson Ave., Chicago, Illinois 60601 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

[Continued on next page]

(54) Title: METHOD OF TREATING OR PREVENTING RAS-MEDIATED DISEASES

(57) Abstract: Disclosed are compounds, for example, a compound of formula I, wherein R, R_0 , R_1 - R_8 , n, X, Y, Y', and E are as described herein, pharmaceutical compositions containing such compounds, and methods of treating or preventing a disease or condition for example, cancer, mediated by the *ras* gene.

FIG. 10A

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

METHOD OF TREATING OR PREVENTING RAS-MEDIATED DISEASES

CROSS-REFERENCE TO A RELATED APPLICATION

[0001] This application claims the benefit of United States Patent Application No. 14/571,690, filed December 16, 2014, the disclosure of which is incorporated by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

[0002] This invention was made with partial support under NIH/NCI Grant Numbers CA 155638 and CA 148817. Therefore, the U.S. Government has certain rights in this invention.

BACKGROUND OF THE INVENTION

[0003] Cancer is a leading cause of death in the developed world, with over one million people diagnosed and more than 500,000 deaths per year in the United States alone. Overall it is estimated that at least one in three people will develop some form of cancer during their lifetime. There are more than 200 different histopathological types of cancer, four of which (breast, lung, colorectal, and prostate) account for over half of all new cases in the U.S. (Jemal et al., *Cancer J. Clin.*, 53, 5-26 (2003)).

[0004] Many of these tumors arise from mutations that activate Ras proteins, which control critically important cellular signaling pathways that regulate growth and other processes associated with tumorigenesis. The name "Ras" is an abbreviation of "Rat sarcoma" reflecting the way the first members of the Ras protein family were discovered. The name "ras" also is used to refer to the family of genes encoding these proteins.

[0005] Ras-driven cancers have remained the most intractable diseases to any available treatment. New therapeutic and preventative strategies are urgently needed for such cancers (Stephen et al., *Cancer Cell*, 25, 272-281 (2014)). Drug discovery programs worldwide have sought Ras-selective drugs for many years, but heretofore no avail (Spiegel, et al., *Nature Chem. Biol.*, 10, 613-622 (2014)). New drugs that selectively target abnormal or mutant Ras and/or Ras-mediated pathological processes in patients' tumors will enable highly efficacious treatments of such patients while minimizing toxicity to cells and tissues with normal Ras functions (Stephen et al., *supra*; Spiegel et al., *supra*).

[0006] Ras proteins are key regulators of several aspects of normal cell growth and malignant transformation, including cellular proliferation, survival and invasiveness, tumor angiogenesis and metastasis (Downward, *Nature Rev. Cancer*, *3*, 11-22 (2003)). Ras proteins are abnormally active in most human tumors due to mutations in the ras genes themselves, or in upstream or downstream Ras pathway components, or other alterations in Ras signaling. Targeted therapies that inhibit Ras-mediated pathways therefore are expected to inhibit the growth, proliferation, survival and spread of tumor cells having activated or mutant Ras. Some such new experimental therapeutic agents have shown promising activity in preclinical studies, albeit with only modest activity in human clinical trials.

[0007] Genetic mutations in ras genes were first identified in human cancer over 3 decades ago. Such mutations result in the activation of one or more of three major Ras protein isoforms, including H-Ras, N-Ras, or K-Ras, that turn on signaling pathways leading to uncontrolled cell growth and tumor development. Activating *ras* gene mutations occur *de novo* in approximately one third of all human cancers and are especially prevalent in pancreatic, colorectal, and lung tumors. *Ras* mutations also develop in tumors that become resistant to chemotherapy and/or radiation, as well as to targeted therapies, such as receptor tyrosine kinase inhibitors (Gysin et al., *Genes Cancer*, 2, 359-372 (2011)). While *ras* mutations are relatively infrequent in other tumor types, for example, breast cancer, Ras can be pathologically activated by certain growth factor receptors that signal through Ras.

[0008] Although *ras* gene mutations have been known for many years, there currently are no available cancer therapeutics approved by the U.S. Food and Drug Administration that are known to selectively suppress the growth of tumors driven by activated Ras. In fact, Ras has been described as "undruggable" because of the relative abundance in cells and high affinity for its substrate, GTP (Takashima and Faller, *Expert Opin. Ther. Targets, 17*, 507-531 (2013)).

[0009] In addition to its role in cancer, activated Ras is important in a variety of other diseases, collectively referred to as "rasopathies." One such disease, neurofibromatosis type 1 (NF1), a very prevalent autosomal dominant heritable disease, is caused by a mutation in neurofibromin, a Ras GAP (inactivating protein), which results in Ras hyperactivation in the relatively common event of loss of the second NF1 allele. Such mutations reportedly affect 1:3000 live births. The most dire symptoms associated with NF1 include numerous benign tumors (neurofibromas) arising from precursor nerve cells and Schwann cells of the peripheral nervous system. These tumors can cause severe problems depending on their

location within the body, such as hearing or vision loss, as well as disfiguring masses on visible areas. Less common but extremely serious complications may arise when central nervous system gliomas develop or plexiform neurofibromas become transformed, resulting in the development of metastatic peripheral nerve sheath tumors (Tidyman and Rauen, *Curr. Opin. Genet. Dev., 19*, 230-236 (2009)). Another rare developmental disease which is attributable to hyperactive H-Ras is Costello syndrome. This condition causes a range of developmental abnormalities as well as predisposing patients to a variety of benign and malignant neoplasms (Tidyman and Rauen, *supra*).

[0010] Several approaches to treat diseases that arise from activating ras mutations have been undertaken. Because full maturation of the Ras protein requires lipid modification, attempts have been made to target this enzymatic process with inhibitors of farnesyl transferase and geranylgeranyltransferase, but with limited success and significant toxicity. Targeting of downstream components of Ras signaling with inhibitors of Raf/Mek/Erk kinase components of the cascading pathway has been an extremely active area of pharmaceutical research, but also fraught with difficulties and paradoxes arising from complex feedback systems within the pathways (Takashima and Faller, *supra*).

[0011] Inhibitors targeting components within the PI3K/Akt pathway also have not been successful as single agents, but presumably might synergize with Raf/Mek/Erk pathway inhibitors to block Ras-dependent tumor growth and survival. Similarly, several other molecular targets have been identified from RNAi screening, which might provide new opportunities to inhibit the growth of Ras-driven tumors; such other potential targets include CDK4, Cyclin D1, Tiam1, Myc, STK33, and TBK, as well as several genes involved in mitosis (Takashima and Faller, *supra*).

[0012] The nonsteroidal anti-inflammatory drug, sulindac (Fig. 1) has been reported to selectively inhibit proliferation of cultured tumor cells having ras mutations (Herrmann et al., *Oncogene*, 17, 1769-1776 (1998)). Extensive chemical modifications of sulindac and the related NSAID, indomethacin, have been aimed at removing cyclooxygenase-inhibitory activity, while improving anticancer activity (Gurpinar et al., *Mol. Cancer Ther.*, 12, 663-674 (2013); Romeiro et al., *Eur. J. Med. Chem.*, 44, 1959-1971 (2009); Chennamaneni et al., *Eur. J. Med. Chem.*, 56, 17-29 (2012)). An example of a highly potent antiproliferative derivative is a hydroxy-substituted indene derivative of sulindac, OSIP-487703 (Fig. 1), that was reported to arrest colon cancer cells in mitosis by causing microtubule depolymerization (Xiao et al., *Mol. Cancer Ther.*, 5, 60-67 (2006)). OSIP-487703 also was reported to inhibit

the growth and induce apoptosis of human SW480 colon cancer cells. These properties of mitotic arrest and microtubule disruption were shared by several additional related compounds, including a pyridine (CP461) and trimethoxy (CP248) substituted variants (Fig. 1) (Lim et al., *Clin. Cancer Res.*, *9*, 4972-4982 (2003); Yoon et al., *Mol. Cancer Ther.*, *1*, 393-404 (2002)). However, there was no reported association of antitumor properties of these compounds (Fig. 1) with Ras function, but rather such properties were attributed to direct binding to the microtubule subunit, tubulin, thereby causing mitotic arrest and blocking cell division. Still other reports describe their ability to induce apoptosis by inhibition of cGMP phosphodiesterase (Thompson et al., *Cancer Research*, *60*, 3338-3342 (2000)).

[0013] Other investigators reported that sulindac sulfide (Fig. 1) can inhibit Ras-induced malignant transformation, possibly by decreasing the effects of activated Ras on its main effector, the c-Raf-1kinase, due to direct binding to the ras gene product p21 in a non-covalent manner (Herrmann et al., *supra*). Sulindac sulfide also can inhibit focus formation, a marker of malignant transformation, by rat or mouse fibroblasts by forced Ras expression, but not by other transformation pathways (Gala et al., *Cancer Lett.*, 175, 89-94 (2002); Herrmann et al., *supra*). Sulindac sulfide was reported also to bind Ras directly and interfere with nucleotide exchange. Several groups additionally reported that sulindac interferes with Ras binding to the downstream signaling kinase c-Raf, and blocks activation of downstream signaling or transcription (Herrmann et al., *supra*; Pan et al., *Cell Signal.*, 20, 1134-1141 (2008)).

[0014] The aforementioned findings led to efforts to improve the Ras inhibitory activity of sulindac sulfide through chemical modifications (Karaguni et al., *Bioorg. Med. Chem. Lett.*, 12, 709-713 (2002)). Several derivatives were identified that were more potent inhibitors of tumor cell proliferation, and four related compounds (Fig. 2) exhibited selectivity towards a Ras-transfected MDCK cell line compared to the parental cell line. Three of these compounds also potently disrupted the Ras-Raf interaction. However, none of the four were more potent toward the mutant K-Ras-bearing SW-480 cell line, although they did inhibit Erk phosphorylation and bound weakly to the G-domain of H-Ras (Waldmann et al., *Angew. Chem. Int. Ed. Engl.*, 43, 454-458 (2004)).

[0015] In addition to sulindac sulfide, the non-COX inhibitory sulfone metabolite of sulindac has been reported to have selective effects on tumor cells with mutant Ras. For example, transfection of Caco-2 colon tumor cells with the activated K-Ras oncogene caused cells treated with either sulindac sulfide or sulfone to undergo apoptosis earlier than non-

transfected cells. (Lawson et al., *Cancer Epidemiol. Biomarkers Prev.*, *9*, 1155-62 (2000)). Other investigators have reported that sulindac sulfone can inhibit mammary tumorigenesis in rats and that the effect was greater on tumors with the mutant H-Ras genotype (Thompson et al., *Cancer Research 57*, 267-271 (1997)). However, other investigators report that the inhibition of colon tumorigenesis in rats by either sulindac or sulindac sulfone occurs independently of K-Ras mutations (de Jong et al., *Amer. J. Physio. Gastro and Liver Phys.* 278, 266-272 (2000)). Yet other investigators report that the K-Ras oncogene increases resistance to sulindac-induced apoptosis in rat enterocytes (Arber et al., *Gastroenterology, 113*, 1892-1900 (1997)). As such, the influence of Ras mutations on the anticancer activity of sulindac and its metabolites is controversial and unresolved, and has not been exploited to improve anticancer potency or selectivity.

[0016] Certain other compounds have been described with selective toxicity toward cells expressing activated Ras. A high-throughput phenotypic screen of over 300,000 compounds was conducted within NIH Molecular Libraries Screening Center program to identify compounds which were synthetically lethal to cells expressing oncogenic H-Ras. A lead compound, ML210 (Fig. 3), inhibited growth of cells expressing mutant Ras with an IC50 of 71 nM, and was 4-fold selective versus cells lacking oncogenic Ras. Though the specific molecular target of ML210 is unknown, the compound was chemically optimized to eliminate reactive groups and improve pharmacologic properties (ML210, 12/12/2011 update, Probe Reports from NIH Molecular Libraries Program, Bethesda, http://www.ncbi.nlm.nih.gov/books/NBK98919/).

[0017] A separate high-throughput screen identified two compounds, RSL3 and RSL5 (Fig. 3) which induce non-apoptotic, Mek-dependent, oxidative cell death (Yang and Stockwell, *Chem. Biol.*, 15, 234-245 (2008). RSL5, like a previously identified Ras synthetic lethal compound, erastin (Fig. 3), binds the voltage-dependent anion channel (VDAC) (Dolma et al., *Cancer Cell*, 3, 285-296 (2003)). Yet another small-molecule screen identified oncrasin, a compound selectively active against K-Ras mutant cell lines (Guo et al., *Cancer Res.*, 68, 7403-7408 (2008)). One analog, NSC-743380 (Fig. 3), is highly potent and has shown anti-tumor activity in a preclinical model of K-Ras driven renal cancer (Guo et al., PLoS One, 6, e28487 (2011)). A prodrug approach has recently been described for oncrasin derivatives, to improve stability, pharmacokinetics, and safety (Wu et al., *Bioorg. Med. Chem.*, 22, 5234-5240 (2014)). A synthetic lethal screen using embryonic fibroblasts derived from mice expressing the oncogenic K-Ras (G12D) identified a compound, lanperisone (Fig.

3), that induced non-apoptotic cell death via a mechanism involving oxidative stress (Shaw et al., *Proc. Natl. Acad. Sci. USA*, *108*, 8773-8778 (2011)). In contrast to the synthetic lethal approach, a fragment-based screening approach paired with crystallographic studies has been used to identify compounds which irreversibly bind to and inhibit K-Ras in lung tumor cells having the relatively rare G12C ras gene mutation (Ostrem et al., *Nature*, *503*, 548-551 (2013)). While compounds of this series potently inhibit Ras through a covalent interaction, the low frequency of this mutation may limit the utility of such compounds. Finally, a new investigational strategy for targeting oncogenic Ras has been described (Zimmerman et al., J. Med. Chem., *57*, 5435-5448 (2014)) which involves structure guided design and kinetic analysis of benzimidazole inhibitors targeting the PDE δ prenyl binding site.

[0018] WO 97/47303 and WO 2014/047592, U.S. Patent Application Publication Nos. 2003/0009033 and 2003/0194750, U.S. Patents 6,063,818, 6,071,934; 5,965,619; 5,401,774; 6,538,029; and 6,121,321, and U.K. Patent No. GB 1370028 disclose certain anticancer compounds; however, these documents do not disclose that the compounds have Ras-specific activity, nor any basis for a selective Ras-directed method of use.

[0019] The foregoing shows that there exists an unmet need for a method of treating preventing or preventing Ras-dependent diseases or undesirable conditions.

BRIEF SUMMARY OF THE INVENTION

[0020] The present invention provides a method of selectively inhibiting the growth of cancer cells harboring activated Ras relative to cells lacking activated Ras, which method comprising administering a Ras-inhibitory amount of at least one compound of formula I having a selectivity index greater than one, a pharmaceutically acceptable salt or prodrug thereof:

[**0021**] wherein:

[0022] R and R_0 are independently selected from hydrogen, hydroxyl, alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, alkenyl, alkenylalkyl, alkynyl, alkynylalkyl, cyano, cyanoalkyl, halogen, azido, alkoxy, haloalkyl and a substituted or unsubstituted group selected from aminocarbonyl, aminocarbonylalkyl, aminosulfonyl, aminosulfonylalkyl, alkylcarbonyl, alkylcarbonylalkyl, amino, alkylamino, dialkylamino, aminocarbonylalkylamino, and carbocyclylamino, carbocyclylalkylamino, heterocyclylamino and heterocyclylalkylamino wherein the ring structures are saturated or unsaturated; or R and R_0 together is double-bonded oxygen or double-bonded sulfur, or R and R_0 together is a double-bonded to one of hydrogen, hydroxyl, alkyl, or haloalkyl, or R and R_0 together is a double-bonded carbon bonded to two substituents independently selected from hydrogen, hydroxyl, alkyl and haloalkyl, or R and R_0 together is a substituted or unsubstituted, saturated or unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring, or R_0 is nitrogen which is part of a substituted or unsubstituted, saturated or unsaturated, 3-, 4-, 5-, 6- or 7-membered heterocyclic ring;

[**0023**] n is 0, 1 or 2;

[0024] R₁, R₂, R₃, and R₄ are independently selected from hydrogen, halogen, alkyl, cycloalkyl, haloalkyl, hydroxyl, carboxyl, alkoxy, formyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, cyano, cyanoalkyl, nitro, azido, and substituted or unsubstituted groups selected from alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, alkylcarbonyloxy, alkylcarbonyloxyalkyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylalkylcarbonyloxy, aryloxycarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonooxy, phosphonoalkyloxy, and sulfonamido, or any two of R₁, R₂, R₃, and R₄ form an alkylenedioxy group;

[0025] R_5 , R_6 , R_7 , and R_8 are independently selected from hydrogen, alkyl, haloalkyl and alkoxy; or R_5 and R_6 together form a carbon-carbon bond;

[0026] Y is hydrogen, alkyl, or trifluoromethyl, and Y' is hydrogen, alkyl, haloalkyl, amino, alkylamino, or alkoxy, or Y and Y' together is double-bonded oxygen or double-bonded sulfur, or Y and Y' together is a double-bonded nitrogen bonded to hydrogen, hydroxyl, alkyl, or haloalkyl;

[0027] X is selected from hydrogen, alkyl, haloalkyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen in a compound of formula I wherein R_5 and R_6 together is a carbon-carbon bond, or X is NR'R",

where R' and R" are independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryloxy, cyanoalkyl, haloalkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, alkylamino, aryl, arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6membered carbocyclic rings containing no double bond, or one or two double bonds, 5membered carbocyclic rings containing no double bond, or one or two double bonds, 4membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and heterocycloalkyl is selected from 7-membered heterocyclic rings, 6-membered heterocyclic rings, and 5-membered heterocyclic rings, and the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, sulfonamido, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and E is a substituted or unsubstituted, saturated or unsaturated, 7- membered, 6-[0028] membered, 5-membered, 4-membered or 3-membered carbocyclic or heterocyclic ring, with the proviso that E is not trimethoxyphenyl;

[0029] wherein at least one compound of formula I or a pharmaceutically acceptable salt or prodrug thereof is administered alone or in combination with at least one additional therapeutic agent other than a compound or pharmaceutically acceptable salt or prodrug of formula I;

[0030] wherein said selectivity index is the numerical ratio of the concentration of said compound to cause 50% growth inhibition of a cell lacking activated Ras to the concentration of said compound to cause 50% growth inhibition of a cell harboring activated Ras.

[0031] In one aspect, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is a substituted aryl, then E cannot be a substituted aryl. For example, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, R' is an aryl substituted with any of halo, alkoxy, amino, alkylamino, dialkylamino and sulfonamido, then E cannot be a substituted aryl wherein two substituents are identically selected from hydroxyl and alkoxy.

[0032] The present invention further provides a method of therapeutically or prophylactically treating a human or nonhuman mammalian cancer patient whose cancer has been determined to contain a Ras-activating mutation of a *ras* gene, which method comprising administering to the patient in need thereof a therapeutically or prophylactically or Ras-inhibitory effective amount of at least one Ras-inhibitory compound of formula I having a selectivity index greater than one, a pharmaceutically acceptable salt or prodrug thereof:

[**0033**] wherein:

[0034] R and R₀ are independently selected from hydrogen, hydroxyl, alkyl, cycloalkyl, cycloalkyl, heterocyclyl, heterocyclylalkyl, alkenyl, alkenylalkyl, alkynyl, alkynylalkyl, cyano, cyanoalkyl, halogen, azido, alkoxy, haloalkyl and a substituted or unsubstituted group selected from aminocarbonyl, aminocarbonylalkyl, aminosulfonyl, aminosulfonylalkyl, alkylcarbonyl, alkylcarbonylalkyl, amino, alkylamino, dialkylamino, aminocarbonylalkylamino, and carbocyclylamino, carbocyclylalkylamino, heterocyclylamino and heterocyclylalkylamino wherein the ring structures are saturated or unsaturated; or R and

10

 R_0 together is double-bonded oxygen or double-bonded sulfur, or R and R_0 together is a double-bonded nitrogen bonded to one of hydrogen, hydroxyl, alkyl, or haloalkyl, or R and R_0 together is a double-bonded carbon bonded to two substituents independently selected from hydrogen, hydroxyl, alkyl and haloalkyl, or R and R_0 together is a substituted or unsubstituted, saturated or unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring, or R_0 is nitrogen which is part of a substituted or unsubstituted, saturated or unsaturated, 3-, 4-, 5-, 6- or 7- membered heterocyclic ring;

[**0035**] n is 0, 1 or 2;

[0036] R₁, R₂, R₃, and R₄ are independently selected from hydrogen, halogen, alkyl, haloalkyl, hydroxyl, carboxyl, alkoxy, formyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, cyano, cyanoalkyl, nitro, azido, and substituted or unsubstituted groups selected from alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, alkylcarbonyloxy, alkylcarbonyloxyalkyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylalkylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonoaxy, phosphonoalkyloxy, and sulfonamido, or any two of R₁, R₂, R₃, and R₄ form an alkylenedioxy group;

[0037] R₅, R₆, R₇, and R₈ are independently selected from hydrogen, alkyl, haloalkyl and alkoxy; or R₅ and R₆ together form a carbon-carbon bond;

[0038] Y is hydrogen, alkyl, or trifluoromethyl, and Y' is hydrogen, alkyl, haloalkyl, amino, alkylamino, or alkoxy, or Y and Y' together is double-bonded oxygen or double-bonded sulfur, or Y and Y' together is a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, or haloalkyl;

[0039] X is selected from hydrogen, alkyl, haloalkyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen in a compound of formula I wherein R₅ and R₆ together is a carbon-carbon bond, or X is NR'R", where R' and R" are independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryloxy, cyanoalkyl, haloalkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, alkylamino, aryl, arylalkyl, arylcycloalkyl, arylcycloalkenyl, carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 5-

membered carbocyclic rings containing no double bond, or one or two double bonds, 4membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and heterocycloalkyl is selected from 7-membered heterocyclic rings, 6-membered heterocyclic rings, and 5-membered heterocyclic rings, and the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, sulfonamido, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and [0040] E is a substituted or unsubstituted, saturated or unsaturated, 7- membered, 6membered, 5-membered, 4-membered or 3-membered carbocyclic or heterocyclic ring, with the proviso that E is not trimethoxyphenyl;

PCT/US2015/066154

[0041] wherein at least one compound of formula I or a pharmaceutically acceptable salt or prodrug thereof is administered alone or in combination with at least one additional therapeutic agent other than a compound or pharmaceutically acceptable salt or prodrug of formula I;

[0042] wherein said selectivity index is the numerical ratio of the concentration of said compound to cause 50% growth inhibition of a cell lacking activated Ras to the concentration of said compound to cause 50% growth inhibition of a cell harboring activated Ras.

[0043] In one aspect, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is a substituted aryl, then E cannot be a substituted aryl. For example, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, R'

is an aryl substituted with any of halo, alkoxy, amino, alkylamino, dialkylamino and sulfonamido, then E cannot be a substituted aryl wherein two substituents are identically selected from hydroxyl and alkoxy.

[0044] Examples of conditions treatable by administering a Ras-inhibitory amount of a Ras-inhibitory compound of formula I include, for example, tumor cell growth, proliferation, survival, invasion and metastasis, as well as resistance to chemotherapy, other molecularly targeted therapeutics, and radiation; and, particularly, therapeutically or prophylactically treating conditions caused or exacerbated by hyperactive or mutant Ras, including but not limited to cancer, dysplastic, hyperproliferative or precancerous conditions of pancreas, colon, lung, skin, breast, head and neck, liver, nervous and accessory cell types of the central and peripheral nervous system.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

- [0045] FIG. 1 depicts the chemical structures of sulindac and certain derivatives thereof reportedly having anticancer activity.
- [0046] FIG. 2 depicts the chemical structures of certain other sulindac derivatives reported to inhibit Ras.
- [0047] FIG. 3 shows chemical structures of selective Ras-inhibitory compounds identified by synthetic lethal screening.
- [0048] FIG. 4 depicts the results of a <u>Ras Binding Domain</u> (RBD) pulldown assay paired with Western blot showing the relative levels of Ras activation in a panel of colorectal cancer cell lines.
- [0049] FIG. 5A reveals a correlation between sensitivity of tumor cells to compound 004 and Ras activation status of the cells as determined by Western blot analysis.
- [0050] FIG. 5B reveals a correlation between sensitivity of tumor cells to compound 006 and Ras activation status of the cells as determined by Western blot analysis.
- [0051] FIG. 5C reveals a correlation between sensitivity of tumor cells to compound 007 and Ras activation status of the cells as determined by Western blot analysis.
- [0052] FIG. 5D reveals a correlation between sensitivity of tumor cells to compound 010 and Ras activation status of the cells as determined by Western blot analysis.
- [0053] FIGS. 6A-6J show Ras-selective tumor cell growth-inhibiting activity of exemplary Ras-inhibitory compounds 006 (FIG 6A), 007 (FIG. 6B), 019 (FIG. 6C), 029

13

(FIG. 6D), **002** (FIG. 6E), **010** (FIG. 6F), **011** (FIG. 6G), **015** (FIG. 6H), **022** (FIG. 6I) and **035** (FIG. 6J) against human HCT-116 colon tumor cells expressing mutant Ras compared to human HT-29 colon tumor cells expressing wild-type Ras. FIGS. 6K-6N show similar effects of compounds **202** and **203** on HCT-116 and A549 cells as compared to HT-29 cells, as labeled in the Figures accordingly.

[0054] FIG. 7A demonstrates that the HT-29 cells transfected with activated Ras were hypersensitive to the test drug (007) relative to the respective control cells.

[0055] FIG. 7B demonstrates that the H322 cells transfected with activated Ras were hypersensitive to the test drug (007) relative to the respective control cells.

[0056] FIG. 8 illustrates that representative Ras-inhibitory compounds (006 and 007) used in the methods of the present invention interact with high affinity directly with activated Ras to disrupt Ras interactions with its normal binding partner, Raf.

[0057] FIG. 9 shows that administration of antitumor therapeutic or preventative doses of representative compounds (006, 007, 011 and 019) as used in the present invention produced no evidence of in vivo animal toxicity as assessed by animal weight gains over time.

[0058] FIGS. 10A-10H illustrate that efficacious therapeutic (FIGS. 10A-10D) or preventive (FIGS. 10E-10H) antitumor treatments of a representative Ras-driven tumor (HCT-116 human colon tumor xenografts) in vivo with exemplary Ras-inhibitory compounds 006, 007, 011 and 019 (named in FIGS. 10A and 10E as ADT-006, in FIGS. 10B and 10F as ADT-007, in FIGS. 10C and 10G as ADT-011 and in FIGS. 10D and 10H as ADT-019, respectively) employed in the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0059] In accordance with an embodiment, the present invention provides a method of selectively inhibiting the growth of cancer cells harboring activated Ras relative to cells lacking activated Ras, which method comprising administering a Ras-inhibitory amount of at least one compound of formula I having a selectivity index greater than one, a pharmaceutically acceptable salt or prodrug thereof:

[0060] wherein:

[0061] R and R_0 are independently selected from hydrogen, hydroxyl, alkyl, cycloalkyl, cycloalkyl, heterocyclyl, heterocyclylalkyl, alkenyl, alkenylalkyl, alkynyl, alkynylalkyl, cyano, cyanoalkyl, halogen, azido, alkoxy, haloalkyl and a substituted or unsubstituted group selected from aminocarbonyl, aminocarbonylalkyl, aminosulfonyl, aminosulfonylalkyl, alkylcarbonyl, alkylcarbonylalkyl, amino, alkylamino, dialkylamino, aminocarbonylalkylamino, and carbocyclylamino, carbocyclylalkylamino, heterocyclylamino and heterocyclylalkylamino wherein the ring structures are saturated or unsaturated; or R and R_0 together is double-bonded oxygen or double-bonded sulfur, or R and R_0 together is a double-bonded to one of hydrogen, hydroxyl, alkyl, or haloalkyl, or R and R_0 together is a double-bonded carbon bonded to two substituents independently selected from hydrogen, hydroxyl, alkyl and haloalkyl, or R and R_0 together is a substituted or unsubstituted, saturated or unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring, or R_0 is nitrogen which is part of a substituted or unsubstituted, saturated or unsaturated, 3-, 4-, 5-, 6- or 7-membered heterocyclic ring;

[**0062**] n is 0, 1 or 2;

[0063] R₁, R₂, R₃, and R₄ are independently selected from hydrogen, halogen, alkyl, cycloalkyl, haloalkyl, hydroxyl, carboxyl, alkoxy, formyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, cyano, cyanoalkyl, nitro, azido, and substituted or unsubstituted groups selected from alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, alkylcarbonyloxy, alkylcarbonyloxyalkyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylalkylcarbonyloxy, aryloxycarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonooxy, phosphonoalkyloxy, and sulfonamido, or any two of R₁, R₂, R₃, and R₄ form an alkylenedioxy group;

[0064] R₅, R₆, R₇, and R₈ are independently selected from hydrogen, alkyl, haloalkyl and alkoxy; or R₅ and R₆ together form a carbon-carbon bond;

[0065] Y is hydrogen, alkyl, or trifluoromethyl, and Y' is hydrogen, alkyl, haloalkyl, amino, alkylamino, or alkoxy, or Y and Y' together is double-bonded oxygen or double-bonded sulfur, or Y and Y' together is a double-bonded nitrogen bonded to hydrogen, hydroxyl, alkyl, or haloalkyl;

[0066] X is selected from hydrogen, alkyl, haloalkyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen in a compound of formula I wherein R₅ and R₆ together is a carbon-carbon bond, or X is NR'R", where R' and R" are independently selected from the group consisting of hydrogen, hydroxyl, alkyl, aryloxy, cyanoalkyl, haloalkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, alkylamino, aryl, arvlalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6membered carbocyclic rings containing no double bond, or one or two double bonds, 5membered carbocyclic rings containing no double bond, or one or two double bonds, 4membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and heterocycloalkyl is selected from 7-membered heterocyclic rings, 6-membered heterocyclic rings, and 5-membered heterocyclic rings, and the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and

[0067] E is a substituted or unsubstituted, saturated or unsaturated, 7- membered, 6-membered, 5-membered, 4-membered or 3-membered carbocyclic or heterocyclic ring, with the proviso that E is not trimethoxyphenyl;

[0068] wherein at least one compound of formula I or a pharmaceutically acceptable salt or prodrug thereof is administered alone or in combination with at least one additional therapeutic agent other than a compound or pharmaceutically acceptable salt or prodrug of formula I; wherein said selectivity index is the numerical ratio of the concentration of said compound to cause 50% growth inhibition of a cell lacking activated Ras to the concentration of said compound to cause 50% growth inhibition of a cell harboring activated Ras.

[0069] In an embodiment, E is a carbocyclic or heterocyclic ring, optionally substituted with one or more substituents selected from hydroxyl, carboxyl, halogen, alkyl, haloalkyl, cyano, cyanoalkyl, nitro, oxo, alkoxy, formyloxy, amino, alkylamino, dialkylamino, aminoalkyl, alkylaminoalkyl, hydroxyalkyl, aldehydo, mercapto, alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, alkylsulfonyloxy, alkylsulfonyloxy, alkylsulfonyloxy, arylakylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonooxy, phosphonoalkyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, sulfonamido, and alkylenedioxy spanning two substituent positions.

[0070] In one aspect, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is a substituted aryl, then E cannot be a substituted aryl. For example, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, R' is an aryl substituted with any of halo, alkoxy, amino, alkylamino, dialkylamino and sulfonamido, then E cannot be a substituted aryl wherein two substituents are identically selected from hydroxyl and alkoxy.

[0071] The present invention further provides a method of therapeutically or prophylactically treating a human or nonhuman mammalian cancer patient whose cancer has been determined to contain a Ras-activating mutation of a *ras* gene, which method

comprising administering to the patient in need thereof a therapeutically or prophylactically or Ras-inhibitory effective amount of at least one Ras-inhibitory compound of formula I having a selectivity index greater than one, a pharmaceutically acceptable salt or prodrug thereof:

[**0072**] wherein:

[0073] R and R_0 are independently selected from hydrogen, hydroxyl, alkyl, haloalkyl, amino, alkoxy and alkylamino, or R and R_0 together is double-bonded oxygen or double-bonded sulfur, or R and R_0 together is a double-bonded nitrogen bonded to hydrogen, hydroxyl, alkyl, or haloalkyl;

[**0074**] n is 0, 1 or 2;

[0075] R₁, R₂, R₃, and R₄ are independently selected from hydrogen, halogen, alkyl, cycloalkyl, haloalkyl, hydroxyl, carboxyl, alkoxy, formyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, cyano, cyanoalkyl, nitro, azido, and substituted or unsubstituted groups selected from alkylsulfinyloxy, alkylsulfonyloxy, alkylcarbonyloxy, alkylcarbonyloxyalkyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylalkylcarbonyloxy, aryloxycarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonooxy, phosphonoalkyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, and sulfonamido, or any two of R₁, R₂, R₃, and R₄ form an alkylenedioxy group;

[0076] R_5 , R_6 , R_7 , and R_8 are independently selected from hydrogen, alkyl, haloalkyl and alkoxy; or R_5 and R_6 together form a carbon-carbon bond;

[0077] Y is hydrogen, alkyl, or trifluoromethyl, and Y' is hydrogen, alkyl, haloalkyl, amino, alkylamino, or alkoxy, or Y and Y' together is double-bonded oxygen or couble-bonded sulfur, or Y and Y' together is a double-bonded nitrogen bonded to hydrogen, hydroxyl, alkyl, or haloalkyl;

[0078] X is selected from hydrogen, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen in a

compound of formula I wherein R₅ and R₆ together is a carbon-carbon bond, or X is NR'R",

where R' and R" are independently selected from the group consisting of hydrogen, hydroxyl,

alkyl, aryloxy, cyanoalkyl, haloalkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl,

polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, alkylamino, aryl,

arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, carbocyclyl, and carbocycloalkyl

where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-

membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-

membered carbocyclic rings containing no double bond, or one or two double bonds, 5-

membered carbocyclic rings containing no double bond, or one or two double bonds, 4-

membered carbocyclic rings containing no double bond or one double bond and 3-membered

carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the

heterocycle of the heterocyclyl and heterocycloalkyl is selected from 7-membered

heterocyclic rings, 6-membered heterocyclic rings, and 5-membered heterocyclic rings, and

the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or arylcycloalkenyl structure or

the carbocyclic or heterocyclic structure may optionally be substituted with one or more of

halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto,

alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido and

COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, trifluoromethyl, alkoxy,

alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or

unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or

sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo,

alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto,

alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and

[0079] E is a substituted or unsubstituted, saturated or unsaturated, 7- membered, 6-

membered, 5-membered, 4-membered or 3-membered carbocyclic or heterocyclic ring, with

the proviso that E is not trimethoxyphenyl;

[0080] wherein at least one compound of formula I or a pharmaceutically acceptable salt or prodrug thereof is administered alone or in combination with at least one additional therapeutic agent other than a compound or pharmaceutically acceptable salt or prodrug of formula I;

PCT/US2015/066154

[0081] wherein said selectivity index is the numerical ratio of the concentration of said compound to cause 50% growth inhibition of a cell lacking activated Ras to the concentration of said compound to cause 50% growth inhibition of a cell harboring activated Ras.

[0082] In an embodiment, E is a carbocyclic or heterocyclic ring, optionally substituted with one or more substituents selected from hydroxyl, carboxyl, halogen, alkyl, haloalkyl, cyano, cyanoalkyl, nitro, oxo, alkoxy, formyloxy, amino, alkylamino, dialkylamino, aminoalkyl, alkylaminoalkyl, hydroxyalkyl, aldehydo, mercapto, alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, alkylsulfonyloxy, alkylsulfonyloxy, alkylsulfonyloxy, aryloxycarbonyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylalkylcarbonyloxy, aryloxycarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonooxy, phosphonoalkyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, sulfonamido, and alkylenedioxy spanning two substituent positions.

[0083] In one aspect, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is a substituted aryl, then E cannot be a substituted aryl. For example, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, R' is an aryl substituted with any of halo, alkoxy, amino, alkylamino, dialkylamino and sulfonamido, then E cannot be a substituted aryl wherein two substituents are identically selected from hydroxyl and alkoxy.

[0084] In an embodiment of the above methods, R', the 7-membered heterocyclic ring is selected from azepanyl, oxazepanyl, thiazepanyl, azepinyl, oxepinyl, thiepanyl, homopiperazinyl, diazepinyl and thiazepinyl, the 6-membered heterocyclic ring is selected from piperidinyl, oxanyl, thianyl, pyridinyl, pyranyl, thiopyranyl, piperazinyl, morpholinyl, thiomorpholinyl, dioxanyl, dithianyl, diazinyl, oxazinyl, thiazinyl, dioxinyl, dithiinyl, trioxanyl, trithianyl, triazinyl and tetrazinyl, and the 5-membered heterocyclic ring is selected from pyrrolidinyl, tetrahydrofuranyl, tetrahydrothiaphenyl, pyrrolyl, furanyl, thiophenyl, imidazolidinyl, pyrazolidinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl,

20

dioxolanyl, dithiolanyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, furazanyl, oxadiazolyl, thiadiazolyl, dithiazolyl and tetrazolyl.

[0085] In an embodiment of the above methods, E is selected from cycloheptanyl, cycloheptanyl, cycloheptatrienyl, cyclohexanyl, cyclohexanyl, cyclohexanyl, cyclohexadienyl, phenyl, cyclopentanyl, cyclopentenyl, cyclopentadienyl, cyclopropanyl, cyclobutanyl, azepanyl, oxazepanyl, thiazepanyl, azepinyl, oxepinyl, thiepanyl, homopiperazinyl, diazepinyl, thiazepinyl, piperidinyl, oxanyl, thianyl, pyridinyl, pyranyl, thiopyranyl, piperazinyl, morpholinyl, thiomorpholinyl, dioxanyl, dithianyl, diazinyl, oxazinyl, thiazinyl, dioxinyl, dithiinyl, trioxanyl, trithianyl, triazinyl, tetrazinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothiaphenyl, pyrrolyl, furanyl, thiophenyl, imidazolidinyl, pyrazolidinyl, oxazolidinyl, isoxazolidinyl, isothiazolidinyl, dioxolanyl, dithiolanyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, furazanyl, oxadiazolyl, thiadiazolyl, dithiazolyl, and tetrazolyl, each of which is substituted or unsubstituted.

[0086] In an embodiment of the above methods, E is:

wherein R₁₂, R₁₄, R₁₆, R₁₇, R₁₈ and R₁₉ are independently selected from hydrogen, hydroxyl, carboxyl, halogen, alkyl, trifluoromethyl, alkoxy, amino, alkylamino, dialkylamino, aminoalkyl, alkylamino, alkylaminoalkyl, hydroxyalkyl, aldehydo, mercapto, and alkylmercapto, azido, cyano, cyanoalkyl, nitro, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, alkylcarbonyloxy, alkylcarbonyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylakylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonoakyloxy, and sulfonamido.

[0087] Examples of compounds utilized in embodiments of the above methods include compounds wherein:

[0088] E is a substituted aryl or heteroaryl having at least one alkylsulfinyl or alkylsulfonyl substituent on the aryl or heteroaryl ring, or having at least one alkylmercapto on the aryl ring, or having a *p*-halo on the aryl ring when R' is dialkylaminoalkyl; or,

[0089] R₅ and R₆ together is a carbon-carbon bond, R" is hydrogen and R' is a substituted arylalkyl, and E is a substituted or unsubstituted heterocyclic ring selected from the group consisting of pyridinyl, pyrimidinyl, pyrazinyl, imidazolyl, triazinyl, thiophenyl, furanyl, thiazolyl, pyrazolyl and pyrrolyl; or

[0090] n is 1 or 2, R_5 and R_6 together form a carbon-carbon bond, Y and Y' are hydrogens or Y and Y' together is oxygen, E is a substituted phenyl, X is hydrogen, alkyl, trifluoromethyl, alkylmercapto or NR'R" wherein R' is hydrogen, hydroxyl or alkyl, and R" is hydrogen, alkyl or haloalkyl; or

[0091] R_5 and R_6 are independently selected from hydrogen or alkyl or R_5 and R_6 together form a carbon-carbon bond, E is a substituted aryl or heteroaryl, X is NR'R" wherein R' is hydrogen or hydroxyl and R" is COR_{11} wherein R_{11} is alkyl, alkoxy or amino; or

[0092] R_5 , R_6 , R_7 and R_8 are independently selected from hydrogen, alkyl and alkoxy, or R_5 and R_6 form a carbon-carbon bond, R_7 is hydrogen, R_8 is hydrogen, alkoxy or alkyl, E is phenyl substituted with at least two hydroxyl groups or at least two alkoxy groups, and Y and Y together is oxygen, X is substituted alkoxy or NR'R'', where R' is selected from hydrogen, alkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, dialkylaminoalkyl, aminoalkyl, arylalkyl, phenyl, indanyl, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and the heterocycloalkyl is selected from pyridinyl, piperidinyl, piperazinyl, pyrrolidinyl, and N-morpholino, and wherein any of the cyclic structures of the R' may be unsubstituted or substituted with one or more of halo, alkoxy, hydroxy, amino, alkylamino, dialkylamino, and sulfonamido; and R'' is selected from hydrogen, alkyl, alkylamino, cyanoalkyl, haloalkyl, dialkylaminoalkyl, alkylamino, linkylaminoy, and pyridinyl.

[0093] In a further embodiment of the above methods, the at least one compound of formula (I) is a compound of formula (II):

$$R_{13}$$
 R_{14}
 R_{15}
 R_{16}
 R_{16}
 R_{10}
 R_{10}

[**0094**] wherein:

[0095] R and R_0 are independently selected from hydrogen, hydroxyl, alkyl, cycloalkyl, cycloalkyl, heterocyclyl, heterocyclylalkyl, alkenyl, alkenylalkyl, alkynyl, alkynylalkyl, cyano, cyanoalkyl, halogen, azido, alkoxy, haloalkyl and a substituted or unsubstituted group selected from aminocarbonyl, aminocarbonylalkyl, aminosulfonyl, aminosulfonylalkyl, alkylcarbonyl, alkylcarbonylalkyl, amino, alkylamino, dialkylamino, aminocarbonylalkylamino, and carbocyclylamino, carbocyclylalkylamino, heterocyclylamino and heterocyclylalkylamino wherein the ring structures are saturated or unsaturated; or R and R_0 together is double-bonded oxygen or double-bonded sulfur, or R and R_0 together is a double-bonded to one of hydrogen, hydroxyl, alkyl, or haloalkyl, or R and R_0 together is a double-bonded carbon bonded to two substituents independently selected from hydrogen, hydroxyl, alkyl and haloalkyl, or R and R_0 together is a substituted or unsubstituted, saturated or unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring, or R_0 is nitrogen which is part of a substituted or unsubstituted, saturated or unsaturated, 3-, 4-, 5-, 6- or 7-membered heterocyclic ring;

[**0096**] n is 0, 1 or 2;

[0097] Y is hydrogen, alkyl, or haloalkyl, and Y' is hydrogen, alkyl, haloalkyl, amino, alkylamino, or alkoxy, or Y and Y' together is double-bonded oxygen or double-bonded sulfur, or Y and Y' together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, or haloalkyl;

[0098] R₁, R₂, R₃, R₄, R₁₂, R₁₃, R₁₄, R₁₅, and R₁₆ are independently selected from hydrogen, halogen, alkyl, cycloalkyl, haloalkyl, hydroxyl, carboxyl, alkoxy, formyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, cyano, cyanoalkyl, nitro, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy,

carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, aminocarbonyl, alkylcarbonyloxy, alkylcarbonyloxyalkyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylalkylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonooxy, phosphonoalkyloxy, and sulfonamido, or any two of R_1 , R_2 , R_3 , or R_4 , or any two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} form an alkylenedioxy group;

[0099] R_7 and R_8 are independently selected from hydrogen, alkyl, haloalkyl, and alkoxy;

[0100]X is selected from hydrogen, alkyl, haloalkyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen, or X is NR'R", where R' is selected from the group consisting of hydrogen, hydroxyl, alkyl, aryloxy, cyanoalkyl, haloalkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, alkylamino, arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, aryl, carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 5-membered carbocyclic rings containing no double bond, or one or two double bonds, 4-membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and heterocycloalkyl is selected from furanyl and pyrrolyl, and the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and R" is selected from hydrogen, alkyl, alkoxy, hydroxyalkyl, aminoalkyl, dialkylaminoalkyl, cyanoalkyl, haloalkyl, alkylcarbonylalkylcarbonyloxy, pyridyl, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, haloalkyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido.

[0101] In one aspect, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is a substituted aryl, then each of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} must be hydrogen. For example, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is an aryl substituted with any of halo, alkoxy, amino, alkylamino, dialkylamino, and sulfonamido, then no two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} can be identically selected from hydroxyl and alkoxy.

[0102] In another embodiment of the above methods, the at least one compound of formula (I) is a compound of formula (II):

$$R_{13}$$
 R_{12}
 R_{14}
 R_{15}
 R_{16}
 R_{1}
 R_{10}
 R_{10}

[0103] wherein:

[0104] R and R₀ are independently selected from hydrogen, hydroxyl, alkyl, cycloalkyl, cycloalkyl, heterocyclyl, heterocyclylalkyl, alkenyl, alkenylalkyl, alkynyl, alkynylalkyl, cyano, cyanoalkyl, halogen, azido, alkoxy, haloalkyl and a substituted or unsubstituted group selected from aminocarbonyl, aminocarbonylalkyl, aminosulfonyl, aminosulfonylalkyl, alkylcarbonyl, alkylcarbonylalkyl, amino, alkylamino, dialkylamino, aminocarbonylalkylamino, and carbocyclylamino, carbocyclylalkylamino, heterocyclylamino and heterocyclylalkylamino wherein the ring structures are saturated or unsaturated; or R and R₀ together is double-bonded oxygen or double-bonded sulfur, or R and R₀ together is a double-bonded nitrogen bonded to one of hydrogen, hydroxyl, alkyl, or haloalkyl, or R and R₀ together is a substituted or

unsubstituted, saturated or unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring, or R_0 is nitrogen which is part of a substituted or unsubstituted, saturated or unsaturated, 3-, 4-, 5-, 6- or 7- membered heterocyclic ring;

[**0105**] n is 0, 1 or 2;

[0106] Y is hydrogen, alkyl, or haloalkyl, and Y' is hydrogen, alkyl, haloalkyl, amino, alkylamino, or alkoxy, or Y and Y' together is double-bonded oxygen or double-bonded sulfur, or Y and Y' together is a double-bonded nitrogen bonded to hydrogen, hydroxyl, alkyl, or haloalkyl;

[0107] R_1 , R_2 , R_3 , R_4 , R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are independently selected from hydrogen, halogen, alkyl, cycloalkyl, haloalkyl, hydroxyl, carboxyl, alkoxy, formyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, cyano, cyanoalkyl, nitro, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, alkylcarbonyloxy, alkylcarbonyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylakylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonoalkyloxy, and sulfonamido, or any two of R_1 , R_2 , R_3 , or R_4 , or any two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} form an alkylenedioxy group;

[0108] R₇ and R₈ are independently selected from hydrogen, alkyl, haloalkyl, and alkoxy; [0109] X is selected from hydrogen, alkyl, haloalkyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen, or X is NR'R", where R' is selected from the group consisting of hydrogen, hydroxyl, alkyl, aryloxy, cyanoalkyl, haloalkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, alkylamino, arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, aryl, carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 5-membered carbocyclic rings containing no double bond, or one or two double bonds, 4-membered carbocyclic rings

containing no double bond or one double bond and 3-membered carbocyclic rings containing

no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl

and heterocycloalkyl is selected from 7-membered heterocyclic rings, 6-membered

heterocyclic rings, and 5-membered heterocyclic rings, and the aryl of the aryl, arylalkyl, arylalkyl, arylalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and R" is selected from hydrogen, alkyl, alkoxy, hydroxyalkyl, aminoalkyl, dialkylaminoalkyl, cyanoalkyl, haloalkyl, alkylcarbonyloxy, pyridyl, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, haloalkyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido.

[0110] In one aspect, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is a substituted aryl, then each of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} must be hydrogen. For example, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is an aryl substituted with any of halo, alkoxy, amino, alkylamino, dialkylamino and sulfonamido, then no two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} can be identically selected from hydroxyl and alkoxy.

[0111] In yet another embodiment of the above methods, the at least one compound of formula (I) is a compound of formula (II):

$$R_{13}$$
 R_{12}
 R_{14}
 R_{15}
 R_{16}
 R_{10}
 R

[0112] wherein:

[0113] R and R_0 are independently selected from hydrogen, hydroxyl, alkyl, cycloalkyl, cycloalkyl, heterocyclyl, heterocyclylalkyl, alkenyl, alkenylalkyl, alkynyl, alkynylalkyl, cyano, cyanoalkyl, halogen, azido, alkoxy, haloalkyl and a substituted or unsubstituted group selected from aminocarbonyl, aminocarbonylalkyl, aminosulfonyl, aminosulfonylalkyl, alkylcarbonyl, alkylcarbonylalkyl, amino, alkylamino, dialkylamino, aminocarbonylalkylamino, and carbocyclylamino, carbocyclylalkylamino, heterocyclylamino and heterocyclylalkylamino wherein the ring structures are saturated or unsaturated; or R and R_0 together is double-bonded oxygen or double-bonded sulfur, or R and R_0 together is a double-bonded to one of hydrogen, hydroxyl, alkyl, or haloalkyl, or R and R_0 together is a double-bonded carbon bonded to two substituents independently selected from hydrogen, hydroxyl, alkyl and haloalkyl, or R and R_0 together is a substituted or unsubstituted, saturated or unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring, or R_0 is nitrogen which is part of a substituted or unsubstituted, saturated or unsaturated, 3-, 4-, 5-, 6- or 7-membered heterocyclic ring;

[**0114**] n is 0, 1 or 2;

[0115] Y is hydrogen, alkyl, or haloalkyl, and Y' is hydrogen, alkyl, haloalkyl, amino, alkylamino, or alkoxy, or Y and Y' together is double-bonded sulfur, or Y and Y' together is a double-bonded nitrogen bonded to hydrogen, hydroxyl, alkyl, or haloalkyl;

[0116] R₁, R₂, R₃, R₄, R₁₂, R₁₃, R₁₄, R₁₅ and R₁₆ are independently selected from hydrogen, halogen, alkyl, cycloalkyl, haloalkyl, hydroxyl, carboxyl, alkoxy, formyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, cyano, cyanoalkyl, nitro, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, alkylcarbonyloxy,

alkylcarbonyloxyalkyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylalkylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonoaxy, phosphonoalkyloxy, and sulfonamido, or any two of R_1 , R_2 , R_3 , and R_4 , or any two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} form an alkylenedioxy group;

PCT/US2015/066154

[0117] R_7 and R_8 are independently selected from hydrogen, alkyl, trifluoromethyl, and alkoxy;

X is selected from hydrogen, alkyl, haloalkyl, alkoxy, alkylmercapto, and [0118]hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen, or X is NR'R", where R' is selected from the group consisting of hydrogen, hydroxyl, alkyl, aryloxy, cyanoalkyl, haloalkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, alkylamino, arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, aryl, carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 5-membered carbocyclic rings containing no double bond, or one or two double bonds, 4-membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and heterocycloalkyl is selected from 7-membered heterocyclic rings, 6-membered heterocyclic rings, and 5-membered heterocyclic rings, and the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and R" is selected from hydrogen, alkyl, alkoxy, hydroxyalkyl, aminoalkyl, dialkylaminoalkyl, cyanoalkyl, haloalkyl, alkylcarbonylalkylcarbonyloxy, pyridyl, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, haloalkyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido.

[0119] In one aspect, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is a substituted aryl, then each of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} must be hydrogen. For example, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is an aryl substituted with any of halo, alkoxy, amino, alkylamino, dialkylamino and sulfonamido, then no two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} can be identically selected from hydroxyl and alkoxy.

[0120] In a further embodiment of the above methods, the at least one compound of formula (I) is a compound of formula (II):

$$R_{13}$$
 R_{12}
 R_{14}
 R_{15}
 R_{16}
 R_{1}
 R_{10}
 R_{10}

[0121] wherein:

[0122] R and R₀ are independently selected from hydrogen, hydroxyl, alkyl, cycloalkyl, cycloalkyl, heterocyclyl, heterocyclylalkyl, alkenyl, alkenylalkyl, alkynyl, alkynylalkyl, cyano, cyanoalkyl, halogen, azido, alkoxy, haloalkyl and a substituted or unsubstituted group selected from aminocarbonyl, aminocarbonylalkyl, aminosulfonyl, aminosulfonylalkyl, alkylcarbonyl, alkylcarbonylalkyl, amino, alkylamino, dialkylamino, aminocarbonylalkylamino, and carbocyclylamino, carbocyclylalkylamino, heterocyclylamino and heterocyclylalkylamino wherein the ring structures are saturated or unsaturated; or R and R₀ together is double-bonded oxygen or double-bonded sulfur, or R and R₀ together is a double-bonded nitrogen bonded to one of hydrogen, hydroxyl, alkyl, or haloalkyl, or R and R₀ together is a substituted or

unsubstituted, saturated or unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring, or R_0 is nitrogen which is part of a substituted or unsubstituted, saturated or unsaturated, 3-, 4-, 5-, 6- or 7- membered heterocyclic ring;

30

[**0123**] n is 0, 1 or 2;

[0124] Y is hydrogen, alkyl, or haloalkyl, and Y' is hydrogen, alkyl, haloalkyl, amino, alkylamino, or alkoxy, or Y and Y' together is double-bonded oxygen or double-bonded sulfur, or Y and Y' together is a double-bonded nitrogen bonded to hydrogen, hydroxyl, alkyl, or haloalkyl;

[0125] R₁, R₂, R₃, R₄, R₁₂, R₁₃, R₁₄, R₁₅ and R₁₆ are independently selected from hydrogen, halogen, alkyl, cycloalkyl, haloalkyl, hydroxyl, carboxyl, alkoxy, formyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, cyano, cyanoalkyl, nitro, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, alkylcarbonyloxy, alkylcarbonyloxyalkyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylakylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy, and sulfonamido, or any two of R₁, R₂, R₃, and R₄, or any two of R₁₂, R₁₃, R₁₄, R₁₅ and R₁₆ form an alkylenedioxy group;

[0126] R_7 and R_8 are independently selected from trifluoromethyl and alkoxy;

[0127] X is selected from hydrogen, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen, or X is NR'R", where R' is selected from the group consisting of hydrogen, hydroxyl, alkyl, aryloxy, cyanoalkyl, haloalkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, alkylamino, arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, aryl, carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 4-membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and heterocycloalkyl is selected from 7-membered heterocyclic rings, 6-membered

heterocyclic rings, and 5-membered heterocyclic rings, and the aryl of the aryl, arylalkyl, arylalkyl, arylalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and R" is selected from hydrogen, alkyl, alkoxy, hydroxyalkyl, aminoalkyl, dialkylaminoalkyl, cyanoalkyl, haloalkyl, alkylcarbonyloxy, pyridyl, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, haloalkyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido.

[0128] In one aspect, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is a substituted aryl, then each of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} must be hydrogen. For example, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is an aryl substituted with any of halo, alkoxy, amino, alkylamino, dialkylamino and sulfonamido, then no two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} can be identically selected from hydroxyl and alkoxy.

[0129] In a still further embodiment of the above methods, the at least one compound of formula (I) is a compound of formula (II):

$$R_{13}$$
 R_{14}
 R_{15}
 R_{16}
 R_{16}
 R_{10}
 R_{10}

[0130] wherein:

[0131] R and R_0 are independently selected from hydrogen, hydroxyl, alkyl, cycloalkyl, cycloalkyl, heterocyclyl, heterocyclylalkyl, alkenyl, alkenylalkyl, alkynyl, alkynylalkyl, cyano, cyanoalkyl, halogen, azido, alkoxy, haloalkyl and a substituted or unsubstituted group selected from aminocarbonyl, aminocarbonylalkyl, aminosulfonyl, aminosulfonylalkyl, alkylcarbonyl, alkylcarbonylalkyl, amino, alkylamino, dialkylamino, aminocarbonylalkylamino, and carbocyclylamino, carbocyclylalkylamino, heterocyclylamino and heterocyclylalkylamino wherein the ring structures are saturated or unsaturated; or R and R_0 together is double-bonded oxygen or double-bonded sulfur, or R and R_0 together is a double-bonded to one of hydrogen, hydroxyl, alkyl, or haloalkyl, or R and R_0 together is a double-bonded carbon bonded to two substituents independently selected from hydrogen, hydroxyl, alkyl and haloalkyl, or R and R_0 together is a substituted or unsubstituted, saturated or unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring, or R_0 is nitrogen which is part of a substituted or unsubstituted, saturated or unsaturated, 3-, 4-, 5-, 6- or 7-membered heterocyclic ring;

[**0132**] n is 0, 1 or 2;

[0133] Y is hydrogen, alkyl, or haloalkyl, and Y' is hydrogen, alkyl, haloalkyl, amino, alkylamino, or alkoxy, or Y and Y' together is double-bonded oxygen or double-bonded sulfur, or Y and Y' together is a double-bonded nitrogen bonded to hydrogen, hydroxyl, alkyl, or haloalkyl;

[0134] R₁, R₂, R₃, R₄, R₁₂, R₁₃, R₁₄, R₁₅ and R₁₆ are independently selected from hydrogen, halogen, alkyl, cycloalkyl, haloalkyl, hydroxyl, carboxyl, alkoxy, formyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, cyano, cyanoalkyl, nitro, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy,

PCT/US2015/066154

carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, aminocarbonyl, alkylcarbonyloxy, alkylcarbonyloxyalkyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylakylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonooxy, phosphonoalkyloxy, and sulfonamido, or any two of R_1 , R_2 , R_3 , or R_4 , or any two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} form an alkylenedioxy group;

[0135] R_7 and R_8 are independently selected from hydrogen, alkyl, trifluoromethyl, and alkoxy;

[0136] X is selected from hydrogen, alkyl, haloalkyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X cannot be hydroxyl when Y and Y' together is oxygen, or X is NR'R", where R' is selected from hydrogen, hydroxyl, alkyl, aryloxy, cyanoalkyl, haloalkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, alkylamino, phenylalkyl, indanyl, aryl, phenyl, carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 5-membered carbocyclic rings containing no double bond, or one or two double bonds, 4-membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and the heterocycloalkyl is selected from azepanyl, oxazepanyl, thiazepanyl, azepinyl, oxepinyl, thiepanyl, homopiperazinyl, diazepinyl, thiazepinyl, oxanyl, thianyl, pyranyl, thiopyranyl, thiomorpholinyl, dioxanyl, dithianyl, diazinyl, oxazinyl, thiazinyl, dioxinyl, dithiinyl, trioxanyl, trithianyl, triazinyl, tetrazinyl, tetrahydrofuranyl, tetrahydrothiaphenyl, pyrrolyl, furanyl, thiophenyl, imidazolidinyl, pyrazolidinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl, dioxolanyl, dithiolanyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, furazanyl, oxadiazolyl, thiadiazolyl, dithiazolyl, and tetrazolyl, wherein the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; R" is selected from hydrogen, haloalkyl, hydroxyalkyl, and COR₁₁ wherein R₁₁ is selected from the group consisting of hydrogen, amino, alkyl, haloalkyl, alkoxy, alkylmercapto and aryl; or R' and R" may be combined to form a 5-, 6- or

7-membered ring, saturated or unsaturated, heterocyclic containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido.

[0137] In one aspect, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is a substituted aryl, then each of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} must be hydrogen. For example, when R and R_0 are hydrogen, n is 1, three of R_1 , R_2 , R_3 , and R_4 are hydrogens and one is halogen, alkyl, or alkoxy or two of R_1 , R_2 , R_3 and R_4 are hydrogens and two are alkoxy, R_5 and R_6 together form a carbon-carbon bond, R_7 is hydrogen, R_8 is alkyl, Y and Y' together is oxygen, X is NR'R" wherein R" is hydrogen, and R' is an aryl substituted with any of halo, alkoxy, amino, alkylamino, dialkylamino, and sulfonamido, then no two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} can be identically selected from hydroxyl and alkoxy.

[0138] In an embodiment of the method of selectively inhibiting the growth of tumor cells harboring activated Ras with a compound of formula (I), X is NR'R" where R' is selected from alkyl, haloalkyl, alkenyl, alkynyl, hydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, arylalkyl selected from the group consisting of phenylalkyl, indanyl, heterocyclyl, and heterocycloalkyl, where the heterocycle is selected from furanyl, pyrrolyl, thiophenyl, and imidazolyl, and the cyclic structure of heterocyclyl and heterocycloalkyl is optionally substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, and carboxamido; R" is selected from hydrogen, alkyl, alkoxy, haloalkyl, cyanoalkyl, and dialkylaminoalkyl, or R' and R" together form a 5, 6, or 7-member heterocyclic ring, saturated or unsaturated, substituted or unsubstituted, that contains at least one nitrogen and optionally oxygen.

[0139] In a particular embodiment of the above method, X is NR'R" where R' is selected from alkylaminoalkyl, dialkylaminoalkyl, arylalkyl, heterocyclyl, and heterocycloalkyl where the heterocycle is selected from furanyl, pyrrolyl, and thiophenyl, and the cyclic structure of heterocyclyl and heterocycloalkyl is optionally substituted with one or more of halo, alkyl, haloalkyl, hydroxy, alkoxy, amino, alkylamino, and dialkylamino; R" is selected from hydrogen, alkyl, alkoxy, haloalkyl or dialkylaminoalkyl, or R' and R" together form a 5, 6, or

7-member heterocyclic ring, saturated or unsaturated, substituted or unsubstituted, that contains at least one nitrogen and optionally oxygen.

- **[0140]** In a more particular embodiment of the above method, X is NR'R" where R' is selected from dialkylaminoalkyl, arylalkyl, heterocyclyl, and heterocycloalkyl where the heterocycle is selected from furanyl and pyrrolyl, and the cyclic structure may optionally be substituted with one or more of halo, alkyl, haloalkyl, alkoxy, alkylamino and dialkylamino; and R" is selected from hydrogen, alkyl, alkoxy, haloalkyl or dialkylaminoalkyl.
- **[0141]** In a further particular embodiment of the above method, X is NR'R" where R' is arylalkyl, or a heterocyclyl or heterocycloalkyl selected from 2-furfuryl, 2-pyrrolylmethyl, and (1-methyl-1H-pyrrol-2-yl)methyl; and R" is hydrogen.
- [0142] In an example of the embodiment of the above method, X is NR'R" where R' is heterocyclyl or heterocycloalkyl selected 2-furfuryl, (1H-pyrrol-2-yl)methyl, and (1-methyl-1H-pyrrol-2-yl)methyl; and R" is hydrogen.
- **[0143]** In any of the above embodiments, R and R_0 are independently selected from hydrogen and hydroxyl, and R_1 , R_2 , R_3 and R_4 are independently selected from halogen, alkoxy, alkyl and trifluoromethyl; n is 1; R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are independently selected from hydrogen, halogen, alkyl, trifluoromethyl, hydroxyl, alkoxy, formyloxy, alkylcarbonyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, and sulfonamido, or any two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} form an alkylenedioxy group.
- **[0144]** For example, R_1 , R_2 , R_3 and R_4 are independently selected from halogen, alkoxy, alkyl and trifluoromethyl; three of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are independently selected from hydrogen, halogen, alkyl, trifluoromethyl, hydroxyl, alkoxy, formyloxy, alkylcarbonyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, and sulfonamido, and one of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} is independently selected from hydroxyl, hydroxyalkyl, amino, alkylamino, dialkylamino, mercapto, and alkylmercapto.
- **[0145]** In the above embodiment, three of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are independently selected from hydrogen, halogen, alkyl, trifluoromethyl, alkoxy, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, and alkylmercapto, and one of R_{12} ,

R₁₃, R₁₄, R₁₅ and R₁₆ is independently selected from hydroxyl, hydroxyalkyl, aldehydo, amino, alkylamino, dialkylamino, mercapto, and alkylamicapto; and R₈ is methyl.

- **[0146]** In an embodiment of the methods of the invention involving a compound of formula (II), R_2 is selected from halogen, alkoxy and alkylmercapto, R_1 and R_3 are hydrogen; and three of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are independently selected from hydrogen, halogen, alkyl, trifluoromethyl, alkoxy, alkylamino, alkylaminoalkyl, dialkylamino, and alkylmercapto, and one of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} is independently selected from hydroxyl, hydroxyalkyl, amino, alkylamino, dialkylamino, mercapto, and alkylmercapto.
- [0147] In a particular embodiment of the above methods, R_2 is selected from halogen and alkoxy, and R_1 and R_3 are hydrogen, more particularly R_2 is selected from fluoro and methoxy.
- [0148] In accordance with embodiments of the methods, the compound employed therein is selected from:
- [0149] (Z)-N-(furan-2-ylmethyl)-2-(1-(4-hydroxy-3,5-dimethylbenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (001),
- [0150] (Z)-2-(5-fluoro-1-(4-formoxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (002),
- [0151] (Z)-N-(2-(dimethylamino)ethyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (003),
- [0152] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-3-yl)acetamide (004),
- [0153] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(1-methylpyrrolidin-3-yl)acetamide (005),
- [0154] (Z)-N-(furan-2-ylmethyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (006),
- [0155] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (007),
- [0156] (Z)-N-(furan-2-ylmethyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5,6-dimethoxy-2-methyl-1H-inden-3-yl)acetamide (008),
- [0157] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-3-ylmethyl)acetamide (009),
- [0158] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(pyridin-2-ylmethyl)acetamide (010),

- [0159] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(pyridin-3-ylmethyl)acetamide (011),
- [0160] (Z)-N-(furan-2-ylmethyl)-2-(1-(4-hydroxy-3-methoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (012),
- [0161] (Z)-2-(1-(3-bromo-4-hydroxy-5-methoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (013),
- [0162] (Z)-2-(1-(3-chloro-4-hydroxy-5-methoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (014),
- [0163] (Z)-N-benzyl-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetamide (015),
- [0164] (Z)-2-(1-(3-fluoro-4-hydroxy-5-methoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (016),
- [0165] (Z)-2-(5-fluoro-1-((7-hydroxybenzo[d][1,3]dioxol-5-yl)methylene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (017),
- [0166] (Z)-N-((1H-pyrrol-2-yl)methyl)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetamide (018),
- [0167] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methyl)acetamide (019),
- [0168] (Z)-N-(furan-2-ylmethyl)-2-(1-(3-hydroxy-4-methoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (020),
- [0169] (Z)-2-(5-fluoro-1-(4-(hydroxymethyl)-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (021),
- [0170] (Z)-N-((1H-pyrrol-2-yl)methyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (022),
- [0171] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-2-ylmethyl)acetamide (028),
- [0172] (Z)-2-(5-fluoro-1-(4-mesyloxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (029),
- [0173] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-phenylacetamide (034),
- [0174] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-phenylacetamide (035),

- [0175] (Z)-2-(1-(4-aminocarbonyl-3,5-dimethoxybenzylidene)-5-fluoro-2-methyl-1H-inden-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methyl)acetamide (065),
- [0176] (Z)-2-(1-(3,5-dimethoxy-4-sulfamoylbenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(1-methylpyrrolidin-3-yl)acetamide (067),
- [0177] (Z)-2-(1-(3,5-dimethoxy-4-sulfamoylbenzylidene)-5-fluoro-2-methyl-1H-inden-3-yl)-N-(pyridin-2-ylmethyl)acetamide (068),
- [0178] (Z)-2-(1-(3,5-dimethoxy-4-ureidobenzylidene)-5-fluoro-2-methyl-1H-inden-3-yl)-N-((4-methylpyridin-3-yl)methyl)acetamide (069),
- [0179] (Z)-N-(furan-2-ylmethyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-methylacetamide (146),
- [0180] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)-N-methylacetamide (147),
- [0181] (Z)-N-benzyl-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-methylacetamide (148),
- [0182] (Z)-N-benzyl-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-methylacetamide (149),
- [0183] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-phenoxyacetamide (151),
- [0184] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)-N-(trifluoromethyl)acetamide (152),
- [0185] (Z)-2-(5-cyano-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (154), and
- [0186] (Z)-N-(furan-2-ylmethyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-5-(trifluoromethyl)-1H-inden-3-yl)acetamide (155),
- [0187] (Z)-2-(benzylamino)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (202),
- [0188] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)-2-((pyridin-4-ylmethyl)amino)acetamide (203),
- [0189] (Z)-N-(furan-2-ylmethyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-2-(1H-imidazol-1-yl)acetamide (401),
- [0190] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-2-((furan-2-ylmethyl)amino)acetamide (404),

- [0191] (Z)-2-(cyclopropylamino)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (410),
- [0192] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methyl)-2-(pyrrolidin-1-yl)acetamide (412),
- [0193] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methyl)-2-((pyridin-3-ylmethyl)amino)acetamide (413),
- [0194] (Z)-2-(dimethylamino)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-phenylacetamide (415),
- [0195] (Z)-2-azido-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-phenylacetamide (416),
- [0196] (Z)-2-(ethylamino)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(1-methylpyrrolidin-3-yl)acetamide (420),
- [0197] (Z)-2-(((1H-imidazol-2-yl)methyl)amino)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(pyridin-3-ylmethyl)acetamide (423),
- [0198] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-2-((1-methylpyrrolidin-3-yl)amino)-N-(pyridin-3-ylmethyl)acetamide (425),
- [0199] (Z)-N-benzyl-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-2-((oxazol-2-ylmethyl)amino)acetamide (426),
- [0200] (Z)-N-benzyl-2-(cyclopropylamino)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetamide (427),
- [0201] (Z)-N-benzyl-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-2-((pyridin-3-ylmethyl)amino)acetamide (428),
- [0202] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)-2-((1-methylpyrrolidin-3-yl)amino)acetamide (430),
- [0203] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)-2-((oxazol-2-ylmethyl)amino)acetamide (431),
- [0204] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-2-((1-methylpiperidin-4-yl)amino)-N-(pyridin-2-ylmethyl)acetamide (433),
- [0205] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(pyridin-2-ylmethyl)-2-((pyridin-3-ylmethyl)amino)acetamide (434),
- [0206] (Z)-2-cyano-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methyl)acetamide (436),
- [0207] or the corresponding Z- or E-isomer thereof, prodrug, or salt thereof.

[0208] The structural formulas of the above compounds are as follows:

- [0209] In accordance with other embodiments of the methods, the prodrug compound employed therein is selected from:
- [0210] (Z)-4-((5-fluoro-3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl benzoate (214),
- [0211] (Z)-4-((3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-5-methoxy-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (4-nitrophenyl) carbonate (300),
- [0212] (Z)-4-((3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-5-methoxy-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl benzoate (301),
- [0213] (Z)-4-((3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-5-methoxy-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl nicotinate (302),
- [0214] (Z)-4-((3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-5-methoxy-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (2-(dimethylamino)ethyl)carbamate (303),
- [0215] (Z)-4-((3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-5-methoxy-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl morpholine-4-carboxylate (304),
- [0216] (Z)-4-((3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-5-methoxy-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (1-methylpiperidin-4-yl)carbamate (305),
- [0217] (Z)-4-((3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-5-methoxy-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (306),
- [0218] (Z)-4-((3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-5-methoxy-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-(1-methylpiperidin-4-yl)piperazine-1-carboxylate (307),
- [0219] (Z)-4-((3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-5-methoxy-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl dihydrogen phosphate (308),
- [0220] (Z)-(4-((3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-5-methoxy-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenoxy)methyl dihydrogen phosphate (309),
- [0221] (Z)-4-((5-fluoro-3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl nicotinate (311),
- [0222] (Z)-4-((5-fluoro-3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (4-nitrophenyl) carbonate (312),
- [0223] (Z)-4-((5-fluoro-3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (2-(dimethylamino)ethyl)carbamate (313),
- [0224] (Z)-4-((5-fluoro-3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl morpholine-4-carboxylate (314),

- [0225] (Z)-4-((5-fluoro-3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (1-methylpiperidin-4-yl)carbamate (315),
- [0226] (Z)-4-((5-fluoro-3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (316),
- [0227] (Z)-4-((5-fluoro-3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-(1-methylpiperidin-4-yl)piperazine-1-carboxylate (317),
- [0228] (Z)-4-((5-fluoro-3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl dihydrogen phosphate (318),
- [0229] (Z)-(4-((5-fluoro-3-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenoxy)methyl dihydrogen phosphate (319),
- [0230] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl benzoate (320),
- [0231] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl nicotinate (321),
- [0232] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (4-nitrophenyl) carbonate (322),
- [0233] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (2-(dimethylamino)ethyl)carbamate (323),
- [0234] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl morpholine-4-carboxylate (324),
- [0235] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (1-methylpiperidin-4-yl)carbamate (325),
- [0236] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (326),
- **[0237]** (*Z*)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-(1-methylpiperidin-4-yl)piperazine-1-carboxylate (**327**),
- [0238] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl dihydrogen phosphate (328),
- [0239] (Z)-(4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenoxy)methyl dihydrogen phosphate (329),

45

- [0240] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl benzoate (330),
- [0241] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl nicotinate (331),
- [0242] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (4-nitrophenyl) carbonate (332),
- [0243] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (2-(dimethylamino)ethyl)carbamate (333),
- [0244] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl morpholine-4-carboxylate (334),
- [0245] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (1-methylpiperidin-4-yl)carbamate (335),
- [0246] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (336),
- [0247] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl dihydrogen phosphate (338),
- [0248] (Z)-(4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenoxy)methyl dihydrogen phosphate (339),
- [0249] (Z)-4-((5-fluoro-2-methyl-3-(2-(((1-methyl-1H-pyrrol-2-yl)methyl)amino)-2-oxoethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl benzoate (340),
- [0250] (Z)-4-((5-fluoro-2-methyl-3-(2-(((1-methyl-1H-pyrrol-2-yl)methyl)amino)-2-oxoethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl nicotinate (341),
- [0251] (Z)-4-((5-fluoro-2-methyl-3-(2-(((1-methyl-1H-pyrrol-2-yl)methyl)amino)-2-oxoethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (4-nitrophenyl) carbonate (342),
- [0252] (Z)-4-((5-fluoro-2-methyl-3-(2-(((1-methyl-1H-pyrrol-2-yl)methyl)amino)-2-oxoethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (2-(dimethylamino)ethyl)carbamate (343),
- [0253] (Z)-4-((5-fluoro-2-methyl-3-(2-(((1-methyl-1H-pyrrol-2-yl)methyl)amino)-2-oxoethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl morpholine-4-carboxylate (344),
- [0254] (Z)-4-((5-fluoro-2-methyl-3-(2-(((1-methyl-1H-pyrrol-2-yl)methyl)amino)-2-oxoethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (1-methylpiperidin-4-yl)carbamate (345),

- [0255] (Z)-4-((5-fluoro-2-methyl-3-(2-(((1-methyl-1H-pyrrol-2-yl)methyl)amino)-2-oxoethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (346),
- [0256] (Z)-4-((5-fluoro-2-methyl-3-(2-(((1-methyl-1H-pyrrol-2-yl)methyl)amino)-2-oxoethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-(1-methylpiperidin-4-yl)piperazine-1-carboxylate (347),
- [0257] (Z)-4-((5-fluoro-2-methyl-3-(2-(((1-methyl-1H-pyrrol-2-yl)methyl)amino)-2-oxoethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl dihydrogen phosphate (348),
- [0258] (Z)-(4-((5-fluoro-2-methyl-3-(2-(((1-methyl-1H-pyrrol-2-yl)methyl)amino)-2-oxoethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenoxy)methyl dihydrogen phosphate (349),
- [0259] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-(phenylamino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (4-nitrophenyl) carbonate (350),
- [0260] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-(phenylamino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (351),
- [0261] (Z)-4-((5-fluoro-3-(2-((3-methoxyphenyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (4-nitrophenyl) carbonate (352),
- [0262] (Z)-4-((5-fluoro-3-(2-((3-methoxyphenyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (353),
- [0263] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-2-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (4-nitrophenyl) carbonate (354), and
- [0264] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-2-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (355),
- [0265] E-isomers thereof, or pharmaceutically acceptable salts thereof.
- [0266] The structural formulas of the above compounds are as follows:

[0267] or the corresponding Z or E-isomer thereof.

[0268] The invention includes the following aspects:

[0269] 1. A method of inhibiting a human or nonhuman mammalian Ras-mediated biological process, which method comprising administering in vivo or in vitro a Ras-inhibitory amount of at least one compound of formula I, a pharmaceutically acceptable salt or prodrug thereof:

[**0270**] wherein:

[0271] R and R_0 are independently selected from hydrogen, hydroxyl, alkyl, trifluoromethyl, amino, alkoxy and alkylamino, or R and R_0 together is oxygen or sulfur, or R and R_0 together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

[**0272**] n is 0,1 or 2;

[0273] R_1 , R_2 , R_3 , and R_4 are independently selected from hydrogen, hydroxyl, halogen, alkyl, trifluoromethyl, alkoxy, and alkylmercapto;

[0274] R_5 , R_6 , R_7 , and R_8 are independently selected from hydrogen, alkyl, trifluoromethyl and alkoxy; or R_5 and R_6 together form a carbon-carbon bond;

[0275] Y is hydrogen, alkyl, or trifluoromethyl, and Y' is hydrogen, alkyl, trifluoromethyl, amino, alkylamino, or alkoxy, or Y and Y' together is oxygen or sulfur, or Y and Y' together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

[0276] X is selected from hydrogen, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen in a compound of formula I wherein R₅ and R₆ together is a carbon-carbon bond, or X is NR'R", where R' is selected from the group consisting of hydrogen, hydroxyl, alkyl, trifluoromethyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, aryl, arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond,

or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 5-membered carbocyclic rings containing no double bond, or one or two double bonds, 4-membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and heterocycloalkyl is selected from 7-membered heterocyclic rings, 6-membered heterocyclic rings, and 5-membered heterocyclic rings, and the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and R" is selected from hydrogen, alkyl, hydroxyalkyl, aminoalkyl, dialkylaminoalkyl, cyanoalkyl, haloalkyl, alkylcarbonylalkylcarbonyloxy, pyridyl, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and E is a substituted or unsubstituted, saturated or unsaturated, 7- membered, 6-[0277] membered, 5-membered, 4-membered or 3-membered carbocyclic or heterocyclic ring; wherein at least one compound of formula I or a pharmaceutically acceptable salt [0278] or prodrug thereof is administered alone or in combination with at least one additional therapeutic agent other than a compound or pharmaceutically acceptable salt or prodrug of formula I.

[0279] 2. A method of therapeutically or prophylactically treating a human or nonhuman mammalian patient with a disease or condition treatable by inhibition of one or more Rasmediated biological process, which method comprising administering to a patient in need thereof a therapeutically or prophylactically effective amount of at least one ras-inhibitory compound of formula I, a pharmaceutically acceptable salt or prodrug thereof:

[0280] wherein:

[0281] R and R_0 are independently selected from hydrogen, hydroxyl, alkyl, trifluoromethyl, amino, alkoxy and alkylamino, or R and R_0 together is oxygen or sulfur, or R and R_0 together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

[**0282**] n is 0, 1 or 2;

[0283] R_1 , R_2 , R_3 , and R_4 are independently selected from hydrogen, hydroxyl, halogen, alkyl, trifluoromethyl, alkoxy, and alkylmercapto;

[0284] R_5 , R_6 , R_7 , and R_8 are independently selected from hydrogen, alkyl, trifluoromethyl and alkoxy; or R_5 and R_6 together form a carbon-carbon bond;

[0285] Y is hydrogen, alkyl, or trifluoromethyl, and Y' is hydrogen, alkyl, trifluoromethyl, amino, alkylamino, or alkoxy, or Y and Y' together is oxygen or sulfur, or Y and Y' together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

[0286] X is selected from hydrogen, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen in a compound of formula I wherein R_5 and R_6 together is a carbon-carbon bond, or X is NR'R", where R' is selected from the group consisting of hydrogen, hydroxyl, alkyl, trifluoromethyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, aryl, arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 5-membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and heterocycloalkyl is selected

formula I.

from 7-membered heterocyclic rings, 6-membered heterocyclic rings, and 5-membered heterocyclic rings, and the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and R" is selected from hydrogen, alkyl, hydroxyalkyl, aminoalkyl, dialkylaminoalkyl, cyanoalkyl, haloalkyl, alkylcarbonylalkylcarbonyloxy, pyridyl, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and E is a substituted or unsubstituted, saturated or unsaturated, 7- membered, 6-[0287] membered, 5-membered, 4-membered or 3-membered carbocyclic or heterocyclic ring; wherein at least one compound of formula I or a pharmaceutically acceptable salt [0288] or prodrug thereof is administered alone or in combination with at least one additional

[0289] 3. The method of aspect 1 or 2, wherein E is a carbocyclic or heterocyclic ring, optionally substituted with one or more substituents selected from hydroxyl, halogen, alkyl, haloalkyl, cyano, cyanoalkyl, nitro, oxo, alkoxy, formyloxy, amino, alkylamino, dialkylamino, aminoalkyl, alkylaminoalkyl, hydroxyalkyl, aldehydo, mercapto, and alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyloxy, alkylsulfonyloxy, alkylcarbonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, sulfonamido, and alkylenedioxy spanning two substituent positions.

therapeutic agent other than a compound or pharmaceutically acceptable salt or prodrug of

- [0290] 4. The method of any one of aspects 1-3, wherein:
- **[0291]** E is a substituted aryl or heteroaryl having at least one alkylsulfinyl or alkylsulfonyl substituent on the aryl or heteroaryl ring, or having at least one alkylmercapto on the aryl ring, or having a *p*-halo on the aryl ring when R' is dialkylaminoalkyl; or,
- [0292] R₅ and R₆ together is a carbon-carbon bond, R" is hydrogen and R' is a substituted arylalkyl, and E is a substituted or unsubstituted heterocyclic ring selected from the group

consisting of pyridinyl, pyrimidinyl, pyrazinyl, imidazolyl, triazinyl, thiophenyl, furanyl, thiazolyl, pyrazolyl and pyrrolyl; or

[0293] n is 1 or 2, R_5 and R_6 together form a carbon-carbon bond, Y and Y' are hydrogens or Y and Y' together is oxygen, E is a substituted phenyl, X is hydrogen, alkyl, trifluoromethyl, alkylmercapto or NR'R" wherein R' is hydrogen, hydroxyl or alkyl, and R" is hydrogen, alkyl or haloalkyl; or

[0294] R₅ and R₆ are independently selected from hydrogen or alkyl or R₅ and R₆ together form a carbon-carbon bond, E is a substituted aryl or heteroaryl, X is NR'R" wherein R' is hydrogen or hydroxyl and R" is COR_{11} wherein R_{11} is alkyl, alkoxy or amino; or

[0295] R₅, R₆, R₇ and R₈ are independently selected from hydrogen, alkyl and alkoxy, or R₅ and R₆ form a carbon-carbon bond, R₇ is hydrogen, R₈ is hydrogen, alkoxy or alkyl, E is phenyl substituted with at least two hydroxyl groups or at least two alkoxy groups, and Y and Y' together is oxygen, X is substituted alkoxy or NR'R", where R' is selected from hydrogen, alkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, dialkylaminoalkyl, aminoalkyl, arylalkyl, phenyl, indanyl, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and the heterocycloalkyl is selected from pyridinyl, piperidinyl, piperazinyl, pyrrolidinyl, and N-morpholino, and wherein any of the cyclic structures of the R' may be unsubstituted or substituted with one or more of halo, alkoxy, hydroxy, amino, alkylamino, dialkylamino, and sulfonamido; and R" is selected from hydrogen, alkyl, alkylamino, cyanoalkyl, haloalkyl, dialkylaminoalkyl, alkylamino, and pyridinyl.

- [0296] 5. The method of any one of aspects 1-4, wherein the 7-membered heterocyclic ring of R' is selected from azepanyl, oxazepanyl, thiazepanyl, azepinyl, oxepinyl, thiepanyl, homopiperazinyl, diazepinyl and thiazepinyl, the 6-membered heterocyclic ring is selected from piperidinyl, oxanyl, thianyl, pyridinyl, pyranyl, thiopyranyl, piperazinyl, morpholinyl, thiomorpholinyl, dioxanyl, dithianyl, diazinyl, oxazinyl, thiazinyl, dioxinyl, dithiinyl, trioxanyl, trithianyl, triazinyl and tetrazinyl, and the 5-membered heterocyclic ring is selected from pyrrolidinyl, tetrahydrofuranyl, tetrahydrothiaphenyl, pyrrolyl, furanyl, thiophenyl, imidazolidinyl, pyrazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl, dioxolanyl, dithiolanyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, furazanyl, oxadiazolyl, thiadiazolyl, dithiazolyl and tetrazolyl.
- [0297] 6. The method of any one of aspects 1-5, wherein E is selected from cycloheptanyl, cycloheptanyl, cycloheptanyl, cycloheptatrienyl, cyclohexanyl,

cyclohexenyl, cyclohexadienyl, phenyl, cyclopentanyl, cyclopentenyl, cyclopentadienyl, cyclopropanyl, cyclobutanyl, azepanyl, oxazepanyl, thiazepanyl, azepinyl, oxepinyl, thiepanyl, homopiperazinyl, diazepinyl, thiazepinyl, piperidinyl, oxanyl, thianyl, pyridinyl, pyranyl, thiopyranyl, piperazinyl, morpholinyl, thiomorpholinyl, dioxanyl, dithianyl, diazinyl, oxazinyl, thiazinyl, dioxinyl, dithiinyl, trioxanyl, trithianyl, triazinyl, tetrazinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothiaphenyl, pyrrolyl, furanyl, thiophenyl, imidazolidinyl, pyrazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl, dioxolanyl, dithiolanyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, furazanyl, oxadiazolyl, thiadiazolyl, dithiazolyl, and tetrazolyl, each of which is substituted or unsubstituted.

[0298] 7. The method of aspect 6, wherein E is:

[0299] wherein R₁₂, R₁₄, R₁₆, R₁₇, R₁₈ and R₁₉ are independently selected from hydrogen, hydroxyl, halogen, alkyl, trifluoromethyl, alkoxy, amino, alkylamino, dialkylamino, aminoalkyl, alkylaminoalkyl, hydroxyalkyl, aldehydo, mercapto, alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, and sulfonamido.

[0300] 8. The method of aspect 1 or 2, wherein said at least one compound is of the formula (II):

$$R_{13}$$
 R_{12}
 R_{14}
 R_{15}
 R_{16}
 R_{1}
 R_{10}
 $R_$

[0301] wherein:

[0302] R and R₀ are independently selected from hydrogen, hydroxyl, alkyl, trifluoromethyl, amino, alkoxy and alkylamino, or R and R₀ together is oxygen or sulfur, or R and R₀ together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

[0303] n is 0, 1 or 2;

[0304] Y is hydrogen, alkyl, or trifluoromethyl, and Y' is hydrogen, alkyl, trifluoromethyl, amino, alkylamino, or alkoxy, or Y and Y' together is oxygen or sulfur, or Y and Y' together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

R₁, R₂, R₃, and R₄ are independently selected from hydrogen, hydroxyl, halogen, [0305] alkyl, trifluoromethyl, alkoxy, and alkylmercapto;

[0306] R₇ and R₈ are independently selected from hydrogen, alkyl, trifluoromethyl and alkoxy;

[0307] R₁₂, R₁₃, R₁₄, R₁₅, and R₁₆ are independently selected from hydrogen, halogen, alkyl, trifluoromethyl, hydroxyl, alkoxy, formyloxy, alkylcarbonyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, and sulfonamido, or any two of R₁₂, R₁₃, R₁₄, R₁₅ and R₁₆ form an alkylenedioxy group;

[0308]X is selected from hydrogen, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen, or X is NR'R", where R' is selected from the group consisting of hydrogen, hydroxyl, alkyl, trifluoromethyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, aryl carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 5-membered carbocyclic rings containing no double bond, or one or two double bonds, 4-membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and heterocycloalkyl is selected from furanyl and pyrrolyl, and the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or

arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and R" is selected from hydrogen, alkyl, hydroxyalkyl, aminoalkyl, dialkylaminoalkyl, cyanoalkyl, haloalkyl, alkylcarbonylalkylcarbonyloxy, pyridyl, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido.

[0309] 9. The method of aspect 1 or 2, wherein said at least one compound is of the formula (II):

$$R_{13}$$
 R_{14}
 R_{15}
 R_{16}
 R_{10}
 R_{10}

[0310] wherein:

[0311] R and R_0 are independently selected from hydrogen, hydroxyl, alkyl, trifluoromethyl, amino, alkoxy and alkylamino, or R and R_0 together is sulfur, or R and R_0 together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

[**0312**] n is 0, 1 or 2;

[0313] Y is hydrogen, alkyl, or trifluoromethyl, and Y' is hydrogen, alkyl, trifluoromethyl, amino, alkylamino, or alkoxy, or Y and Y' together is oxygen or sulfur, or Y and Y' together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

[0314] R_1 , R_2 , R_3 and R_4 are independently selected from hydrogen, hydroxyl, halogen, alkyl, trifluoromethyl, alkoxy, and alkylmercapto;

[0315] R_7 and R_8 are independently selected from hydrogen, alkyl, trifluoromethyl and alkoxy;

[0316] R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are independently selected from hydrogen, halogen, alkyl, trifluoromethyl, hydroxyl, alkoxy, formyloxy, alkylcarbonyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, and sulfonamido, or any two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} form an alkylenedioxy group;

[0317] X is selected from hydrogen, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen, or X is NR'R", where R' is selected from the group consisting of hydrogen, hydroxyl, alkyl, trifluoromethyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, aryl carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 5-membered carbocyclic rings containing no double bond, or one or two double bonds, 4-membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and heterocycloalkyl is selected from 7-membered heterocyclic rings, 6-membered heterocyclic rings, and 5-membered heterocyclic rings, and the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and R" is selected from hydrogen, alkyl, hydroxyalkyl, aminoalkyl, dialkylaminoalkyl, cyanoalkyl, haloalkyl, alkylcarbonylalkylcarbonyloxy, pyridyl, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of

halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido.

[0318] 10. The method of aspect 1 or 2, wherein said at least one compound is of the formula (II):

$$R_{13}$$
 R_{12}
 R_{14}
 R_{15}
 R_{16}
 R_{1}
 R_{10}
 $R_$

[0319] wherein:

WO 2016/100546

[0320] R and R_0 are independently selected from hydrogen, hydroxyl, alkyl, trifluoromethyl, amino, alkoxy and alkylamino, or R and R_0 together is oxygen or sulfur, or R and R_0 together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

[**0321**] n is 0, 1 or 2;

[0322] Y is hydrogen, alkyl, or trifluoromethyl, and Y' is hydrogen, alkyl, trifluoromethyl, amino, alkylamino, or alkoxy, or Y and Y' together is sulfur, or Y and Y' together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

[0323] R₁, R₂, R₃ and R₄ are independently selected from hydrogen, hydroxyl, halogen, alkyl, trifluoromethyl, alkoxy, and alkylmercapto;

[0324] R_7 and R_8 are independently selected from hydrogen, alkyl, trifluoromethyl and alkoxy;

[0325] R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are independently selected from hydrogen, halogen, alkyl, trifluoromethyl, hydroxyl, alkoxy, formyloxy, alkylcarbonyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, and sulfonamido, or any two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} form an alkylenedioxy group;

PCT/US2015/066154

[0326] X is selected from hydrogen, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen, or X is NR'R", where R' is selected from the group consisting of hydrogen, hydroxyl, alkyl, trifluoromethyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, aryl carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 5-membered carbocyclic rings containing no double bond, or one or two double bonds, 4-membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and heterocycloalkyl is selected from 7-membered heterocyclic rings, 6-membered heterocyclic rings, and 5-membered heterocyclic rings, and the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and R" is selected from hydrogen, alkyl, hydroxyalkyl, aminoalkyl, dialkylaminoalkyl, cyanoalkyl, haloalkyl, alkylcarbonylalkylcarbonyloxy, pyridyl, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido. [0327] 11. The method of aspect 1 or 2, wherein said at least one compound is of the

formula (II):

$$R_{13}$$
 R_{14}
 R_{15}
 R_{16}
 R_{16}
 R_{10}
 R

[0328] wherein:

R and R₀ are independently selected from hydrogen, hydroxyl, alkyl, [0329] trifluoromethyl, amino, alkoxy and alkylamino, or R and R₀ together is oxygen or sulfur, or R and R₀ together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

[0330] n is 0, 1 or 2;

[0331] Y is hydrogen, alkyl, or trifluoromethyl, and Y' is hydrogen, alkyl, trifluoromethyl, amino, alkylamino, or alkoxy, or Y and Y' together is oxygen or sulfur, or Y and Y' together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

[0332] R₁, R₂, R₃ and R₄ are independently selected from hydrogen, hydroxyl, halogen, alkyl, trifluoromethyl, alkoxy, and alkylmercapto;

[0333] R₇ and R₈ are independently selected from trifluoromethyl and alkoxy;

[0334] R₁₂, R₁₃, R₁₄, R₁₅ and R₁₆ are independently selected from hydrogen, halogen, alkyl, trifluoromethyl, hydroxyl, alkoxy, formyloxy, alkylcarbonyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, and sulfonamido, or any two of R₁₂, R₁₃, R₁₄, R₁₅ and R₁₆ form an alkylenedioxy group;

X is selected from hydrogen, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and [0335] hydroxyl with the proviso that X is not hydroxyl when Y and Y' together is oxygen, or X is NR'R", where R' is selected from the group consisting of hydrogen, hydroxyl, alkyl, trifluoromethyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, aryl WO 2016/100546

carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 5-membered carbocyclic rings containing no double bond, or one or two double bonds, 4-membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and heterocycloalkyl is selected from 7-membered heterocyclic rings, 6-membered heterocyclic rings, and 5-membered heterocyclic rings, and the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and R" is selected from hydrogen, alkyl, hydroxyalkyl, aminoalkyl, dialkylaminoalkyl, cyanoalkyl, haloalkyl, alkylcarbonylalkylcarbonyloxy, pyridyl, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido. 12. The method of aspect 1 or 2, wherein said at least one compound is of the [0336]

[0336] 12. The method of aspect 1 or 2, wherein said at least one compound is of the formula (II):

$$R_{13}$$
 R_{12}
 R_{14}
 R_{15}
 R_{16}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R_{19}
 R_{19}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}

[**0337**] wherein:

[0338] R and R_0 are independently selected from hydrogen, hydroxyl, alkyl, trifluoromethyl, amino, alkoxy and alkylamino, or R and R_0 together is oxygen or sulfur, or R

and R₀ together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

n is 0, 1 or 2; [0339]

[0340] Y is hydrogen, alkyl, or trifluoromethyl, and Y' is hydrogen, alkyl, trifluoromethyl, amino, alkylamino, or alkoxy, or Y and Y' together is oxygen or sulfur, or Y and Y' together is a single-bonded or a double-bonded nitrogen bonded to one or more of hydrogen, hydroxyl, alkyl, and trifluoromethyl;

R₁, R₂, R₃ and R₄ are independently selected from hydrogen, hydroxyl, halogen, [0341] alkyl, trifluoromethyl, alkoxy, and alkylmercapto;

R₇ and R₈ are independently selected from hydrogen, alkyl, trifluoromethyl and [0342] alkoxy;

R₁₂, R₁₃, R₁₄, R₁₅ and R₁₆ are independently selected from hydrogen, halogen, [0343] alkyl, trifluoromethyl, hydroxyl, alkoxy, formyloxy, alkylcarbonyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, and sulfonamido, or any two of R₁₂, R₁₃, R₁₄, R₁₅ and R₁₆ form an alkylenedioxy group;

[0344] X is selected from hydrogen, alkyl, trifluoromethyl, alkoxy, alkylmercapto, and hydroxyl with the proviso that X cannot be hydroxyl when Y and Y' together is oxygen, or X is NR'R", where R' is selected from hydrogen, hydroxyl, alkyl, trifluoromethyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, benzyl, phenylalkyl, indanyl, aryl, phenyl, carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6membered carbocyclic rings containing no double bond, or one or two double bonds, 5membered carbocyclic rings containing no double bond, or one or two double bonds, 4membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing no double bond, heterocyclyl, and heterocycloalkyl, where the heterocycle of the heterocyclyl and the heterocycloalkyl is selected from azepanyl, oxazepanyl, thiazepanyl, azepinyl, oxepinyl, thiepanyl, homopiperazinyl, diazepinyl, thiazepinyl, oxanyl, thianyl, pyranyl, thiopyranyl, thiomorpholinyl, dioxanyl, dithianyl, diazinyl, oxazinyl, thiazinyl, dioxinyl, dithiinyl, trioxanyl, trithianyl, triazinyl, tetrazinyl,

tetrahydrofuranyl, tetrahydrothiaphenyl, pyrrolyl, furanyl, thiophenyl, imidazolidinyl, pyrazolidinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl, dioxolanyl, dithiolanyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, furazanyl, oxadiazolyl, thiadiazolyl, dithiazolyl, and tetrazolyl, wherein the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; R" is selected from hydrogen, trifluoromethyl, hydroxyalkyl, and COR₁₁ wherein R₁₁ is selected from the group consisting of hydrogen, amino, alkyl, trifluoromethyl, alkoxy, alkylmercapto and aryl; or R' and R" may be combined to form a 5-, 6- or 7-membered ring, saturated or unsaturated, heterocyclic containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy and sulfonamido.

[0345] 13. The method of aspect 1, wherein X is NR'R" where R' is selected from alkyl, trifluoromethyl, alkenyl, alkynyl, hydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, arylalkyl selected from the group consisting of benzyl, phenylalkyl, indanyl, heterocyclyl, and heterocycloalkyl, where the heterocycle is selected from furanyl, pyrrolyl, thiophenyl, and imidazolyl, and the cyclic structure of heterocyclyl and heterocycloalkyl is optionally substituted with one or more of halo, alkyl, trifluoromethyl, hydroxy, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, and carboxamido; R" is selected from hydrogen, alkyl, trifluoromethyl, cyanoalkyl, and dialkylaminoalkyl, or R' and R" together form a 5, 6, or 7-member heterocyclic ring, saturated or unsaturated, substituted or unsubstituted, that contains at least one nitrogen and optionally oxygen.

[0346] 14. The method of aspect 13, wherein X is NR'R" where R' is selected from alkylaminoalkyl, dialkylaminoalkyl, arylalkyl, benzyl, heterocyclyl, and heterocycloalkyl where the heterocycle is selected from furanyl, pyrrolyl, and thiophenyl, and the cyclic structure of heterocyclyl and heterocycloalkyl is optionally substituted with one or more of halo, alkyl, trifluoromethyl, hydroxy, alkoxy, amino, alkylamino, and dialkylamino; R" is selected from hydrogen, alkyl, trifluoromethyl or dialkylaminoalkyl, or R' and R" together form a 5, 6, or 7-member heterocyclic ring, saturated or unsaturated, substituted or unsubstituted, that contains at least one nitrogen and optionally oxygen.

- [0347] 15. The method of aspect 14, wherein X is NR'R" where R' is selected from dialkylaminoalkyl, arylalkyl, benzyl, heterocyclyl, and heterocycloalkyl where the heterocycle is selected from furanyl and pyrrolyl, and the cyclic structure may optionally be substituted with one or more of halo, alkyl, trifluoromethyl, alkoxy, alkylamino and dialkylamino; and R" is selected from hydrogen, alkyl, trifluoromethyl or dialkylaminoalkyl.
- [0348] 16. The method of aspect 15, wherein X is NR'R" where R' is benzyl, or a heterocyclyl or heterocycloalkyl selected from 2-furfuryl, 2-pyrrolylmethyl, and (1-methyl-1H-pyrrol-2-yl)methyl; and R" is hydrogen.
- [0349] 17. The method of aspect 16, wherein X is NR'R" where R' is heterocyclyl or heterocycloalkyl selected 2-furfuryl, (1H-pyrrol-2-yl)methyl, and (1-methyl-1H-pyrrol-2-yl)methyl; and R" is hydrogen.
- **[0350]** 18. The method of any one of aspects 8-17, wherein R and R_0 are independently selected from hydrogen and hydroxyl, and R_1 , R_2 , R_3 and R_4 are independently selected from halogen, alkoxy, alkyl and trifluoromethyl; n is 1; R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are independently selected from hydrogen, halogen, alkyl, trifluoromethyl, hydroxyl, alkoxy, formyloxy, alkylcarbonyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, and sulfonamido, or any two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} form an alkylenedioxy group.
- [0351] 19. The method of aspect 18, wherein R_1 , R_2 , R_3 and R_4 are independently selected from halogen, alkoxy, alkyl and trifluoromethyl; three of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are independently selected from hydrogen, halogen, alkyl, trifluoromethyl, hydroxyl, alkoxy, formyloxy, alkylcarbonyloxy, hydroxyalkyl, aldehydo, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, azido, and substituted or unsubstituted groups selected from alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, and sulfonamido, and one of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} is independently selected from hydroxyl, hydroxyalkyl, amino, alkylamino, dialkylamino, mercapto, and alkylmercapto.
- **[0352]** 20. The method of aspect 19, wherein three of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are independently selected from hydrogen, halogen, alkyl, trifluoromethyl, alkoxy, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, and alkylmercapto, and one of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} is independently selected from hydroxyl, hydroxyalkyl,

aldehydo, amino and alkylamino, dialkylamino, mercapto, and alkylmercapto; and R_8 is methyl.

- **[0353]** 21. The method of aspect 8, wherein R_2 is selected from halogen, alkoxy and alkylmercapto, R_1 and R_3 are hydrogen; and three of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are independently selected from hydrogen, halogen, alkyl, trifluoromethyl, alkoxy, alkylamino, alkylaminoalkyl, dialkylamino, and alkylmercapto, and one of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} is independently selected from hydroxyl, hydroxyalkyl, amino, alkylamino, dialkylamino, mercapto, and alkylmercapto.
- [0354] 22. The method of aspect 21, wherein R_2 is selected from halogen and alkoxy, and R_1 and R_3 are hydrogen.
- [0355] 23. The method of aspect 22, wherein R_2 is selected from fluoro and methoxy.
- [0356] 24. The method of aspect 1 or 2, wherein said compound is selected from:
- [0357] (Z)-N-(furan-2-ylmethyl)-2-(1-(4-hydroxy-3,5-dimethylbenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (001),
- [0358] (Z)-2-(5-fluoro-1-(4-formoxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (002),
- [0359] (Z)-N-(2-(dimethylamino)ethyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (003),
- [0360] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-3-yl)acetamide (004),
- [0361] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(1-methylpyrrolidin-3-yl)acetamide (005),
- [0362] (Z)-N-(furan-2-ylmethyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (006),
- [0363] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (007),
- [0364] (Z)-N-(furan-2-ylmethyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5,6-dimethoxy-2-methyl-1H-inden-3-yl)acetamide (008),
- [0365] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-3-ylmethyl)acetamide (009),
- [0366] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(pyridin-2-ylmethyl)acetamide (010),

- [0367] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(pyridin-3-ylmethyl)acetamide (011),
- [0368] (Z)-N-(furan-2-ylmethyl)-2-(1-(4-hydroxy-3-methoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (012),
- [0369] (Z)-2-(1-(3-bromo-4-hydroxy-5-methoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (013),
- [0370] (Z)-2-(1-(3-chloro-4-hydroxy-5-methoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (014),
- [0371] (Z)-N-benzyl-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetamide (015),
- [0372] (Z)-2-(1-(3-fluoro-4-hydroxy-5-methoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (016),
- [0373] (Z)-2-(5-fluoro-1-((7-hydroxybenzo[d][1,3]dioxol-5-yl)methylene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (017),
- [0374] (Z)-N-((1H-pyrrol-2-yl)methyl)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetamide (018),
- [0375] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methyl)acetamide (019),
- [0376] (Z)-N-(furan-2-ylmethyl)-2-(1-(3-hydroxy-4-methoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (020),
- [0377] (Z)-2-(5-fluoro-1-(4-(hydroxymethyl)-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (021),
- [0378] (Z)-N-((1H-pyrrol-2-yl)methyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (022),
- [0379] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-2-ylmethyl)acetamide (028),
- [0380] (Z)-2-(5-fluoro-1-(4-mesyloxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (029),
- [0381] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-phenylacetamide (034),
- [0382] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-phenylacetamide (035),

- [0383] (Z)-2-(1-(4-aminocarbonyl-3,5-dimethoxybenzylidene)-5-fluoro-2-methyl-1H-inden-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methyl)acetamide (065),
- [0384] (Z)-2-(1-(3,5-dimethoxy-4-sulfamoylbenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(1-methylpyrrolidin-3-yl)acetamide (067),
- [0385] (Z)-2-(1-(3,5-dimethoxy-4-sulfamoylbenzylidene)-5-fluoro-2-methyl-1H-inden-3-yl)-N-(pyridin-2-ylmethyl)acetamide (068), and
- [0386] (Z)-2-(1-(3,5-dimethoxy-4-ureidobenzylidene)-5-fluoro-2-methyl-1H-inden-3-yl)-N-((4-methylpyridin-3-yl)methyl)acetamide (069),
- [0387] or the corresponding Z- or E-isomer thereof, prodrug, or salt thereof.
- [0388] 25. The method of aspect 2, wherein the disease or condition treatable by the inhibition of one or more Ras-mediated biological process is cancer, neurofibromatosis, or Costello syndrome.
- [0389] 26. The method of aspect 1 or 2, wherein the Ras-mediated biological process is selected from growth, proliferation, survival, metastasis, drug resistance and radiation resistance of a tumor cell.
- [0390] 27. The method of aspect 2, wherein the disease or condition treatable by the inhibition of one or more Ras-mediated biological process is cancer.
- [0391] 28. The method of aspect 27, wherein the cancer is selected from pancreatic cancer, lung cancer, colorectal cancer, melanoma, ovarian cancer, renal cancer, prostate cancer, head and neck cancer, endocrine cancer, uterine cancer, breast cancer, sarcoma cancer, gastric cancer, hepatic cancer, esophageal cancer, central nervous system cancer, brain cancer, hepatic cancer, germline cancer, lymphoma, and leukemia.
- [0392] 29. The method of aspect 28, wherein the cancer is selected from pancreatic cancer, colorectal cancer, and lung cancer.
- [0393] 30. The method of any one of aspects 26-29, wherein the cancer is drug-resistant or radiation-resistant.
- [0394] 31. The method of any one of aspects 2-30, wherein said patient is pre-selected by utilizing an assay of said patient's tissue, blood or tumor for an abnormal, mutant or hyperactive *ras* gene or Ras protein, or an aberrant Ras-mediated biological process.
- [0395] 32. The method of any one of claims 2-31, wherein said patient's tissue, blood or tumor contains an abnormal, mutant or hyperactive *ras* gene or Ras protein, or aberrant Rasmediated biological process.
- [0396] The present invention further provides the following particular aspects:

[0397] 1. A method of therapeutically treating a cancer patient whose cancer contains or has been determined to contain a Ras-activating mutation of a *ras* gene, which method comprising administering to the patient a Ras-inhibitory effective amount of at least one Ras-inhibitory compound of formula II having a selectivity index greater than one, a pharmaceutically acceptable salt or prodrug thereof:

$$R_{13}$$
 R_{12}
 R_{14}
 R_{15}
 R_{16}
 R_{1}
 R_{10}
 R_{10}

[0398] wherein:

[0399] R and R_0 are independently selected from the group consisting of hydrogen, hydroxyl, alkyl, alkoxy, alkylamino, and amino; or, R and R_0 together is double-bonded oxygen;

[0400] n is 0, 1 or 2;

[0401] Y and Y' together is double-bonded oxygen;

[0402] R_1 , R_2 , R_3 , and R_4 are independently selected from hydrogen, hydroxyl, halogen, alkyl, alkoxy, and alkylmercapto, with the proviso that at least one of R_1 , R_2 , R_3 and R_4 is hydrogen;

[0403] R₇ is hydrogen;

[0404] R₈ is selected from hydrogen, alkyl and alkoxy;

[0405] at least two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are hydrogens; at least two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are hydroxyl; or at least two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are alkoxy;

[0406] R₁₄ is selected from hydrogen, hydroxyl, halogen, alkyl, amino and dialkylamino;

[0407] X is a substituted alkoxy or NR'R", where R' is selected from the group consisting of hydrogen, alkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, dialkylaminoalkyl, aminoalkyl, arylalkyl, phenyl, indanyl, cyclopropanyl, heterocyclyl and heterocyclylalkyl, where the heterocycle of the heterocyclyl and heterocyclylalkyl is selected from pyridinyl, piperidinyl, piperazinyl, pyrrolidinyl and N-morpholino, and wherein any of

the cyclic structures of R' may be unsubstituted or substituted with one or more of halo, haloalkyl, alkoxy, hydroxyl, amino, alkylamino, dialkylamino and sulfonamido; and R" is selected from hydrogen, alkyl, alkylamino, cyanoalkyl, haloalkyl, hydroxyalkyl, dialkylaminoalkyl, alkylcarbonylakylcarbonyloxy and pyridinyl;

[0408] wherein said selectivity index is the numerical ratio of the concentration of said compound to cause in vitro 50% growth inhibition of a cell, selected from COLO 205, Caco-2, and HT-29, lacking activated Ras to the concentration of said compound to cause in vitro 50% growth inhibition of a cell, selected from A549, HCT116, and SW480, harboring activated Ras;

[0409] wherein at least one compound of formula II or a pharmaceutically acceptable salt or prodrug thereof is administered alone or in combination with at least one additional agent, other than a compound or pharmaceutically acceptable salt or prodrug of formula II, selected from an anticancer agent and radiation.

- [0410] 2. The method of particular aspect 1, wherein R_1 , R_3 , and R_4 are hydrogen and R_2 is selected from hydroxyl, halogen, alkyl, alkoxy, and alkylmercapto.
- [0411] 3. The method of particular aspect 2, wherein R_2 is selected from halogen and alkoxy.
- [0412] 4. The method of particular aspect 3, wherein R_2 is selected from fluorine and methoxy.
- [0413] 5. The method of particular aspect 1, wherein R_7 is hydrogen and R_8 is selected from alkyl and alkoxy.
- [0414] 6. The method of particular aspect 5, wherein R_8 is alkyl.
- [0415] 7. The method of particular aspect 1, wherein R_{14} is selected from hydrogen, hydroxyl, halogen, alkyl, amino and dialkylamino.
- [0416] 8. The method of particular aspect 7, wherein R_{14} is selected from hydroxy and amino.
- [0417] 9. The method of particular aspect 1, wherein the heterocycle of the heterocyclyl and heterocycloalkyl is selected from pyridinyl, piperidinyl, piperazinyl, and pyrrolidinyl.
- [0418] 10. The method of particular aspect 1, wherein R' is phenyl or arylalkyl, optionally substituted on the phenyl or the arylalkyl by one or more halogen atoms.
- [0419] 11. The method of particular aspect 1, wherein said selectivity index is at least ten.
- [0420] 12. The method of particular aspect 11, wherein said selectivity index is at least one hundred.

- [0421] 13. The method of particular aspect 1, wherein said compound is selected from:
- [0422] (Z)-N-(2-(dimethylamino)ethyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (003),
- [0423] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-3-yl)acetamide (004),
- [0424] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-3-ylmethyl)acetamide (009),
- [0425] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(pyridin-2-ylmethyl)acetamide (010),
- [0426] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(pyridin-3-ylmethyl)acetamide (011),
- [0427] (Z)-N-benzyl-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetamide (015),
- [0428] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-2-ylmethyl)acetamide (028),
- [0429] (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-phenylacetamide (034),
- [0430] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-phenylacetamide (035),
- [0431] (Z)- N-benzyl-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-methylacetamide (148), and
- [0432] (Z)- N-benzyl-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-methylacetamide (149),
- [0433] or the corresponding Z- or E-isomer thereof, prodrug, or salt thereof.
- [0434] 14. The method of particular aspect 1, wherein the cancer is metastatic, drug resistant, or radiation resistant.
- [0435] 15. The method of particular aspect 1, wherein the effective amount is less than or equal to about 20 mg/kg (compound/body weight).
- [0436] 16. The method of particular aspect 1, wherein the effective amount is the amount required to cause at least a 10% reduction in cancer cell mass of said patient's cancer.
- [0437] 17. The method of particular aspect 1, wherein the Ras-inhibitory effective amount is therapeutically effective amount.

- **[0438]** 18. The method of particular aspect 1, wherein said prodrug is a derivative of a compound of formula II, wherein R_{14} is Q-U wherein U is selected from the group consisting of oxygen, sulfur, nitrogen, OCH₂, SCH₂ and NHCH₂; and Q is selected from the group consisting of PEG-CO, HCO, and amino acid; or Q and U together is a substituted or unsubstituted group selected from phosphonooxy, phosphonoalkyloxy, formyloxy, alkylcarbonyloxy, alkylcarbonyloxyalkyloxy, aminocarbonyloxyalkyloxy, alkylsulfinyloxy, alkylsulfinyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, arylcarbonyloxy, arylalkylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy, and heterocyclylalkylcarbonyloxy.
- [0439] 19. The method of particular aspect 1, wherein said prodrug is selected from:
- [0440] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl benzoate (320),
- [0441] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl nicotinate (321),
- [0442] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (2-(dimethylamino)ethyl)carbamate (323),
- [0443] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl morpholine-4-carboxylate (324),
- [0444] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (1-methylpiperidin-4-yl)carbamate (325),
- [0445] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (326),
- **[0446]** (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-(1-methylpiperidin-4-yl)piperazine-1-carboxylate (**327**),
- [0447] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl dihydrogen phosphate (328),
- [0448] (Z)-(4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenoxy)methyl dihydrogen phosphate (329),
- [0449] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl benzoate (330),
- [0450] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl nicotinate (331),

[0451] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (2-(dimethylamino)ethyl)carbamate (333),

[0452] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl morpholine-4-carboxylate (334),

[0453] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (1-methylpiperidin-4-yl)carbamate (335),

[0454] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (336),

[0455] (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl dihydrogen phosphate (338),

[0456] (Z)-(4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenoxy)methyl dihydrogen phosphate (339),

[0457] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-(phenylamino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (351),

[0458] (Z)-4-((5-fluoro-3-(2-((3-methoxyphenyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (353), and

[0459] (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-2-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (355),

[0460] or a pharmaceutically acceptable salt thereof.

[0461] In accordance with an embodiment, the disease or condition treatable by the inhibition of one or more Ras-mediated biological process is cancer, neurofibromatosis, or Costello syndrome, particularly cancer.

[0462] In accordance with an embodiment, the Ras-mediated biological process is selected from growth, proliferation, survival, metastasis, drug resistance and radiation resistance of a tumor cell.

[0463] Examples of cancers include pancreatic cancer, lung cancer, colorectal cancer, melanoma, ovarian cancer, renal cancer, prostate cancer, head and neck cancer, endocrine cancer, uterine cancer, breast cancer, sarcoma cancer, gastric cancer, hepatic cancer, esophageal cancer, central nervous system cancer, brain cancer, hepatic cancer, germline cancer, lymphoma, and leukemia, particularly pancreatic cancer, colorectal cancer, and lung cancer.

[0464] In an embodiment, the cancer is drug-resistant or radiation-resistant.

[0465] The invention further provides a method wherein the patient is pre-selected by utilizing an assay of the patient's tissue, blood or tumor for an abnormal, mutant or hyperactive *ras* gene or Ras protein, or an aberrant Ras-mediated biological process. Thus, for example, the patient's tissue, blood or tumor contains an abnormal, mutant or hyperactive *ras* gene or Ras protein, or aberrant Ras-mediated biological process.

[0466] In a preferred embodiment, a Ras-inhibitory compound can be identified from one or more compounds of formulas I-II by an assay of Ras inhibition. Some representative assays of selective Ras inhibition are illustrated in the examples that follow herein. As used herein, the terminology selective "Ras inhibition" means selective, preferential or specific inhibition of aberrant Ras-mediated cellular processes, such as, for example, accelerated or aberrant cell growth, proliferation, survival, and invasiveness, relative to these processes in cells or tissues with normal or non-aberrant Ras and Ras-mediated processes.

determining the ratio (numerator/denominator) of a given compound's potency (e.g., IC_{50}) to inhibit the growth of cells with "normal" or "wild-type" Ras (numerator) relative to that of cells with mutated and/or activated Ras (denominator). The terminology used herein for such an experimentally determined ratio is "selectivity" or "selectivity index", which may be further denoted by showing the respective cell types used to determine the numerical ratio (e.g., HT-29/A549; Caco-2/SW-480; HT-29/SW-480; HT-29/CCT-116). For a given compound, a "selectivity" value or "selectivity index" of greater than 1 (one), preferably greater than 10 (ten), more preferably greater than 100 (one hundred) and even more preferably greater than 1000 (one thousand) indicates said compound selectively inhibits hyperactive Ras and/or Ras-mediated cellular functions, such as those which may drive or accelerate cancer cell growth, proliferation, metastasis, resistance to drugs or radiation, and the like. Conversely, compounds with selectivity index less than or equal to one (≤ 1) are, by definition herein, "non-selective" with respect to Ras.

[0468] The present invention further provides a pharmaceutical composition comprising a compound as described above, a pharmaceutically acceptable salt or prodrug thereof, and a pharmaceutically acceptable carrier.

[0469] In accordance with an embodiment, the pharmaceutical composition may further include at least one additional therapeutic agent other than a compound of formula I-II.

[0470] In a more preferred embodiment of the present invention, the aforementioned assay of Ras inhibition employs one or more isogenic cell line pair(s), wherein both of the

lines share the same genetic background except that one of the lines ("mutant line") contains one or more mutated or hyperactive *ras* gene(s), Ras protein(s) and/or aberrant Ras-mediated biological process(es), and the other line ("normal line") lacks such mutation(s) or aberrant function(s).

In a further preferred embodiment of the present invention, the aforementioned assay employing isogenic cell line(s) enables the determination and calculation of a Ras-Inhibitory Specificity Index (RISI). One experimental approach to determination of such a RISI may, for example, comprise determining the ratio of the producing a specified effect on the normal line, such as, for example, 50% growth inhibition in a specified period of time, divided by the concentration of the same compound producing the same specified effect (e.g., 50% growth inhibition in the same specified period of time) on the mutant line.

[0472] Whereas in the aforementioned approach, the 50% growth inhibition values may be obtained by testing the compound against both normal and mutant cell lines at multiple concentrations over a specified concentration range, for example 10 nM-10,000 nM, an alternate, more streamlined approach to determining a RISI value could comprise measuring the ratio of percentage growth inhibition in a given period of time by a specified single concentration of the compound, for example 250 nM, selected from within a range of concentrations, for example from within a range of 10 nM-10,000 nM, against the mutant (numerator) relative to the normal cell line (denominator). This approach may be generally more applicable to larger-scale or preliminary screening of groups of individual compounds or mixtures thereof to obtain a preliminary or screening RISI, whereas a RISI determined using concentration ranges to determine 50% growth inhibition values may be more precise. A RISI value obtained for a given compound by either approach may be less than, equal to or greater than 1 (one), and a RISI value of greater than 1 (one) indicates said compound selectively inhibits Ras or Ras-mediated cellular functions.

[0473] In a highly preferred embodiment of the present invention, the employed assay of Ras inhibition enables identification of a compound from one or more compounds of formula I or II having a RISI of greater than 1, preferably greater than 10, more preferably greater than 100, and even more preferably greater than 1000.

[0474] The present invention yet further provides a pharmaceutical composition comprising a therapeutically effective amount of Ras-inhibitory activity from one or more Ras-inhibitory compound(s) of formula I or II, or pharmaceutically acceptable salt(s) or prodrug(s) thereof, alone or in combination with at least one additional therapeutic agent.

The therapeutically effective amount can be that amount provided by a Ras-inhibiting and/or a disease-process inhibiting effective amount, such as an anticancer effective amount, of a compound of formula I or II.

In addition, the present invention provides a method of therapeutically or [0475] prophylactically treating a condition treatable by the inhibition of Ras-mediated biological processes including, for example, tumor cell growth, proliferation, survival, invasion and metastasis, as well as resistance to chemotherapy, other molecularly targeted therapeutics, and radiation; and, a method of therapeutically or prophylactically treating cancers harboring hyperactive or mutant Ras. These methods comprise administering a therapeutically or prophylactically effective amount of Ras-inhibiting activity from at least one Ras-inhibitory compound, or pharmaceutically acceptable salt or prodrug thereof, of formula I or II.

For example, the disease or condition treatable by the inhibition of one or more [0476] Ras-mediated biological process is cancer, neurofibromatosis, or Costello syndrome. In an embodiment, the Ras-mediated biological process is selected from growth, proliferation, survival, metastasis, drug resistance and radiation resistance of a tumor cell.

In an embodiment, the cancer is selected from pancreatic cancer, lung cancer, [0477] colorectal cancer, melanoma, ovarian cancer, renal cancer, prostate cancer, head and neck cancer, endocrine cancer, uterine cancer, breast cancer, sarcoma cancer, gastric cancer, hepatic cancer, esophageal cancer, central nervous system cancer, brain cancer, hepatic cancer, germline cancer, lymphoma, and leukemia, particularly pancreatic cancer, colorectal cancer, and lung cancer. In accordance with an embodiment, the cancer is drug-resistant or radiation-resistant.

[0478] In an embodiment of the above method, the patient is pre-selected by utilizing an assay of the patient's tissue, blood or tumor for an abnormal, mutant or hyperactive ras gene or Ras protein, or an aberrant Ras-mediated biological process.

[0479] In an embodiment, the patient's tissue, blood or tumor contains an abnormal, mutant or hyperactive ras gene or Ras protein, or aberrant Ras-mediated biological process.

The compounds in the present invention also can be in the form of a [0480] pharmaceutically acceptable salt, which may include, for example, the salt of one or more acidic substituents (e.g. a carboxylic salt, a sulfonic acid salt, and the like) and the salt of one or more basic substituents (e.g. the salt of an amine, and the like). Suitable salts of acidic substituents include, for example, metal salts (e.g. sodium salts, potassium salts, magnesium salts, zinc salts, and the like) and ammonium salts (e.g., NH₄+ salts, alkylammonium salts,

quaternary ammonium salts, and the like). Suitable salts of basic substituents include, for example, acid addition salts (e.g., hydrochloride salts, hydrobromide salts, carboxylate salts (e.g., acetate salts), sulfate salts, sulfonate salts (e.g., mesylate salts), phosphate salts, quaternary ammonium salts, and the like.

[0481] Compounds employed in the present invention can also be provided as a prodrug, which is a drug derivative or drug precursor compound that typically is inactive or less than fully active until it is converted in the body through a normal metabolic process such as, for example, hydrolysis of an ester or amide form of the drug, to the active drug. A prodrug may be selected and used instead of the parent drug because, for example, in its prodrug form it is less toxic, and/or may have better absorption, distribution, metabolism and excretion (ADME) characteristics, and the like, than the parent drug. A prodrug might also be used to improve how selectively the drug interacts with cells or processes that are not its intended target. This approach may be employed particularly, for example, to prevent or decrease adverse effects, especially in cancer treatments, which may be especially prone to having severe unintended and undesirable side effects.

[0482] The term "prodrug" denotes a derivative of a compound, which derivative, when administered to warm-blooded animals, e.g. humans, is converted into the compound (drug). For example, the enzymatic and/or chemical hydrolytic cleavage of a derivative compound of the present invention occurs in such a manner that the proven drug form is released, and the moiety or moieties split off remain nontoxic or are metabolized so that nontoxic metabolites are produced. For example, a carboxylic acid group can be esterified, e.g., with a methyl group or ethyl group to yield an ester. When an ester is administered to a subject, the ester is cleaved, enzymatically or non-enzymatically, reductively, oxidatively, or hydrolytically, to reveal the anionic group. An anionic group can be esterified with moieties (e.g., acyloxymethyl esters) which are cleaved to reveal an intermediate compound which subsequently decomposes to yield the active compound.

[0483] The prodrugs can be prepared in situ during the isolation and purification of the compounds, or by separately reacting the purified compound with a suitable derivatizing agent. For example, hydroxy groups can be converted into esters via treatment with a carboxylic acid in the presence of a catalyst. Examples of cleavable alcohol prodrug moieties include substituted or unsubstituted, branched or unbranched alkyl ester moieties, e.g., ethyl esters, alkenyl esters, di-alkylamino alkyl esters, e.g., dimethylaminoethyl ester, acylamino alkyl esters, acyloxy alkyl esters (e.g., pivaloyloxymethyl ester), aryl esters, e.g., phenyl

ester, aryl-alkyl esters, e.g., benzyl ester, optionally substituted, e.g., with methyl, halo, or methoxy substituents aryl and aryl-alkyl esters, amides, alkyl amides, di-alkyl amides, and hydroxy amides.

[0484] Knowing the disclosures herein, it will be appreciated also that a compound of the present invention can be in the form of a prodrug, and that such prodrugs can be prepared using reagents and synthetic transformations that are well-known to those having ordinary skill in the art. The effectiveness of a particular prodrug can be determined using one or more analytical methods (e.g. pharmacokinetics, bioassays, *in vivo* efficacy studies, and the like) that are well-known to those of ordinary skill in the art.

[0485] More specifically, a prodrug having a formula of I or II may be prepared using routine chemical procedures, such as the exemplary procedures described herein. For instance, any one of R₁, R₂, R₃, R₄, R', R" or any substituent on E of formula I can be of the

formula Q-U-, for example, Q-U-, wherein U is selected from the group consisting of oxygen, sulfur, nitrogen, OCH₂, SCH₂ and NHCH₂; and Q is selected from the group consisting of hydrogen, alkyl, PEG-CO, HCO, acetyl, amino acid, substituted benzoic acid and phosphoric acid; or, wherein Q-U- together is a substituted or unsubstituted group selected from phosphonooxy, phosphonoalkyloxy, formyloxy, alkyloxy, alkylcarbonyloxy, alkylcarbonyloxy, alkylcarbonyloxy, alkylcarbonyloxy, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, arylcarbonyloxy, arylalkylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy and heterocyclylalkylcarbonyloxy.

[0486] Similarly, in a compound of formula II, any one of R₁, R₂, R₃, R₄, R₁₂, R₁₃, R₁₄, R₁₅, R₁₆, R', or R" can be of the formula Q-U- wherein U is selected from the group consisting of oxygen, sulfur, nitrogen, OCH₂, SCH₂ and NHCH₂; and Q is selected from the group consisting of hydrogen, alkyl, PEG-CO, HCO, acetyl, amino acid, substituted benzoic acid and phosphoric acid; or, wherein Q-U together is a substituted or unsubstituted group selected from phosphonooxy, phosphonoalkyloxy, formyloxy, alkyloxy, alkylcarbonyloxy, alkylcarbonyloxy, alkylcarbonyloxy, alkylcarbonyloxy, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, arylcarbonyloxy, arylakylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy and heterocyclylalkylcarbonyloxy.

[0487] Suitable prodrugs may include, but not be limited to, those illustrated below for a compound of formula II, specifically as exemplary prodrug derivatives of compound 015:

wherein U is selected, for example, from the group consisting of oxygen, sulfur, nitrogen, OCH₂, SCH₂ and NHCH₂; and Q is selected, for example, from the group consisting of hydrogen, alkyl, PEG-CO, HCO, acetyl, amino acid, substituted benzoic acid and phosphoric acid; or, Q-U together is selected, for example, from substituted or unsubstituted phosphonooxy, phosphonooxyalkyloxy, alkyloxy, alkyloxy, alkylcarbonyloxy, alkylcarbonyloxy, alkylcarbonyloxyalkyloxy, dimethylaminocarbonyloxyalkyloxy, piperidinylcarbonyloxy, dimethylaminocarbonyloxyalkyloxy, piperidinylcarbonyloxy, dipiperidinylcarbonyloxy, and dipiperidinylcarbonyloxyalkyloxy.

[0488] More specific examples are depicted below for compounds 007, 010 and 011, respectively:

[0489] As used herein, the "alkyl" part of any of the substituents described herein, e.g., but not limited to, alkyl, alkylamino, alkylmercapto, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, aminoalkyl, arylalkyl, arylcycloalkyl, heterocycloalkyl, arylalkylenyl, arylcycloalkyl, dialkylamino, alkylcarbonyloxy, dialkylaminoalkyl, cyanoalkyl, haloalkyl, alkylcarbonylakylcarbonyloxy, dialkylalkylaminoalkyl, alkylsulfonyl, alkylsulfinyl, alkylsulfinyloxy, alkylsulfonyloxy, alkylenedioxy, carbocycloalkyl, arylalkylcarbonylalkoxy, heteroarylalkylcarbonyloxy, phosphonoalkyloxy, and phenylalkyl, means a straight-chain or branched-chain saturated alkyl which can contain from 1-20 carbon atoms, for example from 1 to about 10 carbon atoms, or from 1 to about 8 carbon atoms, or, preferably, lower alkyl,

i.e., from 1 to 6 carbon atoms. Unless otherwise specified herein, the term "alkyl" is assumed to mean lower alkyl.

[0490] Examples of alkyls include methyl, ethyl, propyl, isopropyl, *n*-butyl, *sec*-butyl, isobutyl, *tert*-butyl, pentyl, isoamyl, hexyl, octyl, dodecanyl, octadecyl, and the like. Alkyl substituents can be unsubstituted or substituted, for example with at least one substituent selected from the group consisting of a halogen, a nitro, an amino, a hydroxyl, a thio, an acyl, a mercapto, and a cyano.

[0491] The term "alkenyl" means a straight-chain or branched-chain alkenyl having one or more double bonds. Unless otherwise specified, the alkenyl can contain from 2 to about 10 carbon atoms, for example from 2 to about 8 carbon atoms, or preferably from 2 to about 6 carbon atoms. Examples of alkenyls include vinyl, allyl, 1,4-butadienyl, and isopropenyl substituents, and the like.

[0492] The term "alkynyl" means a straight-chain or branched-chain alkynyl having one or more triple bonds. Unless otherwise specified, alkynyls can contain from 2 to about 10 carbon atoms, for example, from 2 to about 8 carbon atoms, or preferably, from 2 to about 6 carbon atoms. Examples of alkynyls include ethynyl, propynyl (propargyl), butynyl, and the like. Alkenyl, alkynyl substituents can be unsubstituted or substituted, for example, with at least one substituent selected from the group consisting of a halogen, a nitro, an amino, a hydroxyl, a thio, an acyl, an alkyl, and a cyano.

[0493] The term "aryl" means an aromatic carbocyclic radical, as commonly understood in the art, and includes monocyclic and polycyclic aromatics such as, for example, phenyl and naphthyl rings. Preferably, the aryl comprises one or more six-membered rings including, for example, phenyl, naphthyl, biphenyl, and the like. Typically, the aryl comprises six or more carbon atoms in the ring skeleton thereof (e.g., from 6 to about 10 carbon atoms making up the ring). Unless specified otherwise, "aryl" by itself refers to unsubstituted aryl groups and does not cover substituted aryl groups. Substituted aryl can be an aryl substituted, for example, with at least one substituent selected from the group consisting of a halogen, a nitro, an amino, a hydroxyl, a thio, an acyl, and alkyl, and a cyano. It is to be noted that arylalkyl, benzyl, or heteroaryl groups are not considered "aryl" in accordance with the present invention.

[0494] In accordance with the invention, the terms "carbocyclyl" and "carbocyclo" refer identically, unless otherwise specified, to a saturated or unsaturated, unsubstituted ring containing 3-7 carbon atoms.

[0495] In accordance with the invention, the term "heteroaryl" refers to a cyclic aromatic radical having from five to ten ring atoms of which at least one atom is O, S, or N, and the remaining atoms are carbon. Examples of heteroaryl radicals include pyridinyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, and isoquinolinyl.

In accordance with the invention, the term "heterocyclyl" refers to a stable, saturated, partially unsaturated or unsaturated monocyclic, bicyclic, or spiro ring system containing 3 to 7 ring members of carbon atoms and other atoms selected from nitrogen, sulfur, and/or oxygen. The term "heterocyclyl" includes "heteroaryl groups. Preferably, a heterocyclyl is a 5, 6, or 7-membered monocyclic ring and contains one, two, or three heteroatoms selected from nitrogen, oxygen, and/or sulfur. The heterocyclyl may be attached alone or via an alkyl linker (thus becoming a "heterocyclylalkyl" to the parent structure through a carbon atom or through any heteroatom of the heterocyclyl that results in a stable structure. Examples of such heterocyclyl rings are isoxazolyl, thiazolinyl, imidazolidinyl, piperazinyl, homopiperazinyl, pyrrolyl, pyrrolinyl, pyrazolyl, pyranyl, piperidyl, oxazolyl, and morpholinyl.

Whenever a range of the number of atoms in a structure is indicated (e.g., a C_{1-12} , [0497] C₁₋₈, C₁₋₆, or C₁₋₄ alkyl, alkylamino, etc.), it is specifically contemplated that any sub-range or individual number of carbon atoms falling within the indicated range also can be used. Thus, for instance, the recitation of a range of 1-8 carbon atoms (e.g., C₁-C₈), 1-6 carbon atoms $(e.g., C_1-C_6)$, 1-4 carbon atoms $(e.g., C_1-C_4)$, 1-3 carbon atoms $(e.g., C_1-C_3)$, or 2-8 carbon atoms (e.g., C₂-C₈) as used with respect to any chemical group (e.g., alkyl, alkylamino, etc.) referenced herein encompasses and specifically describes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and/or 12 carbon atoms, as appropriate, as well as any sub-range thereof (e.g., 1-2 carbon atoms, 1-3 carbon atoms, 1-4 carbon atoms, 1-5 carbon atoms, 1-6 carbon atoms, 1-7 carbon atoms, 1-8 carbon atoms, 1-9 carbon atoms, 1-10 carbon atoms, 1-11 carbon atoms, 1-12 carbon atoms, 2-3 carbon atoms, 2-4 carbon atoms, 2-5 carbon atoms, 2-6 carbon atoms, 2-7 carbon atoms, 2-8 carbon atoms, 2-9 carbon atoms, 2-10 carbon atoms, 2-11 carbon atoms, 2-12 carbon atoms, 3-4 carbon atoms, 3-5 carbon atoms, 3-6 carbon atoms, 3-7 carbon atoms, 3-8 carbon atoms, 3-9 carbon atoms, 3-10 carbon atoms, 3-11 carbon atoms, 3-12 carbon atoms, 4-5 carbon atoms, 4-6 carbon atoms, 4-7 carbon atoms, 4-8 carbon atoms, 4-9 carbon atoms, 4-10 carbon atoms, 4-11 carbon atoms, and/or 4-12 carbon atoms, etc., as appropriate).

[0498] In light of the disclosures of the present invention, it will be appreciated that the compounds of the present invention can be made by methods well-known to those of ordinary skill in the art, for example, by structurally modifying a given compound or by direct synthesis from available building blocks using routine synthetic transformations that are well-known in the art. For example, a compound of formula I can be synthesized according to the general approach depicted in **Scheme I**:

Scheme I

a. (EtCO)₂O, EtCO₂Na, reflux; b. H₂, Pd-C; c. PPA, 50-80°C; d. NCCH₂CO₂H, AcOH, AcONH₄, toluene, Dean-Stark; e. KOH, H₂O; f. NaOCH₃, CH₃OH, E-CHO; g. (1) CDI, CH₂Cl₂, (2) R'R"NH, pyridine, warm

[0499] Detailed methods to achieve all of the synthesis steps depicted in **Scheme I** to make a desired substituted or unsubstituted indene derivative, are extensively documented in the published literature (e.g., see Sperl, et al., U.S. Patent Application Publication No. US 2003/0009033 A1, Jan. 9, 2003; U.S. Patent No. 6,071,934, June 6, 2000; and International Publication No. WO 97/47303, Dec. 18, 1997; Whitehead, et al., U.S. Patent Application Publication No. US 2003/0176316 A1, Sept. 18, 2003; Thompson, et al., U.S. Patent No. 6,538,029 B1, March 25, 2003; Li, et al., U.S. Patent Application Publication No. US 2003/0194750 A1, Oct. 16, 2003; and Shen, et al., U.S. Patent No. 3,888, 902, June 10, 1975; Alcalde, et al., *Org. Biomol. Chem.*, 6, 3795-3810 (2008); Magarad Lee, *Org. Lett.*, 15, 4288-4291 (2013)). In **Scheme I**, the benzaldehyde building block used for step *a*, and/or the aldehyde building block used in step *g* can independently be unsubstituted, or substituted with any desired substituent(s) required to yield the desired final product of formula I or II of the present invention.

[0500] For example, the benzaldehyde building block as shown in **Scheme I** having the desired substituents at R_1 , R_2 , R_3 and R_4 can be purchased commercially and/or can be prepared routinely by methods well-known to those of ordinary skill in the art. Such optional substituent(s) independently at R_1 , R_2 , R_3 and R_4 in **Scheme I** for example include but are not limited to hydrogen, halogen, alkyl, haloalkyl, hydroxyl, carboxyl, alkoxy, formyloxy, hydroxyalkyl, aldehyde, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino,

mercapto, alkylmercapto, cyano, cyanoalkyl, nitro, azido, and substituted or unsubstituted groups selected from alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, alkylcarbonyloxy, alkylcarbonyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylcarbonyloxy, arylakylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonooxy, phosphonoalkyloxy, and sulfonamido, or any two of R_1 , R_2 , R_3 and R_4 form an alkylenedioxy group.

[0501]

Likewise, the aldehyde building block (E-CHO) as shown in **Scheme I** having any

desired group at E can be purchased and/or can be prepared by methods well-known to those of ordinary skill in the art. Such optional groups at E in Scheme I, for example, include but are not limited to any desired substituted or unsubstituted, saturated or unsaturated, 7membered, 6-membered, 5-membered, 4-membered or 3-membered carbocyclic or heterocyclic ring. Moreover, substituents on said ring may include one or more of: hydrogen, halogen, alkyl, haloalkyl, hydroxyl, carboxyl, alkoxy, formyloxy, hydroxyalkyl, aldehyde, amino, alkylamino, aminoalkyl, alkylaminoalkyl, dialkylamino, mercapto, alkylmercapto, cyano, cyanoalkyl, nitro, azido, and substituted or unsubstituted groups selected from alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, alkylcarbonyloxy, alkylcarbonyloxyalkyloxy, aminocarbonyloxyalkyloxy, arylcarbonyloxy, arylalkylcarbonyloxy, aryloxycarbonyloxy, heterocyclylcarbonyloxy, heterocyclylalkylcarbonyloxy, phosphonoaxy, phosphonoalkyloxy, and sulfonamido, or any two substituents may together comprise an alkylenedioxy group. [0502] Furthermore, the primary or secondary amine building block (R'R"NH) as shown in **Scheme I** can be purchased commercially and/or can be prepared routinely by methods well-known to those of ordinary skill in the art. Such optional substituents independently at R' and R" in **Scheme I**, for example, include but are not limited to hydrogen, hydroxyl, alkyl, aryloxy, cyanoalkyl, haloalkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, aminoalkyl, alkylamino, aryl, arylalkyl, arylalkenyl, arylcycloalkyl, arylcycloalkenyl, carbocyclyl, and carbocycloalkyl where the carbocycle of the carbocyclyl and the carbocycloalkyl is selected from 7-membered carbocyclic rings containing no double bond, or one, two or three double bonds, 6-membered carbocyclic rings containing no double bond, or one or two double bonds, 5-membered carbocyclic rings containing no double bond, or one or two double bonds, 4-membered carbocyclic rings containing no double bond or one double bond and 3-membered carbocyclic rings containing

no double bond, heterocyclyl, and heterocyclylalkyl, where the heterocycle of the heterocyclyl and heterocyclylalkyl is selected from 7-membered heterocyclic rings, 6-membered heterocyclic rings, and 5-membered heterocyclic rings, and the aryl of the aryl, arylalkyl, arylalkylenyl, arylcycloalkyl, or arylcycloalkenyl structure or the carbocyclic or heterocyclic structure may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamido; and R" is selected from hydrogen, alkyl, hydroxyalkyl, aminoalkyl, dialkylaminoalkyl, cyanoalkyl, haloalkyl, alkylcarbonylalkylcarbonyloxy, pyridyl, and COR₁₁ wherein R₁₁ is selected from hydrogen, amino, alkyl, haloalkyl, alkoxy, alkylmercapto, and aryl; or R' and R" together form a 5-, 6- or 7-membered, saturated or unsaturated, heterocyclic ring containing at least one nitrogen, and optionally oxygen and/or sulfur, and the heterocyclic ring may optionally be substituted with one or more of halo, alkyl, haloalkyl, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, mercapto, alkylmercapto, carboxamido, aldehydo, cyano, oxo, alkylcarbonyloxy, and sulfonamide.

[0503] As a more specific example, a particular compound of formula II can be synthesized according to the general approach depicted in **Scheme II**, which includes the key intermediate, a substituted indenyl acetic acid:

[0504] For certain substituents at R_1 , R_2 , R_3 or R_4 (e.g., in **Scheme II** above, R_2 is fluoro), the starting material for preparation of the substituted indenyl acetic acid intermediate, may optionally be different than that shown in **Schemes I** and **II**, depending upon the nature of the substituent(s) desired on the intermediate and final product, and the optimum reaction conditions sought. For example, attachment of a cyano group at R_2 can be accomplished using as starting material a cyano-substituted benzyl halide (e.g., as adapted from Shen, et. al., 1975), as illustrated below in **Scheme III**:

Scheme III

NC
$$\xrightarrow{a, b, c}$$
 NC $\xrightarrow{HO_{\downarrow}O}$ \xrightarrow{d} NC $\xrightarrow{NC_{\downarrow}CO_{2}H}$ NC $\xrightarrow{e, f}$ NC $\xrightarrow{e, f}$ NC $\xrightarrow{g, h}$ NC $\xrightarrow{g, h}$

a. CH₃CH(CO₂Et)₂, Na, EtOH; b. NaOH, EtOH; c. H₂SO₄, aq.; d. PPA, 83-90 °C, 2h; e. BrCH₂CO₂CH₃, Zn(Hg), I₂, benzene; f. NaOH, Ethanol, warm g. NaOCH₃, CH₃OH, E-CHO; h. (1) CDI, CH₂Cl₂, (2) R'R"NH, pyridine, warm

[0505] A wide variety of substituents can be introduced at R_1 , R_2 , R_3 and R_4 of a compound of formula I or II in the course of synthesis. In addition to the above-described **Schemes I-III**, **Scheme IV** below illustrates yet another approach to making variations in substituents at R_1 - R_4 .

Scheme IV

a.KNO₃, H₂SO₄, 46%; b. NCCH₂CO₂H, AcOH, AcONH₄, toluene, Dean-Stark; c. (1) KOH, EtOH, H₂O, (2) HOAc; d. NaOCH₃, CH₃OH, E-CHO; e. (1) CDI, CH₂Cl₂, (2) R'R"NH, pyridine, warm; f. Zn, HOAc; g. standard procedure Z = NR'R", NHSO₂R, isocyanide, NHCOR, azide, urea, carbamate, halogen, OH, Schiff base, etc.

[0506] Extensive variations can also be made in R and/or R_0 in a medically useful compound of formula I or II of the invention. For example, one skilled in the art can use or adapt as necessary the general synthesis approach illustrated by **Scheme V** below.

[0507] Scheme V

a. (EtCO)₂O, EtCO₂Na, reflux; b. H₂, Pd-C; c. PPA, 50-80°C; d. NCCH₂CO₂H, AcOH, AcONH₄, toluene, Dean-Stark; e. KOH, H₂O; f. NaOCH₃, CH₃OH, E-CHO; g. (1) CDI, CH₂Cl₂, (2) R'R"NH, pyridine, warm; h. DCM, -15°C, DDQ; i. R_0^{\bigcirc} ethanol, 85°C.

[0508] In a more specific example illustrated in **Scheme VI** below, a compound of the invention, such as compound 007, can serve as the starting point for making other medically useful derivatives thereof which have various different substituents at R and/or R₀, such as compounds 202, 203, 404, 410, 430 and 431.

[0509] Scheme VI

Furthermore, variations in the length of the side-chain linkers in the compounds of [0510] formula I or II can be introduced by one of ordinary skill in the art by adapting known methods. For example, adaptations of the methods of Magar and Lee (supra) can be used to produce compounds of formula I and II wherein n=0.

[0511] Yet more specific and detailed illustrations using these general synthetic approaches are provided in the particular Examples that follow herein. Furthermore, one skilled in the art and knowing the disclosures of the present invention will appreciate that any of compounds of formula I or II can be modified with different substituents as desired to be in the final products, and/or the final product of a synthesis, for example a synthesis according to Schemes I - VI, can be modified with different substituents as desired. Placement, removal and/or inter-conversion of desired substituents on precursors, building blocks, intermediates or penultimate product compounds of formulas I and II can be

accomplished by routine methods well-known to those of ordinary skill in the art, as briefly overviewed in the following:

[0512] One or more hydroxyl groups, for example, can be converted to the oxo derivative by direct oxidation, which can be accomplished using any known method such as, for example, a Swern oxidation, or by reaction with a metal oxidant, such as a chromium oxide (e.g., chromium trioxide), a manganese oxide (e.g., manganese dioxide or permanganate) or the like. Primary alcohols can be oxidized to aldehydes, for example, via Swern oxidation, or they can be oxidized to carboxylic acids (e.g., -CO₂H), for example by reaction with a metal oxidant. Similarly, the thiols (e.g., -SR, -SH, and the like) can be converted to oxidized sulfur derivatives (e.g., -SO₂R or the like) by reaction with an appropriate oxidant.

[0513] One or more hydroxyl groups can be converted to an ester (e.g., -CO₂R), for example, by reaction with an appropriate esterifying agent such as for example, an anhydride (e.g., (R(CO))₂O) or an acid chloride (e.g., R(CO)Cl), or the like. One or more hydroxyl groups can be converted to a sulfonate (e.g., -SO₂R) by reaction with an appropriate sulfonating agent such as, for example, a sulfonyl chloride (e.g., RSO₂Cl), or the like, wherein R is any suitable substituent including, for example, organic substituents described herein. Ester derivatives also can be obtained, for example, by reacting one or more carboxylic acid substituents (e.g., -CO₂H) with an alkylating agent such as, for example, a diazoalkane (e.g., diazomethane) an alkyl or aryl iodide, or the like. One or more amides can be obtained by reaction of one or more carboxylic acids with an amine under appropriate amide-forming conditions which include, for example, activation of a carboxylic acid (e.g., by conversion to an acid chloride or by reaction with a carbodiimide reagent) followed by coupling of the activated species with a suitable amine.

[0514] One or more hydroxyl groups can be converted to a halogen using a halogenating agent such as, for example, an N-halosuccinamide such as N-iodosuccinamide, N-bromosuccinamide, N-chlorosuccinamide, or the like, in the presence of a suitable activating agent (e.g., a phosphine, or the like). One or more hydroxyl groups also can be converted to ether by reacting one or more hydroxyls, for example, with an alkylating agent in the presence of a suitable base. Suitable alkylating agents can include, for example, an alkyl or aryl sulfonate, an alkyl or aryl halide, or the like. One or more suitably activated hydroxyls, for example a sulfonate ester, and/or one or more suitably activated halides, can be converted to the corresponding cyano, halo, or amino derivative by displacement with a nucleophile

which can include, for example, a thiol, a cyano, a halide ion, or an amine (e.g., H_2NR , wherein R is a desired substituent), or the like.

[0515] Amines can be obtained by a variety of methods known in the art, for example, by hydrolysis of one or more amide groups. Amines also can be obtained by reacting one or more suitable oxo groups (e.g., an aldehyde or ketone) with one or more suitable amines under the appropriate conditions, for example, reductive amination conditions, or the like. One or more amines, in turn, can be converted to a number of other useful derivatives such as, for example, amides, sulfonamides, and the like.

[0516] Certain chemical modifications of a compound of formula I or II can be introduced as desired to obtain useful new variants with new or modified biological properties such as: new or improved potency and/or selectivity for inhibiting Ras-mediated biological processes, improved efficacy against a disease process such as, but not limited to, tumor cell growth, proliferation, survival, invasion and metastasis, as well as resistance to chemotherapy, other molecularly targeted therapeutics, and radiation, as well as enhanced oral bioavailability, less toxicity in a particular host mammal, more advantageous pharmacokinetics and/or tissue distribution in a given host mammal, and the like. Therefore, the present invention employs methods for obtaining useful new compounds of formula I and II by applying one or more well-known chemical reactions to a given compound to obtain a derivative wherein, for example, one or more phenolic hydroxyl group(s) may instead be replaced by an ester, sulfonate ester or ether group; one or more methyl ether group(s) may instead be replaced by a phenolic hydroxyl group; one or more phenolic hydroxyl group(s) may instead be replaced by an aromatic hydrocarbon substituent; a secondary amine site may instead be replaced by an amide, sulfonamide, tertiary amine, or alkyl quaternary ammonium salt; a tertiary amine site may instead be replaced by a secondary amine; and one or more aromatic hydrogen substituent(s) may instead be replaced by a halogen, nitro, amino, hydroxyl, thiol or cyano substituent.

[0517] Depending upon the stoichiometric amount of the particular reactant, a compound of formula I or II can be substituted at one, some, or all of the respective available positions. For example, when such a compound is reacted with a certain amount of CH₃COCl, an acetate substituent can be introduced a one, some, or all of the available positions, which may include, for example ether or amino positions.

[0518] Other examples may include, but are not limited to: (1) conversion to ester, sulfonate ester, and ether substituents at one or more phenolic hydroxyl positions in

compounds of formula I and II; for instance, for preparation of esters or sulfonate esters a given compound can be reacted with an acid halide (e.g., RCOX or RSO₂X, where X is Cl, Br or I, and R is a C_1 - C_6 aliphatic or aromatic radical) in anhydrous pyridine or triethylamine; alternatively, the given compound may be reacted with an acid (RCO₂H or RSO₃H) wherein R is an aliphatic or aromatic radical and dicyclohexylcarbodiimide in triethylamine to prepare the ester or sulfonate ester; for preparation of ethers, the given compound is reacted with an organic halide (e.g., RX or RCH₂X, where X is Cl, Br or I, and R is a C₁-C₆ aliphatic or aromatic radical) in anhydrous acetone with anhydrous potassium carbonate; (2) removal of an ether methyl group(s) to provide a phenolic hydroxyl functionality and/or conversion of that moiety to an ester, sulfonate, or other ether in a compound or derivative of formula I or II: for instance, for hydrolytic cleavage of a methyl ether substituent and conversion to a phenolic hydroxyl moiety, the given compound is reacted with BBr₃ or BX₃•(CH₃)₂S in CH₂Cl₂ (where X is F, Cl or Br); the resulting phenol can be converted to an ester, sulfonate ester or ether as described above; (3) preparation of amide or sulfonamide derivatives at an amine site in a compound of formula I or II: for instance, for preparation of amides or sulfonamide derivatives, the same general procedures described above in (1) apply; in either case (procedure (1) or (3)), an appropriate functional group protection strategy (blocking/deblocking of selected group(s)) may need to be applied; (4) conversion of a secondary amine functionality in a compound of formula I or II to a tertiary amine: for instance, for preparation of a tertiary amine, the given compound is reacted with an aldehyde, and the resulting product is then reduced with NaBH₄; alternatively, for preparation of an alkyl ammonium salt, the given compound is reacted with an alkyl halide (RX, where X is Cl, Br or I, and R is a C₁-C₆ aliphatic radical) in an anhydrous aprotic solvent; (5) conversion of a tertiary amine functionality in a compound of formula I or II to a secondary amine; for instance, for preparation of a secondary amine, the given compound is reacted with cyanogen bromide to give a cyanamide derivative which is then treated with LiAlH₄; (6) conversion of one or more phenolic hydroxyl groups in a given compound of formula I or II to an aromatic hydrogen substituent: for instance, the given compound is converted (after suitable protection of any amine substituent(s) if necessary) to the triflate ester to give the corresponding deoxy compound; (7) substitution of one or more hydrogen substituent(s) on the aryl system(s) on a compound of formula I or II by halogen, nitro, amino, hydroxyl, thiol, or cyano groups: for instance, for preparation of a bromine-substituted derivative, the given compound is reacted with Br₂ in H₂O; for the preparation of other substituted derivatives, the given compound is

treated with HNO₃/HOAc to provide a nitro-substituted (-NO₂) derivative; in turn, the nitro-derivative can be reduced to an amino derivative, and the amino derivative is the point of origin of the chloro, iodo, cyano, thiol and hydroxyl substitution via well-known and practiced diazonium substitution reactions. More detailed, specific illustrations of synthesis and derivatization procedures that can be employed to access any desired member of the family of compounds represented by formulae I and II and derivatives thereof, are provided in the examples that follow herein.

[0519] It will be appreciated that certain compounds of formula I or II can have one or more asymmetric carbon(s) and thus such compounds are capable of existing as enantiomers or diastereomers. Unless otherwise specified, the present invention includes such enantiomers or diastereomers, including any racemates thereof. If desired, the separate enantiomers or diastereomers can be synthesized from appropriate chiral starting materials, or the racemates can be resolved by conventional procedures, which are well-known to those skilled in the art, such as chiral chromatography, fractional crystallization of diastereomers or diastereomeric salts, and the like. Certain compounds can exist as geometrical isomers, such as, for example, compounds with double-bonded substituents with geometrical isomers Z and E, and the present invention includes all such isomers, including certain isomers, for example the Z isomers, which are preferred. Also, certain compounds may contain substituents wherein there is restricted rotation and/or other geometric isomers are possible. For example, certain oxime substituents may exist in syn or anti configurations. The present invention includes all such configurations, including all possible hindered-rotational isomers, and other geometric isomers.

[0520] It will be appreciated by one skilled in the art that the proof or confirmation of the chemical structure of a compound provided by or used in the present invention can be demonstrated using at least one or more well-known and established, convergent methods including, but not limited to, for example: proton and/or carbon NMR spectroscopy, mass spectrometry, x-ray crystallography, chemical degradation, and the like.

[0521] One or more compound(s) of formula I or II or pharmaceutically acceptable salt(s) or prodrugs(s) thereof can be included in a composition, e.g., a pharmaceutical composition. In that respect, the present invention further provides a composition that includes an effective amount of at least one compound of formula I or II, which may be in the form of pharmaceutically acceptable salt(s) or prodrug(s) thereof and a pharmaceutically acceptable carrier. The composition of the present invention preferably includes a therapeutically or

prophylactically effective amount of at least one Ras-inhibitory compound of formula I or II. The therapeutically or prophylactically effective amount can include an amount that produces a therapeutic or prophylactic response in a patient to whom a compound or composition of the present invention is administered. A therapeutically or prophylactically effective amount can include, for example, a Ras-inhibitory and/or an anticancer effective amount.

[0522] The composition of the present invention can further include a therapeutically or prophylactically effective amount of at least one additional compound other than a compound of formula I or II, which may or may not be another Ras-inhibitory compound, and may be an anticancer compound. When the additional compound is a Ras-inhibitory compound other than a compound of formula I or II, it is preferably present in the composition in a Ras-inhibiting amount. When the additional compound is an anticancer compound in general, it is preferably present in the composition in an anticancer effective amount.

[0523] The composition of the present invention can be produced by combining one or more compound(s) of formula I or II with an appropriate pharmaceutically acceptable carrier, and can be formulated into a suitable preparation, which may include, for example, preparations in solid, semi-solid, liquid or gaseous forms such as tablets, capsules, powers, granules, ointments, solutions, suppositories, injections, inhalants, and aerosols, and other formulations known in the art for their respective routes of administration. In pharmaceutical dosage forms, a compound of formula I or II can be used alone or in appropriate association, as well as in combination, with other pharmacologically active compounds, including other compounds, e.g., other Ras-inhibitory compounds, as described herein.

[0524] Any suitable pharmacologically or physiologically acceptable carrier can be utilized. The following methods and carriers are merely exemplary and are in no way limiting. In the case of oral preparations, a compound of formula I or II can be administered alone or in combination with a therapeutically or prophylactically effective amount of at least one other compound. The active ingredient(s) can be combined, if desired, with appropriate additives to make tablets, powders, granules, capsules or the like.

[0525] Suitable additives can include, for example, lactose, mannitol, corn starch or potato starch. Suitable additives also can include binders, for example crystalline cellulose, cellulose derivatives, acacia, or gelatins; disintegrants, for example, corn starch, potato starch or sodium carboxymethylcellulose; or lubricants such as talc or magnesium stearate. If desired, other additives such as, for example, diluents, buffering agents, moistening agents, preservatives, and/or flavoring agents, and the like, can be included in the composition.

The Ras-inhibitory compounds used in accordance with the present invention can [0526] be formulated into a preparation for injection or infusion by dissolution, suspension, or emulsification in an aqueous or non-aqueous solvent, such as vegetable oil, synthetic aliphatic acid glycerides, esters of higher aliphatic acid or propylene glycol (if desired, with conventional additives such as solubilizers isotonic agents, suspending agents, emulsifying agents, stabilizers, and preservatives).

[0527] The compounds of formulas I and II also can be made into an aerosol formulation to be administered by inhalation. Such aerosol formulations can be placed into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen, and the like.

The compounds can be formulated into suppositories by admixture with a variety [0528] of bases such as emulsifying bases or water-soluble bases. The suppository formulations can be administered rectally, and can include vehicles such as cocoa butter, carbowaxes, and polyethylene glycols, which melt at body temperature but are solid at room temperature.

Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions can be provided wherein each dosage unit, e.g., teaspoonful, tablet, or suppository contains a predetermined amount of the composition containing the compound of formula I or II. Similarly, unit dosage forms for injection or intravenous administration can comprise a composition as a solution in sterile water, normal saline, or other pharmaceutically acceptable carrier.

[0530] The term "unit dosage form" as used herein refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of at least one compound(s) of formula I or II (alone, or if desired, with another therapeutic or prophylactic agent). The unit dosage can be determined by methods known to those of skill in the art, for example, by calculating the amount of active ingredient sufficient to produce the desired effect in association with a pharmaceutically acceptable carrier. The specifications for the unit dosage forms that can be used in accordance with the present invention depend on the particular effect to be achieved and the particular pharmacodynamics associated with the compound(s) in the individual host.

[0531] Pharmaceutically acceptable carriers, for example, vehicles, adjuvants, excipients, or diluents, are accessible to those of skill in the art and are typically available commercially. One skilled in the art can easily determine the appropriate method of administration for the exact formulation of the composition being used. Any necessary adjustments in dose can readily be made by an ordinarily skilled practitioner to address the nature or severity of the

condition being treated. Adjustments in dose also can be made on the basis of other factors such as, for example, the individual patient's overall physical health, sex age, prior medical history, and the like.

[0532] The compounds of formulas I and II can be utilized in a variety of therapeutic and prophylactic (disease preventing) applications, and also in certain non-therapeutic or non-prophylactic applications. It will be appreciated that one or more of these compounds can be used, for example, as a control in diagnostic kits, bioassays, or the like. Preferably the method of the present invention is applied therapeutically or prophylactically, for example, toward treatment or prevention of cancer or toward treatment or prevention of a condition (e.g. an abnormal condition or disease) treatable by the inhibition of Ras-mediated biological process(es). The compounds of formulas I and II can be administered alone, or in combination with a therapeutically or prophylactically effective amount of at least one additional compound other than a compound of formula I or II.

[0533] Accordingly, the present invention further provides a method of therapeutically or prophylactically treating a condition treatable by the inhibition of one or more Ras-mediated biological processes, which method includes administering to a patient a Ras-inhibiting amount of at least one Ras-inhibitory compound of formula I or II. More particularly, the present invention provides a method of therapeutically or prophylactically treating a condition treatable by the inhibition of one or more Ras-mediated biological processes, which includes administering a Ras-inhibiting effective amount of at least one compound of formula I or II.

[0534] A number of conditions can be treated in accordance with the method of the present invention. The compounds of formulas I and II and their compositions can be used medically to regulate biological phenomena, including but not limited to such Ras-modulated processes as tumor cell growth, proliferation, survival, invasion and metastasis, as well as resistance to chemotherapy, other molecularly targeted therapeutics, and radiation. The compounds of formula I and II are therefore useful in the treatment of diseases and conditions that can be controlled by the inhibition of Ras-mediated cellular functions. Such diseases include, for example, diseases wherein hyperactive Ras (e.g., including mutant Ras) is implicated; such diseases prominently include cancer, among others. Compounds of formula I or II can be expected to have efficacious actions in patients with cancer, especially in patients whose cancers have underlying hyperactive, over-expressed or mutant Ras-mediated pathological processes that are inhibited by a compound(s) of formula I or II. Other aberrant

Ras-mediated diseases or conditions that are expected to be treatable or preventable by administration of Ras-inhibiting amounts of compound(s) of formula I or II include for example, neurofibromatosis and Costello syndrome. In the instance of cancer particularly, compound(s) of formula I or II may promote broader sensitivity of cancer to other drugs and/or radiation therapy by inhibiting the ability of cancer cells to develop or express resistance to such drugs and/or radiation therapy making possible the effective chemotherapeutic and/or radiotherapeutic treatment of cancer.

[0535] In accordance with an embodiment of the method of the present intervention, it is preferred that a Ras-inhibiting effective amount is used. In that regard, it is preferred that the Ras-inhibiting amount is effective to inhibit one or more conditions selected from the group consisting of tumor cell growth, proliferation, survival, invasion and metastasis, as well as resistance to chemotherapy, other molecularly targeted therapeutics, and radiation.

[0536] The method of the present invention further includes administering a Rasinhibiting effective amount of at least one additional compound other than a compound of formula I or II. In some instances, the method of the present invention can be made more effective by administering one or more other Ras-inhibitory compound(s), along with a compound of formula I or II. One or more Ras-inhibitory compound(s) of formula I, II or III also can be co-administered in combination with at least one anticancer agent which is not a compound of formula I or II, for example, to cause anticancer chemotherapy-resistant and/or radiation-resistant tumor cells to become chemotherapy-sensitive and/or radiation-sensitive and/or to inhibit *de novo* the development of cancer cell resistance to the anticancer agent and/or to cancer cell resistance to radiation treatment. The aforementioned anticancer agent is selected from an anticancer drug and radiation.

[0537] In accordance with an embodiment of the method, the patient is pre-selected by utilizing an assay of said patient's tissue, blood or tumor for an abnormal, mutant or hyperactive *ras* gene or Ras protein, or an aberrant Ras-mediated biological process.

[0538] In accordance with the methods of the present invention, one or more compounds of formula I or II can be administered by any suitable route including, for example, oral or parenteral, including intravenous, subcutaneous, intraarterial, intraperitoneal, ophthalmic, intramuscular, buccal, rectal, vaginal, intraorbital, intracerebral, intracranial, intraspinal, intraventricuclar, intrathecal, intracisternal, intracapsular, intrapulmonary, intranasal, transmucosal, transdermal, or via inhalation. For example, one or more compound(s) of formula I or II can be administered as a solution that is suitable for intravenous injection or

infusion, or can be administered as a tablet, a capsule, or the like, in any other suitable composition or formulation as described herein. Accordingly, there is a wide variety of suitable formulations of the pharmaceutical composition of the present invention. The formulations may also be applied topically.

[0539] The Ras-"inhibiting-effective amount" (which terminology is used interchangeably herein with "Ras-inhibitory effective amount") as utilized in accordance with an embodiment of the composition and method of the present invention, includes the dose necessary to achieve a Ras-"inhibiting effective level" (which terminology is used interchangeably herein with "Ras-inhibitory effective level") of the active compound in an individual patient. The Ras-inhibiting-effective amount can be defined, for example, as that amount required to be administered to an individual patient to achieve in said patient a Ras-inhibiting-effective blood or tissue level, and/or intracellular target-inhibiting level of a compound of formula I or II to cause the desired medical treatment.

[0540] By way of example and not intending to limit the invention, the dose of the pharmaceutically active agent(s) described herein for methods of preventing or treating a disease or disorder can be, in embodiments, about 0.001 to about 1 mg/kg body weight of the subject being treated per day, for example, about 0.001 mg, 0.002 mg, 0.005 mg, 0.010 mg, 0.015 mg, 0.020 mg, 0.025 mg, 0.050 mg, 0.075 mg, 0.1 mg, 0.15 mg, 0.2 mg, 0.25 mg, 0.5 mg, 0.75 mg, or 1 mg/kg body weight per day. In certain embodiments, the dose of the pharmaceutically active agent(s) described herein can be about 1 to about 1000 mg/kg body weight of the subject being treated per day, for example, about 1 mg, 2 mg, 5 mg, 10 mg, 15 mg, 0.020 mg, 25 mg, 50 mg, 75 mg, 100 mg, 150 mg, 200 mg, 250 mg, 500 mg, 750 mg, or 1000 mg/kg body weight per day.

[0541] The terms "treat," "prevent," "ameliorate," and "inhibit," as well as words stemming therefrom, as used herein, do not necessarily imply 100% or complete treatment, prevention, amelioration, or inhibition. Rather, there are varying degrees of treatment, prevention, amelioration, and inhibition of which one of ordinary skill in the art recognizes as having a potential benefit or therapeutic effect. In this respect, the inventive methods can provide any amount of any level of treatment, prevention, amelioration, or inhibition of the disorder in a mammal. For example, a disorder, including symptoms or conditions thereof, may be reduced by, for example, 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, or 10%. Furthermore, the treatment, prevention, amelioration, or inhibition provided by the inventive method can include treatment, prevention, amelioration, or inhibition of one or

more conditions or symptoms of the disorder, e.g., cancer. Also, for purposes herein, "treatment," "prevention," "amelioration," or "inhibition" can encompass delaying the onset of the disorder, or a symptom or condition thereof.

[0542] When the effective level is used as the preferred endpoint for dosing, the actual dose and schedule can vary depending, for example, upon inter-individual differences in pharmacokinetics, drug distribution, metabolism, and the like. The effective level also can vary when one or more compound(s) of formula I or II are used in combination with other therapeutic agents, for example, one or more additional anticancer compound(s), or a combination thereof. Moreover, the effective level can vary depending upon the particular disease (e.g., cancer or neurofibromatosis) or biological process (e.g., tumor cell growth, proliferation, survival, invasion and metastasis, as well as resistance to chemotherapy, other molecularly targeted therapeutics, and radiation) for which treatment is desired. Similarly, the effective level can vary depending on whether the treatment is for therapy or prevention of a particular disease such as, for example, cancer.

[0543] Compounds of formula I and II can be expected to be broadly efficacious anticancer agents, which will inhibit or destroy human solid tumors, and as well non-solid cancer such as leukemias and certain lymphomas. Solid tumors may include particularly those tumors where *ras* gene mutations are highly prevalent, such as pancreatic cancer, lung cancer and colon cancer, as well as diverse other solid tumors such as, for example, melanoma, ovarian cancer, renal cancer, prostate cancer, head and neck cancer, endocrine tumors, uterine cancer, breast cancer, sarcomas, gastric cancer, hepatic cancer, esophageal cancer, central nervous system (e.g., brain) cancer, hepatic cancer, germline cancer, and the like.

[0544] In a preferred embodiment of the present invention, patients who are most likely to have a favorable response to a Ras-inhibitory compound of formula I or II can be preselected, prior to said treatment with said compound, by assaying said patient's blood, tissues or tumor for the presence *ras* gene mutations and/or abnormal Ras proteins and/or aberrant Ras-mediated biological function(s), using assay procedures (including use of commercially available assay kits) well-known to those of ordinary skill in the art.

[0545] Accordingly, the present invention further provides a method of therapeutically or prophylactically treating cancer, which method comprises administering to a patient in need thereof an anticancer effective amount of at least one Ras-inhibitory compound(s) of formula I or II. The anticancer effective amount can be determined, for example, by determining an

amount to be administered effective to produce a Ras-inhibiting-effective blood or tissue level and/or intracellular target-inhibiting "effective level" in the subject patient. The effective level can be chosen, for example, as that blood and/or tissue level (e.g., $10^{-12} - 10^{-6}$ M from examples that follow) effective to inhibit the proliferation of tumor cells in a screening assay. Similarly, the effective level can be determined, for example, on the basis of the blood, tissue or tumor level in a patient that corresponds to a concentration of a therapeutic agent that effectively inhibits the growth of a human cancer in any assay that is clinically predictive of anticancer activity. Further, the effective level can be determined, for example based on a concentration at which certain markers of cancer in a patient's blood or tumor tissue (e.g., mutant or hyperactive ras gene(s) and/or Ras protein(s) and/or aberrant Ras-mediated biological pathway(s)) are inhibited by a particular compound that inhibits cancer. Alternatively, the effective level can be determined, for example, based on a concentration effective to slow or stop the growth of a patient's cancer, or cause a patient's cancer to regress or disappear, or render a patient asymptomatic to a particular cancer, or improve a cancer patient's subjective sense of condition. The anticancer effective level can then be used to approximate (e.g., by extrapolation) or even to determine precisely, the level which is required clinically to achieve a Ras-inhibiting-effective blood, tissue, tumor and/or intracellular level to cause the desired medical treatment. It will be appreciated that the determination of the therapeutically effective amount clinically required to effectively inhibit Ras-mediated processes also requires consideration of other variables that can influence the effective level, as discussed herein. When a fixed effective amount is used as a preferred endpoint for dosing, the actual dose and dosing schedule for drug administration can vary for each patient depending upon factors that include, for example, inter-individual differences in pharmacokinetics, drug absorption, drug disposition and tissue distribution, drug metabolism, drug excretion, whether other drugs are used in combination, or other factors described herein that influence the effective level.

[0546] One skilled in the art and knowing and understanding the disclosures of the present invention can readily determine the appropriate dose, schedule, or method of administering a particular formulation, in order to achieve the desired effective level in an individual patient. Given the disclosures herein, one skilled in the art also can readily determine and use an appropriate indicator of the effective level of the compound(s) of formula I and II. For example, the effective level can be determined by direct analysis (e.g., analytical chemistry) or by indirect analysis (e.g., with clinical chemistry indicators) of

appropriate patient samples (e.g., blood and/or tissues). The effective level also can be determined, for example, if the compound in question has antitumor activity, by direct or indirect observations, such as, for example, observing the shrinkage, slowing or cessation of growth or spreading of a tumor in a cancer patient. There are many references to the art that describe the protocols used in administering and monitoring responses to active compounds in a patient in need thereof. For example, drug-appropriate protocols used in the administration of different types of anticancer agents to patients are described in "Cancer Chemotherapy and Biotherapy: Principles and Practice" eds. Chabner and Longo, Lippincott, Williams and Wilkins (2011), and citations therein.

The present inventive method of therapeutically or prophylactically treating [0547] cancer further includes administering an anticancer effective amount of at least one additional compound other than a compound of formula I or II. For example, one or more compound(s) of formula I or II can be co-administered with an anticancer agent, and/or can be coadministered with radiation therapy, in which case the effective level is the level needed to inhibit or reverse the ability of the cancer to develop resistance to the anticancer agent and/or to the radiation therapy, respectively.

Examples of anticancer compounds include reversible DNA binders, DNA [0548] alkylators, and DNA strand breakers. Examples of suitable reversible DNA binders include topetecan hydrochloride, irinotecan (CPT11 - Camptosar), rubitecan, exatecan, nalidixic acid, TAS-103, etoposide, acridines (e.g., amsacrine, aminocrine), actinomycins (e.g., actinomycin D), anthracyclines (e.g., doxorubicin, daunorubicin), benzophenainse, XR 11576/MLN 576, benzopyridoindoles, Mitoxantrone, AQ4, Etopside, Teniposide, (epipodophyllotoxins), and bisintercalating agents such as triostin A and echinomycin.

Examples of suitable DNA alkylators include sulfur mustard, the nitrogen [0549] mustards (e.g., mechlorethamine), chlorambucil, melphalan, ethyleneimines (e.g., triethylenemelamine, carboquone, diaziquone), methyl methanesulfonate, busulfan, CC-1065, duocarmycins (e.g., duocarmycin A, duocarmycin SA), metabolically activated alkylating agents such as nitrosoureas (e.g., carmustine, lomustine, (2-chloroethyl)nitrosoureas), triazine antitumor drugs such as triazenoimidazole (e.g., dacarbazine), mitomycin C, leinamycin, and the like.

Examples of suitable DNA strand breakers include doxorubicin and daunorubicin [0550] (which are also reversible DNA binders), other anthracyclines, belomycins, tirapazamine,

enediyne antitumor antibiotics such as neocarzinostatin, esperamicins, calicheamicins,

WO 2016/100546 PCT/US2015/066154

dynemicin A, hedarcidin, C-1027, N1999A2, esperamicins, zinostatin, and the like. Examples of anticancer agents include abarelix, aldesleukin, alemtuzumab, [0551] altretamine, amifostine, aminoglutethimide, anastrazole, arsenic trioxide, asparaginase, azacitidine, azathioprine, BCG vaccine, bevacizumab, bexarotene, bicalutamide, bleomycin sulfate, bortezomib, bromocriptine, busulfan, capecitabine, carboplatin, carmustine, cetuximab, chlorambucil, chloroquine phosphate, cladribine, cyclophosphamide, cyclosporine, cytarabine, dacarbazine, dactinomycin, daunorubicin hydrochloride, daunorubicin citrate liposomal, dexrazoxane, docetaxel, doxorubicin hydrochloride, doxorubicin hydrochloride liposomal, epirubicin hydrochloride, estramustine phosphate sodium, etoposide, estretinate, exemestane, floxuridine, fludarabine phosphate, fluorouracil, fluoxymesterone, flutamide, fulvestrant, gefitinib, gemcitabine hydrochloride, gemtuzumab ozogamicin, goserelin acetate, hydroxyurea, idarubicin hydrochloride, ifosfamide, imtinib mesylate, interferon alfa-2a, interferon alfa-2b, irinotecan hydrochloride trihydrate, letrozole, leucovorin calcium, leuprolide acetate, levamisole hydrochloride, lomustine, lymphocyte immune anti-thymocyte globulin (equine), mechlorethamine hydrochloride, medoxyprogestone acetate, melphalan, mercaptopurine, mesna, methotrexate, mitomycin, mitotane, mitoxantrone hydrochloride, nilutamide, oxaliplatin, paclitaxel, pegaspargase, pentostatin, plicamycin, porfimer sodium, procarbazine hydrochloride, streptozocin, tamoxifen citrate, temozolomide, teniposide, testolactone, testosterone propionate, thioguaine, thiotepa, topotecan hydrochloride, tretinoin, uracil mustard, valrubicin,

[0552] Suitable forms of radiation therapy include, for example, all forms of radiation therapy approved for commercial use in the United States, and those forms that will become approved in the future, for which radiation resistance thereto can be controlled by a Rasinhibitory compound of formula I or II.

vinblastine sulfate, vincristine sulfate, and vinorelbine.

[0553] In accordance with an embodiment of the methods of the present invention, prophylaxis includes inhibition as described herein, e.g., inhibition of the growth or proliferation of cancer cells, or inhibition of aberrant Ras-mediated cellular functions. The inhibition can be, but need not be, 100% inhibition in order to be prophylactically effective, and a clinically desirable benefit can be realized with less than 100% inhibition.

[0554] The particular Ras-inhibitory compound(s) of formula I or II used in accordance with the present invention can be selected based upon the potency and/or selectivity for

inhibiting Ras-mediated cellular processes, as assessed by *in vitro* or *in vivo* assays, and/or based on other pharmacological, toxicological, pharmaceutical or other pertinent considerations that are well-known to those skilled in the art. Routine methods for the specific bioassay, quantitation and comparisons of Ras-inhibitory inhibitory and other biological activities and properties of compounds of formula I and II in various tissues, cells, organelles and other preparations, as well as *in vivo* testing in animals are well-documented in the literature (e.g., see Teicher and Andrews (eds.), *Anticancer Drug Development Guide*, Humana (2004), and various authors and chapters therein). More specific illustrations of these and other details pertinent to enablement of the present invention are provided in the examples which follow.

[0555] The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.

EXAMPLE 1

[0556] This example illustrates the synthesis of a compound employed in an embodiment of the invention: (*Z*)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (007).

[0557] (A) p-fluoro- α -methylcinnamic acid: p-Fluorobenzaldehyde (200 g, 1.61 mol), propionic anhydride (315 g, 2.42 mol) and sodium propionate (155 g, 1.61 mol) in a 1L three-necked flask in an atmosphere of argon was stirred in an oil bath to 140°C for 36 hours. The clear solution was cooled to 100°C and poured into 8 L of water. The precipitate was collected and dissolved by adding potassium hydroxide to 2 L of ice water to pH 12. The aqueous solution was extracted with ether, and the extracts washed with potassium hydroxide solution (200 mL×2). The combined aqueous solution was acidified with concentrated HCl. The precipitate was collected by filtration, washed with water, ethanol and hexane, dried under air to give p-fluoro- α -methylcinnamic acid, which was used for next step reaction without further purification.

[0558] (B) p-Fluoro- α -methylhydrocinnamic acid: A 2L catalytic hydrogenation flask containing p-fluoro- α -methylcinnamic acid (180 g, 0. 987 mol), 5%-Pd/C (1.2g) and 1.2 L ethanol was flushed with argon and warmed to 65-70 °C. The mixture was treated with hydrogen (40 psi) until the hydrogen uptake ceases (about 30 min). The catalyst was filtered

off, and the filtrate was concentrated in vacuum to give p-fluoro- α - methylhydrocinnamic acid as an oil.

[0559] (C) 5-fluoro-2-methylindanone: Polyphosphoric acid (PPA 85%, 650 g) was warmed in a 80°C water bath for 1h, then transferred to a 1L 3-necked flask equipped with a mechanical stirrer, a dropping funnel, and a thermometer. The flask was warmed in a 70°C oil bath and *p*-fluoro-α- methylhydrocinnamic acid (93.2 g, 0 5 mol) was added in about 5 minutes with stirring. The temperature was gradually raised to 90°C, and kept there for about 30 min. The reaction mixture was poured into 2 L of ice water, the aqueous layer extracted with ether, and the solution washed twice with saturated sodium chloride solution, 5% Na₂CO₃ solution, water, dried over Na₂SO₄, and then concentrated to give a milky oil. The oil was dissolved in 100 mL of methylene chloride and 200 mL of hexane, and the solution was loaded to a dry-packed silica gel flash column (800g of TLC grade silica gel tightly packed in a 2L fritted funnel, vacuum), eluted with 5% ether- hexane to give 5-fluoro-2-methylindanone as a clear oil.

[0560] (D) 5-fluoro-2-methylindenyl-3-acetic acid: A mixture of 5-fluoro-2-methylindanone (184 g, 1.12 mol), cyanoacetic acid (105 g, 1.23 mol), acetic acid (130 g), and ammonium acetate (34 g) in dry toluene (about 600 ml) was refluxed for 48 to 72 hours, and the liberated water/acetic acid was collected in a Dean Stark trap. To the cooled reaction mixture was added 600 mL of methylene chloride, the solution washed with water (200 mL×3), the organic layer concentrated, and the residue treated with 150g of potassium hydroxide in 300 ml of ethanol and 200 ml of water. The mixture was refluxed overnight under nitrogen, the ethanol removed under vacuum, 500 ml water added, the aqueous solution washed well with ether and then boiled with charcoal. The aqueous filtrate was acidified to pH 2 with 50% hydrochloric acid, and extracted with methylene chloride (300 mL×3). The solvent was evaporated, and the residue treated with acetone in a sonicator bath until precipitate formed. The mixture was stored in a -20°C freezer overnight, and the precipitate collected by filtration. The procedure gave 5-fluoro-2-methylindenyl-3-acetic acid as a colorless solid (mp 164-166°C).

[0561] (E) (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetic acid: The 5-fluoro-2-methyl-3-indenylacetic acid (0.54g, 2.62 mmol), 4-acetoxy-3,5-dimethoxybenzaldehyde (0.60 g, 2.67 mmol) and potassium butoxide (0.69g, 7.7 mmol) in DMSO (6 ml) were stirred in a microwave synthesizer at 75°C under argon for 2h. After cooling, the reaction mixture was poured into 50 ml of ice-water, and was acidified with 2N

hydrochloric acid. The mixture was extracted with methylene chloride (25 mL \times 2), the combined organic layer washed with water (25 mL \times 2), and concentrated. The residue was purified on a silica gel column three times to produce the titled compound (E, 117 mg) as a yellow/ orange solid.

PCT/US2015/066154

[0562] (F) (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (007): The (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetic acid (120 mg, 0.324 mmol), 1,1'-Carbonyldiimidazole (100 mg, 0.61 mmol) in 5 mL of anhydrous methylene chloride was stirred for 30 min at room temperature. Furfuryl amine (100 μL, 1.13 mmol) was added, the reaction mixture stirred for 2 h, and quenched with 1 ml of 30% potassium hydroxide solution, which was diluted with 25 mL of methylene chloride, neutralized with 2 mL of acetic acid, washed with water (20 mL×3), dried with sodium sulfate, then concentrated. The residue was purified with silica gel column, eluted with hexane/acetone. The major yellow fraction was collected and after concentration the residue (120 mg) was stored under argon in a freezer, and after 2 weeks crystals formed. The mixture containing the crystals was suspended in 2 mL of ethyl ether and 3 mL of hexane, treated with sonicator for 1h, then stored in a -20°C freezer overnight. The precipitate was collected by filtration, and the titled compound (007) was obtained as a yellow solid (41 mg).

EXAMPLE 2

[0563] This example illustrates the synthesis of another compound employed in an embodiment of the invention: (Z)-2-(5-methoxy-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (006).

[0564] (A) *p*-methoxy-α-methylcinnamic acid: *p*-Methoxybenzaldehyde (219 g, 1.61 mol), propionic anhydride (315 g, 2.42 mol) and sodium propionate (155 g, 1.61 mol) in a 1L three-necked flask in an atmosphere of argon was stirred in an oil bath at 140°C for 36 hours. The clear solution was cooled to 100°C, poured into 8 L of water, and the precipitate collected and dissolved by adding potassium hydroxide to 2L of ice water to pH 12. The aqueous solution was extracted with ether, the extracts washed with potassium hydroxide solution (200 mL×2) and the combined aqueous solution acidified with concentrated HCl. The precipitate was collected by filtration, washed with water, ethanol and hexane, then dried

[0565]

as a clear oil.

over air to give p-methoxy- α -methylcinnamic acid (235g) which was used for next step reaction without further purification.

(B) p-methoxy-α-methylhydrocinnamic acid: A 2L catalytic hydrogenation flask

PCT/US2015/066154

containing p-methoxy- α -methylcinnamic acid (192 g, 1.00 mol), 5%-Pd/C (1.2g) and 1.2 L ethanol was flushed with argon and warmed to 70°C. The mixture was treated with hydrogen (40 psi) until the hydrogen uptake ceased (about 30 min). The catalyst was filtered off, and the filtrate concentrated in vacuum to give p-methoxy- α - methylhydrocinnamic acid as an oil. [0566] (C) 5-methoxy-2-methylindanone: Polyphosphoric acid (PPA 85%, 650 g) was warmed in a 60°C water bath for 1h, and transferred to a 1L 3-necked flask equipped with a mechanical stirrer, a dropping funnel, and a thermometer. The flask was warmed to 50°C in oil bath and p-methoxy- α - methylhydrocinnamic acid (96 g, 0.50 mol) was added in about 5 minutes with stirring. The temperature was gradually raised to 70°C for about 15 min, and the solution was poured into 2 L of ice water. The aqueous layer was extracted with ether, and the solution was washed twice with saturated sodium chloride solution, 5% Na₂CO₃ solution, water, dried over Na₂SO₄, and then concentrated to give a milky oil. The oil was

dissolved in 100 mL of methylene chloride and 200 mL of hexane, and applied to a dry-

packed silica gel flash column (800g of TLC grade silica gel tightly packed in a 2L fritted

funnel, vacuum), eluted with 5% ether-petroleum ether to give 6- methoxy-2-methylindanone

[0567] (D) 5-methoxy-2-methylindenyl-3-acetic acid: A mixture of 6-methoxy-2-methylindanone (197 g, 1.12 mol), cyanoacetic acid (105 g, 1.23 mol), acetic acid (130 g), and ammonium acetate (34 g) in dry toluene (about 600 ml) was refluxed for 48 to 72 hours, until the liberated water collected in a Dean Stark trap ceased. To the cooled toluene reaction mixture was added 600 mL of methylene chloride. The solution was washed with water (200 mL×3), the organic layer concentrated, and the residue treated with 150g of potassium hydroxide in 300 ml of ethanol and 200 ml of water. The mixture was refluxed overnight under nitrogen, the ethanol removed under vacuum, 500 ml water added, the aqueous solution washed well with ether and then boiled with charcoal. The aqueous filtrate was acidified to pH 2 with 50% hydrochloric acid, extracted with methylene chloride (300 mL×3), solvent evaporated, and the residue treated with acetone in a sonicator bath until a precipitate formed. The mixture was stored at -20°C overnight, and the precipitate collected by filtration. The procedure gave 5-methoxy-2-methylindenyl-3-acetic acid as a colorless solid (mp 164-166°C).

WO 2016/100546

[0568] (E) (Z)-2-(5-methoxy-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetic acid: 5-methoxy-2-methyl-3-indenylacetic acid (0.50g, 2.29 mmol), 4-acetoxy-3,5-dimethoxybenzaldehyde (0.60 g, 2.67 mmol) and potassium butoxide (1.0g, 8.9 mmol) in anhydrous DMSO (5 ml) and pyridine (10 mL) were stirred at 95°C under argon for 1h. The reaction mixture was cooled to 65°C. 1.0 mL of methanol was added and stirred for 30 min. After cooling, the mixture was poured into 50 ml of ice-water, acidified with 2N hydrochloric acid, and extracted with methylene chloride (25 mL×2), and the combined organic layer washed with water (25 mL×2), and concentrated. The residue was purified on a silica gel column twice, the first eluted with methylene chloride/methanol, followed by washing with hexane, acetone/acetic acid, to produce the title compound (E, 152 mg) as a yellow/ orange solid.

[0569] (F) (Z)-2-(5-methoxy-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (**006**): (Z)-2-(5-methoxy-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetic acid (123 mg, 0.324 mmol), 1,1'-carbonyldiimidazole (100 mg, 0.61 mmol) in 5 mL of anhydrous methylene chloride was stirred for 30 min at room temperature, furfuryl amine (100 μL, 1.13 mmol) was added, and the reaction mixture stirred for 2 h, then quenched with 1 ml of 30% potassium hydroxide solution. The solution was diluted with 25 mL of methylene chloride, neutralized with 2 mL of acetic acid, washed with water (20 mL×3), dried with sodium sulfate, and concentrated. The residue was purified over silica gel, eluted with hexane/acetone, and the major yellow fraction was collected. After concentrating, the residue was stored in a freezer under argon until a crystal seed formed (~2 weeks). The mixture was suspended in 2 mL of ethyl ether and 3 mL of hexane, treated with sonicator for 1h, then stored in a -20°C freezer overnight. The precipitate was collected by filtration. The title compound (**006**) was obtained as a yellow solid (36 mg).

EXAMPLE 3

[0570] This example illustrates the synthesis of yet another compound employed in an embodiment of the invention: (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-3-yl)acetamide (004).

[0571] (F) (Z)-2-(5-methoxy-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetic acid (123 mg, 0.324 mmol) (see (E) under Example 2 above), 1,1'-

carbonyldiimidazole (100 mg, 0.61 mmol) in 5 mL of anhydrous methylene chloride was stirred for 30 min at room temperature. 3-Aminopyridine (100 mg, 1.04 mmol) in 4 mL of pyridine was added, stirred for 2 h at 50°C, and quenched with acetic anhydride (0.5 mL) to remove excess amine. After 30 min, 3 ml of 30% potassium hydroxide solution was added and the solution diluted with 25 mL of methylene chloride, neutralized with 2 mL of acetic acid, washed with water (20 mL×3), dried with sodium sulfate, then concentrated. The residue was loaded on silica gel column and eluted with hexane/acetone. The major yellow fraction was collected and recrystallized from methylene chloride and hexane to give the title compound (004) as a yellow solid (89 mg).

EXAMPLE 4

[0572] This example illustrates the synthesis of a further compound employed in an embodiment of the invention: (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2methyl-1H-inden-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methyl)acetamide (019). [0573] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3yl)acetic acid (120 mg, 0.324 mmol) (see (E) under Example 1 above), and 1,1'carbonyldiimidazole (100 mg, 0.61 mmol) in 5 mL of anhydrous methylene chloride was stirred for 30 min at room temperature. To the reaction mixture (1-methyl-1H-pyrrol-2yl)methanamine (110 µL, 1.0 mmol) and 0.5 mL of pyridine were added. The mixture was stirred for 2 h, quenched with 1 ml of 30% potassium hydroxide solution, diluted with 25 mL of methylene chloride, neutralized with 2 mL of acetic acid, washed with water (20 mL×3) and dried with sodium sulfate. The organic layer was concentrated and the residue was purified with silica gel column eluted with hexane/acetone. The major yellow fraction was collected, and after concentration the residue was treated with acetone/hexane, sonicated for 1h, then stored in a -20 °C freezer for 2h. The precipitate was collected by filtration, and the titled compound (019) was obtained as a yellow solid (75 mg).

EXAMPLE 5

[0574] This example illustrates the synthesis of various other exemplary compounds of formula I used in embodiments of the invention. When the same synthetic approach (e.g., Scheme I) is used as illustrated in Examples 1-3, except in the acetamide-forming step (F) using the appropriate precursor acetic acid derivative reacted with instead of the amine used

in Example 3 one of the following amines to produce the corresponding amides (designated in parentheses): furfuryl amine (001, 008, 012, 013, 014, 016, 017, 020, 021); N,N-dimethylaminoethylamine (003); 3-aminomethylpyridine (009); 2-aminomethylpyridine (010); benzylamine (015); (1H-pyrrol-2-yl)methanamine (018, 022); (1-methyl-1H-pyrrol-2-yl)methanamine (019).

EXAMPLE 6

[0575] This example illustrates synthesis of compound (029): (Z)-2-(5-fluoro-1-(4-mesyloxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (029).

[0576] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (007) (139 mg, 0.31 mmol), methanesulfonic anhydride (80 mg, 0.46 mmol) in 3 mL of anhydrous pyridine were stirred at 50 °C for 3h. The reaction mixture was quenched with water, diluted with 20 mL of methylene chloride, the organic solution washed with 10 mL water three times, and concentrated. The residue was purified on a silica gel column, eluted with hexane/acetone. The major yellow fraction was collected and recrystallized from dichloromethane and hexane to give the titled compound (029) as a yellow solid (78 mg).

EXAMPLE 7

[0577] This example illustrates the synthesis of an exemplary prodrug of a compound of formula I, specifically (Z)-2-(5-fluoro-1-(4-formoxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (002, which is a prodrug of 007), which is employed in an embodiment of the invention.

[0578] In a sealed 25 mL round-bottom flask (*Z*)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(furan-2-ylmethyl)acetamide (007) (90 mg, 0.2 mmol) was dissolved in 4 mL of pyridine. Acetic anhydride (0.2 mL) was added. The solution was stirred at 50°C for 2h. The reaction mixture was quenched with ethanol, concentrated, and the residue purified on a silica gel column eluted with hexane/acetone. The major yellow fraction was collected, and recrystallized from acetone/hexane to give the title compound (002) as a yellow solid.

EXAMPLE 8

[0579] This example illustrates synthesis of compound 035: (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-phenylacetamide, which is employed in an embodiment of the invention.

[0580] (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetic acid (120 mg, 0.324 mmol) and 1,1'-carbonyldiimidazole (100 mg, 0.61 mmol) were stirred in 5 mL of anhydrous methylene chloride for 30 min at room temperature. To the reaction mixture, aniline (93 mg, 1.0 mmol) and 0.5 mL of pyridine were added. The mixture was stirred at 45 °C for 2 h, quenched with 1 ml of 30% potassium hydroxide solution, diluted with 25 mL of methylene chloride, acidified with acetic acid, washed with water (20 mL×3) and dried with sodium sulfate, and the organic layer concentrated. The residue was purified over silica gel eluted with hexane/acetone, the major yellow fraction collected, concentrated, and the residue recrystallized from acetone/ethyl ether to give titled compound (035) as a yellow solid (45 mg).

EXAMPLE 9

[0581] This example shows typical synthesis schemes for additional illustrative compounds of formula I and II to further reinforce that extensive variations in the structures at E, R', R" and on the indene core can be achieved readily using methods well known to those of ordinary skill in the art. The synthesis schemes below all start with the key intermediate, the desired substituted or unsubstituted indenyl acetic acid, synthesis of which is illustrated in detail in previous examples herein.

[0582] Synthesis of compound 130:

Synthesis of compound 131:

Synthesis of compound 132:

[0583] Synthesis of compound 133:

Synthesis of compound 134:

[0584] Synthesis of compound 136:

[0585] Synthesis of compound 138:

[0586] Synthesis of compound 140:

[0587] Synthesis of compound 146:

PCT/US2015/066154

[0588] Synthesis of compound 147:

[0589] Synthesis of compound 148:

[0590] Synthesis of compound 149:

[0591] Synthesis of compound 151:

[0592] Synthesis of compound 152:

[0593] Synthesis of compound 155:

EXAMPLE 11

[0594] This example illustrates a synthesis of another representative compound (210) of formula I or II that can be used in the methods of the invention. In particular this example shows a useful compound of formula I or II having no hydrogen substituent on the amide nitrogen. This example also illustrates a benzoyl ester derivative compound (209) which is an example of a prodrug of 210.

[0595] (A).To a stirred mixture of (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-indene-3-yl)acetic acid (370 mg, 1 mmol), sodium hydroxide (160 mg, 4 mmol), and H₂O (10 mL), benzoyl chloride (1 mmol) was added

dropwise at 0°C. The reaction mixture was stirred for 2 hrs, acidified, filtered, the precipitate extracted with 20 ml hot water and the insoluble part was recrystallized from ethylacetatehexane to give (Z)-2-(1-(4-(benzoyloxy)-3,5-dimethoxybenzylidene)-5-fluoro-2-methyl-1Hinden-3-yl)acetic acid in 70 % yield.

[0596] (B). To a stirred solution of (Z)-2-(1-(4-(benzoyloxy)-3,5-dimethoxybenzylidene)-5-fluoro-2-methyl-1H-inden-3-yl)acetic acid (100 mg, 0.21 mmol) in dichloromethane (5 ml), 1,1'-carbonyl diimidazol (38 mg, 0.23mmol) was added in one portion resulting in the evolution of CO₂ gas. The solution was stirred for 20 minutes, then N-methyl furfurylamine (28 mg, 0.25 mmol) and pyridine (3 ml) was added, and the reaction mixture was heated to 45 °C for 3 hrs. Solvent was removed under vacuum and the residue was extracted with dichloromethane, then the organic layer was washed with water, brine and dried (anhydrous MgSO4). The filtered organic layer was evaporated under vacuum and the residue was purified by silica column chromatography eluting with hexane- acetone (1:1). The product (209) was recrystallized from EtOAc-hexane in 65 % yield as a yellow solid.

[0597] (C) Compound 209 (35 mg) was dissolved in methanolic ammonia (12 mL, 7N) and was stirred overnight. Solvent was evaporated under vacuum and the residue was purified by silica column chromatography by eluting with hexane-acetone (1:1). The product compound (210) was recrystallized from ethyl acetate-hexane as a yellow solid (55% yield).

EXAMPLE 12

[0598] This example illustrates typical synthesis schemes for making various exemplary prodrug compounds having formula I or II which can be used in the methods of the invention. Given the disclosures of the invention, one of ordinary skill in the art can use or adapt as necessary such schemes as shown below to make certain desired prodrugs or other derivative compounds having formula I or II of the invention.

Synthesis of compound 320: [0599]

Such a scheme as used for compound 320 may also be adapted to make other exemplary compounds having formula I or II, such as 214, 301, 330 and 340.

[0600] Synthesis of compound 321:

[0601] Such a scheme as used for compound 321 may also be adapted to make other exemplary compounds having formula I or II, such as 302, 311, 331 and 341. Synthesis of compound 323:

[0602] Such a scheme as used for compound 323 may also be adapted to make other exemplary compounds having formula I or II, such as 300, 312, 332, 342, 350, 352, 303, 313, 333 and 343.

[0603] Synthesis of compound 324:

$$O_2N$$
 O_2N
 O_2N

[0604] Such a scheme as used for compound 324 may also be adapted to make other exemplary compounds having formula I or II, such as 304, 314, 334 and 344

Synthesis of compound 325: [0605]

[0606] Such a scheme as used for compound 325 may also be adapted to make other exemplary compounds having formula I or II, such as 305, 315, 335 and 345. Synthesis of compound 326:

[0607] Such a scheme as used for compound 326 may also be adapted to make other exemplary compounds having formula I or II, such as 306, 316, 336, 346, 351, 353 and 355. Synthesis of compound 327:

[0608] Such a scheme as used for compound 327 may also be adapted to make other exemplary compounds having formula I or II, such as 307, 317 and 347.

[0609] Synthesis of compound 328:

[0610] Such a scheme as used for compound 328 may also be adapted to make other exemplary compounds having formula I or II, such as 308, 318, 338 and 348. Synthesis of compound 329:

[0611] Such a scheme as used for compound 329 may also be adapted to make other exemplary compounds having formula I or II, such as 309, 319, 339 and 349.

EXAMPLE 13

This example illustrates synthesis of a derivative compound of formula I or II, wherein a substitution is made at R and/or R₀ of an existing compound of formula I or II, which derivative compound can be used in the methods of the invention. Here, for example, a new substituent is introduced at R or R₀ of compound **007**. To a solution of **007** (120 mg, 0.27 mmol) in dichloromethane (20 ml) at -15 °C, a dichloromethane solution of DDQ (30 mg, 0.14 mmol, 12 ml) was slowly added under argon. The reaction mixture was stirred at 0-4 °C for 10 min, then diluted with hexane, followed by silica column chromatography eluted with hexane-acetone (1:1). The major fraction was recrystallized as an orange solid from acetone-hexane, and 50 mg of this material was dissolved in ethanol (2 ml), followed by addition of benzylamine (18 mg, 0.16 mmol) and acetic acid (0.01 mL). The reaction was stirred at 85 °C for 6 hrs. and the solvent removed under vacuum. The residue was purified by silica column chromatography eluting with hexane-acetone (1:1) and methylene chloridemethanol to afford **202** as a yellow solid in overall 40 % yield.

[0613] In another illustration, to a solution of 007 (120 mg, 0.27 mmol) in dichloromethane (20 ml) at 15 °C, a dichloromethane solution of DDQ (30 mg, 0.14 mmol, 12 ml) was slowly added under argon. The reaction mixture was stirred at 0-4 °C for 10 min, then diluted with hexane, followed by silica column chromatography eluted with hexane-acetone (1:1). An orange solid was recrystallized from acetone-hexane, and 50 mg of this material was dissolved in ethanol (2 ml), followed by addition of pyridine-4-ylmethanamine (21 mg, 0.2 mmol) along with a catalytic quantity of acetic acid (0.01 mL). The reaction was heated at 85-90 °C overnight, and the solvent was removed under vacuum. The residue was purified by silica column chromatography eluting with hexane-acetone (1:1.5) and further purified by eluting with dichloromethane-methanol and recrystallized from dichloromethane and hexane to give 203 as a yellow in overall 35 % yield.

EXAMPLE 14

[0614] Table 1 provides the ¹H-NMR data of exemplary compounds employed in the invention. All spectra were recorded using DMSO-d⁶ as solvent.

[0615] Table 1. ¹H-NMR data of compounds in accordance with an embodiment of the invention

Cpd.	NMR (δ ppm)					
No.						
000	8.603 (t br, 1H, J= 5.62Hz, CONH), 8.521(s, 1H, HCO), 7.550 (d, 1H, 7.57Hz,					
002	furanH), 7.549 (s, 1H, IndH), 7.383 (dd, 1H, J1=8.30 Hz, J2=5.37Hz, indH),					
	7.285 (s, 1H, furanH), 7.099 (dd, 1H, J1=9.68Hz, J2=2.20Hz, indH), 6.945 (s,					
	2H, PhH), 6.910 (s, 1H, =CH), 6.763 (m, 1H, furanH), 4.267 (d, 1H, J=5.61Hz,					
	NCH ₂), 3.767 (s, 6H, OCH ₃), 3.460 (s, 2H, CH ₂), 2.182 (s, 3H, CH ₃)					
	11.109 (br s, 1H, OH), 9.082 (d, 1H, J = 1.96Hz, PyrH), 8.482 (d, 1H, J=4.88Hz,					
004	PyrH), 8.375(d, 1H, J=8.32Hz, PyrH), 7.774 (dd, 1H, J ₁ =4.63Hz, J ₂ =8.43Hz					
	PyrH), 7.123 (s, 1H, Ind H) 7.520 (d, 1H, J = 8.30Hz, Ind H), 6.912 (d,1H, J =					
	1.97Hz, =CH), 6.846 (s, 2H, PhH), 6.690 (br s, 1H, NH), 6.537 (dd, 1H, J ₁ =					
	2.20Hz, J ₂ = 8.55Hz,Ind H), 3.749 (s, 6H, OCH ₃), 3.716 (s, 3H, OCH ₃), 3.378 (s,					
	2H, CH ₂), 2.182(s, 3H, CH ₃)					
006	8.714 (s br, 1H, OH), 8.549 (t, 1H, NH), 7.480 (d, 1H, J = 8.54Hz, FuranH),					
006	7.071 (s, 1H, indH), 6.857 (d, 1H, J=7.08 Hz, indH), 6.833 (s, 2H, PhH), 6.48(d,					
	1H, indH), 6.371(m, 1H, furanH), 6.122 (m, 1H, furanH), 6.175 (d, 1H, J=2.93					
	Hz, =CH), 4.261 (d, 2H, J = 5.37Hz, NCH ₂), 3.745 (s, 6H, CH ₃ O), 3.707 (s, 3H, CH ₂ O), 3.420 (s, 2H, CH ₂ O),					
	CH ₃ O), 3.429 (s, 2H, CH ₂), 2.162 (s, 3H, CH ₃)					
007	8.792(s br, 1H, OH), 8.574 (t, 1H, J=5.62Hz, NH), 7.559 (d, 1H, J=4.88Hz,					
007	furanH), 7.233 (s, 1H, indH), 7.084 (dd, 1H, J1 = 9.22 Hz, J2 = 2.20 Hz, indH), 6.841(s, 2H, PhH), 6.752(1H, m, indH), 6.481(m, 1H, furanH), 6.322 (m,					
	1H, furanH), 6.205 (d, 1H, J=2.93 Hz, =CH), 4.264 (d, 2H, J=6.17Hz, NCH ₂),					
	3.747 (s, 6H, MeO), 3.448 (s, 2H, COCH ₂), 2.16 (s, 3H, CH ₃)					
	8.68 (s br, 1H, OH), 8.556 (t, 1H, J=5.37Hz, NH), 7.539 (d, 1H, J=4.88Hz,					
008	furanH), 7.196 (s, 1H, indH), 7.088 (s, 1H, indH), 6.915 (s, 1H, =CH), 6.846 (s,					
	2H, PhH), 6.37 (m, 1H, furanH), 6.198 (d, 1H, J=2.93 Hz, furanH), 4.264 (d,					
	2H, J = 5.38Hz, NCH ₂), 3.752(s, 6H, OCH ₃), 3.713 (s, 3H, OCH ₃), 3.493 (s, 3H,					
	OCH ₃), 3.414 (s, 2H, COCH ₂), 2.16 (s, 3H, CH ₃)					
	8.732 (s br, 1H, OH), 8.615 (t br, 1H, J=5.61Hz, NH), 8.460 (s, 1H, PyrH),					
009	8.428(d, 1H, J=3.91Hz, Pyr H), 7.625 (d, 1H, J = 7.81Hz, indH), 7.483 (d, 1H, J					
	= 8.30Hz, indH), 7.315(dd, 1H, PyrH), 7.081(s, 1H, indH), 6.835 (s, 2H, PhH),					
	6.505 (d, 1H, J=7.3Hz, =CH), 4.294 (d, 2H, J=5.37Hz, NCH ₂), 3.745 (s, 6H,					
	OCH ₃), 3.692 (s, 3H, OCH ₃), 3.465(s, 3H, OCH ₃), 3.414 (s, 2H, COCH ₂), 2.16					
	(s, 3H, CH ₃)					
	8.793 (s br, 1H, OH), 8.700 (t br, 1H, J=5.86Hz, NH), 8.460 (s, 1H, PyrH),					
010	8.488 (d, 1H, J=3.91Hz, Pyr H), 7.711(td, 1H, J1 = 7.57Hz, J2= 1.61Hz, indH),					
	7.553 (dd, $1H$, $J = 8.30Hz$, $J2 = 8.26Hz$, PyH), 7.260 (s, $1H$, indH), 7.241 (s,1H,					
	=CH), 7.130 (dd, 1H, J1=9.52Hz, J2=2.20Hz, IndH), 6.841 (s, 2H, PhH), 6.758					
	(m, 1H, PyrH), 4.365 (d, 2H, J=5.84Hz, NCH ₂), 3.745 (s, 6H, OCH ₃), 3.523 (s,					
	3H, CH ₃), 3.465 (s, 3H, OCH ₃), 3.414 (s, 2H, COCH ₂), 2.16 (s, 3H, CH ₃)					
	8.802 (s br, 1H, OH), 8.644 (t br, 1H, J = 5.63 Hz, NH), 8.467 (s, H, PyrH),					
011	8.440 (dd, 1H, J = 4.64Hz, J2= 1.22Hz, PyrH), 7.640 (d, 1H, J = 7.81Hz, indH),					
	7.556(dd, H, J1=8.54Hz, J2= 8.24Hz, PyrH), 7.330 (dd, 1H, PyrH), 7.241(s, 1H,					
	indH), 7.064 (dd, 1H, =CH), 6.841 (s, 2H, PhH), 6.758 (m, 1H, PyrH), 4.296 (d,					
	2H, J=5.62Hz, NCH ₂), 3.745(s, 6H, OCH ₃), 3.483 (s, 2H, CH ₂), 2.146 (s, 3H,					

	CH ₃)					
	9.335 (s br, 1H, OH), 8.541 (t br, 1H, J= 5.61Hz, CONH), 7.552 (d, 1H, J =					
012	0.97Hz), 7.423 (d, 1H, J = 8.55Hz, PhH), 7.106 (d, 1H, J=1.72 Hz), 7.064 (s, 1H),					
012	6.986 (dd, 1H, J1=8.30 Hz, J2 =1.47Hz,), 6.851 (s, 1H, PhH), 6.841(d, 1H,					
	J=8.02Hz), 6.480 (d, 1H, J1=8.58 Hz, J2=2.44Hz), 6.372 (dd, 1H, J1=2.93Hz,					
	J2= 1.83 Hz), 6.197(d, 1H, J=2.69 Hz), 4.254(d, 2H, J = 5.62Hz, NCH ₂), 3.748					
	(s, 3H, CH ₃ O), 3.703 (s, 3H, CH ₃ O), 3.424 (s, 2H, CH ₂), 2.162 (s, 3H, CH ₃)					
	8.796 (s br, 1H, OH), 8.592 (t br, 1H, J=5.86Hz, CONH), 7.578 (dd, 1H, IndH),					
015						
	1H, IndH), 4.273 (d, 2H, J=5.76Hz, NCH2), 3.747 (s, 6H, OCH ₃), 3.483 (s, 2H,					
	CH ₂), 2.182 (s, 3H, CH ₃)					
	10.575 (s br, 1H, NH), 9.740 (s br, 1H, OH), 8.342 (t br, 1H, J=5.37Hz, CONH),					
018	7.332 (d, 1H, J=8.30Hz, indH), 7.108(s, 2H, PhH), 7.029 (s, 1H, IndH), 6.874 (d,					
	1H, J=2.27Hz, =CH)), 6.616 (m, 1H, PyrroH), 6.496(dd, 1H, J1=8.30Hz,					
	J2=2.20Hz, IndH), 5.906 (dd, 1H, PyrroH), 5.871(s, 1H, PyrroH), 4.188 (d, 1H,					
	J = 5.12Hz, CONH), 3.805 (s, 3H, OCH ₃), 3.703 (s, 3H, OCH ₃), 3.418 (s, 2H,					
	CH ₂), 2.18 (s, 3H, CH ₃)					
	10.582 (s br, 1H, NH), 8.520 (s br, 1H, OH), 8.342 (t br, 1H, CONH), 7.820 (s,					
022	1H, indH), 7.276 (d, 1H, J=8.30Hz, IndH), 6.995 (s, 2H, PhH), 6.889 (d, 1H,					
	PyrroH), 6.620 (s, 1H, =CH), 6.519 (d, 1H, J=8.30Hz, IndH), 5.911 (d, 1H,					
	PyrroH), 5.878 (d, 1H, PyrroH), 4.197 (d, 1H, J = 4.87Hz, CONH), 3.795 (s, 6H,					
	OCH ₃), 3.706(s, 3H, OCH ₃), 3.438(s, 2H, CH ₂), 2.18 (s, 3H, CH ₃)					
	8.717 (s br, 1H, OH), 8.645 (t br, 1H, NH), 8.482 (d, 1H, J=5.68 Hz PyrH),					
028	7.698 (td, 1H, J = 7.57 Hz, J2= 1.72 Hz, PyrH), 7.490 (1H, d, J = IndH), 7.698					
	247 (d, 1H, J= 7.56 Hz, IndH), 7.245, (m, 1H, PyrH), 7.081 (s, 1H, IndH), 6.880					
	(s, m, 1H, =CH), 6.837 (s, 2H, PhH), 6.509 (dd, 1H, J_1 = 7.30Hz, J_2 = 2.18Hz,					
	PyrH), 4.362 (d, 2H, J=5.86Hz, NCH ₂), 3.745(s, 6H, OCH ₃), 3.711(s, 3H,					
00.7	OCH ₃), 3.504 (s, 2H, CH ₂), 2.146 (s, 3H, CH ₃)					
095	8.86 (br t, 1H, CONH), 7.56 (d, 1H, furanH), 7.32 (dd, 1H, indH), 7.28 (s, 1H,					
	=CH), 7.10 (dd, 1H, indH), 6.86 (s, 2H, PhH), 6.78 (td, 1H, indH), 6.38 (dd, 1H, firenH), 6.21 (d, 1H, firenH), 4.26 (g, 2H, CH, Ma), 4.22 (d, 2H, CH, M)					
	1H, furanH), 6.21 (d, 1H, furan), 4.26 (q, 2H, CH ₂ Me), 4.23 (d, 2H, CH ₂ N),					
202	3.77 (s, 6H, CH ₃ O), 2.15 (s, 3H, CH ₃), 1.26 (s, 3H, CH ₃) (¹ H NMR-CDCl ₃): 2.15 (s, 3H), 3.81(d, 2H), 3.89 (s, 6H), 4.44 (d, 2 H), 4.55					
202	d,1H), 5.72 (s, br,1H, [OH]), 6.22 (d,1H), .32 (dd, H), 6.57 (m,1H), 6.77 (s, 2H),					
	6.94 (dd,1H), 7.17 (s, H), 7.26-7.32 (m, 5H), 7.37(d, 1H), 7.44 (m,1H), 7.72 (1H)					
203	(¹ H NMR-CDCl ₃): 2.14 (s, 3H), 3.81(d, 2H), 3.89 (s, 6H), 4.44 (d, 2H), 4.55					
	(d,1H), 5.72(s, br, 1H [OH]), 6.22 (d,1H), 6.31 (dd, 1H), 6.61 (m,1H), 6.80 (s,					
	2H), 7.00 (d,1H), 7.23 (s, 1H), 7.26 (d, 2H), 7.32 (d, H),7.48 (m,1H), 7.59 (1H),					
	8.58 (d, 2H)					

EXAMPLE 15

[0616] This example illustrates cell growth assays employed in the present invention. Cells used in such assays included A-549, HT-29, MDA-MB-231, Colo-205, Caco2, HCT-

116, SW-480, and DLD-1 human cancer cells obtained from the American Type Culture Collection (ATCC).

Human tumor cells were cultured using standard methods in RPMI-1640 growth [0617] medium supplemented with 5% fetal bovine serum (FBS). Normal rat kidney (NRK) and Ki-Ras transformed NRK cells (K-NRK) were obtained from ATCC, and were cultured according to supplier recommendations. CellTiter-Glo ATP cell growth assay reagents were obtained from Promega and used according to the manufacturer's protocol. Inhibitors of EGFR, Raf, and MEK were obtained from Selleck Chemicals. Cells were plated at a density of 5,000 cells per well in 96-well microplates or 1,250 cells per well in 384-well plates, and allowed to attach for at least 4h. Test compounds were dissolved in dimethyl sulfoxide (DMSO), and this working stock was further diluted in growth medium for addition to cell cultures. Serial dilutions of the test compound were prepared in growth medium containing an equal amount of DMSO not exceeding 0.2% final concentration. Each compound concentration was tested in at least 3 separate samples per cell line. At the end of a 3-day treatment period, growth inhibition was analyzed using a bioluminescent assay of ATP concentration (Promega CellTiter-Glo) according to the manufacturer's protocol. Resulting luminescence was measured using the luminescence cartridge of the Molecular Devices Spectramax Paradigm microplate reader. Relative growth inhibition for each sample was determined by comparison with the values obtained for vehicle treated control samples. Growth inhibition values were plotted with the GraphPad Prism5 software using the 4parameter logistic fit to obtain IC₅₀ values, which corresponds to the growth inhibitory potency of the compound.

EXAMPLE 16

[0618] This example illustrates a Ras binding domain assay used in an embodiment of the present invention to measure Ras activation status. The activation state of Ras in cell lines was assayed using the Active Ras Pull-Down and Detection Kit (Thermo Scientific). Cell lines were cultured as described above. Cells were disrupted with non-ionic detergent, and the active (GTP-bound) Ras was isolated by its high affinity for Raf via precipitate with sepharose-bound GST-Raf fusion protein. The precipitated active Ras was then subjected to polyacrylamide gel electrophoresis (PAGE) and transferred to nitrocellulose membrane (western blot). Detection was achieved using the anti-Ras mouse primary antibody and anti-

mouse-horseradish peroxidase conjugated secondary antibody. Paired samples of whole cell lysate were analyzed by western blot for expression level of total Ras protein as well as a gel loading control, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Digital enhanced chemiluminescence imaging of the resulting western blots was performed using a Syngene G:Box. The intensity of Ras bands from each cell line and the corresponding GAPDH bands were quantitated using NIH ImageJ, and expressed as "relative Ras activation."

EXAMPLE 17

This example illustrates effects of exemplary compounds of the present invention on cancer cells having activated or mutated Ras compared to wild-type (WT) Ras. Compounds were tested for their ability to inhibit the growth of cells expressing constitutively active K-Ras oncogene compared with cells with inactive Ras. A549 lung cancer cells, which harbor a mutation in the K-Ras oncogene were treated for three days with the compounds. As indicated in Table 2, the IC₅₀ values of the compounds ranged from <1 nM to over 5900 nM in cells with mutated Ras. In contrast, when these compounds were tested for their ability to inhibit the growth of colon cancer cells having the wild-type Ras protein (HT29), these compounds were significantly less potent, with IC₅₀ values ranging from 280 nM to over 8000 nM. The ratio of a given compound's potency (IC₅₀) to inhibit the growth of cells lacking activated Ras (HT-29) relative to that of cells with mutated or activated Ras (A549) demonstrates selectivity for the Ras-mutant-containing cells.

[0620] Table 2. Growth inhibition of cells with mutant Ras (N.D., not determined; W.T., wild type).

	A549	HT-29	Selectivity
	(Ras-activated)	(WT Ras)	HT-29/A549
Cpd #	IC ₅₀ (nM)	IC ₅₀ (nM)	
001	716	6,280	9
003	3,650	4,120	1
004	79	916	12
005	5,940	7,190	1
006	11	8,130	739
007	0.86	280	326
008	167	1,540	9
009	353	4,830	14
010	170	712	4
011	15	2,940	196
012	170	900	5
013	300	730	2
014	110	500	5

EXAMPLE 18

[0621] This example illustrates the levels of Ras activation in different colorectal cancer cells. In particular, a panel of human colorectal cancer cell lines was selected to further describe the selectivity of the compounds for cells with activated Ras. Three of the cell lines in the panel have been reported to harbor ras mutations: HCT-116, DLD-1, and SW-480 (Stoneman and Morris, *Clin Mol Pathol.*, 48, M326-332(1995)). Three of the cell lines were reported to express wild type Ras: HT-29, Caco-2, and Colo-205(Stoneman and Morris, supra; Shirasawa et al., *Science*, 260, 85-88 (1993)). The activation state of Ras in the cell lines was assayed using the Active Ras Pull-Down and Detection Kit. The ratio of the intensity of the Ras to GAPDH bands was expressed as relative Ras activation, which is presented above each lane in FIG. 4. This experiment demonstrated that the level of Ras activation in HCT-116 > DLD-1 ≈ SW-480 > Caco2 > HT-29 > Colo205.

EXAMPLE 19

[0622] This example illustrates selective growth inhibition in colorectal cell lines constitutively containing activated Ras or wild-type Ras. The growth inhibitory activity of the compounds was tested using the CellTiter-Glo assay. Cells were seeded in 384-well plates and allowed to attach, then ten-fold serial dilutions of compounds were tested. Each concentration was tested in at least 3 separate samples per cell line. As indicated in Table 3, the potency of the compounds ranged from <1 nM in cells with Ras activation, to greater than 1300 nM in cells with WT Ras. The ratio of a given compound's potency ((IC50 (subscript 50)) to inhibit the growth of cells having wild-type Ras (Caco-2) relative to that of cells having activated Ras (SW-480) demonstrates selectivity for the Ras-mutant-containing cells.

[0623] Table 3. Selective growth inhibition for active Ras in a panel of colorectal cancer cell lines.

	SW-480	Caco-2	Selectivity	
	(Ras	(WT Ras)	Caco-2/SW-480	
Cpd	Activated)	IC_{50} (nM)		
#	IC ₅₀ (nM)			
001	435	1,100	3	
004	977	1.600	2	
004	877	1,600	2	
006	2.85	428	150	
000	2.00	120	100	
007	0.37	1.97	5	
008	139	1,330	10	
000	137	1,550	10	
009	223	2,610	12	
010	2.1	33.8	16	
010	2.1	33.0	10	
011	21.3	47.6	2	

EXAMPLE 20

[0624] This example illustrates the correlation between the sensitivity to these compounds and Ras activation status. The log of the IC_{50} values of four highly active

compounds were plotted on the y-axis of the graphs and the log of the relative levels of Ras activation (e.g., as described in Example 9) was plotted on the x-axis. Linear regression analysis of the resulting coordinates demonstrates a statistically significant inverse correlation between Ras activation and sensitivity of the cell lines as shown in FIG. 6, in which HCT-116, DLD-1, and SW-480 cells harbor Ras mutations, while: HT-29, Caco-2, and Colo-205 express wild-type Ras. Correlation coefficients (r^2) are presented in each of the plots.

EXAMPLE 21

This example illustrates use of well-established human colon tumor cell lines with [0625] widely divergent Ras activation status to determine selectivity values for exemplary compounds of the present invention. Cell lines thus employed in this example were HCT-116, a highly Ras-driven line expressing mutant Ras, and HT-29, a non-Ras-driven line expressing wild-type, non-mutated Ras. Cells were plated at 5000 cells/well in 96-well plates, and viable cell numbers were measured using the Cell Titer Glo ATP luminescence assay (Promega). FIGS. 6A-6G show results of these studies for exemplary compounds 006, 007, 019, 029, 002, 010, 011, 015, 022 and 035, respectively. The calculated HT-29/HCT-116 selectivity values for the aforementioned compounds were 43, 92, 188, 35, 112, 141, 168, 80, 117, and 31, respectively. These selectivity values are the ratios of each compound's potency (IC₅₀) to inhibit the growth of cells lacking activated Ras ((HCT-29) relative to that of cells with activated Ras (HCT-116), demonstrating selectivity for the Ras-mutant-containing cells. Similar results were found with compounds 201 and 203, as illustrated in FIGS. 6K-6N. [0626] This example furthermore shows that prior art studies (e.g., U.S. Patents 6,063,818 and 6,121,321) employing individual cell lines such as HT-29 or SW-480 could not have revealed compounds with Ras-selective activity useful for Ras-directed medical treatments or preventions. Employment of a cell line having normal, non-mutant Ras (e.g., HT-29) concurrently with at least one or more cell line(s) having hyperactive or mutant Ras (e.g., HCT-116 and/or SW-480) in comparative assays of tumor cell growth inhibition are required to demonstrate Ras-selectivity, and to enable selection of a Ras-inhibitory compound necessary for the novel methods disclosed in the present invention.

EXAMPLE 22

In this example illustrates non-selective growth inhibition with known Ras pathway inhibitors which are not compounds of the present invention. In particular, the growth inhibitory activity of commercially available compounds which are active in the Ras signal transduction pathway were tested in the same panel of cell lines using the CellTiter-Glo assay. Cells were seeded in 384-well plates and allowed to attach. Ten-fold serial dilutions of compounds were tested. Each compound concentration was tested in at least 3 separate samples per cell line. As indicated in Table 4 below, the potency of the EGF receptor inhibitor compounds ranged from 4 μM to >20 μM, with no pattern of selectivity with regard to Ras activation. Likewise, the C-Raf inhibitor, GW5074, did not show selectivity for cell lines expressing activated Ras. The B-Raf inhibitors tested were generally active in the low micromolar range, but were significantly more potent in Colo-205 cells, which have the lowest level of active Ras. The MEK inhibitor, Selumetinib was also most potent against COLO-205 and HT-29 cell lines showing, if anything, a "reverse" selectivity toward inactive Ras compared with the compounds of this invention.

[0628] Table 4. Non Ras-selective growth inhibition with known Ras pathway inhibitors.

Compound	Target	HCT- 116 IC ₅₀ (nM)	DLD-1 IC ₅₀ (nM)	SW-480 IC ₅₀ (nM)	Caco-2 IC ₅₀ (nM)	HT-29 IC ₅₀ (nM)	COLO- 205 IC ₅₀ (nM)
Gefitinib	EGFR	12,600	7,550	8,630	8,920	6,370	8,200
GW5074	C-Raf	15,800	7,750	8,070	>20,000	19,100	7,100
GDC0879	B-Raf	8,140	7,640	>20,000	>20,000	23,600	75.8
Vemurafenib	B-Raf	5,990	5,620	6,860	5,200	5,100	151
Selumetinib	MEK	4,110	20,400	>20,000	>20,000	854	4.60

[0629] Together, these data demonstrate the activated Ras selective growth inhibitory activity of the compounds of this invention. This is in contrast to the current clinically used inhibitors of proteins within the Ras signaling cascade that exhibit no selectivity or selectivity for cells lacking activated Ras.

EXAMPLE 23

[0630] This example, which describes an investigation employing genetically engineered isogenic tumor cell lines, shows confirmation of Ras selectivity of compounds used in the

PCT/US2015/066154

methods of the present invention. In one study, human colon HT29 tumor cells were transfected with retroviral mutant H-Ras-G12V (H-Ras^m) or retroviral control (Retro) and stable clones were selected by puromycin. The cell lines, including parental lines (Par) were treated with compound 007 (ADT-007) for 72 hours and viable cell numbers were measured using the Cell Titer Glo assay. Ras pull-downs were performed with GST-RBD-C-Raf kits (ThermoSci) following cell extraction and detected by Ras antibody on Western-blots for the amount of active GTP-Ras. Total Ras levels among these cell extractions were detected by the same Ras antibody. Results shown in FIG. 7A demonstrate that the cells transfected with activated Ras were hypersensitive to the test drug (007) relative to the respective control cells. In another study human lung H322 tumor cells were stably transfected with retroviral mutant H-Ras-G12V (H-Ras^m) or retroviral control (Retro). Cell lines, including parental lines (Par) were treated with compound 007 (ADT-007) for 72 hours and viable cell number measured using the Cell Titer Glo assay. Ras pull-downs were performed with GST-RBD-C-Raf kits (ThermoSci) following cell extraction and detected by Ras antibody on Westernblots for the amount of active GTP-Ras. Total Ras levels among these cell extractions were detected by the same Ras antibody. Results shown in FIG. 7B demonstrate that the cells transfected with activated Ras were hypersensitive to the test drug (007) relative to the respective control cells.

EXAMPLE 24

This example illustrates that representative Ras-inhibitory compounds used in the [0631] methods of the present invention interact with high affinity directly with activated Ras to disrupt Ras interactions with a normal binding partner. In particular, this study shows (FIG. 8) disruption of Ras-Raf binding by compound 007 (ADT-007) and compound 006 (ADT-006). Inhibition studies of Ras binding to Raf by treatment with Ras inhibitors using a Raf pull-down assay was conducted in vitro in cell lysates (FIG. 8, top panel) or in intact cells (FIG. 8, bottom panel). For in vitro experiments, whole cell lysates from human H322 lung tumor cells transfected with activated (mutant) H-Ras were incubated for 30 minutes at room temperature with ADT-007 or ADT-006 at the designated concentrations. GTP-bound (active) Ras was precipitated with GST-Raf1-RBD/GSH Sepharose (Thermo Scientific) and detected by western blotting. Numerical values below the blots show the quantification of Ras protein by densitometry. As a positive control, lysates were incubated with 5 mM GDP

to deactivate Ras. For experiments involving intact cells, the same method as described above was used except intact H322 lung tumor cells were incubated with ADT-007 for 1 hour at 37°C prior to the Raf pull-down assay.

PCT/US2015/066154

EXAMPLE 25

This example illustrates that administration of therapeutic or preventive doses of [0632] representative compounds used in the present invention produced no evidence of in vivo animal toxicity as assessed by animal weight gains over time. Female athymic Nude-Foxn1^{nu} mice, 6 - 7 weeks old were purchased from Harlan and acclimated for 1 week. Mice had access to water and food ad libitum for the duration of the experiment. HCT-116 cells were cultured under optimal conditions (RPMI media, 5% fetal bovine serum, antibiotics, glutamate at 5% CO₂ and 36°C). On the day of inoculation, cells were collected from flasks 70-80% confluent. Mice were inoculated with 5×10^6 cells/100 µL in the right flank and 10x10⁶ cells/100 μL in the left flank. Compounds **006**, **011** and **019** (identified in FIG. 9 as ADT-006, ADT-011, and ADT-019, respectively) were administered twice daily by ip injection for 14 days at a dosage of 5 mg/kg. Compound 007 (identified as ADT-007 in FIG. 9) was administered in a similar manner except at a dosage 2.5 mg/kg. The vehicle for all compounds contained ethanol, polyethylene glycol-300, and water at a ratio of 5:75:20. Percent body weight change of mice treated with vehicle alone or with vehicle with test compounds relative to the body weight of the mice prior to treatment is shown. No change in body weight is shown as 100%. Error bars represent standard errors of the means. While there were some minor differences in animal weights early in the experiment, the drug-treated animal weights were statistically indistinguishable from controls for the duration of the experiment, indicating little if any toxic effects of any of the test drugs that would otherwise be manifest as significant body weight change.

EXAMPLE 26

[0633] This example illustrates efficacious therapeutic antitumor treatments (FIGS. 10A-D) of a representative Ras-driven tumor in vivo with exemplary Ras-inhibitory compounds employed in the present invention. Female athymic Nude-Foxn1^{nu} mice, 6-7 weeks old were purchased from Harlan and acclimated for 1 week. Mice had access to water and food *ad libitum* for the duration of the experiment. HCT-116 cells were cultured in optimal conditions

(RPMI media, 5% fetal bovine serum, antibiotics, glutamate at 5% CO₂ and 36°C). On the day of inoculation, cells were collected from flasks 70-80% confluent. Mice were inoculated with 5x10⁶ cells/100 µL on the right flank. Treatment was initiated once tumors reached an average size of 50 mm³. Compounds 006, 011 and 019 (identified in FIGS. 10A, 10C and 10D as ADT-006, ADT-011, and ADT-019, respectively) were administered twice daily by ip injection for 14 days at a dosage of 5 mg/kg. Compound 007 (identified in FIG. 10B as ADT-007) was administered in a similar manner except at a dosage 2.5 mg/kg. The vehicle for all compounds contained ethanol, polyethylene glycol-300, and water at a ratio of 5:75:20. Error bars represent standard errors of the means at each point, and analysis of variance showed that the growth curves of drug-treated animals versus vehicle-only control animals were highly statistically different. Namely, the results shown in FIGS. 10A-D demonstrate that all four compounds profoundly suppress tumor growth; in fact, in this study there were multiple "cures" in each drug-treated group (i.e., animals were completely free of macroscopically visible tumor at the end of the experiment). Another study, results of which are illustrated in FIGS. 10E-H, employed a "prevention" protocol rather than a "therapeutic" protocol. Female athymic Nude-Foxn1^{nu} mice, 6-7 weeks old were purchased from Harlan and acclimated for 1 week. Mice had access to water and food ad libitum for the duration of the experiment. HCT-116 cells were cultured in optimal conditions (RPMI media, 5% fetal bovine serum, antibiotics, glutamate at 5% CO₂ and 36°C). On the day of inoculation, cells were collected from flasks 70-80% confluent. Mice were inoculated with $10x10^6$ cells/100 uL on the left flank, and treatment was initiated one day following tumor implantation. Compounds 006, 011 and 019 (identified in FIGS. 10E, 10G and 10H as ADT-006, ADT-011, and ADT-019, respectively) were administered twice daily by ip injection for 14 days at a dosage of 5 mg/kg. Compound 007 (identified in FIG. 10F as ADT-007) was administered in a similar manner except at a dosage 2.5 mg/kg. The vehicle for all compounds contained ethanol, polyethylene glycol-300, and water at a ratio of 5:75:20. Treatment was initiated one day following tumor implantation. Error bars represent standard errors of the means at each point, and P-values are derived from analysis of variance which showed that the growth curves of drug-treated animals versus vehicle-only control animals were highly statistically different. Namely, the results shown in FIGS. 10E-H demonstrate that all four compounds profoundly prevent tumor growth.

[0634] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.

[0635] The use of the terms "a" and "an" and "the" and "at least one" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The use of the term "at least one" followed by a list of one or more items (for example, "at least one of A and B") is to be construed to mean one item selected from the listed items (A or B) or any combination of two or more of the listed items (A and B), unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including," and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

[0636] Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

CLAIM(S):

1. A method of therapeutically treating a cancer patient whose cancer has been determined to contain a Ras-activating mutation of a *ras* gene, which method comprising administering to the patient a Ras-inhibitory effective amount of at least one Ras-inhibitory compound of formula II having a selectivity index greater than one, a pharmaceutically acceptable salt or prodrug thereof:

$$R_{13}$$
 R_{14}
 R_{15}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{16}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R_{19}
 R_{19}
 R_{11}

wherein:

R and R_0 are independently selected from the group consisting of hydrogen, hydroxyl, alkyl, alkoxy, alkylamino, and amino; or, R and R_0 together is double-bonded oxygen;

n is 0, 1 or 2;

Y and Y' together is double-bonded oxygen;

 R_1 , R_2 , R_3 , and R_4 are independently selected from hydrogen, hydroxyl, halogen, alkyl, alkoxy, and alkylmercapto, with the proviso that at least one of R_1 , R_2 , R_3 and R_4 is hydrogen;

R₇ is hydrogen;

R₈ is selected from hydrogen, alkyl, and alkoxy;

at least two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are hydrogens; at least two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are hydroxyl; or at least two of R_{12} , R_{13} , R_{14} , R_{15} and R_{16} are alkoxy;

R₁₄ is selected from hydrogen, hydroxyl, halogen, alkyl, amino, and dialkylamino;

X is a substituted alkoxy or NR'R", where R' is selected from the group consisting of hydrogen, alkyl, alkoxy, alkenyl, alkynyl, hydroxyalkyl, polyhydroxyalkyl, dialkylaminoalkyl, aminoalkyl, arylalkyl, phenyl, indanyl, cyclopropanyl, heterocyclyl and heterocyclylalkyl, where the heterocycle of the heterocyclyl and heterocyclylalkyl is selected

from pyridinyl, piperidinyl, piperazinyl, pyrrolidinyl and N-morpholino, and wherein any of the cyclic structures of R' may be unsubstituted or substituted with one or more of halo, haloalkyl, alkoxy, hydroxyl, amino, alkylamino, dialkylamino and sulfonamido; and R" is selected from hydrogen, alkyl, alkylamino, cyanoalkyl, haloalkyl, hydroxyalkyl, dialkylaminoalkyl, alkylcarbonylakylcarbonyloxy, and pyridinyl;

wherein said selectivity index is the numerical ratio of the concentration of said compound to cause in vitro 50% growth inhibition of a cell, selected from COLO 205, Caco-2, and HT-29, lacking activated Ras to the concentration of said compound to cause in vitro 50% growth inhibition of a cell, selected from A549, HCT116, and SW480, harboring activated Ras;

wherein the at least one compound of formula II or a pharmaceutically acceptable salt or prodrug thereof is administered alone or in combination with at least one additional agent, other than a compound or pharmaceutically acceptable salt or prodrug of formula II, selected from an anticancer agent and radiation.

- 2. The method of claim 1, wherein R_1 , R_3 , and R_4 are hydrogen and R_2 is selected from hydroxyl, halogen, alkyl, alkoxy, and alkylmercapto.
 - 3. The method of claim 2, wherein R_2 is selected from halogen and alkoxy.
 - 4. The method of claim 3, wherein R_2 is selected from fluorine and methoxy.
- 5. The method of claim 1, wherein R_7 is hydrogen and R_8 is selected from alkyl and alkoxy.
 - 6. The method of claim 5, wherein R_8 is alkyl.
- 7. The method of claim 1, wherein R_{14} is selected from hydrogen, hydroxyl, halogen, alkyl, amino, and dialkylamino.
 - 8. The method of claim 7, wherein R_{14} is selected from hydroxy and amino.
- 9. The method of claim 1, wherein the heterocycle of the heterocyclyl and heterocycloalkyl is selected from pyridinyl, piperazinyl, and pyrrolidinyl.

- 10. The method of claim 1, wherein R' is phenyl or arylalkyl, optionally substituted on the phenyl or the aryl of the arylalkyl by one or more halogen atoms.
 - 11. The method of claim 1, wherein said selectivity index is at least ten.
 - 12. The method of claim 11, wherein said selectivity index is at least one hundred.
 - 13. The method of claim 1, wherein said compound is selected from:
- (Z)-N-(2-(dimethylamino)ethyl)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)acetamide (**003**),
- (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-3-yl)acetamide (**004**),
- (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-3-ylmethyl)acetamide (**009**),
- (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(pyridin-2-ylmethyl)acetamide (**010**),
- (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-(pyridin-3-ylmethyl)acetamide (**011**),
- (Z)-N-benzyl-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)acetamide (015),
- (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-(pyridin-2-ylmethyl)acetamide (**028**),
- (Z)-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-phenylacetamide (**034**),
- (Z)-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-phenylacetamide (**035**),
- (Z)- N-benzyl-2-(1-(4-hydroxy-3,5-dimethoxybenzylidene)-5-methoxy-2-methyl-1H-inden-3-yl)-N-methylacetamide (148), and

(Z)- N-benzyl-2-(5-fluoro-1-(4-hydroxy-3,5-dimethoxybenzylidene)-2-methyl-1H-inden-3-yl)-N-methylacetamide (**149**),

or the corresponding Z- or E-isomer thereof, prodrug, or salt thereof.

- 14. The method of claim 1, wherein the cancer is metastatic, drug resistant, or radiation resistant.
- 15. The method of claim 1, wherein the effective amount is less than or equal to about 20 mg/kg (compound/body weight).
- 16. The method of claim 1, wherein the effective amount is the amount required to cause at least a 10% reduction in cancer cell mass of said patient's cancer.
- 17. The method of claim 1, wherein the Ras-inhibitory effective amount is a therapeutically effective amount.
- 18. The method of claim 1, wherein said prodrug is a derivative of a compound of formula II, wherein R₁₄ is Q-U wherein U is selected from the group consisting of oxygen, sulfur, nitrogen, OCH₂, SCH₂ and NHCH₂; and Q is selected from the group consisting of PEG-CO, HCO, and amino acid; or Q and U together is a substituted or unsubstituted group selected from phosphonooxy, phosphonoalkyloxy, formyloxy, alkylcarbonyloxy, alkylcarbonyloxy, alkylcarbonyloxy, aninocarbonyloxyalkyloxy, aminocarbonyloxyalkyloxy, alkylsulfinyloxy, alkylsulfonyloxy, carbamate, carbamido, alkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, arylcarbonyloxy, arylalkylcarbonyloxy, aryloxycarbonyloxy, heterocyclylalkylcarbonyloxy.
 - 19. The method of claim 1, wherein said prodrug is selected from:
- (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl benzoate (**320**),
- (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl nicotinate (**321**),
- (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (2-(dimethylamino)ethyl)carbamate (**323**),

- (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl morpholine-4-carboxylate (**324**),
- (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (1-methylpiperidin-4-yl)carbamate (**325**),
- (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (**326**),
- (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-(1-methylpiperidin-4-yl)piperazine-1-carboxylate (327),
- (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl dihydrogen phosphate (**328**),
- (Z)-(4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-3-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenoxy)methyl dihydrogen phosphate (**329**),
- (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl benzoate (**330**),
- (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl nicotinate (**331**),
- (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (2-(dimethylamino)ethyl)carbamate (**333**),
- (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl morpholine-4-carboxylate (**334**),
- (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl (1-methylpiperidin-4-yl)carbamate (335),
- (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (**336**),
- (Z)-4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl dihydrogen phosphate (**338**),
- (Z)-(4-((3-(2-(benzylamino)-2-oxoethyl)-5-fluoro-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenoxy)methyl dihydrogen phosphate (**339**),
- (Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-(phenylamino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (**351**),
- (Z)-4-((5-fluoro-3-(2-((3-methoxyphenyl)amino)-2-oxoethyl)-2-methyl-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (**353**),

(Z)-4-((5-fluoro-2-methyl-3-(2-oxo-2-((pyridin-2-ylmethyl)amino)ethyl)-1H-inden-1-ylidene)methyl)-2,6-dimethoxyphenyl 4-methylpiperazine-1-carboxylate (**355**), or a pharmaceutically acceptable salt thereof.

1/23

PRIOR ART

FIG. 1

PRIOR ART

FIG. 2

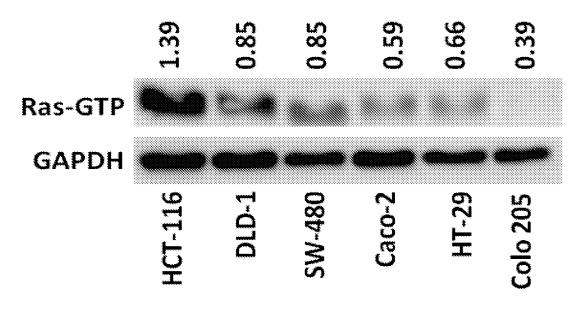


FIG. 4

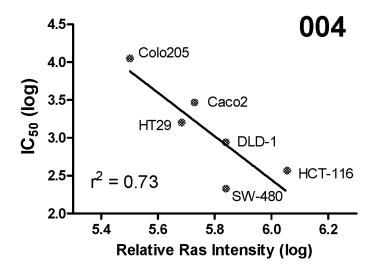


FIG. 5A

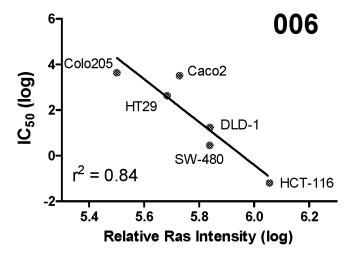


FIG. 5B

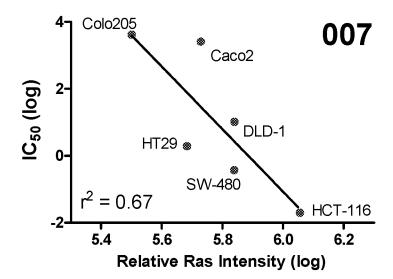


FIG. 5C

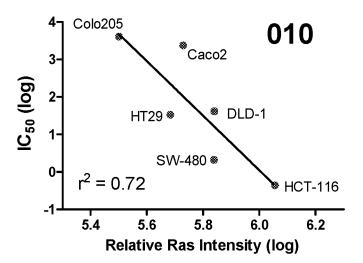


FIG. 5D

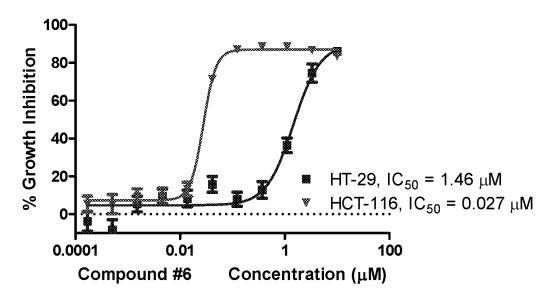


FIG. 6A

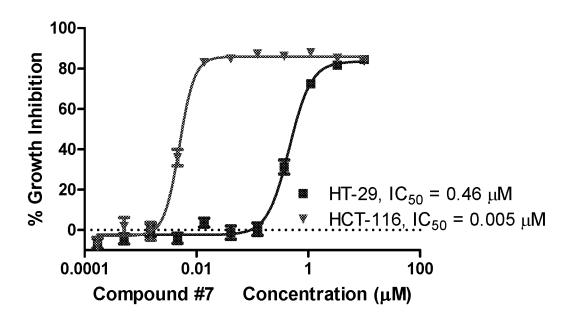


FIG. 6B

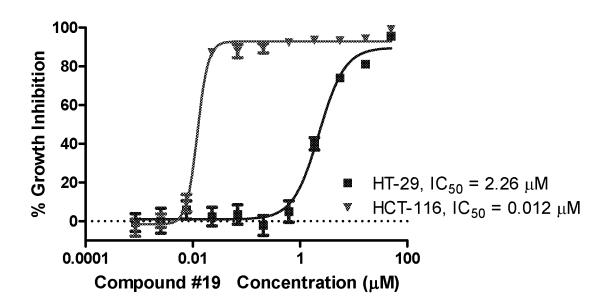


FIG. 6C

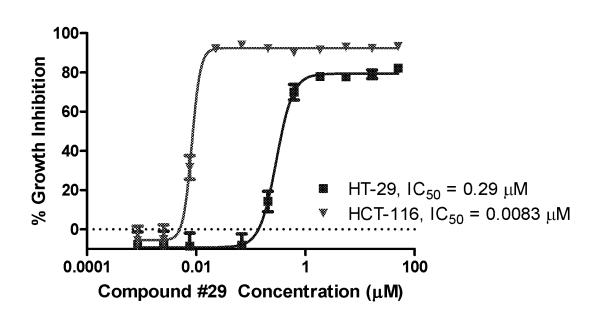


FIG. 6D

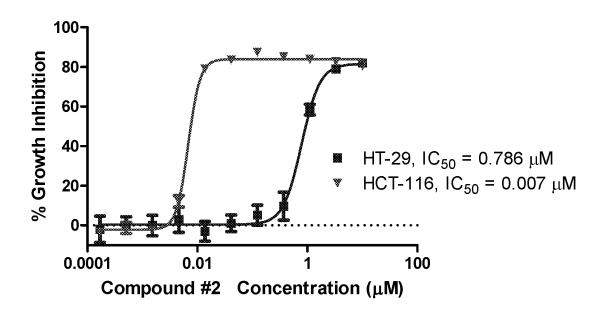


FIG. 6E

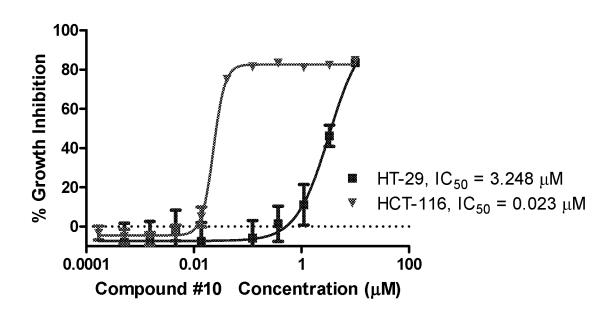


FIG. 6F

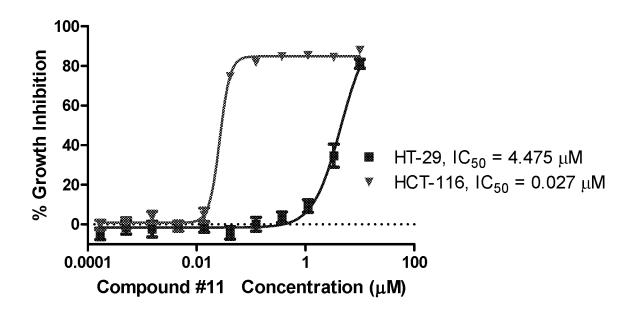


FIG. 6G

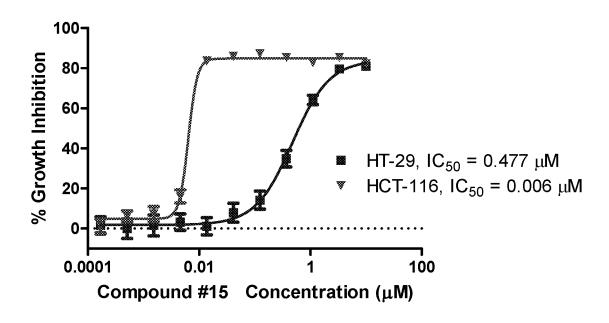
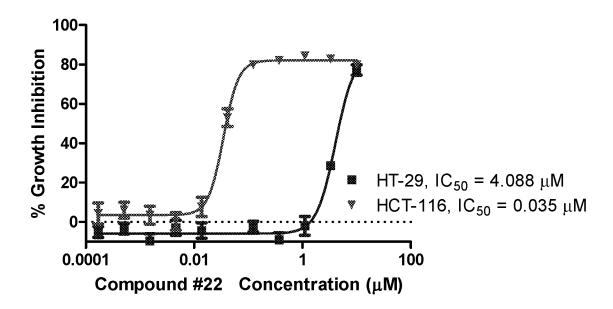



FIG. 6H

FIG. 6I

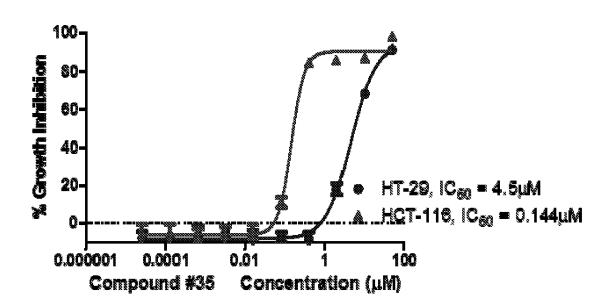


FIG. 6J

10/23

Compound # 202

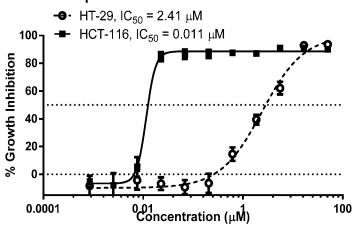


FIG. 6K

-**9**- HT-29, IC₅₀ = 2.41 μM 1007

Compound # 202

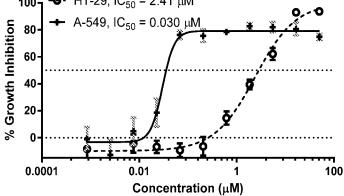


FIG. 6L

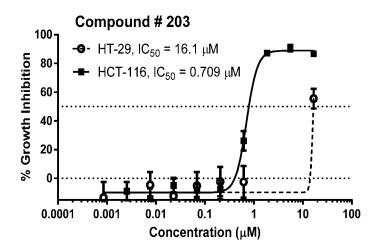


FIG. 6M

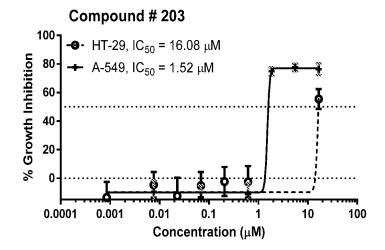
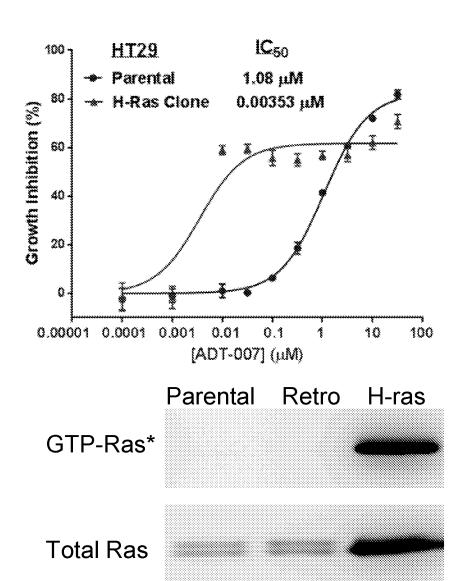
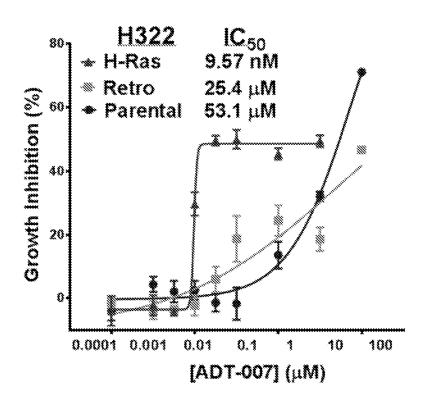




FIG. 6N

GAPDH

FIG. 7A

Ras-GTP
Total Ras
GAPDH

FIG. 7B

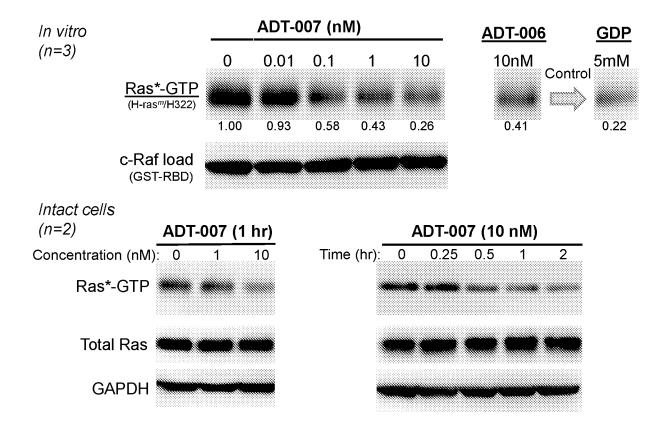


FIG. 8

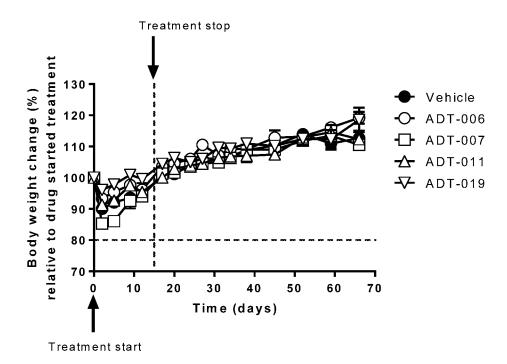
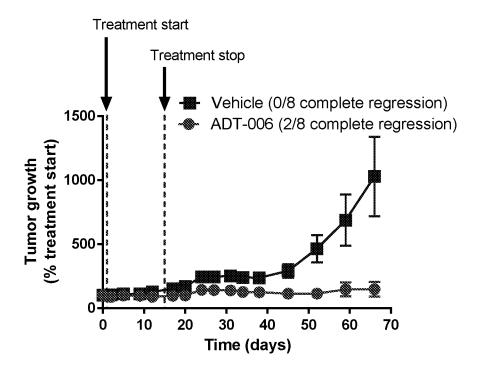
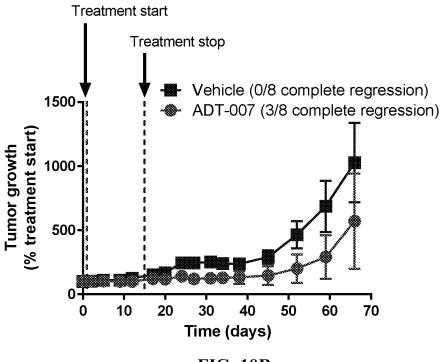
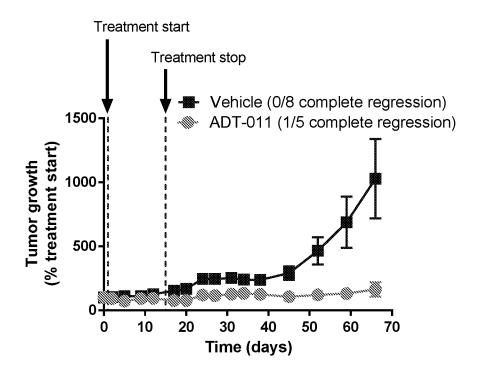
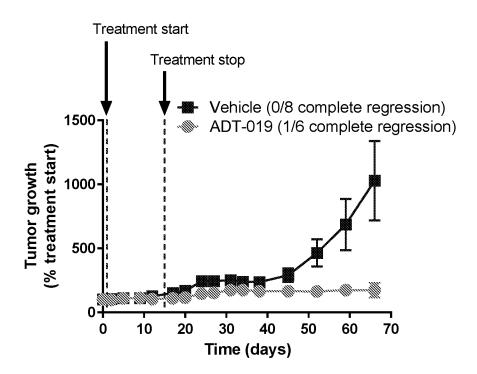
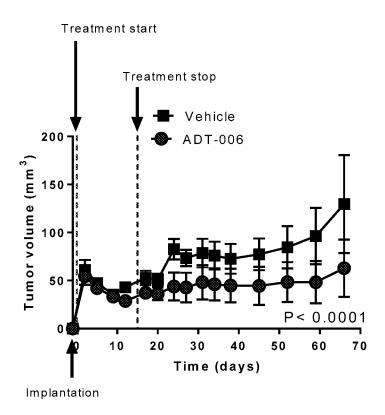
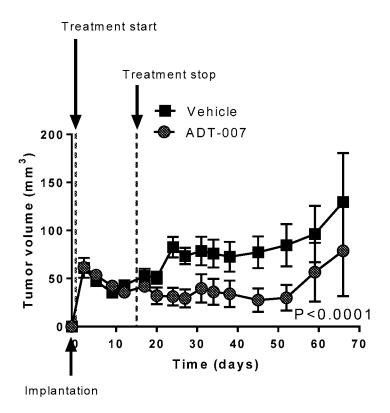




FIG. 9

FIG. 10A

FIG. 10B


FIG 10C

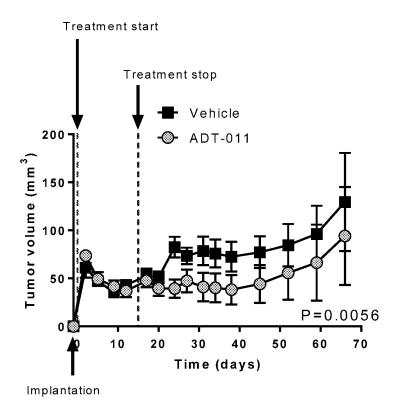

FIG. 10D

FIG. 10E

FIG. 10F

FIG. 10G

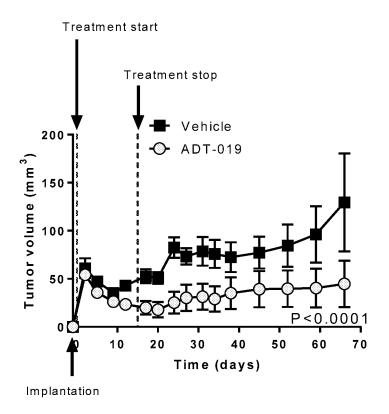


FIG. 10H

International application No PCT/US2015/066154

C. DOCUMENTS CONSIDERED TO BE RELEVANT

A. CLASSIFICATION OF SUBJECT MATTER INV. A61K31/165 A61K3 A61K31/216 A61K31/4406 A61K31/496

A61K31/401 A61K31/5375 A61K31/421 A61K31/5377

A61K31/4402 A61P35/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, BIOSIS, CHEM ABS Data, EMBASE, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
Α	MÜLLER O ET AL: "Identification of Potent Ras Signaling Inhibitors by	1-19		
	Pathway-Selective Phenotype-Based			
	Screening",			
	ANGEWANDTE CHEMIE INTERNATIONAL EDITION, WILEY - V C H VERLAG GMBH & CO. KGAA, DE,			
	vol. 43, no. 4,			
	1 January 2004 (2004-01-01), pages 450-454, XP002547494,			
	ISSN: 1433-7851, DOI:			
	10.1002/ANIE.200352587			
	[retrieved on 2004-01-14] page 451, left-hand column, paragraph 3 -			
	right-hand column, line 5			
	page 452; table 1			
	page 453, right-hand column, paragraph 2 page 453, right-hand column, paragraph 4 -			
	page 454, left-hand column, line 9			

Х	Further documents are listed in the continuation of Box C.
---	--

page 454, left-hand column, last paragraph

See patent family annex.

Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

26/04/2016

Date of mailing of the international search report

Date of the actual completion of the international search

8 April 2016

Authorized officer

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Garabatos-Perera, J

2

International application No
PCT/US2015/066154

C(Continua	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	DE 101 63 426 A1 (MAX PLANCK GESELLSCHAFT [DE]) 3 July 2003 (2003-07-03) abstract paragraphs [0004], [0006], [0007] paragraph [0008] paragraphs [0010], [0012], [0013], [0015] paragraph [0042]; table 1 paragraph [0044]; table 2 paragraph [0049]; table 3 paragraph [0059]; example 4; tables 5-6 figures 1,2,6/1-6/6	1-19	
A	HERBERT WALDMANN ET AL: "Sulindac-Derived Ras Pathway Inhibitors Target the Ras-Raf Interaction and Downstream Effectors in the Ras Pathway", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 43, no. 4, 16 January 2004 (2004-01-16), pages 454-458, XP055254895, DE ISSN: 1433-7851, DOI: 10.1002/anie.200353089 page 456, left-hand column, last paragraph - page 457, right-hand column, paragraph 1; table 1	1-19	
A	CHEN XI ET AL: "A novel series of substituted indene derivatives that potently and selectively inhibit growth of tumor cells harboring mutant Ras", MOLECULAR CANCER RESEARCH, vol. 12, no. Suppl. 12, 1 December 2014 (2014-12-01), page B39, XP002755017, & AACR SPECIAL CONFERENCE ON RAS ONCOGENES - FROM BIOLOGY TO THERAPY; LAKE BUENA VISTA, FL, USA; FEBRUARY 24 -27, 2014 the whole document	1-19	
A	LIM J T E ET AL: "SULINDAC DERIVATIVES INHIBIT GROWTH AND INDUCE APOPTOSIS IN HUMAN PROSTATE CANCER CELL LINES", BIOCHEMICAL PHARMACOLOGY, ELSEVIER, US, vol. 58, no. 7, 1 October 1999 (1999-10-01), pages 1097-1107, XP000870484, ISSN: 0006-2952, DOI: 10.1016/S0006-2952(99)00200-2 abstract page 1098; figure 1; compound CP248	1-19	

2

International application No
PCT/US2015/066154

Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	SNIGDHA CHENNAMANENI ET AL: "COX inhibitors Indomethacin and Sulindac derivatives as antiproliferative agents: Synthesis, biological evaluation, and mechanism investigation", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY., vol. 56, 1 October 2012 (2012-10-01), pages 17-29, XP055254643, FR ISSN: 0223-5234, DOI: 10.1016/j.ejmech.2012.08.005 abstract page 21; table 2; compounds 37-40	1-19
A	Eun-Yi Moon ET AL: "Benzylamide Sulindac Analogues Induce Changes in Cell Shape, Loss of Microtubules and G 2 -M Arrest in a Chronic Lymphocytic Leukemia (CLL) Cell Line and Apoptosis in Primary CLL Cells 1", CANCER RESEARCH, 15 October 2002 (2002-10-15), pages 5711-5719, XP055254648, Retrieved from the Internet: URL:http://cancerres.aacrjournals.org/cont ent/62/20/5711.full.pdf [retrieved on 2016-03-03] abstract page 5712; figure 1; compound cp248	1-19
A	ANDY J. LIEDTKE ET AL: "Cyclooxygenase-1-Selective Inhibitors Based on the (E)-2'- Des -methyl-sulindac Sulfide Scaffold", JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, no. 5, 8 March 2012 (2012-03-08), pages 2287-2300, XP055254677, US ISSN: 0022-2623, DOI: 10.1021/jm201528b abstract Scheme 1; page 2290 page 2292; table 3; compounds 16d-16e page 2293; table 4	1-19
A	WO 97/47303 A1 (CELL PATHWAYS INC [US]; UNIV ARIZONA [US]) 18 December 1997 (1997-12-18) cited in the application abstract page 47; example A; table 4 claims	1-19

Information on patent family members

International application No
PCT/US2015/066154

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
DE 10163426	A1	03-07-2003	NONE		
WO 9747303	A1	18-12-1997	AT	246925 T	15-08-2003
			ΑU	3310897 A	07-01-1998
			BR	9709720 A	25-01-2000
			CA	2258013 A1	18-12-1997
			DE	69724127 D1	18-09-2003
			DE	69724127 T2	08-07-2004
			EP	0910380 A1	28-04-1999
			ES	2205241 T3	01-05-2004
			HK	1020170 A1	07-11-2003
			ΙL	127468 A	21-04-2002
			JР	4190584 B2	03-12-2008
			JP	2000514417 A	31-10-2000
			KR	20000016560 A	25-03-2000
			US	6063818 A	16-05-2000
			US	6403831 B1	11-06-2002
			WO	9747303 A1	18-12-1997