In one embodiment, a soft food container may be refillable with an interchangeable nozzle system. A base 104 may have a resealable opening 142 to receive a soft food product. A nozzle opening 302 may receive a food nozzle. A pressure release nozzle 352 may disperse the soft food product. A pliable shell may connect the base 104 to the nozzle opening 302.
START

702
RECEIVE NOZZLE

704
RECEIVE SOFT FOOD PRODUCT

706
SEAL RESEALABLE OPENING

708
STORE SOFT FOOD PRODUCT

710
DISPLAY SOFT FOOD PRODUCT

712
IDENTIFY SOFT FOOD PRODUCT

714
DISPERSE SOFT FOOD PRODUCT

END

Figure 7
REFILLABLE SOFT FOOD CONTAINER

BACKGROUND

[0001] Food containers may take many different forms. Tupperware® may be used to store food left over from an earlier meal. Food may come wrapped in a plastic sheets that self-seal. Styrofoam® and cardboard containers may be used for fast food. Aluminum foil may allow food to be warmed in a consistent manner. Glass jars may lengthen the storage period for such food products.

SUMMARY

[0002] This Summary is provided to introduce a selection of concepts in a simplified form that is further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.

[0003] Embodiments discussed below relate to a refillable soft food container with an interchangeable nozzle system. A base may have a resealable opening to receive a soft food product. A nozzle opening may receive a food nozzle. A pressure release nozzle may disperse the soft food product. A pliable shell may connect the base to the nozzle opening.

DRAWINGS

[0004] In order to describe the manner in which the above-recited and other advantages and features can be obtained, a more particular description is set forth and will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments and are not therefore to be considered as being limiting of its scope, implementations will be described and explained with additional specificity and detail through the use of the accompanying drawings.

[0005] FIGS. 1a-c illustrate, in diagrams, one embodiment of a soft food container.
[0006] FIGS. 2a-d illustrate, in diagrams, one embodiment of a base of the soft food container.
[0007] FIGS. 3a-6 illustrate, in diagrams, one embodiment of a pliable durable food container body.
[0008] FIGS. 4a-b illustrate, in diagrams, one embodiment of a nipple food nozzle.
[0009] FIGS. 5a-c illustrate, in diagrams, one embodiment of a dispenser food nozzle.
[0010] FIGS. 6a-d illustrate, in diagrams, one embodiment of a top loading soft food container.
[0011] FIG. 7 illustrates, in a flowchart, one embodiment of a method of storing soft food in a refillable soft food container.

DETAILED DESCRIPTION

[0012] Embodiments are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations may be used without parting from the spirit and scope of the subject matter of this disclosure. The implementations may be a method, a pliable durable food container body, or a soft food container.

[0013] Soft food products, such as baby food, applesauce, or mashed potatoes, may be easily stored in a pliable tube for easy use and portability. The soft food product may be squeezed through a nozzle of the tube directly into the mouth of the eater. Generally, the pliable tube may be discarded after the food has been consumed. By making a soft food container refillable, the soft food container may be reused, or by people who make their own soft food product. Additionally, the soft food container may have an interchangeable nozzle to allow the soft food container to be customized to the user, such as having a pressure release nozzle for dispersing the soft food product to infants. A pressure release nozzle disperses soft food product when pressure is applied to the sides of the nozzle. The pressure release nozzle may allow a user to avoid an accidental dispersal of soft food.

[0014] Thus, in one embodiment, a soft food container may be refillable with an interchangeable nozzle system. A base may have a resealable opening to receive a soft food product. A nozzle opening may receive a food nozzle. A pressure release nozzle may disperse the soft food product. A pliable shell may connect the base to the nozzle opening.

[0015] FIG. 1 illustrates, in a diagram, one embodiment of a front view 100 of a soft food container. The soft food container may have a pliable shell 102 atop a base 104 to store a soft food product. The pliable shell 102 may be thermally conductive to allow the soft food product to be easily heated or cooled. The pliable shell may be made of an appliance safe material. An appliance safe material is a material that does not interact in a harmful manner with an appliance, such as a microwave, freezer, dishwasher, or other household appliances. The base 104 may allow the soft food container to stand upright when the soft food container is not in use.

[0016] A food nozzle 106 may protrude from a neck 108 in the pliable shell 102. The food nozzle 106 may disperse the soft food product. The food nozzle 106 may be a pressure release nozzle, a nozzle that disperses food when pressure is applied to the sides of the nozzle. The food nozzle 106 may have a cup 110 to prevent the soft food product from leaking. The pliable shell 102 may be translucent or have a translucent area 112 to display the soft food product to the consumer. The pliable shell 102 may have a writeable label area 114 to allow a consumer to label the soft food product contained in the soft food container 100.

[0017] FIG. 1 illustrates, in a diagram, one embodiment of a side view 120 of the soft food container. The pliable shell 102 may be created by connecting a near thermally conductive sheet 122 to an opposite thermally conductive sheet 124 on opposing ends. Thus, the soft food container may be stored flat when empty.

[0018] FIG. 1 illustrates, in a diagram, one embodiment of a loading position 140 for the soft food container. The cap 110 may be placed on the food nozzle to prevent spillage. The soft food container may be inverted with the base 104 facing up. A resealable opening 142 in the base 104 may be open to receive soft food product. A user may fill the soft food container with soft food product through the resealable opening 142. Once the soft food container is full, the user may reseal the resealable opening 142.

[0019] FIG. 2 illustrates, in a diagram, one embodiment of a base 104 of the soft food container with a touch resealable opening 200. The base 104 may have an edge 202 along a near side of the resealable opening 142. The base 104 may have a flap 204 along an opposite side of the resealable opening that binds with the edge 202 to seal the resealable opening 142. The flap 204 may bond with the edge 202 by a resealable adhesive present on the flap 204. Alternately, the surface of
the flap 204 may be covered by shaped dimples that protect adhesive pockets from the surface of the edge 202. By pressing the flap 204, the user may flatten the dimples, bringing the adhesive into contact with the surface of the edge 202.

[0020] FIG. 2b illustrates, in a diagram, one embodiment of a base 104 of the soft food container with a two track resealable opening 220. The base 104 may have a near interlocking track 222 on a near side of the two track resealable opening 220. The base 104 may have an opposite interlocking track 224 on an opposite side of the two track resealable opening 220. A user may apply a finger pressure to connect the near interlocking track 222 to the opposite interlocking track 224. Alternately, a runner 226 may join the near interlocking track 222 to the opposite interlocking track 224. A tongue 228 may pull the runner 226 along the near interlocking track 222 and the opposite interlocking track 224.

[0021] The resealable opening 142 may be off center on the base 104 to reinforce the base 104 under the center of gravity created by the soft food. FIG. 2c illustrates, in a diagram, one embodiment of a base 104 of the soft food container with a front off-center resealable opening 240. The near interlocking track 222 and the opposite interlocking track 224 may be near the rear 244 of the soft food container and away from the front 242 of the soft food container.

[0022] Alternately, FIG. 2d illustrates, in a diagram, one embodiment of a base 104 of the soft food container with a rear off-center resealable opening 260. The near interlocking track 222 and the opposite interlocking track 224 may be near the rear 244 of the soft food container and away from the front 242 of the soft food container.

[0023] The soft food container may have interchangeable nozzles to allow customization of the soft food container. FIG. 3a illustrates, in a diagram, one embodiment of a front view 300 of a pliable durable food containment body. A pliable durable food containment body is a food containment body that may be easily constricted to force the food through the nozzle, while still durable enough to prevent punctures or damage. A pliable durable food containment body may forgive any exterior protection, such as a hardened exterior cover. The neck 108 may have a nozzle opening 302 for receiving a food nozzle, such as a pressure release nozzle. The pliable shell 102 may connect the base 104 to the nozzle opening 302.

[0024] FIG. 3b illustrates, in a diagram, one embodiment of the insertion 350 of a pressure release nozzle 352 into the pliable durable food containment body. The soft food container may be inverted with the base 104 facing up. The base 104 may have a resealable opening 142 to receive a soft food product. The resealable opening 142 in the base 104 may be open to receive the pressure release nozzle 352. A user may insert the pressure release nozzle 352 into the nozzle opening 302. A user may cap the pressure release nozzle 352 to prevent leakage during filing. Once the soft food container is full, the user may reseal the resealable opening 142.

[0025] FIG. 4a illustrates, in a diagram, one embodiment of a side view 400 of a nipple food nozzle. The nipple food nozzle may have a trunk 402 that lodges in the nozzle opening 302. A lip 404 may keep the nipple food nozzle from falling back into the pliable durable food containment body. The nipple food nozzle may be made of a soft material, such as soft plastic, to allow the lip 404 to be distorted for insertion into the nozzle opening 302. An anchor 406 may keep the nipple food nozzle from falling out of the pliable durable food containment body. A nipple 408 may have a hole 410 for dispersing the soft food product. The hole 410 may be opened by applying pressure to the sides of the nipple 408. FIG. 4b illustrates, in a diagram, one embodiment of a top view 450 of the nipple food nozzle.

[0026] FIGS. 5a illustrates, in a diagram, one embodiment of a side view 500 of a dispenser food nozzle. The dispenser food nozzle may have a trunk 402 that lodges in the nozzle opening 302. A lip 404 may keep the dispenser food nozzle from falling back into the pliable durable food containment body. The dispenser food nozzle may be made of a soft material, such as soft plastic, to allow the lip 404 to be distorted for insertion into the nozzle opening 302. An anchor 406 may keep the dispenser food nozzle from falling out of the pliable durable food containment body. A user may control dispersal of the soft food product by applying pressure to the sides of a dispenser 502.

[0027] FIG. 5b illustrates, in a diagram, one embodiment of a top view 520 of a slit dispenser food nozzle. The slit 522 may be opened by applying pressure to the sides of the dispenser 502, pulling the sides of the slit 522 apart. FIG. 5c illustrates, in a diagram, one embodiment of a top view 520 of a two-hole dispenser food nozzle. Each hole 542 may be opened by applying pressure to the sides of the dispenser 502, widening the holes 542.

[0028] A soft food container may be top loading. FIG. 6a illustrates, in a diagram, one embodiment of a top loading pliable durable food containment body 600. The top loading pliable durable food containment body 600 may have a wide-mouth nozzle opening 602 to allow soft food to be inserted into the pliable shell 610. The wide mouth nozzle opening 602 may have striations to allow for screw top nozzle to attach. The top loading pliable durable food containment body 600 may have a solid base 604 to prevent blowouts.

[0029] FIG. 6b illustrates, in a diagram, one embodiment of a screw top nozzle 620. The screw top nozzle 620 may have a dispenser 502 atop a screw top 622. The screw top 622 may allow the dispenser 502 to be screwed onto the wide mouth nozzle opening 602. A user may control dispersal of the soft food product by applying pressure to the sides of a dispenser 502.

[0030] Alternately, the top loading pliable durable food containment body 600 may be used with an insertable nozzle. FIG. 6c illustrates, in a diagram, one embodiment of an insertable nozzle 640. The insertable nozzle 640 may have a trunk 402 that lodges in the wide mouth nozzle opening 602. A lip 404 may keep the insertable nozzle 640 from falling back into the pliable durable food containment body. A probe 642 may facilitate inserting the insertable nozzle 640 into the pliable durable food containment body while keeping the insertable nozzle 640 from dislodging. The insertable nozzle 640 may be made of a soft material, such as soft plastic or rubber, to allow the lip 404 and probe 642 to be distorted for insertion into the nozzle opening 302. A user may control dispersal of the soft food product by applying pressure to the sides of a dispenser 502.

[0031] A top-loading stopper may replace the nozzle during freezing or heating to prevent the accidental dispersal of food. FIG. 6d illustrates, in a diagram, one embodiment of a top-loading stopper 660. The top-loading stopper 660 may have a trunk 402 that lodges in the wide mouth nozzle opening 602. A lip 404 may keep the top-loading stopper 660 from falling back into the pliable durable food containment body. A plug 662 may facilitate inserting the top-loading stopper 660 into the pliable durable food containment body while keeping the top-loading stopper 660 from dislodging.
FIG. 7 illustrates, in a flowchart, one embodiment of a method 700 of storing soft food in a refillable soft food container. The pliable durable food containment body may receive in a nozzle opening 302 a pressure release nozzle 352 inserted through a resealable opening 142 (Block 702). The soft food container may receive a soft food product through the resealable opening 142 in a base 104 of the pliable durable food containment body (Block 704). The soft food container may seal the resealable opening 142 (Block 706). The soft food container may store a soft food product in the pliable durable food containment body (Block 708). The soft food container may display the soft food product through a translucent area 112 of the pliable durable food containment body (Block 710). The soft food container may identify the soft food product with a writeable label area 114 on the pliable durable food containment body (Block 712). The soft food container may dispense the soft food product through a pressure release nozzle (Block 714). The soft food container may dispense the soft food product through a pressure release slit in the pressure release nozzle or through at least two pressure release holes in the pressure release nozzle.

Although the above description may contain specific details, they do not limit the claims in any way. Other configurations of the described embodiments are part of the scope of the disclosure. For example, the principles of the disclosure may be applied to each individual user where each user may individually deploy such a system. This enables each user to utilize the benefits of the disclosure even if any one of a large number of possible applications do not use the functionality described herein. Implementations are not necessarily in one system used by all users. Accordingly, the appended claims and their legal equivalents should only define the invention, rather than any specific examples given.

1-7. (canceled)

8. A pliable durable food containment body comprising:
 a base having a resealable opening to receive a soft food product;
 a nozzle opening for receiving a food nozzle; and
 a pliable shell connecting the base to the nozzle opening.
9. The pliable durable food containment body of claim 8, further comprising:
 a near interlocking track on a near side of the resealable opening; and
 an opposite interlocking track on an opposite side of the resealable opening.
10. The pliable durable food containment body of claim 9, further comprising:
 a runner to join the near interlocking track to the opposite interlocking track.
11. The pliable durable food containment body of claim 10, further comprising:
 a tongue to pull the runner along the near interlocking track and the opposite interlocking track.
12. The pliable durable food containment body of claim 8, further comprising:
 a edge along a near side of the resealable opening; and
 a flap along an opposite side of the resealable opening that bonds with the edge to seal the resealable opening.
13. The pliable durable food containment body of claim 8, wherein the resealable opening is off center on the base.
14. The pliable durable food containment body of claim 8, further comprising:
 a writeable label area on the pliable shell.
15. The pliable durable food containment body of claim 8, wherein the pliable shell has a translucent area to display the soft food product.
16. The pliable durable food containment body of claim 8, wherein the pliable shell is made of appliance safe material.
17. The pliable durable food containment body of claim 8, wherein the pliable shell has a near thermally conductive sheet connected on opposing ends to an opposite thermally conductive sheet.
18. A soft food container, comprising:
 a pliable durable food containment body having a base with a resealable opening to receive a soft food product;
 a pressure release nozzle to disperse the soft food product.
19. The soft food container of claim 18, wherein the pressure release nozzle has a pressure release slit.
20. The soft food container of claim 18, wherein the pressure release nozzle has at least two pressure release holes.
21. A food storage method, comprising:
 receiving a soft food product in a resealable opening of a base;
 receiving a food nozzle in a nozzle opening; and
 connecting the base to the nozzle opening with a pliable shell.
22. The food storage method of claim 21, further comprising:
 sealing the resealable opening with a near interlocking track on a near side of the resealable opening and an opposite interlocking track on an opposite side of the resealable opening.
23. The food storage method of claim 22, further comprising:
 joining the near interlocking track to the opposite interlocking track with a runner.
24. The food storage method of claim 23, further comprising:
 pulling the runner with a tongue along the near interlocking track and the opposite interlocking track.
25. The food storage method of claim 21, wherein the resealable opening is off center on the base.
26. The food storage method of claim 21, further comprising:
 presenting a writeable label area on the pliable shell.
27. The food storage method of claim 21, further comprising:
 displaying the soft food product using a translucent area on the pliable shell.