Title: GROWTH HORMONE SECRETAGOGUES

Abstract: The invention relates to compounds of formula (I) which are useful for elevating the plasma level of growth hormone in a mammal as well as for the treatment of growth hormone secretion deficiency, growth retardation in child and metabolic disorders associated with growth hormone secretion deficiency.

$$\text{(I)}$$
GROWTH HORMONE SECRETAGOGUES

FIELD OF THE INVENTION

5 The invention relates to compounds, which are useful for administration to a mammal thereby elevating the plasma level of growth hormone.

BACKGROUND OF THE INVENTION

(a) Description of Prior Art

10 Growth hormone (GH) or somatotropin, secreted by the pituitary gland constitute a family of hormones which biological activity is fundamental for the linear growth of a young organism but also for the maintenance of the integrity at its adult state. GH acts directly or indirectly on the peripheral organs by stimulating the synthesis of growth factors (insulin-like growth factor-I or IGF-I) or of their receptors (epidermal growth factor or EGF). The direct action of GH is of the type referred to as anti-insulinic, which favors the lipolysis at the level of adipose tissues. Through its action on IGF-I (somatomedin C) synthesis and secretion, GH stimulates the growth of the cartilage and the bones (structural growth), the protein synthesis and the cellular proliferation in multiple peripheral organs, including muscles and the skin. Through its biological activity, GH participates within adults at the maintenance of a protein anabolism state, and plays a primary role in the tissue regeneration phenomenon after a trauma.

The decrease of GH secretion with the age, demonstrated in humans and animals, favors a metabolic shift towards catabolism which initiates or participates to the ageing of an organism. The loss in muscle mass, the accumulation of adipose tissues, the bone demineralization, the loss of tissue regeneration capacity after an injury, which are observed in elderly, correlate with the decrease in the secretion of GH.

GH is thus a physiological anabolic agent absolutely necessary for the linear growth of children and which controls the protein metabolism in adults.

Growth hormone (GH) secretion is regulated by two hypothalamic peptides:

30 GH-releasing hormone (GHRH), which exerts stimulatory effect on GH release and somatostatin which exhibits an inhibitory influence. In the last few years, several investigators have demonstrated that GH secretion can also be stimulated by synthetic oligopeptides termed GH-releasing peptides (GHRP) such as hexarelin and various hexarelin analogs (Ghigo et al., European Journal of Endocrinology, 136, 445-460, 1997).

35 These compounds act through a mechanism which is distinct from that of GHRH (C.Y. Bowers, in "Xenobiotic Growth Hormone Secretagogues", Eds. B.Bercu and R.F. Walker, Pg. 9-28, Springer-Verlag, New York 1996) and by interaction with specific receptors
localized in the hypothalamus and pituitary gland ((a) G. Muccioli et al., Journal of Endocrinology, 157, 99-106, 1998; (b) G. Muccioli, "Tissue Distribution of GHRP Receptors in Humans", Abstracts IV European Congress of Endocrinology, Sevilla, Spain, 1998). Recently it was demonstrated that GHRP receptors are present not only in the hypothalamo-pituitary system but even in various human tissues not generally associated with GH release (G. Muccioli et al., see above (a)).

The human GH has been produced by genetic engineering for about ten years. Until recently most of the uses of GH were concerned with growth delay in children and now the uses of GH in adults are studied. The pharmacological uses of GH, GHRPs and growth hormone secretagogues and may be classified in the following three major categories.

(b) **Children growth**

Treatments with recombinant human growth hormone have been shown to stimulate growth in children with pituitary dwarfism, renal insufficiencies, Turner's syndrome and short stature. Recombinant human GH is presently commercialized in Europe and in the United States for children's growth retardation caused by a GH deficiency and for children's renal insufficiencies. The other uses are under clinical trial investigation.

(c) **Long term treatment for adults and elderly patients**

A decrease in GH secretion causes changes in body composition during aging.

Preliminary studies of one-year treatment with recombinant human GH reported an increase in the muscle mass and in the thickness of skin, a decrease in fat mass with a slight increase in bone density in a population of aged patients. With respect to osteoporosis, recent studies suggest that recombinant human GH does not increase bone mineralization but it is suggested that it may prevent bone demineralization in post-menopausal women. Further studies are currently underway to demonstrate this theory.
(d) **Short term treatment in adults and elderly patients**

In preclinical and clinical studies, growth hormone has been shown to stimulate protein anabolism and healing in cases of burn, AIDS and cancer, in wound and bone healing.

GH, GHRPs and growth hormone secretagogues are also intended for veterinary pharmacological uses. GH, GHRPs and growth hormone secretagogues stimulate growth in pigs during its fattening period by favoring the deposition of muscle tissues instead of adipose tissues and increase milk production in cows, and this without any undesired side effects which would endanger the health of the animals and without any residue in the meat or milk being produced. The bovine somatotropin (BST) is presently commercialized in the United States.

Most of the clinical studies presently undertaken were conducted with recombinant GH. The GHRPs and growth hormone secretagogues are considered as a second generation product destined to replace in the near future the uses of GH in most instances.

Accordingly, the use of GHRPs and growth hormone secretagogues present a number of advantages over the use of GH per se.

Therefore, there is a need for compounds which, when administered to a mammal, act as growth hormone secretagogues.

SUMMARY OF THE INVENTION

The present invention relates to new compounds which act as growth hormone secretagogues and, in general, to a method for elevating the plasma level of growth hormone in a mammal by administering thereto one or more of the compounds according to the invention. The invention also relates to methods for the treatment of growth hormone secretion deficiency, for promoting wound healing, recovery from surgery or recovery from debilitating illnesses, by administering to a mammal one of these compounds in a therapeutically effective amount.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In this description, the following abbreviations are used: D is the dextro enantiomer, GH is growth hormone, Boc is tert-butyloxycarbonyl, Z is benzylxycarbonyl, N-Me is N-methyl, Pip is 4-amino-piperidine-4-carboxylate, Inip is isonicotetyl, i.e. piperidine-4-carboxylate, Aib is α-amino isobutyryl, Nal is β-naphthylalanine, Mrp is 2-Methyl-Trp, and Ala, Lys, Phe, Trp, His, Thr, Cys, Tyr, Leu, Gly, Ser, Pro, Glu, Arg, Val and Gln are the amino acids alanine, lysine, phenylalanine, tryptophan, histidine, threonine,
cysteine, tyrosine, leucine, glycine, serine, proline, glutamic acid, arginine, valine and glutamine, respectively. Furthermore gTrp is a group of the formula

\[
\begin{array}{c}
\text{H} \\
\text{N} \\
\text{H} \\
\text{N} \\
\text{H} \\
\text{H} \\
\text{N} \\
\text{H} \\
\text{H} \\
\text{H} \\
\end{array}
\]

and gMrp a group of the formula

\[
\begin{array}{c}
\text{H} \\
\text{N} \\
\text{H} \\
\text{N} \\
\text{H} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{H} \\
\text{H} \\
\end{array}
\]

wherein * means a carbon atom which, when a chiral carbon atom, has a R or S configuration. The compounds of the invention are of the general formula I:

\[
\begin{array}{c}
\text{R}^1 \\
\text{N} \\
\text{H} \\
\text{R}^2 \\
\text{(CH}_2\text{)}^m \\
\text{N} \\
\text{R}^3 \\
\text{H} \\
\text{R}^4 \\
\text{N} \\
\text{H} \\
\text{R}^5 \\
\text{N} \\
\text{R}^6 \\
\text{N} \\
\text{H} \\
\end{array}
\]

wherein * means a carbon atom which, when a chiral carbon atom, has a R or S configuration, one of \(R^1\) and \(R^3\) is an hydrogen atom and the other is a group of formula II

\[
\begin{array}{c}
\text{H} \\
\text{N} \\
\text{N} \\
\text{H} \\
\text{R}^2 \\
\text{R}^7 \\
\text{R}^8 \\
\text{R}^9 \\
\text{H} \\
\text{H} \\
\text{H} \\
\end{array}
\]

\(R^2\) is a hydrogen atom, a linear or branched C\(_1\)C\(_6\) alkyl group, an aryl group, a heterocyclic group, a cycloalkyl group, a \((\text{CH}_2)_n\)-aryl group, a \((\text{CH}_2)_n\)-heterocyclic group, a \((\text{CH}_2)_n\)-cycloalkyl group, a methylsulfonyl group, a phenylsulfonyl group, a C(O)R\(_8\) group or a group according to one or formulas III to VIII below:
R⁴ is a hydrogen atom or a linear or branched C₁-C₄-alkyl group, R⁵ is a hydrogen atom, a linear or branched C₁-C₄ alkyl group, a (CH₂)ₙ-aryl group, a (CH₂)ₙ-heterocycle group, a (CH₂)ₙ-cycloalkyl group or an amino group, R⁶ and R⁷ are independently from each other a hydrogen atom or a linear or branched C₁-C₄-alkyl group, R⁸ is a linear or branched...
C₁-C₆-alkyl group, R², R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, and R¹⁶ are independently from each other a hydrogen atom or a linear or branched C₁-C₆-alkyl group, m is 0, 1 or 2 and n is 1 or 2.

A preferred embodiment of the invention are compounds wherein R² is hydrogen, R³ is a group of formula II and m is 0. Particularly preferred are compounds, wherein linear or branched C₁-C₆ alkyl is methyl, linear or branched C₁-C₆ alkyl is methyl, ethyl or i-butyl, aryl is phenyl or naphthyl, cycloalkyl is cyclohexyl and the heterocyclic group is a 4-piperidinyl or 3-pyrrolyl group.

Specifically preferred compounds of the invention include the following:

10 H-Aib-D-Trp-D-gTrp-CHO:

15

20 N-Me-Aib-D-Trp-D-gTrp-C(O)CH₃:

25

30 N-Me-Aib-D-Trp-N-Me-D-gTrp-C(O)CH₃:
In accordance with the present invention, it has been found that the compounds of the invention are useful for elevating the plasma level of growth hormone in a mammal. Furthermore the compounds of the present invention are useful for the treatment of growth hormone secretion deficiency, growth retardation in child and metabolic disorders associated with growth hormone secretion deficiency, in particular in aged subjects.

Pharmaceutically acceptable salts of these compounds can be also used, if desired. Such salts include organic or inorganic addition salts, such as hydrochloride, hydrobromide, phosphate, sulfate, acetate, succinate, ascorbate, tartrate, gluconate, benzoate, malate, fumarate, stearate or pamoate salts.

Pharmaceutical compositions of the invention are useful for elevating the plasma level of growth hormone in a mammal, including a human, as well for the treatment of growth hormone secretion deficiency, growth retardation in child and metabolic disorders associated with growth hormone secretion deficiency, in particular in aged subjects. Such pharmaceutical compositions can comprise a compound according to the present invention or a pharmaceutically acceptable salt thereof, or combinations of compounds according to the present invention or pharmaceutically acceptable salts thereof, optionally in admixture with a carrier, excipient, vehicle, diluent, matrix, or delayed release coating. Examples of such carriers, excipients, vehicles, and diluents, can be found in Remington’s Pharmaceutical Sciences, 18th Edition, A.R. Gennaro, Ed., Mack Publishing Company, Easton, PA, 1990.

The pharmaceutical compositions of the invention can comprise an additional growth hormone secretagogue. Examples for suitable additional growth hormone secretagogues are Ghrelin (cf. M. Kojima et al., Nature, 402 (1999), 656-660), GHRP-1, GHRP-2 and GHRP-6.
Ghrelin: Gly-Ser-Ser(O-n-octanoyl)-Phe-Leu-Ser-Pro-Glu-His-Gln-Arg-Val-Gln-Gln-Arg-Lys-Glu-Ser-Lys-Lys-Pro-Pro-Ala-Lys-Leu-Gln-Pro-Arg

GHRP-1: Ala-His-D-β-Nal-Ala-Trp-D-Phe-Lys-NH₂
GHRP-2: D-Ala-D-β-Nal-Ala-Trp-D-Phe-Lys-NH₂
GHRP-6: His-D-Trp-Ala-Trp-D-Phe-Lys-NH₂

Any of the compounds according to the present invention can be formulated by the skilled in the art to provide medicaments which are suitable for parenteral, buccal, rectal, vaginal, transdermal, pulmonary or oral routes of administration.

The type of formulation of the medicament containing the compound can be selected according to the desired rate of delivery. For example, if the compounds are to be rapidly delivered, the nasal or intravenous route is preferred.

The medicaments can be administered to mammals, including humans, at a therapeutically effective dose which can be easily determined by one of skill in the art and which can vary according to the species, age, sex and weight of the treated patient or subject as well the route of administration. The exact level can be easily determined empirically.

EXAMPLES

The following examples illustrate the efficacy of the most preferred compounds used in the treatment of this invention.

Example 1: H-Aib-D-Trp-D-gTrp-CHO
Total synthesis (percentages represent yields obtained in the synthesis as described below):

Z-D-Trp-OH

98% →
1) IBCF, NMM, DME, 0°C.
2) NH₄OH

Z-D-Trp-NH₂

85% →
1) H₂, Pd/C, DMF, H₂O, HCl
2) BOP, NMM, DMF, Boc-D-Trp-OH.

Boc-D-Trp-D-Trp-NH₂

13% →
60% t-Boc₂O, DMAP cat., anhydrous CH₃CN

Boc-D-(N'Boc)Trp-D-(N'Boc)Trp-NH₂

70% →
1) BTIB, pyridine, DMF/H₂O
2) 2,4,5-trichlorophenylformate, DIEA, DMF

Boc-D-(N'Boc)Trp-D-(N'Boc)Trp-CHO

70% →
1) TFA/anisole/thioanisole (8/1/1), 0°C
2) BOP, NMM, DMF, Boc-Aib-OH.

Boc-Aib-D-Trp-D-gTrp-CHO

52% →
1) TFA/anisole/thioanisole (8/1/1), 0°C
2) purification on preparative HPLC.

H-Aib-D-Trp-D-gTrp-CHO
Z-D-Trp-NH₂

Z-D-Trp-OH (8.9g; 26mmol; 1eq.) was dissolved in DME (25ml) and placed in an ice water bath to 0°C. NMM (3.5ml; 1.2eq.), IBCF (4.1ml; 1.2eq.) and ammonia solution 28% (8.9ml; 5eq.) were added successively. The mixture was diluted with water (100ml), and the product Z-D-Trp-NH₂ precipitated. It was filtered and dried in vacuo to afford 8.58g of a white solid.

Yield = 98%.

C₁₉H₁₀N₅O₃, 337 g.mol⁻¹.

Rf = 0.46 {Chloroform/Methanol/ Acetic Acid (180/10/5)}.

¹H NMR (250 MHZ, DMSO-d⁶) : δ 2.9 (dd, 1H, H₆), J₆₇ = 14.5Hz; J₆₈ = 9.8Hz); 3.1 (dd, 1H, H₇, J₇₈ = 14.5Hz, J₇₈ = 4.3Hz); 4.2 (sextuplet, 1H, H₈); 4.95 (s, 2H, CH₂ (Z)); 6.9-7.4 (m, 11H); 7.5 (s, 1H, H²); 7.65 (d, 1H, J = 7.7Hz); 10.8 (s, 1H, N¹H).

Boc-D-Trp-D-Trp-NH₂

Z-D-Trp-NH₂ (3g; 8.9mmol; 1eq.) was dissolved in DMF (100ml). HCl 36% (845μl; 1.1 eq.), water (2ml) and palladium on activated charcoal (95mg, 0.1eq.) were added to the stirred mixture. The solution was bubbled under hydrogen for 24 hr. When the reaction went to completion, the palladium was filtered on celite. The solvent was removed in vacuo to afford HCl, H-D-Trp-NH₂ as a colorless oil.

In 10ml of DMF, HCl, H-D-Trp-NH₂ (8.9mmol; 1eq.), Boc-D-Trp-OH (2.98g; 9.8mmol; 1.1eq.), NMM (2.26ml; 2.1eq.) and BOP (4.33g; 1.1eq.) were added successively. After 1 hr, the mixture was diluted with ethyl acetate (100ml) and washed with saturated aqueous sodium hydrogen carbonate (200ml), aqueous potassium hydrogen sulfate (200ml, 1M), and saturated aqueous sodium chloride (100ml). The organic layer was dried over sodium sulfate, filtered and the solvent removed in vacuo to afford 4.35g of Boc-D-Trp-D-Trp-NH₂ as a white solid.

Yield = 85%.

C₂₇H₁₄N₄O₄, 489 g.mol⁻¹.

Rf = 0.48 {Chloroform/Methanol/Acetic Acid (85/10/5)}.

¹H NMR (200 MHZ, DMSO-d⁶) : δ 1.28 (s, 9H, Boc); 2.75-3.36 (m, 4H, 2 (CH₃)₆); 4.14 (m, 1H, CH₂); 4.52 (m, 1H, CH₂); 6.83-7.84 (m, 14H, 2 indoles (10H), NH₂, NH (urethane) and NH (amide)); 10.82 (d, 1H, J = 2Hz, N¹H); 10.85 (d, 1H, J = 2Hz, N¹H).

Boc-D-(NiBoc)Trp-D-(NiBoc)Trp-NH₂

Boc-D-Trp-D-Trp-NH₂ (3g; 6.13mmol; 1eq.) was dissolved in acetonitrile (25ml). To this solution, di-tert-butyl-dicarbonate (3.4g; 2.5eq.) and 4-dimethylaminopyridine (150mg; 0.2eq.) were successively added. After 1 hr, the mixture was diluted with ethyl acetate (100ml) and washed with saturated aqueous sodium hydrogen carbonate (200ml), aqueous potassium hydrogen sulfate (200ml, 1M), and saturated aqueous sodium chloride (200ml). The organic layer was dried over sodium sulfate, filtered and the solvent removed in vacuo. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate/hexane (5/5) to afford 2.53g of Boc-D-(NiBoc)Trp-D-(NiBoc)Trp-NH₂ as a white solid.

Yield = 60%.

C₃₇H₄₉N₅O₈, 689 g.mol⁻¹.

Rf = 0.23 {ethyl acetate/hexane (5/5)}.

¹H NMR (200 MHZ, DMSO-d⁶): δ 1.25 (s, 9H, Boc); 1.58 (s, 9H, Boc); 1.61 (s, 9H, Boc); 2.75-3.4 (m, 4H, 2 (CH₂)₂); 4.2 (m, 1H, CH₃); 4.6 (m, 1H, CH₃); 7.06-8 (m, 14H, 2 indoles (10H), NH (urethane), NH and NH₂ (amides)).

Boc-D-(NiBoc)Trp-D-g(NiBoc)Trp-H

Boc-D-(NiBoc)Trp-D-(NiBoc)Trp-NH₂ (3g; 4.3mmol; 1eq.) was dissolved in the mixture DMF / water (18ml / 7ml). Then, pyridine (772μl; 2.2eq.) and Bis(Trifluoroacetoxyl)IodoBenzene (2.1g; 1.1eq.) were added. After 1 hr, the mixture was diluted with ethyl acetate (100ml) and washed with saturated aqueous sodium hydrogen carbonate (200ml), aqueous potassium hydrogen sulfate (200ml, 1M), and aqueous saturated sodium chloride (200ml). The organic layer was dried over sodium sulfate, filtered and the solvent removed in vacuo. Boc-D-(NiBoc)Trp-D-g(NiBoc)Trp-H was used immediately for the next reaction of formylation.

Rf = 0.14 {ethyl acetate/hexane (7/3)}.

C₃₇H₄₉N₅O₈, 661 g.mol⁻¹.

¹H NMR (200 MHZ, DMSO-d⁶): δ 1.29 (s, 9H, Boc); 1.61 (s, 18H, 2 Boc); 2.13 (s, 2H, NH₂ (amine)); 3.1-2.8 (m, 4H, 2 (CH₂)₂); 4.2 (m, 1H, CH₃); 4.85 (m, 1H, CH₃); 6.9-8 (m, 12H, 2 indoles (10H), NH (urethane), NH (amide)).

Boc-D-(NbBoc)Trp-D-g(NbBoc)Trp-CHO

Boc-D-(NbBoc)Trp-D-g(NbBoc)Trp-H (4.33mmol; 1 eq.) was dissolved in DMF (20ml). Then, N,N-diisopropylethylamine (815μl; 1.1 eq.) and 2,4,5-trichlorophenylformate (1.08g; 1.1 eq.) were added. After 30 minutes, the mixture was diluted with ethyl acetate (150ml) and washed with saturated aqueous sodium hydrogen carbonate (200ml), aqueous potassium hydrogen sulfate (200ml, 1M), and saturated aqueous sodium chloride (200ml). The organic layer was dried over sodium sulfate, filtered and the solvent removed in vacuo.

The residue was purified by flash chromatography on silica gel eluting with ethyl acetate/hexane {5/5} to afford 2.07g of Boc-D-(NbBoc)Trp-D-g(NbBoc)Trp-CHO as a white solid.

Yield = 70%.
C\textsubscript{3}\textsubscript{7}H\textsubscript{27}N\textsubscript{7}O\textsubscript{8}, 689 g.mol-1.
Rf = 0.27 {ethyl acetate/hexane (5/5)}.

1H NMR (200 MHz, DMSO-d\textsubscript{6}) : δ 1.28 (s, 9H, Boc); 1.6 (s, 9H, Boc); 1.61 (s, 9H, Boc); 2.75-3.1 (m, 4H, 2 (CH\textsubscript{2})\textsubscript{2}); 4.25 (m, 1H, (CH)α\textsubscript{A&B}); 5.39 (m, 0.4H, (CH)α\textsubscript{B}); 5.72 (m, 0.6H, (CH)α\textsubscript{A}); 6.95-8.55 (m, 14H, 2 indoles (10H), NH (urethane), 2 NH (amides), CHO (formyl)).

Boc-Aib-D-Trp-D-gTrp-CHO

Boc-D-(NbBoc)Trp-D-g(NbBoc)Trp-CHO (1.98g; 2.9mmol; 1 eq.) was dissolved in a mixture of trifluoroacetic acid (16ml), anisole (2ml) and thioanisole (2ml) for 30 minutes at 0°C. The solvents were removed in vacuo, the residue was stirred with ether and the precipitated TFA, H-D-Trp-D-gTrp-CHO was filtered.

TFA, H-D-Trp-D-gTrp-CHO (2.99mmol; 1 eq.), Boc-Aib-OH (700mg; 1 eq.), NMM (2.4ml; 4.2eq.) and BOP (1.53g; 1.2eq.) were successively added in 10ml of DMF. After 1 hr, the mixture was diluted with ethyl acetate (100ml) and washed with saturated aqueous sodium hydrogen carbonate (200ml), aqueous potassium hydrogen sulfate (200ml, 1M), and saturated aqueous sodium chloride (200ml). The organic layer was dried over sodium sulfate, filtered and the solvent removed in vacuo. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate to afford 1.16g of Boc-Aib-D-Trp-D-gTrp-CHO as a white solid.

Yield = 70%.
C\textsubscript{3}\textsubscript{7}H\textsubscript{38}N\textsubscript{6}O\textsubscript{5}, 574 g.mol-1.
Rf = 0.26 {Chloroform/Methanol/ Acetic Acid (180/10/5)}.

1H NMR (200 MHz, DMSO-d\textsubscript{6}) : δ 1.21 (s, 6H, 2 CH\textsubscript{2}(Aib)); 1.31 (s, 9H, Boc); 2.98-3.12 (m, 4H, 2 (CH\textsubscript{2})\textsubscript{2}); 4.47 (m, 1H, (CH)α\textsubscript{A&B}); 5.2 (m, 0.4H, (CH)α\textsubscript{B}); 5.7 (m,
0.6H, (CH)α'; 6.95-8.37 (m, 15H, 2 indoles (10H), 3 NH (amides), 1 NH (urethane), CHO (formyl)); 10.89 (m, 2H, 2 N1H (indoles)).

H-Aib-D-Trp-D-gTrp-CHO

Boc-Aib-D-Trp-D-gTrp-CHO (1g; 1.7mmol) was dissolved in a mixture of trifluoroacetic acid (8ml), anisole (1ml) and thioanisole (1ml) for 30 minutes at 0°C. The solvents were removed in vacuo, the residue was stirred with ether and the precipitated TFA, H-Aib-D-Trp-D-gTrp-CHO was filtered.

The product TFA, H-Aib-D-Trp-D-gTrp-CHO was purified by preparative HPLC (Waters, delta pak, C18, 40x100mm, 5μm, 100 A).

Yield = 52%.

C26H39N6O3, 474 g.mol⁻¹.

1H NMR (400 MHz, DMSO-d6) + 1H/1H correlation: δ 1.21 (s, 3H, CH3 (Aib)); 1.43 (s, 3H, CH3 (Aib)); 2.97 (m, 2H, (CH)β); 3.1 (m, 2H, (CH)β); 4.62 (m, 1H, (CH)αA & B); 5.32 (q, 0.4H, (CH)α'); 5.71 (q, 0.6H, (CH)α'); 7.3 (m, 4H, H2 and H6 (2 indoles)); 7.06-7.2 (4d, 2H, H2A et H2B (2 indoles)); 7.3 (m, 2H, H4 or H7 (2 indoles)); 7.6-7.8 (4d, 2H, H4A and H4B or H7A et H7B); 7.97 (s, 3H, NH2 (Aib) and CHO (Formyl)); 8.2 (d, 0.4H, NH1B (diamino)); 8.3 (m, 1H, NH1A & B); 8.5 (d, 0.6H, NH1A (diamino)); 8.69 (d, 0.6H, NH2A (diamino)); 8.96 (d, 0.4H, NH2B (diamino)); 10.8 (s, 0.6H, NH1A (indole)); 10.82 (s, 0.4H, NH2A (indole)); 10.86 (s, 0.6H, NH2A (indole)); 10.91 (s, 0.4H, NH2B (indole)).

Analogous synthesis were performed for the following compounds:

Example 2 H-Aib-D-Mrp-D-gMrp-CHO

C28H46N6O5, 502 g.mol⁻¹.

1H NMR (400 MHz, DMSO-d6) + 1H/1H correlation: δ 1.19 (s, 2H, (CH)βA (Aib)); 1.23 (s, 1H, (CH)βB (Aib)); 1.41 (s, 2H, (CH)βA (Aib)); 1.44 (s, 2H, (CH)βB (Aib)); 2.33-2.35 (4s, 6H, 2 CH3 (indoles)); 2.93 (m, 2H, (CH)β); 3.02 (m, 2H, (CH)β); 4.65 (m, 0.6H, (CH)α); 4.71 (m, 0.4H, (CH)αβ); 5.2 (m, 0.4H, (CH)αβ); 5.6 (m, 0.6H, (CH)αβ); 6.95 (m, 4H, H5 and H6 (2 indoles)); 7.19 (m, 2H, H4 or H7 (2 indoles)); 7.6 (m, 2H, H4 or H7 (2 indoles)); 7.9 (s, 1H, CHO (Formyl)); 7.95 (s, 2H, NH2 (Aib)); 8.05 (d, 0.4H, NH1B (diamino)); 8.3 (m, 1H, NH1A & B); 8.35 (m, 0.6H, NH1A (diamino)); 8.4 (d, 0.6H, NH2A (diamino)); 8.5 (d, 0.4H, NH2A (diamino)).
(diamino)); 8.75 (d, 0.4H, NH\textsubscript{2B} (diamino)); 10.69 (s, 0.6H, N1H\textsubscript{1A} (indole)); 10.71 (s, 0.4H, N1H\textsubscript{1B} (indole)); 10.80 (s, 0.6H, N1H\textsubscript{2A} (indole)); 10.92 (s, 0.4H, N1H\textsubscript{2B} (indole)).

Mass Spectrometry (Electrospray), m/z 503.1 [M+H]+.

Example 3 N-Me-Aib-D-Trp-D-gTrp-CHO

Boc-N-Me-Aib-OH (327mg; 1.5mmol; 2.6eq.) was dissolved in methylene chloride (10ml) and cooled to 0°C. Then, dicyclohexylcarbodiimide (156mg; 0.75mmol; 1.3eq.) was added. The mixture, after filtration of DCU, was added to a solution containing TFA, H-D-Trp-D-gTrp-CHO (0.58mmol; 1eq.) and triethylamine (267μl; 3.3eq.) in methylene chloride (5ml). The reaction mixture was slowly warmed to room temperature and stopped after 24 hr. The mixture was diluted with ethyl acetate (25ml) and washed with saturated aqueous sodium hydrogen carbonate (50ml), aqueous potassium hydrogen sulfate (50ml, 1M), and saturated aqueous sodium chloride (50ml). The organic layer was dried over sodium sulfate, filtered and the solvent removed in vacuo. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate/methanol (9/1) to afford 180mg (53%) of Boc-N-Me-Aib-D-Trp-D-gTrp-CHO as a white foam.

Boc-N-Me-Aib-D-Trp-D-gTrp-CHO (180mg; 0.3mmol) was dissolved in a mixture of trifluoroacetic acid (8ml), anisole (1ml) and thioanisole (1ml) for 30 minutes at 0°C. The solvents were removed in vacuo, the residue was stirred with ether and the precipitated TFA, N-Me-Aib-D-Trp-D-gTrp-CHO was filtered.

The product TFA, N-Me-Aib-D-Trp-D-gTrp-CHO (39mg; 15%) was purified by preparative HPLC (Waters, delta pak, C18, 40x100mm, 5μm, 100 A).

C\textsubscript{27}H\textsubscript{32}N\textsubscript{6}O\textsubscript{3}, 488 g.mol-1.

1H RMN (200 MHZ, DMSO-d\textsubscript{6}) : 6 1.19 (s, 3H, CH\textsubscript{3} (Aib)); 1.42 (s, 3H, CH\textsubscript{3} (Aib)); 2.26 (s, 3H, NCH\textsubscript{3}); 3.12 (m, 4H, 2 (CH\textsubscript{2})\textsubscript{2}); 4.66 (m, 1H, (CH)\textsubscript{2}); 5.32 et 5.7 (m, 1H, (CH)\textsubscript{2}); 6.9-7.8 (m, 10H, 2 indoles); 8 (m, 1H, CHO (formyl)); 8.2-9 (m, 4H, 3 NH (amides) et NH (amine)); 10.87 (m, 2H, 2 N1H (indoles)).

Mass Spectrometry (Electrospray), m/z 489.29 [M+H]+.

Example 4 H-Aib-D-Trp-D-gTrp-C(O)CH\textsubscript{3}

Boc-D-(N1Boc)Trp-D-g(N1Boc)Trp-H (0.72mmol; 1eq.) was dissolved in DMF (20ml). Then, N,N-diisopropylethylamine (259ml; 2.1eq.) and acetic anhydride (749ml; 1.1eq.) were added. After 1 hr, the mixture was diluted with ethyl acetate (100ml) and washed with saturated aqueous sodium hydrogen carbonate (100ml), aqueous potassium hydrogen sulfate (100ml, 1M), and saturated aqueous sodium chloride (50ml). The organic layer was dried over sodium sulfate, filtered and the solvent removed in vacuo. The residue
was purified by flash chromatography on silica gel eluting with ethyl acetate/hexane to afford 370mg (73%) of Boc-D-(NBBoc)Trp-D-g(NBBoc)Trp-C(O)CH\textsubscript{3} as a white solid.

Boc-D-(NBBoc)Trp-D-g(NBBoc)Trp-C(O)CH\textsubscript{3} (350mg; 0.5mmol; 1eq.) was dissolved in a mixture of trifluoroacetic acid (8ml), anisole (1ml) and thioanisole (1ml) for 30 minutes at 0°C. The solvents were removed in vacuo, the residue was stirred with ether and the precipitated TFA, H-D-Trp-D-gTrp-C(O)CH\textsubscript{3} was filtered.

In 10ml of DMF, TFA, H-D-Trp-D-gTrp-C(O)CH\textsubscript{3} (0.5mmol; 1eq.), Boc-Aib-OH (121mg; 0.59mmol; 1.2eq.), NMM (230μl; 4.2eq.) and BOP (265mg; 1.2eq.) were successively added. After 1 hr, the mixture was diluted with ethyl acetate (25ml) and washed with saturated aqueous sodium hydrogen carbonate (50ml), aqueous potassium hydrogen sulfate (50ml, 1M), and saturated aqueous sodium chloride (50ml). The organic layer was dried over sodium sulfate, filtered and the solvent removed in vacuo. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate to afford 249mg (85%) of Boc-Aib-D-Trp-D-gTrp-C(O)CH\textsubscript{3} as a white foam.

Boc-Aib-D-Trp-D-gTrp-C(O)CH\textsubscript{3} (249mg; 0.42mmol)-was dissolved in a mixture of trifluoroacetic acid (8ml), anisole (1ml) and thioanisole (1ml) for 30 minutes at 0°C. The solvents were removed in vacuo, the residue was stirred with ether and the precipitated TFA, H-Aib-D-Trp-D-gTrp-C(O)CH\textsubscript{3} was filtered.

The product TFA, H-Aib-D-Trp-D-gTrp-C(O)CH\textsubscript{3} (80mg; 23%) was purified by preparative HPLC (Waters, delta pak, C18, 40x100mm, 5mm, 100 A).

\begin{equation}
C_{27}H_{32}N_{6}O_{3}, 488 \text{ g.mol}^{-1}.
\end{equation}

\begin{align*}
^1H \text{ NMR} (200 \text{ MHZ, DMSO-d}^6) & : \delta 1.22 (s, 3H, CH\textsubscript{3} (Aib)); 1.44 (s, 3H, CH\textsubscript{3} (Aib)); 1.8 (s, 3H, C(O)CH\textsubscript{3}); 3.06 (m, 4H, 2 (CH\textsubscript{2})\textsubscript{2}); 4.6 (m, 1H, (CH\textsubscript{2})\textsubscript{3}); 5.6 (m, 1H, (CH\textsubscript{2})\textsubscript{4}); 6.9-7.8 (m, 10H, 2 indoles); 7.99 (s, 2H, NH\textsubscript{2} (Aib)); 8.2-8.6 (m, 3H, 3 NH (amides)); 10.83 (s, 2H, 2 N1H (indoles)).
\end{align*}

Mass Spectrometry (Electrospray), m/z 489.32 [M+H]+.

Example 5 N-Me-Aib-D-Trp-D-gTrp-C(O)CH\textsubscript{3}

Boc-N-Me-Aib-OH (1.09g; 5.04mmol; 4eq.) was dissolved in methylene chloride (10ml) and cooled to 0°C. Then, dicyclohexylcarbodiimide (520mg; 2.52mmol; 2eq.) was added. The mixture, after filtration of DCU, was added to a solution containing TFA, H-D-Trp-D-gTrp-C(O)CH\textsubscript{3} (940mg; 1.26mmol; 1eq.) and triethylamine (580ml; 3.3eq.) in methylene chloride (5ml). The reaction mixture was slowly warmed to room temperature and stopped after 24 h. The mixture was diluted with ethyl acetate (50ml) and washed with saturated aqueous sodium hydrogen carbonate (100ml), aqueous potassium hydrogen sulfate (100ml, 1M), and saturated aqueous sodium chloride (100ml). The organic layer was dried
over sodium sulfate, filtered and the solvent removed in vacuo. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate/methanol {9/1} to afford 530mg (70%) of Boc-N-Me-Aib-D-Trp-D-gTrp-C(O)CH₃ as a white foam.

Boc-N-Me-Aib-D-Trp-D-gTrp-C(O)CH₃ (530mg; 0.88mmol) was dissolved in a mixture of trifluoroacetic acid (8ml), anisole (1ml) and thioanisole (1ml) for 30 minutes at 0°C. The solvents were removed in vacuo, the residue was stirred with ether and the precipitated TFA, N-Me-Aib-D-Trp-D-gTrp-C(O)CH₃ was filtered.

The product TFA, N-Me-Aib-D-Trp-D-gTrp-C(O)CH₃ (220mg; 30%) was purified by preparative HPLC (Waters, delta pak, C18, 40x100mm, 5mm, 100 A).

\[C_{28}H_{34}N_6O_3, 502 \text{ g.mol}^{-1}. \]

\(^1H\) NMR (200 MHz, DMSO-d₆): δ 1.17 (s, 3H, CH₃ (Aib)); 1.4 (s, 3H, CH₃ (Aib)); 1.78 (s, 3H, C(O)CH₃); 2.23 (s, 3H, NCH₃); 3.15 (m, 4H, 2 (CH₂)₉); 4.7 (m, 1H, (CH)₃); 5.55 (m, 1H, (CH)₉); 6.9-7.9 (m, 10H, 2 indoles); 8.2-8.8 (s, 4H, NH (amine) et 3 NH (amides)); 10.8 (s, 2H, 2 N°H (indoles)).

Mass Spectrometry (Electrospray), m/z 503.19 [M+H]^+.

Example 6 Pip-D-Trp-D-gTrp-CHO

In 5ml of DMF, TFA, H-D-Trp-D-gTrp-CHO (230mg; 0.31mmol; 1 eq.), Boc-(N°Boc)Pip-OH (130mg; 0.38mmol; 1.2eq.), NMM (145μl; 4.2eq.) and BOP (167mg; 0.38mmol; 1.2eq.) were successively added. After 15 minutes, the reaction was over. The mixture was diluted with ethyl acetate (25ml) and washed with saturated aqueous sodium hydrogen carbonate (50ml), aqueous potassium hydrogen sulfate (50ml, 1M), and saturated aqueous sodium chloride (50ml). The organic layer was dried over sodium sulfate, filtered and the solvent removed in vacuo to afford Boc-(N°Boc)Pip-D-Trp-D-gTrp-CHO as a foam.

Boc-(N°Boc)Pip-D-Trp-D-gTrp-CHO (0.31mmol) was dissolved in a mixture of trifluoroacetic acid (8ml), anisole (1ml) and thioanisole (1ml) for 30 minutes at 0°C. The solvents were removed in vacuo, the residue was stirred with ether and TFA, H-Pip-D-Trp-D-gTrp-CHO was filtered.

The product TFA, H-Pip-D-Trp-D-gTrp-CHO (127mg; 42%) was purified by preparative HPLC (Waters, delta pak, C18, 40x100mm, 5μm, 100 A).

\[C_{28}H_{33}N_3O_3, 515 \text{ g.mol}^{-1}. \]

\(^1H\) NMR (200 MHz, DMSO-d₆): δ 1.81 (m, 2H, CH₂ (Pip)); 2.3 (m, 2H, CH₂ (Pip)); 3.1 (m, 8H, 2 (CH₂)₉ et 2 CH₂ (Pip)); 4.68 (m, 1H, (CH)₃); 5.3 et 5.73 (2m, 1H, (CH)₃); 6.9-7.7 (m, 10H, 2 indoles); 7.98 (2s, 1H, CHO (formyl)); 8.2-9.2 (m, 6H, NH₂ et NH (Pip) et 3 NH (amides)); 10.9 (m, 2H, 2 N°H (indoles)).

Mass Spectrometry (Electrospray), m/z 516.37 [M+H]^+, 538.27 [M+Na]^+.
Example 7 Pip-D-Trp-D-gTrp-C(O)CH₃
In 5ml of DMF, TFA, H-D-Trp-D-gTrp-C(O)CH₃ (218mg, 0.29mmol; 1eq.), Boc-(N⁴Boc)Pip-OH (121mg; 0.35mmol; 1.2eq.), NMM (135 µl; 4.2eq.) and BOP (155mg; 0.35mmol; 1.2eq.) were successively added. After 15 minutes, the reaction was over. The mixture was diluted with ethyl acetate (25ml) and washed with saturated aqueous sodium hydrogen carbonate (50ml), aqueous potassium hydrogen sulfate (50ml, 1M), and saturated aqueous sodium chloride (50ml). The organic layer was dried over sodium sulfate, filtered and the solvent removed in vacuo to afford Boc-(N⁴Boc)Pip-D-Trp-D-gTrp-C(O)CH₃ as a foam.

Boc-(N⁴Boc)Pip-D-Trp-D-gTrp-C(O)CH₃ (0.29mmol) was dissolved in a mixture of trifluoroacetic acid (8ml), anisole (1ml) and thioanisole (1ml) for 30 minutes at 0°C. The solvents were removed in vacuo, the residue was stirred with ether and the precipitated TFA, H-Pip-D-Trp-D-gTrp-C(O)CH₃ was filtered.

The product TFA, H-Pip-D-Trp-D-gTrp-C(O)CH₃ (135mg; 47%) was purified by preparative HPLC (Waters, delta pak, C18, 40x100mm, 5µm, 100 A).

C₁₉₂H₁₃₆N₁₃O₉, 529 g.mol⁻¹.
¹H RMN (200 MHZ, DMSO-d⁶) : δ 1.79 (m, 2H, CH₂ (Pip)); 1.81 (s, 3H, C(O)CH₃); 2.3 (m, 2H, CH₂ (Pip)); 3.1 (m, 8H, 2 (CH₃)₃ et 2 CH₂ (Pip)); 4.7 (m, 1H, (CH)α); 5.6 (m, 1H, (CH)β); 6.9-7.8 (m, 10H, 2 indoles); 8.2-9 (m, 6H, NH₂ et NH (Pip) et 3 NH (amides)); 10.85 (m, 2H, 2 NH (indoles)).

Mass Spectrometry (Electrospray), m/z 530.39 [M+H]⁺, 552.41 [M+Na]⁺.

Example 8 Isonipectyl-D-Trp-D-gTrp-CHO
In 5ml of DMF, TFA, H-D-Trp-D-gTrp-CHO (250mg, 4.1mmol; 1eq.), Fmoc-Isonipectyl-OH (144mg; 4.1mmol; 1.2eq.), NMM (158µl; 4.2eq.) and BOP (181mg; 4.1mmol; 1.2eq.) were successively added. After 15 minutes, the reaction was over. The mixture was diluted with ethyl acetate (25ml) and washed with saturated aqueous sodium hydrogen carbonate (50ml), aqueous potassium hydrogen sulfate (50ml, 1M), and saturated aqueous sodium chloride (50ml). The organic layer was dried over sodium sulfate, filtered and the solvent removed in vacuo to afford Fmoc-Isonipectyl-D-Trp-D-gTrp-CHO as a foam.

Fmoc-Isonipectyl-D-Trp-D-gTrp-CHO (4.1mmol) was dissolved in a mixture of DMF (8ml) and piperidine (2ml) and allowed to stand for 30 minutes. The solvents were removed in vacuo, the residue was stirred with ether and the precipitated

Isonipectyl-D-Trp-D-gTrp-CHO was filtered.
The product Isonipecotyl-D-Trp-D-gTrp-CHO (81mg; 28%) was purified by preparative HPLC (Waters, delta pak, C18, 40x100mm, 5μm, 100 Å).

\[C_{20}H_{32}N_8O_3, \ 500 \ \text{g.mol}^{-1} \]

1H RMN (200 MHZ, DMSO-d$_6$) : δ 1.65 (m, 4H, 2 CH$_2$ (Pip)); 2.4 (m, 1H, CH (Pip)); 2.7-3.3 (m, 8H, 2 (CH$_2$)$_2$ et 2 CH$_2$ (Pip)); 4.6 (m, 1H, (CH)$_3$); 5.3 et 5.7 (2m, 1H, (CH)$_3$); 6.9-7.7 (m, 10H, 2 indoles); 7.97 (2s, 1H, CHO (formyl)); 8-8.8 (m, 4H, NH (Pip) et 3 NH (amides))); 10.9 (m, 2H, 2 N1H (indoles)).

Mass Spectrometry (Electrospray), m/z 501.36 [M+H]$^+$.

Example 9 Isonipecotyl-D-Trp-D-gTrp-C(O)CH$_3$

In 5ml of DMF, TFA, H-D-Trp-D-gTrp-C(O)CH$_3$ (250mg, 0.33mmol; 1eq.), Fmoc-Isonipecotic-OH (141mg; 0.4mmol; 1.2eq.), NMM (155μl; 4.2eq.) and BOP (178mg; 0.4mmol; 1.2eq.) were successively added. After 15 minutes, the reaction was over. The mixture was diluted with ethyl acetate (25ml) and washed with saturated aqueous sodium hydrogen carbonate (50ml), aqueous potassium hydrogen sulfate (50ml, 1M), and saturated aqueous sodium chloride (50ml). The organic layer was dried over sodium sulfate, filtered and the solvent removed *in vacuo* to afford Fmoc-Isonipecotyl-D-Trp-D-gTrp-C(O)CH$_3$ as a foam.

Fmoc-Isonipecotyl-D-Trp-D-gTrp-C(O)CH$_3$ (0.33mmol) was dissolved in a mixture of DMF (8ml) and piperidine (2ml) and allowed to stand for 30 minutes. The solvents were removed *in vacuo*, the residue was stirred with ether and the precipitated Isonipecotyl-D-Trp-D-gTrp-C(O)CH$_3$ was filtered.

The product Isonipecotyl-D-Trp-D-gTrp-C(O)CH$_3$ (65mg; 13%) was purified by preparative HPLC (Waters, delta pak, C18, 40x100mm, 5μm, 100 Å).

\[C_{20}H_{34}N_6O_3, \ 514 \ \text{g.mol}^{-1} \]

1H RMN (200 MHZ, DMSO-d$_6$) : δ 1.66 (m, 4H, 2 CH$_2$ (Pip)); 1.79 (s, 3H, C(O)CH$_3$); 2.7-3.3 (m, 8H, 2 (CH$_2$)$_2$ et 2 CH$_2$ (Pip)); 4.54 (m, 1H, (CH)$_3$); 5.59 (m, 1H, (CH)$_3$); 6.9-7.7 (m, 10H, 2 indoles); 8-8.6 (m, 4H, NH (Pip) et 3 NH (amides)); 10.82 (m, 2H, 2 N1H (indoles)).

Mass Spectrometry (Electrospray), m/z 515.44 [M+H]$^+$.

Examples 10-62

The following compounds were prepared in similar manners:

Example 10 H-Aib-D-Mrp-gMrp-CHO
Example 11 H-Aib-Trp-gTrp-CHO

Example 12 H-Aib-Trp-D-gTrp-CHO

Example 13 H-D-Trp-gTrp-CHO

Example 14 N-Me-D-Trp-gTrp-CHO

Example 15 N-Methylsulfonyl-D-Trp-gTrp-CHO

Example 16 N-Phenylsulfonyl-D-Trp-gTrp-CHO

Example 17 N-(3-Methyl-butanoyl)-D-Trp-gTrp-CO-CH₃

Example 18 N-(3-Methyl-butanoyl)-D-Trp-gTrp-CHO

Example 19 Aib-D-Trp-gTrp-CO-CH₂-CH₃

Example 20 Aib-D-Trp-gTrp-CO-CH₂-CH(CH₃)-CH₃

Example 21 Aib-D-Trp-gTrp-CO-CH₂-phenyl

Example 22 Aib-D-Trp-gTrp-CO-piperidin-4-yl

Example 23 Aib-D-Trp-gTrp-CO-CH₂-pyrrol-3-yl

Example 24 Aib-D-Trp-gTrp-CO-CH₂-CH₂-cyclohexyl

Example 25 N-Me-Aib-D-Trp-gTrp-CO-CH₂-CH₃

Example 26 N-Me-Aib-D-Trp-gTrp-CO-CH₂-CH(CH₃)-CH₃

Example 27 N-Me-Aib-D-Trp-gTrp-CO-CH₂-phenyl

Example 28 N-Me-Aib-D-Trp-gTrp-CO-CH₂-pyrrol-3-yl
Example 29 N-Me-Aib-D-Trp-gTrp-CO-CH₂-CH₂-cyclohexyl

Example 30 Aib-D-Trp-gTrp-CHO

5 Example 31 N-(3-amino-3-methyl-butanoyl)-D-Trp-gTrp-CO-CH₃

Example 32 N-Acetyl-D-Trp-gTrp-CHO

Example 33 N-Acetyl-D-Trp-gTrp-CO-CH₃

10 Example 34 N-Formyl-D-Trp-gTrp-CHO

Example 35 N-Formyl-D-Trp-gTrp-CO-CH₃

15 Example 36 N-(1,1-dimethyl-2-amino-2-keto-ethyl)-D-Trp-gTrp-CHO

Example 37 N-(2-amino-2-methyl-propyl)-D-Trp-gTrp-CHO

Example 38 N-(2-amino-2-methyl-propyl)-D-Trp-gTrp-CO-CH₃

20 Example 39 N-Me-Aib-D-Trp-D-gTrp-Isonipecotyl

Example 40 N-Me-Aib-D-Trp-N-Me-D-gTrp-C(O)CH₃

25 Example 41 H-Aib-D-Trp-N-Me-D-gTrp-C(O)CH₃

Example 42 H-Aib-(D)-1-Nal-g-(D)-1-Nal-formyl

C₃₀H₃₂N₁₂O₇, 496 g·mol⁻¹.

¹H RMN (200 MHz, DMSO-d⁶): δ 1.14 and 1.4 (2m, 6H, 2 CH₃ (Aib)); 3.17-3.55 (m, 4H, 2 (CH₂)₃); 4.82 (m, 1H, CHα); 5.5 and 5.82 (2m, 1H, CHα); 7.36-7.64 (m, 8H); 7.83-8 (m, 7H); 8.25-9.45 (m, 5H).

Mass Spectrometry (FAB), m/z 497 [M+H]⁺.

Analytic HPLC (Delta Pak 5μ C18 100A, 1ml/min, 214nm, eluent: H₂O / ACN 0.1% TFA, gradient 0 to 100% ACN in 50min), tr = 20.28min, 99%. Freezedried Compound.

35 Example 43 H-Aib-(D)-2-Nal-g-(D)-2-Nal-formyl
C_{30}H_{32}N_{4}O_{2}, 496 g.mol^{-1}.

{^1}H RMN (200 MHz, DMSO-d_{6}): \delta 1.18 and 1.36 (2m, 6H, 2 CH_{3} (Aib)) ; 2.84-3.3 (m, 4H, 2 (CH_{2})_{2}) ; 4.7 (m, 1H, CH=); 5.45 and 5.73 (2m, 1H, CH=); 7.47-7.51 (m, 6H); 7.76-8.06 (m, 11H); 8.36-9.11 (m, 3H).

5 Mass Spectrometry (FAB), m/z 497 [M+H]^+.

Analytic HPLC (Delta Pak 5µ C18 100A, 1ml/min, 214nm, eluent: H_{2}O / ACN 0.1% TFA, gradient 0 to 100% ACN in 50min), tr = 20.26mm, 95%. Freezedried Compound.

Example 44 H-Aib-(D)-1-Nal-g-(D)-Trp-formyl

10 C_{28}H_{31}N_{2}O_{3}, 485 g.mol^{-1}.

{^1}H RMN (200 MHz, DMSO-d_{6}): \delta 1.15 and 1.42 (2m, 6H, 2 CH_{3} (Aib)) ; 3.11-3.3 and 3.54-3.7 (m, 4H, 2 (CH_{2})_{2}) ; 4.81 (m, 1H, CH=); 5.4 and 5.74 (2m, 1H, CH=); 7.06-7.2 (m, 3H); 7.34-7.65 (m, 6H); 7.91-8.1 (m, 4H); 8.2-8.4 (m, 1H); 8.55-9.5 (m, 3H); 10.95 (m, 1H, N^+H).

Mass Spectrometry (FAB), m/z 486 [M+H]^+.

Analytic HPLC (Delta Pak 5µ C18 100A, 1ml/min, 214nm, eluent: H_{2}O / ACN 0.1% TFA, gradient 0 to 100% ACN in 50min), tr = 17.33mm, 92%. Freezedried Compound.

Example 45 H-Aib-(D)-2-Nal-g-(D)-Trp-formyl

20 C_{28}H_{31}N_{2}O_{3}, 485 g.mol^{-1}.

{^1}H RMN (200 MHz, DMSO-d_{6}): \delta 1.19 and 1.45 (2m, 6H, 2 CH_{3} (Aib)) ; 2.93-3.3 (m, 4H, 2 (CH_{2})_{2}) ; 4.71 (m, 1H, CH=); 5.35 and 5.7 (2m, 1H, CH=); 7.05-7.1 (m, 2H); 7.2-7.34 (m, 1H); 7.47-7.53 (m, 4H); 7.64 (m, 1H); 7.78-8 (m, 8H); 8.48-9.37 (m, 2H); 10.88-11.04 (m, 1H,N^+H).

Mass Spectrometry (FAB), m/z 486 [M+H]^+.

Analytic HPLC (Delta Pak 5µ C18 100A, 1ml/min, 214nm, eluent: H_{2}O / ACN 0.1% TFA, gradient 0 to 100% ACN in 50min), tr = 17.30min, 95%. Freezedried Compound.

Example 46 H-Aib-(D)-Trp-g-(D)-1-Nal-formyl

30 C_{32}H_{31}N_{2}O_{3}, 485 g.mol^{-1}.

{^1}H RMN (200 MHz, DMSO-d_{6}): \delta 1.23 and 1.41 (2m, 6H, 2 CH_{3} (Aib)) ; 2.92-3.15 (m, 2H, (CH_{2})_{2}) ; 3.4-3.6 (m, 2H, (CH_{2})_{2}) ; 4.63 (m, 1H, CH=); 5.44 and 5.79 (2m, 1H, CH=); 6.99-7.15 (m, 3H); 7.33 (m, 1H); 7.45-8.1 (m, 11H); 8.34-9.37 (m, 3H); 10.83 (m, 1H).

Mass Spectrometry (FAB), m/z 486 [M+H]^+.

Analytic HPLC (Symmetry shield 3.5µ C18 100A, 1ml/min, 214nm, eluent: H_{2}O / ACN
0.1% TFA, gradient 0 to 60% ACN in 15min then 60 to 100% ACN in 3min), tr =
10.00min, 99%. Freezedried Compound.

Example 47 H-Aib-D-Trp-g-D-2-Nal-formyl

C_{36}H_{53}N_{5}O_{8}, 485 g.mol^{-1}.

1H RMN (200 MHz, DMSO-d$_{6}$): δ 1.22 and 1.43 (2m, 6H, 2 CH$_{3}$(Aib)); 2.85-3.3 (m, 4H, 2 (CH$_{2}$)$_{3}$); 4.64 (m, 1H, CH$_{2}$); 5.37 and 5.72 (2m, 1H, CH$_{2}$); 6.97-7.13 (m, 3H); 7.32
(m,1H); 7.44-7.54 (m, 3H); 7.66 (d, 1H); 7.78 (m, 1H); 7.86-8.02 (m, 7H); 8.33-9.4 (m, 2H); 10.82 (m, 1H, N$_{1}$H).

10 **Mass Spectrometry (FAB), m/z 486 [M+H]+.**
Analytic HPLC (Delta pak 5µ C18 100A, 1ml/min, 214nm, eluent: H$_{2}$O / ACN 0.1% TFA, gradient 0 to 100% ACN in 25min), tr = 9.00min, 99%. Freezedried Compound.

Example 48 H-Aib-(D)-Trp-g-(D)-3-(R/S)Dht-formyl

C$_{45}$H$_{63}$N$_{5}$O$_{8}$, 476 g.mol^{-1}.

1H RMN (400 MHz, DMSO-d$_{6}$): δ 1.12 (s, 3H, CH$_{3}$(Aib)); 1.32 (s, 3H, CH$_{3}$(Aib)); 1.73
(m, 1H, CH$_{2}$); 2.01 (m, 1H, CH$_{2}$); 2.9 (m, 1H); 3.03 (m, 1H); 3.13 (m, 2H); 3.54 (m, 1H);
4.47 (m, 1H, CH$_{2}$); 5.10 and 5.52 (2m, 1H, CH$_{2}$); 6.71-8.83 (m, 16H, 5H (Trp), 4H (Dht), 3
NH (amides), NH and NH$_{2}$ (amines), formyl); 10.7 (m, 1H, N$_{1}$H).

20 **Mass Spectrometry (Electrospray), m/z 477.46 [M+H]+ 499.42 [M+Na]+; 953.51
[2M+H]+.**
Analytic HPLC (Delta Pak 5µ C18 100A, 1ml/min, 214nm, eluent: H$_{2}$O / ACN 0.1% TFA, gradient 0 to 100% ACN in 50min), tr = 9.40min, 98%. Freezedried Compound.

Example 49 H-Aib-(D)-3(R/S)Dht-g-(D)-Trp-formyl

C$_{46}$H$_{63}$N$_{5}$O$_{8}$,476 g.mol^{-1}.

RMN 1H(400 MHz, DMSO-d$_{6}$): δ 1.58 (s, 3H, CH$_{3}$(Aib)); 1.85 (m, 1H, CH$_{2}$); 2.2 (m, 1H, CH$_{2}$); 3.1 (d, 2H); 3.35 (m, 2H); 3.56 (m, 1H); 3.7 (m, 1H); 4.5 (m, 1H, CH$_{2}$); 5.33 and 5.71
(2m, 1H, CH$_{2}$); 6.88-8.91 (m, 16H, 5H (Trp), 4H (Dht), 3 NH (amides), NH and NH$_{2}$
30 (amines), formyl); 10.92 and 10.97 (2s, 1H, N$_{1}$H).

Mass Spectrometry (Electrospray), m/z 477.33 [M+I]+; 499.42 [M+Na]+ 953.51
[2M+H]+.
Analytic HPLC (Delta Pak 5µ C18 100A, 1ml/min, 214nm, eluent: H$_{2}$O / ACN 0.1% TFA, gradient 0 to 100% ACN in 50min), tr = 10.35mm, 99%. Freezedried Compound.

Example 50 N-Me-Aib-(D)-Trp-g-(D)-3(R/S)Dht-acetyl
C_{28}H_{36}N_{6}O_{3}, 504 g/mol\(^1\).

\(^1\)H RMN (400 MHz, DMSO-\(d_6\)): \(\delta\) 1.42 (s, 3H, CH\(_3\) (Aib)); 1.63 (s, 3H, CH\(_3\) (Aib)); 2.72 (m, 3H, acetyl); 2.4 (m, 2H, CH\(_2\)); 2.5 (m, 3H, NCH\(_3\)); 3.2-3.5 (m, 4H); 3.85 (m, 1H); 4.85 (m, 1H, CH\(_2\)); 5.76 (m, 1H, CH\(_2\)); 7.04-8.86 (m, 14H, 5H (Trp), 4H (Dht), 3 NH (amides), 2 NH (amines)); 11.02 (2s, 1H, N\(^1\)H).

Mass Spectrometry (Electrospray), m/z 505.31 [M+H]\(^+\); 527.70 [M+Na]\(^+\).

Analytic HPLC (Delta Pak 5µ C18 100A, 1ml/min, 214nm, eluent : H\(_2\)O / ACN 0.1% TFA, gradient 0 to 100% ACN in 50min), tr = 10.20 min, 98%. Freezedried Compound.

10 Example 51 N-Me-Aib-(D)-3(R/S)Dht-g-(D)-Trp-acetyl
C_{28}H_{36}N_{6}O_{3}, 504 g/mol\(^1\).

\(^1\)H RMN (400 MHz, DMSO-\(d_6\)): \(\delta\) 1.58 (s, 6H, 2 CH\(_3\) (Aib)); 1.81 (m, 3H, acetyl); 1.98 (m, 1H, CH\(_2\)); 2.24 (m, 1H, CH\(_2\)); 2.54 (m, 3H, NCH\(_3\)); 3.08 (d, 2H); 3.31 (m, 2H); 3.4 (m, 1H); 3.59 (m, 1H); 3.71 (m, 1H); 4.52 (m, 1H, CH\(_2\)); 5.61 (m, 1H, CH\(_2\)); 6.9-8.92 (m, 14H, 5H (Trp), 4H (Dht), 3 NH (amides), 2 NH (amines)); 10.88 (s, 1H, N\(^1\)H).

Mass Spectrometry (Electrospray), m/z 505.43 [M+H]\(^+\); 527.52 [M+Na]\(^+\).

Analytic HPLC (Delta Pak 5µ C18100A, 1ml/min, 214nm, eluent : H\(_2\)O / ACN 0.1% TFA, gradient 0 to 100% ACN in 50min), tr = 11 min, 98%. Freezedried Compound.

20 Example 52 N(Me)\(_2\)-Aib-(D)-Trp-(D)-gTrp-formyl
C_{28}H_{36}N_{6}O_{3}, 502 g/mol\(^1\).

\(^1\)H RMN (400 MHz, DMSO-\(d_6\)): \(\delta\) 1.2 (s, 3H, CH\(_3\) (Aib)); 1.39 (s, 3H, CH\(_3\) (Aib)); 2.29 (m, 3H, NCH\(_3\)); 2.99-3.33 (m, 4H, 2 (CH\(_2\))\(_2\); 4.68 (m, 1H, CH\(_2\)); 5.3 and 5.69 (m, 1H, CH\(_2\)); 6.97-7.72 (m, 10H, 2 indoles); 7.97 (2s, 1H, formyl); 8.2-9.47 (m, 3H, 3 NH (amides)); 10.85 (m, 2H, 2 NH (indoles)).

Mass Spectrometry (Electrospray), m/z 503.45 [M+H]\(^+\).

Analytic HPLC (Symmetry shield 3.5µ C18 100A, 1ml/min, 214nm, eluent : H\(_2\)O / ACN 0.1% TFA, gradient 0 to 100% ACN in 15min), tr = 6.63 min, 99%. Freezedried Compound.

30 Example 53 N(Me)\(_2\)-Aib-D-Trp-D-gTrp-acetyl
C_{28}H_{36}N_{6}O_{3}, 516 g/mol\(^1\).

\(^1\)H RMN (200 MHz, DMSO-\(d_6\)): \(\delta\) 1.22 (s, 3H, CH\(_3\) (Aib)); 1.4 (s, 3H, CH\(_3\) (Aib)); 1.8 (s, 3H, acetyl)); 2.28 (d, 3H, NCH\(_3\)); 2.96-3.22 (m, 4H, 2 (CH\(_2\))\(_2\); 4.7 (m, 1H, CH\(_2\)); 5.60 (m, 1H, (CH\(_2\))\(_4\)); 6.98-7.75 (m, 10H, 2 indoles); 8.2-9.47 (m, 3H, 3 NH (amides)); 10.84 (m, 2H, 2 NH (indoles)).
Mass Spectrometry (Electrospray), m/z 517.34 [M+H]^+.

Analytic HPLC (Symmetry shield 3.5μ C18 100A, lml/min, 214nm, eluent: H₂O / ACN 0.1% TFA, gradient 0 to 100% ACN in 15min), tr = 7.07mm, 99%. Freezedried Compound.

Example 54 H-Acc³-(D)-Trp-(D)-gTrp-formyl
C_{26}H_{32}N_{13}O_{3}, 472 g.mol⁻¹.

¹H RMN (400 MHz, DMSO-d⁶) : δ 1.11 and 1.5 (2m, 4H,2 CH₂(Acc³)) ; 2.91-3.12 (m, 4H, 2 (CH₃)₃) ; 4.6 (m, 1H, CH₃) ; 5.3 and 5.7 (2m, 1H, CH₃) ; 6.97-7.17 (m, 6H, indoles); 7.32 (m, 2H, indoles); 7.62-7.72 (m, 2H, indoles); 7.97 (2s, 1H, formyl); 8.27-8.92 (m, 5H, 3 NH (amides) and NH₂ (amine)); 10.80-10.90 (4s, 2H, 2 N⁻H).

Analytic HPLC (Delta Pak 5μ C18 100A, 1ml/min, 214nm, eluent: H₂O / ACN 0.1% TFA, gradient 0 to 100% ACN in 50min), tr = 14.20min, 98%. Freezedried Compound.

Example 55 H-Acc⁵-(D)-Trp-(D)-gTrp-formyl
C_{26}H_{32}N_{13}O_{3}, 472 g.mol⁻¹.

¹H RMN (400 MHz, DMSO-d⁶) : δ 1.51 and 2.31 (m, 8H, 4 CH₂(Acc⁵)) ; 2.97-3.18 (m, 4H, 2 (CH₃)₃) ; 4.64 (m, 1H, CH₃) ; 5.31 and 5.69 (2m, 1H, CH₃) ; 6.96-7.34 (m, 8H, indoles); 7.62-7.74 (m, 2H, indoles); 7.96 (m, 3H, formyl and NH₂ (amine)); 8.48-8.96 (m, 3H, 3 NH (amides)); 10.80-10.90 (4s, 2H, 2 N⁻H).

Analytic HPLC (Delta Pak 5μ C18 100A, 1ml/min, 214nm, eluent: H₂O / ACN 0.1% TFA, gradient 0 to 100% ACN in 50min), tr = 15.35min, 98%. Freezedried Compound.

Example 56 H-Acc⁶-(D)-Trp-(D)-gTrp-formyl
C_{26}H_{32}N_{13}O_{3}, 472 g.mol⁻¹.

¹H RMN (400 MHz, DMSO-d⁶) : δ 1.29-1.57 (m, 8H, 4 CH₂(Acc⁶)) ; 1.89 and 2.04 (2m, 2H, CH₂(Acc⁶)) ; 2.95-3.17 (m, 4H, 2 (CH₃)₃) ; 4.61 (m, 1H, CH₃) ; 5.3 and 5.68 (2m, 1H, CH₃) ; 6.95-7.21 (m, 6H, indoles); 7.32 (m, 2H, indoles); 7.6 (m, 2H, indoles); 7.74 (m, 2H, indoles); 7.96 (m, 3H, formyl and NH₂ (amine)); 8.18-8.67 (m, 5H, 3 NH (amides)); 10.77-10.89 (4s,2H, 2N⁻H).

Mass Spectrometry (Electrospray), m/z 515.11 [M+H]^+.
Analytic HPLC (Delta Pak 5 μ C18 100A, 1ml/min, 214nm, eluent: H₂O / ACN 0.1% TFA, gradient 0 to 100% ACN in 50min), tr = 15.9min, 97%. Freezedried Compound.

Example 57 H-Dpg-(D)-Trp-(D)-gTrp-formyl
5 C_{26}H_{28}N_{6}O_{3}, 530 g·mol⁻¹.
 1H RMN (400 MHz, DMSO-d⁶) : δ 0.40 (m, 1H, Dpg) ; 0.70 (m, 4H, Dpg) ; 1.01-1.51 (m, 5H, Dpg) ; 1.76 (m, 1H, Dpg) ; 2.28-2.95 (m, 4H, 2 (CH₂)₈) ; 4.59 (m, 1H, CH₄) ; 5.3 and 5.54 (2m, 1H, CH₃) ; 6.81-7.09 (m, 6H, indoles) ; 7.19 (m, 2H, indoles) ; 7.48 (m, 1H, indoles) ; 7.6-7.68 (m, 5H, 1H (indoles), formyl and NH₂ (amine)) ; 7.83-8.82 (m, 3H, 3 NH (amides)) ; 10.69 and 10.76 (2m, 2H, 2NH₃H).

Mass Spectrometry (Electrospray), m/z 531.24 [M+1]⁺.
Analytic HPLC (Delta Pak 5 μ C18 100A, 1ml/min, 214nm, eluent: H₂O / ACN 0.1% TFA, gradient 0 to 100% ACN in 50min), tr = 15.35min, 98%. Freezedried Compound.

Example 58 H-Aib-(D)-Trp-(D)-gTrp-C(O)NHCH₂CH₃
15 C_{26}H_{32}N₂O₃, 517 g·mol⁻¹.
 1H RMN (400 MHz, DMSO-d⁶) : δ 0.94 (t, 3H, NHCH₂CH₃) ; 1.01 (s, 3H, CH₃ (Aib)) ; 1.08 (s, 3H, CH₃ (Aib)); 1.8 (s, 2H, NH₂); 2.95-3.15 (m, 6H, 2 (CH₂)₈ and NHCH₂CH₃); 4.43 (m, 1H, CH₄); 5.39 (m, 1H, CH₃); 6.02 (m, 1H); 6.22 (m, 1H); 6.9-7.56 (m, 10H, indoles); 8 (m, 1H); 8.31 (m, 1H); 10.77 and 10.79 (2s, 2H, 2NH₃H).

Mass Spectrometry (Electrospray), m/z 518.4 [M+H]⁺; 540.3 [M+Na]⁺.
Analytic HPLC (Symmetry shield 3.5 μ C18 100A, 1ml/min, 214nm, eluent: H₂O / ACN 0.1% TFA, gradient 0 to 100% ACN in 15min), tr = 7.12min, 99%. Freezedried Compound.

Example 59 N-Me-Aib-(D)-Trp-(D)-gTrp-C(O)NHCH₂CH₃
25
Example 60 H-Aib-(R)-Me-Trp-(D)-gTrp-formyl
Example 61 H-Aib-(D)-Trp-(R)-Me-gTrp-formyl
Example 62 H-Me-Aib-(D)-Trp-(R)-Me-gTrp-acetyl

Example 63 EVALUATION OF THE GROWTH HORMONE RELEASING ACTIVITY OF NEW GROWTH HORMONE SECRETAGOGUES IN THE INFANT RAT
Animals

Male 10-day-old Sprague Dawley rats, about 25 g body weight were used.

Pups were received on the fifth day after birth and were housed under controlled conditions (22 ± 2°C, 65 % humidity and artificial light from 06.00 to 20.00 h). A standard dry diet and water were available ad libitum to the dams.

Experimental procedure

One hour before the experiments, pups were separated from their respective dams and were divided randomly into groups of eight each.

Pups were acutely challenged subcutaneously with 100 μl of solvent (DMSO, final dilution 1:300 in physiological saline), hexarelin (Tyr-Ala-His-D-Mrp-Ala-Trp-D-Phe-Lys-NH₂, used as a reference drug), or new compounds (300 μg/kg) and killed by decapitation 15 min later.

Trunk blood was collected and centrifuged immediately: Plasma samples were stored at -20°C until assayed for the determination of plasma GH concentrations.

Growth hormone concentrations in plasma were measured by RIA using materials provided by the National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK) of the National Institute of Health U.S.A.

Values were expressed in terms of the NIDDK-rat-GH-RP-2 standard (potency 2IU/mg) as ng/ml of plasma.

The minimum detectable value of rat GH was about 1.0 ng/ml, and intraassay variability was about 6 %.

The obtained results of several test series, wherein the in vivo activity in the rat was determined, are listed in tables 1 to 10.

Table 1

<table>
<thead>
<tr>
<th>Example</th>
<th>Structure</th>
<th>GH ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H-Aib-D-Trp-D-gTrp-CHO</td>
<td>158.8 ± 39.4</td>
</tr>
<tr>
<td>13</td>
<td>H-Aib-D-Trp-gTrp-CHO</td>
<td>58 ± 6.3</td>
</tr>
<tr>
<td>SOLVENT</td>
<td></td>
<td>15.0 ± 8.0</td>
</tr>
<tr>
<td>HEXARELIN</td>
<td>Tyr-Ala-His-D-Mrp-Ala-Trp-D-Phe-Lys-NH₂</td>
<td>202 ± 32.7</td>
</tr>
</tbody>
</table>

- 26 -
Table 2

<table>
<thead>
<tr>
<th>Example</th>
<th>Structure</th>
<th>GH ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>N-Me-Aib-D-Trp-D-gTrp-CHO</td>
<td>86.6 ± 12.6</td>
</tr>
<tr>
<td>4</td>
<td>H-Aib-D-Trp-D-gTrp-C(O)CH₃</td>
<td>104.7 ± 13.5</td>
</tr>
<tr>
<td>5</td>
<td>N-Me-Aib-D-Trp-D-gTrp-C(O)CH₃</td>
<td>175.5 ± 37.2</td>
</tr>
<tr>
<td>SOLVENT</td>
<td></td>
<td>20.7 ± 0.9</td>
</tr>
<tr>
<td>HEXARELIN</td>
<td>Tyr-Ala-His-D-Mrp-Ala-Trp-D-Phe-Lys-NH₂</td>
<td>134.5 ± 27.2</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Example</th>
<th>Structure</th>
<th>GH ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Pip-D-Trp-D-gTrp-CHO</td>
<td>109.7 ± 10.1</td>
</tr>
<tr>
<td>7</td>
<td>Pip-D-Trp-D-gTrp-C(O)CH₃</td>
<td>53.1 ± 6.6</td>
</tr>
<tr>
<td>8</td>
<td>Isonipecotyl-D-Trp-D-gTrp-CHO</td>
<td>94.2 ± 8.6</td>
</tr>
<tr>
<td>9</td>
<td>Isonipecotyl-D-Trp-D-gTrp-C(O)CH₃</td>
<td>61.2 ± 10.8</td>
</tr>
<tr>
<td>19</td>
<td>Aib-D-Trp-gTrp-CO-CH₂-CH₃</td>
<td>79.8 ± 22.4</td>
</tr>
<tr>
<td>20</td>
<td>Aib-D-Trp-gTrp-CO-Piperidin-4-yl</td>
<td>153.6 ± 30.6</td>
</tr>
<tr>
<td>SOLVENT</td>
<td></td>
<td>22.3 ± 5</td>
</tr>
<tr>
<td>HEXARELIN</td>
<td>Tyr-Ala-His-D-Mrp-Ala-Trp-D-Phe-Lys-NH₂</td>
<td>114.7 ± 8.4</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Example</th>
<th>Structure</th>
<th>GH ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>N-Me-Aib-D-Trp-D-gTrp- Isonipecotyl</td>
<td>97.1 ± 21.0</td>
</tr>
<tr>
<td>40</td>
<td>N-Me-Aib-D-Trp-N-Me-D-gTrp-C(O)CH₃</td>
<td>188.2 ± 28.5</td>
</tr>
<tr>
<td>41</td>
<td>H-Aib-D-Trp-N-Me-D-gTrp-C(O)CH₃</td>
<td>75.4 ± 15.0</td>
</tr>
<tr>
<td>SOLVENT</td>
<td></td>
<td>10.55 ± 2.65</td>
</tr>
<tr>
<td>HEXARELIN</td>
<td>Tyr-Ala-His-D-Mrp-Ala-Trp-D-Phe-Lys-NH₂</td>
<td>114.5 ± 12.9</td>
</tr>
</tbody>
</table>
Table 5

<table>
<thead>
<tr>
<th>Example</th>
<th>Structure</th>
<th>GH ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>H-Aib-(D)-1-Nal-g-(D)-1-Nal-formyl</td>
<td>25.05 ± 06.00</td>
</tr>
<tr>
<td>43</td>
<td>H-Aib-(D)-2-Nal-g-(D)-2-Nal-formyl</td>
<td>37.33 ± 19.74</td>
</tr>
<tr>
<td>44</td>
<td>H-Aib-(D)-1-Nal-g-(D)-1-Trp-formyl</td>
<td>15.04 ± 03.30</td>
</tr>
<tr>
<td>45</td>
<td>H-Aib-(D)-2-Nal-g-(D)-1-Trp-formyl</td>
<td>13.91 ± 03.87</td>
</tr>
<tr>
<td>46</td>
<td>H-Aib-(D)-Trp-g-(D)-1-Nal-formyl</td>
<td>8.26 ± 01.09</td>
</tr>
<tr>
<td>47</td>
<td>H-Aib-(D)-Trp-g-(D)-2-Nal-formyl</td>
<td>9.04 ± 04.03</td>
</tr>
<tr>
<td>SOLVENT</td>
<td></td>
<td>6.49 ± 01.18</td>
</tr>
<tr>
<td>HEXARELIN</td>
<td></td>
<td>276.01 ± 23.5</td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>Example</th>
<th>Structure</th>
<th>GH ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>H-Aib-(D)-Trp-g-3(R/S)Dht-formyl</td>
<td>17.49 ± 2.40</td>
</tr>
<tr>
<td>49</td>
<td>H-Aib-(D)-3(R/S)Dht-(D)-Trp-formyl</td>
<td>24.35 ± 4.85</td>
</tr>
<tr>
<td>50</td>
<td>N-Me-Aib-(D)-Trp-(D)-3(R/S)Dht-acetyl</td>
<td>11.17 ± 1.35</td>
</tr>
<tr>
<td>51</td>
<td>H-Me-Aib-(D)-3(R/S)Dht-(D)-Trp-acetyl</td>
<td>19.38 ± 4.16</td>
</tr>
<tr>
<td>SOLVENT</td>
<td></td>
<td>14.65 ± 0.92</td>
</tr>
<tr>
<td>HEXARELIN</td>
<td></td>
<td>91.61 ± 4.09</td>
</tr>
</tbody>
</table>

Table 7

<table>
<thead>
<tr>
<th>Example</th>
<th>Structure</th>
<th>GH ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>N(Me)₂-Aib-(D)-Trp-(D)-gTrp-formyl</td>
<td>121.43 ± 29</td>
</tr>
<tr>
<td>53</td>
<td>N(Me)₂-Aib-(D)-Trp-(D)-gTrp-acetyl</td>
<td>26.80 ± 5.64</td>
</tr>
<tr>
<td>SOLVENT</td>
<td></td>
<td>7.89 ± 1.77</td>
</tr>
<tr>
<td>HEXARELIN</td>
<td></td>
<td>172.5 ± 38.53</td>
</tr>
</tbody>
</table>
Table 8

<table>
<thead>
<tr>
<th>Example</th>
<th>Structure</th>
<th>GH ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>H-Aib-(R)-Me-Trp-(D)-gTrp-formyl</td>
<td>21.02 ± 3.43</td>
</tr>
<tr>
<td>61</td>
<td>H-Aib-(D)-Trp-(R)-Me-gTrp-formyl</td>
<td>152.28 ± 43.76</td>
</tr>
<tr>
<td>62</td>
<td>H-Me-Aib-(D)-Trp-(R)-Me-gTrp-acetyl</td>
<td>171.78 ± 10.32</td>
</tr>
<tr>
<td>SOLVENT</td>
<td></td>
<td>7.89 ± 1.77</td>
</tr>
<tr>
<td>HEXARELIN</td>
<td></td>
<td>172.5 ± 38.53</td>
</tr>
</tbody>
</table>

Table 9

<table>
<thead>
<tr>
<th>Example</th>
<th>Structure</th>
<th>GH ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>H-Acc³-(D)-Trp-(D)-gTrp-formyl</td>
<td>7.89 ± 3.20</td>
</tr>
<tr>
<td>55</td>
<td>H-Acc⁵-(D)-Trp-(D)-gTrp-formyl</td>
<td>11.46 ± 1.18</td>
</tr>
<tr>
<td>56</td>
<td>H-Acc⁶-(D)-Trp-(D)-gTrp-formyl</td>
<td>8.49 ± 0.40</td>
</tr>
<tr>
<td>57</td>
<td>H-Dpg-(D)-Trp-(D)-gTrp-formyl</td>
<td>18.38 ± 2.88</td>
</tr>
<tr>
<td>SOLVENT</td>
<td></td>
<td>17.32 ± 1.70</td>
</tr>
<tr>
<td>HEXARELIN</td>
<td></td>
<td>89.91 ± 3.04</td>
</tr>
</tbody>
</table>

Table 10

<table>
<thead>
<tr>
<th>Example</th>
<th>Structure</th>
<th>GH ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>H-Aib-(D)-Trp-(D)-gTrp-C(O)NHCH₂CH₃</td>
<td>376.48 ± 43.24</td>
</tr>
<tr>
<td>59</td>
<td>N-Me-Aib-(D)-Trp-(D)-gTrp-C(O)NHCH₂CH₃</td>
<td>179.53 ± 24.65</td>
</tr>
<tr>
<td>SOLVENT</td>
<td></td>
<td>7.89 ± 1.77</td>
</tr>
<tr>
<td>HEXARELIN</td>
<td></td>
<td>172.5 ± 38.53</td>
</tr>
</tbody>
</table>

Furthermore the time dependence of the oral activity in the dog (1mg/kg; per os) was estimated for example 1 (H-Aib-D-Trp-D-gTrp-CHO). Well-trained beagles of either sex, > 10 year, 10-15 kg by weight, were used. Animals were fed normal dry food with water ad libitum and were on a 12h-light/12h-dark regimen with on at 7.00. The compound was administered orally to the dogs which had fasted since 16.00 of the preceding day.
Blood samples were taken 20 min before administration, at administration and 15, 30, 60, 90, 120 and 180 min after administration. The results are given in table 11.

<table>
<thead>
<tr>
<th>Example</th>
<th>NAME OF THE DOG</th>
<th>MEAN VALUE</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DAKOTA, JORMA, RAZ DEGAN, FORREST LEE, MARKUS, TAYLOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>t (min)</td>
<td>Concentration GH (ng/ml)</td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td>0.48</td>
<td>3.58</td>
<td>2.14</td>
</tr>
<tr>
<td>0</td>
<td>0.35</td>
<td>2.75</td>
<td>1.64</td>
</tr>
<tr>
<td>15</td>
<td>2.11</td>
<td>8.91</td>
<td>3.58</td>
</tr>
<tr>
<td>30</td>
<td>0.54</td>
<td>6.85</td>
<td>6.37</td>
</tr>
<tr>
<td>60</td>
<td>0.17</td>
<td>2.65</td>
<td>3.02</td>
</tr>
<tr>
<td>90</td>
<td>0.4</td>
<td>2.47</td>
<td>2.61</td>
</tr>
<tr>
<td>120</td>
<td>3.58</td>
<td>2.48</td>
<td>1.94</td>
</tr>
<tr>
<td>180</td>
<td>3.46</td>
<td>2.82</td>
<td>1.49</td>
</tr>
<tr>
<td>20</td>
<td>AUC</td>
<td>328.53</td>
<td>658.38</td>
</tr>
</tbody>
</table>

SEM = Standard deviation
AUC = Area under the curve
THE CLAIMS

What is claimed is:

1. Compounds of the formula I

wherein * means a carbon atom which, when a chiral carbon atom, has a R or S configuration, one of R¹ and R³ is an hydrogen atom and the other is a group of formula II

R² is a hydrogen atom, a linear or branched C₁-C₆ alkyl group, an aryl group, a heterocyclic group, a cycloalkyl group, a (CH₂)ₙ-aryl group, a (CH₂)ₙ-heterocyclic group, a (CH₂)ₙ-cycloalkyl group, a methylsulfonyl group, a phenylsulfonyl group, a C(O)R⁸ group or a group according to one of formulas III to VIII:
R^4 is a hydrogen atom or a linear or branched C\textsubscript{1}-C\textsubscript{4}-alkyl group, R^5 is a hydrogen atom, a linear or branched C\textsubscript{1}-C\textsubscript{4} alkyl group, a (CH\textsubscript{2})\textsubscript{n}-aryl group, a (CH\textsubscript{2})\textsubscript{n}-heterocyclic group, a
(CH₂)n-cycloalkyl group or an amino group, R₆ and R₇ are independently from each other a hydrogen atom or a linear or branched C₁-C₆-alkyl group, R₈ is a linear or branched C₁-C₆-alkyl group, R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₁₄, R₁₅, and R₁₆ are independently from each other a hydrogen atom or a linear or branched C₁-C₆-alkyl group, m is 0, 1 or 2 and n is 1 or 2.

2. Compounds according to claim 1, wherein R² is hydrogen, R³ is a group of formula II and m is 0.

3. Compounds according to claim 2, wherein the linear or branched C₁-C₄ alkyl group is methyl, the linear or branched C₁-C₆ alkyl group is methyl, ethyl or i-butyl, aryl is phenyl or naphthyl, cycloalkyl is cyclohexyl and the heterocyclic group is a 4-piperidinyl or 3-pyrrolyl group.

4. A compound which is

5. A compound which is
6. A compound which is

7. A pharmaceutical composition, comprising a compound of claim 1.

8. The composition of claim of claim 7, in combination with a pharmaceutically acceptable carrier.

9. The composition of claim of claim 7, in combination with an additional growth hormone secretagogue.

10. A method for elevating the plasma level of growth hormone in a mammal comprising administering to a mammal a therapeutically effective amount of a compound according to claim 1.

11. A method for the treatment of growth hormone secretion deficiency comprising administering to a mammal a therapeutically effective amount of a compound according to claim 1.

12. A method for the treatment of growth retardation in child comprising administering to a patient a therapeutically effective amount of a compound according to claim 1.

13. A method for the treatment of metabolic disorders associated with growth hormone secretion deficiency, in particular in aged subjects, comprising administering to a patient a therapeutically effective amount of a compound according to claim 1.
14. A method for promoting wound healing, recovery from surgery or recovery from debilitating illnesses, which comprises administering a therapeutically effective amount of a compound according to claim 1.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

* IPC 7 C07D209/20 C07D401/14 C07D401/12 A61K31/405
 //((C07D401/12, 211:00, 209:00))

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

* IPC 7 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

* EPO-Internal, CHEM ABS Data, WPI Data, PAJ, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 96 15148 A (GENENTECH INC) 23 May 1996 (1996-05-23) cited in the application page 70, formula II page 49, line 15</td>
<td>1-14</td>
</tr>
<tr>
<td>Y</td>
<td>WO 95 14666 A (MORRIELLO GREGORI J ; PATCHETT ARTHUR A (US); YANG LIHU (US); CHEN) 1 June 1995 (1995-06-01) examples 10,11,14,20,32</td>
<td>1-14</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Note: Special categories of cited documents:

* A: later document published after the international filing date or priority data and not in conflict with the application but cited to understand the principle or theory underlying the invention.

* E: document published prior to the international filing date.

* L: document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).

* O: document reporting an oral disclosure, exhibition or other means.

* P: document published after the international filing date and priority date.

* S: document member of the same patent family.

Date of the actual completion of the international search

27 September 2001

Date of mailing of the international search report

12/10/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-3040, Fax. +31-70) 340-3016

Authorized officer

Freelon, D.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 194626 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 696676 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4164496 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2203375 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69518000 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69518000 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 792289 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0792289 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2150018 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3034348 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 115994 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10509152 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 792289 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6034216 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9615148 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9509757 A</td>
</tr>
</tbody>
</table>

		AU 1294595 A	13-06-1995
		CA 2176140 A1	01-06-1995
		EP 0730578 A1	11-09-1996
		JP 9505601 T	03-06-1997
		WO 9514666 A1	01-06-1995
		US 5663171 A	02-09-1997
		US 6121325 A	19-09-2000