This invention relates to closures for bottles or similar containers, and more particularly to closures that provide both a seal for the container and means for retaining a revenue stamp or the like thereon.

It is a matter of common knowledge that many liquids have a strip label, or, as in the case of alcoholic liquors, a revenue stamp, adhered to both the breast of the container and the closure used therewith. It is also well known that sealed containers often reach the ultimate purchaser with the stamps or labels pulled loose from the container, and particularly is this often the condition of the package when the closure is a metallic seal. This faulty adherence not only makes the package unsightly, but also gives rise to suspicion of tampering with the contents thereof or reuse of the stamp. It is the principal object of this invention to provide a closure having a shell which is adapted to retain a stamp mechanically upon the shell and at the same time cancel the stamp by perforation. It is a further object of this invention to provide such a closure in a simple and inexpensive manner and at the same time insure a fluid-tight seal for the container.

These objects and such others as may be incidental thereto will be fully understood in connection with the following detailed description of the drawing, in which:

Fig. 1 is a top view of the closure;
Fig. 2 is a side elevation of the closure with a portion of the shell broken away;
Fig. 3 is a view of the closure taken on the line III—III of Fig. 2; and
Fig. 4 is a perspective view of the closure secured to a bottle with a stamp attached.

As shown in Figs. 1, 2, and 3, the closure consists of a metal shell 1 and an over-all fluid-proof liner 2. The shell is provided with integral projections or tines 3 formed from the top panel thereof, and the threaded skirt 4 adapted to cooperate with a portion of a container having complementary threads to maintain the liner 2 in sealing relationship with the mouth of the container.

The liner 2 is a laminated material comprising a cork base 5 to which is attached a layer of metallic foil 6 by means of the adhesive 7. As shown, the layer of foil is so disposed that it engages the mouth of the container in sealing relationship. At times, however, it may be desirable to make the top surface of the liner fluid-tight, in which case its top surface may also be provided with foil or with any suitable fluid-proof layer.

Referring now to Fig. 4, the closure is attached to a suitable container 8, both of which have secured thereto a stamp 9. As shown therein, the stamp is pierced by the tines 3, which are preferably bent flat against the stamp to secure it firmly.

It will be appreciated that in a closure of the described structure the shell, because of the perforate top panel, serves as both a securing member and a reinforcing member for the liner, but not as a sealing member, a function ordinarily joined with that of securing the closure to the container; in other words, the liner in this closure structure forms the only true sealing element. The imperforate area of the top panel is relatively large, so that the liner is confined and reinforced by the shell to a degree permitting the use of a liner having little structural rigidity in itself. While the liner may be both flexible and compressible, it is essential, since it forms the sealing element, that it be both gas and liquid-tight in at least the area inwardly of the sealing zone upon the container opening, and preferably throughout.

It will also be understood that although the soft metal foil associated with a resilient backing, such as cork, is considered the best form of fluid-tight liner, many other materials offer satisfactory fluid-tightness. For instance, vulcanised rubber forms a satisfactory liner when its seal, lining property alone is considered, and the same is true of many kinds of varnished paper, particularly craft or express paper coated with a varnish having a vinyl resin base. In every case, however, the contents of the container will control the choice of fluid-tight materials, since the material ordinarily must be inert to the contents of the container, or, in other words, fluid-proof as well as fluid-tight, and for alcoholic liquors at least aluminum foil has been found to offer the best fluid-tight and fluid-proof properties.

In the appended claims, the word "stamp" has been used generically to include all indica of source, tax, and the like that might be attached to the container.
I claim:

1. A cup-like closure for containers comprising a perforate metallic shell and a fluid-tight sealing member, said shell having integral means formed from the top panel thereof, said means being adapted to cancel and retain mechanically a stamp thereon.

2. A cup-like closure for containers comprising a perforate metallic shell and a fluid-tight sealing member, said shell having integral tines cut from the top panel thereof, said tines being adapted to cancel and retain mechanically a stamp thereon.

3. A cup-like closure for containers comprising a perforate metallic shell and a fluid-tight sealing member, said shell having integral tines cut from the top panel thereof, said tines being adapted to cancel and retain mechanically a stamp thereon.

4. A cup-like closure for containers comprising a perforate metallic shell and a fluid-tight sealing member, said shell having integral tines cut from the top panel thereof, said tines being adapted to cancel and retain mechanically a stamp thereon, and said sealing member having at least one fluid-tight surface.

JOHN E. SHARP.