I 00 0O A

WO 01/13222 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 February 2001 (22.02.2001)

PCT

AT A R e

(10) International Publication Number

WO 01/13222 A2

(51) International Patent Classification”: GO6F 9/445

(21) International Application Number: PCT/US00/21915

(22) International Filing Date: 10 August 2000 (10.08.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/374,056 12 August 1999 (12.08.1999) US

(71) Applicant: HANDSPRING, INC. [US/US]; 189
Bernardo Avenue, Moutain View, CA 94043-5203 (US).

(72) Inventors: MARIANETTI, Ron; 18335 Christeph Drive,
Morgan Hill, CA 95035 (US). HAWKINS, Jeffrey, C.; 18
West Summit Drive, Redwood City, CA 94062 (US).

(74) Agent: JOHANSEN, Dag; Stattler Johansen & Adeli LLP,
P.O. Box 51860, Palo Alto, CA 94303-0728 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, 1L, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ, PL, PT,RO,RU, SD, SE, SG, SI, SK, SL,, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,

CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: A MOBILE COMPUTER SYSTEM WITH A ROBUST EXPANSION CAPABILITY

Peripheral
Inserted
210

Interrupt Handler identifies
insertion and generates an event.
220

Event Handler handles the insertion event.
240

Copy and execute the

Yes™ Ser-Up Utility. 255

Execute Welcome
Application, 265

le—Yes

Done

(57) Abstract: A robust external interface for a computer
system is disclosed. The robust external interface allows a
user to insert or remove external peripherals to the external
interface at any time such that the user does not need to care-
fully follow any scripted procedures. The external interface
software detects insertions or removals and acts in an appro-
priate manner.

wo 01713222 A2 IR0 AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— Without international search report and to be republished — ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report. ning of each regular issue of the PCT Gazette.

10

15

20

WO 01/13222 PCT/US00/21915

A Mobile Computer System with A Robust
Expansion Capability

FIELD OF THE INVENTION

The present invention relates to the field of mobile computer
systems. In particular the present invention discloses a computer system
having an external physical interface and robust computer software that
allows peripherals to be coupled to and decoupled from the physical interface

while the computer system is operating.

BACKGROUND OF THE INVENTION

Mobile computer systems have become a very popular form of
computing de\lzice. Mobile computer systems allow users to access large
amounts of personal information such as an address book, a personal
calendar, and a list of to-dos. In particular, the Palm® series of palm-sized
computer systems from Palm Computing, Inc of Santa Clara, California have

become the de facto standard of handheld computer systems.

To provide additional functionality, it is desirable to include an
external hardware interface on the mobile computer system. The Palm®
series of palm-sized computer systems includes an external serial interface for

communicating with external peripherals. However, an external serial

WO 01/13222 PCT/US00/21915

interface is limited due to the limited communication bandwidth and limited

interface features.

It would therefore be desirable to provide a higher bandwidth
and more feature laden external interface. Ideally, the external interface
should be very simple to use such that the user does not need any training.
Furthermore, the external Interface should be robust enough to handle any

type of user behavior whether appropriate or not.

D

10

WO 01/13222
2 PCT/US00/21915

SUMMARY OF THE INVENTION

The present invention introduces a robust external interface for
a computer system. The external interface allows a user to insert or remove
external peripherals to the external interface at any time such that the user
does not need to carefully follow any scripted procedures. The external
interface software detects insertions or removals and acts in an appropriate

manner.
Other objects, features, and advantages of present invention will

be apparent from the company drawings and from the following detailed

description.

-3

10

15

20

25

WO 01/13222 PCT/US00/21915
BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features, and advantages of the present invention
will be apparent to one skilled in the art in view of the following detailed

description in which:

Figures 1A and 1B illustrate a mobile computer system with an

external peripheral interface.

Figure 1C illustrates a block diagram of one possible software

architecture for a mobile computer system.

Figure 2 illustrates a flow diagram of the operations performed

when a peripheral device is inserted into an expansion interface.

Figure 3 illustrates a flow diagram of the operations performed

when a peripheral device is removed from an expansion interface.

Figure 4 illustrates a state diagram of one possible peripheral

insertion/removal interrupt generator.

Figure 5 illustrates a flow diagram describing an interrupt

routine for handling peripheral device insertions.

Figure 6 illustrates a flow diagram describing an event handler

for handling peripheral insertion events.

ol

10

15

20

WO 01/13222
PCT/US00/21915

Figure 7 illustrates a flow diagram describing an installation
routine for a set-up utility that accompanies a peripheral device and is

executed upon peripheral insertion events.

Figure 8 illustrates a flow diagram describing an interrupt

routine for handling peripheral device removals.

Figure 9 illustrates a flow diagram describing an event handler

for handling peripheral removal events.

Figure 10 illustrates a flow diagram describing a removal
routine for a set-up utility that undoes changes made to the computer system
by the installation routine of the set-up utility when the peripheral device was

inserted.
Figure 11 illustrates a flow diagram describing a bus error
exception routine that handles bus errors caused by removing a peripheral

device from a computer system.

Figure 12 illustrates a flow diagram describing how the input

alert pin can be used to identify and support external input devices.

--5--

10

15

20

25

WO 01/13222

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A method and apparatus for implementing a robust external
interface for a computer system is disclosed. In the following description, for
purposes of explanation, specific nomenclature is set forth to provide a
thorough understanding of the present invention. However, it will be
apparent to one skilled in the art that these specific details are not required in
order to practice the present invention. For example, the present invention
has been described with reference to handheld computer system. However,
the same techniques can easily be applied to any other type of computer

system.

Extensible Mobile Computer System

Figures 1A and 1B illustrate a mobile computer system 100 that
includes an expansion interface 110. The expansion interface allows
peripheral devices to be inserted and coupled directly to a bus of the mobile
computer system 100. In one embodiment, an interrupt line from the
processor in the mobile computer system 100 is coupled to the expansion
interface 110 such that the processor can detect when a peripheral device is
inserted or removed. A second interrupt line is provided as a signal on the
expansion interface 110 such that a peripheral inserted into the expansion

interface may obtain the attention of the processor.
Figure 1c illustrates one possible embodiment for a software

architecture of the mobile computer system 100. As illustrated in Figure 1C,

several device drivers 121, 123, and 125 are used to control the hardware 115

—6--

PCT/US00/21915

10

15

20

25

WO 01/13222 PCT/US00/21915
of the mobile computer system 100. The device drivers are accessed by an
operating system 150. The operating system includes an event handler 160

that processes a series of events placed in an event queue 161. The events

may comprise interface events such as stylus strokes on a digitizer pad,

button presses, menu selections, etc. The operating system also has at least

one interrupt handler 170 for handling processor interrupts. Additional
interrupts may be introduced at any time. The application programs that run
on the mobile computer system 100 use the services of the operating system

150 to interact with the hardware.

Insertion/Removal Overview

To simplify the operation of the mobile computer system 100,
the expansion interface 110 has been designed to be simple to operate and
very robust. Specifically, the expansion interface 110 has been designed to
allow users to insert or remove peripherals at any time. When a user does
insert a peripheral into the expansion interface 110 or remove a peripheral
from the expansion interface 110, the mobile computer system 100
automatically responds with an appropriate reaction. When a user inserts a
peripheral into the expansion interface 110, the mobile computer system 100
first detects the inserted peripheral. Next, the mobile computer system 100
installs any appropriate device driver programs. Finally, the mobile
computer system 100 and runs a designated application associated with the
peripheral (if there is a designated application). When a user removes a
peripheral from the expansion interface 110, the mobile computer system 100
automatically removes any associated device driver programs and terminates

any applications that require the removed peripheral.

-7--

10

15

20

25

WO 01/13222 PCT/US00/21915

Peripheral Insertion Overview

Figure 2 illustrates an overview of how the mobile computer
system 100 handles peripheral insertions. As illustrated in Figure 2, a
peripheral is inserted into the peripheral expansion interface at step 210. An
interrupt handler identifies the insertion of peripheral into the peripheral
expansion interface and then queues a peripheral insertion event onto an

event queue at step 220.

At step 240, an event handler detects the peripheral insertion
event and executes a peripheral insertion routine. At step 250, the peripheral
insertion routine attempts to locate a designated set-up utility in the memory
space on the peripheral device. If a designated set-up utility is located, the
peripheral insertion routine copies the designated set-up utility from the
peripheral device memory into the main memory of the mobile computer
system. The peripheral insertion routine then executes the set-up utility at

step 255.

After executing the set-up utility (if there was one), the
peripheral insertion event handler routine attempts to locate a designated
”“welcome application” in the memory space on the peripheral device at step
260. If a designated welcome application is located, the peripheral insertion
routine launches the welcome application at step 265. At this point, the
peripheral is initialized and any default application associated with the
inserted peripheral is now executing. Thus, the insertion of the peripheral
caused the mobile computer system to prepare itself for the use of the inserted

peripheral.

--8--

10

15

20

25

WO 01/13222
PCT/US00/21915

Peripheral Removal Overview

Figure 3 illustrates an overview of how the mobile computer
system handles peripheral device removals. The flowchart of Figure 3 begins
when a user removes a peripheral device from the peripheral expansion
interface at step 305. An interrupt handler identifies the removal of the
peripheral device from the peripheral expansion interface at step 320 and

queues a peripheral device removal event onto an event queue.

At step 340, the event handler handles the peripheral device
removal event. The event handler handles the peripheral device removal
event by updating system data structures to indicate the removal of the

peripheral device.

At step 370, the event handler determines if there is a set-up
utility in the main memory that is associated with the removed peripheral
device. If a designated set-up utility is located, the peripheral device removal
routine of the event handler executes a removal routine in the set-up utility.
In one embodiment, the event handler executes the set-up utility at step 375
with a “remove” indication that indicates the set-up utility should uninstall
itself and all drivers associated with the removed peripheral device. At step
380, the set-up utility is removed from the mobile computer system’s memory
since the set-up utility for the peripheral is no longer needed. At this point,
all driver programs associated with removed peripheral that are no longer

needed have been removed from the mobile computer system.

--9--

10

15

20

25

WO 01/13222 PCT/US00/21915

At step 390, the event handler queues a quit application event.
In this manner, the currently executing application (that may be using the

peripheral device) will gracefully cease execution.
Peripheral Device Insertion

The details behind having the mobile computer system 100 react
appropriately when a user inserts a peripheral into the expansion interface
110 are not trivial. The operation of the mobile computer system 100 in
response to the insertion of a peripheral into the expansion interface 110 of the
mobile computer system 100 will be presented with reference to Figures 2, 5,
6, and 7. As set forth in Figure 2, one embodiment of the mobile computer
system 100 uses an interrupt signal to notify the mobile computer system of

peripheral device insertions.

Peripheral Insertion Interrupt Generation

One embodiment of the mobile computer system 100 uses an
interrupt generator circuit to generate peripheral device insertion interrupt
signals. The interrupt generator circuit detects a card insertion by looking for
a rising edge on an interrupt signal coupled the peripheral expansion
interface 110. The interrupt generator circuit is actually a state based
detection circuit wherein the interrupt generator circuit coupled to a signal
from the expansion interface behaves in a different manner depending on a

current state of the interrupt generator circuit.

Figure 4 illustrates a state diagram of the peripheral

insertion/removal interrupt generator circuit. Initially, when the mobile

--10--

10

15

20

25

WO 01/13222 PCT/US00/21915

computer system is powered off, the interrupt generator circuit is in an off
state 410. When the mobile computer system is powered on, the peripheral
insertion/removal interrupt generator circuit enters a boot state 430 where the
interrupt generator circuit determines if there currently is a peripheral device
in the expansion interface. If the peripheral insertion/removal interrupt
generator circuit detects a peripheral device coupled to the expansion
interface then the interrupt generator circuit proceeds to the “peripheral-in”
state 460. Otherwise, if the peripheral insertion/removal interrupt generator
circuit does not detect a peripheral device coupled to the expansion interface,

then the interrupt generator circuit proceeds to the “no peripheral” state 480.

In the peripheral-in state 460, the peripheral insertion/removal
interrupt generator circuit looks for the falling edge of a signal from the
peripheral expansion interface. If a falling edge signal is detected then the
peripheral insertion/removal interrupt generator circuit generates a
peripheral removal interrupt and moves to the no peripheral state 480. In the
no peripheral state 480, the peripheral insertion/removal interrupt generator
circuit looks for the rising edge of a signal from the peripheral expansion
interface. If a rising edge signal is detected then the peripheral
insertion/removal interrupt generator circuit generates a peripheral insertion

interrupt and moves to the peripheral-in state 460.

Peripheral Insertion Interrupt Handling

Referring to Figure 5, once a user inserts a peripheral at step 510
an interrupt signal is generated. An interrupt handler takes over processing
at step 520. At step 530, the interrupt handler determines if the interrupt was

caused by a peripheral insertion. If the interrupt was caused by another

-11--

10

15

20

25

WO 01/13222

device, then some other interrupt handler handles the interrupt as set forth in

step 535.

When a peripheral device insertion is detected, the interrupt
handler first forces a reset of the inserted peripheral device hardware at step
540. The reset causes the inserted peripheral device hardware to enter an
operational state such that the features of the peripheral device may be
accessed. Next, the interrupt handler adjusts the chip select policy such that
the memory and memory mapped input/output on the peripheral card can
be accessed by software running on the mobile computer system. In one
embodiment, the interrupt handler simply adjusts the chip select policy to
access the largest possible peripheral memory. At step 560, the interrupt
handler places a peripheral insertion event into an event queue. The
peripheral insertion event will cause the event handler to resume the
peripheral configuration. After placing the peripheral insertion event into an
event queue, the interrupt handler is finished handling the peripheral

insertion interrupt.

Peripheral Insertion Event Handling

The event handler in the operating system will eventually
encounter the peripheral insertion event. Figure 6 illustrates how the event
handler handles a peripheral insertion event. Referring to Figure 6, the event
handler first reads a predefined section of the peripheral memory space to
obtain information about the inserted peripheral. Before the event handler
performs the memory read, the event handler first sets the processor to issue

the read with the greatest possible number of wait states. In this manner, the

-12--

PCT/US00/21915

10

15

20

25

WO 01/13222 PCT/US00/21915

memory read will work for even the slowest type of memory that can work

with the processor.

After reading the section containing the peripheral information,
at step 620 the event handler validates the information that was read from the
peripheral memory. If the peripheral information does not validate properly,
then the event handler may inform the user of the invalid peripheral. The
event handler may then abort the preparation for the invalid peripheral

device at step 625.

If the peripheral information read from the peripheral device
validates properly, then the event handler prepares the handheld computer
for interacting with the newly inserted peripheral device. The event handler
first reads a value from the peripheral device that specifies the minimum
number of wait states needed to handle the memory used in the peripheral
device. The event handler then adjusts the processor’s behavior, at step 630,
to wait the minimum number of wait states when accessing the memory on

the peripheral device.

At step 650, the event handler then informs the operating system
about the inserted peripheral. In one embodiment based upon the PalmOS
from Palm Computing of Santa Clara, California, the event handler informs
the operating system by updating system data structures to indicate the
presence of a second memory card that may contain additional programs. The
operating system will examine the added memory card and add the additional

programs to the file system listing.

13-

10

15

20

25

WO 01/13222 PCT/US00/21915

Next, at step 660, the event handler determines if the peripheral
device has an associated set-up utility. If the peripheral device has an
associated set-up utility, then the event handler proceeds to step 663 where
the event handler copies the peripheral device’s set-up utility into the main
memory of the mobile computer device. By copying the set-up utility into the
main memory of the mobile computer device, the set-up utility will continue
to be available even if the user later pulls out the peripheral device. After
copying the set-up utility into the main memory of the mobile computer
device, the event handler executes the set-up utility at step 665 with an
“install” signal. The install signal informs the set-up utility that it should
perform all the necessary peripheral device specific installation operations.
Details on the set-up utility installation will be provided in the following

section.

After executing the set-up utility (if there was one), the event
handler determines if the peripheral device has an associated “welcome
application” at step 680. A welcome application is an application that has
been designated by the peripheral device as an application that should always
begin executing after the peripheral device has been installed. For example, a
cellular telephone peripheral may designate a cellular telephone application
as a welcome application that should be executed when the cellular telephone
peripheral is installed. If a welcome application has been designated, then the
welcome application is designated as the current application at step 685 such
that the welcome application will begin execution. If no welcome application
has been designated, then a default application is designated as the current

application at step 683 such that the default application will begin execution.

--14--

10

15

20

25

WO 01/13222 PCT/US00/21915

In an embodiment that uses the PalmOS from Palm Computing, Inc.,
the launcher application is set as the default application. In this manner, the
launcher application will begin execution when no welcome application has been
designated. Since the operating system is informed about the new peripheral device
at step 650, the launcher application will now display any new applications that are

newly available due to the insertion of the peripheral device.

Peripheral Insertion Set-Up Utility Install Operation

As illustrated in Figure 6, the event handler uses a set-up utility
on the peripheral device to perform all peripheral specific installation
operations. Figure 7 provides a list of operations that may be performed by a
set-up utility. The reader should note that not all of the steps in Figure 7 need
be performed by all set-up utility applications. Each peripheral set-up utility
will only perform the operations necessary to prepare the installed peripheral
device for operation. Furthermore, the set-up utility may perform operations

not listed in Figure 7.

Referring to Figure 7, the set-up utility program begins at step
705. At step 710, the set-up utility may adjust the operation of the chip selects
used to address the memory on the inserted peripheral device. The set-up
utility program modifies the chip select policy to properly handle the actual
size of memory & 1/O address space contained within the peripheral device.
The chip select policy is adjusted using the actual size of memory & 1/O

address space required by the peripheral software.

At step 715, the set-up utility allocates an amount of main

memory that the peripheral needs for operation. The main memory will be

—-15--

10

15

20

25

WO 01/13222 PCT/US00/21915

used to store state variables associated with the peripheral device. Memory is

allocated by the set-up utility since some systems do not allow the allocation

of memory within interrupt routines.

At step 720, the set-up utility patches systems calls if necessary.
In one embodiment, system calls may be listed in a jump table that contains a
list of vectors to system calls. The set-up utility may patch a system call by
copying a new system call routine into main memory and then changing the

vector in the jump table to point to the new system call.

At step 730, the set-up utility may install new system calls. The
new system calls may provide additional functionality to the operating
system of the computer system. Some applications may be designed to use
this additional functionality if and when it becomes available due to the

insertion of a peripheral device.

At step 740, the set-up utility may install a peripheral device interrupt
handler. In one embodiment, an interrupt line is coupled to the expansion
interface on the mobile computer system. It should be noted that this
expansion interface interrupt line is distinct from the peripheral insertion
interrupt line. The peripheral device’s set-up utility may install a peripheral
device interrupt handler for that interrupt line. The newly installed
peripheral device interrupt handler would obtain control of the processor at
any time when an interrupt on the expansion interface interrupt line is

asserted.

—-16--

10

15

20

25

W
0 01/13222 PCT/US00/21915

To conserve power, most mobile computer devices have a
power management system that allows power to be saved by turning off
circuits and devices that are not being used. To reduce power consumption,
the peripheral device should install power management routines at step 750
that will be called by the operating system at appropriate times. For example,
a power off routine may be called when the mobile computing device is
turned off. Similarly, an idle power down routine may be called when the
mobile computing device has been idle for a pre-determined period. A low
power routine may be designated to be called by the operating system when

the battery is low.

Many peripherals will provide services to other application
programs. For example, a wireless networking peripheral will provide
network services such as TCP/IP to other applications. To provide the
services to the other applications, such as a wireless networking peripheral
may provide a set of shared libraries that may be accessed by other
applications. The set-up utility should install such shared libraries as

designated in step 760 of Figure 7.

Some peripherals will require background tasks to monitor
activities on the peripheral device. The set-up utility should launch such

background threads at step 770.

Once the set-up utility has completed execution, the peripheral
device is ready for operation. If the peripheral device provides shared
services, those services are now available. If the peripheral device is

controlled by a dedicated application, then that dedicated application will be

-17--

10

15

20

25

WO 01/13222

PCT/US00/21915

launched as the “welcome application” as depicted in steps 680 and 685 of

Figure 6.

Peripheral Removal

Peripheral device removal is handled in a similar manner as
peripheral insertion. In most cases, the removal is handled by first detecting a
removal with an interrupt routine, modifyiﬁg the chip select policy, queuing a
removal event from the interrupt routine, and then handling the removal
event with an event handler. The event handler handles the removal event by
calling the set-up utility associated with the peripheral device with a

“removal” signal.

The peripheral removal handling may be interrupted by a
hardware exception if any application program, interrupt routine, or other
program attempts to access memory Space that was mapped to the removed
card. The change in chip select policy made by the removal interrupt handler

causes such hardware exception interrupts.

Peripheral Removal Interrupt

As illustrated in Figure 3, the removal of a peripheral device
generates an interrupt at step 310. An interrupt handler then identifies the
peripheral device removal interrupt and handles the peripheral device
removal interrupt at step 320. Figure 8 illustrates one embodiment of a

peripheral device removal interrupt handler.

--18--

10

15

20

25

WO 01/13222
PCT/US00/21915

As illustrated in Figure 8, the interrupt handler begins at step
820. At step 830, the interrupt determines if the interrupt was caused by a
peripheral device removal. If not, another interrupt handler handles the

interrupt as show at step 835.

When a peripheral device removal interrupt has been identified
at step 830, the peripheral removal interrupt routine first reprograms the chip
selects for the mobile computer system. The reprogramming indicates that
any future access to peripheral device memory space is an illegal access at
step 840. In this manner, if any program attempts to access a memory
location on the peripheral card, then a bus error exception will be generated.
The bus error exception will be handled by a bus error routine that will be

described in a later section of this document.

After reprogramming the chip selects at step 840, the peripheral
device removal interrupt routine then places a peripheral removal event in an
event queue at step 860. The peripheral removal event will cause the event
handler to begin executing a peripheral removal routine. The peripheral
removal routine of the event handler will handle the remainder of the

peripheral removal processing (unless bus error occurs).

Peripheral Removal Event Handling

The event handler in the operating system will eventually
encounter the peripheral removal event that was placed into the event queue
by the interrupt routine if a bus error does not occur first. Figure 9 illustrates

how the event handler handles a peripheral removal event.

--19--

10

15

20

25

WO 01/13222 PCT/US00/21915

Referring to Figure 9, the event handler first informs the
operating system about the removed peripheral device at step 910. In one
embodiment based upon the PalmOS from Palm Computing of Santa Clara,
California, the event handler informs the operating system by updating
system data structures to indicate one less memory card. The Operating system
will then become aware of the removed card such that it may remove all references
to the additional programs and data that were formerly available on that peripheral

device.

At step 920, the event handler stores the identifier of the
application that is currently executing into a location that specifies the next
application to execute. Next, at step 930, the event handler queues a quit
event into the event queue for the currently executing application. In this
manner, when the current application resumes execution, it will gracefully
terminate itself. After terminating itself, the operating system will begin
execution of the next application to execute. Since the identifier of the current
application has been specified as the next application to execute, that
application will restart itself. In this manner, the application will restart in the

altered environment wherein the peripheral device has been removed.

For example, if a web browsing application is currently using a
wireless networking peripheral when the wireless networking peripheral is
removed, then that web browsing application is automatically shut down.
When the web browsing application attempts to restart, it may abort
execution since no network peripheral is available to handle network

requests.

--20--

10

15

20

25

WO 01/13222
PCT/US00/21915

At step 960, the event handler determines if the peripheral device
had installed an associated set-up utility. If the peripheral device has an
associated set-up utility, then the event handler proceeds to step 965 where
the event handler executes the set-up utility at step 965 with an “removal”
signal. The removal signal informs the set-up utility that it should perform all
the necessary peripheral device specific removal operations. For example, the
removal portion of the set-up utility will remove all interrupt handlers,
shared libraries, device drivers, etc. that are associated with the removed
peripheral. Details on the removal portion of the set-up utility will be

provided in the following section.

After executing the set-up utility (if there was one), the event
handler returns such that the current application will resume execution. Since
a quit application event had been scheduled by the event handler routine, the
current application will terminate itself. Furthermore, the operating system
will relaunch the current application since that application was designated as

the “next” application to run in step 920.

Set-Up Utility Removal Operation

As illustrated in Figure 9, the event handler uses the set-up
utility that is resident in the main memory on to perform all peripheral
specific removal operations. Figure 10 provides a list of operations that may
be performed by the removal portion of the set-up utility. Again, the reader
should note that not all of the steps in Figure 10 need be performed by the
removal routines of all set-up utility applications. Each set-up utility removal

routine will only perform the removal operations necessary to undo the

-21--

10

15

20

25

WO 01/13222 PCT/US00/21915

changes made when the set-up utility was run to prepare for the operation of

the peripheral device.

Referring to Figure 10, the set-up utility program begins at step
1005. At step 1010, the removal routine of the set-up utility should terminate
any background threads that were launched to help control the peripheral
device. These threads should be terminated quickly to prevent the peripheral

threads from attempting to access the removed peripheral device.

At step 1020, the removal routine of the set-up utility removes
any patches made to the systems calls if necessary. Any patch that requires
access to the peripheral device is removed from the computer system. In one
embodiment, certain system calls that are not directly associated with the
removed peripheral device may be left in the mobile computer systems
memory. In this manner, patches to cure operating system defects may be
made to the operating system without requiring the user to obtain and install
the operating system patch. Instead, when the user purchase a new
peripheral device, the peripheral may insert an operating system patch if the
patch has not already been made. However, the user may specify that such

involuntary patches not be made unless necessary.

At step 1030, the removal routine of the set-up utility removes
any patches made to the system calls or any new system calls that were added
during the peripheral installation as necessary. Any added system calls that
require access to the peripheral device are removed from the computer
system. As set forth in the previous paragraph, certain added system calls

that are not directly associated with the removed peripheral device may be

-2D--

10

15

20

25

WO 01/13222 PCT/US00/21915

left in the mobile computer systems memory. In this manner, extension to the
operating system may be made to the operating system without requiring the
user to obtain and install the operating system extensions. Thus, when a user
purchases a new peripheral device, the peripheral may also provide operating

system extensions.

At step1040, the removal routine of the set-up utility removes
any interrupt handlers associated with the removed peripheral. Such
interrupt handlers are no longer appropriate since the peripheral device has

been removed.

At step 1050, the removal routine of the set-up utility removes
any power management routines associated with the removed peripheral
device. Such power management routines are no longer appropriate since the

peripheral device has been removed.

At step 1060, the removal routine of the set-up utility removes
shared libraries associated with the peripheral device that were installed
when the peripheral device was inserted. Other operations to handle the

peripheral removal may be performed as listed in step 1070.

Once the removal routine of the set-up utility has completed
execution, all of the system software associated with the peripheral device has
been removed. When the removal routine of the set-up utility returns to the
event handler, the event handler completes the peripheral driver removal

process by deleting the set-up utility from main memory at step 970. Finally,

-23--

10

15

20

25

WO 01/13222 PCT/US00/21915

at step 990, the operating system will relaunch the current application by

running the “next” application.

Bus Error caused by Peripheral Device Removal

When a user removes a peripheral device from the expansion
port of the mobile computer device, an executing application may mistakenly
attempt to access a memory or input/output location in the peripheral
device’s memory space. When this occurs, a bus fault will occur since the
processor will not receive any response from the removed memory location.
To handle such situations, a special bus error exception routine resides within

the operating system of the mobile device.

Figure 11 illustrates how one embodiment of a bus error
exception routine may operate. When the bus error exception routine begins,
the bus error exception routine first determines if the bus error was caused by
the removal of a peripheral at step 1110. One simple method of making such
a determination is to look at the address of the memory access that caused the
bus error exception. If the address was within the peripheral device memory
space, then the bus error was probably caused by a peripheral device
removal. If the bus error was not caused by a peripheral removal, then other

bus error handling code is executed at step 1115.

When it has been determined that the bus error exception was
caused by a peripheral removal, then the bus error exception handler
attempts to kill the application program that caused the bus error exception
and restore the state of the computer system to a state that the computer

system was in before the application program that caused the bus error

24

10

15

20

25

WO 01/13222 PCT/US00/21915

began. The bus error exception handler begins this process at step 1130 by
restoring a set of registers (including the stack pointer) to the values that these
register had before the offending application was launched. One of those

values is the identifier of the application being launched.

At step 1140, the bus error exception handler frees all the
memory that was allocated by the application that caused the exception. Ina
PalmOS environment, the freeing of memory can easily be performed since all
memory allocations are marked by the identifier of the application that
allocated the memory. Thus, the bus error exception handler simply frees all
memory blocks marked with the application identifier of the offending
application. In a PalmOS system, a “Sys AppExit()” system call can be used to
free the allocated memory. The “SysAppExit()” system call “walks” through
the memory heap looking for memory blocks associated with a particular

application identifier and frees those memory blocks.

At step 1150, the bus error exception handler closes all the
databases that were opened by the application that caused the bus error
exception. The “SysAppExit()” system call in the PalmOS system also
performs the task of closing opened databases. The open databases are

identified by the application identifier.

At step 1160, the bus error exception handler frees up any other
system resources allocated to the application that caused the bus error
exception. In one embodiment, any semaphores owned by the application
that caused the bus error exception are removed. At this point, the

application has essentially been killed.

--25--

10

15

20

25

WO 01/13222 PCT/US00/21915

Next, at step 1165, the bus error exception handler informs the
operating system that the peripheral device was removed such that the
operating system does not attempt to use any resources from the peripheral
device. In one embodiment based upon the PalmOS from Palm Computing of
Santa Clara, California, the bus error exception handler informs the operating
system by updating a system data structure to indicate that the second memory

card has been removed from the mobile computer system.

At step 1170, the bus error exception handler determines if the
peripheral device had an associated set-up utility application. If a set-up
utility application is located, the bus error exception handler calls the removal
routine of the set-up utility at step 1175 to remove all drivers, interrupt
handlers, patches, etc. associated with the peripheral device. After the set-up
utility application has executed, the bus error exception handler removes the

set-up utility from the mobile computer system memory at step 1180.

Finally, at step 1190, the bus error exception handler sets the
next application to run. The bus error exception handler may use the
application identifier as the application that was just terminated in order to
force the application to restart in the new execution environment without the
peripheral device available. The restarted application will determine how it
should proceed without the peripheral device. The bus error exception
handler may also select an application other than the application that was
terminated. In one embodiment, the bus error exception handler may
designate the next application to run to be the launcher application for the

mobile computer system.

--26--

10

15

20

25

WO 01/13222 PCT/US00/21915

Peripheral Device Examples
To completely describe how the robust expansion system of the
present invention may be used, a couple of expansion peripheral expansions

are provided.

Modem peripheral

One type of peripheral that can be created is a modem
peripheral for creating serial data connections through telephone lines. The
modem peripheral should be accompanied with device drivers that control

the operation of the modem peripheral.

When a modem peripheral is inserted into the expansion
interface of a computer system constructed according to the teachings of the
present invention, the insertion will generate an interrupt. The interrupt will
be classified as a peripheral insertion event such thata peripheral insertion

event will be placed onto the event queue.

The event handler will handle the peripheral insertion event as
specified in Figure 6. Initially, the event handler will read and validate
peripheral configuration information from the memory space of the
peripheral device. Using the peripheral configuration information, the event
handler will adjust the memory speed as designated in step 640. The event
handler will then inform the OS about the new peripheral as designated in

step 650.

-27--

10

15

20

25

WO 01/13222

PCT/US00/21915

Next, the event handler copies a set-up utility located in the
peripheral device memory space into the main memory. The event handler
then calls the set-up utility with an install signal to have the set-up utility

install the necessary driver software.

The modem peripheral’s set-up utility will then install all the
driver software necessary to allow applications to use and access the modem
peripheral. The modem peripheral’s set-up utility will install shared libraries
for the modem and an interrupt handler for servicing the modem. In one
embodiment, the modem set-up utility may designate the modem as the
default Universal Asynchronous Receiver Transmitter (UART) such that

future serial accesses attempt to use the modem.

The modem peripheral may include a default application
program such as a terminal emulation program. That terminal emulation
program may be designated as the “welcome application” on the modem
peripheral device such that the terminal emulation application automatically

launches after inserting the modem peripheral into the expansion interface.

When the modem peripheral is removed, another interrupt will
be generated and :dentified as an interrupt caused by a peripheral device
removal. The removal will cause the interrupt handler to queue a peripheral
removal event. The event handler will then process the peripheral removal
event as designated in Figure 9. Specifically, the removal event handler will
inform the OS that the peripheral has been removed and queue a quit event

for the currently executing application. The peripheral removal event

--28--

10

15

20

25

WO 01/13222 PCT/US00/21915

handler next calls the removal routine of the set-up utility to remove all the
modem drivers that were installed by the install routine in the set-up utility.
Finally, the peripheral removal event handler removes the set-up utility from

the mobile computer system’s main memory.

If the user pulls out the modem peripheral while the terminal
application is accessing memory space mapped onto the modem peripheral
then a bus error exception may be generated. The bus error exception will be
handled by a bus error exception handler. That bus error exception handler
will then perform the operations specified in Figure 11. Specifically, the bus
error exception handler will manually kill the currently executing application
(which could be the terminal application). Next, the bus error exception
handler will call the removal routine of the set-up utility to remove all the
modem drivers that were installed by the install routine in the set-up utility.
The bus error exception handler then removes the set-up utility from the

mobile computer system’s main memory.

Back-up peripheral

Not all peripheral devices will need sophisticated driver
software. For example, a simple portable back-up peripheral can be
implemented with the teachings of the present invention just using a flash
memory card peripheral and a back-up program. Specifically, the flash
memory card peripheral will designate the back-up program as the welcome
application such that the back-up application will be automatically launched

when the peripheral device is inserted

--20--

10

15

20

25

WO 01/13222 PCT/US00/21915

When the back-up peripheral is inserted, the interrupt routine
will place a peripheral insertion event onto the event queue. The event
handler will handle the peripheral insertion event as specified in Figure 6.
Initially, the event handlér will read and validate peripheral configuration
information from the flash memory space of the peripheral device.
Specifically, the event handler will adjust the memory speed as designated in
steps 640 to accommodate the flash memory card. The event handler will

then inform the OS about the new peripheral as designated in step 660.

The event handler will then look for a set-up utility in the flash
memory. Since the back-up peripheral does not need any special drivers, the
event handler will not find a set-up utility and proceed to look for a welcome
application. The installer will then designate the back-up welcome

application as the next application to execute as specified in steps 680 and 685.

The welcome application (the back-up application) with then
begin executing. In one embodiment, the back-up application will ask the
user if he/she wishes to back-up or restore data from the flash memory card.
If the user selects a back-up, then the back-up application will proceed to
back-up the contents of the mobile computing device’s main memory into the
flash memory of the back-up peripheral. Standard techniques such as
incremental back-ups may be performed to save time and power
consumption. If the user wishes to restore data from the back-up flash
peripheral then the back-up application will present a series of screen

displays that will allow the user to restore all or some of the lost data.

--30--

10

15

20

25

WO 01/13222 PCT/US00/21915

A Second External Interface With I/O Support

Mobile computer systems, such as the mobile computer system
illustrated in Figures 1A and 1B, often use simple input mechanisms for
inputting data. For example, the mobile computer system illustrated in
Figures 1A and 1B provides a digitizer pad that can be written on using a
stylus. The user’s handwriting is then interpreted by the interface software to
generate normal character data such as ASCII (American Standard Code for
Information Interchange) or UNICODE character values. Some mobile
computer systems use a small keypad illustrated on the display for entering
text. While such simple input mechanisms are useful while traveling, many
users desire to have standard input mechanisms when the mobile computer

system is being used in a normal work environment such as an office.

The most standard computer input mechanism is the well-
known QWERTY keyboard. A QWERTY provides the most well known user
interface to users. Another popular input mechanism is speech to text
systems that interpret what a user says and generates a stream of text.
Dragon System’s Naturally Speaking and IBM’s ViaVoice are examples of

speech to text systems.

Alternate Input support

Most portable computer systems only provide one mechanism
for inputting data. To provide a flexible system of allowing data input, the
present invention introduces an alternative input port. Specifically, the
present invention discloses an input port that automatically recognizes and

accepts input from external input devices.

--31--

WO 01/1322
2 PCT/US00/21915

Referring to Figure 1A, the mobile computer system includes an
external interface 150. The following table describes the pin-out of the
external interface 150:

Table 1

INTERFACE CONTACT FUNCTION
CONTACT

RXD: Serial Receive

alternate cradle detect pin

Synchronize Interrupt

GND: Common Ground

USB: Data+

Peripheral Charge Power

1
2
3
4
5 USB: Data-
6
7
8

TXD: Serial Transmit

The external interface 150 includes the contacts necessary for
coupling to another computer system in two different manners: Universal
Serial Bus and Serial Port. As illustrated in Table 1, the external interface 150
includes a set of Universal Serial Bus (USB) signals for communicating with a
computer system that has a Universal Serial Bus port. Specifically, the
external interface 150 has a USB Data+ signal, a USB Data- signal, and a
common ground. (The USB VBus power signal may be used in other
implementations, not shown.) The external interface 150 also includes a Serial
Transmit, a Serial Receive, and a Common Ground for communicating with a
computer system or peripheral through a standard serial port. The external

interface 150 further includes a synchronization interrupt line that activates

--30--

10

15

20

25

WO 01/13222 PCT/US00/21915

an interrupt on the mobile computer system such that the mobile computer
can handle the interrupt. In one embodiment, the interrupt is used to activate
a synchronization program use to synchronize information on the mobile

computer system with another computer system.

The external interface 150 further includes an alternate cradle
detect pin. The alternate cradle detect pin is an input pin that is activated by
certain peripherals that couple to the external interface 150. One class of
peripheral devices that may activate the alternate cradle detect pin are input
devices that are coupled the external interface 150. The operating system in
the mobile computer system 100 periodically polls the alternate cradle detect
pin such that when the alternate cradle detect pin is activated, the operating
system launchers a handler for handling user input from the external interface

150.

Figure 12 illustrates one embodiment of a flow diagram that
describes how one embodiment of a mobile computer system can handle the
alternate cradle detect pin. Referring to Figure 12, the mobile computer
system polls the alternate cradle detect pin at step 1210. At step 1220, the
mobile computer system determines if the alternate cradle detect pin was
activated. If the alternate cradle detect pin was not activated, then the mobile
computer system continues to poll the alternate cradle detect pin by returning
to step 1210. If the alternate cradle detect pin was activated, then the mobile

computer system proceeds to step 1230.

At step 1230, the mobile computer system launches a

background task for handling the input device that was recently connected.

33

10

15

20

25

WO 01/13222 PCT/US00/21915
From this point forward, the background task may be used to perform the
steps of the method. At step 1240, the input port that had a device connected
is identified. In one embodiment, the input device may use the serial port
interface or the Universal Serial Bus interface. A defined set of protocols can
be used to identify an input device coupled to the Universal Serial Bus
interface. In another embodiment, step 1240 is not required since only one of
input interfaces may be used for input devices. For example, only the serial

port interface may be used.

At step 1250, the background task initializes the interface port to
which the input device was connected. At step 1260, the background task
now monitors the interface port to which the input device was connected.
When any input or change on the monitored port is detected, the background

task handles the input/change.

At step 1270, the background task determines if the input device
was detached from the input port. This can be detected by testing the
alternate cradle detect pin occasionally (polling). If the input device was
detached, then the background task proceeds to step 1275 where the input
port is closed and the background task is shut down. The method proceeds

back to step 1210 where the alternate cradle detect pin is then polled.

At step 1280, the background task determines if data was
received from the input device. If data was received from the input device,
the background task queues an input event to the event queue. The queued
input event specifies that data from the external input device has been

received. For example, if a keyboard device was coupled to the external

--34--

10

15

20

25

WO 01/13222 PCT/US00/21915

interface, then the background task may queue a keyboard event in the event

queue.

Alternate Synchronization

The alternate cradle detect pin may be used for other purposes
as well. One alternate use in a current embodiment allows the alternate
cradle detect pin to specify an alternate synchronization data path. Referring
back to Table 1, the external interface includes a USB Data+ signal, a USB
Data- signal, and a common ground. These USB data signals allow the mobile

computer system to exchange information with a personal computer system.

One of the primary uses for the USB Data signals is to allow the
mobile computer system to synchronize its information with information on a
personal computer system. Such synchronization systems are well-known.
One example is disclosed in U.S. patent 5,884,323, issued March 19, 1999
entitled “Extendable Method And Apparatus For Synchronizing Multiple
Files On Two Different Computer Systems.” As specified earlier with
reference to Table 1, the external interface 150 may include a synchronization
interrupt line that may be used to activate a synchronization program.
Normally, the synchronization program would attempt to synchronize with

another computer system coupled through the USB connection.

In some situations, a user may wish to synchronize with a
remote computer system that is not available through the USB connection.
For example, a modem that uses the serial data connection on the external
interface allows a mobile computer may remotely connect to other computer

systems through a telephone line. One connected, the mobile computer

--35--

10

15

20

25

WO 01/13222 PCT/US00/21915

system may synchronize with a remote computer system. An example of
such an application is provided in the U.S. patent application entitled
“Method And Apparatus For Synchronizing A Portable Computer System
With A Desktop Computer System” filed on January 30, 1997 having serial
number 08/792,166.

To handle such alternate synchronization environments, the
synchronization program may test the alternate cradle detect before
commencing with a synchronization. Specifically, if the interrupt routine that
handles synchronization interrupt requests first test the alternate cradle pin to
detect if an alternate cradle is active. When the alternate cradle pin is
activated, the synchronization interrupt routine launches an alternate
synchronization program that will use an alternate synchronization path such
as the serial data interface on the external interface. Thus, hardware coupled
to the external interface, such as modems, should activate the alternate cradle
detect pin. Thus, when a synchronization interrupt request is made, the
synchronization interrupt handler can launch an associated alternate

synchronization program.

The foregoing has described a method and apparatus for
implementing a robust external interface for a computer system. It is
contemplated that changes and modifications may be made by one of
ordinary skill in the art, to the materials and arrangements of elements of the

present invention without departing from the scope of the invention.

--36--

W N

(9]

H WD

WO 01/13222 PCT/US00/21915

CLAIMS
We claim:

1. A method of providing robust computer expansion, said
method comprising:
detecting a peripheral inserted into a computer system;
copying a set-up application from a first memory space on said
peripheral to a second memory space in said computer system; and

executing an install routine in said set-up application after said

copying.

2. The method as claimed in claim 1, said method further
comprising:
executing a welcome application on said peripheral after executing

said install routine in said set-up application.

3. The method as claimed in claim 1, said method further
comprising;:
executing a removal routine in said set-up application upon removal of

said peripheral from said computer system.

--37--

HOWN

HOOWN

WO 01/13222 PCT/US00/21915

4, The method as claimed in claim 1, said method further
comprising:
installing driver programs into said computer system from said install
routine in said Set—up application, said driver programs associated

with said peripheral.

5. The method as claimed in claim 1, said method further
comprising:
installing operating system extensions into said computer system from

said install routine in said set-up application.

6. The method as claimed in claim 1, said method further
comprising:
detecting removal of said peripheral from said computer system by
detecting a bus error from an access to said first memory space in

said peripheral.

7. The method as claimed in claim 1, said method further
comprising;:
detecting removal of said peripheral from said computer system by

detecting a falling edge from a signal on an expansion interface.

--38--

A%, I - N VS N S)

S LN

WO 01/13222

8. The method as claimed in claim 1 wherein detecting a
peripheral inserted into a computer system comprises detecting a rising edge

from a signal on an expansion interface.

9. The method as claimed in claim 1, said method further
comprising:
adjusting a chip select policy such that a processor in said mobile
computer system can legally access said first memory space on said

peripheral.

10. The method as claimed in claim 1, said method further
comprising:
accessing a memory access time definition field from a known location
in said first memory space on said peripheral;
adjusting a memory wait state policy according to said memory access

time definition field.

11. The method as claimed in claim 1, said method further
comprising:
installing operating system patches into said computer system from

said install routine in said set-up application.

--39-.

PCT/US00/21915

SN

I O S)

WO 01/13222 PCT/US00/21915

12. The method as claimed in claim 11, said method further
comprising:
executing a removal routine in said set-up application upon removal of

said peripheral from said computer system.

13. The method as claimed in claim 12 wherein said removal
routine leaves said operating system patches after removal of said peripheral

from said computer system.

14. The method as claimed in claim 2 wherein said welcome
application comprises a back-up program and said back-up program copies
information from a memory in said mobile computer to a nonvolatile storage

system on said peripheral.

15. The method as claimed in claim 14 wherein said

nonvolatile storage system comprises flash memory.

16. The method as claimed in claim 14, said method further
comprising:
restoring information stored in said nonvolatile storage system back

into said memory in said mobile computer system.

--40--

WO 01/13222 PCT/US00/21915

17. A method of providing robust computer expansion, said
method comprising:
detecting removal of a peripheral device from an expansion interface of
a computer system; and
executing a removal routine in a main memory of said computer

system that handles the removal of said peripheral device.

18. The method as claimed in claim 17 wherein said removal
routine removes driver programs associated with said peripheral device from

said computer system.

19. The method as claimed in claim 17 wherein said removal
routine removes operating system extensions associated with said peripheral

device from said computer system.

20. The method as claimed in claim 17 wherein detecting
removal of a peripheral device comprises detecting a bus error from an access

to said first memory space in said peripheral device.

—4]--

> B W N

W

WO 01/13222 PCT/US00/21915
21. The method as claimed in claim 17 wherein detecting
removal of a peripheral device comprises detecting a falling edge from a

signal on an expansion interface.

22. The method as claimed in claim 17, said method further
comprising;:
adjusting a chip select policy such that a processor in said computer
system can not legally access a first memory space on said

peripheral device.

23. The method as claimed in claim 17 wherein said removal
routine leaves an operating system patch installed when said peripheral
device was inserted after removal of said peripheral device from said

computer system.

24. An extensible computer apparatus, said apparatus
comprising:
an expansion interface on a computer system, said computer system
having a main memory;
a peripheral device, said peripheral device for insertion into said
expansion interface, said peripheral device having a peripheral

memory space; and

—4--

10
11
12
13
14

WO 01/13222 PCT/US00/21915

a set-up utility program, said set-up utility program residing in said
peripheral memory space; and

a peripheral detection and handling program on said computer system,
said peripheral detection and handling program for detecting when
said peripheral device is inserted into said expansion interface and
for copying said set-up utility program into said main memory

when said peripheral device is inserted.

25. The computer apparatus as claimed in claim 24 wherein
said peripheral detection and handling program executes said set-up utility

after copying said set-up utility program into main memory.

26. The computer apparatus as claimed in claim 24 wherein
said peripheral detection and handling program executes a welcome

application stored within said peripheral memory space.

27. The computer apparatus as claimed in claim 24 wherein
said set-up utility program installs driver programs into said main memory,

said driver programs associated with said peripheral device.

—-43--

WD L= VS B e

AW

WO 01/13222 PCT/US00/21915

28. The computer apparatus as claimed in claim 24 wherein
said set-up utility program installs operating system extensions into said

computer system.

29. The computer apparatus as claimed in claim 24 wherein
said peripheral detection and handling program detects removal of said
peripheral device from said computer system by detecting a bus error from an

access to said peripheral memory space.

30. The computer apparatus as claimed in claim 24 wherein
said peripheral detection and handling program detects removal of said
peripheral device from said computer system by detecting a falling edge from

a signal on said expansion interface.

31. The computer apparatus as claimed in claim 24 wherein
said peripheral detection and handling program detects when said peripheral
device is inserted by detecting a rising edge from a signal on said expansion

interface.

--44--

WO 01/13222 PCT/US00/21915

32. The computer apparatus as claimed in claim 24 wherein
said peripheral detection and handling program executes a removal routine in

said set-up utility when said peripheral is removed.

33. The computer apparatus as claimed in claim 32 wherein

said removal routine removes drivers installed by said set-up utility program.

34. The computer apparatus as claimed in claim 24 wherein
said peripheral detection and handling program adjusts a chip select policy
such that a processor in said computer system can legally access said

peripheral memory space on said peripheral device.

35. The computer apparatus as claimed in claim 24 wherein
said peripheral detection and handling program accesses a memory access
time definition field from a known location in said peripheral memory space
and adjusts a processor in said computer system according to said memory

access time definition field.

36. The computer apparatus as claimed in claim 35 wherein
said memory access time definition field comprises a minimum number of

wait states.

--45--

s WD

WO 01/13222 PCT/US00/21915

37. The computer apparatus as claimed in claim 24 wherein
said set-up utility program installs an operating system patch into said

computer system.

38. The computer apparatus as claimed in claim 37 wherein
said set-up utility program comprises a removal routine in said set-up
application for removing drivers associated with said peripheral upon

removal of said peripheral device from said computer system.

39. The computer apparatus as claimed in claim 37 wherein
said removal routine leaves said operating system patch after removal of said

peripheral device from said computer system.

40. A computer apparatus as claimed in claim 26 wherein
said welcome application comprises a back-up program and said back-up
program copies information from a memory in said mobile computer to a

nonvolatile storage system in said back-up peripheral.

41. The method as claimed in claim 40 wherein said

nonvolatile storage system comprises flash memory.

—-46--

O 0 N N wn A

10

WO 01/13222 PCT/US00/21915

42. A method of backing up a mobile computer system, said
method comprising;:
detecting the inseftion of a back-up peripheral inserted into an
expansion interface of a computer system, said back-up peripheral
comprising a back-up program and a nonvolatile storage system;
automatically executing said back-up program after the insertion of
said back-up peripheral into said expansion interface ; and
copying information from a memory in said mobile computer to said
nonvolatile storage system in said back-up peripheral using said

back-up program.

43, The method as claimed in claim 42 wherein said

nonvolatile storage system comprises flash memory.

44. The method as claimed in claim 42, said method further
comprising:
restoring information stored in said nonvolatile storage system back

into said memory in said mobile computer system.

45. A method of handing input into a mobile computer

system, said method comprising:

-

v W

WO 01/13222 PCT/US00/21915
detecting the coupling of an input device to an interface port by
examining an alternate cradle detect pin;
initializing said interface port upon detecting the coupling of said
input device to said interface port; and

monitoring said interface port for user input through said input device.

46. The method as claimed in claim 45 wherein said input

port comprises a serial port.

47. The method as claimed in claim 45 wherein said input

port comprises a universal serial bus port.

48. The method as claimed in claim 45 wherein said input

device comprises a keyboard.

49. The method as claimed in claim 45 wherein examining an
alternate cradle detect pin comprises periodically polling said alternate cradle

detect pin.

—-48--

W w

00 N &

WO 01/13222 PCT/US00/21915

50. The method as claimed in claim 45, said method further
comprising:
launching a background task in said mobile computer system for

handling said input device through said interface port.

51. A computer system, said computer system comprising:
an interface port;
an alternate cradle detect pin, said alternate cradle detect pin activated
when an input device is coupled to said interface port;
a polling program, said polling program polling said alternate cradle
detect pin and initializing said interface port and monitoring said
interface port for user input through said input device when said

alternate cradle detect pin is activated.

52. The computer system as claimed in claim 51 wherein said

input port comprises a serial port.

53. The computer system as claimed in claim 51 wherein said

input port comprises a universal serial bus port.

--49--

O 00 N N

WO 01/13222 PCT/US00/21915

54. The computer system as claimed in claim 51 wherein said

input device comprises a keyboard.

55. The computer system as claimed in claim 51 wherein said
polling program launches a background task in said mobile computer system

for handling said input device through said interface port.

56. A computer system, said computer system comprising:

a first data interface port;

a second data interface port;

an alternate cradle detect pin, said alternate cradle detect pin activated
when an alternate communication path is coupled to said second
interface port;

a synchronization routine, said synchronization routine specifying that
said second data interface port should be used when said alternate

cradle detect pin is activated.

57. The computer system as claimed in claim 56 wherein said

first data interface port comprises a universal serial busport.

58. The computer system as claimed in claim 56 wherein said

second data interface port comprises a serial port.

--50--

WO 01/13222 PCT/US00/21915

1 59. The computer system as claimed in claim 56 wherein said

2 synchronization routine comprises an interrupt handler.

--51--

PCT/US00/21915

WO 01/13222

1/13

Figure 1A

Figure 1B

SUBSTITUTE SHEET (RULE 26)

WO 01/13222 PCT/US00/21915
2/13
-

(he
Application Program /'

t 191 % Applicatilogr; Program

\
Application Programw
195 Application Program
197

Operating System
150

——
160

Event queue

161

Event Handler h

170

N J/

Interrupt Handlerw

1
Device Driver |
121 J

~
Device Driver
123

Device Driver
125

Mobile Computer Hardware
115

Fiocure 1C

WO 01/13222 PCT/US00/21915

3/13
/// Peripheral ™\

9 Inserted } 3
e Figure 2

Interrupt Handler identifies
insertion and generates an event.
220

Event Handler handles the insertion event.
240

v f Copy and execute the
es"} Set-Up Utility. 255

r . Wl) elcome

1 xecx.lte‘ elcome ' oo _< Application? >
- Application. 263 260

i i NS

Y

WO 01/13222 PCT/US00/21915

4/13

/~ Peripheral ™\

removed)

\ 305 /

Generate Interrupt.
310

!
\

Figure 3

A

Interrupt Handler identifies

removal and generates an event.
320

l

Event Handler handles the removal event.
340

Execute Set-Up Utility
uninstall routine. 375

Remove Set-Up Utility.
l 380
Queue a quit |

application event. |« 1
390

WO 01/13222 PCT/US00/21915

Off State

((410

N

Power up

/ Power Power \
down. down.
/ Boot state. \
/ - . 430 —~ \
ol ~ \
/ / _/ % \ \
/
Peripheral No peripheral
detected detected
! .//—’_\\\\\
7 Falling Edge, Y -
. e peripheral removed. \7/No eri heb
; Peripheral in ; perip
k state. Look for ks;ate.. ‘
falling edge. 460 \ Lo:dgeor :;s(;ng
\\/, Rising edge, /
v

peripheral inserted.

Figure 4

WO 01/13222 PCT/US00/21915

6/13
e
7~ Peripheral ™\
(Inserted)

\ 510 /

Execute Interrupt routine.
520

eripheral ‘
Insertion? No—_| Other interrupt

530 / handling. 535
Figure 5 e

Yes

y

Drive Software Reset
540

Adjust Chip Selects |
550

|

y

Place insertion event
in event queue.
560

PCT/US00/21915
WO 01/13222 7/13

~“Insertion Event .
Detected

'”'\ 605 /

Read Peripheral Information
610
i

\.

.
< Valid .

.~ Peripheral N
”‘\I\nformation’.f %
. 620

Abort Peripheral
——No—» Insertion.
625

Yes
|
A 4

Adjust Mz;r:)ory Speed l Fi oure 6

1 '\

- Inform OS about

new peripheral
650

| |
] 3

)//Set-Up T Copy Set-Up
_ Utility? ——Yes- » Utility to built in

‘/'

\\ﬁgo/ RAM. 663
, |
| |
L

!
N§O Execute Set-Up Utility
| " install routine. 665
| i
? e
1
‘ Make Launcher ~Welcome™ ‘ ! Make Welcome
the current 1i<—N0*— <_ Application? > -—Yes--» Application the current

' Application. 683 N 680 g | Application. 685

WO 01/13222

8/13

Set-Up Program
l Begins
.~ 705

Adjust chip selects if necessary.

710

'

Allocate needed

memory.
715

l

Patch existing system
calls if necessary.
720

Add new system calls
if necessary.

730

Install interrupt
handler if necessary.
740

Install low power
routines if necessary.
750

PCT/US00/21915

Figure 7

Install shared library
routines if necessary.
760

Launch background
threads if necessary.
770

oo)

WO 01/13222

9/13

Peripheral
Removed. -
810

Execute Interrupt routine.
820

PCT/US00/21915

Figure 8

|

=

eripheral
Removed?
830

Other interrupt
handling. 835

Yes

!

Reprogram chip selects such
that access to peripheral
memory are illegal accesses.
840 |

-

Y

Place a peripheral
removal event in

event queue.
L 860

(Done)
AN /

WO 01/13222
PCT/US00/21915

10/13

Removal Event
Detected
905

—1

T Inform OS about
removed peripheral
910

l

Store an identifier of
next application to run .
920

l

Queue a quit event.

—
L 930

Figure 9

v Execute Set-Up Utility
es removal routine. 965

) 4

h ey
| l‘ Remove Set-Up Utlhtyj

970

A 4
Launch "next" application. _ J
990
’\

1
{ Done \

WO 01/13222
PCT/US00/21915

11/13

/~Set-Up Utility \
| Removal Begins)

1005

Terminate background
threads if necessary.
1010

Figure 10

Remove system
patches if necessary.

1020

f
| Remove new system

. calls if necessary.
\ 1030

| .]
, Remove interrupt

. handler if necessary.
| 1040

l

(Remove low power
{
|
x

| routines if necessary.
1050
1

@move shared library\
| routines if necessary.
| 1060

|

| Perform other removal \
| operations as necessary.
| 1070 J

(Done |
P—

WO 01/13222 PCT/US00/21915

12/13
/‘Insertion Event -
{ Detected »
N 605

~ Read Peripheral Information
i 610

AN
VAR

AN
.~ Valid Abort Peripheral

/ Peripheral ™. :
< . >———No— Insertion. !
~Information? - \

620 625 f

Yes
v

. Adjust M Speed .
AdwiMemonSped Fioure 6

! !
' Inform OS about

. new peripheral

| 650

|

" Set-Up ™ ~ Copy Set-Up
. Utility? ——Yes- » Utility to built in

\\ 660 | RAM. 663

No ' Execute Set-Up Utility
install routine. 665

|

Make Launcher | /.A/Vé%\ ‘ Make Welcome

the current r—Noff - Application? / - Yes- ﬁ Application the current

}vApplication. 683 680 . | Application. 685

.\\

. o 1
| |
|
r/ ——-‘\
‘ > Done =
. /

WO 01/13222

PCT/US00/21915

13/13
(Start
\ 1205 /
o 4

x

e
Poll input alert pin. B

1210

l

Input Alert
Pin Activated?
1220

Figure 12 Yes

i

Y
| Launch background
- task for input device. |

| 1230 B
v
Identify the input port.
1240

Initialize the input port.
1250

1
h 4

Monitor input port. {

1260 |

~

e ' N
~

detached?
1270

Z -

0o

Data
Received?

\\\\\3280/////
S

7
! i
| i

e

rCreate an input L
| event and queue it. [+—Yes

1285 ;

i
1
i

‘ i

{nput device_- Remove background task
Yes—>

for input port.
1275

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

