Office de la Propriete Canadian CA 2821431 A1 2004/03/25

Intellectuelle Intellectual Property
du Canada Office (21) 2 821 431
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
13) A1
(22) Date de depot/Filing Date: 2003/09/11 (51) CLInt./Int.Cl. GO6F 712/02(2006.01),
. A - - . GO6F 11/00(2006.01), A63F 9/24 (2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2004/03/25 GO7F 17/32 (2006.01)

(62) Demande originale/Original Application: 2 498 667 . _
(71) Demandeur/Applicant:
(30) Priorité/Priority: 2002/09/13 (US10/243,104) IGT, US

(72) Inventeur/Inventor:
NELSON, DWAYNE R., US

(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre : MEMOIRE RAM DYNAMIQUE NON VOLATILE
(54) Title: DYNAMIC NV-RAM

Initiate Critical Game Transactions

NV-RAM Manager Allocates / Deallocates !\IV—
RAM Memory Based on Type of Transaction
Performed

Allocate Temporary or Permanent Non-Volatle
Memory or Both

~
L oad Operational Transactions into Temporary
Non-Volatile Memory Space

Store Critical Data into Permanent Non-Volatile
Memory Space

Purge Temporary Non-Volatile Memory Space
After Operational Transactions Are Processed

(57) Abrégée/Abstract:

A method and apparatus of dynamically storing critical data of a gaming machine by allocating and deallocating memory space in a
gaming machine Is disclosed. One or more embodiments describe downloading or removing a new game to a gaming machine

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

» . _
‘ l an a dH http:/opic.ge.ca + Ottawa/Gatineau K1A 0C9 - hmp./cipo.ge.ca o p1C
OPIC - CIPO 191

CA 2821431 A1 2004/03/25

en 2 821 431
13) A1

(57) Abrege(suite)/Abstract(continued):

such that all existing critical data in NV-RAM memory Is left intact. In one embodiment, the invention discloses a method and
apparatus for dynamically allocating and deallocating memory space to accommodate either permanent or temporary storage in an
NV- RAM. A method and apparatus Is provided to monitor available memory space and dynamically resize the memory in NV-
RAM. In one embodiment, a method Is disclosed for performing an integrity check of the NV-RAM and determining whether a
critical data error has occurred. In one or more embodiments, methods of compacting and shifting contents of an NV-RAM are
described to consolidate available memory space or to prevent unauthorized access of NV-RAM memory.

b

10

|
CA 02821431 2013-07-17

27769-19D1-

ABSTRACT

- A method and apparams of dynamically storing critical data of a gaming
machiné by allocating and deallocating memory space in a gaming machine is disclosed. One
or more embodiments describe downloading or removing a new game to a gaming machine
such that all existing critical data in NV-RAM memory is left intact. In one embodiment, the
invention discloses a method and aﬁparatus for dynamically allocating and deallocating
memory space to accommodate either permanent or temporary storage in an NV-RAM. A
method and apparatus is providéd to monitor available memory space and dynamically resize
the memory in NV-RAM.. In one embodiment, a method is disclosed for performing an
integrity check of the NV-RAM and determining whether a critical data error has occurred. In
one or more embodiments, methods of compacting and shifting contents of an NV-RAM are

described to consolidate available memory space or to prevent unauthorized access
of NV-RAM memory.

! |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

DYNAMIC NV-RAM

FIELD OF THE INVENTION
[0001] The present invention relates to memory management and, in particular, a
method and apparatus for dynamically storing critical data by allocating and

deallocating memory space in a gaming machine.

BACKGROUND OF THE INVENTION
[0002] Advances in technology have led to gaming machines capablé of providing a
number of different games to a player. As a convenience to the player and as a way to
extend his/her play time, multiple-game gaming machines can be a significant benefit to
a casino. From the casino’s perspective, a single gaming machine that 1s capable of
playing a number of different games may provide a significant reduction 1n cost to the
owner. It will also provide an enhanced experience to a player at reduced incremental
cost to the casino owner.
[0003] In order to change the games stored on a gaming machine, a new game must
be downloaded. This often requires that an existing game be removed from the gaming
machine. When this is performed, the contents of the non-Yolatile random access
memory (NV-RAM) must be modified. In systems of prior art, the modification requires
that the existing NV-RAM memory be cleared and replaced with a newly coﬁpiled
memory map reflecting the addition or removal of particular game(s).
[0004] The process of re-compiling or re-initQialization of the contents of the NV-RAM
undesirably deletes all information related to the gaming machine’s critical data. Such
critical data may comprise game history information, accounting information, security
information, player tracking information, or any other type of historical state related
information.
[0005] The game history information may provide a record of outcomes for a number

of rounds of play for a game in a gaming machine. For example, the game history

1

J |
CA 02821431 2013-07-17

WO 2004/0256585 PCT/US2003/028748

information may be used to verify the payouts of a gaming machine so that a verification
of a winning jackpot may be performed before a payout 1s made if suspicious activity is
recognized. Game history may also be used, for example, to audit the types of jackpots
generated over a specified number of rounds of play or to provide evidence that a
gaming machine has been tampered with. Hence, this type of information is critical to
the casino or gaming machine owner.

[0006] Information that provides a running count or history of the credits that go
in and out of the gaming machine may provide valuable accounting information. For
example, a gaming machine’s cumulative number of credits may be based on the bills or
coins collected, the amount of credits generated from the insertion of a credit card, or
bonus credits created by inputting a PIN (personal identification number). This type of
data is extremely important to a casino owner because 1t provides the revenue a gaming
machine generates over a period of time.

(0007] Security information may provide information related to a tampering event on
the gaming machine. The details of this information may include time of day, type of
game, the amount wagered, the specific outcome, and any operational information, such
as diagnostics related to the condition of the gaming machine when tampering occurred.
[0008] Player tracking information is also vital to providing valuable feedback
regarding a player’s preferences. A casino may track player information to provide the
best and most desirable playing environment to the player. Whether it be type of game,
denomination of game, length of play, amount played, or the like, these factors provide
invaluable information to the casino owner on how he/she can better attract and
maintain play from a player.

[0009] Hence, it is important that the various critical data previously described be
securely maintained during the ‘addition or removal of a game from a gaming machine
and at all other times. The deletion of critical data from NV-RAM results in numerous

drawbacks.

a |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

[0010] As touched on above, the prior art process for adding or removing a game from
a gaming machine requires a complete recompilation of the NV-RAM memory, creating
a new fixed map. This procedure is tedious because it may require the careful removal
and replacement of the existing NV-RAM from the gaming machine. It is contemplated
that the NV-RAM may be reprogrammed without removing it from the gaming machine;
however, the process may result in downtime and inconvenience to a customer, resulting
in loss of casino revenue. Additional time and labor is required to accomplish this task
for each gaming machine. As a result, the incremental cost per machine may be
substantial.

[0011] Prior art systems utilize a fixed memory map approach that does not permit the
dynamic use of NV-RAM memory space. Hence, the fixed memory map reserves
memory that is often unused and un-needed for a game during the mapping process.
Were this memory space not reserved, it could be used to store critical data associated
with another game or created from the addition of new game software. This memory
allocation procedure results in a barrier to providing efficient and expedient game
changes on a gaming machine.

[0012] Thus, there is a need in the art for 2 method and apparatus for gaming machine

memory management that overcomes the drawbacks of the prior art.

SUMMARY OF THE INVENTION

[0013] In one embodiment the invention comprises a method and apparatus for
downloading a game onto a gaming machine without altering or deleting critical data
unrelated to the added game. A method is described to dynamically verify and allocate
adequate memory space for downloading critical data information into the non-volatile
random access memory (NV-RAM). In one embodiment the NV-RAM’s contents are
verified after data is written into NV-RAM.

[0014] In one embodiment the invention comprises a method and apparatus for

| |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

removing a game from a gaming machine without altering or deleting critical data
unrelated to the removed game. After deleting the critical data related to the removed
game, the NV-RAM is dynamically resized to increase the available memory size. In
one embodiment the NV-RAM’s contents are verified after data 1s written into NV-
RAM.

[0015] In one embodiment a method and apparatus 1s provided for dynamically
allocating and deallocating memory space to accommodate storage of either temporary
or permanent data in an NV-RAM. The available memory 1s resized after an allocation
or deallocation is performed. Temporary memory space is used only for the duration of
the operational transaction required by the gaming machine, maximizing the use of
memory space provided by the NV-RAM. An embodiment is provided for monitoring
available memory size of an NV-RAM and dynamically resizing memory allocations o
suit the requirements of any critical game transaction for a gaming machine.

[0016] In one embodiment a method and apparatus is provided for identifying and
replacing erroneous data stored in NV-RAM with corrected data without altering or
deleting critical data unrelated to the erroneous data.

[0017] Further objects, features, and advantages of the present invention over the prior
art will become apparent from the detailed description of the drawings which follows,

when considered with the attached figures.

DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a block diagram of an example embodiment of non-volatile
random access memory.

Figure 2A illustrates an operational flow diagram of an example method for
downloading a game into a gaming machine.

Figure 2B illustrates an operational flow diagram of an example method for

verifying contents of non-volatile random access memory after downloading a game into

| |
CA 02821431 2013-07-17

WO 2004/025635 PCT/US2003/028748

a gaming machine.

Figure 3 illustrates an operational flow diagram of an example method memory
management during removal of a game from a gaming machine.

Figure 4A illustrates an operational flow diagram of an example method for
allocating and deallocating memory space during a critical game transaction.

Figure 4B illustrates an operational flow diagram of an example method for
monitoring and dynamically resizing available memory space within a non-volatile
random access memory.

Figure 5 illustrates an operational flow diagram of an example method for
performing an integrity check of data in non-volatile random access memory.

Figure 6A illustrates an operational flow diagram of an example method for

compaction or reorganizing memory space in non-volatile random access memory.

Figure 6B illustrates an operational flow diagram of an alternate example
method for compaction or reorganizing memory space 1n non-volatile random access
memory.

Figure 6C illustrates an operational flow diagram of an alternate example
method for compaction or reorganizing memory space in non-volatile random access
memory.

Figure 7 illustrates an operational flow diagram of an example method of data
re-ordering in memory.

Figure 8 is an operational flow diagram of an example method of encrypting data

prior to writing the data into memory.

DETAILED DESCRIPTION OF THE INVENTION
[0018] Disclosed herein is a method and apparatus for dynamically downloading or

removing a game(s) stored on a gaming machine without altering or deleting “critical

CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

data” unrelated to the added or removed game(s). The term critical data may be defined
. as data that records the past and present states of a gaming machine. Examples of such
states include a game’s history, accounting, security information, or the like. This type
of critical data may be stored in a gaming machine’s non-volatile memory or in a non-
volatile storage device permanently or temporarily. In one embodiment when
downloading or removing a game(s) in a gaming machine occurs, critical data is added
or removed by allocating or deallocating memory space in a non-volatile random access
memory (NV-RAM) of a gaming machine.

[0019] One embodiment of the invention relates to a method of downloading a game
on a gaming machine without altering or deleting critical data unrelated to the added
game. A number of embodiments of the invention relate to methods to maximize the
use of free memory space in an NV-RAM during the course of the gaming machine’s
operation and maintenance. A number of embodiments of the invention relate to
methods to efficiently utilize the memory space in an NV-RAM when a game 1s
downloaded or removed from a gaming machine. One embodiment of the invention
relates to a method of dynamically sizing the NV-RAM memory space based on the
gaming machine’s operational requirements. One embodiment of the invention relates
to a method of identifying erroneous data within an NV-RAM, removing the erroneous
data, and restoring correct data into NV-RAM. A number of embodiments of the
invention relate to manipulation of the data over time so as to mitigate a willful
modification of critical data by an unauthorized user. In the following descriptions,
numerous specific detalls are set forth in order to provide a more thorough description
of the present invention. It will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific details. In other instances,
well-known features have not been described in detail so as not to obscure the invention.
[0020] Figure 1 illustrates a block diagram of an example embodiment of non-volatile

random access memory, In one embodiment the NV-RAM 104 consists of a number of

I J
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

memory elements arranged in rows and columns. For the purposes of discussion, a
rudimentary memory element is described as a heap block 108. As illustrated in Figure
1, the entire NV-RAM 104 comprises heap blocks 108 arranged in rows and columns. A
particular heap block 108 may be specified by giving its row and column numbers. For
the sake of simplicity, the example NV-RAM 104 is physically divided into 10 rows and
10 columns, providing a total of 100 heap blocks for the NV-RAM 104. For example,
the first heap block 112, located at the top of the memory stack, may be referenced by
1ts physicalllocation 1in memory as the heap block located at (row 1, column 1), while
the last heap block 116 may be referenced by its location defined by (row 10, column
10).

[0021] NV-RAM 104 plays a significant role in the normal operation of a gaming
machine. The heap blocks 108 store data that may be classified as permanent or
temporary data, The permanent type of data is described 1n this document as critical
data. Critical data comprises data considered to be highly important. Critical data
stores information related to the current or previous state(s) of a gaming machine,
Examples of critical data include game history information, security information,
accounting information, player tracking information, wide area progressive information,
game state information, or any “critical” game related data. Critical data such as the
amount of funds credited to or paid out from a gaming machine may be stored
permanently in NV-RAM 104 as accounting information. This critical accounting
information would reflect its current and prior states over successive rounds of play. To
the casino owner, this information is important in determining the casino’s profitability.
[0022] In contrast, temporary space may be used to process important commands
related to the current state or operations of a gaming machine. After the commands are
processed, the temporary space may be allocated for other purposes, such as storing
critical data. For example, the operations that are necessary 1n transferring credits from

a debit card to the gaming machine may require the use ot data that is stored temporarily

l |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

in the NV-RAM 104. This temporary, or non-critical, data may be used as part of a
series of transactions or instructions to be executed. When the operations are
completed, however, the contents of the memory may be purged, generating additional
memory space.

[0023] NV-RAM 104 may maintain the contents of its memory over {ime through the
use of a battery as a power source and is thus independent of externally supplied power.
As a result, NV-RAM can continue to store data such as critical data as long as power is
supplied. Typically, an NV-RAM contains its own internal battery source. |

[0024] Figure 2A illustrates an example method of downloading a new game to a
gaming machine without destroying or deleting existing critical data.. This is but one
possible method of operation, and the present embodiment should not be considered as
being limited to this example method of operation. In a step 204, a software client
requests new game code. In one embodiment the request 1s transmitted though use of a
device interface such as a key pad, touch pad, or card reader of a gaming machine. In
other instances, the new game code may be transmitted from a remote computing device
(1.e, workstation, server, or the like) or by a portable device (i.e., laptop, PDA,
handheld, or the like) that may communicate with the gaming machine. The
transmission may occur by either wireless or wireline communications. The software
client may comprise a communication manager, bank manager, virtual player tracking
manager, event distribution manager, event manager, or power hit detection manager. A
more complete discussion of the term software client 1s disclosed in parent Application

No. 09/690,931, entitled High Performance Battery Backed RAM Interface, which is

incorporated herein by reference.
[0025] At a step 208, the software client transfers critical data to or from an NV-RAM

manager. In one embodiment the NV-RAM manager comprises non-volatile memory or
non-volatile storage management software capable of effectively managing the non-

volatile memory or non-volatile storage device. Critical data may be stored and

l |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

accessed by a software controlled non-volatile memory or non-volatile storage file
system. The non-volatile memory or non-volatile storage file system facilitates the
viewing and modification of data residing in an NV-RAM. The non-volatile memory or
non-volatile storage file system may be thought of as a file allocation system found in
computer oﬁerating systems where files are organized by directories, subdirectories, and
files. The NV-RAM manager communicates function requests to the NV-RAM. The
function requests may include a request allocating or deallocating memory space,
opening or closing files or data, and reading, writing, resizing, and moving of heap
blocks within NV-RAM memory. As used herein, the term NV-RAM management
system comprises a combination of the NV-RAM manager, the non-volatile memory or
non-volatile storage file system, and NV-RAM, supported by processes executed by an
operating system residing on the gaming machine. The operating system may comprise
an operating system manufactured from companies such as a Microsoft, Apple, or
LINUX. The NV-RAM management system may use standard application tools, such as
a word processor program, to view the contents in NV-RAM., It is contemplated that
any word processor, in conjunction with the non-volatile memory or non-volatile storage
file system, may facilitate the display, addition, removal, and modification of critical
data associated with the addition or removal of a particular game(s) within NV-RAM.
An example word processor program includes Corel Word Perfect or Microsoft Word.
The NV-RAM management system leaves existing critical data resident in NV-RAM
intact during any addition or removal of critical data. |

[0026] At astep 212, the NV-RAM manager dynamically interacts with the NV-RAM

to perform function requests related to allocating or deallocating heap blocks that relate
to writing or deleting critical data. The function requests are performed in collaboration
with the software client and may comprise any one of the requests mentioned in the
preceding paragraph.

[0027] At astep 216, the NV-RAM manager allocates the amount of NV-RAM

| |
CA 02821431 2013-07-17

WO 2004/025653 PCT/US2003/028748

required for the new game. It is contemplated that a program executed by the software
client or hardware device may determine the size of the game to be loaded into NV-
RAM. This information may be communicated to the manager in any manner.
Thereafter, the NV-RAM manager verifies that adequate memory space exists and issues
a request to allocate memory. The NV-RAM manager may perform an open function
request to access an existing NV-RAM memory node. A node represents a range of
related heap blocks in NV-RAM. A read function request on the NV-RAM provides a
handle (or address) for the NV-RAM node of interest associated with a range of heap
blocks. The heap blocks comprise used or unused blocks of memory associated with a
particular handle. In sum, the appropriate heap blocks are allocated by the NV-RAM
manager for a subsequent write function.

[0028] At a step 220, a decision 1s made regarding whether or not the memory size 1s
adequate. If the memory size is not adequate, the process proceeds to step 224, in which
a process called compaction, described below 1n more detail, 1s performed up to a set
number of times, in this embodiment N times, to reorganize (or defragment) the
memory., The process of compaction generates unused contiguous memory of a size
sufficient for the storage of new critical data. At a step 228, the operation determines
whether the number of compaction routines performed is less than or equal to N and
continues the operation until n = N. If the available memory size is still insufficient,
then the process terminates at a step 232, as indicated by Tilt Mode. A step 236
follows, indicating that the gaming machine now requires human intervention.

[0029] Alternatively, if at step 240 the adequate memory size is available, the
operation proceeds to a step 240, wherein the available heap blocks are identified and a
dynamic allocation of the heap blocks takes place. An appropriate number of heap
blocks are assigned to the node with a unique handle. At a step 244, the NV-RAM
manager performs a write function of the critical data associated with the new game

onto contiguous heap blocks in NV-RAM.

10

(|
CA 02821431 2013-07-17

WO 2004/0256355 PCT/US2003/028748

[0030] Figure 1 may aid in understanding the process described by steps 204-244 of
Figure 2A. As shown, a second game is added to an NV-RAM 104; the NV-RAM
previously contained critical data elements associated with an existing game #1. As

| shown, the critical data elements corresponding to the first game have been stored in the
first 8 heap blocks 108 of the NV-RAM 104 (i.e., row 1, columns 1-8). As part of the
above-described process, the NV-RAM manager determines that the critical data
requires 12 heap blocks. The NV-RAM manager facilitates the allocation of 12
contiguous heap blocks in NV-RAM. As illustrated in Figure 1, the next 12 sequential
heap blocks are allocated corresponding to the last two heap blocks in row 1 and all of
row 2.

[0031] Returning to the method described in conjunction with Figure 2, and in
reference to Figure 2A, the following discussion relates to verification of data integrity.
At a step 248, the NV-RAM manager retrieves a copy of the original critical game data
from the device interface and sends it to the software client, where it 1s stored 1n a first
location in a memory, such as SDRAM or any other memory device.

[0032] SDRAM is synchronous dynamic random access memory and may be used to
store data required for immediate processing performed by a processor in a gaming
machine. This type of random access memory provides faster read and write cycle times
.but is not feasible for use in long term stora.ge of critical data information in a gaming
machine. Thereafter, at a step 252, the software client stores a copy of the data retrieved
from NV-RAM in SDRAM.

1003 ?;] Next, at a step 256, the software client compares the original critical game data
in SDRAM with critical game data stored in NV-RAM, It is contemplated that a CRC
may be performed on the original critical game data, as well as the data stored in NV-
RAM, to verify that the data has not been altered. Thereafter, a decision is made, at a

step 260, regarding whether or not the data stored in SDRAM matches the data stored in

11

i I
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

NV-RAM. If the data matches, the operation proceeds to a step 264. Alternatively, 1f
the data does not match, the gaming machine enters a tilt mode as shown in step 268,
and a wait state is entered at a step 272. This process insures that the critical data
associated with new game software is written into NV-RAM without error before game
play may occur.

[0034] The aforementioned steps represent a method to dynamically allocate memory
space of an NV-RAM comprising the storage of critical game information related to the
addition of a new game. As an advantage to this method over the prior art, the addition
of the new game does not affect any critical data previously written into the NV-RAM,
such as data associated with another game. Hence, the method insures the preservation
of existing critical game information in NV-RAM without the need to re-initialize and
re-map the contents of the entire NV-RAM memory.

[0035] Figure 3 illustrates an operational flow diagram of an example method of
deallocating or deleting critical data associated with the removal of a game from a
multi-game gaming machine. When a game is removed, critical data associated with
that particular game may be removed from the gaming machine. As an advantage to this
method, a game may be removed from a gaming machine without disrupting the storage
of other data, such as critical data, in the gaming machine. As a result, games may be
rapidly and efficiently removed from a gaming machine. Moreover, these operations
may be undertaken by service technicians without need of software experts.

[0036] At a step 304, a software client receives a request to remove a game from a
gaming machine. Next, at a step 308, the software client invokes a function request to
the NV-RAM manager to identify the handle or node of the critical data associated with
the game to be removed. At a step 312, the heap blocks of memory corresponding to the
node are tagged for removal. In step 316, the NV-RAM manager removes the NV-RAM
heap blocks by deallocating the appropriate range of heap blocks. As part of this

process, the heap block may be opened and read.

12

l |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

[0037] After removal of the data contained in the range of heap blocks, as shown at a
step 320, the remaining available heap blocks in memory are resized to thereby provide
a potentially larger memory space for future critical data storage. At a step 324, the
NV-RAM manager or any other device, system, or software verifies the accuracy of the
critical data stored in NV-RAM.

[0038] Figure 4A illustrates an operational flow diagram of an example method of
dynamically resizing available memory space in a gaming machine. The advantages of
applying this method include the allocation and deallocation of memory space as
required. When memory is required to perform an operational transaction, memory
space is allocated only during that period of time when 1t is needed. When memory 1s
deallocated, the memory is resized, providing increased available memory space for
subsequent use,

[0039] At a step 404, the operation initiates a critical game transaction. Examples of
critical game transactions include, but are not limited to, reading the credit information
from a debit card, adding an amount of credit to a gaming machine, and accepting
currency from a player. The critical game transaction may require the use of NV-RAM
either temporarily or more permanently. The NV-RAM may store values temporarily as
an intermediate step in the calculation of critical data, For example, when accepting
currency from a player, a bill validator may determine the value of the currency as an
integer number of dollars. This information may be stored into NV-RAM temporarily,
as an intermediate operational step, prior to determining the number of credits credited
in the gaming machine. If the game comprises a 25 cent game, the number of credits
calculated would correspond to forty credits if the player inserts a ten dollar bill. In this
example, the critical data stored permanently in NV-RAM may comprise the number of
credits (forty), although the number of dollars (ten) would comprise an intermediate
operational value in the calculation of the number of credits. As a consequence, the

intermediate value ten may comprise data that is stored temporarily in NV-RAM and 1s

13

| |
CA 02821431 2013-07-17

WO 2004/0256385 PCT/US2003/028748

deleted upon the calculation of the critical data value forty which may be stored
permanently in NV-RAM.

10040] At astep 408, the NV-RAM manager allocates memory to facilitate a critical
game transaction. The NV-RAM manager may allocate memory in preparation for
storage of an example critical data associated with a game download, or it may
deallocate memory (as when deleting contents from temporary NV-RAM memory) if a
particular data is no longer required on the gaming machine. Typically, a critical game
transaction will cause the NV-RAM manager to allocate memory space either
temporarily or permanently, as shown at a step 412. The new data will reside in memory
over a period of time as dictated by its function. At a step 416, operational transaction
data 1s loaded, on a temporary basis, into NV-RAM space. As described earlier, this
data may be used in an intermediate step as part of the calculation of a critical data,
Thereafter, at a step 420, the resulting critical data is stored permanently in NV-RAM
memory. At astep 424, data created, stored, or used for intermediate operational
transactions may be destroyed, and the NV-RAM memory space may be deallocated.
[0041] Continuing on to Figure 4B, the gaming machine may enter a game play mode
at a step 428. During the course of game play, the gaming machine may undergo a
number of different events, such as receiving currency, hopper tilt, reel tilt, protective
tilt, power loss, player’s card input, player’s card removal, personal 1dentification input,
reel spin, multi-denomination change, jackpot tilt, and the like., During these
transactional events, the temporary or permanent non-volatile memory or non-volatile
storage requirements of the game or the gaming machine may change. Accordingly, at a
step 428, the memory space allocations are continuously monitored. A decision occurs
at a step 432 regarding the adequacy of memory at any point in time during gaming
machine operation.

(0042] If memory is adequate, the gaming maéhine resumes game play by returning to

step 424. Alternatively, 1f at step 532 the system determines that the memory space or

14

I |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

size allocations are not adequate, the operation then advances to a step 436. At step
436, the operation dynamically resizes memory to facilitate a game play or any other
operational transaction. The process may involve compaction, described below in more
detail, to provide contiguous memory large enough for a particular transaction to occur.
[0043] Réferring back to Figure 1, a temporary NV-RAM memory space 1s 1llustrated
as the first four heap blocks in third row 120 of the NV-RAM 104. It 1s contemplated
that these blocks are used to store intermediate data required in the generation of critical
data. For example, the critical data associated with the second game, contained in heap
blocks located in row 2, columns 1-10, may have been generated through the use of data
stored in the temporary NV-RAM space. The contents in temporary NV-RAM space 120
may be deleted after use, and the associated heap blocks may be deallocated.

[0044] Figure $ illustrates an operational flow diagram of an example method for
performing an integrity check of data in non-volatile random access memory. In one
embodiment this method is utilized to detect and fix changes to data that may have been
caused by an electrical problem, such as a static discharge or a high voltage surge. This
process may begin by powering up a gaming machine. This is shown at a step 504. The
gaming machine performs an initialization of an NV-RAM which may include integrity
testing of the memory.

[0045] In one embodiment the integrity testing comprises a CRC (cyclic redundancy
check) algorithm or another method, such as a checksum, to determine if a critical data
element stored in the NV-RAM contains an error. When the gaming machine 1s powered
up, the state of the machine prior to its power up will be captured in the NV-RAM
header. The state information may comprise a particular signature that may be
recognized during the integrity check. For example, a particular signature may indicate
that the gaming machine has a particular malfunction or that power was interrupted
during its previous operation. If the signatures generated for the NV-RAM header do

not correspond with the signatures stored in the NV-RAM header, an error in critical

15

| |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

data may have occurred, such as a tampering of the gaming machine or some other
hardware or software malfunction. A further check of the NV-RAM heap blocks may
indicate errors in the critical data. In the case where the signature indicates that a power
outage had occurred, the NV-RAM manager may be directed to further perform an
integrity check of memory contents within a heap block that contains the critical data
associated with the particular operation during the time the power outage occurred.
[0046] Thereafter, at a step 508, the NV-RAM manager performs an integrity check on
the NV-RAM and determines errors in a critical data element. At a step 512, the NV-
RAM manager identifies the handle of the erroneous critical data element and
determines the appropriate heap blocks that contain the erroneous critical data element.
In one embodiment this comprises the NV-RAM manager performing an open function
request to access memory containing the affected heap blocks. A read function request
may then generate the appropriate ranges of heap blocks that require removal.

[0047] At astep 516, the NV-RAM manager performs a delete function request,
allowing the NV-RAM to delete the heap blocks associated with the discovered error.
At a step 520, any heap blocks containing unrelated critical data elements are left intact
within the NV-RAM as the NV-RAM manager reloads the affected data into the
appropriate locations in NV-RAM to restore the integrity of the critical data. In one
embodiment, after the reload or rewrite occurs, the restored data may be re-tested. In
one embodiment, an alert may be generated upon defection of corrupt data.

[0048] As an advantage to this embodiment, the error removal process 1s such that a
minimal subset of all critical data elements are cleared from non-volatile memory or
non-volatile storage. As a result, the process described in Figure 5 typically removes
the erroneous critical data element while leaving intact all other critical data elements
that are unrelated to the erroneous critical data element.

[0049] In the prior art, an error in a data element required the re-initialization or

clearing of the entire NV-RAM, causing the loss of all data unrelated to the error. This

16

| |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

is undesirable because all of the critical data is lost or must be reloaded.

[0050] Figures 6A, 6B, and 6C illustrate example methods of NV-RAM compaction.
Compaction is a process of re-organizing used and free memory within an NV-RAM to
consolidate the free memory space into a larger size or into the largest contiguous
memory size possible. The process of compaction causes an NV-RAM manager to write
related critical data over a series of contiguous heap blocks. The process results in more
efficient write and read functions performed by the NV-RAM manager. As a
consequence, performance is improved significantly when related data 1s stored
contiguously, Further, compaction achieves more efficient use of the memory by
allowing a block of data to be written contiguously.

[0051] Figure 6A illustrates an alternate embodiment of a method of compacting or
reorganizing memory in NV-RAM. This may be accomplished by segregating used heap
blocks from unused heap blocks. In a step 604, the NV-RAM manager sequentially
analyzes heap blocks in NV-RAM. It is contemplated that the NV-RAM manager starts
analyzing at the location of the first heap block (row 1, column 1) of the NV-RAM as
described in Figure 1, or at any location. In a step 608, a determination 1s made whether
the heap block is in use (contains data), If the heap block 1s in use, the heap block is
shifted or positioned to the top portion of the NV-RAM memory stack at a step 612.

The used heap blocks that are shifted to the top portion of NV-RAM may be sorted
based on the type of critical data stored within the heap block. The sorting criteria may
include the type of critical data (i.e., accounting vs. game history data), type of game, or -
any other factor.

[0052] At astep 616, the nodes are resized to reflect the number of heap blocks
associated with a particular node. A node is discussed in parent Application No.
09/690,931, High Performance Battery Backed RAM Interface. Thereafter, at a step
620, the next heap block is analyzed and the process repeats itself by returning to a step

604. The process may time out or stop after the entire NV-RAM memory is compacted.

17

| |
CA 02821431 2013-07-17

WO 2004/02356535 PCT/US2003/028748

[0053] At astep 608, 1f the heap block 1s unused, the process reverts back to step 604,
where the next heap block is analyzed. It is contemplated that the process of shifting
heap blocks can be controlled by the software client in conjunction with the NV-RAM
manager. It is contemplated that the process may commence and terminate based on
factors such as time of day, frequency of NV-RAM use, the rounds of play on the
gaming machine, or some other criteria.

[0054] Figure 6B illustrates an alternate embodiment of a method for compacting or
reorganizing memory in NV-RAM. This may be accomplished by shifting heap blocks
either to the top or to the bottom of the NV-RAM memory stack. At a step 624, the NV-
RAM manager sequentially analyzes the heap blocks in NV-RAM. As described in
Figure 6A, the NV-RAM manager may begin analysis starting at the first heap block
located at (row 1, columnl) of the NV-RAM or from any other location. At a step 628,
a decision is made concerning whether or not the heap block 1n use.

[0055] If the heap block i1s in use, the process advances to a step 632, where the heap
block 1s shifted to the top portion of NV-RAM. If the heap block is unused, the process
advances to a step 636, and the heap block is shifted to the bottom portion of the NV-
RAM memory stack. Thereafter, in either case, the associated nodes are resized to
reflect the new re-organization or new ranges of used or unused heap blocks. This is
1llustrated at steps 640 and 644. At a step 648, the next heap block is analyzed and the
process repeats itself. Because shifting of heap blocks is performed on both in use and
unused heap blocks, it is contemplated that the system described in Figure 6B may

provide a faster method of compaction as compared to the system described in Figure
OA.

[0056] Figure 6C illustrates an alternate embodiment of a system of compacting or
reorganizing memory in NV-RAM. This may be accomplished by shifting heap blocks
to the top of the NV-RAM memory stack based on particular criteria. At a step 652, the
NV-RAM manager sequentially analyzes the heap blocks in NV-RAM. At a step 656, a

18

I -
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

decision i1s made as to whether or not a heap block 1s in use. If the heap block contains
data, the process proceeds to a step 660. Next, a decision is made concerning block size
criteria. For example, the size criteria may be that the heap block size is less than ot
equal to 200 kilobytes before heap block shifting occurs. This type of criteria may
facilitate the shifting of smaller blocks prior to the shifting of larger blocks, and the
criteria may be controlled, such as for example, by a casino employee. At a step 664, an
in use heap block meeting the desired criteria is shifted to the top portion of the memory
stack in NV-RAM. It is contemplated the heap block may be shifted to portions of
memory other than the top portion as described in this example embodiment. At a step
668, the range of available heap blocks is resized to reflect the additional available
memory space. Next, at a step 672, the process repeats itself as the NV-RAM manager
analyzes the next heap block.

[0057] It is contemplated that the shifting of heap blocks as described in Figures 6A,
6B, or 6C may be accomplished by shifting data to a distinct portion of memory
different from that of the top or bottom of an NV-RAM memory stack. The methods of
shifting to a specific location as described 1n these embodiments are examples and are
meant for discussion purposes. Furthermore, it 1s contemplated that compacting may
occur more readily when the availability of unused NV-RAM is low. In addition, it 1s
contemplated that compacting may occur periodically or on specific times in a day, or
specific days in a week. As part of initializing the NV-R.AM,\ it 1s contemplated the NV-
RAM is compacted when the NV-RAM manager 1s first started.

[0058] Figure 7 illustrates an example method of shifting the contents of heap blocks
to various locations within NV-RAM memory. This process may occur to provide
additional security by re-organizing data in memory to prevent unauthorized access of
data. By continually or periodically changing the location of data in memory, the ability
of an individual to access a particular type of data is reduced.

[0059] At a step 704, the NV-RAM manager randomly generates a node record. A

19

! |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

node record stores a handle for the NV-RAM which may be a unique handle. This
handle, used by the software client, may provide a pointer to the location in NV-RAM at
where the node or file resides. Further, the node record may provide the file size, file
name, and information regarding the status of the file. It i1s contemplated the status may
be a flag that indicates and allows a possible resizing or removal of data in NV-RAM to
occur. At astep 708, an associated heap block or a random heap block corresponding to
the node record 1s selected. At a step 712, the heap blocks are placed at the bottom
portion of the memory stack in NV-RAM. It is contemplated that data may be shifted to
portions of the memory stack other than the bottom portion. Figure 1 illustrates the
physical location of the heap block as a result of shuffling the data to the bottom portion
of the memory stack (shown as the heap block in (row 10, column 10)).

[0060] Next, in step 716, a compaction routine, such as that described in Figures 6A,
B, or C, may be employed. The process hinders an unauthorized user’s ability to
1dentify the contents of a particular heap block because the contents of randomly
selected heap blocks are continuously shifting to a new location within the NV-RAM.
[0061] Figure 8 illustrates an operational flow diagram of an alternate method of
operation of a system to prevent unauthorized access of data written into NV-RAM. At
a step 808, critical game data associated with game code is identified and stored in
SDRAM., At astep 812, the NV-RAM manager facilitates the processing of the critical
data by providing the critical data to the NV-RAM manager. At a step 816, the NV-
RAM manager identifies and allocates heap blocks to store the critical data. At a step
820, the NV-RAM facilitates the encrypfion and subsequent storage of critical data into
SDRAM. The encryption can be any simple type of encryption. In one embodiment, the
encryption comprises multiplying the critical data by a number that is unique to a
gaming machine. This creates a unique encryption key that would not be known by a
potential cheater. At a step 824, the encrypted critical data 1s written into NV-RAM.

[0062] It 1s contemplated that the above-described software may be embodied in

20

l i

CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

machine readable code, such as software code and computer programs, that are
processor executable.

[0063] It will be understood that the above described arrangements of apparatus and.
the method therefrom are merely illustrative of applications of the principles of this
invention and many other embodiments and modifications may be made without

departing from the spirit and scope of the invention as defined in the claims.

21

| |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

CLAIMS OF THE INVENTION

[Claim:

1. A non-volatile memory allocation system in a gaming machine comprising:

a non-volatile memory having memory space configured to store data;

a non-volatile memory manager configured to allocate and deallocate memory space
in the non-volatile memory for first data without altering or modifying existing second data
also stored in the non-volatile memory; and

a data file system for accessing and organizing the data stored in the non-volatile

memory.
2. The system of Claim 1, wherein the first data comprises critical data.
3. The system of Claim 1, wherein the non-volatile memory comprises memory

with a battery back-up.

4, The system of Claim 1, wherein the non-volatile memory manager comprises

machine readable code.

5. The system of Claim 1, wherein the data 1s 1dentified by files using a file

system.

6. The system of Claim 5, further comprising an application tool for accessing

files 1n the file system.
7. A method of incorporating a new game into a gaming machine comprising:

receiving game code, the game code associated with a new wagering game to be

installed on the gaming machine;

22

i |

CA 02821431 2013-07-17

WO 2004/0256583 PCT/US2003/028748

generating first data associated with the new game code;

allocating memory space in non-volatile memory for the first data utilizing a non-
volatile memory allocation system;

writing the first data into the non-volatile memory, wherein the non-volatile memory

contains existing second data; and

wherein the existing second data remains intact after incorporating the new game.

8. The method of Claim 7, further comprising verifying the accuracy, after the

writing, of the first data that was written into the non-volatile memory.
9. The method of Claim 7, wherein the first data comprises critical data.

10. The method of Claim 7, wherein allocation further comprises verifying that

adequate memory space exists in the non-volatile memory.

11. The method of Claim 7, further comprising compacting the non-volatile

memory to generate additional memory space.

12. A method of removing a first game from a gaming machine having two or

more games stored thereon comprising:
identifying first critical data associated with the first game to be removed,

identifying a memory space of the first critical data in a non-volatile memory

through use of a non-volatile memory manager;

deleting the first critical data associated with the game, wherein deleting does not
interfere with use of second critical data also stored in the non-volatile memory; and

deallocating the memory space previously occupied by the first critical data.

23

| |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

13. Themethod of Claim 12, further comprising resizing remaining memory space

resulting from the deletion of the first data.

14. The method of Claim 12, further comprising verifying the accuracy of the

second critical data in non-volatile memory after removal of the first data.

15. The method of Claim 12, wherein the non-volatile memory manager

comprises machine readable code.

16. The method of Claim 12, wherein the deallocating 1s performed by the

memory manager.

17. A method of dynamically maximizing available memory space in a non-
volatile memory in a gaming machine comprising:
identifying a critical game transaction to be performed, the critical game transaction

generating a first type of data;

allocating memory space having a first size in a non-volatile memory for storing the

first type of data;
storing first type of data in the first amount of memory space;
monitoring memory allocations for during gaming machine operations; and

reallocating memory space having a second size for storing the first type of data.

18. The method of Claim 17, wherein the second size is less than the first size.
19. Themethod of Claim 17, wherein the second size is greater than the first size.

20. Themethod of Claim 17, wherein the first type of data comprises critical data.

24

| |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

21. The method of Claim 17, wherein allocating memory space is performed by

a memory manager.

22. A method of removing corrupt data stored in a non-volatile memory in a
gaming machine comprising:

testing data stored in a first memory space in non-volatile memory;

identifying corrupt data responsive to the testing; and

re-writing non-corrupt data into the first memory space;

wherein re-writing leaves intact other data elements stored in the non-volatile

memory.

23. The method of Claim 22, wherein the testing occurs periodically.

24. The method of Claim 22, further including re-testing the non-corrupt data

after the re-writing.

25. The method of Claim 22, wherein the testing comprises performing a cyclic

redundancy check algorithm.

26. Themethod of Claim 22, further comprising generating an alert regarding the

identification of corrupt data.

27. The method of Claim 22, wherein re-writing comprises deleting the corrupt

data.

28. A method of de-fragmenting to maximize the use of non-volatile memory in

a gaming machine comprising:

25

l |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

analyzing a first memory space of the non-volatile memory to determine if it is

occupied with data;

responsive to the analyzing, shifting the data in the first memory space to a second
memory space within the non-volatile memory; and

resizing a node to account for the shifting.

29. Themethod of Claim 28, further comprising assigning new handle to the data

after the shifting.

30. The method of Claim 28, wherein the analyzing occurs sequentially in the

non-volatile memory.

31. The method of Claim 28, wherein the shifting causes data to be compacted

into adjacent memory space.

32. The method of Claim 28, wherein the shifting does not require the re-writing

of other data in the non-volatile memory.

33. The method of Claim 28, wherein shifting comprises shifting to a top or to

a bottom portion of a memory stack in the non-volatile memory.

34. The method of Claim 28, further comprising analyzing the data prior to

shifting to determine 1f the data qualifies as movable data.

35. The method of Claim 28, wherein the analyzing analyzes heap block size.

36. The method of Claim 28, further comprising analyzing the amount of unused

26

| |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

space within the non-volatile memory, and if the amount of unused space within the non-

volatile memory 1s less than a predetermined amount, then executing the method of

analyzing the first memory space, shifting, and resizing.

37. The method of Claim 28, wherein the analyzing, shifting and resizing occurs

periodically.

38. The method of Claim 28, wherein the analyzing, shifting and resizing occurs

whenever memory manager operation 1s 1nitiated.

39. A method to hindering access to data stored in a non-volatile memory
comprising:
selecting a first memory element in the non-volatile memory;

reading the data in the memory element;

writing the data to a second memory element within the non-volatile memory; and

reassigning the data in the file manager.

40. Themethod of Claim 39, further comprising compacting the memory elements

sequentially to maximize memory utilization.

41. The method of Claim 39, wherein the selecting occurs randomly.

42, The method of Claim 39, wherein the memory elements comprise data.

43. The method of Claim 39, wherein the memory elements comprise a block of

data.

27

{ i
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

44, The method of Claim 39, further comprising encrypting the data prior to

writing into a non-volatile memory.

45. The method of Claim 44, wherein the encrypting comprises multiplying the

critical data with a unique value corresponding to a gaming machine.

28

11111111111111111111

' \\\\\\\\\\\\\&\\\\\\\\ R s;;.e.- : S

\ ?@'\

i | ' i

Temporary ‘NV-i!iRAM i
| Space @ |
| ‘

oooooooooooooooooooo

Heap Block

Last Heap Block
Shuffling of Data
104 Element

I |
CA 02821431 2013-07-17

WO 2004/025633 PCT/US2003/028748
2/12

Software Client Requests New Game Code via
Transmission over Device Interface

Software Client Sends Critical Data to NV-RAM
Manager

NV-RAM Manager Dynamically Interacts with NV-
RAM

NV-RAM Manager Verifies Adequate Contiguous
Memory Size

Yes

Perform
Compaction

© »! Routine N

Times

yes
|dentify and Allocate Heap Blocks via Handle 0
Write Critical Game Data into NV-RAM no

Tilt
Mode
Go To Figure 2B

Walit for
- Attendant

Is Memory Size Adequate?

Fig. 2A

| |
CA 02821431 2013-07-17

WO 2004/025635 PCT/US2003/028748
3/12

From Figure 2A

NV-RAM Manager Retrieves Copy of Critical 248
Game Data and Sends to Software Client

I Software Client Stores Copy of Critical Data to 259
- SDRAM

Software Client Compares Original Critical Ge_nme
Data to Copy of Critical Game Data Stored in
SDRAM |

260
Data no Tilt Mode
Match?

yes 268
' ‘ State
564 Proceed to Next
579 Wait for Attendant

256

Fig. 2B

l |
CA 02821431 2013-07-17

WO 2004/0256335 PCT/US2003/028748
4/12 '

Software Client Receives Request to Remove

Game from Gaming Machine

Software Client Invokes Function Request to NV-
"RAM Manager to Identify Critical Data and
Associated Node / Handle

NV-RAM ldentifies Heap Blocks Associated with
Node / Handle

After Opening and Reading, NV-RAM Manager
Deallocates Associated Heap Blocks

NV-RAM Manager Resizes Available Memory

Fig. 3

I |
CA 02821431 2013-07-17

WO 2004/025653
S/12

Initiate Critical Game Transactions

NV-RAM Manager Allocates / Deallocates NV-
RAM Memory Based on Type of Transaction
Performed

Allocate Temporary or Permanent Non-Volatile
Memory or Both

l

| oad Operational Transactions into Temporary
Non-Volatile Memory Space

Store Critical Data into Permanent Non-Volatile

Memory Space

Purge Temporary Non-Volatile Memory Space
After Operational Transactions Are Processed

Go To Figure 4B

PCT/US2003/028748

Fig. 4A

I i
CA 02821431 2013-07-17

WO 2004/0256535 PCT/US2003/028748

6/12

From Figure 4A

Continue Game Play

yes

Dynamically Resize Memory Allocations

Fig. 4B

| |
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

7/12

Machine Power Up or Perform Intermittent Data

Integrity Check

NV-RAM Manager Performs Integrity Check of
NV-RAM and Determines that Critical Data Error

Has Occurred

NV-RAM Manager ldentifies Handle and
Associated Heap Blocks that Contain Error(s)

NV-RAM Manager Deallocates / Destroys Heap
Blocks Associated with Erroneous Critical Data
Element(s)

NV-RAM Manager Updates Memory Map thereby
L eaving Unrelated Critical Data Elements
Unaffected

NV-RAM Manager Reloads into NV-RAM Only
Critical Data Elements Associated with Errors or
with Affected Game

Fig. ©

WO 2004/025633

(!

CA 02821431 2013-07-17

8/12

NV-RAM Manager Sequentially Analyzes

Blocks

Is Heap Block
In Use?

yes

Shift Heap Block to Top
Portion of Memory
Stack in NV-RAM

Resize Node
Associated with
Range of Heap

Blocks

Go to Next
Heap Block

PCT/US2003/028748

Heap

Fig. 6A

I |
CA 02821431 2013-07-17

WO 2004/023633 PCT/US2003/028748

9/12

NV-RAM Manager Sequentially Analyzes Heap

Blocks

yes no

Shift Heap Block to
Bottom Portion of Memory
Stack in NV-RAM

Shift Heap Block to Top
Portion of Memory
Stack in NV-RAM

Resize Node Resize Node
Associated with Associated with
Range of Heap Range of Heap

Blocks Blocks

WO 2004/025633

| |

CA 02821431 2013-07-17

10/12

PCT/US2003/028748

NV-RAM Manager Sequentially Analyzes Heap
Blocks

no

yes

Does Block Meet
Size Criteria?

yes

Shift Heap Block to
Top Portion of

Memory Stack in
NV-RAM

Resize Node
Associated with

Range of Heap
Blocks

Fig. 6C

WO 2004/0256353

| |
CA 02821431 2013-07-17

PCT/US2003/028748
11/12

NV-RAM Manager Randomly Generates Node
Record

Associated Heap Block(s) Are Placed at Bottom
Portion of Memory Stack in NV-RAM

Compaction Routine(s)

Fig. /

i 1
CA 02821431 2013-07-17

WO 2004/025655 PCT/US2003/028748

12/12

Software Client Commands Input of New Game
Code via Transmission over Device Interface

Critical Game Data Is Identified and Stored in
' - SDRAM

gSoftware Client Sends Critical Data to NV-RAM
Manager

Identify and Allocate Heap Blocks via Handle

Encrypt Critical Game Data Prior to Write
\Write Critical Game Data into NV-RAM

Fig. 8

Initiate Critical Game Transactions

NV-RAM Manager Allocates / Deallocates NV-

RAM Memory Based on Type of Transaction
Performed

PP —.

Allocate Temporary o Permanent Non-Volatile
Memory or Both

L oad Operational Transactions into Temporary
Non-Volatile Memory Space

{

L

Store Critical Data into Permanent Non-Volatile
Memory Space

Purge Temporary Non-Volatile Memory Space
After Operational Transactions Are Processed

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - abstract drawing

