
(19) United States
US 2003O200342A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0200342 A1
Greenblat et al. (43) Pub. Date: Oct. 23, 2003

(54) COMMUNICATIONS SYSTEM USING RINGS
ARCHITECTURE

(75) Inventors: Ilia Greenblat, Hod-Hasharon (IL);
Amir Helzer, Nesher (IL)

Correspondence Address:
HUNTON & WILLIAMS
INTELLECTUAL PROPERTY DEPARTMENT
1900 KSTREET, N.W.
SUTE 1200
WASHINGTON, DC 20006-1109 (US)

(73) Assignee: Globespan Virata Incorporated, Red
Bank, NJ (US)

(21) Appl. No.: 10/064,333

(22) Filed: Jul. 2, 2002

Related U.S. Application Data

(60) Provisional application No. 60/301.843, filed on Jul.
2, 2001. Provisional application No. 60/347,235, filed
on Jan. 14, 2002. Provisional application No. 60/333,
516, filed on Nov. 28, 2001.

data from previous member
ck

Publication Classification

1) Int. Cl.' 5/16; HO4L 12/28; 51) Int. C.7 G06F 15/16
G06F 7/38

(52) U.S. Cl. 709/251; 712/234; 370/406

(57) ABSTRACT

Systems and methods are provided for implementing: a rings
architecture for communications and data handling Systems,
an enumeration process for automatically configuring the
ring topology; automatic routing of messages through
bridges, extending a ring topology to external devices,
write-ahead functionality to promote efficiency; wait-till
reset operation resumption; in-vivo Scan through rings topol
ogy; Staggered clocking arrangement, and Stray message
detection and eradication. Other inventive elements con
veyed include: an architectural Overview of a packet pro
ceSSor; a programming model for a packet processor; an
instruction pipeline for a packet processor; and use of a
packet processor as a module on a rings-based architecture.
Additional inventive elements conveyed include: an archi
tectural Overview of a communications processor, a data
path protocol Support model for a communications proces
Sor, an exemplary network processor employed as the core
packet processor for the communications processor; an
exemplary rings-based SOC Switch fabric architecture, and
a variety of quality of Support features.

local clock 1 110 114

Patent Application Publication Oct. 23, 2003 Sheet 1 of 64 US 2003/0200342 A1

FIG. 1
PRIOR ART

Patent Application Publication Oct. 23, 2003 Sheet 2 of 64 US 2003/0200342 A1

FIG. 3

Self 32
Addr=36 Self 256

va?t
Self- 16 4.
dma Addr=32 54 56

Enumerate message Addr= 512
Addr = 8 se

52

FIG. 4

60 62

72

64 compound AS70 compound B

Patent Application Publication Oct. 23, 2003 Sheet 3 of 64 US 2003/0200342 A1

FIG. 6

Compound A Compound B

Clkb

Clka

Qa
data a

Patent Application Publication Oct. 23, 2003 Sheet 4 of 64 US 2003/0200342 A1

FIG. 8

FIG. 9

-9

uncertainty range

Clock

Patent Application Publication Oct. 23, 2003 Sheet 5 of 64 US 2003/0200342 A1

FIG. 10

Uncertainty range

clock

FIG. 11 114

data from previous member data
Clk clock

FIG. 12
116

118

Patent Application Publication Oct. 23, 2003 Sheet 6 of 64 US 2003/0200342 A1

Patent Application Publication Oct. 23, 2003 Sheet 7 of 64 US 2003/0200342 A1

FIG. 17

Patent Application Publication Oct. 23, 2003 Sheet 8 of 64 US 2003/0200342 A1

Patent Application Publication Oct. 23, 2003 Sheet 9 of 64 US 2003/0200342 A1

FIG. 23

ring chip no scan

SCan insert module

tap the results
Scan mode

insert Scan

FIG. 25
8 msg. type
20 msg, addr

246 64 msg. data (63:8) not used for Scan
msg data (7:0), used for Scan chains

240

buS
CrOSSection 248 Clock

250 SCan muX

Patent Application Publication Oct. 23, 2003 Sheet 10 of 64 US 2003/0200342 A1

FIG. 26

addr r2
data 7-278
ok

scan test 266
reset
clk

- imsgfo

dmSg

dok

US 2003/0200342 A1 Oct. 23, 2003 Sheet 11 of 64 Patent Application Publication

X00

Patent Application Publication Oct. 23, 2003 Sheet 12 of 64 US 2003/0200342 A1

FIG. 29

incoming address

address split mask

% self address register
don't care part
Of Self-address

296 Comparator

through part of the address
that enters the member

Patent Application Publication Oct. 23, 2003 Sheet 13 of 64 US 2003/0200342 A1

FIG. 30

Rif Rif Rif o module id

RIF Address Space = 7
Activation register

300

Patent Application Publication Oct. 23, 2003 Sheet 14 of 64 US 2003/0200342 A1

FIG. 31

Member

Rf options50 Rif I write Rif I ok Rif clock
Rif I addr:0 Rif I read Rifaathi:0 "

* = address Space

Activation register

300

Patent Application Publication Oct. 23, 2003 Sheet 15 of 64 US 2003/0200342 A1

FIG. 32

Member

Rif otype 7:0
Rif o addr19:0
Rif o data/h.31:0

Activation register

300

Patent Application Publication Oct. 23, 2003 Sheet 16 of 64 US 2003/0200342 A1

FIG. 33

Member

Rif activated
Rif reset Rif clock
Rif scan_mode Rif self address(19:0 Rif scan

300

Patent Application Publication Oct. 23, 2003 Sheet 17 of 64 US 2003/0200342 A1

FPGA

352 354

internal Memory

DOOrbell Vobla
NetWork PrOCeSSOr

Peripheral Expansion Area

Application
Specific

System
Expansion

Area ACCelerators

spunodu09

US 2003/0200342 A1 Oct. 23, 2003. Sheet 18 of 64

Patent Application Publication Oct. 23, 2003 Sheet 19 of 64 US 2003/0200342 A1

FIG. 38 Current Task "It's NiISk To Memory

<toge) co)
Destination Preload regs

of Task Y

(Active

H Mux M s
Source
Operand

After a task Switch of Task X

Crisk Niklas Z || -9
<logic) Cogy

Preload regs
of Task Z

7 V
/ V
/ A

Shadow 2
(Preload

Active
(Active

Shadow)

hit?miss H M
of Source Mux

Source Operand
of Task Y

Patent Application Publication Oct. 23, 2003 Sheet 20 of 64 US 2003/0200342 A1

FIG. 39

PP --4--- External memory

|
Other data NP task chain

406 -1 Y
Internal memory Internal memory

Peripheral Fifo Peripheral Fifo
"The system"

"External World"

stream data in stream data Out

FIG. 40
4 32 registers of 20

32 bits per task General
purpose
registers

Special
purpose
registers

Per task and
A Set of indications global registers
per task, which

COntrol task execution
Schedulin uling DOOrbells NP configuration ints by

registers e
An interface to Agent

adjacentresources interface

Big area accessed
Fast memory accessed via a DMA interface

by load/store Internal
memory instructions

Patent Application Publication Oct. 23, 2003 Sheet 21 of 64 US 2003/0200342 A1

FIG. 41
R1 register

33 22 222222 22
1 O 9 8 7 6 5 4 3 2 1 0

s-sticky bit
eq-equalizerO
it-less then/negative
gt-greater then/positive
C-Carly
mb-reflection of the RAM mult-reader busy indication

FIG. 42
3 3 22 222 222 22
1 O 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 19 8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0

REFETCHSPR N
(sprindex-0) NEXT REFETCH REFETCH 440

3 3 22 222 22 9 8 7 6 5 4 3 2 1 0
O 9 8 7 6 5 4 3

TASKSPR
(sprindex - 1)

TRAPSPR. I. (sprindex-2)].

MINDEXSPREE
(sprindex-3).

Patent Application Publication

27

Oct. 23, 2003 Sheet 22 of 64

FIG. 43

450

COO
task data

task
fragment 1
data

level f1
data

task fragment
2 data

level 1 f2
data

fragment 3

data of all level2 functions

level 1 f
data

US 2003/0200342 A1

size of levelO
frame part is
different for
each task
type

size of leve2
frame part is
COnstant

size of level1
frame part is
different per
each task
type

US 2003/0200342 A1 Oct. 23, 2003 Sheet 23 of 64

097

Patent Application Publication

Patent Application Publication Oct. 23, 2003 Sheet 24 of 64 US 2003/0200342 A1

3

s

S

1.
s

LL
He
o
O

X
L

CO
CfO
L

1.
?
?
CC

LO
s

CD
-

is
: on

C s

009

US 2003/0200342 A1 Oct. 23, 2003 Sheet 25 of 64 Patent Application Publication

Patent Application Publication Oct. 23, 2003 Sheet 26 of 64 US 2003/0200342 A1

FIG. 47

516

yield indication 510
doorbells next task id5:0) -1

Current taskid5:0)
--- - i.e. 514 CrCSNOOp stall

CC

dma agent stal
Stal memory stall

518

--
patch msg.sender stall

transmit Snoop ----
data

520 loadstore interface

-multireader stall

context by COrtext DUS
Write memory - - - - - - - - - - - - -

interface I points -----

Write rd data address agent 528 interface
data mueader -- interface

T 524 treader data out "9" multireader data Out message out
--

DMA DMA agent message Out
- agent y1 512

|titions:-. r -
message out fifo

ring in (3
D ring Out

splitter ring if d
- - - - - - - - - - - - - - - --

Oct. 23, 2003 Sheet 27 of 64 US 2003/0200342 A1 Patent Application Publication

peT00InOS

[O:99??noTelepTuJeu doous

e?ep e6esseu

Patent Application Publication

US 2003/0200342 A1 Oct. 23, 2003 Sheet 29 of 64 Patent Application Publication

J0pOOUÐ efiesSºul |nd|no

| 9

US 2003/0200342 A1

pueuJuJ00 que6e

Oct. 23, 2003 Sheet 30 of 64

099pueuluu00?uefie
Patent Application Publication

US 2003/0200342 A1 Oct. 23, 2003 Sheet 31 of 64 Patent Application Publication

US 2003/0200342 A1 Oct. 23, 2003. Sheet 32 of 64 Patent Application Publication

819elup

Oct. 23, 2003 Sheet 33 of 64 US 2003/0200342 A1 Patent Application Publication

pueluºpTuo

US 2003/0200342 A1 Oct. 23, 2003. Sheet 34 of 64 Patent Application Publication

99 "SO|-

Patent Application Publication Oct. 23, 2003 Sheet 35 of 64 US 2003/0200342 A1

FIG. 57
526

agent interface p

COntrol
register

COUnter re Scaler

time stamp
register

FIG. 58
2

agent Command
(AID = timer agent)

60

opcode options(9:0 RA AD RBImm8

604

((OdO) (IdO) (ZdO)

US 2003/0200342 A1 Patent Application Publication

US 2003/0200342 A1

S

E.
s

(E)
I)

(6)

Oct. 23, 2003 Sheet 37 of 64

Ced
CN
CO

c
CD
V)

Patent Application Publication

969

969
) ()

0

Z01001

US 2003/0200342 A1

669'WO}} dE

ZHW00Z JOSS0001& XIOMIÐN

ZHW00Z JOSS000]);

069WWHQS HQG | zgjog

Oct. 23, 2003 Sheet 38 of 64

889

Patent Application Publication

Patent Application Publication Oct. 23, 2003 Sheet 39 of 64 US 2003/0200342 A1

FIG. 63

Cycle for rings rings input 728

ring ilf see, 720
dma

: cycle for extring

Patent Application Publication Oct. 23, 2003 Sheet 40 of 64 US 2003/0200342 A1

FIG. 64

2 PrOCeSSOr
2 Functional unit

External ring interface

Patent Application Publication Oct. 23, 2003 Sheet 41 of 64 US 2003/0200342 A1

CO
r
N

S.

s

US 2003/0200342 A1 Oct. 23, 2003. Sheet 42 of 64 Patent Application Publication

HMTOJIH GHTOHIJ WIWO

WIWCH

US 2003/0200342 A1 Oct. 23, 2003 Sheet 43 of 64 Patent Application Publication

GHTOHI3

Patent Application Publication Oct. 23, 2003 Sheet 44 of 64 US 2003/0200342 A1

w
D
O
O
O

S

:
E

.S
O)

Patent Application Publication Oct. 23, 2003 Sheet 45 of 64 US 2003/0200342 A1

FIG. 69
mi

enettX maC

doorbell
free entry Count
finished frames COunt

ring in ring Out

Patent Application Publication Oct. 23, 2003 Sheet 46 of 64 US 2003/0200342 A1

FIG. 70

Control Plane
Signaling Protocols

Protocol Management
Exception Handling
System Control &

830
f

Configuration Protocol PrOCeSSOr

Data Plane

Perlpacket handling InterConnect fabric
Forwarding Decision

Classification
QoS Handling

Queuing
Scheduling NetWOrk NetWOrk
Formatting Processor PrOCeSSOr

Memory interfaces 834 836 peripherals

|(Z) ddd-TW

US 2003/0200342 A1

(Z) G-TW

Patent Application Publication

US 2003/0200342 A1 Oct. 23, 2003. Sheet 48 of 64 Patent Application Publication

Sng?u06W#### T-555- - - - -
ZOIS

1 \ ,? ? ?018glº-No.s?ae ©TT?LL EYTT, LLS |-068— — —--? ? • ----------------;:•– ? ??? ===uleifiold

999_^

————||—||——————————— — — — — — — — —–

US 2003/0200342 A1 Oct. 23, 2003 Sheet 49 of 64 Patent Application Publication

(s

OleOJppe (D>
< 8p0ºdo A (> <Q ?poodo D>

E LIRIM

Patent Application Publication Oct. 23, 2003 Sheet 50 of 64 US 2003/0200342 A1

FIG. 74

SP 930 1 ------910
(Y), M=2 ------912

3 - IN-914
RRNWFQDRR 4 ------916
(Y), 932 - 5 ------918 I

6 ------920

FIG. 75

1 ----

III 8---- Calendar Wheel
NCUBR

1 ---- O) ---T 942 Utopia
948

I oveRY () s
1 ---- -1 946
8 - CBR

O

TU/
I

Oct. 23, 2003. Sheet 51 of 64 US 2003/0200342 A1 Patent Application Publication

096

US 2003/0200342 A1 Oct. 23, 2003 Sheet 52 of 64 Patent Application Publication

WIdO 10 016

X
[\SHW WIdO L[]

(T?)e?OSU00 (No.)SHEIST 19 ??)SHEIST ?9

US 2003/0200342 A1 Oct. 23, 2003 Sheet 53 of 64 Patent Application Publication

0

86
8/

US 2003/0200342 A1 Oct. 23, 2003. Sheet 54 of 64 Patent Application Publication

WIdO 10 OTCH W0||
066

WIWTTWIW pueO 9UIT TSOIX

US 2003/0200342 A1

Sng WIV/

Patent Application Publication

US 2003/0200342 A1 Oct. 23, 2003. Sheet 56 of 64 Patent Application Publication

ddO

30e??e?u) e?doln

987), O-]}}

US 2003/0200342 A1 Oct. 23, 2003 Sheet 57 of 64 Patent Application Publication

US 2003/0200342 A1

2012 9p00 AN

Oct. 23, 2003 Sheet 58 of 64 Patent Application Publication

Patent Application Publication Oct. 23, 2003 Sheet 59 of 64 US 2003/0200342 A1

FIG. 84 1050

-------------- -
RX Rx termination
termination
task
SCratchpad Vobla-CPP

interface
block

AAL5 Vc
RX Context

task AAL5Rx
SCratchpad functional

block

AAL5 Vic

task static
COntext

External
SDRAM

O UTOPIA Port
Rx FIFO. RX DOOrEel

HW resources area

US 2003/0200342 A1 Oct. 23, 2003. Sheet 60 of 64 Patent Application Publication

960||

gu?us […?!!!!!SL 080||

G8 "SOIH

810||

US 2003/0200342 A1 Oct. 23, 2003 Sheet 61 of 64 Patent Application Publication

Patent Application Publication

FIG. 87
PRIOR ART

1402
Compare 1

branch to
label A if
COnd. Sat.

1406
Compare 2

branch to 1408
label B if
COnd. Sat.

1410
Compare 3

branch to
label C if
Cond. Sat.

1412

1414
(additional processing) ?

Oct. 23, 2003. Sheet 62 of 64

1404 1400

US 2003/0200342 A1

Patent Application Publication Oct. 23, 2003 Sheet 63 of 64 US 2003/0200342 A1

FIG. 88

1500 processing
device

with accum.
flag branch

----------------------- -

- - - - - -
| program

1504

CPU architecture

Working
registers ALU

1630

logic

if |z1|

Patent Application Publication Oct. 23, 2003 Sheet 64 of 64 US 2003/0200342 A1

FIG. 90

Compare 1, & 1702
Set A.F. if 1700

COnd. Satisfied

COmpare 2, & 1704
Set A.F. if

COnd. Satisfied

Compare 3, & 1706
Set A.F. if

Cond. Satisfied

branch based 1708
On A.F.

1710 (additional processing)-

US 2003/0200342 A1

COMMUNICATIONS SYSTEM USING RINGS
ARCHITECTURE

CROSS REFERENCE TO RELATED
APPLICATIONS

0001 Priority is claimed based on U.S. Provisional
Application No. 60/301,843 entitled Communication Sys
tem. Using Rings Architecture, filed Jul. 2, 2001, U.S.
Provisional Application No. 60/333,516 entitled Flexible
Packet Processor For Use in Communications System, filed
Nov. 28, 2001, and U.S. Provisional Application No. 60/347,
235 entitled High Performance Communications Processor
Supporting Multiple Communications Applications, filed
Jan. 14, 2002.

BACKGROUND OF THE INVENTION

0002 The present invention relates generally to data
communication networks and, more particularly, to receiv
ing and transmitting Systems, including ATM and other
types of communications platforms and including Such
components as communications processors, packet proces
sors, network processors, DMAS, FPGAs and other devices
and peripheral devices.
0003. The number of business and private home users of
computers continues to rapidly grow, with these users typi
cally being connected to local area networks (LANs), wide
area networks (WANs), intranets, extranets, direct Sub
scriber line (DSL) networks, etc. With growing demand
from Such users for increasingly large amounts of data
acroSS Such networks, bandwidth and data processing and
handling Speed is an ever-present concern facing Service and
equipment providers to this vast audience of users. Hubs,
routers, modems and Switches have been the predominant
mechanisms for providing the interconnectivity for many
users to acceSS networks. Switches made up of expensive
VLSI (very large Scale integration) circuits are often used to
build out networks. In addition to the drawbacks presented
by the expense of implementing Such circuits, clock Syn
chronization is of continuing concern in Switched networkS.
0004. With the proliferation of the digital age, a signifi
cant demand has arisen for Versatile networking technology
capable of efficiently transmitting multiple types of infor
mation at high Speeds acroSS different network environ
ments. One increasingly popular platform is ASynchronous
Transfer Mode, commonly referred to as ATM, which was
developed by the International Telegraph and Telephone
Consultative Committee (CCITT), and its successor orga
nization, the Telecommunications Standardization Sector of
the International Telecommunication Union (ITU-T). ATM
is a technology capable of high Speed transfer of Voice,
Video, and other types of data acroSS public and private
networks. Although widely implemented, ATM is just one
example of many platforms used in handling communica
tions and data acroSS networkS.

0005 ATM utilizes very large-scale integration (VLSI)
technology to segment data into individual packets (also
referred to as cells). For example, B-ISDN calls for packets
having a fixed size of fifty-three bytes (i.e., octets). Using the
B-ISDN 53-byte packet for purposes of illustration, each
ATM cell includes a header portion comprising the first five
bytes and a payload portion comprising the remaining
forty-eight bytes. ATM cells are routed across the various

Oct. 23, 2003

networks by passing though ATM Switches, which read
addressing information included in the cell header and
deliver the cell to the destination referenced therein. Unlike
other types of networking protocols, ATM does not rely
upon Time Division Multiplexing (TDM) to establish the
identification of each cell. Rather, ATM cells are identified
Solely based upon information contained within the cell
header.

0006 Further, ATM differs from systems based upon
conventional network architectures Such as Ethernet or
Token Ring in that rather than broadcasting data packets on
a shared wire for all network members to receive, ATM cells
dictate the Successive recipient of the cell through informa
tion contained within the cell header. A specific routing path
through the network, called a virtual path (VP) or virtual
circuit (VC), is set up between two end nodes before any
data is transmitted. Cells identified with a particular virtual
circuit are delivered to only those nodes on that Virtual
circuit. In this manner, only the destination identified in the
cell header receives the transmitted cell.

0007. The cell header includes, among other information,
addressing information that essentially describes the Source
of the cell or where the cell is coming from and its assigned
destination. Although ATM evolved from TDM concepts,
cells from multiple Sources are Statistically multiplexed into
a Single transmission facility. Cells are identified by the
contents of their headers rather than by their time position in
the multiplexed Stream. A Single ATM transmission facility
may carry hundreds of thousands of ATM cells per second
originating from a multiplicity of Sources and traveling to a
multiplicity of destinations.

0008. The backbone of an ATM network generally con
Sists of Switching devices capable of handling the high
Speed ATM cell Streams. The Switching components of these
devices, commonly referred to as the Switch fabric, perform
the Switching function required to implement a virtual
circuit by receiving ATM cells from an input port, analyzing
the information in the header of the incoming cells in
real-time, and routing them to the appropriate destination
port. Millions of cells per second often need to be switched
by a single device.

0009. This connection-oriented scheme permits an ATM
network to guarantee the minimum amount of bandwidth
required by each connection. Such guarantees are made
when the connection is set-up. When a connection is
requested, an analysis of existing connections is performed
to determine if enough total bandwidth remains within the
network to Service the new connection at its requested
capacity. If the necessary bandwidth is not available, the
connection is refused.

0010. The design of conventional ATM Switching sys
tems involves a compromise between which operations
should be performed in hardware and which in Software.
Generally, but not without exception, hardware gives opti
mal performance but reduces flexibility, while software
allows greater flexibility and control over Scheduling and
buffering and makes it practical to have more Sophisticated
cell processing (e.g., OAM cell extraction, etc.).
0011. The various protocols associated with platforms
Such as ATM, Ethernet and others are distinct and require
Special handling, which is essentially transparent to the user.

US 2003/0200342 A1

One approach to packaging the hardware and Software
necessary to handle the protocol processing and general
communications and data processing is System on a chip
(SOC), which typically is made up of several modules, often
dedicated to Specific tasks, working together. A number of
these modules typically are interfaces to the external envi
ronment, Such as Ethernet or Utopia. OtherS modules can
include processors or memories. To illustrate, FIG. 1 shows
a typical SOC 10, Such as a communications processor,
having a variety of modules, such as CPUs 14, 22, RAM 16,
Ethernet interface 18, i/o interface 20, and DMA 24, inter
connected via a Switch fabric 12.

0012. The challenge currently faced by system designers
is integrate the modules into a cohesive System. The usual
approach is to define busses, connect the modules on the
busses, run Signals between the modules via the busses, add
bridges to connect busses, and So on. Other challenges to
designing a SOC, among others, include: heterogeneous
peripheral devices; several active modules (CPU, DMA);
performance bottlenecks, performance organization of con
nectivity and busses; customer reality changes over life of a
project, design verification bottleneck, both intra-module
and inter-module, and application Verification. AS demon
Strated, these challenges result in a considerable number of
mechanisms needing to be debugged during the design of a
SOC.

0013 Although the traditional bus oriented approach is
extensively utilized, Such an approach typically has the
following problems: a number interfaces to debug for both
timing and logic, architectural decisions typically need to be
done early in design; buSSes often create unpredictable
timing and loadings, changing anything, like adding periph
eral or deleting CPU requires considerable revamping of the
System; and So on.

0.014) A communications processor is one example of a
communications System commonly designed using the tra
ditional buSS approach. A robust SOC communications
processor may find a myriad of applications, Such as for
modems, bridges, routers, gateways, multi-Service gateways
and access equipment, and So forth. Such a communications
processor may be PHY Physical layer-independent, in
which case it will be coupled with an appropriate PHY
product, or it may by PHY-integrated, in order to provide the
connectivity to the PHY layer of the ATM (or OSI Opens
Systems Interconnection) layered protocol model. It can be
readily appreciated that if Such a SOC communications
processor is to be robust in terms of the applications it can
Support, it must be able to process a wide variety of different
protocols, such as ATM, FR (Frame Relay), IP (Internet
Protocol), TDM, and so forth. Therefore, in such a SOC
communications processor, a packet processor for proceSS
ing the packets of information that may be of a variety of
protocols may be implemented.

0.015 The processing of packets or cells performed by the
packet processor may include the following tasks: packet
header analysis (OSI Layer2, Layer3); frame validity-CRC
(Cyclic Redundancy Code) check; forwarding decision
look up, header modification /conversion; Segmentation and
reassembly; data conversion (e.g., encryption);statistics
gathering, and So on. In fact, as bandwidth requirements go
up, and the demand for wire Speed packet processing exists,
packet processors have to be optimized to Solve packet

Oct. 23, 2003

processing Specific taskS. Proposed Solutions for packet
processing that exist today range from hard wired ASICS
(Application Specific Integrated Circuits) (typically inflex
ible) to programmable packet processors (more flexible).

0016. In the last few years, there has been a need for
programmable packet processors for communication SyS
tems. The major advantages to programmable Solutions can
include: flexible adjustment for rapidly changing commu
nication Standards. implementation of increasingly complex
communications difficult to implement in an ASIC, and
consideration to differentiation and Time To Market (TTM)
as a crucial aspect in today competitive environment.

0017. From the system vendor's vantage, programmable
packet processors generally have an advantage over ASIC
Solutions. A programmable packet processor can be viewed
as a platform to be quickly deployed (in consideration of
TTM) and then later one can add/modify system function
ality by changing/adding code to the packet processor. The
trade-off system vendors would have at the very high end
solutions (core rate OC Optical Carrier-48, OC-192, for
example) would be power and performance in program
mable packet processors as compared to fixed ASIC Solu
tions. However, Several companies have announced pro
grammable Solutions for Such core rates, indicating that a
programmable Solution is needed by Vendors for Such core
rate products.

0018) A programmable packet processor (also referred to
as a network processor) would preferably provide a Solution
in the access space where the expected aggregate bandwidth
is in the range of OC-3 to OC-12. Of course, the access
market requirements are different from the network edge,
and the core. At the access points, Systems would need to
deal with lots of subscribers (ports), low speed links (T1,
xDSL X Digital Subscriber Line) and with different access
methods (ATM, IP, FR, TDM, etc.), whereas at the edge and
the core of the network generally would use one framing
solution (MPLS, IP or ATM). Access systems, in this case,
typically would be characterized by: a large number of
Subscribers (ports, flows), high density; requirements for
Inter Working Functions (IWFs), such as voice (TDM) to
packets (ATM or IP) (e.g., Voice gateways), MAN (Metro
politan Area Network) to WAN (Wide Area Network),
Ethernet to ATM or PoS Packet Over SONET); data
grooms-asymmetric behavior large pipe to many Small
pipes, and the like. Accordingly, acceSS Systems need lots of
packet manipulation, especially on media conversions and
IWF. Therefore, a programmable (and therefore flexible)
packet processor often is a preferred Solution.

0019. Such a programmable packet processor could be
developed using a Standard general purpose microprocessor
core. Several processor cores are commercially available,
including those that are licensed by Advanced RISC
Machines, Ltd., ARC International, MIPS Computer Sys
tems, Inc., and LeXra, Inc. However, the above cores are
general purpose cores that would need to be optimized for
packet processing. Such optimization typically would
include: additional instructions, DMA Support, task Switch
with low overhead; Specific bit manipulation instructions,
etc. The disadvantages of using Such general purpose cores
in packet processing applications include: costs incurred
from license fee and royalties, limited customization-a
Special license is usually required to modify the core, create

US 2003/0200342 A1

dependency on the core provider roadmap and technical
support; over featured-FPU (Floating Point Units), MMU
(Memory Management Units); etc.
0020. Therefore, there is a need for a highly robust
programmable packet processor that can Support a variety of
high end applications, that is capable of handling a variety
of protocols, and that provides desired performance in terms
of Speed and power.
0021 What is also needed is a high performance com
munications processor implementing Such a programmable
packet processor as its core network processor (S), and
implementing other useful modules, Such as memories,
DMAS, and interfaces to outside PHY platforms, so that the
high performance communications processor can be benefi
cially implemented as a SOC solution for a myriad of high
end communication applications.

SUMMARY OF THE INVENTION

0022. The present invention overcomes the problems
noted above, and realizes additional advantages, by provid
ing a number of advantages over prior Systems.
0023 The following description is intended to convey a
thorough understanding of the inventive aspects by provid
ing a number of Specific embodiments and details including,
among other things: rings architecture for communications
and data handling Systems, Enumeration process for auto
matically configuring the ring topology, automatic routing of
messages through bridges, automatic routing of exception
messages, extending a ring topology to external devices and
providing a flexible and re-configurable System, read return
address, write-ahead functionality to promote efficiency,
wait-till-reset operation resumption, in-vivo Scan through
rings topology, Staggered clocking arrangement, and Stray
message detection and eradication.
0024. Other inventive elements conveyed through the
embodiments and details discussed below include, among
other things: an architectural Overview of a flexible packet
processor, a programming model for a flexible packet pro
ceSSor; an instruction pipeline for a flexible packet proces
Sor, an internal memory to be used with the flexible packet
processor; the use of a flexible packet processor as a module
on a rings-based architecture; the core of the flexible packet
processor and associated compounds (agents and non
agents) on the packet processor.
0.025 Additional inventive elements conveyed through
the embodiments and details discussed below include,
among other things: an architectural Overview of a commu
nications processor, a programming model for a communi
cations processor, a data path protocol Support model for a
communications processor, an exemplary network processor
employed as the core packet processor for the communica
tions processor, an exemplary rings-based SOC interconnect
fabric architecture employed in the communications proces
Sor; a variety of quality of Support (QoS) features that
implemented in the communications processor; a Series of
beneficial applications of the communications processor; the
various approaches for the Software that can be implemented
to power the communications processor; Specific exemplary
Strategies for the Software in the high performance commu
nications processor, and a performance estimate for RFC
1483 bridging.

Oct. 23, 2003

BRIEF DESCRIPTION OF THE DRAWINGS

0026. The present invention can be understood more
completely by reading the following Detailed Description of
the Invention, in conjunction with the accompanying draw
ings in which:
0027 FIG. 1 is a block diagram illustrating a typical
System on a chip.
0028 FIG. 2 is a schematic diagram illustrating a ring
architecture in accordance with at least one embodiment of
the present invention.
0029 FIG. 3 is a flow diagram illustrating an exemplary
enumeration process in accordance with at least one embodi
ment of the present invention.
0030 FIGS. 4-8 are a schematic diagram illustrating
timing issues in a clocked System in accordance with at least
one embodiment of the present invention.
0031 FIG. 9 is a schematic diagram illustrating a mecha
nism for providing a clock signal in an opposing direction to
data flow in a rings network in accordance with at least one
embodiment of the present invention.
0032 FIG. 10 is a schematic diagram illustrating a
mechanism for providing a clock signal in a Same direction
as a data flow in a rings network in accordance with at least
one embodiment of the present invention.
0033 FIG. 11 is schematic diagram illustrating an exem
plary implementation of a timing interface of a rings inter
face in a rings network in accordance with at least one
embodiment of the present invention.
0034 FIG. 12 is a schematic diagram illustrating latency
issues in a ring network in accordance with at least one
embodiment of the present invention.
0035 FIGS. 13 and 14 are schematic diagrams illustrat
ing exemplary implementations of bridges in ring networks
in accordance with at least one embodiment of the present
invention.

0036 FIG. 15 is a schematic diagram illustrating an
exemplary enumeration proceSS in a ring network having a
bridge in accordance with at least one embodiment of the
present invention.
0037 FIG. 16 is a schematic diagram illustrating an
exemplary priority Scheme for messages received Simulta
neously at a same interface of a bridge in a ring network in
accordance with at least one embodiment of the present
invention.

0038 FIG. 17 is a schematic diagram illustrating an
exemplary implementation of a bridge in accordance with at
least one embodiment of the present invention.
0039 FIGS. 18 and 19 are schematic diagrams illustrat
ing an exemplary proceSS for the elimination of Stray mes
Sages in a ring network in accordance with at least one
embodiment of the present invention.
0040 FIGS. 20-22 are schematic diagrams illustrating
exemplary ring networks multiple bridges in accordance
with at least one embodiment of the present invention.
0041 FIGS. 23-35 are schematic diagrams illustrating
exemplary implementations of a Scan interface in a ring
network in accordance with at least one embodiment of the
present invention.

US 2003/0200342 A1

0.042 FIG. 26 is a schematic diagram illustrating exem
plary interface Signals between two members of a ring
network in accordance with at least one embodiment of the
present invention.
0043 FIGS. 27 and 28 are schematic diagrams illustrat
ing an exemplary implementation of a ring interface in
accordance with at least one embodiment of the present
invention.

0044 FIG.29 is a flow diagram illustrating an exemplary
proceSS for determining an intended recipient of a message
in a ring network in accordance with at least one embodi
ment of the present invention.
004.5 FIGS. 30-33 are schematic diagrams illustrating
exemplary Signaling within a ring interface in a ring network
in accordance with at least one embodiment of the present
invention.

0.046 FIG. 34 is a schematic diagram illustrating an
exemplary use of bridges in a ring network to minimize
latency in accordance with at least one embodiment of the
present invention.
0047 FIG. 35 is a schematic diagram illustrating an
external ring interface in accordance with at least one
embodiment of the present invention.
0.048 FIG. 36 is a block diagram illustrating an exem
plary System on a chip utilizing a ring architecture in
accordance with at least one embodiment of the present
invention.

0049 FIG. 37 is a schematic diagram illustrating the
exemplary network processor of the System on a chip of
FIG. 36 in accordance with at least one embodiment of the
present invention.
0050 FIG. 38 is a flow diagram illustrating a low over
head task Switch in a network processor in accordance with
at least one embodiment of the present invention.
0051 FIG. 39 is a flow diagram illustrating exemplary
data paths in a network processor in accordance with at least
one embodiment of the present invention.
0.052 FIG. 40 is a block diagram illustrating exemplary
State resources of a network processor in accordance with at
least one embodiment of the present invention.
0.053 FIG. 41 is a block diagram illustrating an exem
plary implementation of register r1 of a general purpose
register of a network processor in accordance with at least
one embodiment of the present invention.
0.054 FIG. 42 is a block diagram illustrating various
registers of a general purpose register of a network processor
in accordance with at least one embodiment of the present
invention.

0.055 FIG. 43 is a block diagram illustrating an exem
plary Software model for a network processor in accordance
with at least one embodiment of the present invention.
0056 FIG. 44 is a flow diagram illustrating an exemplary
network processor pipeline in accordance with at least one
embodiment of the present invention.
0057 FIG. 45 is a flow diagram illustrating an exemplary
network processor pipeline timing in accordance with at
least one embodiment of the present invention.

Oct. 23, 2003

0058 FIG. 46 is a schematic diagram illustrating an
exemplary internal memory for implementation in a network
processor in accordance with at least one embodiment of the
present invention.
0059 FIG. 47 is a schematic diagram of an exemplary
network processor in accordance with at least one embodi
ment of the present invention.
0060 FIG. 48 is a schematic diagram illustrating an
exemplary multireader agent in accordance with at least one
embodiment of the present invention.
0061 FIG. 49 is a flow diagram illustrating an exemplary
data alignment and packing process in accordance with at
least one embodiment of the present invention.
0062 FIG.50 is a flow diagram illustrating a mapping of
data from a multireader agent bus to a multireader operation
in accordance with at least one embodiment of the present
invention.

0063 FIG. 51 is a schematic diagram illustrating an
exemplary message Sender of a network processor in accor
dance with at least one embodiment of the present invention.
0064 FIG. 52 is flow diagram illustrating an exemplary
mapping of an agent write command to a message in
accordance with at least one embodiment of the present
invention.

0065 FIG. 53 is a schematic diagram illustrating an
exemplary direct memory access agent module in accor
dance with at least one embodiment of the present invention.
0066 FIG. 54 is flow diagram illustrating an exemplary
mapping of data on an agent bus to a direct memory access
command.

0067 FIG. 55 is a schematic diagram illustrating an
exemplary cyclical redundancy code agent in accordance
with at least one embodiment of the present invention.
0068 FIG. 56 is a flow diagram illustrating a mapping of
data on an agent bus to cyclical redundancy code data in
accordance with at least one embodiment of the present
invention.

0069 FIG. 57 is a schematic diagram illustrating an
exemplary timer agent in accordance with at least one
embodiment of the present invention.
0070 FIG. 58 is a flow diagram illustrating a mapping of
data on an agent bus to timer data in accordance with at least
one embodiment of the present invention.
0071 FIG. 59 is a schematic diagram of an exemplary
doorbell agent in accordance with at least one embodiment
of the present invention.
0072 FIG. 60 is a flow diagram illustrating an exemplary
encoding of task data for use by a doorbell agent in accor
dance with at least one embodiment of the present invention.
0073 FIG. 61 is a block diagram illustrating an exem
plary communications processor implementing a ring archi
tecture in accordance with at least one embodiment of the
present invention.
0074 FIG. 62 is a schematic diagram illustrating the
exemplary communications processor of FIG. 61 in accor
dance with at least one embodiment of the present invention.

US 2003/0200342 A1

0075 FIGS. 63-69 are schematic diagrams illustrating
various implementations of an external ring interface in a
communications processor in accordance with at least one
embodiment of the present invention.
0.076 FIG. 70 is a block diagram illustrating an exem
plary programming module for a communications processor
in accordance with at least one embodiment of the present
invention.

0.077 FIG. 71 is a block diagram illustrating an exem
plary data path and protocol path of a communications
processor in accordance with at least one embodiment of the
present invention.
0078 FIG. 72 is a schematic diagram illustrating an
exemplary network processor utilized in a communications
processor in accordance with at least one embodiment of the
present invention.
007.9 FIG. 73 is a flow diagram illustrating an exemplary
processing pipeline of a network processor utilized in a
communications processor in accordance with at least one
embodiment of the present invention.
0080 FIGS. 74 and 75 are flow diagrams illustrating
exemplary pacing processes utilized in a communications
processor in accordance with at least one embodiment of the
present invention.
0081 FIGS. 76-80 are schematic diagrams illustrating
various exemplary implementations of a communications
processor in communications Systems in accordance With at
least one embodiment of the present invention.
0082 FIG. 81 is a flow diagram illustrating an exemplary
flow manager functionality of a communications processor
in accordance with at least one embodiment of the present
invention.

0.083 FIG. 82 is a block diagram illustrating an exem
plary data plane development for use in Software develop
ment for a communications processor in accordance with at
least one embodiment of the present invention.
0084 FIG. 83 is a block diagram illustrating an exem
plary Software development model in accordance with at
least one embodiment of the present invention.
0085 FIG. 84 is a block diagram illustrating an exem
plary Software design approach in accordance with at least
one embodiment of the present invention.
0.086 FIG. 85 is a block diagram illustrating an exem
plary partitioning of Software and interfaces in a communi
cations processor in accordance with at least one embodi
ment of the present invention.

0.087 FIG. 86 is a block diagram illustrating an exem
plary partitioning of Software in a network processor in
accordance with at least one embodiment of the present
invention.

0088 FIG. 87 is a flow diagram illustrating a typical
proceSS for executing program instructions using a known
multiple-branch technique.

0089 FIG. 88 is a schematic diagram illustrating an
exemplary processing environment in accordance with at
least one embodiment of the present invention.

Oct. 23, 2003

0090 FIG. 89 is a schematic diagram illustrating an
exemplary architecture of a processing unit of the processing
environment of FIG. 88 in accordance with at least one
embodiment of the present invention.

0091 FIG. 90 is a flow diagram illustrating an exemplary
process for executing program instructions based on the
value of an accumulative flag in accordance with at least one
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

0092. The following description is intended to convey a
thorough understanding of the inventive aspects by provid
ing a number of Specific embodiments and details including,
among other things: rings architecture for communications
and data handling Systems, Enumeration process for auto
matically configuring the ring topology, automatic routing of
messages through bridges, automatic routing of exception
messages, extending a ring topology to external devices and
providing a flexible and re-configurable System, read return
address, write-ahead functionality to promote efficiency,
wait-till-reset operation resumption, in-vivo Scan through
rings topology, Staggered clocking arrangement, and Stray
message detection and eradication.

0093. Other inventive elements conveyed through the
embodiments and details discussed below include, among
other things: an architectural overview of a flexible packet
processor, a programming model for a flexible packet pro
ceSSor; an instruction pipeline for a flexible packet proces
Sor, an internal memory to be used with the flexible packet
processor; the use of a flexible packet processor as a module
on a rings-based architecture; the core of the flexible packet
processor and associated compounds (agents and non
agents) on the packet processor.

0094. Additional inventive elements conveyed through
the embodiments and details discussed below include,
among other things: an architectural Overview of a commu
nications processor, a programming model for a communi
cations processor, a data path protocol Support model for a
communications processor, an exemplary network processor
employed as the core packet processor for the communica
tions processor, an exemplary rings-based SOC interconnect
fabric architecture employed in the communications proces
Sor; a variety of quality of Support (QoS) features that
implemented in the communications processor; a Series of
beneficial applications of the communications processor; the
various approaches for the Software that can be implemented
to power the communications processor; Specific exemplary
Strategies for the Software in the high performance commu
nications processor, and a performance estimate for RFC
1483 bridging.

0095. It is understood, however, that the invention is not
limited to the Specific embodiments and details, which are
exemplary only. It is further understood that one possessing
ordinary skill in the art, in light of known Systems and
methods, would appreciate the use of the invention for its
intended purposes and benefits in any number of alternative
embodiments, depending upon Specific design and other
needs.

US 2003/0200342 A1

0096. A number of acronyms are used herein to describe
various embodiments of the invention. A table of acronyms
and definitions therefore is provided as Table 1 below:

Acronym

AAL
ABI
ABR
ADPCM
ADSL
ALU
API
ARC
ARM
ARP
ASIC
ATIC
ATM
ATMOS
BGP
B-ISDN
BLES
BSC
BSP
BTS
CAM
CBR
CCITT

CES
CLEC
CMTS
CPCS
CPE
CPP
CPU
CRC
CR-LDP
CS
CTL
DDR
DLC
DMA
DRR
DS
DSL
DSLAM
DSP
EA
E-AD
ENET
EPB
EPD
EPROM
FIFO
FPGA
FPU
FR
FRF
FWD
GFR
GPIO
HDLC
HDSL
H-MVP
HPCP

AD
ID
Iff
IMA
IP
IPOA
IS
ISOS

TABLE 1.

Definition

ATM Adaptation Layer
Application Binary Interface
Available Bit Rate
Adaptive Differential Pulse Code Modulation
Asymmetric Digital Subscriber Line
Arithmetic Logic Unit
Application Programming Interface
ARC Cores
Advanced RISC Machines
Address Resolution Protocol
Application Specific Integrated Circuit
ATM Interconnect
Asynchronous Transfer Mode
ATM Operating System
Border Gateway Protocol (see FIG. 8)
Broadband Integrated Services Digital Network
Broadband Local Exchange Server
Binary Synchronous Communications protocol (IBM)
Board Support Package
Base Transceiver Station
Content Addressable Memory
Constant Bit Rate
Consultative Committee on International Telegraph and
Telephone
Circuit Emulation Services
Competitive Local Exchange Carrier
Cable Modem Transmission System
Common Part Convergence Sublayer (ATM)
Customer Premises Equipment
Control Protocol Processor
Central Processor Unit
Cyclic Redundancy Code
CR-Label Distribution Protocol
Convergence Sublayer
Control
Dual Data Rate
Digital Loop Carrier
Direct Memory Access
Data Recovery Report
Differentiated Services
Digital Subscriber Line
Digital Subscriber Line Access Multiplexer
Digital Signal Processor
Effective Address
Enterprise Integrated Access Device
Ethernet
External Peripheral Bus
Early Packet Discard
Erasable Programmable Read Only Memory
First-In-First-Out
Field Programmable Gate Array
Floating Point Units
Frame Relay
Frame Relay Forum
Forwarding
Guaranteed Frame Rate
General Purpose Input Output
High-level data link control
High-bit-rate DSL
H Multi-Vendor Integration Protocol
High Performance Communications Processor
Hardware
Integrated Access Device
Identification
Interface
Inverse Multiplexing over ATM
Internet Protocol
Power ATM

Integrated Services
Integrated Software on Silicon

Acronym

ISP
ITU-T
IWF
LAN
LD
LP
LPM
LSR
MAC
MAN
MDU
MEGACO
MFSU
MGCP
MIB
MII
MIPS
MMU
MPLS
MSC
MTU
MVIP
NI
NP
OAM
OC
OEM
OS
OSE
OSI
OSPF
PBGA
PBX
PCM
PDU
PHY
POS
PP
PPD
PPPOA
PSOS
PSTN
OOS
RAM
RED
RFC
RIP
RISC
RMI
RSVP
RTOS
RTP

SAR
SDRAM
SDSL
SHDSL
SIP
SMII
SMTP
SNMP
SOC
SP
SPI
SPR
SRAM
SSI
SSSAR
STBUS
SW
TCP
TDM
TM
TOS

Oct. 23, 2003

TABLE 1-continued

Definition

Internet Service Provider
International Telecommunication Union
Inter Working Function
Local Area Networks
Load
Low Priority
Longest Prefix Match
Label Switched Router
Media Access Control
Metropolitan Area Network
Multi Dwelling Unit
H.242 IEEE (voice protocol)
Multi Function Serial Unit
IETS standard (voice Protocol)
Management Information Base
Media Independent Interface
MIPS Computer Systems, Inc.
Memory Management Unit
Multi Protocol Label Switching
Mobile Switching Center
Multi Tenant Unit
Communication backplane interface
Network Interface
Network Processor
Operation and Maintenance
Optical Carrier
Original Equipment Manufacturer
Operating System
A name of OS company
Opens Systems Interface
Open Shortest Path First
Plastic Ball Grid Array
Private Branch Exchange
Pulse Code Modulation
Payload Data Unit
Physical layer
Packet Over SONET
Protocol Processor
Parallel Presence Detect
Point to Point Protocol Over ATM
Portable Scalable Operating System
Public Switched Telephone Network
Quality of Service
Random Access Memory
Random Early Delete
Request for Comment
Routing Information Protocol
Reduced Instruction Set Computer
Reduced MII
Resource Reservation Protocol
Real-Time Operating System
RealTime Protocol
Receive
Segmentation and Reassembly
Synchronous Dynamic RAM
Symmetric DSL
Single-Line High-Bit Rate DSL
SMDS Interface Protocol
Serial Media Independent Interface
Simple Mail Transfer Protocol
Simple Network Management Protocol
System-On-A-Chip
Strict Priority
Serial Protocol Interface
Special Purpose Register
Static RAM
Synchronous Serial Interface
Service Specific SAR
a TDM protocol
Software
Transmission Control Protocol
Time Division Multiplexing
Traffic Management
Type of Service

US 2003/0200342 A1

TABLE 1-continued

Acronym Definition

TTM Time-to-Market
TX Transmit
UART Universal Asynchronous Receiver-Transmitter
UBR Unspecified Bit Rate
UDP Universal Datagram Protocol
UPnP Universal Plug in Play
USB Universal Serial Bus
VBR Variable Bit Rate
rt-VBR RealTime WBR
VC Virtual Circuit
VCI Virtual Channel Identifier
VCL. Virtual Channel Link
VOATM Voice over ATM
VoIP Voice over IP
VP Virtual Path
VPI Virtual Path Identifier
VLSI Very Large Scale Integration
WAN Wide Area Networks
WBS Wireless Base Station
WFO Waited Fair Queue

0097. One inventive aspect of the present invention is to
provide a rings architecture to build a System on a chip
(SOC) and allow for ease in configuration, expandability
and external interface. This rings architecture, in one
embodiment, involves: (1) the use of transactions instead of
Signals; and (2) the use of a single Switch fabric to carry the
transactions instead of many connections as typically imple
mented in buSS-based Systems. A transaction, in at least one
embodiment, includes a instruction generated by a certain
module for directing, in a structured way, another module to
perform Some operation. Transactions are mapped onto
Single physical connection. A transaction may direct a mod
ule to, for example, Set a Set mode flipflop to one or clear
register X or add value Y to counter Z. Transactions also can
be used to provide time Sequencing. Furthermore, two
transactions may be prevented from occurring at the same
time, limiting the appearance of simultaneous errors (i.e.
bugs). In one embodiment of the present invention, a rings
based system on a chip (SOC) is provided. The rings-based
SOC comprises a plurality of ring members on a ring that
communicate using point-to-point connectivity, a plurality
of ring interfaces for interfacing the ring members with the
ring, a message traversing the ring, wherein the message
travels one ring member per clock cycle. In this embodi
ment, the System is adapted So that upon the message
arriving at a given ring member the message is processed by
that ring member if the message is applicable to that ring
member, and if the message is not applicable to that ring
member, the message is passed on to the next ring member.
Furthermore, Subsequent ring members can be adapted to
Supply backpressure Signals to prior ring members.
0098. In one embodiment, the message is applicable to
the given ring member based on at least one of an identifier
identifying the given ring member and an identifier indicat
ing that the message applies to multiple ring members. The
identifier identifying the given ring member can comprise an
address for the given ring member. Furthermore, the iden
tifier indicating that the message applies to multiple ring
members may, in one implementation, comprise message
data designating the message as a Supervisory message.
0099. The message may comprise a type field, an address
field, and a data field. The message may also comprise an

Oct. 23, 2003

enumberation message, wherein the enumberation message
is processed by the ring members in order to assign address
Space consumed by each ring member. Additionally, a
Subsequent Supervisory message can cause the results of the
enumeration message to be returned, thereby allowing a
central member comprising a CPU to infer the topology of
the System. Alternatively, the message can comprise a reset
message that is processed by the plurality of ring members
in order to reset the System. Conversely, the message may
comprise an activate message that is processed by the
plurality of ring members in order to activate the System.
0100. The message also may include a request from a
CPU ring member that causes the other ring members to
report out their address information. The message may also
comprise a write message that is processed by one of the
plurality of ring members to write data thereto, a read
message that is processed by one of the plurality of ring
messages to read data therefrom, and/or a Stray message
indicator So that the System can identify Stray messages.
0101. In one embodiment, the ring members of the rings
based SOC comprise a CPU and a plurality of peripherals,
and wherein the peripherals are adapted to write ahead
changes in peripheral Status, thereby reducing the quantity
of read messages that are issued by the CPU. The ring of the
SOC also may include an external ring interface allowing
the ring to communicate with modules that are not part of the
ring.

0102) In one embodiment, the rings based SOC further
comprises a land bridge that allows the message to proceed
from one side of the ring to an other side of the ring without
traversing Some of the intermediate ring members. The logic
of the land bridge may be configured based on the results of
an enumeration message.
0103) Additionally, the plurality of ring members and
plurality of ring interfaces of the ringS-based SOC may
comprise a first ring with the SOC further comprising a
plurality of Second ring members and a plurality of Second
ring interfaces defining a Second ring, both the first ring and
the Second ring implemented as a System on a chip, and
wherein the first ring and the Second ring are coupled using
a Sea bridge. In one implementation, the logic of the Sea
bridge is configured based on the results of an enumeration
meSSage.

0104 Referring now to FIG. 2, an exemplary ring net
work 30 is illustrated in accordance with at least one
embodiment of the present invention. AS illustrated, the
exemplary ring network 30 includes two rings 32, 34 con
nected via a bridge 36, each ring including a plurality of
modules 38-48. The modules can include any of a variety of
modules implemented in SOCS for processing and/or han
dling data, Such as a DMA, an external interface, a timer, a
CPU, an I/O, a peripheral, and the like. In this case, the rings
32, 34 and the bridge 36 represent an implementation of the
Switch fabric 12 of FIG. 1 in accordance with at least one
embodiment of the present invention. To Summarize the
operation of a ring of the ring network 30, consider the
following exemplary operation of ring 32. In this example,
messages are passed between modules counter-clockwise.
When a module receives a message, the module determines
if the message the intended recipient of the message. If the
module is the recipient, the module removes the message
from the ring and processes it accordingly. Otherwise, the

US 2003/0200342 A1

module passes the message on to the next module (e.g., from
module 44 to module 46) during the next clock cycle. If a
module has a message to Send, the module waits till there is
a free slot and passes the message to the module's left hand
neighbor. In this case, each message is one clock long and
the messages travel around the ring 32, one hop per clock.
0105 Members of the Ring
0106 Anchor-the host interface. Through this interface,
the host resets, configures and controls the Setup functions of
the ring. The Anchor also can be adapted to determine if it
is the primary Anchor.
0107 Bridge (e.g., bridge 36)-a combination of two
devices: an upstream link and a downstream link. During the
Setup stage, the bridge flips the network ID and acts as an
Anchor for upstream ring. The host, after the learning Stage,
programs the bridge about what Switching to perform. The
bridge Snoops on the ring and if a hit detected, consumes the
message and carries it on the other Side. If the message is not
hit, the it is sent down as usual. The bridge typically has two
address/mask registers per link direction.
0108 Module-a collective name for components of a
ring, such as a CPU, a bridge, a TDM interface, a Utopia
interface, an xDSL PHY, a timer, a UART, a FCC, a MCC,
a scratch RAM, a CRC calculator, and the like.

0109 External Ring (ExtRing)-used to connect several
chips to create a larger topology. An external ring is par
ticularly useful in prototyping future peripherals by FPGA
extending existing ring-based Silicon.

0110 Packet Processor (also referred to herein as
Vobla)-a network optimized CPU for managing commu
nication logical linkS. The packet processor, in at least one
embodiment, is used to control and terminate Streams that
are beyond internal functionality of the device. The network
Side is done through the rings, the other Side includes, for
example, an external RAM interface.
0111. The rings architecture has many advantages over
traditional bus designs and is an effective way to connect
many different modules, whether on the same chip or on
Several chips. Instead of using Signals and busses, commu
nication between modules (data and commands) are mapped
onto transactions, which in turn are transmitted over ring
infrastructure. Ring topology allows predictable delayS and
easy Scalability. Each ring member adds delay of, for
example, one clock. The ring clock frequency can be made
as fast as needed because of geographical proximity of its
members. Rings can be further connected through bridges,
Such as bridge 36. These bridges are similar to network
Switching devices in the Sense that they are programmed to
direct Selected portions of the traffic to the other side (e.g.,
from ring 32 to ring 34). Inside one exemplary embodiment
chip, the members of the ring are connected to one another
using standard e.g., 8 bits type/20 bits address/32-64 bit
data connection. When going outside the Standard, a
Smaller/slower interface may be defined.
0112) In the broadest sense, the ring carries two kinds of
messages. Setup/Config messages and Work read and write
messages. The Setup messages can be used to learn the
network topology, assign addresses and to program the
members (i.e., the elements of a ring). Setup messages are
initiated by a host through a special anchor member. Regular

Oct. 23, 2003

members, in one embodiment, reply to Setup messages by
providing the host their functionality ID, ring ID and their
Starting address. The host Software can infer from that data
the exact topology of the network and the functionality of its
members. Work messages, in one embodiment, are initiated
by members based on their programming and functionality.
On each clock a ring member examines its in-port. If the
in-port has valid message, then the member determines if the
message is addressed to the member. If So, the member
removes the message from the ring and processes the
message accordingly. If not (i.e., the message is intended for
another member), on the next clock the member transmits it
downstream on the out-port when the out-port becomes
available.

0113. The following are examples of message types that
may be used:

0114 Idle—the connection is idle, i.e., no message;
Reset-reset and propagate to reset the entire net
work;

0115 Enumerate-propagate and obey the Enu
meration algorithm (described below);

0116 Who AmI request-started by the anchor
member and flooded unchanged throughout the ring
network;

0.117) Who AmI response-each member responds to a
Who AmI request by Sending this message-the data field
contains values of Self-address and Several other significant
bits that enable the Anchor to learn the topology of the
network;

0118 Activate-includes the address of a specific ring
member. When this message hits the member, the a subset of
the data bits are written into the RIF (ring interface) unit
control register-the first bit is activate bit (hence the name).
After reset this bit is inactive. This prevents any work
activity of the peripheral to take place. Setting this bit to one,
enables normal work. Other bits include: Scan mode en
able, Stop clock, in Vivo Scan test, ring loopback enable,
(Soft reset), as well as other user-defined bits (discussed
below). These bits may be reset to zero;
0119 Work write-sent during normal operation. These
messages activate various peripherals, fifos (first-in-first
out), write into memory, etc.;
0120 Work read-work messages are used to read from
fifos, move blocks of SRAM (static RAM) data and com
municate with DMAS, to name a few examples.
0121 Exception-started by regular ring members, to
propagate to anchor (the assigned member that initiates the
Enumeration process) and/or a PP (packet processor) to
Signify Some condition needing attention;
0.122 Freeze-propagate message quickly through the
network and disable all activity the rings. Typically used for
debug purposes where a fast freeze of the current State is
needed.

0123 Message Type Encoding

0.124 Table 2 sets forth a listing of message types with a
proposed encoding Structure and description of the encod
ing.

US 2003/0200342 A1

TABLE 2

message type encoding description

idle OOOOOXXX
Supervisor 1111nnnn
requests 11111OOO 0xF8 Enumerate.

11111 OO1 0xF9 Who AmI request.
11111010 0xFA Activate
11111011
11111100 f0xFC freeze
11111101
11111110

Supervisor 11110nnn
responses 1111OOOO 0xFO Who AmI response.

1111OOO1 OxF1 error
work read O1SWMLFI Ox40

S= enable snoop for the response of this
message.
W=width of the data message 64/32 for
return M = TBD
L =enable address modification to indicate
last data of frame.
F=enable address modification to indicate
first data of frame.
I= increment destination.

work write 10SMLZZZ, 0x80
S=Snoop this message.
MTBD.
L=Last data transfer in the message.
ZZZ= the number of valid bytes in the
message.
(ZZZ=000 means 8 valid bytes in the
message).

0125 Ring Member Enumeration
0.126 While it is possible to pre-assign a hard addressing
Scheme for the members of a ring network, in at least one
embodiment, the modules assign address Space for them
Selves. AS the modules are members of at least one ring, each
module can take a block of address Space and tell the next
module its starting address (herein referred to as Enumera
tion). In many Systems, this assignment often gives the same
results, So it may not be necessary to actually reprogram the
modules, but it reduces the need to change hardware regis
ters every time ring configuration is changed. This Self
addressing also serves as a Self-test. In rings-based inte
grated circuit, Such as a SOC communications processor,
peripherals appear to a CPU as Starting address. Each offset
from this Starting address is assigned to a different command
for the peripheral. Note that assigning different peripherals
to different CPUs can Simply be a matter of programming a
location in RAM. Accordingly, several CPU's can be put on
a IC without worrying about arbitration.

0127. As discussed above, each member of the ring
network has predefined address Space. In one embodiment,
this is limited to some power of 2. For example, if a UART
(Universal Asynchronous Receiver/Transmitter-used for
Serial communications and having a transmitter and a
receiver) needs 5 registers, it allocates 8 addresses for itself.
It also should first align the address to a border of 8.

0128. The Enumeration process starts with the Anchor
member, which Sends on its outport an Enum message to
begin the enumeration of rings members. AS each member
receives the Enum message, the member takes the address
field and increments it to fit its own alignment. This becomes
the Zero offset address. Then the address is incremented to

Oct. 23, 2003

next available block of the Same alignment. This last address
is sent downstream. Referring to FIG. 3, an exemplary
enumeration proceSS is illustrated in accordance with at least
one embodiment of the present invention. In this example,
assume that DMA52 needs 16 addresses, UART54 needs 4
addresses, and timer 56 needs 256 addresses. Further assume
that the DMA 32 receives an Enum message having an
address value=8. Accordingly, in this example, the DMA52
would align itself to Some power of two (16, in this example)
and then claim the next 16 addresses (i.e., addresses 16-31).
As a result, the next available address is address 32. There
fore, the DMA 52 would change the address value of the
Enum message to address=32 and provide this value to the
UART54. Since address=32 is already aligned with a power
of two, the UART 54, in this example, claims addresses
32-35 and assigns address=36 to the next available address
of the Enum message. This Enum message is then provided
to the timer 56. Since the timer 56 requires 256 addresses,
the timer 56 aligns its starting address with a power of two
greater than the next available address (e.g., 256) and claims
the next 256 addresses. The next available address value of
the Enum message is then changed to address=512 and
provided to the next member of the ring.

0129. This same enumeration process is repeated for each
member of the ring network, except bridges, which are
discussed in more detail below. In this case, bridges first
allocate their own Space and then Send the in-port Enum
message to the other Side of the bridge. Further more, the
bridge, in one embodiment, is adapted to flip the Zero data.
Accordingly, when the Enum message is returned to the
bridge on the other Side, the bridge passes it back on this
Side. As a first approximation, bridges can program the
routing themselves. If there are no loops, each bridge may
need a maximum of two ranges to look at. It is expected that
no loops exist for Enumeration protocol. So eventually the
Enum message will get back to Anchor. This signifies the
end of Enum process.

0.130. In accordance with one embodiment of the present
invention, a communication System using a ring network
architecture is provided. The System comprises a plurality of
ring members connected in point-to-point fashion along the
ring network, a transaction based connectivity for commu
nicating a message among the ring members, and wherein
the message is a configuration message that causeS ring
members to assign address Space in the ring network. In one
embodiment, the configuration message is processed by
each ring member to cause that ring member to assign
address Space for that ring member, and wherein the con
figuration message is then passed to the next ring member.

0131). In one embodiment, the configuration message
includes an address that defines a starting address. The
configuration message, in one implementation, is originated
by an anchor member, which may include a CPU. In this
case, each member processing the configuration message
can revise the Starting address before passing the configu
ration message to the next ring member. Furthermore, each
member processing the configuration message can assign the
address Space of the member using the Starting address and
address Space Sufficient for that member.

0.132. In one embodiment, a CPU on the ring network of
the System recognizes other ring members using Starting
addresses assigned to those ring members based on the

US 2003/0200342 A1

configuration message. In this case, offsets to the Starting
addresses of the ring members may be used for different
commands for the ring members.

0133. Furthermore, in one embodiment, the ring network
includes a bridge. In this case, the configuration message is
processed by the bridge by assigning address Space for the
bridge and then passing the configuration message to the
other Side of the bridge. The configuration message can be
processed by the bridge So that a Subsequent message is
routed according to whether an address associated with the
Subsequent message corresponds to one Side of the bridge or
the other Side of the bridge. The Subsequent message is
passed across the bridge when the address is associated with
the one side of the bridge, and wherein the Subsequent
message is passed through the bridge when the address is
associated with the other side of the bridge. Additionally, the
bridge, upon receiving a configuration message from one
Side of the ring network, responds by recording a first
address included in the configuration message, passing the
configuration message to the ring members on the other side
of the ring network, and recording a Second address included
in the configuration message when the configuration mes
Sage arrives from the other side of the ring network. In one
embodiment, the first address corresponds to a near Side of
the bridge and the Second address corresponds to a far side
of the bridge.

0134. In one embodiment, the system further comprises a
Second configuration message which causeS ring members to
respond with descriptive data, wherein the descriptive data
can includes address Space data for the ring members. Using
this descriptive data, a CPU member on the ring network can
be adapted to infer the topology of the ring network.

0135) In accordance with yet another embodiment of the
present invention, a method of assigning address Space in a
ring network architecture System including a plurality of
ring members is provided. The method comprises issuing a
configuration message, processing the configuration mes
Sage at each ring member to assign address Space for that
ring member in the ring network, modifying the configura
tion message based on the assigned address Space, and
passing the configuration message to the next ring member.
The configuration message is assigned by an anchor on the
ring network, wherein the anchor can include a CPU mem
ber.

0136. In one embodiment, the configuration message
includes a starting address and the address Space is assigned
based on the Starting address and the address needs of that
ring member. In this case, the method step of modifying
comprises modifying the Starting address before the Step of
passing.

0137) Furthermore, in one embodiment, the plurality of
ring members includes a bridge, wherein the bridge
responds to the configuration message by configuring logic
that provides for a Subsequent message to be passed acroSS
or by the bridge depending on an address associated with the
Subsequent message. The ring network can be adapted to
process a first category of message and a Second category of
message, and wherein the bridge logic is operative only for
the Second category. In one implementation, the first cat
egory is a Supervisory message and the Second category is a
work message.

Oct. 23, 2003

0.138 Activation Register
0.139. The activation register, in one embodiment, is part
of every ring interface (RIF). It is sent as reply to
Who Am I message. It concatenates Several key parameters
of each ring member. It can be used by the Anchor to learn
the topology of the network. It can include the following
fields: user controls; module ID; user ID, Soft reset;
invivo, Scan mode; Stop clock activated; and the like. Mod
ule ID is a hardwired unique ID for each kind of member on
the network. Ring ID is, for example, one-bit used to
identify where bridges are inserted. Each time the Enumer
ate message crosses a bridge, this bit is flipped. Active bit is
Set/reset by activate (or activate all) message types to allow
normal operation of the modules. While this bit is reset, the
module should not operate.
0140 Stages in the Operation of a Rings Network
0141 Hardware connectivity-This is when the actual
hardware is connected and the topology of the Rings is built.
Several rings-compliant chips can be interconnected through
the external ring interface. The unused interfaces can be
Shorted out.

0.142 Reset-the first message the Anchor typically
propagates is a Reset message. It is flooded without clock
ing. The Host should wait sufficient time for the reset
message to flood the whole network.
0.143 Wake-Up-after power-up all modules sitting on
Rings typically are in reset mode. All modules have all
config bits reset.
0144. Enumeration-the Host tells the Anchor to spread
the Enumerate message, starting with Some address (usually
Zero). Each Ring member receives the Enum message,
computes its own address Space needs and transmits down
stream the next available address. The bridges add first their
own Space on the first ring, then transmits the message to the
next ring. When other side of the bridge consumes its own
message, the closer Side continues with the Enum message
on the first ring.
014.5 Flood the Who AmI request-the Host instructs the
Anchor to flood the rings with Who AmI request message.
All modules Simply transmit it downstream, except bridges
that follows the Enumeration algorithm. Each ring member
first sends its response and clock later try to relay the
Request message. This is So the request message will hit the
Anchor only after all responses arrived. Anchor can deter
mine the end of Who AmI sequence by using this fact.
0146 Who AmI response-Each module, after getting
Who AmI request, Sends the contents of its Activation reg
ister as part of the Who AmI response message. The Anchor
should present all these messages to the host. It typically is
the host's responsibility to infer the network topology from
this data.

0147 ProgramWr-After learning the network topology,
via Who Am I response messages, the host can start con
figuring the members. Since it knows each member Starting
address, the host can Send requests to write to any register.
The last Stage is to activate the network by writing active, for
example, bit 1 in Zero offset register. If during later Stages
the Host needs to get the value of any register, it can do So
by issuing Program Rd request and waiting for Program Rd
response. Bridges are special case for ProgramWr. Bridges
need to be programmed first, before trying to pass data
acroSS them.

US 2003/0200342 A1

0148 Activation-After programming stage, the SOC is
ready to perform processing and data handling tasks. To Start
all modules and enable them to work, the Activate message
is flooded throughout the ring network.
0149 Mode to kill stray messages-It is foreseeable that
because of a bug in design or programming, a message could
be sent that is not addressed to any member of the ring.
Either its address is above the highest assigned address or it
is addressed to empty Space between consecutive members.
If the address of the Stray message is above high limit, it can
be routed to the Anchor and consumed or discarded by the
Anchor. However if the Stray address is pointing to empty
Space, this message could circle the ring forever. A proceSS
used to prevent this endless loop follows: messages can have
an additional bit running along with them. If a bridge is
passing a message through (not across) it can set this bit on
the message. If message arrives to a bridge with this bit Set,
the bride discards it. Care should be taken to ensure that only
one bridge per ring (in case there are several) is operating in
this mode. In rings where no bridge exists, the Anchor can
perform this action. Messages freshly generated will have
this bit Zero. Also every time message crosses a bridge (from
one ring to another) this bit is cleared. If a message circles
the ring for a Second time, the designated bridge will discard
it.

0150. For each ring, only one bridge should execute the
above discard process. Otherwise legitimate messages could
be discarded. The solution to this problem is as follows:
during the Enumeration process, the bridge initializes its
sides as a close side and a distant side. The close side is
where the Enum message appears from. The distant Size is
the other Side. In this case, the distant Side can be Selected
to perform the monitoring of Stray messages. On the primary
ring (where Anchor is located) the job of killing Stray
messages is done by Anchor.
0151 Rings Topology Issues
0152 Clock alignment across a SOC often is a critical
feature. Failing it will result in races-which are crippling or
at least inefficient. While other undesirable clocking artifacts
Sometimes can be eliminated by lowering the frequency,
cooling the chip, exposing it to light, etc., races typically are
much more difficult to resolve. AS FIG. 4 illustrates, if the
delay between clk1 and clk2 is greater than the delay from
the output of the first flip flop 60 to the input of the second
flip flop 62, a race is likely, meaning that the Second flip flop
62 could sample the data output from the first flip flop 61 a
whole clock period early.
0153. In rings-based SOC in accordance with at least one
embodiment, there typically is no need to align the clockS
precisely across the whole chip. Clock alignment is needed
only in Singular chunks of data, herein referred to as
compounds. Most of the compounds are Small, Such as
peripherals. Others are of a medium size, Such as DMAS.
Some are considerably large, Such as a packet processor. For
larger compounds, Some kind of clock alignment generally
is mandatory. But the Overall clocking problem can be
divided into Smaller, easier Solved problems. To illustrate, in
at least one embodiment, Signals going between any two
modules are tightly controlled, because they are known in
advance and there is only So many of them (for example,
three signal groups: clock, data and backpressure). Further
more, because of the topology, a Solution in one Section

Oct. 23, 2003

typically implies a Solution for the whole System. Of par
ticular importance is the direction along the ring any of the
three groups takes, how the clock tree runs, and what Special
rules/checkS/Solutions are to be defined and enforced.

0154 FIG. 5 illustrates a possible solution to the race
problem. In this example, the clock signal path 64, in the
Same direction of the data path 66, is separated into a number
of similar compounds (e.g., compounds 70, 72) By control
ling the logic 74, 76 on each flip flop leaving a compound,
it can be ensured that the delay between flip flops is at least
long enough to prevent a race condition. This also can be
verified after layout.
0155 Although the solution illustrated in FIG.5 may be
implemented, in at least one embodiment, the clock Signal is
propagated in the opposite direction of the data, as illustrated
with reference to FIG. 6. By providing the clock signal 78
in the opposite direction of the data Signal 80, the potential
for race between compounds 70, 72 is significantly reduced
or eliminated.

0156. In at least one embodiment, there is at least one
Signal that goes against the usual flow of data (signal 80),
this signal being the OK signal 82, which is utilized to
enable backpressure, as illustrated with reference to FIG. 7.
The OK Signal 82 generally needs Special treatment because
it's sampling clock lags behind Sourcing clock (signal 78).
However, this can be solved by ensuring that the return path
is longer then clock delay. Alternatively, as illustrated with
reference to FIG. 8, a latch 86 may be implemented to
ensure that data provided to flipflop 62 changes only after
the rising edge of the clock 78 (clkb).
O157 FIG. 9 illustrates a complication resulting from the
propagation of the clock 90 in a direction opposing the
propagation of data in a ring network having a bridge 94. AS
illustrated, data a leaving the bridge 94 goes to member 96
and should be sampled by the rising edge of clkb. However,
clkb lags considerably behind clka of the bridge 94. As
demonstrated by the waveforms 98, race is eminent. How
ever, by adding latches to the data lines, race can be
eliminated or Substantially reduced. Likewise, latches
should be used on the OK signal to prevent race. It will be
appreciated that the latches utility may be limited if the delay
between, for example, clka and clkb is greater than about
75% of the cycle time since the substantial timing uncer
tainty may be introduced. FIG. 10 illustrates a complication
resulting from the propagation of the clock 90 in a same
direction of the propagation of data 102 in a ring network
having a bridge 94. As illustrated, data b leaves member 96
to be sampled by the bridge 94 using clk.a. AS opposed to
the situation referenced in FIG. 9, clkb now lags consider
ably behind clka. However, this may be advantageous if the
lag is considerably Smaller than the clock cycle Since the
data can be delayed beyond the danger Zone of clock delay.
Likewise, the OK Signal is covered and the last leg of data
is covered. In this case, the only signal that typically must be
considered is the OK signal from the bridge 94 to member
96. In this case, a latch can be used at member 96 to prevent
race in the OK Signal.
0158. It is often desirable to minimize lag between mem
bers of a ring, thereby increasing the number of members
Supported by a Single ring as well as minimizing the timing
constraints to be considered. However if one or more
members are packet processors or other modules having

US 2003/0200342 A1

considerable processing tasks, the clock entering Such mod
ules often is delayed considerably when the clock is regen
erated to drive the big compound. In this case, the same
principles apply and may be Solved using latches, as illus
trated with reference to FIG. 11, which illustrates a data
Signal and clock signal propagating in the same direction. In
this case, the local clock 110 lags behind the ring interface
clock 112 of the module 114 (e.g., a packet processor). For
outgoing data, this typically is not a problem Since it changes
later then the ring interface flip flops clock. However, for
data entering the module 114 from a previous member, race
is a possibility. The same situation may occur in the event
that the clock signal 112 and the data Signal 116 propagate
in opposite directions.
0159. In accordance with one embodiment of the present
invention, a ringS-based System is provided. The System
comprises a plurality of ring members on a ring network that
communicate using point-to-point connectivity, a message
traversing the ring from member to member, where the
System is adapted So that upon the message arriving at a
given ring member the message is processed by that ring
member if the message is applicable to that ring member,
and if the message is not applicable to that ring member, the
message is passed on to the next ring member, and where the
System further comprises a System clock signal for control
ling timing on the ring network wherein the System clock
Signal is aligned between groups of ring members instead of
among all of the ring members. In one embodiment, the
System clock signal runs in the Same direction as the
message, while in another embodiment, the System clock
Signal runs in the opposing direction to the message. The
alignment can be implmented to Substantially removes skew
among the clock Signals. Furthermore, the alignment can
prevent a flip-flop at a ring member from Sampling data a
clock cycle too early.
0160 The system clock signal alignment preferably is
performed among adjacent ring members, wherein the align
ment for a ring member can be performed with respect to the
ring members upstream and downstream ring member. The
alignment can be performed by inserting logic at the ring
members that ensures that the delay between adjacent clock
Signals does not exceed the delay between the adjacent
members. Similarly, the alignment can be performed using
latches that are clocked by clock signals at individual
members.

0.161 In one embodiment, the rings-based system further
comprises a backpressure signal that runs in the opposing
direction to the message, wherein the alignment is per
formed by inserting logic at the ring members to ensure that
the return path for the backpressure Signal exceeds the clock
delay between adjacent members.
0162 Bridges
0163 AS discussed previously, the ring topology in
accordance with the present invention arranges module in a
logical ring. All data and control is transmitted over this ring
infrastructure Sequentially around the ring. However, as
illustrated by FIG. 12, considerable ring latency may be
introduced. To illustrate, if module 116 Sends a message to
module 118, there is little latency. However, if member 120
is to pass data to member 122, the data must pass through
four modules (i.e., four clock cycles), resulting in consid
erably more latency. Another problem is peak latency. To

Oct. 23, 2003

illustrate, Suppose that member 116 transmits mainly to
member 122 and member 118 transmits data mainly to
member 120. In this case, the communication between
members 118 and 120 suffers degradation due to the traffic
from member 116 to member 122.

0164. In at least one embodiment, a bridge may be used
to minimize the latency between members of a ring. AS
illustrated in FIG. 13, a bridge 130 may be used to connect
two rings 132, 134. This bridge is analogous to a Sea bridge
Since it connects two rings together just as a Sea bridge
connects two islands. The Sea bridge, in one embodiment,
determines what messages to croSS over between rings and
what messages to keep on the current ring. So referring to
the above latency problems, the Sea bridge may be utilized
to minimize peak latency issues. To illustrate, if member 134
communicates mainly with member 136, communications
between member 138 and member 140 are not affected.

0.165 Intraring latency resulting from a relatively large
number of members of the ring between the transmitting
member and the intended recipient member may be reduced
by a land bridge, as illustrated with reference to FIG. 14.
The land bridge 146 is utilized within a ring 148 to minimize
the number of hops for data/clock signals. To illustrate,
without the land bridge 146, data from member 150 to
member 152 would have to go though 5 members. However,
the land bridge 146 reduces the number of members in the
data path between member 150 and member 152 to 3
members (with two of the members being the bridges two
interfaces 154, 156).
0166 The bridge, either a land bridge or a sea bridge, is
adapted to analyze a message received at one of its interfaces
and to pass the message through to its other interface or pass
on to the next member depending on the intended recipient
of the message. For example, when member 150 sends a
message to member 158, the land bridge 146 receives the
message at bridge interface 154 and determines that the
Shortest path is to pass the message from the bridge interface
154 directly to the member 158. However, when member
150 sends a message to member 160, the land bridge 146
receives the message at bridge interface 154 and determines
that the shortest path is to pass the message through the
bridge to the bridge interface 156 and then from bridge
interface 156 to the member 160. It is not necessary for a
bridge to be aware of the topology of the ring when deciding
the more optimal path for a message. Using the enumeration
process, the bridge can obtain the information used to make
this decision. Referring now to FIG. 15, an exemplary
routing process by the bridge 146 is illustrated in accordance
with one embodiment of the present invention. For enu
meration purposes the land bridge 146 appears as two ring
members (interface 154 being one member and interface 156
being the second). The member/interface of the bridge
having the lower address (address=3 in this case) becomes
the near end, the member/interface of the bridge having the
higher address (address=6 in this case) is marked as the far
end. A message arriving at the near end (from direction of
the member 150) is passed on if the destination address of
the message is greater than 3 and less then 6. Otherwise, the
message is passed through the bridge 146 to the far end
(interface 156). On the far end, a message arriving at the
interface 156 from the direction of member 152 will be
passed through to the near end (interface 1154) if its desti
nation address is less than 6 but greater than 3. Otherwise the

US 2003/0200342 A1

message is passed on to member 160. In at least one
embodiment, the address values by which a bridge 146
determines the routing of a message are determined during
the enumeration process described herein. FIG. 16 illus
trates a situation whereby two messages are received at an
interface 154 of a bridge 146 at a same time. As illustrated
msg1 and msg2 are received at the same interface 154 at the
Same time. In one embodiment, messages transferred
between interfaces of the bridge 146 are given priority,
whereas in other embodiments, messages received at the
bridge interface from members of the ring are given priority.
Referring to FIG. 17, an exemplary implementation of a
bridge 170 is illustrated. In this example, the bridge 170
includes control logic 172 adapted to control the upstream
and downstream muxes 174-180 to pass either the incoming
messages through either the fifo (fifos 182-188) between the
downstream input and the upstream output, the upstream
input to the upstream output, the downstream input to the
downstream output, and the upstream input to the down
Stream output.

0167. In accordance with one embodiment of the present
invention, a ringS-based System on a chip is provided. This
System comprises a plurality of ring members on a ring that
communicate using point-to-point connectivity, a message
traversing the ring from member to member, the System
being adapted So that upon the message arriving at a given
ring member the message is processed by that ring member
if the message is applicable to that ring member, and if the
message is not applicable to that ring member, the message
is passed on to the next ring member, and wherein at least
one of the ring members comprises a bridge.

0.168. In one embodiment, the bridge of the rings-based
System is adapted to allow messages to travel from one side
to another Side of the bridge without passing through inter
mediate ring members. In this case, the bridge can be
configured So that the message arriving at the bridge is
routed according to whether an address associated with the
message corresponds to one Side of the bridge or the other
side of the bridge.

0169. Likewise, the message, in one embodiment, is
passed across the bridge when the address is associated with
the one Side of the bridge, and wherein the message is passed
through the bridge when the address is associated with the
other Side of the bridge. Accordingly, the bridge can include
logic with a range of addresses, Such that the message is
routed to one side of the bridge or the other side of the bridge
depending on whether the address is within the range. The
logic may be established based on a configuration message
that causes the ring members to assign their address Spaces,
and the configuration message may include an enumeration
meSSage.

0170 In one embodiment, the plurality of ring members
of the rings-based System are a first plurality of ring mem
bers comprising a first ring network and the System further
comprises a Second plurality of ring members comprising a
Second ring network, wherein the bridge comprises a bridge
between the two ring networks. The bridge can be adapted
to determine which messages to pass to the Second ring
network and which messages to keep on the first ring
network. In this case, the bridge may be configured So that
the message arriving at the bridge is routed according to
whether an address associated with the message corresponds

Oct. 23, 2003

to one side of the bridge or the other side of the bridge. The
bridge can include logic with a range of addresses, Such that
the message is routed to the first ring network or the Second
ring network depending on whether the address is within the
range. This logic can be established based on a configuration
message that causes the ring members to assign their address
Spaces. The configuration message, in this instance, may
include an enumeration message. Furthermore, the message
can be passed across the bridge when the address is asso
ciated with the first ring network, and wherein the message
is passed through the bridge when the address is associated
with the Second ring network.
0171 In another embodiment, the bridge is adapted to
process a first category of message and a Second category of
message. The first category of message can include a Super
Visory message and the Second category of message can
include a work message. The bridge then can be adapted to
make a routing determination based on the Second category
of message. In this case, the bridge can be adapted to
identifies the category of message by examining a message
type included in the message.
0172 Stray Messages
0173 A Stray message is a message addressed to an
unused address of a ring network. The enumeration proceSS
typically leaves gaps of unused address Space between
active modules when the modules align themselves to Start
ing addresses being, for example, a power of two. A Stray
message usually is a result of a Software bug. Unchecked,
Stray messages may slowly choke the ring network, while
Such messages are difficult to detect and/or debug. However,
not every member of the ring is required to know about
much leSS have the capability to detect or remove Stray
messages. In one embodiment, this responsibility falls to the
Anchor and/or bridges.
0174) Referring now to FIGS. 18 and 19, a process for
removing Stray messages is illustrated in accordance with at
least one embodiment of the present invention. In the
illustrated embodiment, one bit of a message is used as a
marker to determine if a message is a Stray. The bit normally
is Set to Zero, but when a message passes through an Anchor
192 or bridge 194, the bit is set to one. If the message arrives
at the Anchor 192 or bridge 194 again, the Anchor/bridge
notes the Set bit and discards the Stray message, thereby
removing the Stray from the ring.

0.175. However, it will be appreciated that since a bridge
has two ring interfaces, one of the interfaces must be
Selected to filter Stray messages, particularly in land bridges.
To illustrate, if member 196 sends a message to address=5
(an unassigned address), the land bridge 198 will receive the
message at the far end 200 (address=11) and forward the
message back to the near end 202 of the bridge 198
(address=3), where the process will be repeated unless the
Stray message is removed. Accordingly, in one embodiment,
the far end 200 of the bridge 198 (i.e., the interface of the
bridge furthest away from the anchor) is selected to filter for
Stray messages. The Stray message marker bit of messages
received at the near end 202 remain unchanged while the
stray message marker bit is set at the far end 200 of the
bridge.

0176 FIGS. 20, 21, and 22 illustrate exemplary ring
networks having more than one bridge per ring. To illustrate

US 2003/0200342 A1

FIG. 20 includes a ring having two parallel bridges 208,
210, FIG.21 has a ring 212 with bridges 214, 216 that cross,
and FIG. 22 includes a ring network having both a land
bridge 222 and a sea bridge 224. Other bridge combinations
may be utilized in accordance with the present invention.
0177 Debugging and Testing on the Rings
0178. Due to the topology of the ring network, there is an
opportunity to use the infrastructure of rings to assist Scan
and debug. The rings can be used as a Scan chain access to
individual ring members and also a special in-vivo Scan
mode (discussed below) may be employed. Referring to
FIGS. 23 and 24, the insertion of a scan capability is
illustrated. A Scan may be enabled by introducing new
scan insert member 230, which is not a regular member. The
Scan insert member 230 can be adapted Such that it does not
introduce one clock delay. For ring Signals it is a muX 232
between regular ring data and Scan input signals. During test
modes this muX 232 inserts Scan input Signals instead of
regular ring data. During normal operation, this muX 232
connects ring infrastructure as usual. In Scan mode, the ring
is effectively cut off. Insert-Scan signals come directly from
input pads 234, 236 on the chip. The tap the results pins
drive the output pads. The insert Scan Signals form three
major groups: Message type, Message address and Message
data.

0179 Before the actual scan can commence the ring
should be programmed to Scan mode. This can done by
forcing a Sequence of Supervisor messages onto the ring.
This sequence first resets the ring, then Enumerates it. The
last Stage is activating for Scan of one Specific member. After
the Scan mode is programmed to the member, the actual Scan
can be done. Scan mux Signal is part of the ring. It is
programmed Via, for example, the external pad to create the
shift in Sequence. Then for one clock it is negated. During
this cycle the Scan capture occurs. Then Scan muX is asserted
again and clocking advances the Scan out data. The Scan out
data is tapped off the wires entering the Scan insert module.
Referring to FIG. 25, exemplary signals 240-250 used as
Scan chains are illustrated. During Scan, Several message
data Signals are used as Scan chains. The number of data
lines depends on how many parallel Scan chains are neces
Sary.

0180
0181. A typical silicon debug scenario is as follows: a
chip is run for one billion clockS and a bug is discovered.
The test is rerun for half the clocks and then stopped. all
flip-flops values at the Stopped State the Source of the
problem or error is hopefully determined. In Such a Scenario,
in-vivo Scan may be utilized. For an in-vivo Scan, the chip
is started as usual. The Software is run for the Specified
number of clocks (note: optionally, a special counter may be
used to freeze the rings.) The ring modules are deactivated
then deactivated by, for example, a message from a certain
module. One specified ring module is re-activated in in-vivo
Scan mode. This mode causes the module to run shift-out of
all its flip-flops. The module's ring interface is responsible
for managing the Scan-out. It counts bocks of, for example,
32 Scan-out bits, packages them in one message and ships
the message to the Anchor. The Anchor or other module
needs to retrieve these messages out of the Anchor and pass
them to debug Software. The message type typically is the
Program Read Response message, which is designed to get

In-vivo Scan

Oct. 23, 2003

to Anchor. The address is the modules Self-address. The data
of this message is, for example, 32 bits of Scan-out data.
Each activation of this mode causes a certain number Such
messages to be generated. If the modules have more flip
flops then the total bit count of the messages, the designated
module can do this activation again and again. To facilitate
fast freeze of members State, a special Supervisor message
(Freeze message) is defined to run quickly around the rings
and freeze the State of each module.

0182. In accordance with one embodiment of the present
invention, a rings-based System on a chip is provided. The
ringS-based System comprises a plurality of ring members on
a ring network that communicate using point-to-point con
nectivity, a message traversing the ring from member to
member, where the System is adapted So that, during normal
operation, upon the message arriving at a given ring member
the message is processed by that ring member if the message
is applicable to that ring member, and if the message is not
applicable to that ring member, the message is passed on to
the next ring member, and wherein the System is further
adapted for a Scan testing mode in which one of the ring
members is enabled for a Scan output and the other ring
members deactivated. The deactivated members can be
adapted to pass messages without consuming the messages.
0183 The scan output can be packaged into one or more
messages that are transmitted by the one ring member. The
one or more messages may be transmitted to a processor,
wherein the processor can include a ring member operating
as a Supervisor that consumes Supervisory response mes
Sages. In this case, the processor can be adapted to make the
data from the one or more messages available to debugging
Software. Additionally, in one embodiment, a Second of the
ring members of the rings-based System comprises a pro
ceSSor that issues at least one message that operates to
deactivate the other ring members and to enable the one ring
member for the Scan output.
0184. In one embodiment, the operation of the system in
the Scan testing mode causes the one ring member to shift
out flip-flops associated with the one ring member into one
or more messages Sent on the ring. The Scan testing mode
can be initiated by resetting the ring network and enabling
the one member for the Scan mode, where initiation of the
Scan testing mode may include enumerating the ring net
work. In one embodiment, the Scan testing mode allows a
user of the System to debug the System without adding
additional hardware.

0185. Furthermore, in one embodiment, the plurality of
ring members are coupled to the ring network using a
plurality of ring interfaces having registers, wherein the
registers preferably include bits that can be set to deactivate
the ring member associated with that ring interface. The
registerS also may include bits that can be set to enable the
ring member associated with that ring interface for the Scan
output.

0186. In accordance with another embodiment of the
present invention, a method of Scanning in a ring network
having a plurality of ring members is provided. The method
comprises observing a defect or anomaly during normal
operation of the ring network, issuing at least one message
that causes one ring member to enter a Scan output mode and
other ring members to be deactivated, resuming operation of
the ring network, and outputting Scan data from the one ring

US 2003/0200342 A1

member onto the ring network as messages. The method, in
one embodiment, further comprises causing a different ring
member to enter the Scan output mode in order to isolate the
defect or anomaly. The at least one message can comprise at
least one Supervisory message that configures bits in ring
interfaces associated with the ring members. Additionally, in
one embodiment, the Step of observing takes place at a point
in time during the normal operation, and wherein the Step of
resuming is carried out just prior to the point in time.
0187. During the scan output mode, in one embodiment,
the one ring member packages its Scan output as messages
to be transmitted to a processor ring member. In this case,
the processor ring member can be adapted to make the Scan
output available to debugging Software.
0188 Basic Ring Interface (RIF) Overview
0189 This section covers three issues. The basic ring
timing and backpressure protocol. It also presents the ring
interface unit block diagram, which in turn is used to
describe the interface to the user module connected to the
ring. Regular ring members need not be aware of the ring
intricacies. The basic ring interface is intended to hide most
of the timings and protocols. FIGS. 26, 27 and 28 illustrate
an exemplary implementation of ring Signaling between
modules of a ring network. AS discussed previously, in one
embodiment, the OK signal 266 (back pressure) flows in a
reverse direction to inform member 268 that on the next
rising clock 272 it may force new message on type/addr/data
lines 274–278. The OK signal 266 is generated by the
receiving member 270. By default, in one embodiment, the
OK Signal 266 is active and the only time it goes down is
when the message type is non-idle and there is no room in
the correct fifo of member 270. The correct fifo is either fifo
280 for through traffic in member 270 or the messages
addressed for member 270 fifo. Thus the OK signal 266 is
generated by Signals coming from member 268 to member
270 and is sent roundtrip back during the same clock.
0190. The generation of OK signal 266 can be done from
flip-flops resident in member 270 and the type lines of
message coming from member 268. For example, if the fifo
280 is full, the OK signal 266 is negated, even though the
next OK down the ring is active and is freeing an entry in the
fifo 280. The same basic OK protocol is used four times in
each RIF (ring interface) unit (FIG. 27). The same OK
protocol is valid for the four exemplary RIF interfaces.
0191 In accordance with one embodiment of the present
invention, a rings-based System on a chip is provided. The
ringS-based System comprises a plurality of ring members on
a ring network that communicate using point-to-point con
nectivity, a message traversing the ring from member to
member, where the System is adapted So that upon the
message arriving at a given ring member the message is
processed by that ring member if the message is applicable
to that ring member, and if the message is not applicable to
that ring member, the message is passed on to the next ring
member, and the System is further adapted So that down
Stream adjacent ring members provide a signal to their
upstream adjacent ring members that indicates whether a
Slot is available for the upstream ring member to pass the
message to the downstream ring member on a given clock
cycle. The receipt of the Signal indicating that a slot is not
available, in one embodiment, causes the upstream ring
member not to pass the message on that clock cycle. In one

Oct. 23, 2003

embodiment, each ring member provides the Signal to the
immediately prior ring member each clock cycle.
0.192 In one embodiment, each ring member couples to
the ring network by a ring interface, where the Signals
regarding slot availability are passed between adjacent ring
interfaces. In this case, the ring interface can include an
input FIFO and a through FIFO. The signal can be generated
by the downstream ring member and passed to an immedi
ately upstream ring member holding the message, where the
Signal is generated according to the FIFO for the down
Stream ring member that pertains to the message. In this
case, the downstream ring member can be adapted to deter
mine that the input FIFO pertains to the message if the
message is to be consumed by the downstream ring member
and that the through FIFO pertains to the message if the
message is not to be consumed by the downstream ring
member. The determination can be made by the downstream
ring member examining information descriptive of the mes
Sage before the message in its entirety is Sent from the
upstream ring member to the downstream ring member,
where the information preferably comprises data from a type
field and an address field for the message. The Signal can
indicate that a slot is available when the input FIFO pertains
to the message and the input FIFO can accept a message
and/or when the through FIFO pertains to the message and
the through FIFO can accept a message.
0193 In one embodiment, the signal generated by the
downstream adjacent ring members is a backpreSSure Signal
that is generated based on data Sent from the upstream ring
member to the downstream ring member and then back to
the upstream ring member in a round trip fashion during a
Single clock cycle. Furthermore, in one embodiment, each
ring member has a ring interface, wherein each ring interface
has four interfaces using or providing the Signal which
comprises a backpressure Signal.
0194 In accordance with another embodiment of the
present invention, a method of controlling the transmission
of messages on a ring network comprising a plurality of ring
members is provided. The method comprises providing a
message at a first upstream ring member that is available for
output to a Second adjacent downstream ring member,
receiving a signal at the upstream ring member from the
downstream ring member that indicates whether a Slot is
available for outputting the message on a clock cycle, and
outputting the message from the upstream ring member to
the downstream ring member if a slot is available and
holding the message if a slot is not available.
0.195. In one embodiment, the signal is generated based
on the content of the message. In this case, the Signal can be
generated based on whether the message will be consumed
by the downstream ring member or pass through to a further
downstream ring member. The content of the message
preferably includes at least a portion of the message type
and/or at least a portion of the message address.
0196. Furthermore, in one embodiment, the downstream
ring member is coupled to an input FIFO and a through
FIFO, wherein the downstream ring member determines
which FIFO pertains to the message. The downstream ring
member also can determine whether the pertinent FIFO is
capable of accepting the message.
0197) The Imessage path is the messages intended for this
member. Each message bus on the diagram above is actually

US 2003/0200342 A1

collection of three fields: type/8, addr/20, data/64. It is true
for 3 out of 4 interfaces. For Imessage path, the type can be
in most caseS reduced to work/program and read/write. Also,
Several other bits of type might be needed, like last and size.
For the address field only low order bits are needed. The
address bits needed are the bits that cover the internal
module address Space. The data field might be reduced in
Some cases to 32 bits or even less, for example 8 bit UART.
The Imessage fifo may be a very reduced version of other
fifos.

0198 The Omessage fifo 282 transmits messages origi
nating locally to the outside ring. It has to Support full fields,
because many kinds of messages can be produced. AS can be
seen from FIG. 28, the OK signal logic 284 originates in the
Sending member 268. It starts with creating message type
and address. Type and address fields travel to member 270,
whereas, using these two fields, a decision is made as to
whether the message is a through message or it ends at and
is consumed by member 270. In each case, the status of the
corresponding fifo is transmitted back as the OK Signal. The
next rising clock Samples this OK to muX either previous
message or new one or idle. AS presented, all four interfaces
of RIF have similar turnarounds with their OK signals.
0199 Routing of Incoming Messages
0200 Referring now to FIG. 29, an exemplary process
for routing of incoming messages is illustrated in accordance
with at least one embodiment of the present invention. AS
illustrated, incoming messages to a module are examined
first to determine if the message is a Supervisor or work/
program message. Using the address field 290, the intended
address of the message can be determined. Since, in one
embodiment, the address of the module is aligned to a power
of two, an address mask 292 (referred to as split mask) may
be used to compare only a Subset of the bits of the address.
The lower part 294 of the address is passed into the module
as an internal address. The Subset of bits are compared
against a Self-address register 296 containing the addresses
associated with the module (obtained during the enumera
tion process). If the subset 294 matches the self-address
register 296, the module can consider the message to be
addressed to the module. Using the ourS/through indication
to create the correct DOK (down ok) signal, the above
discussion ignores the Supervisor messages. Some of Super
visors make different use of the address field, when they
apply to all members (Enumerate). Some of the Supervisor
messages are responses from members. These messages
carry address of the Sender.
0201 Referring now to FIGS. 30-33, exemplary imple
mentations of the RIF 300 are illustrated in greater detail.
0202) The main RIF registers include:

0203 self address valid bit flipflop: indication that
Enumeration was run and address assigned;

0204 self address: value of self address. This reg
ister typically is 20 bits although fewer bits may be
used, as the lower part of this register typically is
Zero,

0205 idnumber: a constant parameter used to iden
tify the associated member;

0206 ADDRESS PACE: this is the number of bits
used by internal address Space. It is used to calculate
the address Space claimed by the ring member.

Oct. 23, 2003

0207 activated bit: This bit is reset at hardware reset
and modified further by activate messages. If this bit
is active, the ring interface is in work mode. It will
process work messages. If this bit is inactive, the ring
member should wait for programming or activation;
Scan enabled bit in activation register : turns the
module into Scan mode. Reset by hardware reset,
further modifiable by activation messages.

0208 in vivo scan and related: scan out of all
registers during interruption of normal work. This is
done on per module basis.

0209 RIF Signal Descriptions
0210. By convention, the term input refers to a signal
entering a ring interface and output refers to a signal driven
by the ring interface.
0211 The pins to a subsequent ring member/from a
previous ring member include:

0212 rif d type 7.0): input, message type
0213 rif d addr19.0): input, message address
0214 rif d data 63:0: input, message data
0215 rif dok: output, backpressure, goes back to
previous member

0216)
0217 rif d scan: scan mode enable (the actual
muXing Signal, not test mode)

0218)
0219 rif d passed me: input, indicates that mes
Sage passed through bridge or Anchor already

rif d clock: input, clock in Signal

rif d reset: input, h/w reset

0220 Pins for messages entering the ring member
include:

0221 rif i write: output, this message is valid write
and can come from a program or work write. The
RIF module modifies the options bits (see below) in
case of program write.

0222
0223 rif i options5:0: output, rest of the bits of
type in the message. These bits are relevant to more
Sophisticated members, Snooping on last and Such.
For simple members they do not have to be used.
Option bits have one out of two possible interpreta
tions. One for read and one for write. For write:
Snoop, last and size. For read: enable Snoop, width of
the response (64 bit or 32 bit, for example), enable
last address modification (end of frame indication),
enable first address modification (start of frame) and
increment destination. Discussed above with refer
ence to message type encoding.

rif i read: output, this message is valid read.

0224 rif i addr15.0: output, relevant part of
address

0225 rif i datal31.0: output, relevant part of data
low

0226 rif i datah 31.0: output, relevant part of data
high

US 2003/0200342 A1

0227 rif i ok: input, tells the RIF that message is
accepted by member. On the next clock, a new
message may be sent.

0228 Control pins entering the RIF include:
0229 rif activated: output, reflects activated bit in
activation register, if not enabled this bit prevents
work messages entering/exiting the member. Also,
peripherals should not start transmit/receive opera
tions with this bit disabled.

0230)
0231 rif Scan mode: output, reflects Scan bit in
activation register if enabled, this member is under
Scan teSt,

0232 rif Scan: output, Scan muxing signal if
enabled, in shift of scan operation, if disabled with
mode, means capture;

0233
0234
0235 rif user id1:0: user defined modifier of
module ID input;

0236 rif user-control 3:0 bits from activation reg
ister for user definition and use;

rif reset: output, either hard reset or Soft reset;

rif self address 19:0: output, self address;
rif clock: clock for local flipflops;

0237 Pins for messages going to the next member of the
ring include:

0238 rif u type 7.0: output;
0239 rif u addr19:0: output;
0240 rif u datal 31:0: output, data low;
0241 rif u datah 31:0: output, data high;
0242 rif u ok: input, back pressure from next
member;

0243)
0244 rif u Scan: output, Scan mode enable (the
actual muxing signal, not test mode); rift reset:
output, hardware reset,

rif u clock: Output, clock out signal;

0245 rif u passed me: output, indicates that message
passed through bridge or
0246 Anchor already; Pins for messages exiting the
member include:

0247 rif otype 7:0 input, message type bits (type
7:32 =0) act as valid indication;

0248
0249
half;

0250)
half;

0251 rif o replace: input, request to replace the
relevant part of datal with self address bits;

0252 rif ook: output, tells the member that mes
Sage is accepted by RIF;

rif o addr19:0: input, message address;
rifo datal31:0: input, message data low

rifo datah31.0: input, message data high

Oct. 23, 2003

0253) Anchor RIF Interface
0254 The Anchor RIF interface, in one embodiment, is a
variation on the RIF interface used by regular ring members.
It has one more State variable-active/passive Anchor. If the
Enumerate message comes through dimeSSage inputs, then
an Anchor declares itself passive. If Enumeration message
comes from omessage input, then the Anchor declares itself
an active Anchor. An active Anchor consumes all Supervisor
messages, whereas in regular RIFS, Supervisor messages are
ignored by passing them all to imessage output. For work
messages there is another difference. Anchors have Self
address Space like any other ring member. Work messages
addressed to Anchor address Space are consumed. Anchors
also participate in Stray message kills (as discussed above).
If message addressed above (or below) Enumerated address
Space, it will be caught and discarded by the Anchor.
0255 Bridge RIF
0256 Aprimary function of the Bridge to direct traffic
between rings. During Enumeration, the Bridge learns all it
has to know about the topology. Signal interfaces of a bridge
are identical to two sets of regular RIF. The only exception
is clock, which has a tree-topology. Other tug-along Signals,
like Scan, take the longest (crossover) route. From a hard
ware point of view bridge can be viewed as two RIFs
connected back to back. However, the bridge provides
additional functionality. For one, the bridge records the first
input to receive the Enumeration message. The end lucky to
get hit first by Enumeration is labeled near, because it is
closer to the Anchor. The other end is labeled far. Also the
incoming Enumeration address is recorded as low range.
The Enumeration message is sent to the other far side. When
it returns on the far Side dimeSSage input, The address is
recorded again as high address. At this point bridge is ready
to work.

0257 During normal operation, Supervisor request mes
Sages, in one embodiment, are crossed to the other Side.
Supervisor response messages are moved to near umeSSage
output. Program write messages and Program read requests
are treated as work messages. Program read responses are
moved to the near umessage output. Work messages are
routed based on low/high bounds. If message address is
between low/high bounds it is moved to the far umeSSage
output. Otherwise the near Side gets it. The far Side also
participates in detecting and removing Stray messages.
0258. In one embodiment, messages appear to member
module through rif i signals.
0259. These signals include:

0260 rif i write: changes just after rising edge of
the clock. if active means valid write message
arrived. Valid means correct type and context, The
user does not have to worry about decoding message
types and Such;

0261 rif i read: changes same, means valid read
message arrived;

0262 rif i options5:0: bits extracted from type
part of the message. For read they mean Snoop,
width, last, first and increment and for write they
mean last, Snoop and size bits,

0263 rif i ok: member generates positive acknowl
edge to ring interface. This signal should be valid (or
negated) shortly after rif i read or rif i write

US 2003/0200342 A1

become valid. If OK is negated during this cycle, on
the next cycle same message data will be driven.
Members should make every effort to keep this
Signal very active;

0264 rif i addr19:0), rif i data/37:0and rif i
datah 31.0

0265 General controls entering a RIF include:
0266
0267
0268 rif activated: member received ok to operate.
This signal is useful for RX peripherals, not to Start
bothering anyone without activation;

0269 rif self address 19:0): self address on the
ring,

rif clock: clock;
rif reset: reset;

0270 Constant controls exiting a member and entering
ring control include:

0271 module id7:0 these two bits can be used by
members to tell the System Something Specific about
themselves. For example Ethernet MACs can use
one of these signals to tell the world if they are 10 or
100 mbit connected;

0272 rif o type 7.0) is the type of outgoing mes
Sage,

0273 rif o addr and rifo datal/datah are rest of
the message bits,

0274 rif ook: if in current cycle this signal is
inactive (low), don’t change the message on the next
positive edge.

0275 Ring control parameters include:
0276 ring interface unit (also called ring control)
has 2 parameters, which should be set at Verilog
instance time. ADDRESS SPACE: this number sig
nifies the number of internal address lines that should
enter the member. for example, member has internal
memory map of 256 bytes it needs 8 address lines to
address this space. Its ADDRESS SPACE should be
Set to 8. It also means that to recognize a message to
this member the 12 most significant bits of the
message address are used. MODULE ID: each hard
ware ring member gets, for example, 8 bits for a
unique ID. This ID is unique to all instances of the
same hardware, for example, all Ethernet MACs
have the same ID. To distinguish between different
MACs, self address and user id bits can be used.
Module ID can be examined by Anchor using
Who Am I messages. Module ID typically is part of
the response by any module.

0277 Reset on the Ring
0278 Each ring-based SOC typically has only one
Anchor. The hardware reset starts at this Anchor. The
Anchor has a hw reset input pin. From this pin, reset is sent
in two directions. One direction is down the ring. The other
direction is to the module that hosts the Anchor, for example,
a packet processor. The reset propagates through the ring in
the logical ring order. It is the same path all Supervisor
messages take, although the reset is a Signal rather than a
message. However it is unconditionally flip-floped at each

18
Oct. 23, 2003

ring member. It is also possible to force Soft reset on ring
members using Activate messages.
0279. In accordance with one embodiment of the present
invention, a rings-based System is provided. The rings-based
System comprises a plurality of ring members on a ring
network that communicate using point-to-point connectiv
ity, a message traversing the ring from member to member,
wherein the System is adapted So that upon the message
arriving at a given ring member the message is processed by
that ring member if the message is applicable to that ring
member, and if the message is not applicable to that ring
member, the message is passed on to the next ring member,
and where the message causes a reset, Such as a Soft reset,
of the given ring member if the message is applicable to that
ring member. The message preferably includes address
information corresponding to the given ring member. The
message can include an activate message that includes at
least one bit for causing a reset.
0280 The message, in one embodiment, causes a reset by
Writing at least one bit from the message into a ring interface
for the given member. In this case, the ring interface can
includes a bit that is reset by the message, where the bit
preferably includes an activated bit or a reset bit. The ring
interface can be adapted to provide an output to the given
ring member for causing the reset, wherein the output
preferably includes a control pin coupled to the given ring
member.

0281. In accordance with another embodiment of the
present invention, a rings-based system is provided. The
ringS-based System comprises a plurality of ring members on
a ring network that communicate using point-to-point con
nectivity, a message traversing the ring from member to
member, wherein the System is adapted So that upon the
message arriving at a given ring member the message is
processed by that ring member if the message is applicable
to that ring member, and if the message is not applicable to
that ring member, the message is passed on to the next ring
member; and wherein the System further comprises a reset
control Signal that causes multiple members of the ring
network to be reset (Such as a hard reset).
0282. The reset control signal can include a hardware
Signal that is sent independent of the message. Furthermore,
the reset control Signal can be sent on a different line from
the message. The reset control Signal can be adapted to cause
all ring members except for the member from which the
reset signal originates to be reset. The reset control Signal, in
one embodiment, causes a reset by causing the reset of bits
in ring interfaces corresponding to the multiple members. In
this case, the ring interfaces can provide an output to their
corresponding ring members to cause the resets, where the
outputs can include control pins coupled to the correspond
ing ring members.

0283. In accordance with an additional embodiment of
the present invention, a rings-based System is provided. The
ringS-based System comprises a plurality of ring members on
a ring network that communicate using point-to-point con
nectivity, a message traversing the ring from member to
member, the System being adapted So that upon the message
arriving at a given ring member the message is processed by
that ring member if the message is applicable to that ring
member, and if the message is not applicable to that ring
member, the message is passed on to the next ring member,

US 2003/0200342 A1

wherein the System includes a message that can cause a reset
of the given ring member if the message is applicable to that
ring member, and wherein the System further includes a reset
control Signal that causes multiple members of the ring
network to be reset. The message that can cause a reset can
cause a Soft reset of the given ring member, wherein the reset
control Signal causes hard resets of the multiple members.
0284 Message Types and Formats
0285 Messages come in roughly four categories:
0286 Supervisor requests include reset, Enumerate,
Who Am I requests, activate, freeze. These messages are
generated by Anchor and are flooded through the network.
0287 Supervisor response-include Exception,
Who AmI response. These Supervisor messages are gener
ated by regular members and float to the Anchor for its
attention.

0288 Programming include regular work write and
read messages.

0289 Work-includes work read and work write.
0290 The Enumerate message: The Enumerate (or
Enum) message is initiated by the active Anchor. In each
ring System there is only one active Anchor. Anchor decides
it active, if it is told to start the Enumeration through
omessage inputs. The message can include a header field, a
data field, a next available address field, a ring ID, and the
like. The ring ID is bit flipped every time the message
crosses a bridge. It is recorded in activate register in every
ring interface. This bit can later be used by software to
determine the exact ring topology.
0291 Who am I message: To learn the topology, Anchor
Starts Who AmI request message. Each member that
receives this message, firstly responds to it, then relays the
request message. This order assures that Anchor will see the
request message only after all responses. Thus it can deter
mine that the Who AmI process ended. In request message
the field typically used is the type field. The address part of
the message is the module’s Self Address. The data field
holds info about the module.

0292 Activate message: The Activate message is issued
through the Anchor. It carries the address of a specific
member and a few bits in the data field used to write the
activation register. The bits in the activation register control
the state and behavior of the members.

0293 Freeze message: The freeze message unclogs rings
and deactivates all members.

0294 Tools for Module and Ring Network Builder
0295 Write Ahead Mode-Read operations in a rings
based architecture typically is much more time consuming
than write operations. Accordingly, in another inventive
aspect of at least one embodiment of the present invention,
Status registers are usually inspected by CPUs before Send
ing or receiving data. It generally is desirable to get Status
fast. The delay of two-way trip from CPU to peripheral and
back often is unacceptable. The present invention provides
that the peripheral, every time its Status changes, sends it
ahead to one or more pre-arranged locations in a CPUS
RAM or other device. The extension of this idea is to change
every critical read to Send-ahead write. In essence, every

Oct. 23, 2003

time important parameter changes in Some perihperal, its
value is written to an agreed memory in the asker Space. For
example, the CPU needs to know how many free entries are
there in a Utopia fifo. Instead of doing read operation
initiated by CPU, the fifo, each time this number signifi
cantly changes, will write it in Some agreed location of
CPU's RAM. The CPU now only needs to read its local
memory.

0296 To implement the above write ahead modality, a
ringS-based System on a chip is provided in accordance with
one embodiment of the present invention. The rings-based
System comprises a plurality of ring members on a ring that
communicate using point-to-point connectivity, a message
traversing the ring from member to member, where the
System is adapted So that upon the message arriving at a
given ring member the message is processed by that member
if the message is applicable to that ring member, and if the
message is not applicable to that ring member, the message
is passed on to the next ring member. The System also is
adapted to process both read messages and write messages.
The plurality of ring members includes a CPU and at least
one peripheral that exchanges date with the CPU, wherein
the peripheral includes at least one Status memory that Stores
data describing the Status of the peripheral, and where the
System is configured to write ahead Status changes that are
accessible by the CPU.
0297. The system also can be adapted to perform write
ahead Status changes that would otherwise be initiated by the
CPU as read operations. Likewise, the write ahead opera
tions can be programmed to occur based on read operations
that would otherwise be initiated by the CPU on a regular
basis. The System can be adapted to write ahead Status
changes to a RAM on the CPU or a RAM that is accessible
by the CPU. The CPU can comprise a control protocol
processor in a communications chip or network processor in
a communications chip. The Status memory may comprise at
least one Status register.
0298. In at least one embodiment, the write ahead opera
tions are performed for Some peripheral Status changes but
not other peripheral Status changes. Additionally, the write
ahead operation is performed or not performed depending on
the nature of the Status change. Alternatively, the write ahead
operation is performed or not performed based on the
magnitude or the quantity of the Status change.

0299. In accordance with another embodiment of the
present invention, a write-ahead method in a rings based
communication System, Such as a communications processor
or a network processor, is provided. The method comprises
identifying at least one module in a ring network that
includes Status registers that Store Status information of
regular interest to a processor in the ring network, identify
ing which Status information can be transmitted to the
processor as a write ahead operation initiated by the at least
one module instead of a read operation initiated by the
processing, and programming the at least one module to
transmit the identified Status information as a write ahead
operation. In one embodiment, the Step of programming
causes the average number of read operations initiated by
the processor to decrease.
0300. In one embodiment, the identification comprises
identifying which Status changes are of critical importance
or of regular interest to the processor. Alternatively, the

US 2003/0200342 A1

identification can include identifying what magnitude or
level of Status change will cause the write ahead operation.
0301 Land Bridges-Most members on a ring typically
communicate in an asymmetric way. For example, EnetRX
(Ethernet receiving) traffic is mostly from a peripheral to a
packet processor. For EnetTX (Ethernet transmitting) it is the
other way around. Pair of members is asymmetric if one is
mainly the Sender and the other is mainly the receiver in
their relationship. In this case it makes Sense to put the
Sender upstream from the receiver. But Some pairs are
almost Symmetric. A packet processor paired with a DMA is
Such an example. AS Such, no matter how they are placed on
a ring, one direction is bound to Suffer. In this case, one or
more land bridges generally will provide the Solution.

0302 As discussed previously with reference to FIG. 14,
a single land bridge can be added to minimize latency
between two members of a ring. As illustrated in FIG. 34,
two or more bridges 332,334 may be added to a ring 336 to
further minimize the number of modules between any two
ring members. Although each bridge 332, 334 adds two
interfaces (members) to the ring network, this generally will
not affect the latency significantly since a message is
unlikely to travel the entire perimeter of the ring network
due to the bridges.
0303 Implementation of an External Ring Interface
0304 Referring now to FIG. 35, an exemplary external
ring interface 340 is illustrated in accordance with one
embodiment of the present invention. Ring connections
between two members can include more than 100 Signals.
Each message can include, for example, at least 104 Signals.
Therefore, it may be unreasonable to add this amount of pins
(twice) to implement the external ring interface. AS Such, it
may be preferably to implement a dual purpose peripheral
interface 340, such as Utopia. Normal mode of operation for
an Utopia interface is Sending/receiving ATM cells. In a
Similar manner, two rings networks, Such as two network
processors, can be connected with Utopia interfaces back to
back. In this mode, instead of cells, Utopia pins will convey
messages. This will Slow the Specific ring Speed, but not the
chip Speed since if the Utopia interface is behind a bridge,
only messages to the other side are slowed down, not the
internal messages. Using Utopia infrastructure for this, also
enables us to connect an external FPGA 344 (Field-Pro
grammable Gate Array) as a new peripheral.
0305 The following is non-inclusive list of some of the
identified advantages associated with the rings topology of
the present invention: high Speed circuit design-all con
nections are point to point unidirectional connections, Scal
ability-once the address routing is resolved the actual
topology can be changed relatively easily; the Switch fabric
is transparent to Software, only delays are affected by the
topology; typically easier to implement than crossbar or
Switch design, debug and test Visibility—each member can
be examined and operated alone; possibility of late process
ing load balancing-different peripherals can be assigned to
different CPUs; and the possibility of no need for precise
acroSS-the-chip clock alignment-clock can be adapted to
run along messages.

0306 Although any of a variety of CPUs may be imple
mented as a module of the ring network topology described
herein, ring networks are particularly well-Suited for packet

20
Oct. 23, 2003

processors, various emobiments of which are described in
detail below. The packet processor of the present invention
may on occasion be referred to herein as the Vobla, the
network processor, and Similar variations. According to one
embodiment, the network processor of the present invention
may be implemented as part of a communications processor
having multiple modules that are interconnected using the
rings architecture described above. The modules in Such an
arrangement for a communications processor may include
the network processor of the present invention (for data
plane processing of packets), a control packet processor (for
control plane processing as a flow manager), various periph
eral modules, and So forth.
0307 In accordance with one embodiment of the present
invention, a rings-based System is provided. The rings-based
System comprises a plurality of ring members on a ring
network that communicate using point-to-point connectiv
ity, a message traversing the ring from member to member,
where the System is adapted So that upon the message
arriving at a given ring member the message is processed by
that ring member if the message is applicable to that ring
member, and if the message is not applicable to that ring
member, the message is passed on to the next ring member;
and the System further comprising means for providing an
external ring interface that enables communication with at
least one external peripheral device. The means can com
prise a field programmable gate array and/or a memory port
ring member on the ring network. The at least one external
peripheral device can include one or more of a DSP, encryp
tion engine, external bus, external memory, a second ring
network, and the like.
0308. In one embodiment, the means is adapted to per
form handshaking between the protocols of the ring network
and the at least one external peripheral device, wherein the
handshaking preferably includes converting message data
from the ring network into transaction data. The means also
can be adapted to allow the ring network to write out
messages to the at least one external peripheral and the at
least one external peripheral to generate transactions con
verted into messages for the ring network.
0309 The means, in one embodiment, operates as a
shared memory between the ring network and the at least
one external peripheral. In this case, the means may include
a memory that operates as a RAM for messages received
from the ring network and as a FIFO for transactions
received from the at least one external peripheral device.
The means also may include a memory, wherein the ring
network can write data to an address in the memory to cause
an interrupt in the at least one external peripheral device.
0310. In one embodiment, the ring network is a first ring
network on a first chip, where the rings-based System further
comprises a Second ring network on a Second chip, and
wherein the first ring network and the Second ring network
interface through the means to the at least one external
peripheral device.
0311 Alternatively, the ring network can include a first
communications processor including a first protocol proces
Sor and a Second network processor, and the System can
further comprise a Second communication processor includ
ing a Second protocol processor and a Second network
processor, wherein the first communications processor and
the Second communications processor interface through the
means to the at least one external peripheral device.

US 2003/0200342 A1

0312. In accordance with yet another embodiment of the
present invention, a network processor implemented on a
chip is provided. The network processor comprises means
for processing a plurality of protocols including ATM, frame
relay, Ethernet, and IP, Said means being programmable
using a Set of library commands to process additional
protocols, and wherein Said means comprises an arithmetic
logic unit (ALU), a load/store unit (LSU), a preload/bump
unit (PBU), a register file unit (RFU), an agent interface, and
an internal memory. The network processor, in one embodi
ment, further comprises a fetch unit and a program
Sequencer.

0313 The ALU can be adapted to perform arithmetic and
logic operations on data operands. The LSU can be adapted
to perform address calculations in order to address data
operands in the internal memory. The LSU calculates an
effective address according to one of five available options,
including: (1) effective address is the content of a register
from the RFU; (2) effective address is the sum of content of
a first register from the RFU and content of a Second register
from the RFU; (3) effective address is the sum of content a
first register from the RFU and content of a Second register
from the RFU after the second register is shifted by a
specified number of bits; (4) effective address is the sum of
the content of a register from the RFU and a displacement
that occupies a Specified number of bits in an instruction
word; and (5) effective address is an absolute address
included in the instruction word. The PSU, in one embodi
ment, performs decoding of instructions received from the
internal memory. The fetch unit can be adapted to control
what instructions are fetched from memory for decoding by
the PSU. The internal memory can be adapted for storing
program information and data.

0314. The RFU, in one embodiment, comprises a first
register file for a current task and a Second register file for
preloading register values for a next task. In this case, data
may be read to or written from the first register file based on
a comparison between a current task ID and a task ID
associated with the first register file. The RFU also can
comprise a third register file for Storing register values for
the current task that are not stored in the first register file. In
this case, data may be read to or written to the third register
file when the current task ID and the task ID associated with
the first register file are not the Same. In one embodiment, a
task Switch is performed by the network processor by
making the next task the current task and preloading a
further next task. The performance of a task Switch can
include treating the Second register file as the third register
file after the task Switch.

0315. The agent interface, in one embodiment, allows the
network processor to interface to external modules for
executing instructions, where the external modules can
include one or more of a CRC module, encryption module,
hashing module, and table lookup module.

0316. In yet another embodiment of the present inven
tion, a communications processor implemented on a chip is
provided. The communications processor comprising a net
work processor including means for processing a plurality of
protocols including ATM, frame relay, Ethernet, and IP, said
means being programmable using a set of library commands
to proceSS additional protocols, wherein Said means com
prises an arithmetic logic unit (ALU), a load/store unit

Oct. 23, 2003

(LSU), a preload/bump unit (PBU), a register file unit
(RFU), an agent interface, and an internal memory. The
communications processor further comprises a protocol pro
ceSSor for controlling the network processor, wherein the
protocol processor performs control plane processing and
the network processor performs data plane processing. The
network processor can be adapted to proceSS instructions by
performing a fetch, decode, address, execute, and a write.
0317. In one embodiment, the network processor and the
protocol processor are ring members on a ring network, and
further comprising a plurality of other ring members on the
ring network. In this case, the network processor includes a
plurality of compounds that share a single ring interface to
the ring network, wherein the compounds can include, for
example, a doorbell agent for controlling the execution
Sequence of tasks for the network processor. The compounds
also may include a multireader agent for Servicing requests
to read data from the internal memory, a message Sender
agent for Sending messages onto the ring network, a DMA
agent for Sending messages to initiate a DMA controller on
the ring network, a CRC agent for performing CRC calcu
lations, and/or a debug module. Generally, a packet proces
Sor includes the following capabilities that are typically not
found in general purpose microprocessors:
0318 Zero overhead task Switching. Usually, each inter
face (I/f) port would require at least 2 tasks (RX receive,
TX transmit to handle the datapath processing. A System
that includes Several ports would require about two or more
active tasks for each port. AS Such, the packet processor
should be able to switch tasks with minimum overhead. The
packet processor may allocate shadow memory (4-8 tasks)
to Store registers and task Status. The priority Scheme to
choose the next task to run is hardware (HW) based and is
not performed by software (SW) as in a RISC (Reduced
Instruction Set Computer) model.
0319 Parallel engines-Processing of packets can use
parallel machines to accelerate performance. Examples for
this capability include DMA, CRC, Lookup engine, and
Peripheral Transfer Machine. A well-built packet processor
would have the mechanism in place to issue and receive
Synchronically transactions to parallel machines without
Stalling the packet processor.
0320 Data movements-Packet processing require data
movements from First-In-First-Out (FIFO) memory to inter
nal memory, and from internal memory to external memory
and Vice versa. This is performed using parallel Direct
Memory Access (DMA) machines. Data transfers should be
optimized and deterministic within boundaries. Hence the
right mechanisms have to be in place between the DMAS
and the packet processor to allow the transactions between
the engines and to ensure deterministic behavior.
0321 Scalability-One way to scale the throughput of a
packet processor is by instantiating Several engines. Hence,
it is desirable that the programming model and the System
architecture be flexible enough to accommodate Scalability.
0322 Special instructions-Packet processing uses spe
cial operations that are not common for a general purpose
processor. Instructions like Compare immediate under mask
(to match specific bits), activation of parallel engines using
instructions like CRC, DMA, HASH, LIST SEARCH, and
mechanisms. Such as Sticky bits for compare and jump, are
derived from the needs of packet processing.

US 2003/0200342 A1

0323 Inter-task communication-Inter-task communica
tion is supported by the architecture. Traditional RISC
machines generally use SW for this communication.
0324 Efficient link list operation-Data structures like
link lists, queues and buffers are common in communication
Systems. A flexible packet processor should be able to
manage a large number of different queue types in an
efficient and quick way.
0325 Exemplary Processing Requirements
0326. According to one aspect of the invention, the
flexible packet processor should Support processing of the
following: ATM, Frame Relay (FR), IP/Ethernet, IWF
(TDM to Packets), AAL2 for wireless base stations, IP, and
MPLS.

0327 ATM is by far the largest access method in the
access Space. A packet processor in the Space should to be
able to terminate ATM virtual circuits (VCs) Customer
Premises Equipment (CPE) and should be able to switch
ATM. ATM is of particular interest because a vast majority
of the DSL approaches use ATM as the carrier technology.
Frame Relay is of interest because it is commonly used in
corporate access (e.g., using T1S or NXT1).
0328. After dominating the LAN space, Ethernet is
becoming a cost effective technology for the Metropolitan
Area Network (MAN). This simplifies the need for a costly
router (no ATM) at the corporate edge. This is a new
approach that ISPs (CLECs Competitive Local Exchange
Carrier) use as a way to replace the old Telco access (leased
lines). However, Ethernet access does not solve the issue of
how to deal with corporate Voice. Typical requirements for
IP/Ethernet would be IP routing and Ethernet bridging at 100
Mbps and approaching IG-Enet.
0329 Packet processing for inter-working functions
(IWF) (e.g., TDM to packets) is typically found in Voice
Gateways (VG) and in Wireless Base Stations (WBS). The
VG interface the POTS (plain old telephone system) net
work on one side and the packet network on the other Side.
Voice calls are modified (compressed and packetized, or
uncompressed and circuitized) between the networks. Hence
typical processing requirements at the VG include: termi
nation of AAL2 streams; support for CES (Circuit Emula
tion Services) (AAL1) to emulate T1 services; termination
of RTP (Real Time Protocol) (VoIP) packets; and the like
AAL2 processing may find useful application for WireleSS
Base Stations. New generation WBSs use ATM as their
backbone network. To optimize bandwidth, AAL2 may be
chosen to carry both Voice and data. In that case, the
following processing requirements result: AAL2 Termina
tion at the BTS (Base Transceiver Station); AAL2 Switching
the BTS and at the MSC (Mobile Switching Center)/BSC
(Base Station Controller); AAL2 Termination is done at the
MSC/BSC (OC-3 and IP is routed to ISP); and IMA (Inverse
Multiplexing over ATM) is being used as the connection
between BTSS and the MSC both for redundancy and for
COSt.

0330. The flexible packet processor should handle IP
because IP processing can be found in various applications
in the access Space, Such as the following: ISP aggregation
router; DSLAM for handling frames; Cable modem head
end; Wireless base station; MPLS (Multiprotocol Label
Switching) is a newcomer to the access space. It is being

22
Oct. 23, 2003

used for traffic management and for Quality of Service
(QoS) control. It is desirable that access equipment Support
LSR (edge device) (Label Switched Router) for MPLS.
0331 AS demonstrated above, the access market requires
different acceSS methods. The access market has a need for
IWF between these different methods, which, in turn, drives
the requirement for unique processing capabilities. Also, the
different market Segments have many similarities regarding
their processing requirements. Thus, a flexible packet pro
ceSSor according to the invention can form the basis of an
access platform that is capable of addressing multiple appli
cations in this space.
0332 Architectural Overview of a Flexible Packet Pro
CCSSO

0333. The flexible packet processor in accordance with
various embodiments of the present invention is a general
purpose network processor core, allowing it to Support many
System-on-chip (SOC) configurations. A library of modules
containing memories, peripherals, accelerators, and other
processor cores makes it possible for a variety of highly
integrated and cost-effective SOC communication devices to
be built around the packe processor. Figure shows a block
diagram of an exemplary SOC chip 350 made up of the
network processor core 354 and associated SOC compo
nents (described below) according to an embodiment of the
invention. Although not indicated in this configuration, a
typical SOC can contain more than one network processor
core 354.

0334 Internal Memory Expansion Area (Internal
Memory 352)-On-chip memories operating at full core
frequency are connected to the network processor core 354
through this component. The internal memory is unified and
can be used for both program and data Storage. Different
technologies such as SRAM or ROM can be used to imple
ment the internal memory.
0335) Network Processor Core 354 The network pro
ceSSor core is the processor in which the network data path
application code is executed, and which may include: a
program Sequencer unit (PSU), a load Store unit (LSU), a
fetch unit (FTU); a data arithmetic logic unit (DALU); a
register file (RFU) including Support of fast task Switching;
a preload and bump unit (PBU) for efficient task switching
and context Save and restore; and the like. These compo
nents are discussed below in greater detail.
0336 A companion (sometimes called a compound) that
is tightly coupled to the network processor core is the
doorbell scoreboard module (doorbell) shown in FIG. 36.
The doorbell receives requests for Service from peripherals,
accelerators and DMAS, and then determines a next task ID
once a task Switch occurs in the network processor.
0337 Peripheral Expansion Area 356, Accelerators 358
and System Expansion Area 360. These components
shown in FIG. 36 include the functional units that interface
between the network processor core and the application,
including the functions that Send and receive data from
external input/output Sources. In addition, these components
include accelerators 358 that execute portions of the appli
cation in order to boost performance and decrease power
consumption. These components are application-specific
and may or may not include various functional units Such as:
a host interface; an external memory interface (e.g.,

US 2003/0200342 A1

SDRAM controller); a serial interface (USB, UART, SSI
(Synchronous Serial Interface, Timers); a communications
interface (Utopia, MII); a CRC accelerator; a able look up
coprocessor, Smart FIFO, a data pump; a direct memory
access (DMA) controller; as well as other CPU cores, such
as packet processors (PPS).
0338 To provide the data exchange between the core and
the other on-chip blocks or modules, the following ports
may be implemented: data memory ports (address, data read
and data write) used for data transfers between the core and
memory; program memory port (address and data read) for
fetching code from the memory to the core, agent port to
Support tightly-coupled external user-definable functional
units Such as peripherals, accelerators, DMA's, Smart
FIFOs, and So forth; and a context memory port (address,
data read and data write) used for the preload and bump of
registers for fast task Switching.
0339) Referring now to FIG. 37, the network processor
core 354 is illustrated in greater detail in accordance with at
least one embodiment of the present invention. AS discussed
above, the network processor core, in one embodiment,
includes the following:
0340 Data Arithmetic Logic Unit(DALU or ALU) 370
The DALU 370 (also referred to as the ALU below) per
forms the arithmetic and logical operations on data operands
in the network processor core. The data registers can be read
from or written to memory over, for example, a 32-bit wide
data bus as 8-bit, 16-bit, or 32-bit operands. The source
operands for the ALU 370 are 32 bits wide and originate
either from data registers or from immediate data (1 mm).
The results of ALU operations are Stored in the data regis
terS.

0341. According to one aspect of the invention, ALU
operations are performed in one clock cycle. The destination
of each arithmetic operation can be used as a Source operand
for the operation immediately following the arithmetic
operation without any time penalty. In one embodiment, the
components of the ALU 370 are as follows: an integer
arithmetic unit for 32-bit non-Saturated three-operand arith
metic operations, a logic unit for 32-bit logic operations, a
bit field unit (BFU) for multi-bit shift, rotate, Swap and
bit-field insert and extract operations, and a condition code
generation unit.
0342. The ALU 370 may read two operands from the
register file via the dual source bus (Src1 and Src2 in FIG.
37), or one operand from a register via the Source bus and
a second immediate operand via the immediate buS (1 mm
input to DALU on FIG.37). The ALU 370 generates a result
into a destination register via the destination bus (dest on
FIG. 37).
0343. The condition codes are optionally generated in the
condition code register (part of the R1 register, discussed
further below) depending on the instruction type.
0344) The ALU 370 may support both signed and
unsigned arithmetic. Most of the unsigned arithmetic
instructions are performed the same as the signed instruc
tions. However, Some operations may require Special hard
ware and may be implemented as Separate instructions.
When performing an unsigned comparison, for example, the
condition code computation is different from Signed com
parisons. The most significant bit of the unsigned operand

Oct. 23, 2003

has a positive weight, while in Signed representation it has
a negative weight. Special condition codes and instructions
may be implemented to Support both signed and unsigned
comparisons.

0345) The Load Store Unit (LSU) 372
0346) The LSU 372 performs address calculations using
integer arithmetic needed to address data operands in
memory. In addition, the LSU 372 generates change-of-flow
program addresses. The LSU 372 operates in parallel with
other network processor core resources to minimize address
generation overhead.
0347 The effective address (EA) used to point to a
memory location for a load or a Store is calculated according
to one of the following options. According to one embodi
ment, only the 16 least significant bits (LSBs) of the
calculation result are considered. The options for calculating
the EA include:

0348 Register indirect, No update (Rn). The EA is
the content of a register Rn from the register file.

0349 Indexed by register Ri (Rn+Ri): The EA is the
Sum of the contents of the register Rn and the
contents of the register Ri.

0350 Indexed by a shifted register Ri (Rn+
(Rizzm)). The EA is the sum of the contents of the
register Rn and the contents of the register Ri after Ri
is pre-shifted to the left by m bits.

0351 Indexed by displacement (Rn+XX). The EA is
the Sum of the contents of the register Rn and a
displacement XX that occupies m bits in the instruc
tion word. The displacement is Sign-extended and
added to Rn to obtain the operand address.

0352 Absolute address: The EA is the absolute
address expressed in the instruction.

0353. The Network Processor Registers
0354) The network processor registers are classified into
three types: General Purpose Registers (GPR); Special Pur
pose Registers (SPR); and Hidden registers (HR). The
general purpose registers may be used by the programmer to
load data from memory, execute arithmetic or logic opera
tions, and Store the data back into memory. The Special
purpose registers are registers that have an associated func
tionality, such as a task SPR, and so forth. Generally, SPRs
may not be loaded or Stored directly from/to memory.
According to one approach, a dedicated move instruction
can move data between general purpose registers and Special
purpose registers. Hidden registers are registers which are
not exposed to the programmer, but reside in the hardware
as part of the machine control (e.g., a current PC Program
Counter register).
0355 The General Purpose Register File 374
0356. The network processor of the present invention
includes a Special register file architecture and a memory
block that are capable of managing a large number of tasks
(threads) with Substantially no cycle penalty. The memory
block has the capacity to Store the register context of the
tasks. The register file architecture performs a reduced
number of context Save and restore operations and enables
each active task with its own context registers.

US 2003/0200342 A1

0357 The benefits of this approach, discussed in detail
below, include at least Some of the following: Support of
nearly unlimited tasks; no cycle overhead for context Save
and restore operations upon task Switches, transparency to
the programmer; and cost-effectiveness and low circuit
overhead.

0358. One conventional approach to the multi-task
Switching issue provides that every task Switch is accom
panied by a context Save and restore cycle, usually per
formed by Software. This approach takes extra cycles.
Another conventional approach uses Special circuitry that
allows access to the memory using wide busses, thus
enabling multiple registers to be Saved or restored at a time.
This approach reduces the number of cycles, but compli
cates the interface to the memory (the Tricore CPU from
Siemens uses this approach). Another approach uses mul
tiple register files, one for each task. This approach has the
disadvantage of limiting the number of tasks to the number
of register files, and this is also a costly and limiting
Solution. The large number of register files can also impact
the frequency of operation due to fan-out limitations. (Prod
ucts using this approach include, for example, the Intel
IXP12000 and LeXra NetVortex LX8000 Network Proces
Sor.)According to one approach taken by the instant inven
tion, the programming model of the network processor core
has 32 general purpose registers. These registers can be read
from or written to over the memory data buses (e.g.,
referring to FIG. 37, the Src.1, Src2, and dest buses). Source
operands for ALU instructions originate from these regis
ters. According to one beneficial aspect of the invention, the
destination of an ALU instruction is a register and Such a
destination can be also be used as a Source operand for a
Subsequent ALU instruction in the operation immediately
following, without any time penalty.

0359 At the heart of the network processor core 354 is a
Set of three register files and dedicated hardware that imple
ments a mechanism for automatically Saving and restoring
the registerS Such that a task Switch is accomplished with
minimal overhead on the main flow. Upon entering a task,
both the current and next task identification (task ID) are
Sampled. These three register files are as follows: the active
register file-used to run the current task; the Shadow 1
register file-contains the valid register values of the current
task that do not exist in the active register file, and the
Shadow2 register file-used to preload register values of the
next task concurrent with the current task run. The active
register file has 32 general purpose registers. These registers
are part of the programming model and are exposed to the
programmer. According to one approach, each register of the
active register file has a 32-bit data field and a 6-bit tag field.
The tag field holds the task ID, which identifies the task for
which the data register value is valid.

0360 The network processor core 354 includes a bound
ary register which Specifies for each of the registers whether
it is considered a global register or a general register. The
global registers may store global values that can be shared
among multiple tasks, or they may store temporal values that
are not preserved when the task yields and resumes proceSS
Ing.

0361 The Shadow register files (Shadow 1 and Shadow2)
are not part of the programming model, i.e., they are not

24
Oct. 23, 2003

exposed to the programmer. Each of the Shadow 1 and
Shadow2 register files includes, for example, 32 registers of
32 bits.

0362 According to one approach, task Switches do not
require an explicit save/restore of the general registers.
Saves and restores of the general registers are done implic
itly by hardware according to the following mechanisms. In
case of a write to a general register, the task ID associated
with the register of the active register file is first compared
to the current task ID. If the result is equality, this means that
the register is maintained by the current task, and, therefore,
the register is overwritten with the new value and the current
task ID is marked in its tag field. A non-equal result means
that the register contains valid data for a different task. In
this case, the old register content is first Sent to a write queue
buffer to be saved in memory in a task ID context table, and
then the new value is overwritten to the register and the
current task ID is marked in its tag field.
0363. In case of a read from a general register, the task ID
asSociated with the register is first compared to the current
task ID. An equal result means that the register contains
valid data for the current running task, and thus the data is
read directly from the register. A non-equal result means that
the register contains valid data for a different task. However,
the valid data for the current task for that register resides in
the Shadow 1 register file, as it was preloaded to Shadow2
concurrent with the execution of the previous task. AS a
result, the register value is read from the Shadow 1 register
file, and the register of the active register file remains
unchanged.
0364) A read or write access to a global register accesses
the active register file directly without changing the regis
ter's tag. Concurrent with the execution flow of the current
task, a special machine (the PBU 376 of FIG. 37) preloads
the register values of the next task ID into the Shadow2
register file.
0365. Upon a task switch request, the following actions
should take place: the preload of the register values of the
next task should be completed; the Bump buffer is emp
tied-all data which was sent to the bump unit is saved in the
context table; the next task becomes the current active task,
the Shadow2 register file becomes the shadow for the
current task (Shadow 1); and a new next task is Sampled and
a new preload procedure is initiated onto Shadow2. Special
care should be taken (and special logic may be imple
mented) to prevent hazard cases. For example, a mismatch
in the register value occurs if a register in the active register
file is tagged for a task ID which is identical to the next task
ID, and that register is accessed as a destination in the
current task. In this case the register value should be first
Saved in memory in its context location and then overwritten
with the new value of the current task. However, since the
previous task is identical to the next task, it could be that the
register value is already preloaded into the next task Shadow
register file (Shadow2). In this case, the preloaded value into
Shadow 2 is no longer valid.
0366 FIG. 38 illustrates the register files structure and a
mechanism for low overhead task Switch according to an
embodiment of the invention in accordance with the discus
sion above. In the top half 390 of FIG.38, the current task
ID is Task X, the next task ID is Task Y. In the bottom half
392 of FIG. 38, after a task switch the current task ID
becomes Task Y and the next task ID becomes Task Z.

US 2003/0200342 A1

0367. In accordance with one embodiment of the present
invention, a method for efficient processing of tasks in a
communications System is provided. The method comprises
Sampling a current task identifier and a next task identifier,
providing a first register file for Storing values for a current
task, and providing a Second register file for Storing values
for the current task that are not in the first register file. The
method further comprises providing a third register file for
preloading values for the next task, and performing a task
Switch by making the next task identifier the current task
identifier and Sampling a further next task identifier. The
method can further comprise the Step of completing the
preload of the register values for the next task identifier
which after the task Switch is the current task identifier. In
this case, the method may also comprise using the third
register file as the Second register file after the task Switch.
0368. The first register file, in one embodiment, com
priseS registers with a data field and a task identifier field. In
this case, the first register file has 32 registers, each register
having a 32 bit data field and a 6 bit task identifier field. The
first register file may be exposed to a programmer of the
communications processor and the Second register file and
the third register file are hidden from the programmer. In one
embodiment, task Switches are performed without an
explicit Save/restore of the register files.
0369 The method can further comprise performing a
write during execution of the current task by: comparing the
current task identifier to a task identifier in the first register
file; writing a value to the first register file when the current
task identifier is the same as the task identifier in the first
register file; and writing a value to the first register file when
the current task identifier is not the Same as the task identifier
in the first register file after the content in the first register
file is Saved to a memory. The content in the first register file
can be Saved to a task identifier context table.

0370. The method may also comprise performing a read
during execution of the current task by: comparing the
current task identifier to a task identifier in the first register
file; reading a value from the first register file when the
current task identifier is the same as the task identifier in the
first register file; and reading a value from the Second
register file when the current task identifier is not the same
as the task identifier in the first register file. In this case, the
content of the first register file may not be changed as a result
of the read.

0371. In an additional embodiment of the present inven
tion, a System for efficient processing of tasks in a commu
nications System is provided. The System comprises means
for Sampling a current task identifier and a next task iden
tifier, a first register file for Storing values for a current task,
a Second register file for Storing values for the current task
that are not in the first register file, a third register file for
preloading values for the next task, and means for perform
ing a task Switch by making the next task identifier the
current task identifier and Sampling a further next task
identifier.

0372. In one embodiment, the means for performing a
task Switch completes the preload of the register values for
the next task identifier which after the task Switch is the
current task identifier. Similarly, the means for performing a
task Switch uses the third register file as the Second register
file after the task Switch.

Oct. 23, 2003

0373 The first register file comprises registers with a data
field and a task identifier field, wherein the first register file
can have 32 registers, each register having a 32 bit data field
and a 6 bit task identifier field, and further wherein the
Second register file and the third register file each have 32
registers.

0374. The system may further comprise a processor
which performs a write during execution of the current task
by: comparing the current task identifier to a task identifier
in the first register file; writing a value to the first register file
when the current task identifier is the same as the task
identifier in the first register file; and writing a value to the
first register file when the current task identifier is not the
Same as the task identifier in the first register file after the
content in the first register file is Saved to a memory. The
content in the first register file can be Saved to a task
identifier context table. The processor may comprise an
ALU.

0375. The system may also comprise a processor which
performs a read during execution of the current task by:
comparing the current task identifier to a task identifier in the
first register file; reading a value from the first register file
when the current task identifier is the same as the task
identifier in the first register file; and reading a value from
the Second register file when the current task identifier is not
the same as the task identifier in the first register file. In this
case, the content of the first register file is not changed as a
result of the read. In one embodiment, the means for
performing a task Switch comprises a preload and bump unit.
The processor may comprise an ALU.
0376) The Preload and Bump Unit (PBU) 376
0377 Referring back to FIG. 37, The PBU 376 controls
the access of data memory for the automatic Save and restore
of registers in their context table in memory. A Save of a
register content in its location in the table context is per
formed whenever the register in the active register file is
addressed as a destination and the register contains valid
data for a task different from the current running task.
Generally, only one request for a Save can be captured in the
PBU 376 for a single instruction because only one destina
tion can appear in an instruction.

0378. The PBU 376 includes a write queue with a number
of entries in order to minimize the interference with the main
program flow, thus optimizing the total execution time.
Whenever a register addressed as a Source does not contain
valid data for the current running task, the data is read from
the Shadow 1 register file where it was previously preloaded.
0379 The PBU 376 is also responsible for controlling the
preload of the next task registers into the Shadow2 register
file. The PBU 376 generates the data memory accesses for
Save (write) and preload (read) using the context address and
data busses. According to one embodiment of the invention,
the load Store cycles of the active flow have highest priority,
followed by the preload cycles, and, at the lowest priority,
are the save cycles from the write buffer.
0380. The Program Sequencer Unit (PSU) 378
0381) The PSU 378 performs the instruction decoding
and generate the controls for the other core units. The PSU
378 controls the program flow including all scenarios
involving the change of flow.

US 2003/0200342 A1

0382 Fetch Unit (FTU) 380
0383) The FTU 380 is responsible for controlling the
program counter (PC) for instruction fetch operations.
According to one embodiment of the invention, the PC may
be derived from one of the following Sources: Sequential
increment; jump to an absolute address, jump to an address
Specified by a register; task Switch to a next task entry point;
relative change of flow; exception control (e.g., reset, break
point, patch, etc.); and return from trap.
0384 Messaging Interface (Agent Interface) 382
0385) A few instructions are executed in an external
module (e.g., DMA, accelerators, etc.) connected to the
network processor core. A messaging bus (Agent Interface
or AGI) from the core to the external module enables the
definition and Support of Such an extension of the instruction
Set.

0386 Memory Interface 384
0387 According to one aspect of the invention, the
network processor core uses a unified memory Space
wherein each address can contain either program informa
tion or data. This memory Space is typically based on
on-chip RAM and ROM. The memory module should have
Separate ports for program, data and context accesses. Also,
this memory module may have additional ports for accesses
from the external world, Such as the ring interface.
0388 A Programming Model for a Flexible Packet Pro
CCSSO

0389. The programming model describes the rules for
Writing network processor programs. After a brief introduc
tion that explains in general terms the organization of the
network processor code and the flow of data through the
System, the programming model (e.g., State resources, inter
faces and instruction groups) is outlined in high level terms.
Then, the execution flow and performance issues are dis
cussed. And last, the programming model is detailed.
0390 Organization of the Network Processor Code
0391. According to one embodiment of the invention, the
network processor comprises a 32-bit Single issue RISC
processor tailored for real-time communication processing
goals. According to an embodiment, the network processor
has 32 general purpose registers, built-in Support for multi
tasking, communication peripherals, on-chip SRAM, a
DMA interface to external SDRAM, a built-in interface to an
on-chip control processor (referred to as the host processor
or the Packet processor PP or the Control Packet processor
(CPP).
0392. It is desirable that the network processor have
hardware Support for up to 62 tasks. The hardware Support
includes generation of task activation triggers, automatic
task Scheduling, Save and restore of registers to and from the
Shadow register area in internal SRAM, Special instructions
for yielding the CPU, and Support for passing messages
between taskS.

0393 Each network processor task has a dedicated reg
ister Set. The task registers are preserved acroSS the periods
in which the task is not running. A network processor task
can acceSS internal memory with load and Store instructions,
and can copy data from internal to external memory and
Vice-versa using special DMA instructions.

26
Oct. 23, 2003

0394. The data which a task operates upon can be clas
sified into the following categories (with reference to FIG.
39):
0395 Data from the communication peripherals (arrow
402):
0396 This data is copied, using a special instruction from
the peripheral's FIFO, into internal memory (arrow 406). On
the transmit Side, this data is copied, using a Special instruc
tion, from internal memory into the peripheral FIFO. This
type of data, which is in transit through the device, can be
referred to as Stream data. Stream data eXchanged with the
host processor (arrow 408): This data is passed by a network
processor task, usually in external memory, for further
processing to the host processor. On the transmit Side, the
host processor passes this data to a network processor task
for transmit-related tasks (Such as encapsulation, Shaping,
Scheduling, and So forth) and for transmission through a
peripheral. Stream data is also handed over between network
processor tasks. There are cases when the Stream data is not
touched by the host processor.
0397 Configuration data: This data resides in internal
memory and is Set at initialization time by the host processor
or by initialization procedures on the network processor
(e.g., buffer size). Configuration data is consumed, but not
produced, by the task.

0398 Flow state data: This data is kept in internal or
external memory, and describes, for example, the State of
each ATM connection or the state of the current Ethernet
frame. Part of this data is used and updated by the task (e.g.,
the cell count for a connection).
0399 Task state data: This data is kept in internal
memory (or registers), and is used by the task to keep
information in case the task does not complete the work
intended to be accomplished during a Single period of
possession of the CPU.
0400. A High Level View of the Programming Model
04.01. According to an embodiment of the invention, the
programming model for the flexible packet processor
includes the following elements. State resources—the hard
ware memory entities which hold the State of the program;
interfaces-of the ways in which the program should behave
to interact with hardware resources which are external to the
processor, and instruction Set-the description of the basic
tools with which the program performs its operations.

0402 State Resources
0403 FIG. 40 provides an overview 420 of the state
resources for the network processor according to an embodi
ment of the invention.

04.04
04.05 DMA interface. The DMA interface controls the
DMA machines, which copy data from the NPSRAM to
external DRAM and vice versa. The DMA interface is set up
by the PP at initialization time, and accepts action com
mands from the NP via special instructions. The DMA
interface connects to the doorbells and the task Scheduling
mechanism.

0406 Peripheral FIFO interface. The peripheral FIFOs
are set up by the PP at initialization time, and are instructed

Interfaces

US 2003/0200342 A1

by Special NP instructions to copy a data unit to internal
memory (from internal memory in the case of a TX). The
peripheral FIFOs are connected to the doorbells and the task
Scheduling mechanism.
0407 Accelerators/Coprocessors interface. In general,
there may be two kinds of accelerators/coprocessors: (1)
accelerators/coprocessors that are tightly connected to the
network processor core and that are accessed via a special
agent instruction (e.g. CRC, multireader, message Sender,
etc.). These reside within network processor Compound
entity; and (2) accelerators/coprocessors that are ring mem
bers and can be accessed by any other ring member inter
posed on the ring (via messages over the ring).
0408) Host (PP) processor interface. In general, the PP
will be able to initialize NP configuration registers, to share
data with the NP in internal and external memories, to
request Services from an NP task, and to receive interrupts
and messages from the NP.
04.09 Instruction set. Instructions perform the various
types of actions, Such as the following: arithmetic, logic,
register manipulation-modify data in registers, load/
store-move data between SRAM and registers; flow con
trol-changes in the program counter; task management
control of inter-task changes in the program counter, agent
interface instructions-DMA (move data between the
SRAM and the SDRAM), access to serial ports (move data
between the SRAM and communication peripherals), and
accelerators (specialized communication processing func
tions Such as a CRC calculation on a block of data); special
purpose register moves (and activation of coprocessors)-
move data between GPRS and SPRs.

0410 Execution Flow and Performance Considerations
0411 Generally, the CPU executes instructions sequen
tially until it encounters an instruction which changes the
program flow. For example, this instruction can be a con
ditional or unconditional branch or jump within the task,
which checks a condition bit in one of the general purpose
condition registers, or an instruction which terminates the
current task and Starts execution of another task. Instructions
which cause a non-incremental change to the program
counter take more then one cycle and are optionally fol
lowed by a one instruction delay slot. Other instructions
which influence the program flow are: arithmetic and com
pare instructions which modify the condition code bits, and
instructions which modify the task entry point (the address
from which the task will resume execution in its next
execution round).
0412 Types and states of tasks. Tasks can be in one of
three States: running, pending and dormant. At any given
time there is one running task executing on the CPU. When
Something requests the Service of a task, the task becomes
pending. Each time the running task Voluntarily yields the
CPU, the highest priority task is Selected from the pending
taskS. Tasks for which nothing has requested their Service
are dormant, and they will not be enabled for execution and
will not run. According to one embodiment of the invention,
the number of tasks is determined at initialization time and
there is no dynamic creation/elimination of tasks.
0413 Tasks can be classified by the reason (trigger) that
causes a task to become enabled for execution. In other
words, tasks can be classified by the entity which they serve:

27
Oct. 23, 2003

0414 Peripheral. a task which serves a communication
peripheral. Each time the RX peripheral receives a unit of
data (e.g., 64 bytes of an Ethernet frame) in its FIFO or when
a TX peripheral has space for a unit of data available in its
FIFO, that peripheral sends a service request to their servant
task.

0415 Timer. A timer can be preprogrammed with a
period cycle count. Each time it periodically expires, the
timer Sends a Service request to its Servant task.

0416) Inter-task messages. Data (usually stream data)
can be exchanged or handed over between tasks. One
approach for this is to send a message (e.g., containing the
data pointer) to the other task, accompanied by a service
request. Usually, a task Serves only one master (the master
being the Source of Service requests). This means that
peripherals, timerS and inter-task messages can all request
Service in the same manner.

0417. There are two more sources which can cause a task
to become pending:

0418 DMA. A task is permitted to yield the CPU during
a DMA request (in this way the DMA will work in parallel
with the CPU, and the CPU will not be stalled). The task
usually wants to resume execution when the DMA action is
completed. Upon completion, the DMA will send a service
request to the originating task.

0419 Self-request There is a limit to an execution period
(the time between two sequential task Switch events) of
tasks. The execution of the current task usually may not be
preempted by an external event, So it is the programmer's
responsibility to provide for yielding the CPU before reach
ing the time limit per task. When a task yields the CPU (e.g.,
to allow another task to execute) before it has completed the
intended work, the task can issue the Self-request Service
request before yielding in order to Schedule itself for future
execution.

0420 Task Triggers and Task Doorbell Bits
0421 Task doorbell bits are the place where the service
requests are registered. A network processor task can be
enabled for execution by Several request Sources: Ordinary
priority request from a serial module (e.g., a data fragment
is ready in the receive FIFO and was copied to a predefined
SRAM location or the transmit FIFO finished the transmis
Sion of the previous data fragment.).
0422 High priority request from a serial module. (e.g.,
the RX FIFO over a threshold or the TX FIFO under a
threshold).
0423 Completion of DMA requests.

0424 Self-request (produced by the software).

0425 Message from another task (produced by the soft
ware and using the same doorbell bit as an ordinary priority
request from a Serial module).
0426 Message queue above threshold (produced by the
Software and using the same doorbell bit as the high priority
request from a Serial module).

0427 Timer (uses the same doorbell bit as the ordinary
priority request from a serial module).

US 2003/0200342 A1

0428. According to one aspect, for each doorbell bit there
is a mask bit. The exceptions are the first two doorbell bits,
which have a common mask bit, and the Self request bit,
which can not be masked. If the mask bit is set, the task will
be enabled for execution by the matching request; otherwise,
the request is blocked.
0429. According to one approach, about twelve tasks are
expected to serve Serial channels (e.g., 6 for receive and 6 for
transmit). These tasks will usually be activated by requests
from Serial channels. The rest of the tasks are expected to be
activated by timers, messages from other tasks, or the host
(e.g., doorbell bits 1 and 2).
0430. A task which has more work to do then the maxi
mum allowable latency should yield and use the Self-request
(doorbell bit 5) to be scheduled again (e.g., a timer handler
task). Any task can be activated by a completion of a DMA
request that the task originated.

0431 When a task is scheduled for execution, the request
and mask bits of the Service request that activated the task
are cleared. In the case where there are regular and urgent
bits, both are cleared.

0432 Mask Bits and DMA
0433 Mask bits can be set by software, and, in some
cases, they are Set automatically by hardware. A mask bit,
together with the associated request bit, is cleared by hard
ware when the request is served by the task (the task
becomes running). Mask bits can be set with a special
instructions and can optionally be specified in DMA and
YIELD instructions. When a task issues a DMA request and
this DMA is not the last action in the task, the programmer
should set a DMA doorbell mask bit and clear all other mask
bits (this task should not return to execution because of any
other request, for example the Serial.). When the task returns
to execution after completion of the DMA, all mask bits will
be clear.

0434. According to one approach, there is a default State
of the mask bits for all tasks, with the first bit set and all the
others cleared. Another option, the auto set in DMA and
YIELD instructions, instructs the hardware upon DMA
completion to set the mask bits to the default state. When a
task issues its last DMA request, it sets the auto Set indica
tion. The last YIELD instruction of a task should also set the
mask bits to the default state.

0435 According to one approach, the network processor
DMA is able to serve two external busses (it can be a single
DMA machine in Some implementations.) An immediate
DMAID field is specified in DMA instructions. Its value is
an index into a translation table (the table may be pro
grammed by the CPU or by writing to Special purpose
registers on the network processor). The translation result
contains information like: big/little endian, and So forth.
When all the DMAs initiated by a task (DMAS for which
acknowledgement was requested) are complete, the DMA
doorbell request bit is set.
0436. Using a count field in one of the special purpose
registers, it is possible to yield if all DMAS of the task have
not been completed. Also, when a DMA instruction is
executed, and there is no place in the pending DMA trans
actions queue, it is possible that the network processor may
be stalled.

28
Oct. 23, 2003

0437 Task Priority and Scheduling

0438 Each time the current task suspends its execution,
the hardware Scheduler Selects from the pending tasks the
one with the highest priority, and Starts execution of that
task. Various approaches could be taken to task Scheduling.
According to one approach, the algorithm for Selecting the
next task for execution is as follows. The tasks which
participate in the Selection of the next task for execution are
the tasks for which their corresponding mask bit in the Task
Global Mask Register (TGMR) is cleared. Tasks which
participate in the Selection of the next task and have
unmasked requests are divided in to four groups and Served
in the following order:

0439 1. Highest priority group: includes urgent
requests of task numbers 0-31.

0440 2. Second priority group: includes regular
requests of task numbers 0-31.

0441 3. Third priority group: includes urgent
requests of task numbers 32-63.

0442. 4. Lowest priority group: includes regular
requests of task numbers 32-63.

0443 Within each group, the requests are serviced
according to the task number. Lower task number requests
are Served before higher task number requests. The task
resides in the higher priority class, Starting from the time the
urgent doorbell bit was set, until the time its doorbell mask
is Set to default by an option of the yield instruction, or until
its doorbell mask is explicitly cleared by an instruction.
According to one approach, the tasks are in an urgent State
as long as the handling of all pending urgent events is not
completed (including when the task yields while doing a
DMA during such a period).
0444) When a task starts execution, the doorbell request
bit which caused it to run and the matching mask bit are
cleared. The other request bits are not modified. The regular
and the urgent request bits are considered to be two levels of
the same request and have a common mask bit. They are
both cleared when the request is Serviced. A task can
explicitly raise its priority to urgent, and return its priority to
natural (normal priority, unless there is an urgent request
pending) by using an agent instruction that writes to the
doorbell register. This can be used to increase task priority
for the period spent in a critical Section or in an urgent code
fragment.

0445 Task Switching Performance
0446 According to one aspect, instructions that yield the
CPU take 2 cycles (they have a delay slot). The other
performance issue is the time it takes to restore the registers
of the new task. Usually the registers of the next task are
pre-loaded during the execution of the current task.

0447 Inter-task Communication
0448 Global registers. A global register is a general
purpose register that is shared between all network processor
tasks, and which can be safely used and modified by each
task. (A task has to make Sure that it completes the whole
Sequence, which includes the Shared register use/update,
needed for the action performed, before yielding the CPU.)

US 2003/0200342 A1

0449 Inter-task messages. Sending messages between
tasks is done using queues. Additional information is pro
Vided in the discussion regarding data structures.
0450 Common program. More then one task can execute
the Same object code, for example, Such as two tasks that
Service the reception of two identical Serial channels. Also,
all tasks can share code in functions.

0451 Internal and external memory. Sharing information
in memory is a matter of convention between the tasks. For
complex atomic modifications, it is possible to either have a
Server task with an exclusive right to access the Structure or
to use Semaphores as described further below. (Complex
atomic means that the modification requires a Series of
external memory accesses, between which the data structure
is in an inconsistent, i.e., erroneous, State.) An example of a
need for such a modification would be the update of a linked
list queue whose descriptor is in external memory. Gener
ally, it is recommended to avoid using Such structures when
possible.

0452 Host-Network Processor Communication
0453 Network Processor task to host messages and inter
rupts. Described in connection with the discussion on data
StructureS.

0454) Host to Network Processor task messages. The host
is able to post a message to the input message queue of any
task. The host also sets the doorbell bit of the target task. The
host should not post messages to an input message queue to
which a network processor task posts messages.
0455 According to one approach the network processor,
either with a hardware mechanism or a Software task, should
notify the host when the host message queue changes its
position relative to a close to full threshold. Using Such a
threshold will permit a less time-constrained handling of
messages on the network processor Side and eliminates the
need for a check if not full inquiry on the host Side.
0456) Host to Network Processor commands. There is a
command register that is written to So that the host can
control network processor execution. For example, Such
commands may include a reset, an activate task N, a
deactivate task N (without aborting its current execution),
and a start execution of task N (i.e., give task N a request
without aborting the currently executing task).
0457 Host-network processor parameters. According to
one approach, for each task an area is allocated at compi
lation time to hold the parameters that are initialized by the
host and used by the task. The addresses of these areas are
maintained together with the frame pointers and the entry
points, and are loaded by the boot initialization routine (into
R6, discussed further below) of each task. These parameters
are also read by the host, and are used in the initialization
drivers.

0458 State Resources
0459 General Purpose Registers
0460 According to one approach, there are 32 general
purpose 32-bit registers to be used by the tasks. Some of the
registers, rO-rN, do not preserve their values acroSS task
Switching; they are common to all tasks. These are referred
to as common registers. The other registers, rN+1-r31, are
preserved acroSS task Switching. These registers are referred

29
Oct. 23, 2003

to as private registers. According to one embodiment of the
invention, these private registers are Saved and restored from
their shadow location by the hardware, transparently to the
programmer. N is a global value, preferably programmed at
initialization time. According to one approach, N (which
should be odd) is 15, although other values of N may be used
depending on design considerations. The programmer
should allocate the correct Shadow area for the registers,
which should be the number of tasks multiplied by the
number of private registers. The programmer should use
registers contiguously, Starting from r31 downwards.
0461 According to one aspect of the invention, some of
the registers have Special hardware Support, as follows:

0462) rO is interpreted as constant 0; writes are
ignored.

0463 FIG. 41 illustrates register r1 (430) in greater detail
in accordance with at least one embodiment of the present
invention.

0464 r1 condition codes: sticky condition (I bit);
arithmetic conditions (equal/zero II bit, less than/
negative I bit, greater than/positive I bit, carry I
bit, overflow I bit, doorbell bits 6 bits, and user
defined condition bits 16 bits).

0465 r31: user defined condition codes (32 bits).
0466 r30: entry point address of the task.
0467 r28: link address 1 (function return address).
0468 r29: link address 2.

0469 According to one approach, the convention for
register allocation is similar to the approach taken for
application binary interfaces, or ABI. ABI is a Standard that
allows object code interoperability of functions compiled by
different compilers or written in different languages. Reg
ister allocation according to this approach is as follows:

0470 r27 and other r2x registers (26>2x>20) are
allocated to a fixed meaning. Registers which are
allocated to Some meaning by convention are
expected to maintain the meaning over function
calls. They can be modified within functions, but
only according to their meaning. Each task might
have different registers allocated to fixed meanings.

0471 r27: parameter area pointer and stack pointer
of the task. The compiler or the programmer Stati
cally allocates up to three Stack frames per each task.
The compiler computes the area used by levelO code
(first frame), and the maximum area needed for
automatic variables of level1 functions of the task
(second frame) and of level2 functions of the task
(third frame). There is a global limit of memory size
of local function variables (enforced by the com
piler). Whenever there is an indirect function call,
the maximal stack frame will be allocated. All
accesses to local variables will be translated by the
compiler to offsets on r27, and there is no need for
a Stack pointer register for dynamically allocating
frames on the Stack and for modifying the Stack
pointer during function calls and returns.

0472. According to one approach, the compiler limits the
function call depth to two. The compiler may also identify

US 2003/0200342 A1

those functions which do not yield and do not call other
functions, allocate their frame in an area common to all
tasks, and use absolute addresses to access local variables
(this may save memory per task in this case). Other registers
can also be allocated by convention to: data unit address in
internal memory, data unit pointer in external memory,
connection table base address, and So forth. Registers which
are allocated to Some meaning by convention are expected
to maintain the meaning over function calls. Such registers
can be modified within functions, but only according to their
meaning.

0473 r16, r17: These registers do not preserve their
value over any function call. They can be used
without Saving in level2 functions and in level1,
which do not expect the value to be preserved over
a level2 function call. The r16 and r17 registers are
used to pass parameters and get results to/from levels
and level2 functions. Even in the case when there are
no parameters passed, these registers do not preserve

their value over any function call. Preferably, the
compiler forbids functions of more than two param
eterS.

0474. The compiler and the assembly programmer may
use the r16, r17 order for level 1 functions and the r17, r16
order for level2 functions. This may eliminate Saving and
restoring of r16 when both level1 and level2 functions have
a single parameter. Also, r16 and r17 are the only private
registers which can be modified in level2 functions.

0475 r18-r19: These registers should not be modi
fied within level2 functions. They can be used with
out Saving in level1 functions, and they do not
preserve their value over level 1 function calls.

0476 r20-r26: These registers should not be modi
fied within level1 and level2 functions. These reg
isters can be used without Saving in levelO code.
Some of these registers can be assigned to a fixed
meaning, in which case they can be modified within
functions according to their fixed meaning.

0477 rO-r15 are scratch or global registers that are
common to all the tasks, and which are not changed
by the hardware task Switching.

30
Oct. 23, 2003

0478 r2-rS hold information that is frequently used
and shared between tasks, Such as the buffer array
base address (r2) and the free buffer pool address
(current) (r3). These registers can hold popular
(often used) constants, Such as a table base address
or an arithmetic constant.

0479 r8-r15 are used to hold information which
does not need to be preserved acroSS yields, Such as
intermediate results of an arithmetic computation.

0480 ró-r11 do not preserve their value over func
tion calls.

0481 r12, r13: These registers preserve their values
over calls to level2 functions which do not yield.

0482 r14, r15: These registers preserve their values
across calls to level1 and level2 function which do
not yield.

0483 Table 3 Summarizes the register conventions dis
cussed above.

private or
COO

Common
Common
Common
Common
Common
Common
Private
Private
Private
Private

Private

Private
Private

TABLE 3

special HW modified by used as
handling fixed meaning functions parameter

constant O NA Yes No
conditions No Yes No
No Part within fixed meaning No
No No level 1 & 2 & yield No
No No level 1 & yield No
No No No No
No No level 1 & 2 Yes
No No level 1 No
No Part No No
level 1 return No No No
address
level 2 return No level 2 No
address
entry point NA Yes (TBD) No
conditions. No Yes (TBD) No

0484. By way of Summary, registers can be safely used in
the following cases:

0491)

0485 r8-r9: level2 function code which does not
contain a yield; level 1 function code which does not
contain a yield or a call to a level2 function; and
levelO code which does not contain a yield or a
function call.

0486 r10-r11: level 1 function code which does not
contain a yield or a call to a level2 function which
yields.

0487 r12-r15: level.0 code which does not contain a
yield or a call to a function which yields.

0488 r16, r17: any level2 function code; level.0/1
function code which does not contain a function call.

0489 r18, r19: any level 1 function code; level.0 code
which does not contain a function call.

0490 r20-r2X: any level.0 code.
Indication Registers

0492. According to one approach, registers r1 and r31
contain indications which can be used in branch conditional

US 2003/0200342 A1

instructions. They can be explicitly updated by any instruc
tion, but some of the bits in r1 are implicitly updated by
compare instructions and by arithmetic/load instructions.
The carry bit is also implicitly updated by some arithmetic
instructions.

0493 RI is a global register; its value is not preserved
after task Switching. R31 has a copy per task.
0494 The doorbell and mask fields in r1. The doorbell
sub-field contains a copy of the doorbell bits of the current
task. The mask bits are a copy of the task's mask bits. Writes
to these fields are ignored.
0495 Compare instructions, the sticky bit options. Com
pare instructions modify the three condition code bits, LT,
EQ, and GT. Optionally, the compare instructions can also
update the Sticky bit. These instructions Specify a condition,
such as one of NONE, LT (less than), LE (less than or equal
to), EQ (equal to), NE (not equal), GT (greater than), or GE
(greater than or equal to). If the condition is satisfied by the
compare, the Sticky bit is Set; otherwise, the Sticky bit is not
altered. This feature is useful to efficiently implement sev
eral tests of error cases as well as other AND/OR conditions.
Compare instructions also have an option to overwrite the
sticky bit. FIGS. 87-90 (discussed below) illustrate various
mechanisms for using the accumulative condition flag, i.e.,
the Sticky bit, to execute branch instructions in processing
Systems, Such as a network processor or communications
processor.

0496 Serial status. The serial status indications (e.g.,
error, over-run/under-run, and last), optionally together with
the data fragment size, should be loaded by the programmer
from a fixed memory location into r1 or r31.
0497 User defined indications. The user can keep state
information in the user-defined part of r1 or r31. It may be
desirable for an indication to be created once and used
Several times. The user can also load to r1 or r31 a part of
an array of indications.
0498 Arithmetic instructions modify the condition
codes. Arithmetic instructions can modify the Zero, negative,
and positive condition code bits. The following arithmetic
instructions modify the carry condition code bit: ADD, SUB,
ADDI, SUBI, SRR, SLR, SLI, SRI, and CLB
0499 Branch, jump and yield conditional Conditional
branch/jump and yield instructions test a Single condition
bit, which can be any bit in r1 or r31, and compare that bit
to either 0 or 1. Conditional branch/jump instructions take
three cycles when taken and 1-2 cycles when not taken,
while unconditional branch/jump instructions take two
cycles, in both cases they have an optional delay slot.
Conditional instructions. In most of the instructions the 3-bit
conditional execution field is used to specify whether the
instruction is unconditional or it is conditional upon the
sticky condition bit being true or false. One of the three bits
is reserved for future use.

0500 Link Registers
0501 Branch/jump instructions can be used to call Sub
routines. They have an opcode bit which specifies whether
the return address is to be Saved, and another opcode bit
which specifies whether the return address should be saved
in r28 or r29. The return address is either PC+1 or PC+2,
depending if the delayed branch option is used. The function

Oct. 23, 2003

call depth is limited to two, and the depth of each call/return
is specified in the instruction. Functions which do not call
other functions should be defined and called as depth 2.
0502. The Task's Entry Point Register

0503 R30 contains the address at which the task will
resume execution after a yield. It is modified by any instruc
tion which modifies r30 and is optionally modified by the
YIELD instruction. It can optionally be modified by DMA
instructions which yield.
0504) Hidden Registers
0505 Program counter-according to one approach,
there is a single program counter in the System (not per-task)
and it is not directly accessible by the Software in any

C.

0506 Special Purpose Registers

0507 Special Purpose Registers (SPRs) are network pro
ceSSor core registers that are not defined as one of the
General Purpose Registers (GPRs). Special instructions
(SPRL and SPRS) are defined to enable the movement of
data between SPRs and GPRS. Special Purpose Registers in
the network processor include the Refetch SPR 440, the
Task SPR 442, the Trap SPR 444, and the Mindex SPR 446,
as shown in FIG. 42.

0508 Refetch SPR 440. The refetch SPR is a 32-bit
register that holds the first and Second program memory
addresses of the instructions to be refetched when getting
out of a trap. Bits 15:0 hold the first instruction address
(called refetch) and bits 31:16 hold the second instruction
address (called next refetch). When the network processor
receives a break request and is not already in the trap mode,
it continues instruction execution from the program location
pointed out by the break vector and the trap mode bit is set
(in the task SPR). The address of the instruction that would
have been executed but for the occurrence of the breakpoint
is saved in bits 15:0 of the refetch SPR. The following
instruction that was Supposed to be executed but for the
occurrence of breakpoint is saved in bits 31:16 of the refetch
SPR.

0509 Leaving the trap mode is performed by executing
the RFT instruction. This instruction causes a program jump
to the program location specified by the refetch SPR bits
15:0, followed by the program location specified by the
refetch SPR bits 31:16. This also clears the trap mode bit.

0510) The refetch SPR is a read/write register that can be
accessed through the SPRL and SPRS instructions.

0511 Task SPR 442. The task SPR is a 32-bit read only
register. The task SPR contains information on the current
executing task and on the next task to be executed:

0512 DOORBELL REQ reflects the doorbell
request bits of the current task.

0513 CTID reflects the Current Task ID.

0514 NTID reflects the Next Task ID.

0515 NTV reflects Next Task Valid bit.

0516) MASK reflects the doorbell mask bits of the
current task.

US 2003/0200342 A1

0517 UR reflects the urgency level of the task
(1=urgent).

0518 COUNT reflects the doorbell counter value of
the current task.

0519. When there is a yield and both the bump buffer is
empty and the context of the next task is already pre-loaded,
the network processor Switches to the next task. At this point
the NTID is loaded into the CTID and the next task ID
together with the next task valid bit from the doorbell are
sampled into the NTID and into the NTV, respectively.
0520) If the NTV bit is set, then the NTID is locked and
there will not be further sampling. If the NTV bit is cleared,
then the doorbell next task ID will continue to be sampled
on each cycle until the valid bit is set.
0521. The new valid next task ID is used by the pre-load
logic to pre-load the next tasks context. The task SPR can
be read by using the SPRL instruction. All other bits of the
task SPR are reserved and will be read as Zero. The CTID,
NTID and NTV bits are cleared by reset. The default state
(and the reset state) of the mask of each task is Ob100.
0522 Trap SPR 444 The trap SPR is a 32-bit register. The
trap SPR include the trap mode bit, the illegal instruction
Status bit, and the breakpoint Status bits:

0523 Bit 0-Illegal Instruction (IL): When there is
an illegal instruction, the IL bit is set. The IL bit can
be cleared only by reset.

0524 Bit 1-Trap Mode (TRAP). When TRAP bit
is Set, the network processor is in the trap mode. A
breakpoint event causes the program flow to jump to
a program location (pointed to by a given vector) and
to enter the trap mode of execution by Setting the trap
mode bit. When in trap mode, no breakpoint and/or
patch events will be accepted. The trap mode bit will
be cleared by a RFT (Return From Trap) instruction
or by writing Zero to the trap mode bit. When the trap
bit is cleared, further breakpoints and/or patches will
be accepted.

0525 Bit 2–Program Address Break (PAB). This is a
breakpoint Status bit, which when Set, indicates that a
program address breakpoint occurred. This bit is cleared by
an RFT instruction or by writing Zero to it.
0526 Bit 3-Data Address Break (DAB). This is a break
point Status bit, which when Set, indicates that a data address
breakpoint occurred. This bit is cleared by an RFT instruc
tion or by writing Zero to it.
0527 Bit 4 Task Break (TB): This is a breakpoint status
bit, which when set, indicates that a task ID breakpoint
occurred. This bit is cleared by an RFT instruction or by
Writing Zero to it.
0528 Bit 5-Yield Break (YB). This is a breakpoint
Status bit, which when Set, indicates that a yield breakpoint
occurred. This bit is cleared by an RFT instruction or by
Writing Zero to it.
0529 Semaphores
0530 Semaphores are commonly used when a section of
code that contains yields should not be executed by more
then one task at a time. This happens when the code is
handling Some data structure resource that is shared between

32
Oct. 23, 2003

taskS. Current examples which might entail the use of
Semaphores are: adding and removing from a linked list
queue whose descriptor is in external memory; releasing a
multicast buffer (update of the reference count); emulation
of a task's message queue in external memory; and a task
that tries to put an inter-task message into a full message
queue can use the hardware mechanism to wait until the
queue is not full.

0531. The alternative solution of not yielding while in the
critical section is not efficient. The alternative Solution of
having a dedicated task responsible for the resource, and
thus Serializing the actions performed on the resource, is in
Some cases complicated to implement and is in Some cases
inefficient.

0532 Network processor software semaphores in accor
dance with the present invention are implemented over a
hardware mechanism which makes it possible to prevent the
scheduling of tasks specified in a bitmap (the TGMR reg
ister).
0533. The number of semaphores is limited only by size
of the memory Space allocated for Semaphore Support. Every
Semaphore requires a one byte indication of free/busy State
plus a 64-bit mask of tasks registered for the particular
Semaphore. While performing the critical Section protected
by a Semaphore, the task's priority should be raised and also
all issued DMAS should be treated as urgent in order to
minimize Semaphore holding time.

0534. There could not be too many semaphores in the
System (e.g., in order to comply with the goal of keeping the
internal memory requirement reasonable), yet there are
many shared external memory resources (data queues, con
texts, lookup tables, etc.) that may require Semaphore pro
tection. According to one approach, the Semaphore ID
(number) is chosen based on a simple arithmetic operation
(e.g., a MOD of Significant bits) on the resource address.

0535 The network processor scheduler hardware
includes a bitmap in an SPR register (SPR bitmap). Each bit
in the bitmap, when Set, prevents the Scheduling of the task
whose ID corresponds to the bit index. The network pro
ceSSor Software can add or remove a list of tasks Specified in
the specified in a software bitmap to the above list. The
Software registers in the SPR bitmap those tasks which are
prevented from execution because they are waiting for one
of the currently occupied Semaphores (see bad list below).

0536 The Software holds an indication in internal
memory for each Semaphore that indicates whether that
Semaphore is currently in use/occupied (see SemX indic
below.) The software also holds for each semaphore a 64-bit
bitmap corresponding to the tasks that are currently awaiting
access to the Semaphore (see SemX mask below). For each
task awaiting the Semaphore, this bit, which corresponds to
that task's ID, is set.

0537 According to one embodiment (not reflected in the
table below), the software also holds the task ID of each task
in the form of a 64-bit mask (where only the bit correspond
ing to the task ID is set in this mask).

US 2003/0200342 A1

0538. The following pseudocode in Table 4 illustrates the
use of a Semaphore:

Oct. 23, 2003

0541. If the semaphore is set, the task branches to
SemX occupied, registers itself in the list of tasks awaiting

TABLE 4

Pseudocode Illustrating the Use of a Semaphore

bad list - hardware 64-bit mask indicating which tasks can not be run.
semX indic - software indication per each semaphore (X) that indicates whether
it is occupied.
semiX mask - software 64-bit mask per each semaphore (X) comprises registration of the
waiting tasks.
produce X(semId) from the resource address
checkX:

1d.b r2, semiX indic

bc.neq sem occupied

sti Oxff, semiX indic

Seturg on
CRITICAL
SECTION X
seturg off
sti O, semiX indic
clear semiX mask bits in bad list

sem occupied:

1d.d r2, r3, semiX mask

set bit of current task in r2, r3

st.d; 2, r3, semX mask
set semiX mask bus-in bad list

set my tasks doorbell bit
yield.epsem released
sem released:

1d.d r2, r3, semiX mask
clear bit of current task in r2, r3
st.d r2, r3, semX mask

; This is the frequently used code fragment - efficiency
is vital.
; load the “semaphore is busy indication - a byte or
a bit.
; and test it.
; Do the critical section code and release the
semaphore.
; If it was not occupied, grab it and do the critical
section.

; Release the semaphore
; agentw. Let all in, highest priority task will be
selected.
; Rest of the task code and yield.
; Register myself on the semaphore, and prevent myself
from running.
; Get the 64-bit mask of tasks waiting for this
semaphore.
; "Optimization': the current task id is prepared in a
doubleword mask in the imt routine.
; Save the mask for common use.
; agentw. Prevent everyone (and myself) who is
waiting to semiX from being scheduled in.
; Re-activate my request
; Go to sleep until it is my turn to use the semaphore.
; The semaphore was held by someone, but now it
might be free.
s

s

s

set semiX mask bits in bad list
semiX from being scheduled in.

b checkX

Notes:

; Re-check the lock - avoids nasty bugs.

; agentw. Prevent everyone else who is waiting to

Using r30 bits as semaphore indications and adding a test-set-branch-conditional instruction
can improve the cycle count of the frequent case.
Using a byte as the semaphore indication, the overhead is 5 cycles.
Using an r30 bit as the semaphore indication, the Overhead is 4 cycles.
Adding a branch-conditional-and-set instruction, the Overhead is 3 cycles.

0539. The general operation of the use of semaphores is
as follows. Whenever a task Seeks to enter critical Section
number X, the task checks the internal memory indication of
Semaphore X to determine if there is currently any other task
in the critical Section.

0540. If the semaphore indication is clear, the task sets
the indication and enters the critical Section. After comple
tion of the critical Section (e.g., which contains external
memory accesses and task Switches), the task clears the
Semaphore indication. It is possible that while the task was
in the critical Section other tasks may have registered
themselves as awaiting access to the Semaphore and pre
vented themselves from being scheduled in by the hardware
Scheduler. So the current task will enable these other tasks,
which are registered as awaiting Scheduling for the Sema
phore, by removing their list from the hardware bitmap.

the Semaphore, and disables those tasks by adding the list to
the hardware bitmap. Task Switching is then initiated after
Setting the resumed execution in the SemX released label.
When the task resumes execution, the task deregisters itself
from the list of tasks that are awaiting the Semaphore, and
prevents other tasks on the list from being Scheduled by
adding them to the hardware bitmap. The task then executes
the code, which checks the Semaphore indication.

0542. In accordance with one embodiment of the present
invention, a method of employing Semaphores to limit
access to a shared resource used by a multi-tasking proces
Sor is provided. The method comprises the Steps of provid
ing a first bitmap in a register that prevents specified tasks
from running because the Specified tasks are awaiting access
to an occupied Semaphore, Storing an indication in memory
that indicates whether the Semaphore is occupied, Storing a

US 2003/0200342 A1

Second bitmap in memory that identifies tasks that are
awaiting access to the Semaphore, and attempting to acceSS
the Semaphore based on checking the indication in memory.
Wherein a task checking the indication in memory deter
mines that the Semaphore is available, the method can
further comprise the Steps of Setting the indication to indi
cate that the Semaphore is occupied and performing the
processing for the task, wherein performing the processing
for the task includes critical Section execution. The critical
Section can include at least one of external memory accesses
and task Switches.

0543. The method can further comprise the step of reset
ting the indication to indicate that the Semaphore is available
after the Step of performing the processing for the task.
Furthermore, the method additionally can comprise the Step
of removing from the first bitmap those tasks now included
in the Second bitmap in memory that identifies tasks that are
awaiting access to the Semaphore, thereby allowing those
tasks to be Scheduled for access to the Semaphore.
0544. In one embodiment, when a task checking the
indication in memory determines that the Semaphore is
occupied, the method can further comprise the Steps of
including the task in the Second bitmap and revising the first
bitmap to reflect the tasks from the list in the second bitmap.
The method further can include the steps of removing the
task from the Second bitmap when the indication reflects that
the Semaphore is available and revising the first bitmap to
reflect the tasks from the list in the second bitmap, thereby
allowing the task to access the Semaphore and perform the
task processing.

0545. In accordance with another embodiment of the
present invention, a System employing Semaphores to limit
access to a shared resource used by a multi-tasking proces
Sor is provided. The System comprises a first bitmap in a
register that prevents Specified tasks from running because
the Specified tasks are awaiting access to an occupied
Semaphore, an indication in memory that indicates whether
the Semaphore is occupied, a Second bitmap in memory that
identifies tasks that are awaiting access to the Semaphore,
and means for attempting to access the Semaphore based on
checking the indication in memory, The means for attempt
ing can be a processor executing a task, wherein the task can
be enabled to access the Semaphore when the indication
reflects that the Semaphore is available. Also, the task can be
enabled to register itself with the Second bitmap and updates
the first bitmap when the reflects that the semaphore is
occupied. The task execution can include processing a
critical Section including at least one of external memory
accesses and task Switching, wherein the indication in
memory is reset to indicate that the Semaphore is available
after processing the critical Section.
0546) The Software Data Model
0547 Referring now to FIG. 43, an exemplary software
data model 450 is illustrated in accordance with at least one
embodiment of the present invention. There are two major
types of data allocated in internal memory: global data and
task/function data.

0548 Global Data:

0549) adata start
0550 global data definitions, examples:

34
Oct. 23, 2003

0551)
0552)
0553)

long generic taskmessage q8)

Struct structure name instance name;
.adata end

0554 Global data has a global name scope and can be
symbolically referenced from anywhere in the code. Refer
ences are translated to absolute addressing.
0555 Task/Function Data.

0556 task common task type name
0557 task data definitions and task code.
0558 task end task type name
0559) func level1/2 function name
0560 function data definitions and function code.

0561 func end function name
0562 Local data definitions have a local name scope
(detailed below) and references are translated by the assem
bler to r27+immediate offset. Functions can be defined either
within a task definition or outside of any task definition.
Function names, which are defined outside of any task
definition, have global name Scope and can be called from
any place in the code. They can access their local data and
the global data. Function names which are defined within a
task definition have a Scope of the task definition. They can
be called only by level.0 code of that task type. They can
access the common data of the task (detailed below).
0563 There is hardware support for keeping return
addresses for two levels of nesting of function calls. A Static
Stack frame will be maintained, made of three parts, for each
task instance. This should solve the problem of allocation of
the correct size of dynamic Stacks. It will also make function
calls more efficient by eliminating handling of the Stack
pointer and of the return address. This means that at defi
nition time the level (1 or 2) of each function is specified.
Functions which do not call other functions will be defined
as level2 functions.

0564 For each task type, the assembler creates two data
Sections, levelO data and levels data. Their sizes will be used
by the PP software to allocate memory for the static frame
of each task instance of this task type, and to initialize r27
of the task instance. A task definition can appear Several
times for the same task type. Such a definition shall be
referred to as a task fragment. The data definitions in each
of the fragments are in union with the data definitions in
each of the other fragments (overlap, occupy the same
memory location).
0565 During a task fragment definition, an optional
common keyword can be used, in which case the data
definitions will overlap with any other data definitions, and
the Scope of the data names will be all the fragments of the
Same task type.
0566. The non-common fragments of a task can be used
to implement the different functions (referred to as han
dlers), which the generic task does. The pointer to the
handler is passed in the inter-task message. All the handlers
will return to a label in the common part of the task. The
common part of the task will only handle the input message
queue and dispatch to the handlers.

US 2003/0200342 A1

0567 The size of the level.0 frame for a task type is the
Size of the data definitions in the common part plus the
maximum of the sizes of the data definitions in non-common
fragments of the task type.

0568 Level 1 functions can be called only explicitly (i.e.,
they can not be called using a pointer.) The assembler will
find all the calls to level 1 functions and will compute the
level 1 frame size for this task type as the maximum of the
sizes of the data definitions of level 1 functions called by this
task type.

0569. Level2 functions can be called via a pointer. The
assembler will check that the data allocated in each level2
function is not more then a system level constant (80 bytes)
and will add this constant to the offsets of data definitions of
level 1 functions.

0570 Scope of labels: local in functions and task frag
ments. Global to all fragments of that task type when in the
common task fragment. Labels in task fragments and level2
function names can be passed to the PP software (flow
manager) in the object file using the directive: ..export
label name.
0571 According to one approach, the assembler will
produce a single code Section, which will contain the code
of all the tasks and functions. Other function types might be
considered, Such as ones which do not have local data in
memory or which receive as a parameter a pointer to a
Scratchpad area for their use. Also to be considered is code
which is not associated with tasks and functions. (All the
labels in this code will have global Scope. It might be used
for additional types of functions.) In cases when the caller's
frame is no longer needed (an error condition, for example),
it might call a function of the same level, which will use the
caller's frame.

0572 The Instruction Set
0573 Addressing modes:
0574. Instruction addressing. All instruction addresses
are word addresses, they are shifted left 2 bits to generate the
memory address.

0575. Absolute: Jump to the absolute address specified in
the 16-bit immediate instruction field.

0576 PC relative: Branch to an offset from the current
program counter Specified in the 12-bit immediate signed
instruction field.

0577 Register: Jump to the address, which is contained
in the register Specified in the instruction.
0578. Implicit task entry point: During task Switch, jump
to the entry point of the next enabled task (in r30 of that
task).
0579 Data addressing: Data addresses are byte addresses
that are taken as is, regardless of the access size.

0580 Register with offset The address is the sum of the
value contained in the register, with the Sign extended 8-bit
immediate instruction field.

0581 Register with index register: The address is the sum
of the value contained in the register, with the value con
tained in the indeX register.

Oct. 23, 2003

0582)
0583. According to one embodiment of the packet pro
ceSSor of the present invention, the following instruction
groups are Supported: arithmetic and logic operations, reg
ister data manipulation; load/store (to internal memory);
program flow; task yielding; and agent instructions (DMA,
communication peripherals, CRC, CAM, etc.).
0584)
SO

Instruction Groups

Instruct/On Pipeline for a Flexible Packet Proces

0585 Referring now to FIG. 44, an exemplary network
processor pipeline 460 is illustrated. According to one
embodiment of the invention, the network processor pipe
line 460 consists of five Stages: fetch, decode, address,
execute and write. The network processor pipeline 460
enables a Standard design flow and Standard memories. The
network processor can perform an instruction together with
a data load or Store from/to a unified internal memory in
each cycle. The network processor pipeline 460 enables an
arithmetic instruction to use as its Source operands data that
was loaded by the previous instruction without any bubble.
Conditional jump and branch instructions have no penalty
when the condition is not taken while a penalty of 2 cycles
occurs if the condition is taken and there is a change of flow.
To reduce this penalty, delayed jump and branch instructions
are provided. In addition to the data ALU there is an address
ALU to enable efficient pointer calculation on data access.
The network processor general purpose registers (rO-r31) are
updated during the write Stage without distinction as to
whether they are updated from a load operation or from a
data ALU operation.
0586 Pipeline Stages
0587. There are five pipeline stages: Fetch; Decode;
Address, Execute; and Write.
0588. The Fetch Stage
0589. During the fetch stage, the network processor core
places the next instruction fetch address. This next fetch
address can originate from the Program Counter (PC) in the
normal Sequential flow or can come from the address ALU
when there is a jump or branch instruction. A 32-bit new
fetched instruction is assumed to be ready during the next
clock cycle after a specific access time from the Specific
internal memory. Since the network processor internal
SRAM is unified for both data and programs, and since it
should Support 64-bit access for data, the network processor
initiates a fetch of 2 instructions (64 bits). The Fetch Unit
(FTU) contains a fetch buffer to hold fetched instructions
that were Still not processed.
0590 The Decode Stage
0591 At the decode stage, the new instruction fetch is
complete and the decoding of the new instruction is per
formed. The decode logic determine the type of the incom
ing instruction and the operations that should be performed
at each pipeline Stage for the execution of the instruction.
0592. The Address Stage
0593. During the address stage the data address for a load
from memory or for a Store to memory is calculated by the
address ALU. The address ALU get its Source operands,
which can originate from one or two of the GPR registers,
an immediate address offset or an absolute address. In jump
or branch instructions, the destination address is also calcu

