Ferroelectric memory cell and corresponding manufacturing method

Inventors: Giulio Casagrande, Vignate (IT); Raffaele Zambrano, Catania (IT)

Correspondence Address:
SEED INTELLECTUAL PROPERTY LAW GROUP PLLC
701 FIFTH AVE
SUITE 6300
SEATTLE, WA 98104-7092 (US)

Assignee: STMicroelectronics S.r.l., Agrate Brianza (IT)

Publication Classification
Int. Cl. H01L 21/00
U.S. Cl. 438/3

Abstract
Presented is a memory cell integrated in a semiconductor substrate that includes a MOS device connected in series to a capacitive element. The MOS device has first and second conduction terminals, and the capacitive element has a lower electrode covered with a layer of a dielectric material and capacitively coupled to an upper electrode. The MOS device is overlaid by at least one metallization layer that is covered with at least one top insulating layer. The capacitive element is formed on the top insulating layer. The cell is unique in that the metallization layer extends only between the MOS device and the capacitive element.
FIG. 1
FERROELECTRIC MEMORY CELL AND CORRESPONDING MANUFACTURING METHOD

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application is a divisional of U.S. patent application Ser. No. 60/610,311, filed Jul. 5, 2000, now pending, which application is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention
[0003] This invention relates to a ferroelectric memory cell, and a method for its manufacture.
[0004] 2. Description of the Related Art
[0005] Electronic memory devices that include ferroelectric components integrated on a semiconductor can include a number of ferroelectric memory cells organized in a matrix form of rows and columns, coupled by word and bit lines, respectively.
[0006] Each ferroelectric memory cell has a MOS transistor and a ferroelectric capacitor.
[0007] Known processes for manufacturing such memory cells include, after the MOS transistor is integrated in a semiconductor substrate, covering the entire chip surface with an insulating layer.
[0008] The ferroelectric capacitor is formed on top of this insulating layer. The capacitor conventionally includes a lower electrode of metal placed onto the insulating layer. A ferroelectric material layer covers the lower electrode, and a metal upper electrode is laid onto the ferroelectric layer.
[0009] An electrode of the ferroelectric capacitor is then connected to a conduction electrode of the MOS transistor.
[0010] After forming the ferroelectric memory cell, the next metallization layers are formed as necessary to complete the memory circuit structure.
[0011] This solution has a number of drawbacks. The required treatment for the provision of metallization levels can damage the properties of the ferroelectric materials, and with it, the performance of a ferroelectric memory cell.
[0012] A prior approach to attenuating this problem is described by Amanima in an article “Capacitor-on-Metal/ Via-stacked-Plug (CMVP) Memory Cell for 0.25 μm CMOS Embedded FeRAM”, published in March, 1998 by IEEE and incorporated herein by this reference in toto.
[0013] The article describes a ferroelectric memory cell comprising a MOS transistor integrated in a semiconductor, the formation of two metallization levels followed by the formation of a ferroelectric capacitor, and ultimately the formation of a final metallization layer.
[0014] Although achieving its objective, not even this solution is devoid of drawbacks. The provision of a final metallization layer after forming the ferroelectric capacitor results, in fact, in degradation of the ferroelectric material.
[0015] Until now, no memory device or process for making a memory device was available to provide a ferroelectric memory cell with such construction and functional features as to retain the ferroelectric characteristics of its component materials and overcome the limitations and drawbacks that still beset prior art ferroelectric memory devices.

BRIEF SUMMARY OF THE INVENTION

[0016] Embodiments of the invention provide a memory structure which has at least one ferroelectric memory cell consisting of a MOS transistor connected to a ferroelectric capacitor, wherein the ferroelectric capacitor is formed after all the metallization levels of the memory structure have been formed.
[0017] Presented is a memory cell integrated in a semiconductor substrate that has a MOS device with an overlying metallization layer. An insulating layer covers the metallization layer. Over the insulating layer is formed a capacitive element having a lower electrode covered with a layer of a dielectric material and capacitively coupled to an upper electrode. The metallization layer extends only between the MOS device and the lower electrode of the capacitive element. Also presented is a method to make the cell just described.
[0018] The invention relates, particularly but not exclusively, to a non-volatile ferroelectric memory cell, and the description to follow deals with this field of application for simplicity.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 is an layout view showing a portion of a memory matrix which has ferroelectric memory cells according to embodiments invention.
[0020] FIG. 2 is a sectional view of FIG. 1 taken along line II-II.
[0021] FIG. 3 is a sectional view of FIG. 1 taken along line III-III.
[0022] FIG. 4 is a sectional view, similar to FIG. 2, of another embodiment of the invention.
[0023] FIG. 5 is a sectional view of FIG. 1 taken along line III-III, also showing an external contact area for the memory matrix according to an embodiment of the invention.
[0024] FIG. 6 is a sectional view of FIG. 1 taken along line III-III, also showing another embodiment of the external contact for the memory matrix.

DETAILED DESCRIPTION OF THE INVENTION

[0025] Referring to the drawing views, a ferroelectric memory cell according to an embodiment of the invention will now be described.
[0026] FIG. 1 shows a portion of a memory matrix 1 including a number of non-volatile ferroelectric memory cells 2, integrated on a semiconductor substrate 3. These cells 2 are laid into rows and columns, and are accessed through wordlines WL and bitlines BL. Each of the memory cells lies at a junction of one wordline WL and one bitline BL.
[0027] FIGS. 2 and 4 show a cross-sectional view of the ferroelectric memory cells 2. Each ferroelectric memory cell 2 includes a MOS transistor 4 coupled to a capacitive element 5.
[0028] Each MOS transistor 4 has first and second conduction terminals 6, which are formed in respective source and drain regions of the substrate 3.

[0029] A gate (or control) electrode 7 of polysilicon overlies the substrate region 3 between pairs of conduction terminals 6, and is isolated from the substrate surface by a thin oxide layer.

[0030] The gate electrodes 7 of transistors 4 in the same row are generally formed from polysilicon and coupled to a single word line WL, also generally formed from polysilicon. Each word line electrically interconnects the transistors 4 in the same row of the matrix 1.

[0031] In this configuration, adjacent pairs of transistors 4 in the same column BL have a conduction terminal 6 in common.

[0032] A protective insulating layer 8, such as an oxide doped with boron and phosphorus (BPSG), is then formed over the entire semiconductor surface. Respective openings are conventionally provided through the protective insulating layer 8 aligned with the conduction terminals 6, to form respective contacts 9.

[0033] Advantageously at this step, all the metallization levels that are necessary to complete the circuit structure in which the memory device 1 is integrated, are formed.

[0034] After the contact opening through the insulating layer 8 is formed, a first metallization layer 10 is formed conventionally, which is then patterned to provide specified electric interconnections.

[0035] In particular, a number of pads 10a are formed at the contacts 9 connected to the source terminal of the transistor 4, and a plurality of pads 10b are formed at the drain of the transistor 4 for connection to a respective bit line BL.

[0036] A second protective insulating layer 11 is subsequently formed to cover the semiconductor surface. Respective openings are provided through the insulating layer 11 aligned with the pads 10a for conventionally producing respective contacts 12.

[0037] A second metallization layer 13 is formed and then patterned to provide specified electric interconnections. In particular, a number of pads 13a are formed aligned with the contacts 12 that are connected to the source terminal of the transistor 4.

[0038] In a specially advantageous embodiment shown in FIG. 4, auxiliary word lines WL are formed from this metallization layer 13.

[0039] These word lines WL are placed in contact, outside the matrix 1, with the word lines WL which connect the gate electrodes 7 of the transistors 4.

[0040] In this way, the resistance of the polysilicon word lines WL can be made lower than only using the wordlines WL themselves, thereby making for faster response of the cells 2.

[0041] A third protective insulating layer 14 is subsequently formed over the semiconductor surface.

[0042] Respective openings are provided through the insulating layer 14 aligned with the pads 13a to enable the formation of respective contacts 15.

[0043] Ferroelectric capacitors 5 are then provided at each MOS transistor 4. Each ferroelectric capacitor 5 has a lower electrode 16 made of metal, e.g., of platinum, placed on the insulating layer 14 at the location of a respective contact 15.

[0044] In this particular embodiment, the lower electrode 16 advantageously overlaps the control electrode 7, at least partially.

[0045] A layer 17 of a ferroelectric material covers the lower electrode 16. Preferably, the ferroelectric material layer 17 covers the entire area occupied by the memory cells.

[0046] An upper electrode 18 of metal, e.g., of platinum, is then formed on the ferroelectric material layer 17. This upper electrode 18 is so defined as to overlap each lower electrode 16, at least partially.

[0047] Advantageously, the upper electrodes 18 of cells 2 in the same matrix row are connected into a single line PL designated “plate line”, as shown in FIG. 1.

[0048] A passivation layer 19 is formed that covers the semiconductor surface.

[0049] All of the metallization levels 10, 13 are included between the MOS device and the lower electrode 16 of the capacitive element 5. In other words, no metallization levels are provided above the electrodes 16, 18 of the capacitor 5.

[0050] As shown in FIG. 3, an end termination 20 can be provided, outside the area of the memory matrix 1, which includes a pad 13b formed from the second metallization layer 13.

[0051] This pad 13b is overlaid by an associated contact 15a which is surrounded by the oxide layer 14. A flat 16a is formed, at the contact 15a, from the platinum layer from which the first plates 16 of the capacitor 5 were formed.

[0052] This flat 16a is then covered with the plate line PL interconnecting the upper plates 18 of the capacitors 5 in the same row of the matrix 1.

[0053] This solution allows the outputs from the memory cells (upper electrodes 18) to be driven and decoded through a metallization level provided beneath the ferroelectric capacitor 5.

[0054] Shown in FIG. 5 is a first embodiment of a possible area of connection to the output of the circuit. In this first embodiment, a pad area 21 is formed from the second metallization layer 13, outside the matrix 1.

[0055] After the capacitors 5 are formed in the matrix 1 as previously described, the top insulating layer 14 and the passivation layer 19 are removed from a portion of the pad area 21 to provide for the connections to the output.

[0056] Another possible embodiment of this pad area is illustrated in FIG. 6. In particular, after forming the protective insulating layer 14, a pad area 21a is provided outside the matrix area by the formation of a further metallization layer. Once this pad area 21a is formed, the capacitors 5 are formed as previously described.

[0057] The passivation layer 19 deposited over the entire semiconductor surface is then removed to produce the connections to the output.
In summary, the memory cell 1 enables the ferroelectric device to be fabricated after the last metallization layer has been formed. Thus, the problems involved in integrating the ferroelectric devices with standard CMOS fabrication processes have been reduced substantially.

Changes can be made to the invention in light of the above detailed description. In general, in the following claims, the terms used should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims, but should be construed to include all methods and devices that are in accordance with the claims. Accordingly, the invention is not limited by the disclosure, but instead its scope is to be determined by the following claims.

1. A method of fabricating a memory cell integrated in a semiconductor substrate comprising:
 - forming, on the semiconductor substrate, a MOS device having first and second conduction terminals;
 - forming a first protective layer over the MOS device;
 - forming and patterning one or more metallization layers over the MOS device;
 - forming a second protective layer over the one or more metallization layers; forming a capacitive element coupled in series with the MOS device, including defining a lower electrode of the capacitive element on the second protective layer, wherein the capacitive element is formed after all of the one or more metallization layers are formed and patterned without forming and patterning any additional metallization layer after the capacitive element is formed.
2. The method of claim 1 further comprising:
 - forming a plurality of contact vias through the first and second protective layers for establishing an electrical connection between the lower electrode of the capacitive element and at least one of the conduction terminals of the MOS device.
3. The method of claim 2 wherein forming a capacitive element comprises forming a ferroelectric capacitor having a ferroelectric material layer for a dielectric layer.
4. The method of claim 1, wherein the one or more metallization layers includes a first metallization layer formed on the first protective layer and a second metallization layer formed between the second protective layer and a third protective layer positioned between the first and second protective layers, the method further comprising forming a pad area from the second metallization layer before forming the second protective layer; and removing a portion of the second protective layer from the pad area after the capacitive element is formed, thereby exposing the pad area for an external connection.
7. The method of claim 1, wherein the one or more metallization layers includes a first metallization layer formed on the first protective layer and a second metallization layer formed between the second protective layer and a third protective layer positioned between the first and second protective layers, the method further comprising forming a third metallization layer on the second protective layer before forming the lower electrode on the second protective layer.
8. A method of making a memory cell integrated in a semiconductor substrate, the method comprising:
 - forming a MOS device;
 - forming a plurality of metallization layers including a first metallization layer, the plurality of metallization layers overlaying the MOS device;
 - covering the first metallization layer with a top insulating layer;
 - forming a capacitive element on the top insulating layer after forming the plurality of metallization layers, the capacitive element having a lower electrode covered with a layer of a dielectric material and capacitively coupled to an upper electrode;
 - forming a flat on the top insulating layer;
 - electrically connecting the flat to the upper electrode by a plate line; and
 - electrically connecting the flat to a pad of the first metallization layer such that the memory cell may be driven through the pad of the first metallization layer provided beneath the capacitive element.
9. The method of claim 8 wherein the flat and the lower electrode are formed by forming a conductive layer on the top insulating layer and defining the flat and the lower electrode from the conductive layer.
10. The method of claim 8, further comprising:
 - forming a bottom insulating layer on the substrate; and
 - forming a plurality of contact vias through the bottom and top insulating layers for establishing an electrical connection between the lower electrode of the capacitive element and a conduction terminal of the MOS device.
11. The method of claim 8 wherein electrically connecting the flat to the first metallization layer includes:
 - forming a pad area from the first metallization layer; and
 - forming a contact that extends through the top insulating layer and electrically connects the pad area to the flat.
12. The method of claim 11, wherein the pad area is formed before forming the top insulating layer, the method further comprising removing a portion of the top protective layer from the pad area after the capacitive element is formed, thereby exposing the pad area for an external connection.
13. The method of claim 1, further comprising forming a second metallization layer on the top protective layer and defining the second metallization layer into a first pad area.
before forming the lower electrode on the top insulating layer, and connecting the first pad area to a second pad area formed from the first metallization layer.

14. A method of forming a memory device integrated in a semiconductor substrate, the method comprising:

forming a matrix of memory cells each including a MOS device and a capacitive element, the matrix being formed by:

forming a plurality of metallization layers including a top metallization layer, the plurality of metallization layers being formed between the MOS devices and the capacitive elements of the memory cells;

covering the top metallization layer with a top insulating layer;

forming the capacitive elements on the top insulating layer after forming the plurality of metallization layers, each capacitive element having a lower electrode covered with a layer of a dielectric material and capacitively coupled to an upper electrode; and

forming a conductive flat on the top insulating layer and outside of the memory matrix; and

electrically connecting the flat to the upper electrodes of a plurality of the capacitive elements through a plate line that forms and connects the upper electrodes of the plurality of capacitive elements.

15. The method of claim 14, further comprising electrically connecting the flat to a pad of the first metallization layer such that the plurality of capacitive elements may be driven through the pad of the first metallization layer provided beneath the capacitive elements.

16. The method of claim 14 wherein the flat and the lower electrodes of the capacitive elements are formed by forming a conductive layer on the top insulating layer and defining the flat and the lower electrodes from the conductive layer.

17. The method of claim 14, wherein forming the matrix of memory cells includes:

forming a bottom insulating layer on the substrate; and forming a plurality of contact vias through the bottom and top insulating layers for establishing an electrical connection between the lower electrodes of the capacitive elements and conduction terminals of the MOS devices.

18. The method of claim 14, further comprising:

forming a pad area from the first metallization layer; and forming a contact that extends through the top insulating layer and electrically connects the pad area to the flat.

19. The method of claim 18, wherein the pad area is formed before forming the top insulating layer, the method further comprising removing a portion of the top protective layer from the pad area after the capacitive elements are formed, thereby exposing the pad area for an external connection.

20. The method of claim 14, further comprising forming a second metallization layer on the top protective layer and defining the second metallization layer into a first pad area before forming the lower electrodes on the top insulating layer, and connecting the first pad area to a second pad area formed from the first metallization layer.

* * * * *