 Title: DEVICE FOR SPACING A HUB FLANGE AND A BLADE FLANGE, SYSTEM COMPRISING A ROTOR HUB, A ROTOR BLADE AND A DEVICE FOR SPACING AND METHOD OF INSTALLING A ROTOR BLADE ON A ROTOR HUB

Abstract: A device (2) for spacing a hub flange (28) of a rotor hub (26) of a wind generator from a blade flange (48) of a rotor blade during installation of the rotor blade (46) on the rotor hub (26) is provided. The device (2) for spacing comprises a distance member (4) for finding a clearance between the hub flange (28) and blade flange (48). The distance member (4) is configured for variable adjustment of the clearance between the hub flange (28) and the rotor flange.

Fig. 1
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
Device for Spacing a Hub Flange and a Blade Flange, System Comprising a Rotor Hub, a Rotor Blade and a Device for Spacing and Method of Installing a Rotor Blade on a Rotor Hub

FIELD OF THE INVENTION

The invention relates to a device for spacing a hub flange of a rotor hub of a wind generator from a blade flange of a rotor blade during installation of the rotor blade on the rotor hub. Furthermore, the invention relates to a system comprising a rotor hub having a rotor blade bearing assembly comprising a hub flange, a rotor blade having a blade flange and a device for spacing the hub flange from the blade flange. The invention further relates to a method of installing a rotor blade on a rotor hub of a wind generator.

BACKGROUND

During installation of an offshore wind generator (also referred to as a wind power plant or a wind driven power plant), a complete rotor is assembled onshore and subsequently shipped to the offshore wind generator. Typically, the three rotor blades are mounted on a rotor hub and the complete rotor assembly is transferred to a suitable ship or barge for transport to the offshore wind generator. Upon arrival at the offshore wind generator, the rotor assembly is unloaded from the transport ship and mounted on the nacelle of the wind generator, for example using a high load crane barge.

In some aspects, the onshore assembly of the rotor is convenient and efficient because it is technically less demanding than offshore works. Installation of the
rotor blades may be performed using the equipment which is available for example at a production facility. Furthermore, there is little influence of the weather conditions on the assembly works. However, a rotor assembly of an offshore wind generator is a large device having a diameter which can be up to 135 m. Narrow port facilities may hinder the transport from the onshore facility to the offshore wind generator. For servicing the rotor assembly, the complete rotor is removed from the nacelle of the wind generator. To conduct the works, a high load crane barge has to be available and has to be operated under offshore conditions. After removal of the rotor assembly, a further transport of this huge part is necessary.

Another option is the offshore assembly of the rotor blades. This means, the rotor hub is first mounted to the nacelle and the rotor blades are subsequently mounted on the rotor hub. The rotor blades may be handled using a special device for grabbing the rotor blade and for positioning it in virtually any angular position for installation on the rotor hub.

A blade flange which resides at the root of the rotor blade is attached to a hub flange of the rotor hub. The rotor blade is fixed to the rotor hub by typically more than 100 bolts which project from the blade flange through corresponding through holes in the hub flange. Nuts have to be placed on the bolt heads. However, placement of the nuts is exclusively possible using certain hand holes in an internal reinforcement structure of the rotor hub. The blade bolts and the hand holes have to be aligned and due to the limited number of hand holes, only few nuts may be placed on the bolt heads simultaneously. The blade has to be tilted (or pitched) so as to align further bolts with the hand holes for placement of nuts. This is however a time consuming process.

SUMMARY

It is an object of the invention to provide a device, a system and a method allowing a simplified and fast assembly of a rotor blade on a rotor hub of a wind generator.

In one aspect of the invention, a device for spacing a hub flange of a rotor hub of a wind generator from a blade flange of a rotor blade is provided. The device is for spacing the hub flange and blade flange during installation of the rotor blade on the rotor hub. The device comprises a distance member defining a clearance between the hub flange and the blade flange. This distance member is configured
for variable adjustment of the clearance between the hub flange and the rotor flange.

A blade root bearing assembly of a rotor hub is typically configured to have a fixed clearance between an inner surface of the hub flange and an inner reinforcement structure of the rotor hub facing said inner surface. The inner surface of the hub flange is averted from a contact surface of the hub flange which is for contacting an opposite contact surface of a blade flange. When the blade is mounted on the rotor hub, bolts which extend from the blade flange project through corresponding cavities or through holes in the hub flange. In this status, the bolt heads protrude from the inner surface of the hub flange in a direction of the inner reinforcement structure of the rotor hub. However, said fixed clearance between the inner surface of the hub flange and the reinforcement structure of the rotor hub also limits a second clearance between the bolt heads and the reinforcement structure of the rotor hub. Typically, this second clearance is too small for insertion and placement of nuts on bolt heads.

Advantageously, the device for spacing the hub flange and the blade flange allows increasing this second clearance between the inner reinforcement structure of the rotor hub and the bold heads. This is performed by providing a clearance between the hub flange and the blade flange. Due to this measure, an excess length between the bolt heads and the inner surface of the hub flange is reduced. As a consequence, an arbitrary number of nuts may be laterally inserted through the second clearance and may be placed on the bolt heads. This will allow a faster assembly of the rotor blade on the rotor hub, because placement of the nuts is not limited by the number of available hand holes. Furthermore, no movement or tilting of the rotor blade and alignment of the bolts with respect to the hand holes is necessary.

However, if the rotor blade presses against the hub, the device for spacing may be clamped between the hub flange and the blade flange; to be more precise, between the contact surface of the hub flange and the contact surface of the blade flange. This will complicate removal of the device for spacing. The clamping forces can be avoided if the tool for mounting the rotor blade slightly moves the rotor blade away from the rotor hub. However, any operation of this tool is rather slow and any handling operation of the rotor blade represents a risk for damage of either the supporting structure of a wind generator or the rotor blade itself. Finally, a gap between the hub flange and the rotor flange of merely a few millimeters will make
the rotor blade very susceptible to wind forces. Advantageously, the device for spacing the hub flange and the blade flange according to aspects of the invention comprises a distance member which is configured for variable adjustment of the clearance between the hub flange and the rotor flange. In particular, the distance member is configured for lowering a clearance between the hub flange and the rotor flange. For example, the device for spacing may be set to an initial value defining a first clearance between the hub flange and the blade flange. If clamping forces occur between the rotor blade and the rotor hub, the device for spacing may be set to a second and lower value defining a second and lower clearance. This will release the device for spacing from the initial pressure and will allow a convenient and easy removal of the device from an intermediate space between the hub flange and the blade flange.

According to an advantageous embodiment of the invention, the distance member is wedge shaped. The distance member may have a plane which inclines from a tip of the distance member having a first thickness to a root of the distance member having a second and greater thickness. Furthermore, the distance member may be movable in a direction pointing from the tip to the root. This movement will adjust the clearance between the hub flange and the blade flange due to the wedged shape of the distance member. A wedge shaped distance member provides a reliable, hard-wearing and economic solution for a distance member which is configured for variable adjustment of said clearance.

Furthermore, the device for spacing may comprise a supporting structure and a driving element, according to another embodiment of the invention. The distance member may be mounted on the supporting structure and may be movable with respect to the supporting structure by help of the driving element. The driving element may be coupled to the supporting structure and to the root of the distance member. In particular, the driving element may be a spindle or a hydraulic cylinder. Furthermore, according to another advantageous embodiment of the invention, the supporting structure and the distance member define a clamp which is configured to engage with the hub flange when the device is mounted on this hub flange. In that state, the distance member directly rests on the contact surface of the hub flange. The distance member is movable in radial direction of the hub flange towards an interior of the hub flange.

Advantageously, the supporting structure of the device for spacing engages the hub flange and there is no need for an operator to apply a force towards an interior
of the hub flange when adjusting the clearance between the hub flange and the blade flange. This is advantageous in terms of safety because a service team can let its hands off the particular gap between the blade flange and the hub flange. Full attention may be paid to bolts and nuts so as to prevent any member from falling down or getting lost.

According to another aspect of the invention, a system comprising a rotor hub, a rotor blade and a device for spacing the hub flange from the blade flange is provided. The rotor hub has a blade root bearing assembly comprising the hub flange. This blade root bearing assembly is configured to have a clearance between an inner surface of the hub flange and an inner reinforcement structure of the rotor hub. Furthermore, a plurality of bolts resides in the blade flange of the rotor blade. The bolts extend from the blade flange through corresponding apertures or through holes in the hub flange when the blade is mounted on the rotor hub. The device for spacing in said system according to aspect of the invention comprises a distance member having a predetermined thickness. This predetermined thickness defines a clearance between the blade flange and the hub flange. Said thickness is selected so as to provide an increased clearance between the inner reinforcement structure of the rotor hub and the bolt heads of the bolts of the rotor blade. This increased clearance will allow a lateral insertion and placement of nuts on the bolt heads by access of the nuts to the bolts heads via said increased clearance.

Advantageously, the particular system comprises a distance member having a tailored and predetermined thickness for providing an increased clearance being great enough for placement of the nuts on the bold heads.

In particular, the system may comprise a device for spacing having a distance member which is configured for variable adjustment of the clearance between the hub flange and the rotor flange. This device for spacing may be configured according to the abovementioned aspects of the invention. Furthermore, the distance member may be wedge shaped. Further details with regard to this wedge shaped distance member are also mentioned above.

In another advantageous aspect of the invention, a method of installing a rotor blade on a rotor hub of a wind generator is provided. A device for spacing according to aspects of the invention is mounted on a hub flange of the rotor hub. The rotor blade is approached to the hub flange and a contact surface of the blade flange will contact the distance member of the device for spacing. Nuts are
mounted on bolts which reside in the blade flange and which extend from the blade flange through corresponding apertures or through holes in the hub flange. Mounting of nuts on the bolt heads is performed laterally via a clearance between an inner reinforcement structure of the rotor hub and the bolts heads. Furthermore, the device for spacing is removed from the hub flange by extracting the distance member from an intermediate space between the hub flange and the blade flange. Finally, the nuts are tightened on the bolts for fixing the rotor blade to the rotor hub.

According to an advantageous embodiment of the invention, the device for spacing is mounted so as to engage with the hub flange in that, the distance member directly rests on a contact surface of the hub flange. The distance member may be movable in a radial direction of the hub flange and may be configured according to the previously mentioned aspects of the invention. The distance member may be extracted from the clearance between the hub flange and the blade flange by a movement in a radial direction towards an interior of the hub flange. The distance member may be removed from said clearance with its root first.

Same or similar advantages which have been already mentioned with respect to the device for spacing and with respect to the system according to aspects of the invention apply to the method according to aspects of the invention in a same or similar way and are therefore not repeated.

BRIEF DESCRIPTION OF DRAWINGS

Further aspects and characteristics of the invention ensue from the following description of preferred embodiments of the invention with reference to the accompanying drawings, wherein

FIG. 1 is a simplified perspective view of a device for spacing according to an embodiment of the invention,

FIG. 2 is a simplified side view of the device of FIG. 1,

FIG. 3 is a simplified backside view of the device of FIG. 1,

FIG. 4 is a simplified perspective view showing a wind generator during assembly of a rotor blade on a rotor hub and
FIG. 5 is a detailed simplified perspective view showing a part of a rotor hub of a wind generator and a device for spacing, according to an embodiment of the invention, which is mounted on a hub flange of this rotor hub.

DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

FIG. 1 is a simplified perspective view showing a device 2 for spacing a hub flange of a rotor hub of a wind generator from a blade flange of a rotor blade of a wind generator, preferably during installation of the rotor blade on the rotor hub. Details of the wind generator will be explained by making reference to FIG. 4 further below. The device 2 in FIG. 1 comprises a distance member 4 which is configured for defining a clearance between the hub flange and the blade flange. The distance member 4 is configured for variable adjustment of said clearance. According to the embodiment of FIG. 1, the distance member 4 is wedge shaped. It comprises a plane 6 inclining from a tip 8 of the distance member 4 having a first and lower thickness to a root 10 of the distance member 4 having a second and greater thickness. By way of an example only, the distance member 4 comprises three arms which are arranged side by side giving the distance member 4 a basset like shape. Each arm comprises a tip 8 and an inclining plane 6; only few of the tips 8 and planes 6 are given reference numbers due to clarity reasons only.

The distance member 4 is mounted on a supporting structure 12, wherein the distance member 4 is movable with respect to this supporting structure 12 by help of driving elements 14. According to the embodiment in FIG. 1, the driving elements 14 are spindles. A threaded rod 16 extends through a sleeve 26, which is fixed to the supporting structure 12. For example, the sleeve 26 is welded to one of the beams of the supporting structure 12. A handle 24 is fixed to the threaded rod 16 for operation of the driving element 14. An opposite end member of the threaded rod 16 extends through the distance member 4 and its external thread engages a internal thread of a supporting plate 18 which engages the distance member 4 between the individual arms. If the handle 24 is rotated, the driving element 14 will move the distance member 4 with respect to the supporting structure 12. For removal of the distance member 4 from a clearance between the hub flange and the blade flange, it is moved or pulled towards the sleeve 26. The driving element 14 is not limited to a spindle; it may be replaced, for example by a suitable hydraulic cylinder or by any other suitable driving element.

In FIG. 2, there is a simplified side view of the device 2 which is known from FIG. 1. The wedge shaped distance member 4 has a first thickness H1 at its tip 8.
An inclining plane 6 starts at this lower first thickness H1 and inclines up to a second and greater higher thickness H2 at the root 10 of the distance member 4. The distance member 4 is movable with respect to the supporting structure 12 in a direction L which extends between the tip 8 and the root 10 of the wedge shaped distance member 4.

The distance member 4 together with an L-shaped part 20 of the supporting structure 12 defines a clamp which is configured to engage with a hub flange of the rotor hub when the device 2 for spacing is mounted on the hub flange. In this state, the distance member 4, in particular its lower surface 22, will directly rest on a contact surface of the hub flange. Furthermore, the distance member 4 will be movable in radial direction of the hub flange. In other words, the device 2 is mounted on the hub flange in that the direction L, which extends between the tip 8 and the root 10 of the wedge shaped distance member 4, is substantially parallel to a radius of the hub flange.

In FIG. 3, there is a simplified backside view showing the device 2 which is known from FIG. 1 and FIG. 2.

A simplified perspective view showing a wind generator 40 is depicted in FIG. 4. The wind generator 40 comprises a supporting structure 42, for example a tower which is funded in the sea if the wind generator 40 is an offshore wind generator, a nacelle 44 which is mounted on top of the supporting structure 42 and a rotor hub 26 which is mounted on the nacelle 44. The rotor hub 26 is mounted on the nacelle 44 prior to assembly of the rotor blades, by way of an example only, a single rotor blade 46 is shown. The rotor blade 46 is lifted to the rotor hub, for example using a special purpose grabbing device (not shown). The rotor blade 46 comprises a blade flange 48 at its root, this blade flange 48 has a contact surface 50 which contacts an opposite contact surface 52 of a hub flange 28, when the rotor blade 46 is mounted on the rotor hub 26.

FIG. 5 is a simplified perspective view showing a detail of the rotor hub 26 of the wind generator 40. The rotor hub 26 comprises a blade root bearing assembly comprising the hub flange 28. The hub flange 28 comprises a plurality of through holes 30 (only some are given reference numbers to enhance clarity) which are configured to receive bolts extending from the blade flange 48 of the rotor blade 46. The hub flange 28 has a contact surface 32 which is configured to contact the opposite contact surface 50 of the blade flange 48 when the rotor blade 46 is mounted on the rotor hub 26. The device for spacing 2 is arranged so as to engage
the hub flange 28. The distance member 4 directly resides on the contact surface 32 of the hub flange 28. The L-shaped part 20 of the supporting structure 12 (see FIG. 2) engages an inner surface (not visible) of the hub flange 28 and a crown gear 36 inside the hub flange 28. The inner surface of the hub flange 28 faces an inner reinforcement structure 34 of the rotor hub 26.

There is a limited clearance between the inner surface of the hub flange 28 and this inner reinforcement structure 34. Accordingly, when the bolts of the rotor blade 46 project through the through holes 30 in the hub flange 28, said clearance limits a second clearance between the bolt head of the bolts and this inner reinforcement structure 34. Said second clearance may be too small for insertion of nuts on the bolts heads. The device for spacing 2 increases this second clearance and allows a lateral insertion and placement of the nuts on the bolt heads by providing access to the bolts heads via the clearance between the inner surface of the hub flange 28 and the inner reinforcement structure 34.

For installation of the rotor blade 46 on the rotor hub 26 of the wind generator 40, the device 2 for spacing is mounted on the hub flange 28. When the rotor blade 46 approaches the hub flange 28, the blade flange 48, to be more precise the contact surface 50 of the blade flange 48 will contact the distance member 4 which directly resides on the contact surface 32 of the hub flange 28. Nuts may be mounted on bolts via the previously explained increased clearance between the inner reinforcement structure 38 and the bolt heads. The distance member 4 of the device 2 for spacing may be removed from the clearance between the hub flange 28 and the blade flange 48 by a movement towards an interior of the hub flange 28. The driving element 14 (see FIG. 2) moves the distance member 4 in direction L with respect to the supporting structure 12 which is supported by an inner surface of the hub flange 28 and by the crown gear 36. The distance member 4 will be released from pressure which may be applied thereon by the blade flange 48 and subsequently, the device 2 for spacing may be easily removed from the hub flange 28. The distance member 4 can be made of various materials like wood or steel. In an advantageous embodiment, the distance member 4 is made of a polymer or plastic. This provides that the distance member 4 has only little weight but high stability.

Although the invention has been described hereinabove with reference to specific embodiments, it is not limited to these embodiments and no doubt further
alternatives will occur to the skilled person that lie within the scope of the invention as claimed.
CLAIMS

1. A device for spacing a hub flange of a rotor hub of a wind generator from a blade flange of a rotor blade during installation of the rotor blade on the rotor hub, the device for spacing comprising a distance member defining a clearance between the hub flange and the blade flange, wherein the distance member is configured for variable adjustment of the clearance between the hub flange and the rotor flange.

2. The device according to claim 1, wherein the distance member is wedge shaped having a plane which inclines from a tip of the distance member having a lower thickness to a root of the distance member having a higher thickness and the distance member is movable in a direction pointing from the tip to the root for adjustment of the clearance between the hub flange and the blade flange.

3. The device according to claim 2, further comprising a supporting structure and a driving element, wherein the distance member is mounted on the supporting structure to be movable with respect to the supporting structure by the driving element which is coupled to the supporting structure and to the root of the distance member.

4. The device according to claim 3, wherein the supporting structure and the distance member define a clamp which is configured to engage with the hub flange when the device is mounted on the hub flange and in that state, the distance member rests on a contact surface of the hub flange which is designated to contact an opposite contact surface of the blade flange, and wherein the distance member is movable in a radial direction of the hub flange.

5. The device according to claim 3 or 4, wherein the driving element is a spindle or a hydraulic cylinder.

6. A system comprising a rotor hub having a blade root bearing assembly comprising a hub flange, a rotor blade having a blade flange and a device for spacing the hub flange from the blade flange, wherein

 a) the blade root bearing assembly of the rotor hub is configured to have a clearance between an inner surface of the hub flange and an inner reinforcement structure of the rotor hub facing said inner surface,
b) a plurality of bolts reside in the blade flange of the rotor blade, wherein the bolts extend from the blade flange through corresponding apertures in the hub flange, when the blade is mounted on the rotor hub,

c) the device for spacing comprises a distance member having a predetermined thickness to define a clearance between the blade flange and the hub flange, wherein said thickness is selected so as to provide an increased clearance between the inner surface of the hub flange and the inner reinforcement structure of the rotor hub so as to allow lateral insertion and placement of nuts on the bolt heads of said bolts by accessing the bolt heads via said increased clearance.

7. The system according to claim 6, wherein the distance member is wedge shaped having a plane which inclines from a tip of the distance member having a lower thickness to a root of the distance member having a higher thickness and the distance member is movable in a direction pointing from the tip to the root for adjustment of the clearance between the hub flange and the blade flange and wherein the higher thickness is the predetermined thickness.

8. A method of installing a rotor blade on a rotor hub of a wind generator, the method comprising the steps of:

a) mounting a device according to anyone of claims 1 to 5 on a hub flange of the rotor hub,

b) approaching the rotor blade to the hub flange and contacting a contact surface of the blade flange with the distance member,

c) mounting nuts on bolts which reside in the blade flange and which extend from the blade flange though corresponding apertures in the hub flange via a clearance between an inner surface of the hub flange and an inner reinforcement structure of the rotor hub by lateral insertion and placement of nuts on the bolt heads of said bolts,

d) removing the device for spacing from the hub flange by extracting the distance member from an intermediate space between the hub flange and the blade flange and

e) tightening the nuts on the bolts

9. The method according to claim 8, wherein
in step a), the device for spacing is mounted so as to engage with the hub flange in that, the distance member rests on a contact surface of the hub flange and is movable in a radial direction of the hub flange, wherein the distance member is wedge shaped having a plane which inclines from a tip of the distance member having a lower thickness to a root of the distance member having a higher thickness and the tip is arranged to point outwards the hub flange and

in step d), the distance member is extracted from the clearance between the hub flange and the blade flange by removing the distance member from said clearance by a movement in a radial direction towards an interior of the hub flange, wherein the distance member is removed from the clearance with its root first.
Fig. 1
Fig. 2
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. F03D1/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F03D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB 2 487 083 A (VESTAS WIND SYS AS [DK])</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>page 2, line 15 - page 3, line 5</td>
<td>2-9</td>
</tr>
<tr>
<td></td>
<td>page 6, line 5 - line 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 3,4,5,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 2010/254813 AI (DAWSON MARK [US] ET AL)</td>
<td>1,8</td>
</tr>
<tr>
<td>A</td>
<td>paragraphs [0005], [0006], [0024]</td>
<td>2-7,9</td>
</tr>
<tr>
<td></td>
<td>figures 4,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 1 959 129 A2 (NØRDEX ENERGY GMBH [DE])</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>the whole document</td>
<td>1-5,7,9</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. [X] See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search

14 February 2014

Date of mailing of the international search report

03/03/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Lux, Ralph

Authorized officer

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB 2 483 678 A (VESTAS WIND SYS AS [DK]) 21 March 2012 (2012-03-21)</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>page 14, line 29 - page 15, line 21</td>
<td>1-5, 7-9</td>
</tr>
<tr>
<td></td>
<td>page 16, line 13 - line 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 2, 14-20</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>GB 2487083 A</td>
<td>11-07-2012</td>
<td>CN 103443450 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2661550 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2487083 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014010661 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2012093245 Al</td>
</tr>
<tr>
<td>US 2010254813 Al</td>
<td>07-10-2010</td>
<td>US 2010254813 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2010115135 Al</td>
</tr>
<tr>
<td>EP 1959129 A2</td>
<td>20-08-2008</td>
<td>AT 535710 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101245761 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102007008167 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1959129 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008193295 Al</td>
</tr>
<tr>
<td>GB 2483678 A</td>
<td>21-03-2012</td>
<td>CN 103210211 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2616672 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2483678 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013236316 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2012034564 Al</td>
</tr>
</tbody>
</table>