(51) International Patent Classification:
C07D 205/04 (2006.01) A61K 31/40 (2006.01)
C07D 207/09 (2006.01) A61P 25/00 (2006.01)
A61K 31/397 (2006.01)

(21) International Application Number:
PCT/EP2008/059429

(22) International Filing Date: 18 July 2008 (18.07.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
071 13329.2 27 July 2007 (27.07.2007) EP

(71) Applicant (for all designated States except US): F. HOFF~
MANN-LA ROCHE AG [CWCH]; Grenzacherstrasse
124, CH-4070 Basel (CH).

(72) Inventors; and
(75) Inventors/Applicants (for US only): GALLEY, Guido
[DE/DE]; Katzenbuckelweg 14, 79618 Rheinfelden (DE).
GOERGLER, Annick [FR/FR]; 5, mittlerer Nochlen
Pfad, F-68000 Colmar (FR). GROEBKE ZBINDEN,
Katrin [CH/CH]; Laubibergstrasse 61, CH-4410 Liestal
(CH). NORCROSS, Roger [GB/CH]; Rheinfelderstrasse

(54) Title: 2-AZETIDINE METHANEAMINES AND 2-PYRROLIDINE METHANEAMINES AS TAAR-LIGANDS

(57) Abstract: The present invention relates to compounds of formula (I) wherein R¹ is hydrogen, lower alkyl or benzyl which may be optionally substituted by halogen or lower alkoxy; R² is hydrogen, halogen or OR, wherein R is lower alkyl, aryl or lower alkyl substituted by halogen; R³ is hydrogen or fluorine; Ar is phenyl; n is 0 or 1; o is 0, 1, or 2; and to their pharmaceutically active salts. It has been found that the compounds of formula I have a good affinity to the trace amine associated receptors (TAARs), especially for TAAR1. The compounds may be used for the treatment of depression, anxiety disorders, bipolar disorder, attention deficit hyperactivity disorder (ADHD), stress-related disorders, psychotic disorders such as schizophrenia, neurological diseases such as Parkinson's disease, neurodegenerative disorders such as Alzheimer's disease, epilepsy, migraine, hypertension, substance abuse and metabolic disorders such as eating disorders, diabetes, diabetic complications, obesity, dyslipidemia, disorders of energy consumption and assimilation, disorders and malfunction of body temperature homeostasis, disorders of sleep and circadian rhythm, and cardiovascular disorders.
The present invention relates to compounds of formula I

\[
\begin{align*}
\text{R}^1 & \quad \text{is hydrogen, lower alkyl or benzyl which may be optionally substituted by halogen or lower alkoxy;} \\
\text{R}^2 & \quad \text{is hydrogen, halogen or OR, wherein R is lower alkyl, aryl or lower alkyl substituted by halogen;} \\
\text{R}^3 & \quad \text{is hydrogen or fluorine;} \\
\text{Ar} & \quad \text{is phenyl;} \\
\text{O} & \quad \text{is 0 or 1;} \\
\text{O} & \quad \text{is 0, 1 or 2;} \\
\text{and to their pharmaceutically active salts.}
\end{align*}
\]

The invention includes all racemic mixtures, all their corresponding enantiomers and/or optical isomers.

It has been found that the compounds of formula I have a good affinity to the trace amine associated receptors (TAARs), especially for TAAR1. The compounds may be used for the treatment of depression, anxiety disorders, bipolar disorder, attention deficit hyperactivity disorder (ADHD), stress-related disorders, psychotic disorders such as schizophrenia, neurological diseases such as Parkinson's disease, neurodegenerative disorders such as Alzheimer's disease, epilepsy, migraine, hypertension, substance abuse and metabolic disorders such as eating disorders, diabetes, diabetic complications, obesity, dyslipidemia, disorders of energy consumption and assimilation, disorders and malfunction of POP/08.04.2008
body temperature homeostasis, disorders of sleep and circadian rhythm, and cardiovascular disorders.

The classical biogenic amines (serotonin, norepinephrine, epinephrine, dopamine, histamine) play important roles as neurotransmitters in the central and peripheral nervous system [1]. Their synthesis and storage, as well as their degradation and reuptake after release are tightly regulated. An imbalance in the levels of biogenic amines is known to be responsible for the altered brain function under many pathological conditions [2-5]. A second class of endogenous amine compounds, the so-called trace amines (TAs) significantly overlap with the classical biogenic amines regarding structure, metabolism and subcellular localization. The TAs include p-tyramine, β-phenylethylamine, tryptamine and octopamine, and they are present in the mammalian nervous system at generally lower levels than classical biogenic amines [6].

Their dysregulation has been linked to various psychiatric diseases like schizophrenia and depression [7] and for other conditions like attention deficit hyperactivity disorder, migraine headache, Parkinson's disease, substance abuse and eating disorders [8,9].

For a long time, TA-specific receptors had only been hypothesized based on anatomically discrete high-affinity TA binding sites in the CNS of humans and other mammals [10,11]. Accordingly, the pharmacological effects of TAs were believed to be mediated through the well known machinery of classical biogenic amines, by either triggering their release, inhibiting their reuptake or by "crossreacting" with their receptor systems [9,12,13]. This view changed significantly with the recent identification of several members of a novel family of GPCRs, the trace amine associated receptors (TAARs) [7,14]. There are 9 TAAR genes in human (including 3 pseudogenes) and 16 genes in mouse (including 1 pseudogene). The TAAR genes do not contain introns (with one exception, TAAR2 contains 1 intron) and are located next to each other on the same chromosomal segment. The phylogenetic relationship of the receptor genes, in agreement with an in-depth GPCR pharmacophore similarity comparison and pharmacological data suggest that these receptors form three distinct subfamilies [7,14]. TAAR1 is in the first subclass of four genes (TAAR1-4) highly conserved between human and rodents. TAs activate TAAR1 via Gas. Dysregulation of TAs was shown to contribute to the aetiology of various diseases like depression, psychosis, attention deficit hyperactivity disorder, substance abuse, Parkinson's disease, migraine headache, eating disorders,
metabolic disorders and therefore TAAR1 ligands have a high potential for the treatment of these diseases.

Therefore, there is a broad interest to increase the knowledge about trace amine associated receptors.

References used:
6 Usdin, Earl; Sandler, Merton; Editors. *Psychopharmacology Series, Vol. 1: Trace Amines and the Brain. (Proceedings of a Study Group at the 14th Annual Meeting of the American College of Neuropsychopharmacology, San Juan, Puerto Rico)* (1976);

Objects of the present invention are novel compounds of formula I, their manufacture, medicaments based on a compound in accordance with the invention and their production as well as the use of compounds of formula I in the control or prevention of illnesses such as depression, anxiety disorders, bipolar disorder, attention deficit hyperactivity disorder, stress-related disorders, psychotic disorders such as schizophrenia, neurological diseases such as Parkinson's disease, neurodegenerative disorders such as Alzheimer's disease, epilepsy, migraine, hypertension, substance abuse and metabolic disorders such as eating disorders, diabetes, diabetic complications, obesity, dyslipidemia, disorders of energy consumption and assimilation, disorders and malfunction of body temperature homeostasis, disorders of sleep and circadian rhythm, and cardiovascular disorders.

The preferred indications using the compounds of the present invention are depression, psychosis, Parkinson's disease, anxiety and attention deficit hyperactivity disorder (ADHD).

As used herein, the term "lower alkyl" denotes a saturated straight- or branched-chain group containing from 1 to 7 carbon atoms, for example, methyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, 2-butyl, t-butyl and the like. Preferred alkyl groups are groups with 1 - 4 carbon atoms.

As used herein, the term "lower alkoxy" denotes a saturated straight- or branched-chain as defined above and which is attached via an oxygen atom.

As used herein, the term "lower alkyl substituted by halogen" denotes an alkyl group as defined above, wherein at least one hydrogen atom is replaced by halogen, for example CF₃, CHF₂, CH₂F, CH₂CF₃, CH₂CH₂CF₃, CH₂CF₂CF₃ and the like.

As used herein, the term "aryl" denotes an aromatic group, selected from phenyl or naphthalen-1-yl.

The term "halogen" denotes chlorine, iodine, fluorine and bromine.

The term "pharmaceutically acceptable acid addition salts" embraces salts with inorganic and organic acids, such as hydrochloric acid, nitric acid, sulfuric acid,
phosphoric acid, citric acid, formic acid, fumaric acid, maleic acid, acetic acid, succinic acid, tartaric acid, methane-sulfonic acid, p-toluenesulfonic acid and the like.

Preferred compounds of formula I are those, wherein \(n \) is 1 (pyrrolidine):

\[
\begin{align*}
&\begin{array}{c}
\text{IA} \\
\begin{array}{c}
\text{R}^3 \\
\text{HN} \\
\text{R}^1 \\
\text{Ar} \\
\text{(R')o}
\end{array}
\end{array}
\end{align*}
\]

wherein
\begin{align*}
\text{R}^1 & \text{ is hydrogen, lower alkyl or benzyl which may be optionally substituted by halogen or lower alkoxy;} \\
\text{R}^2 & \text{ is hydrogen, halogen or OR, wherein R is lower alkyl, aryl or lower alkyl substituted by halogen;} \\
\text{R}^3 & \text{ is hydrogen or fluorine;} \\
\text{Ar} & \text{ is phenyl;} \\
\text{o} & \text{ is 0, 1 or 2;}
\end{align*}
and their pharmaceutically active salts.

Examples for such structures are

- ethyl-(3-phenoxy-phenyl)-(R)-1-pyrrolidin-2-ylmethyl-amine
- ethyl-(3-phenoxy-phenyl)-(S)-1-pyrrolidin-2-ylmethyl-amine
- (3,4-dichloro-phenyl)-ethyl-(S)-1-pyrrolidin-2-ylmethyl-amine
- (4-chloro-3-methoxy-phenyl)-methyl-(S)-1-pyrrolidin-2-ylmethyl-amine
- (4-chloro-3-methoxy-phenyl)-ethyl-(S)-1-pyrrolidin-2-ylmethyl-amine
- (4-chloro-phenyl) -ethyl-(S)-1-pyrrolidin-2-ylmethyl-amine
- (4-chloro-3-methoxy-phenyl)-isopropyl-(S)-1-pyrrolidin-2-ylmethyl-amine
- (3,4-dichloro-phenyl)-isopropyl-(S)-1-pyrrolidin-2-ylmethyl-amine or
- (4-chloro-phenyl) -ethyl-(R)-1 -pyrrolidin-2-ylmethyl-amine.

Preferred compounds are further those, wherein \(n \) is 0 (azetidine):
wherein

- R_1 is hydrogen, lower alkyl or benzyl which may be optionally substituted by halogen or lower alkoxy;
- R_2 is hydrogen, halogen or OR, wherein R is lower alkyl, aryl or lower alkyl substituted by halogen;
- R_3 is hydrogen or fluorine;
- Ar is phenyl;
- o is 0, 1 or 2;

and their pharmaceutically active salts.

Examples for such structures are

- (S)-I-azetidin-2-ylmethyl-(4-chloro-phenyl)-ethyl-amine
- (S)-I-azetidin-2-ylmethyl-ethyl-phenyl-amine
- (S)-I-azetidin-2-ylmethyl-ethyl-(3-methoxy-phenyl)-amine
- (S)-I-azetidin-2-ylmethyl-(3-bromo-phenyl)-ethyl-amine
- (S)-I-azetidin-2-ylmethyl-(4-chloro-phenyl)-methyl-amine
- (S)-I-azetidin-2-ylmethyl-(4-chloro-phenyl)-isopropyl-amine
- (S)-I-azetidin-2-ylmethyl-benzyl-(4-chloro-phenyl)-amine

The present compounds of formula I and their pharmaceutically acceptable salts can be prepared by methods known in the art, for example, by processes described below,

- a) reacting a compound of formula

\[
\begin{align*}
(R_2^2)_o & \quad \text{Ar} \\
\text{NM}_{\omega} \\
\end{align*}
\]

with a compound of formula

\[
\begin{align*}
\text{PG} & \quad N \quad R^3 \\
O & \quad \text{C} \quad (\text{C})_n \\
\end{align*}
\]
to a compound of formula

and deprotecting a compound of formula IV to a compound of formula

wherein the substituents are as defined above, or

b) reacting a compound of formula

with an aldehyde of formula \(R^1 \text{-CHO} \)

to a compound of formula

and deprotecting a compound of formula IV-1 to a compound of formula

wherein \(R^1 \) is lower alkyl or hydrogen and the other definitions are as described above, or

c) reacting a compound of formula
with a compound of formula

\[
\begin{align*}
\text{PG} & \hspace{1cm} \text{R}^3 \\
\text{HOOC} & \hspace{1cm} \text{VIII}
\end{align*}
\]

to a compound of formula

\[
\begin{align*}
\text{PG} & \hspace{1cm} \text{R}^3 \\
\text{R}^1 & \hspace{1cm} \text{N} \\
\text{O} & \hspace{1cm} \text{IX}
\end{align*}
\]

reducing the compound of formula IX and deprotecting to a compound of formula

\[
\begin{align*}
\text{R}^3 & \hspace{1cm} \text{N} \\
\text{R}^1 & \hspace{1cm} \text{Ar} \\
\text{I}
\end{align*}
\]

wherein the substituents are as defined above,

and, if desired, converting the compounds obtained into pharmaceutically acceptable acid addition salts.

The compounds of formula I maybe prepared in accordance with the process variants as described above and with the following schemes 1 - 3. The starting materials are either commercially available, are otherwise known in the chemical literature, or may be prepared in accordance with methods well known in the art.
Compounds of formula 1-1 may be prepared by reductive amination using an aniline of formula II and an N-protected pyrrolidine-2-carbaldehyde of formula III \((n = 1)\) or an N-protected 2-formylazetidine of formula III \((n=0)\) in the presence of a reducing agent such as NaCNBH\(_3\) or NaBH\((\text{OAc})_3\) followed by a deprotection step on the intermediate IV in the usual manner.
Compounds of formula 1-2 and 1-3 may be prepared by a second reductive amination step starting from intermediate IV using for instance reagents such as an aldehyde V, an enolether VI or an aldehyde acetal VII in presence of a reducing agent such as NaCNBH₃ or NaBH(OAc)₃ followed by N-deprotection of the pyrrolidine or azetidine in the usual matter.
Method 3

Scheme 3 describes the preparation of a compound of formula I by formation of an amide IX followed by reduction of the amide bond by a reducing agent such as borane or lithium aluminumhydride and protecting group removal in the usual manner.

Isolation and purification of the compounds

Isolation and purification of the compounds and intermediates described herein can be effected, if desired, by any suitable separation or purification procedure such as, for example, filtration, extraction, crystallization, column chromatography, thin-layer chromatography, thick-layer chromatography, preparative low or high-pressure liquid chromatography or a combination of these procedures. Specific illustrations of suitable separation and isolation procedures can be had by reference to the preparations and examples herein below. However, other equivalent separation or isolation procedures could, of course, also be used. Racemic mixtures of chiral compounds of formula I can be separated using chiral HPLC.

Salts of compounds of formula I

The compounds of formula I are basic and may be converted to a corresponding acid addition salt. The conversion is accomplished by treatment with at least a stoichiometric amount of an appropriate acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic
acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid,
benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-
toluenesulfonic acid, salicylic acid and the like. Typically, the free base is dissolved in an
inert organic solvent such as diethyl ether, ethyl acetate, chloroform, ethanol or methanol
and the like, and the acid added in a similar solvent. The temperature is maintained
between 0°C and 50 °C. The resulting salt precipitates spontaneously or may be brought
out of solution with a less polar solvent.

The acid addition salts of the basic compounds of formula I maybe converted
to the corresponding free bases by treatment with at least a stoichiometric equivalent of a
suitable base such as sodium or potassium hydroxide, potassium carbonate, sodium
bicarbonate, ammonia, and the like.

The compounds of formula I and their pharmaceutically usable
addition salts possess valuable pharmacological properties. Specifically, it has
been found that the compounds of the present invention have a good affinity to
the trace amine associated receptors (TAARs), especially TAAR1.
The compounds were investigated in accordance with the test given hereinafter.

Materials and Methods

Construction of TAAR expression plasmids and stably transfected cell lines

For the construction of expression plasmids the coding sequences of human, rat and
mouse TAAR I were amplified from genomic DNA essentially as described by
Lindemann et al. [14]. The Expand High Fidelity PCR System (Roche Diagnostics) was
used with 1.5 mM Mg²⁺ and purified PCR products were cloned into pCR2.1-TOPO
cloning vector (Invitrogen) following the instructions of the manufacturer. PCR products
were subcloned into the pIRESneo2 vector (BD Clontech, Palo Alto, California), and
expression vectors were sequence verified before introduction in cell lines.

HEK293 cells (ATCC # CRL- 1573) were cultured essentially as described Lindemann et
al. (2005). For the generation of stably transfected cell lines HEK293 cells were transfected
with the pIRESneo2 expression plasmids containing the TAAR coding sequences
(described above) with Lipofectamine 2000 (Invitrogen) according to the instructions of
the manufacturer, and 24 hrs post transfection the culture medium was supplemented
with 1 mg/ml G418 (Sigma, Buchs, Switzerland). After a culture period of about 10 d
clones were isolated, expanded and tested for responsiveness to trace amines (all
compounds purchased from Sigma) with the cAMP Biotrak Enzyme immunoassay (EIA) System (Amersham) following the non-acetylation EIA procedure provided by the manufacturer. Monoclonal cell lines which displayed a stable EC50 for a culture period of 15 passages were used for all subsequent studies.

Membrane preparation and radioligand binding

Cells at confluence were rinsed with ice-cold phosphate buffered saline without Ca2+ and Mg2+ containing 10 mM EDTA and pelleted by centrifugation at 1000 rpm for 5 min at 4 °C. The pellet was then washed twice with ice-cold phosphate buffered saline and cell pellet was frozen immediately by immersion in liquid nitrogen and stored until use at -80 °C. Cell pellet was then suspended in 20 ml HEPES-NaOH (20 mM), pH 7.4 containing 10 mM EDTA, and homogenized with a Polytron (PT 3000, Kinematica) at 10,000 rpm for 10 s. The homogenate was centrifuged at 48,000xg for 30 min at 4 °C and the pellet resuspended in 20 ml HEPES-NaOH (20 mM), pH 7.4 containing 0.1 mM EDTA (buffer A), and homogenized with a Polytron at 10,000 rpm for 10 s. The homogenate was then centrifuged at 48,000xg for 30 min at 4 °C and the pellet resuspended in 20 ml buffer A, and homogenized with a Polytron at 10,000 rpm for 10 s. Protein concentration was determined by the method of Pierce (Rockford, IL). The homogenate was then centrifuged at 48,000xg for 10 min at 4 °C, resuspended in HEPES-NaOH (20 mM), pH 7.0 including MgCl\textsubscript{2} (10 mM) and CaCl\textsubscript{2} g protein per ml and (2 mM) (buffer B) at 200 homogenized with a Polytron at 10,000 rpm for 10 s.

Binding assay was performed at 4 °C in a final volume of 1 ml, and with an incubation time of 30 min. The radioligand 3H-rac-2-(1,2,3,4-tetrahydro-1-naphthyl)-2-imidazoline was used at a concentration equal to the calculated K\textsubscript{d} value of 60 nM to give a bound at around 0.1 % of the total added radioligand concentration, and a specific binding which represented approximately 70 - 80 % of the total binding. Non-specific binding was defined as the amount of 3H-rac-2-(1,2,3,4-tetrahydro-1-naphthyl)-2-imidazoline bound in the presence of the appropriate unlabelled ligand (10μM).

Competing ligands were tested in a wide range of concentrations (10 pM - 30 μM). The final dimethylsulphoxide concentration in the assay was 2%, and it did not affect radioligand binding. Each experiment was performed in duplicate. All incubations were terminated by rapid filtration through UniFilter-96 plates (Packard Instrument Company) and glass filter GF/C, pre-soaked for at least 2 h in polyethylenimine 0.3%, and using a Filtermate 96 Cell Harvester (Packard Instrument Company). The tubes and filters were then washed 3 times with 1 ml aliquots of cold buffer B. Filters were not dried and soaked in Ultima gold (45 μl/well, Packard Instrument Company) and bound
radioactivity was counted by a TopCount Microplate Scintillation Counter (Packard Instrument Company).

The preferred compounds show a K_i value (μM) in mouse on TAAR1 in the range of <0.1 μM as shown in the table below.

<table>
<thead>
<tr>
<th>Example</th>
<th>K_i (μM) mouse</th>
<th>Example</th>
<th>K_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.0044</td>
<td>16</td>
<td>0.0056</td>
</tr>
<tr>
<td>4</td>
<td>0.0172</td>
<td>17</td>
<td>0.0024</td>
</tr>
<tr>
<td>6</td>
<td>0.0028</td>
<td>18</td>
<td>0.0092</td>
</tr>
<tr>
<td>8</td>
<td>0.0859</td>
<td>19</td>
<td>0.0137</td>
</tr>
<tr>
<td>9</td>
<td>0.0092</td>
<td>20</td>
<td>0.0047</td>
</tr>
<tr>
<td>11</td>
<td>0.0131</td>
<td>21</td>
<td>0.021</td>
</tr>
<tr>
<td>12</td>
<td>0.0213</td>
<td>22</td>
<td>0.041</td>
</tr>
<tr>
<td>13</td>
<td>0.005</td>
<td>23</td>
<td>0.0107</td>
</tr>
</tbody>
</table>

The compounds of formula I and the pharmaceutically acceptable salts of the compounds of formula I can be used as medicaments, e.g. in the form of pharmaceutical preparations. The pharmaceutical preparations can be administered orally, e.g. in the form of tablets, coated tablets, dragees, hard and soft gelatine capsules, solutions, emulsions or suspensions. The administration can, however, also be effected rectally, e.g. in the form of suppositories, parenterally, e.g. in the form of injection solutions.

The compounds of formula I can be processed with pharmaceutically inert, inorganic or organic carriers for the production of pharmaceutical preparations. Lactose, corn starch or derivatives thereof, talc, stearic acids or its salts and the like can be used, for example, as such carriers for tablets, coated tablets, dragees and hard gelatine capsules. Suitable carriers for soft gelatine capsules are, for example, vegetable oils, waxes, fats, semi-solid and liquid polyols and the like. Depending on the nature of the active substance no carriers are however usually required in the case of soft gelatine capsules. Suitable carriers for the production of solutions and syrups are, for example, water,
polyols, glycerol, vegetable oil and the like. Suitable carriers for suppositories are, for example, natural or hardened oils, waxes, fats, semi-liquid or liquid polyols and the like.

The pharmaceutical preparations can, moreover, contain preservatives, solubilizers, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, buffers, masking agents or antioxidants. They can also contain still other therapeutically valuable substances.

Medicaments containing a compound of formula I or a pharmaceutically acceptable salt thereof and a therapeutically inert carrier are also an object of the present invention, as is a process for their production, which comprises bringing one or more compounds of formula I and/or pharmaceutically acceptable acid addition salts and, if desired, one or more other therapeutically valuable substances into a galenical administration form together with one or more therapeutically inert carriers.

The most preferred indications in accordance with the present invention are those, which include disorders of the central nervous system, for example the treatment or prevention of schizophrenia, depression, cognitive impairment and Alzheimer's disease.

The dosage can vary within wide limits and will, of course, have to be adjusted to the individual requirements in each particular case. In the case of oral administration the dosage for adults can vary from about 0.01 mg to about 1000 mg per day of a compound of general formula I or of the corresponding amount of a pharmaceutically acceptable salt thereof. The daily dosage may be administered as single dose or in divided doses and, in addition, the upper limit can also be exceeded when this is found to be indicated.

Tablet Formulation (Wet Granulation)

<table>
<thead>
<tr>
<th>Item</th>
<th>Ingredients</th>
<th>mg/tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5 mg</td>
</tr>
<tr>
<td>1</td>
<td>Compound of formula I</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Lactose Anhydrous DTG</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>Sta-Rx 1500</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Microcrystalline Cellulose</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Magnesium Stearate</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Total</td>
<td>167</td>
</tr>
</tbody>
</table>
Manufacturing Procedure

1. Mix items 1, 2, 3 and 4 and granulate with purified water.
2. Dry the granules at 50°C.
3. Pass the granules through suitable milling equipment.
4. Add item 5 and mix for three minutes; compress on a suitable press.

Capsule Formulation

<table>
<thead>
<tr>
<th>Item</th>
<th>Ingredients</th>
<th>mg/capsule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5 mg</td>
</tr>
<tr>
<td>1. Compound of formula I</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2. Hydrous Lactose</td>
<td></td>
<td>159</td>
</tr>
<tr>
<td>3. Corn Starch</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>4. Talc</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5. Magnesium Stearate</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

5. Manufacturing Procedure

1. Mix items 1, 2 and 3 in a suitable mixer for 30 minutes.
2. Add items 4 and 5 and mix for 3 minutes.
3. Fill into a suitable capsule.
Experimental

The following examples illustrate the invention but are not intended to limit its scope.

Example 1

(3-Phenoxy-phenyl)-(R)-l-pyrrolidin-2-ylmethyl-amine

To a solution of 3-phenoxyaniline (0.3 g, 1.62 mmol) in 1,2-dichloroethane (4 ml) were added N-(tert-butoxycarbonyl)-D-prolinal (0.322 g, 1.62 mmol) and sodium triacetoxyborohydride (0.480 g, 2.26 mmol). The resulting suspension was stirred overnight at 50 °C. The mixture was then cooled to room temperature, water (8 ml) was added and extracted with ethyl acetate (3 x 20 ml). The combined organic layers were dried with magnesium sulphate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (SiO₂: heptane/ethyl acetate = 70:30) to yield a light yellow oil that was dissolved in dichloromethane (4 ml). Trifluoroacetic acid (1 ml) was added and the mixture was stirred for 3 h at room temperature. Aqueous sodium hydroxide solution (4N) was added until basic pH and the mixture was extracted with ethyl acetate (2 times 30 ml). The combined organic layers were dried with magnesium sulphate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (column: Isolute® Flash-NH₂ from Separtis; eluent: ethyl acetate) to yield a colourless oil, (0.256 g, 59 %); MS (ISP): 269.1 ((M+H)⁺).

Example 2

(3-Phenoxy-phenyl)-(S)-l-pyrrolidin-2-ylmethyl-amine
The title compound, MS (ISP): 269.1 ([M+H] +) was obtained in comparable yield analogous to the procedure described for Example 1 using N-(tert-butoxycarbonyl)-L-prolinal instead of N-(tert-butoxycarbonyl)-D-prolinal.

Example 3

Ethyl-(3-phenoxy-phenyl)-(R)-l-pyrrolidin-2-ylmethyl-amine

![Chiral structure](image)

a) (R)-2-[[Ethyl-(3-phenoxy-phenyl)-amino]-methyl]-pyrrolidine-1-carboxylic acid tert-butyl ester

To a solution of 3-phenoxyaniline (0.3 g, 1.62 mmol) in 1,2-dichloroethane (4 ml) were added N-(tert-butoxycarbonyl)-D-prolinal (0.322 g, 1.62 mmol) and sodium triacetoxyborohydride (0.480 g, 2.26 mmol). The resulting suspension was stirred overnight at 50°C. The mixture was then cooled to room temperature, water (8 ml) was added and extracted with ethyl acetate (3 x 20 ml). The combined organic layers were dried with magnesium sulphate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (SiC^: heptane/ethyl acetate = 70:30) to yield a light yellow oil that was dissolved in methanol (8 ml). Acetaldehyde (0.134 g, 3.05 mmol), zinc chloride (0.333 g, 2.44 mmol) and sodium cyanoborohydride (0.115 g, 1.83 mmol) were added and the mixture was stirred overnight at 40°C. Saturated ammonium acetate solution (10 ml) was added and extracted with ethyl acetate (3 x 30 ml). The combined organic layers were dried with magnesium sulphate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (SiC^: heptane/ethyl acetate = 70:30) to yield 0.43 g (67%) of a colourless oil; MS (ISP): 397.0 ([M+H] +).

b) Ethyl-(3-phenoxy-phenyl)-(R)-l-pyrrolidin-2-ylmethyl-amine

To a solution of (R)-2-[[ethyl-(3-phenoxy-phenyl)-amino]-methyl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.162 g, 0.41 mmol) in dichloromethane (3 ml) was added trifluoroacetic acid (1 ml) and the mixture was stirred for 3 h at room temperature. Aqueous sodium hydroxide solution (4N) was added until basic pH and the mixture was extracted with ethyl acetate (2 times 30 ml). The combined organic layers were dried with magnesium sulphate, filtered and concentrated in vacuo. The residue was
purified by flash chromatography (column: Isolute™ Flash-NH₂ from Separtis; eluent: ethyl acetate) to yield a colourless oil, (0.043 g, 36 %); MS (ISP): 297.5 ([M+H]⁺).

Example 4

Ethyl-(3-phenoxy-phenyl)-(S)-l-pyrrolidin-2-ylmethyl-amine

The title compound, MS (ISP): 297.5 ([M+H]⁺) was obtained in comparable yield analogous to the procedure described for Example 3 using N-(tert-butoxycarbonyl)-L-prolinal instead of N-(tert-butoxycarbonyl)-D-prolinal in step a).

Example 5

(3-Bromo-phenyl)-ethyl-(S)-l-pyrrolidin-2-ylmethyl-amine

The title compound, MS (ISP): 283.1; 285.1 ([M+H]⁺) was obtained in comparable yield analogous to the procedure described for Example 3 using N-(tert-butoxycarbonyl)-L-prolinal instead of N-(tert-butoxycarbonyl)-D-prolinal and 3-bromoaniline instead of 3-phenoxyaniline in step a).

Example 6

(3,4-Dichloro-phenyl)-ethyl-(S)-l-pyrrolidin-2-ylmethyl-amine

The title compound, MS (ISP): 273.2; 275.1 ([M+H]⁺) was obtained in comparable yield analogous to the procedure described for Example 3 using N-(tert-butoxycarbonyl)-L-prolinal instead of N-(tert-butoxycarbonyl)-D-prolinal and 3,4-dichloroaniline instead of 3-phenoxyaniline in step a).
Example 7

Ethyl-\((S)-1\)-pyrrolidin-2-ylmethyl-\((3\text{-trifluoroniethoxy}-\text{phenyl})\)-aniine

The title compound, MS (ISP): 289.0 ([M+H] \(^+\)) was obtained in comparable yield analogous to the procedure described for Example 3 using N-(\((\text{tert-butoxycarbonyl})\)-\(L\)-prolinal instead of N-(\((\text{tert-butoxycarbonyl})\)-\(D\)-prolinal \(\) and \(3\text{-trifluoromethoxy-aniine instead of } 3\text{-phenoxyaniline in step a).}

Example 8

\((4\text{-Chloro-3-methoxy-phenyl})\)-methyl-\((S)-1\)-pyrrolidin-2-ylmethyl-amine

The title compound, MS (ISP): 255.3 ([M+H] \(^+\)) was obtained in comparable yield analogous to the procedure described for Example 3 using N-(\((\text{tert-butoxycarbonyl})\)-\(L\)-prolinal instead of N-(\((\text{tert-butoxycarbonyl})\)-\(D\)-prolinal, \(4\text{-chloro-3-methoxy-aniine instead of } 3\text{-phenoxyaniline and paraformaldehyde instead of acetaldehyde in step a).}

Example 9

\((4\text{-Chloro-3-methoxy-phenyl})\)-ethyl-\((S)-1\)-pyrrolidin-2-ylmethyl-amine

The title compound, MS (ISP): 269.4 ([M+H] \(^+\)) was obtained in comparable yield analogous to the procedure described for Example 3 using N-(\((\text{tert-butoxycarbonyl})\)-\(L\)-prolinal instead of N-(\((\text{tert-butoxycarbonyl})\)-\(D\)-prolinal \(\) and \(4\text{-chloro-3-methoxy-aniine instead of } 3\text{-phenoxyaniline in step a).}

Example 10

\((4\text{-Chloro-phenyl})\)-methyl-\((S)-1\)-pyrrolidin-2-ylmethyl-amine
The title compound, MS (ISP): 225.3 ([M+H] +) was obtained in comparable yield analogous to the procedure described for Example 3 using N-(tert-butoxycarbonyl)-L-prolinal instead of N-(tert-butoxycarbonyl)-D-prolinal, 4-chloroaniline instead of 3-phenoxyaniline and paraformaldehyde instead of acetaldehyde in step a).

Example 11

(4-Chloro-phenyl)-ethyl-(S)-l-pyrrolidin-2-ylmethyl-amine

The title compound, MS (ISP): 239.3 ([M+H] +) was obtained in comparable yield analogous to the procedure described for Example 3 using N-(tert-butoxycarbonyl)-L-prolinal instead of N-(tert-butoxycarbonyl)-D-prolinal and 4-chloroaniline instead of 3-phenoxyaniline in step a).

Example 12

(4-Chloro-3-methoxy-phenyl)-isopropyl-(S)-l-pyrrolidin-2-ylmethyl-amine

a) (S)-2-[(4-Chloro-3-methoxy-phenylamino)-methyl] -pyrrolidine- 1-carboxylic acid tert-butyl ester

To a solution of 4-chloro-3-methoxyaniline (1.57 g, 10.0 mmol) in methanol (27 ml) were added acetic acid (3 ml), N-(tert-butoxycarbonyl)-L-prolinal (2.40 g, 12.05 mmol) and sodium cyanoborohydride (1.56 g, 24.1 mmol). The resulting suspension was stirred for 2 hours at room temperature. Aqueous sodium bicarbonate solution (30 ml) was added and the mixture was extracted with ethyl acetate (3 x 20 ml). The combined organic layers were dried with magnesium sulphate, filtered and concentrated in vacuo.
The residue was purified by flash chromatography (SiO2: heptane/ethyl acetate = 70:30) to yield a light yellow oil (2.31 g, 68%); MS (ISP): 341.0, 342.9 ([M+H]+).

b) (4-Chloro-3-methoxy-phenyl)-isopropyl-(S)-l-pyrrolidin-2-ylmethyl-amine

To a solution of (S)-2-[(4-chloro-3-methoxy-phenylamino)-methyl]-pyrrolidine-1-carboxylic acid tert-butyl ester (0.68 g, 2.0 mmol) were added 2-methoxypropene (0.216 g, 3.0 mmol), trifluoracetic acid (0.228 g, 2.0 mmol) and sodium triacetoxyborohydride (0.64 g, 3.0 mmol). The mixture was stirred overnight at 60°C. Saturated sodium bicarbonate solution (10 ml) was added and the mixture was extracted with ethyl acetate (3 x 30 ml). The combined organic layers were dried with magnesium sulphate, filtered and concentrated in vacuo. The residue was dissolved in dichloromethane (3 ml) and trifluoracetic acid (3 ml) was added. Solvent and excess trifluoroacetic acid was evaporated, diisopropylethylamine (1 ml) was added to liberate the free base and the mixture was purified by flash chromatography (column: Isolute® Flash-NH2 from Separtis; eluent: ethyl acetate/heptane 1:1) to yield a light yellow oil, (0.185 g, 33%); MS (ISP): 283.5, 285.2 ([M+H]+).

Example 13
(3,4-Dichloro-phenyl)-isopropyl-(S)-l-pyrrolidin-2-ylmethyl-amine

The title compound, MS (ISP): 287.1, 289.1 ([M+H]+) was obtained in comparable yield analogous to the procedure described for Example 12 using 3,4-dichloroaniline instead of 4-chloro-3-methoxyaniline in step a).

Example 14
Benzyl-(3,4-dichloro-phenyl)-(S)-l-pyrrolidin-2-ylmethyl-amine

The title compound, MS (ISP): 335.3, 337.2 ([M+H]+) was obtained in comparable yield analogous to the procedure described for Example 12 using 3,4-dichloroaniline instead of
4-chloro-3-methoxyaniline in step a) and benzaldehyd dimethylacetal instead of 2-methoxypropene in step b).

Example 15

(4-Chloro-phenyl)-ethyl-((2S,4S)-4-fluoro-pyrrolidin-2-ylmethyl)-amine

To a solution of N-ethyl-4-chloro-aniline (0.31 g, 2.0 mmol) in dichloromethane (8 ml) were added (2S,4S)-tert-butylloxy carbonyl-4-fluoro-pyrrolidine-2-carboxylic acid (0.47 g, 2.0 mmol), bis(2-oxo-3-oxazolidinyl)-phosphinic chloride (0.76 g, 3.0 mmol) and diisopropylethylamine (0.39 g, 3.0 mmol). The mixture was stirred for 3 days at room temperature. Aqueous sodium bicarbonate solution (20 ml) was added and the mixture was extracted with dichloromethane (3 x 20 ml). The combined organic layers were dried with magnesium sulphate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (SiO2: heptane/ethyl acetate = 2:1) to yield a light yellow oil (0.55 g), that was dissolved in tetrahydrofuran (15 ml). Borane-tetrahydrofuran-complex (7.4 ml, IM, 7.4 mmol) was added and the mixture was heated at 60°C overnight. After cooling 5 drops of aqueous hydrochloric acid (4N) were added and the solvent was evaporated. The white residue was dissolved in aqueous hydrochloric acid (4N, 10 ml) and heated at 60°C for 1 hour. After cooling aqueous sodium hydroxide solution was added until basic pH and the mixture was extracted with dichloromethane (2 x 30 ml). The combined organic layers were dried with magnesium sulphate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (column: Isolute® Flash-NH₂ from Separtis; eluent: ethyl acetate/heptane 1:1) to yield a light yellow oil, (0.137 g, 27 %); MS (ISP): 257.1 ((M+H) +).

Example 16

(4-Chloro-phenyl)-ethyl-(R)-l-pyrrolidin-2-ylmethyl-amine
The title compound, MS (ISP): 239.0, 241.1 ([M+H] +) was obtained in comparable yield analogous to the procedure described for Example 3 using 4-chloroaniline instead of 3-phenoxyaniline in step a).

Example 17

5 (S)-l-Azetidin-2-ylmethyl-(4-chloro-phenyl)-ethyl-amine

\[
\text{HN} \quad \text{Cl} \\
\quad \text{N} \\
\quad \text{CH}_2 \\
\]

Chiral

a) (S)-2-[(4-Chloro-phenylamino)-methyl]-azetidine-1-carboxylic acid tert-butyl ester

To a solution of 4-chloro-aniline (0.57 g, 4.5 mmol) in methanol (18 ml) were added acetic acid (2 ml), (S)-2-formyl-azetidine-1-carboxylic acid tert.butyl ester (1.74 g, 9.4 mmol) and after 15 min stirring sodium cyanoborohydride (0.57 g, 9.0 mmol). The resulting suspension was stirred for 2 hours at room temperature. Aqueous sodium bicarbonate solution (20 ml) was added and the mixture was extracted with ethyl acetate (3 x 20 ml). The combined organic layers were dried with magnesium sulphate, filtered and concentrated \textit{in vacuo}. The residue was purified by flash chromatography (SiO2: heptane/ethyl acetate = 9:1) to yield a colourless oil (0.99 g, 74%); MS (ISP): 297.1 ((M+H) +); 241.3 ((M-C(CH\textsubscript{3})\textsubscript{3}+H) +).

b) (S)-l-Azetidin-2-ylmethyl-(4-chloro-phenyl)-ethyl-amine

(S)-2-[(4-Chloro-phenylamino)-methyl]-azetidine-1-carboxylic acid tert-butyl ester (0.08 g, 0.27 mmol) was dissolved in methanol (3 ml), then acetaldehyde (0.059 g, 1.35 mmol), zinc chloride (0.147 g, 1.1 mmol) and sodium cyanoborohydride (0.51 g, 0.81 mmol) were added and the mixture was stirred overnight at 40°C. Saturated ammonium acetate solution (10 ml) was added and extracted with ethyl acetate (3 x 30 ml). The combined organic layers were dried with magnesium sulphate, filtered and concentrated \textit{in vacuo}. The residue was dissolved in dichloromethane (3 ml) and trifluoroacetic acid (3 ml) was added. Solvent and access trifluoroacetic acid was evaporated, diisopropylethylamine (0.3 ml) was added to liberate the free base and the mixture was purified by flash chromatography (column: Isolute® Flash-NH\textsubscript{2} from Separtis; eluent: ethyl acetate/heptane 1:1) to yield a light yellow gum, (0.022 g, 38%); MS (ISP): 225.1 ((M+H) +).

Example 18

(S)-l-Azetidin-2-ylmethyl-ethyl-phenyl-amine
The title compound, MS (ISP): 191.4 ([M+H] +) was obtained in comparable yield analogous to the procedure described for Example 17 using aniline instead of 4-chloroaniline in step a).

Example 19

(S)-l-Azetidin-2-ylmethyl-ethyl-(3-methoxy-phenyl)-amine

The title compound, MS (ISP): 221.4 ([M+H] +) was obtained in comparable yield analogous to the procedure described for Example 17 using 3-methoxyaniline instead of 4-chloroaniline in step a).

Example 20

(S)-l-Azetidin-2-ylmethyl-(3-bromo-phenyl)-ethyl-amine

The title compound, MS (ISP): 269.4; 271.4 ([M+H] +) was obtained in comparable yield analogous to the procedure described for Example 17 using 3-bromoaniline instead of 4-chloroaniline in step a).

Example 21

(S)-l-Azetidin-2-ylmethyl-(4-chloro-phenyl)-methyl-amine
The title compound, MS (ISP): 211.1 ([M+H] +) was obtained in comparable yield analogous to the procedure described for Example 17 using paraformaldehyde instead of acetaldehyde in step b).

Example 22

(S)-l-Azetidin-2-ylmethyl-(4-chloro-phenyl)-isopropyl-amine

The title compound, MS (ISP): 239.3 ([M+H] +) was obtained in comparable yield analogous to the procedure described for Example 12 using 4-chloroaniline instead of 4-chloro-3-methoxyaniline and (S)-2-formyl-azetidine-l-carboxylic acid tert.butyl ester instead of N-(tert-butoxycarbonyl)-L-prolinal in step a).

Example 23

(S)-l-Azetidin-2-ylmethyl-benzyl-(4-chloro-phenyl)-amine

The title compound, MS (ISP): 287.3 ([M+H] +) was obtained in comparable yield analogous to the procedure described for Example 12 using 4-dichloroaniline instead of 4-chloro-3-methoxyaniline and (S)-2-formyl-azetidine-l-carboxylic acid tert.butyl ester instead of N-(tert-butoxycarbonyl)-L-prolinal in step a) and benzaldehyd dimethylacetal instead of 2-methoxypropene in step b).
Claims

L A compound of formula

\[
\begin{align*}
\text{wherein} \\
R^1 & \text{ is hydrogen, lower alkyl or benzyl which may be optionally substituted by halogen or lower alkoxy;} \\
R^2 & \text{ is hydrogen, halogen or OR, wherein } R \text{ is lower alkyl, aryl or lower alkyl substituted by halogen;} \\
R^3 & \text{ is hydrogen or fluorine;} \\
Ar & \text{ is phenyl;} \\
n & \text{ is 0 or 1;} \\
o & \text{ is 0, 1 or 2;} \\
\text{and their pharmaceutically active salts.}
\end{align*}
\]

2. A compound of formula IA according to claim 1

\[
\begin{align*}
\text{wherein} \\
R^1 & \text{ is hydrogen, lower alkyl or benzyl which may be optionally substituted by halogen or lower alkoxy;} \\
R^2 & \text{ is hydrogen, halogen or OR, wherein } R \text{ is lower alkyl, aryl or lower alkyl substituted by halogen;} \\
R^3 & \text{ is hydrogen or fluorine;} \\
Ar & \text{ is phenyl;} \\
o & \text{ is 0, 1 or 2;} \\
\end{align*}
\]
3. A compound of formula IA according to claim 2, which compound is
 ethyl-(3-phenoxy-phenyl)-(R)-l-pyrrolidin-2-ylmethyl-amine
 ethyl-(3-phenoxy-phenyl)-(S)-l-pyrrolidin-2-ylmethyl-amine
 (3,4-dichloro-phenyl)-ethyl-(S)-l-pyrrolidin-2-ylmethyl-amine
 (4-chloro-3-methoxy-phenyl)-methyl-(S)-l-pyrrolidin-2-ylmethyl-amine
 (4-chloro-3-methoxy-phenyl)-ethyl-(S)-l-pyrrolidin-2-ylmethyl-amine
 (4-chloro-phenyl)-ethyl-(S)-l-pyrrolidin-2-ylmethyl-amine
 (4-chloro-3-methoxy-phenyl)-isopropyl-(S)-l-pyrrolidin-2-ylmethyl-amine
 (3,4-dichloro-phenyl)-isopropyl-(S)-l-pyrrolidin-2-ylmethyl-amine
 (4-chloro-phenyl)-ethyl-(R)-l-pyrrolidin-2-ylmethyl-amine.

4. A compound of formula IB according to claim 1

 \[
 \begin{array}{c}
 \text{HN} \\
 \text{R}^1 \\
 \text{R}^2 \\
 \text{Ar} \\
 \text{R}^3 \\
 \end{array}
 \]

 wherein
 \(R^1 \) is hydrogen, lower alkyl or benzyl which may be optionally substituted by halogen or lower alkoxy;
 \(R^2 \) is hydrogen, halogen or OR, wherein R is lower alkyl, aryl or lower alkyl substituted by halogen;
 \(R^3 \) is hydrogen or fluorine;
 Ar is phenyl;
 o is 0, 1 or 2;
 and their pharmaceutically active salts.

5. A compound of formula IB according to claim 4, which compound is
 (S)-I-azetidin-2-ylmethyl-(4-chloro-phenyl)-ethyl-amine
 (S)-I-azetidin-2-ylmethyl-ethyl-phenyl-amine
 (S)-1-azetidin-2-ylmethyl-ethyl-(3-methoxy-phenyl)-amine
 (S)-I-azetidin-2-ylmethyl-(3-bromo-phenyl)-ethyl-amine
 (S)-I-azetidin-2-ylmethyl-(4-chloro-phenyl)-methyl-amine
 (S)-I-azetidin-2-ylmethyl-(4-chloro-phenyl)-isopropyl-amine
A process for preparation of compounds of formula I according to claim 1, which process comprises

5 a) reacting a compound of formula

\[
\begin{align*}
\text{III} & \\
\text{IV} & \\
\text{I-1} &
\end{align*}
\]

and deprotecting a compound of formula IV to a compound of formula

\[
\begin{align*}
\text{I-1} &
\end{align*}
\]

wherein the substituents are as defined above, or

b) reacting a compound of formula

\[
\begin{align*}
\text{IV} &
\end{align*}
\]

with an aldehyde of formula \(R^1 \)-CHO

to a compound of formula
and deprotecting a compound of formula IV-1 to a compound of formula

\[\text{IV-1} \]

wherein \(R^1 \) is lower alkyl or hydrogen and the other definitions are as described above, or

5. c) reacting a compound of formula

\[\text{II-1} \]

with a compound of formula

\[\text{III-1} \]

to a compound of formula

\[\text{IX} \]

reducing the compound of formula IX and deprotecting to a compound of formula
wherein the substituents are as defined above,

and, if desired, converting the compounds obtained into pharmaceutically acceptable acid addition salts.

7. A compound of formula I according to claim 1, whenever prepared by a process as claimed in claim 6 or by an equivalent method.

8. A medicament containing one or more compounds of formula I and pharmaceutically acceptable excipients.

10. A medicament according to claim 9, containing one or more compounds as claimed in claims 1-5 for the treatment of depression, psychosis, Parkinson's disease, anxiety and attention deficit hyperactivity disorder (ADHD).

11. The use of a compound of formula I according to claim 1 for the preparation of a medicament for the treatment of depression, anxiety disorders, bipolar disorder, attention deficit hyperactivity disorder, stress-related disorders, psychotic disorders, schizophrenia, neurological diseases, Parkinson's disease, neurodegenerative disorders, Alzheimer's disease, epilepsy, migraine, hypertension, substance abuse and metabolic disorders, eating disorders, diabetes, diabetic complications, obesity, dyslipidemia, disorders of energy consumption and assimilation, disorders and malfunction of body temperature homeostasis, disorders of sleep and circadian rhythm, and cardiovascular disorders.

12. The invention as herein before described.

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D205/04 C07D207/09 A61K31/397 A61K31/40 A61P25/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>M. NAKAJIMA ET AL.: "Enantioselective synthesis of Binaphthol derivatives by oxidative coupling of naphthol derivatives catalyzed by chiral diamine copper complexes." JOURNAL OF ORGANIC CHEMISTRY, vol. 64, no. 7, 1999, pages 2264-2271, XP002498586 Table 4, page 2266. Experimental section, pages 2268-2270.</td>
<td>1,2,6,7, 12</td>
</tr>
<tr>
<td>X</td>
<td>WO 02/18335 A (YAMANOUCHI PHARMA CO LTD [JP]; TORAY INDUSTRIES [JP]; MORIHIRA KOICHIRI) 7 March 2002 (2002-03-07) Intermediates 89a-d, table 1, page 54.</td>
<td>1,2,6,7, 12</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

Date of the actual completion of the international search

<table>
<thead>
<tr>
<th>Date</th>
<th>7 October 2008</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name and mailing address of the ISA/</th>
<th>Authorized officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV R[SW]ijk</td>
<td>Menchaca, Roberto</td>
</tr>
<tr>
<td>Tel (+31-70) 340-2040, Fax (+31-70) 340-3016</td>
<td></td>
</tr>
</tbody>
</table>

Date of mailing of the international search report

<table>
<thead>
<tr>
<th>Date</th>
<th>21/10/2008</th>
</tr>
</thead>
</table>

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2001 089451 A (TEIKOKU CHEM IND CO LTD) 3 April 2001 (2001-04-03) Compound 2n, table 3, page 5.</td>
<td>1,2,6,7,12</td>
</tr>
<tr>
<td>A</td>
<td>L. LINDEMANN ET AL.: "A renaissance in trace amines inspired by a novel GPCR family" TRENDS IN PHARMACOLOGICAL SCIENCES, vol. 26, no. 5, 2005, pages 274-281, XP002498588 cited in the application Abstract; Figure 2, page 277.</td>
<td>1-12</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 0218335 A</td>
<td>07-03-2002</td>
<td>AU 8018701 A</td>
</tr>
<tr>
<td>JP 2001089451 A</td>
<td>03-04-2001</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2006278944 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2618633 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102005037733 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2559688 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102004017934 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1737823 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005103002 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007532595 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 28849 A1</td>
</tr>
</tbody>
</table>