Office de la Proprieté Canadian CA 2247341 C 2008/11/04
Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 247 341
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C

(86) Date de depot PCT/PCT Filing Date: 1997/02/19

(87) Date publication PCT/PCT Publication Date: 199//09/12

(45) Date de délivrance/lssue Date: 2008/11/04
(85) Entree phase nationale/National Entry: 1998/08/25

51) Cl.Int./Int.Cl. GO6F 13/38(2006.01),
GO6F 13/72(2006.01)

(72) Inventeur/Inventor:
SMYERS, SCOTT D., US

(73) Proprietaire/Owner:

(86) N° demande PCT/PCT Application No.: US 199//002546 SONY ELECTRONICS, INC., US

(87) N° publication PCT/PCT Publication No.: 199//033230 (74) Agent: GOWLING LAFLEUR HENDERSON LLP

(30) Priornte/Priority: 1996/03/07 (US08/612,321)

(54) Titre : PIPELINE DE DONNEES ASYNCHRONES POUR GERER AUTOMATIQUEMENT LES TRANSFERTS DE
DONNEES ASYNCHRONES ENTRE UNE APPLICATION ET UNE STRUCTURE DE BUS

54) Title: ASYNCHRONOUS DATA PIPE FOR AUTOMATICALLY MANAGING ASYNCHRONOUS DATA TRANSFERS
BETWEEN AN APPLICATION AND A BUS STRUCTURE

12 14
Application Application 10
] f
16 T —
Application Interface 38
Control Registers —44
29 el e f o ———
Register | 46 56
ol :
ADP e r 50)
|
0 Cycle Timer PHY | |
_Register
) - i 22 | CRC l/F
AP Cycle Monitor
22 30 | BUS
Register : vls}
ADP ¢ |
24 42 o e e e e e e
(57) Abréegée/Abstract:

An asynchronous data pipe (ADP) automatically generates transactions necessary to complete asynchronous data transfer

operations for an application over a bus structure. The AD

2 Includes a register file which I1s programmed and initiated by the

application. The register file includes the bus speed, transaction label, transaction code, destination node identifier, destination

"ﬁk' """
T e g
R -:::: .- "y

I*I) . T, B e [[[
(l a n a d http://opic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC A0 @ camew o o
z l RSN
S ~:'\'\\.\:-?* ' ‘-:;;}3.*24

OPIC - CIPO 191

CA 2247341 C 2008/11/04

anen 2 247 341
13) C

(57) Abrege(suite)/Abstract(continued):
offset address, length of each data packet, packet counter, packet counter bump field, control field, and a status field. During a
data transfer operation, the ADP generates the transactions necessary to complete the operation over the appropriate range of
addresses, using the information In the register file as a template. The ADP increments the value In the destination offset address
fleld for each transaction according to the length of each data packet, unless the incrementing feature has been disabled and the
transactions are to take place at a fixed address. The packet counter represents the number of transactions remaining to be
generated. The packet counter value Is decremented after each packet of data Is transferred. The application can increment the
packet counter value by writing to the packet counter bump field. A multiplexer is included within a system having multiple ADPs for
multiplexing the information from the ADPs onto the bus structure. A demultiplexer Is included within a system having multiple
ADPs for routing information from the bus structure to the appropriate ADP.

PCT

(51) International Patent Classification © :

GO6F 13/12

(21) International Application Number:

CA 02247341 1998-08-25

WORLD INTELLECTUAIL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Al

(11) International Publication Number: WO 97/33230

(43) International Publication Date: 12 September 1997 (12.09.97)

(22) International Filing Date: 19 February 1997 (19.02.97)

(30) Priority Data:
08/612,321

7 March 1996 (07.03.96) US

(71) Applicant (for all designated States except US): SONY ELEC-
TRONICS, INC. [US/US]; 1 Sony Drive, Park Ridge, NJ

07656-8003 (US).

(72) Inventor; and

Published

(75) Inventor/Applicant (for US only): SMYERS, Scotf, D.
[US/USY; 16345 L.os Gatos Boulevard #6, Los Gatos, CA

95032 (US).

(74) Agents: HAVERSTOCK, Thomas, B. et al.; Haverstock &

Associates, Suite 420,

94306 (US).

260 Sheridan Avenue, Palo Alto, CA

PCT/US97/02546 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
HU, IL, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR, LS,
LT, LU, LV, MD, MG, MK, MIN, MW, MX, NO, NZ, PL,
PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA,
UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ,
UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
Bl, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of |
amendments. |

(54) Title: ASYNCHRONOUS DATA PIPE FOR AUTOMATICALLY MANAGING ASYNCHRONOUS DATA TRANSFERS BE-
TWEEN AN APPLICATION AND A BUS STRUCTURE

(87) Abstract

An asynchronous data
pipe (ADP) automatically
generates transactions
necessary to complete
asynchronous data transfer
operations for an application
over a bus structure. The
ADP includes a register file
which 1s programmed and
initiated by the application.
The register file includes the
bus speed, transaction label,
transaction code, destination
node identifier, destination
offset address, length of each
data packet, packet counter,
packet counter bump field,
control field, and a status
field. During a data transfer
operation, the ADP generates
the transactions necessary
to complete the operation
over the appropriate range
of addresses, using the
information in the register

12 14
Appfwatm

f-IO

e — 78
Application Interface 38
Control Registers (— 4
S e ———— =1
{ 46 56 |
-* | z
' v | 54| o | |
m | |
m: : Cycle Monitor :
22 J0 f ! BUS
' | Vs
FIFD or DeMUX o i |
A0F | :
24 42 O —

file as a template. The ADP increments the value in the destination offset address field for each transaction according to the length of
each data packet, unless the incrementing feature has been disabled and the fransactions are to take place at a fixed address. The packet
counter represents the number of transactions remaining to be generated. The packet counter value is decremented after each packet of
data is transferred. The application can increment the packet counter value by writing to the packet counter bump field. A multiplexer is
included within a system having multiple ADPs for multiplexing the information from the ADPs onto the bus structure. A demultiplexer

is included within a system having multiple ADPs for routing information from the bus structure to the appropriate ADP.

10

15

20

25

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

ASYNCHRONOUS DATA PIPE FOR AUTOMATICALLY
MANAGING ASYNCHRONOUS DATA TRANSFERS

BETWEEN AN APPLICATION AND A BUS STRUCTURE

FIELD OF THE INVENTION:

The present invention relates to the field of automatically managing data transfer

operations between an application and a bus structure. More particularly, the present

. Invention relates to the field of automatically generating transactions necessary to complete

an asynchronous data transfer operation between an application and a bus structure.

BACKGROUND OF THE INVENTION:

The IEEE 1394 standard, “P1394 Standard For A High Performance Serial Bus,”
Draft 8.01vl, June 16, 1995, is an international standard for implementing an inexpensive
high-speed serial bus architecture which supports both asynchronous and isochronous
format data transfers. Isochronous data transfers are real-time transfers which take place
such that the time intervals between significant instances have the same duration at both
the transmitting and receiving applications. Each packet of data transferred isochronously
1s transferred in its own time period. An example of an ideal application for the transfer
of data isochronously would be from a video recorder to a television set. The video
recorder records images and sounds and saves the data in discrete chunks or packets. The
video recorder then transfers each packet, representing the image and sound recorded over
a Iimited time period, during that time period, for display by the television set. The IEEE
1394 standard bus architecture provides multiple channels for isochronous data transfer
between applications. A six bit channel number is broadcast with the data to ensure
reception by the appropriate application. This allows multiple applications to
simultaneously transmit isochronous data across the bus structure. Asynchronous transfers
are traditional data transfer operations which take place as soon as possible and transfer an

amount of data from a source to a destination.

10

15

20

25

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

The IEEE 1394 standard provides a high-speed serial bus for interconnecting digital
devices thereby providing a universal I/O connection. The IEEE 1394 standard defines a
digital interface for the applications thereby eliminating the need for an application to
convert digital data to analog data before it is transmitted across the bus. Correspondingly,
a receiving application will receive digital data from the bus, not analog data, and will
therefore not be required to convert analog data to digital data. The cable required by the
IEEE 1394 standard is very thin in size compared to other bulkier cables used to connect
such devices. Devices can be added and removed from an IEEE 1394 bus while the bus is
active. If a device is so added or removed the bus will then automatically reconfigure
itself for transmitting data between the then existing nodes. A node is considered a logical

entity with a unique address on the bus structure. Each node provides an identification

ROM, a standardized set of control registers and its own address space.
The IEEE 1394 standard defines a protocol as illustrated in Figure 1. This protocol

includes a serial bus management block 10 coupled to a transaction layer 12, a link layer

- 14 and a physical layer 16. The physical layer 16 provides the electrical and mechanical

connection between a device or application and the IEEE 1394 cable. The physical layer
16 also provides arbitration to ensure that all devices coupled to the IEEE 1394 bus have
access to the bus as well as actual data transmission and reception. The link layer 14
provides data packet delivery service for both asynchronous and isochronous data packet
transport. This supports both asynchronous data transport, using an acknowledgement
protocol, and isochronous data transport, providing real-time guaranteed bandwidth

protocol for just-in-time data delivery. The transaction Jayer 12 supports the commands

iIsochronous data transfers. The serial bus management block 10 also provides overall
configuration control of the serial bus in the form of optimizing arbitration timing,

guarantee of adequate electrical power for all devices on the bus, assignment of the cycle

10

15

20

25

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

To 1imtialize an isochronous transfer, several asynchronous data transfers may be
required to configure the applications and to determine the specific channel which will be
used for transmission of the data. Onée the channel has been determined, buffers are used
at the tfansmitting application to store the data before it is sent and at the receiving
application to store the data before it is processed. In some peripheral implementations, it
1s desirable for the peripheral to transfer large amounts of data using a large number of
asynchronous transactions. In order to generate these transactions quickly and efficiently,
1t is not practical to require a general purpose CPU or microcontroller to construct each
request packet.

What 1s needed 1s an asynchronous data pipe that provides automated generation of
transactions necessary to complete an asynchronous data transfer operation, without

requiring supervision by an API and the processor of an application.

SUMMARY OF THE INVENTION:

An asynchronous data pipe (ADP) automatically generates transactions necessary to
complete asynchronous data transfer operations for an application over a bus structure.
The ADP includes a register file which is programmed by the application. The register
file allows the application to program requirements and characteristics for the data transfer
operation. The register file includes the bus speed, transaction label, transaction code,

destination node identifier, destination offset address, length of each data packet, packet

counter, packet counter bump field, control field and a status field. After the register file
1s programmed and initiated by the application, the ADP automatically generates the read
or write transactions necessary to complete the data transfer operation over the appropriate
range of addresses, using the information in the register file as a template for generating
the transactions and headers. The ADP automatically increments the value in the
destination offset address field for each transaction according to the length of each data
packet, unless an incrementing feature has been disabled, signalling that the transactions
are to take place at a single address. The packet counter value represents the number of

fransactions remaining to be generated. The packet counter value is decremented after

10

15

20

25

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 -

Multiple ADPs can be included within a system for managing multiple
asynchronous data transfer operations. In such a system, each ADP has its own unique
transaction label value or range of values. A multiplexer is coupled to each ADP for
multiplexing the transactions and data packets from the ADPs onto the bus structure. A
demultiplexer is also coupled to each ADP for receiving signals and data packets from the
bus structure and routing them to the appropriate ADP, using the transaction code and

transaction label values.

BRIEF DESCRIPTION OF THE DRAWINGS:

Figure 1 illustrates a protocol defined by the IEEE 1394 standard.
Figure 2 illustrates a block diagram schematic of a link chip including three
asynchronous data pipes according to the present invention.

Figure 3 illustrates a register file within each asynchronous data pipe.

DETAILED DESCRIPTION QF THE PREFERRED EMBODIMENT:

An asynchronous data pipe according to the present invention automatically
generates the asynchronous transactions necessary to implement asynchronous data
transfers to and from an application over a bus structure. An application as used herein
will refer to either an application or a device driver. The bus structure over which the
data transfer operations are completed is preferably an IEEE 1394 standard bus structure.
However, as will be apparent to those skilled in the art, the asynchronous data pipe of the
present invention will also be applicable for use in managing data transfers over other
types of bus structures. The asynchronous data pipe, at the direction of the application,
includes the ability to transfer any amount of data between a local data buffer or FIFO.
provided by the application and a range of addresses over the bus structure using one or

more asynchronous transactions.

10

15

20

25

30

CA 02247341 1998-08-25

WO 97/33230) PCT/US97/02546 -

The asynchronous data pipe includes a register file which is programmed by the
application when a data transfer operation is to be completed. The register file allows the
application to program certain requirements for the data transfer operation, including the
bus speed at which the transactions are to be generated, a transaction label and a
transaction code, representing the type of transaction, an identifier for the destination node
with which the transfer is being conducted, a destination offset address, representing the
starting address at which the transfer is taking place and a length of each data packet. The
register file also includes a packet counter to keep track of the rem’aining number of
packets to be generated, a packet counter bump field to allow the application to increment
the packet counter, a control field and a status field. The incrementing feature of the

asynchronous data pipe can be turned off by the application if the transactions are to take

place at a single address across the bus structure.

After the register file is programmed and initiated by the application, the
asynchronous data pipe automatically generates the read or write transactions necessary to
complete the data transfer operation over the appropriate range of addresses. The
information in the register file is used as a template by the asynchronous data pipe, to
generate the necessary transactions and appropriate headers for completing the data transfer
operation. The asynchronous data pipe automatically increments the value in the
destination offset address field for each transaction according to the size of the packets
being transferred, unless the incrementing feature has been disabled. Because the
asynchronous data pipe generates the required transactions automatically, direct processor
control or supervision by the initiating application is not required. This allows the
application to perform other functions and complete other tasks while the asynchronous
data pipe of the present invention completes the data transfer operation. However, the
register file includes the packet counter bump field which allows the application to
increment the number of transactions remaining to be completed by the asynchronous data
pipe. In this manner, the asynchronous data pipe has the ability to control the generation
of the transactions necessary to complete a data transfer operation, if required.

A system can include multiple asynchronous data pipes for managing multiple

asynchronous data transfer operations. In such a system a multiplexer is coupled between

-5 .

10

15

20

25

30

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

the bus structure and each of the asynchronous data pipes for multiplexing the transactions
and the data packets from the asynchronous data pipe onto the bus structure. A
demultiplexer is also coupled to each asynchronous data pipe for receiving signals and data
packets from the bus structure and routing them to the appropriate asynchronous data pipe.
The demultiplexer uses the transaction code and the transaction label values to determine
which asynchronous data pipe is to received the information. Within the system, each
asynchronous data pipe has its own unique transaction label value or range of values.

A link circuit including three asynchronous data pipes (ADP), according to the
present invention, is illustrated in Figure 2. In the preferred embodiment, the link circuit
10 1s tormed on a single integrated circuit or chip. The link circuit 10 provides a link
between applications 12 and 14 and a bus structure 58. The applications 12 and 14 are
both coupled to a system bus 16. The system bus 16 is coupled to each of the first-in
first-out data buffers (FIFOs) 32, 34 and 36. The applications 12 and 14 are also both
coupled to an applications interface circuit 18. The applications interface circuit 18 is
coupled to a set of control registers 38, to each asynchronous data pipe 20, 22 and 24 and
to a link core 44. Each of the asynchronous data pipes 20, 22 and 24 include a register set
26, 28 and 30, respectively. Each of the FIFOs 32, 34 and 36 correspond to an
appropriate one of the asynchronous data pipes 20, 22 and 24. The FIFO 32 is coupled to
the asynchronous data pipe 20. The FIFO 34 is coupled to the asynchronous data pipe 22.
The FIFO 36 is coupled to the asynchronous data pipe 24. The control registers 38 are
also coupled to each of the asynchronous data pipes 20, 22 and 24. Each of the
asynchronous data pipes 20, 22 and 24 are coupled to a multiplexer 40 for outbound data
transfer operations and to a demultiplexer 42 for inbound data transfer operations. For

purposes of this disclosure, an outbound data transfer is one from an application to the bus

“structure and an inbound data transfer is from the bus structure to an application.

The link core 44 includes a transmitter 46, a recetver 48, a cycle timer 50, a cycle
monitor 52, a CRC error checking circuit 54 and a physical interface circuit 56 for
physically interfacing to the bus structure 58. The transmitter 46 1s coupled to the
multiplexer 40, to the cycle timer 50, to the CRC error checking circuit 54 and to the

physical interface circuit 56. The receiver 48 is coupled to the demultiplexer 42, to the

-6 -

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

cycle monitor 52, to the CRC error checking circuit 54 and to the physical interface circuit

56. The cycle timer 50 is coupled to the cycle monitor 52. The physical interface circuit

10

15

20

235

30

56 1s coupled to the bus structure 58.

The system 1llustrated in Figure 2 includes three asynchronous data pipes 20, 22
St 2%, it saouid ba sppareat fo tose skilled in the art that & sysiem could be ©
implemented with any number of asynchronous data pipes 20, 22 and 24, depending on the
specific requirements of the system. Each asynchronous data pipe provides a capability
for automatically handling a data transfer operation for an application. Accordingly, as
will become apparent from the following description, having additional asynchronous data
pipes 1n a system, will increase the capability of the system, by providing the capacity to
have simultaneously completing asynchronous data transfer operations.

Each asynchronous data pipe is a bi-directional data path for data to and from the
application which is to be transmitted via asynchronous transactions across the bus
structure 58. Prior to any asynchronous data pipe operation, some external entity must
program a register file within the asynchronous data pipe. This external entity can be the
application itself, or some other intelligence or state machine inside the system. In the
preferred embodiment of the present invention the register file of the asynchronous data
pipe 1s programmed by the application. Each asynchronous data pipe includes the'ability
to generate the required headers for outbound data and check and strip headers from

inbound data, using the register file as a template.

The asynchronous data pipe register file contains data relating to the bus structure
start address, the transaction type and the transaction size, as will be described in detail
below. In the preferred embodiment, the transaction type is any one of the following:
quadlet read; quadlet write; block read; or block write. The transaction size is four bytes
in the case of a quadlet transaction or block request size in the case of block transactions.

When enabled, the asynchronous data pipe transfers application data using
asynchronous transactions according to the parameters programmed in its register file. In
the case of write transactions, from the application to another node coupied to the bus

structure, the asynchronous data pipe takes application data available at its FIFO interface,

- prepends the appropriate header information to the data in the format required by the link

-7 -

10

15

20

25

30

CA 02247341 1998-08-25

WO 97/33230) PCT/US97/02546 —

core 44 and transfers the data to the link core 44 through the multiplexer 40. In the case
of read transactions, from another node coupled to the bus structure, to the application, the
asynchronous data pipe issues the appropriate read request packets and when the data is
received routes the data in the corresponding read response packets to the application
through the FIFO interface. In the case of both read and write transactions, the
asynchronous data pipe organizes the data into bus structure specific packet formats, és
required by the link core 44. The asynchronous data pipe also handles the address
calculation for the transactions to an Increasing range of addresses, necessary to complete

the application’s request. In other words, subsequent transactions are addressed at an

- Incrementing range of addresses in the address space of the bus structure.

The FIFO interface for each asynchronous data pipe is coupled directly to a FIFO
32, 34 or 36 which is dedicated to the data path that the asynchronous data pipe controls.
Each FIFO 32, 34 or 36 is dedicated to a single asynchronous data pipe. The link

pipe to the link core 44 is in a format required by the link core function. Each
asynchronous data pipe is designed to receive the data coming from the link core 44 to be
in the format defined by the link core specification. If more than one asynchronous data
pipe is included within a system, each asynchronous data pipe is coupled to the link core
44 through the multiplexer 40 and the demultiplexer 42.

The data from the link core 44 to the asynchronous data pipes 20, 22 and 24 is
routed through the demultiplexer 42. The demultiplexer 42 uses the transaction code and
the transaction label, to route the data to the appropriate asynchronous data pipe. The
demultiplexer 42 routes response packets from the bus structure 58 to the appropriate
asynchronous data pipe using the transaction code field of the packet header and the value
in the transaction label field of the packet header. The appropriate asynchronous data pipe
will then match the response packets with the corresponding request packets.

The demultiplexer 42 does not change any information when it routes packets from
the link core 44 to the appropriate asynchronous data pipe. All information produced by
the link core is sent to the destination asynchronous data pipe. The asynchronous data

-8 -

10

15

20

25

30

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

pipe will perform all necessary manipulation of the data from the link core 44 before this
data is transferred to the application, which may include stripping header information
required by the protocol for the bus structure. For outbound data, the asynchronous data
pipe prepares data from the application so that it is in the proper form required by the link
core 44. Each asynchronous data pipe will generate the appropriate header information
and embed that in the data from the application before sending the data to the link core 44
through the multiplexer 40.

For all of the asynchronous data pipes 20, 22 and 24, the link interface produces
and consumes data in a format which is compatible with the requirements of the link core
44 function. During a write operation, the asynchronous data pipes 20, 22 and 24 generate

the required bus structure specific header information and embed it in the data from the

applhication, as required by the link core 44. During a read operation the asynchronous
data pipe accepts that data in the format provided by the link core 44 for data moving
from the link core 44 to one of the asynchronous data pipes 20, 22 and 24. In other
words, no manipulation of the data is required to translate data from the link core 44 to
the appropriate asynchronous data pipe 20, 22 or 24.

When only one asynchronous data pipe is included within a system, the
asynchronous data pipe can be connected directly to the link core 44. When there are
multiple asynchronous data pipes within a system, the system must include an appropriate
multiplexer 40 and demultiplexer 42 between the asynchronous data pipes and the link
core 44. The multiplexer 44 is responsible for taking the data at the link interfaces of the
multiple asynchronous data pipes 20, 22 and 24 and multiplexing that data into the link
core 44 and then onto the bus structure 58 on a packet by packet basis. This information
is routed to the bus structure in a priority set by the transferring application. The
demultiplexer 42 uses the value in the transaction code and transaction label fields of each
packet received from the bus structure 58 and the value in the transaction label of the
asynchronous response packet header, to route the packet to the proper asynchronous data
pipe 20, 22 or 24.

The asynchronous data pipe of the present invention is a bidirectional data path

between a corresponding FIFO and the link core 44. When transferring data from the

-9 .

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

corresponding FIFO to the link core 44, the asynchronous data pipe forms the appropriate
header information and prepends it to the data before sending the resulting header and
application data to the link core 44. The link block uses the information created by the
asynchronous data pipe to generate and complete the write operation across the bus
5 structure 58. When sending data from the link core 44 to a FIFQO, the asynchronous data
pipe creates the appropriate header information for a read transaction. The asynchronous
data pipe sends this information to the link core 44 which then transmits the read request
across the bus structure 58. At some later time, the responding node returns a read
response packet. The link core 44 detects this response packet and transmits it to the
10 demultiplexer 42 which then directs that data to the asynchronous data pipe which
generated the read request, using the values in the transaction code and transaction label
fields to determine the appropriate asynchronous data pipe. The asynchronous data pipe
then strips the header information from the packet and sends the data to the corresponding
FIFO. The application then processes the data from the FIFO. Whether generating read
15 or write requests to be sent across the bus structure 58, the asynchronous data pipe
continues to generate the appropriate requests until it has transported all the data to or
from the application.
A system which includes multiple asynchronous data pipes can sustain multiple
threads of data transfer concurrently. This is useful in embedded applications, such as disk
20 drives, which may be transferring media data while reading subsequent commands or

reporting status information to the initiating application. The demultiplexer 42 is

transaction label or range of transaction labels. The demultiplexer 42 determines the
25 appropriate asynchronous data pipe according to the data in the transaction label and
transaction code fields. |
Each asynchronous data pipe has a dedicated register file, as will be described in
detail below. The register file is programmed by external intelligence, such as the
application originating the data transfer operation. Once the register file is programmed,

30 an asynchronous data pipe can perform read and write transactions either to an Increasing

- 10 -

10

15

20

25

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

range of addresses or to a fixed address across the bus structure 58. These transactions
can be either of a block or quadlet size. The application, when programming the data
transfer operation, will either give a total block count for the transfer, "bump" the block
counter by one count at a time, or provide a combination of the two. If a total block
count for the transfer is programmed, the asynchronous data pipe will generate the
transactions necessary to complete the operation while the application performs other
operations and completes other tasks. Each asynchronous data pipe maintains the bus
structure specific address pointer context and performs read or write transactions whenever
the block counter has a non-zero value.

Each asynchronous data pipe requires a dedicated register file which is programmed
by the originating application and used to generate the appropriate transactions necessary
to complete a data transfer operation across the bus structure 58. The register file,
required for each asynchronous data pipe, included within the preferred embodiment of the
present invention is illustrated in Figure 3. The register file 80 includes 32 bytes of data,
numbered hexadecimally 0 through 1F. In Figure 3, the register file 80 is illustrated in a
table format with eight horizontal rows, each including four bytes. An offset column 82 is
included in Figure 3, to show the offset of the beginning byte in each row from the
address of the beginning of the register file 80. A read/write column 84 is also included
to show whether the fields in each row can be either read from and written to or written to
only.

The speed field sp is a two-bit field within byte 1 of the register file 80. The
speed field sp can be read from and written to. The speed field sp defines the bus speed
at which all request packets will be generated. A write operation to this field updates the
value in the speed field sp. A read operation to the speed field sp returns the last value
written to the field. The vajue in the speed field is a two-bit value representing the speed

at which all request packets will be generated across the bus structure 58. Table I below

defines the correlation of the speed to the value in the speed field sp.

11 -

10

15

20

25

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

Therefore, as illustrated in Table I, a value of 00 in the speed field sp defines the bus
speed at which all request packets are generated at 100 Mbps, a value of 01 corresponds to
a bus speed for generating request packets at 200 Mbps, a value of 10 corresponds to a
bus speed for generating request packets at 400 Mbps.

The transaction label field tl is a six bit field within byte 2 of the register file 80.
The transaction label field tl can be read from and written to. The transaction label field tl
holds the value of the transaction label to use for all request packets generated by the
corresponding asynchronous data pipe. In an alternate embodiment, a’'single asynchronous
data pipe will manage a range of transaction labels. A write operation to this field,
updates the value in the transaction label tl field. A read operation to the transaction label
field tl returns the last value written to the field. If there is more than one asynchronous
data pipe within a system, each asynchronous data pipe must have a unique value in the
transaction label field tl in order for the demultiplexer 42 to properly route the response
packets to the originating asynchronous data pipe.

In the preferred embodiment, the two least significant bits of byte 2 of the register
file 80 are both permanently programmed to a logical low voltage level.

T'he transaction code field tCode is a four bit field within byte 3 of the register file

- 80. The transaction code field tCode can be read from and written to. The transaction

code field tCode holds the transaction code to use for all request packets generated by the
corresponding asynchronous data pipe. A write operation to this field, updates the value in
the transaction code field tCode. A read operation to the transaction code ficld tCode

returns the last value written to the field. The value in the transaction code field tCode 1s

- 12 -

10

15

20

25

30

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

a four bit value representing the type of operation to be conducted. The correlation

between the values in the transaction code field tCode and the type of operation to be

conducted is shown in Table II below.

TABLE 11

0000
000!
0100
0101
1001

When the transaction code field tCode contains the value 0000, then the data transfer
operation to be performed is a quadlet write operation. When the transaction code field
tCode contains the value 0001, the data transfer operation to be performed is a block write
operation. When the transaction code field tCode contains the value 0100, the data
transfer operation to be performed is a quadlet read operation. When the transaction code
field tCode contains the value 0101, the data transfer operation to be performed is a block

read operation. When the transaction code field tCode contains the value 1001, the

operation is a lock operation.

In the preferred embodiment, the four least significant bits of byte 3 of the register
file 80 are all permanently programmed to a logical low voltage level, in order to provide
a reserved field in the packet header for the bus structure.

T'he destination identifier field destination ID is a sixteen bit field within bytes 4
and 5 of the register file 80. The destination identifier field destination ID can be read
from and written to. The destination identifier field destination ID holds the sixteen bit
destination node ID which is used with all request packets generated by the corresponding
asynchronous data pipe for a data transfer operation. A write operation to this field,

updates the value in the destination identifier field destination ID. A read operation to the

- 13 -

10

15

20

25

30

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

destination identifier field destination ID returns the last value written to the field. The
value in the destination identifier field destination_ID represents the node, across the bus
structure 58, with which the data transfer operation is to take place. Therefore, each node
on the bus structure 58 has a unique destination identifier.

The high order destination offset field destination_offset Hi is a sixteen bit field
within bytes 6 and 7 of the register file 80. The high order destination offset field
destination_offset Hi can be read from and written to. The high order destination offset
field destination_offset Hi holds the high order sixteen bits of the destination offset address
to use for the next request packet generated. A write operation to this field updates the
value in the high order destination offset field destination_offset Hi. A read operation to
the high order destination offset field destination_offset Hi returns the current value of the
high order sixteen bits of the destination offset address.

The low order destination offset field destination_offset Lo is a thirty-two bit field
within bytes 8 through B of the register file 80. The low order destination offset field
destination_offset Lo can be read from and written to. The low order destination offset
field destination offset Lo holds the low order thirty-two bits of the destination offset
address to use for the next request packet generated. A write operation to this field
updates the value in the low order destination offset field destination offset LLo. A read
operation to the low order destination offset field destination offset Lo returns the current
value of the low order thirty-two bits of the destination offset address. Together, the high
order destination offset field destination offset Hi and the low order destination offset field
destination_offset Lo form the forty-eight bit destination offset address to which a current
transaction is generated. If the non-incrementing flag in the control field, which will be
discussed below, is at a logical low voltage level, then the asynchronous data pipe
increments the entire forty-eight bit destination offset field, comprised of the high order
destination offset field destination offset Hi and the low order destination offset field

destination offset Lo, by the value in the data length field after each read or write

fransaction is generated.
The data length field data length is a sixteen bit field within bytes C and D of the
register file 80. The data length field data length can be read from and written to. The

- 14 -

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

data length field data length holds the size, in bytes, of all request packets which are
generated by the corresponding asynchronous data pipe. A write operation to this field
updates the value in the data length field data length. A read operation to the data length
field data_lehgth returns the last value written to this field. The value in the data length

field data_length has some restrictions, based on the values in the other fields of the

register file 80, as defined in Table III below.

TABLE 111

permitted
Operation tCode extended data length
tCode value (bytes)

i rout/ quadirweie | oo | o0 | - | 4
ok rea / losk write | otovooor | o0 | 00 | twosiz

1001 0003 4 or 8
1001 0004 4 0or 8
1001 0005 8 or 16
1001 0006 8 or 16
1001 0007

compare swap
fetch add
little add

bounded add
wrap add

vendor-dependent

The extended transaction code field extended tCode is a sixteen bit field within
bytes E and F of the register file 80. The extended transaction code field extended tCode
can be read from and written to. A write operation to this field updates the value in the
extended transaction code field extended tCode. A read operation to the extended

transaction code field extended tCode returns the last value written to this field. The
- 15 -
SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 -

extended transaction code field extended_tCode has a value of zero for all transactions,
except lock transactions. If the value in the transaction code field tCode 1s set to a value
of 1001, signalling that this is a lock request, then the extended transaction code field
extended_tCode holds the extended transaction code value for the lock transaction.

The packet counter field is an eight to thirty-two bit field, depending on the
configuration of the system, within bytes 10-13 of the register file 80. The packet counter

field can be read from and written to. The packet counter field holds the number of

request packets remaining to be generated to complete a data transfer operation. A write
operation to this field changes the value in the packet counter field. A read operation to
the packet counter field returns the current packet count of request packets remaining to be
generated. The value in the packet counter field is decremented after each transaction is
generated. In order to have complete control of the number of packets generated, the
packet counter field should only be written to when its value is zero.

The packet counter bump field is a write only field within bytes 14-17 of the
register file 80. When the packet counter bump field is written to, the corresponding
asynchronous data pipe increments the value in the packet counter register. If the packet
counter bump field is read, the returned value is not predictable. This allows the
originating application to have additional transactions generated for a current data transfer
operation. In the preferred embodiment of the present invention, writing to the packet
counter bump field is the only way to increment the value in the packet counter field when
the packet counter field contains a non-zero value.

The control field is a thirty-two bit field within bytes 18-1B of the register file 80.
The control field can be read from and written to. Within the control field, bits 0-29 are
reserved, bit 30 is a non-incrementing control bit non_incr and bit 31 is a operational
control bit go. The operational control bit go 1s set to a logical high voltage level in order
to enable the asynchronous data pipe. Clearing the operational control bit go to a logical
low voltage level disables the asynchronous data pipe immediately, or on the next
transaction boundary if the asynchronous data pipe 1s currently in the middle of a
transaction. Accordingly, an asynchronous data pipe is only operational when the

operational control bit go is set to a logical high voltage level. The non-incrementing

- 16 -

10

15

20

25

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

control bit non_incr is set to a logical high voltage level in order to force the
asynchronous data pipe to generate all request packets to a fixed or non-incrementing
address. When the non-incrementing control bit non_incr is equal to a logical low voltage
level, the corresponding asynchronous data pipe increments the destination offset value by
the value in the data_length field after each transaction is completed.

The status field is a thirty-two bit field within bytes 1C-1F of the register file 80.
The status field can be read from and written to. The status field holds the last
acknowledge codes and response codes resulting from request packets generated by the

corresponding asynchronous data pipe. The status field includes an error field, a response

code field, an acknowledge in field and an acknowledge out field.

The error field is a four bit field which contains bits which indicate the error which
caused the corresponding asynchronous data pipe to halt its operation. The error field is
cleared when the operational control bit go is set to a logical high voltage leve' The error
field is valid when the operational control bit go is cleared to a logical low vostage level
by the asynchronous data pipe. Table IV illustrates the relationship between the possible

values in the error field and their meaning.

TABLE IV

error value meaning
0000 Nno error

0001 bad ack code received (for
request packet)
0010 bad ack code sent (for
response packet)
0100
1000

A value of 0000 within the error field signals that there is no error. A value of 0001

within the error field signals that the error was caused because a bad acknowledge code

- 17 -

10

15

20

25

30

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

a response packet. A value of 0100 within the error field signals that the error was caused

by a split transaction time-out occurring. A value of 1000 within the error field signals

- that a bus reset occurred.

The response code field rcode is a four bit field which holds the last response code
value received. The value in the response code field will be equal to 1111 if the last
transaction was a write transaction which was completed as a unified transaction.

The acknowledge in field is a four bit field which holds the last acknowledge
signal received from the remote node in response to the last request packet generated by
the asynchronous data pipe.

The acknowledge out field is a four bit field which holds the last acknowledge
signal generated by the asynchronous data pipe In response o a response packet
corresponding to a request packet generated by the corresponding asynchronous data pipe.

A write operation to the status field changes tﬁe value in the field. A read
operation of this field returns the current status of the asynchronous data pipe and the
present data transfer operation. If one of the request packets or a corresponding response
packet results in an error, the asynchronous data pipe first stops generating any further
request packets. The asynchronous data pipe then latches the values for the response code
field rcode, the acknowledge in field ack-in and the acknowledge out field ack-out into the
status field. After latching those values into the status field, the asynchronous data pipe
then asserts an interrupt signal through the application interface to the application to notify
the application that an error condition has occurred during the current data transfer

operation.

Read Operations

When conducting a read operation and obtaining data from another node coupled to

the bus structure and transferring the data to the application, an asynchronous data pipe
generates the appropriate read request packets, using the information in the register file 80

as a template. When the data is then received from the destination node, the demultiplexer

- 18 -

10

15

20

25

30

35

CA 02247341 1998-08-25

WO 97/33230 PCT/OUS97/62546 —

42 routes the data to the appropriate asynchronous data pipe, using the values in the
transaction code and transaction label fields. The asynchronous data pipe then strips the
header information from the data packets and loads the data packets into the FIFO, from
which the application can process the received data.

When active and transferring data from the bus structure 58 to the FIFO interface,

each asynchronous data pipe operates as a data receive state machine, as defined in Table
V below.

TABLE V
while (Active () {
if (RAM_Data == 0) /* 1f no data to unload */
continue; /* loop to check active state */

/* we have free space and we’re active */

AssertReq (); /* assert req */
while (!Ack() /* wait for ack */
&& Active ()); /* make sure we remain active */
if (1Active ()) /* leave if we’re not active any more */
break;
AssertWord (); /*assert word at the FIFO interface */
DeAssertReq (; /* deassert req */

The FIFO interface clocks the data from an asynchronous data pipe into the corresponding
FIFO with a clock signal synchronized to the bus structure interface. The FIFO is always
in a condition to receive a word of data when it is available from the asynchronous data
pipe. If the request signal becomes asserted when there is no room in the FIFO, then a
FIFO overrun occurs. This creates an error condition which is detected by the
corresponding asynchronous data pipe. When a FIFO overrun condition occurs, the
remaining transactions are halted until the FIFO is cleared and ready to receive additional
data. In this case, the acknowledge out field of the status register will reflect the error.

In order to read data from the bus structure, the originating application programs

the appropriate information into the register file for the appropriate asynchronous data

- 19 -

10

15

20

25

CA 02247341 1998-08-25

WO 97/33230 y PCT/US97/02546 —

pipe. The appropriate value for the bus speed to be used, either 100 Mbps, 200 Mbps or
400 Mbps, is programmed into the speed field sp. The bus speed to be used should be
within the capability of the physical interface 56 and supported by the bus structure 58.
The appropriate value for the specific transaction to be completed is programmed into the
transaction code field tCode. The appropriate value corresponding to the identifier of the
destination node, across the bus structure, for all request packets, is programmed into the
destination identifier field destination ID.

The starting forty-eight bit destination offset value is programmed into the high and
low destination offset fields destination offset Hi and destination_offset Lo. If the non-
Incrementing bit in the control field is at a logical low voltage level, then the value in the
destination offset fields is incremented after each request transaction is generated. The
number of bytes for each request packet to be generated is programmed into the data
length field data length. If the value in the transaction code field tCode is equal to 0100,
signalling that this transaction is a quadlet read transaction, then the value in the data
length field data_length is equal to four. If the value in the transaction code field tCode is
equal to 0101, signalling that this transaction is a block read transaction. then the value in
the data length field data_length is programmed with an appropriate value in the range of
numbers allowable for the programmed bus speed, as shown in Table III above. Because
the operation to be completed is a read operation, and not a lock transaction, the value in
the extended transaction code field extended tCode is programmed to be equal to zero.

The number of packets to be generated and sent in order to complete this data
transfer operation is programmed into the packet counter field. The value in the packet
counter field can initially be programmed to equal zero, if the application is going to write
to the packet counter bump field to generate the appropriate transactions, one at a time.
The non-incrementing bit in the control field is programmed to equal a logical high
voltage level if all request packets are to be sent to the same destination offset address.
The non-incrementing bit in the control field is programmed to equal a logical low voltage
level if the request packets are to be sent to an increasing range of addresses. The

operational control bit go, within the control field, is programmed to equal a logical high

- 20 -

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

voltage level in order to enable the asynchronous data pipe to begin generating the
appropriate transactions necessary to complete the data transfer operation.

When the operational control bit go, within the control field, is set to a logical high
voltage level, the asynchronous data pipe enters the active state. While in the active state,

the asynchronous data pipe generates read request packets according to the read state

machine as defined in Table VI.

TABLE VI
while (Active ()) {
if (packet counter == Q) /*1f we don’t have any packets to send*/
continue; /*loop to verify active state™/

if ((RAM_Free < data_length) /*if we don’t have enough free space*/
&& (RAM_Data 1=0)) /*and we’re not empty yet*/
continue; /*loop to verify active state*/

/*we have enough space for a packet*/
Arbitrate (); /*get access to the link core*/
if (tCode ==4) /*1f this is a quadlet*/
SendHeaderRegs (12); /*send first 12 bytes of header regs*/

clse /*else this is a block*/
SendHeaderRegs (16); /*send first 16 bytes of header regs*/

/*note that we need to handle bad acks here*/

GetData (data length, /*put received data into buffer RAM*/
&RAM_Data, &ZRAM _Free); /*adjust these as data arrives*/

/*note that we need to handle back rcodes here*/

--packet counter; /*decrement packet counter*®/
if (Inon_increment) /*if we’re incrementing™/
destination_offset += data length; /*increment destination*/

At any time, the originating application can write to the packet counter bump field,

thereby incrementing the value in the packet counter field by one. The asynchronous data
pipe read state machine, as defined in Table VI above, forms a read request packet

whenever there is greater than one packet’s worth of free space in the FIFO coupled to the

- 21 -

10

15

20

23

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 -

active asynchronous data pipe. The asynchronous data pipe read state machine also forms
a read request packet whenever the FIFO corresponding to the asynchronous data pipe is
completely empty. If the embedded application guarantees that the data will be clocked
out of the corresponding FIFO fast enough and with a short enough latency, the size of the
FIFO corresponding to the asynchronous data pipe can be smaller than the number of
bytes specified by the value in the data length field data_length within the register file 80.
For each read request packet that is generated by the asynchronous data pipe, the
asynchronous data pipe expects the destination node to generate a corresponding read

response packet. The demultiplexer uses the transaction code tCode and the transaction

. label tl in the read response packet to route the packet to the proper asynchronous data

pipe when multiple asynchronous data pipes are included within a system. The receiving
asynchronous data pipe then strips the header and makes the data field available at the
corresponding FIFO interface.

After each read request packet is generated, if the non-increment bit in the control
field is not set to a logical high voltage level, the asynchronous data pipe increments the
destination offset address value by the value in the data length field data length in
preparation for generating the next read request packet. Although not shown in the read
state machine defined in Table VI above, the asynchronous data pipe examines the
acknowledge in field for each write request packet it generates and the response code field
rcode, for each corresponding read response packet. If either the acknowledge in ficld or
the response code field rcode indicates an error, or if the asynchronous data pipe is forced
to return a bad acknowledge code for the read response packet due to some error, the
asynchronous data pipe immediately stops and stores both acknowledge codes and the

response code rcode into the asynchronous data pipe status field within the register file 80.

- For split transactions, the asynchronous data pipe times the response. If more than 100

milliseconds elapses between the request packet and the corresponding response packet, the
asynchronous data pipe halts and displays the defined status information in the status field

of the register file 80.

- 22 -

10

15

20

25

30

35

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

Write Operations

When conducting a write operation and sending data from the originating
application to another node coupled to the bus structure, an asynchronous data pipe
generates an appropriate header using the information in the register file 80 as a template.
The header 1s then added to the appropriate data packet and both the header and the data
packet are put onto the bus structure 58 by the link core 44. If the incrementing function
1s not disabled, the asynchronous data pipe increments the value in the destination offset
fields and generates the header for the next packet of data. After each transaction is
generated, the packet counter value is decremented. This process is repeated until the
value 1n the packet counter field is equal to zero.

When active and transferring data from the FIFO to the bus structure 58, each

asynchronous data pipe operates as a data send state machine, as defined in Table VII

below.

TABLE VII
while (Active () ¢
if (RAM_Free == 0) /* if no free space */
continue; /* loop to check active state */

/* we have free space and we’re active */

AssertReq () ; /* assert req */

while (1Ack() /* wait for ack */
&& Active ()); /* make sure we remain active */

if (1Active ()) /* leave if we’re not active any more */
break;

LatchWord () ; /* latch the word */

DeAssertReq () ; /* deassert req */

The FIFO interface clocks the data from the FIFO to the corresponding asynchronous data
pipe with a clock which is synchronized to the bus structure interface. The FIFO always
has a word of data available when the asynchronous data pipe requests one. If the request

signal Req becomes asserted when there is no data in the FIFO, then a FIFO underrun

- 23 -

10

15

20

25

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

occurs. This creates an error which is detected and handled by the corresponding
asynchronous data pipe. The application is responsible for ensuring that the appropriate
data is stored in the FIFO for transferring across the bus structure 58. When a FIFO

underrun occurs, the remaining transactions are halted until the FIFO has additional data to

- send.

In order to write data to the bus structure 58, the application programs the
appropriate information into the register file for the appropriate asynchronous data pipe.
The appropriate value for the bus speed to be used, either 100 Mbps, 200 Mbps or 400
Mbps, is programmed into the speed field sp. The bus speed to be used is selected to be
within the capability of the physical interface 56 and supported by the bus structure 58.
The appropriate value for the specific transaction to be completed is programmed into the
transaction code field tCode. If the requests are to be quadlet write requests, a value of
0000 is programmed into the transaction code field tCode. If the requests are to be block
write requests, a value of 0001 is programmed into the transaction code field tCode. The
appropriate value corresponding to the identifier of the destination node, across the bus
structure, for all request packets, is programmed into the destination identifier field
destination ID. | -

The starting forty-eight bit destination offset value is programmed into the high and
low destination offset fields destination_offset Hi and destination offset Lo. If the non-
incrementing bit in the control register is at a logical low voltage level, then the value in
the destination offset fields of the register file 80 is incremented after each request
transaction is completed. The number of bytes for each request packet to be generated is
programmed into the data length field data length. If the value in the transaction code
field tCode is equal to 0000, signalling that this transaction is a quadlet write transaction,
then the value in the data length field data_length will be equal to four. If the value in the
transaction code field tCode is equal to 0001, signalling that this transaction is a block
write transaction, then the value in the data length field data length is programmed with
an appropriate value in the range of numbers allowable for the programmed bus speed, as

shown in Table III above. Because the operation to be completed is a write operation, the

- 24 -

10

15

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

value in the extended transaction code field extended tCode is programmed to be equal to
ZEro.

The number of packets to be generated and sent in order to complete this
transaction is programmed into the packet counter field. The value in the packet counter
field can initially be programmed to equal zero, if the application is going to write to the
packet counter bump field to generate the appropriate transactions, one at a time. The
non_incrementing bit in the control field is programmed to equal a logical high voltage
level if all request packets are to be sent to the same destination offset address. The
non_incrementing bit in the control field is programmed to equal a logical low voltage
level if the request packets are to be sent to an increasing range of addresses. The
operational control bit go within the control field is programmed to equal a logical high
voltage level in order to enable the asynchronous data pipe to begin generating the
appropriate transactions necessary to complete the data transfer operation.

When the operational control bit go, within the control field of the register file 80,
1s set to a logical high voltage ievel, the asynchronous data pipe enters the active state.
While in the active state, the asynchronous data pipe generates request packets according

to the write state machine as defined in Table VIII below.

- 25

10

15

20

25

30

35

40

CA 02247341 1998-08-25

WO 97/33230 y PCT/US97/02546

TABLE VIII

while (Active ()) {
if (packet_counter == Q) /*if we don’t have any packets to send*/
continue /*loop to verify active state*/

iIf (RAM_Data < data length) /*if we don’t have enough data*/
&& (RAM_Free 1=0)) /*and we’re not filled yet*/
continue; /*loop to verify active state*/

/*we have enough data for a packet*/
Arbitrate (); /*get access to the link core*/
if (tCode ==0) /*if this is a quadlet*/
SendHeaderRegs (12); /*send first 12 bytes of header regs*/

else /*else this is a block*/
SendHeaderRegs (16); /*send first 16 bytes of header regs*/

SendData (data length, /*send data field from buffer RAM*/
&RAM_Data, &RAM_Free); /*adjust these as data is transferred*/

if (ack == pending) /*1f ack code is pending*/
WaitResponse (); /*wait for the response packet*/

/*note that we need to handle bad ack codes and bad rcode’s here*/

--packet counter; /*decrement packet counter*/
if (Inon_increment) /*if we’re incrementing*/
destination_offset += data length; /*increment destination*/

At any time, the originating application can write to the packet counter bump field,
thereby incrementing the value in the packet counter field by one. The asynchronous data
pipe write state machine, as defined in Table VIII above, forms a write request packet
whenever there is greater than one packet’s worth of data in the FIFO coupled to the
active asynchronous data pipe. The asynchronous data pipe write state machine also forms
a write request packet whenever the FIFO corresponding to the asynchronous data pipe is
completely filled. If the embedded application guarantees that the data will be clocked
into the corresponding FIFO fast enough and with a short enough latency, the size of the
FIFO corresponding to the asynchronous data pipe can be smaller than the number of

bytes specified by the value in the data length field data length within the register file 80.

- 26 -

10

15

20

25

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

After each write request packet is generated, if the non-increment bit in the control
field is not set to a logical high voltage level, the asynchronous data pipe increments the
destination offset address value by the value in the data length field data length in
preparation for generating the next write request packet. Although not shown in the write
state machine defined in Table VIII, the asynchronous data pipe examines the acknowledge
in field for each write request packet it generates and the response code field rcode, if the
destination node generates a write response packet. If either the acknowledge in field or
the response code field rcode indicates an error, or if the asynchronous data pipe is forced
to return a bad acknowledge code for the write response packet due to some error, the
asynchronous data pipe immediately stops and stores both acknowledge codes and the
response code rcode 1nto the asynchronous data pipe status field in the register file 80.
For split transactions, the asynchronous data pipe times the response. If more than 100
milliseconds elapse between the request packet and the corresponding response packet, the
asynchronous data pipe halts and displays the defined status information in the status field
of the register file 80.

In the preferred embodiment of the present invention, the bus structure 58 is an
IEEE 1394 standard bus structure. Each asynchronous data pipe therefore generates
transactions, headers, requests and responses in the format required by the IEEE 1394
standard. It will be apparent to those skilled in the art that the asynchronous data pipe of
the present invention can be used with other types of bus structures and systems. In such
systems, the asynchronous data pipe will be adapted to generate transactions, headers,
requests and responses, as appropriate for the specific bus structure.

The present invention has been described in terms of specific embodiments
incorporating details to facilitate the understanding of the principles of construction and
operation of the invention. Such reference herein to specific embodiments and details
thereof is not intended to limit the scope of the claims appended hereto. It will be
apparent to those skilled in the art that modifications may be made in the embodiment

chosen for illustration without departing from the spirit and scope of the invention.

L)

COHMMANGIIB0UAT

¢ = » .d.*“g".s?‘d

CA 02247341 2007-10-24

What is claimed is:

1. An asynchronous data pipe (20) configured for coupling between an application (12) and
a bus structure (58) for automatically controlling asynchronous data transfer operations to and
from the application (12) over the bus structure (58) comprising:

a. means for receiving parameters regarding a data transfer operation, the parameters
including an address in an address space of the bus structure, a data packet length
and a transfer direction; and

b. means for generating transactions necessary to complete the data transter
operation between the application (12) and a node coupled to the bus structure

(58) without direct processor control or intervention by the application.

2. The asynchronous data pipe (20) as claimed in claim 1 further comprising a register file

(26) in which the application (12) stores the parameters regarding the data transfer operation.

3. The asynchronous data pipe (20) as claimed in claim 2 wherein the register file (26) is
used as a template for generating the transactions and headers necessary to complete the data

transter operation without direct processor control or supervision by the application (12).

4, The asynchronous data pipe (20) as claimed in claim 3 wherein the parameters within the

register file (26) include a length of data to be transferred.

5. The asynchronous data pipe (20) as claimed in claim 1 further comprising
communicating means configured for coupling to a data buffer (32), wherein the data buffer (32)
1S coupled between the asynchronous data pipe (20) and the application (12) for sending data to

and receiving data from the application (12).

6. The asynchronous data pipe (20) as claimed in claim 1 wherein the bus structure (58) 1s
an IEEE 1394 standard bus structure.

28

CA 02247341 2007-10-24

7. The asynchronous data pipe (20) as claimed in claim 4 wherein the transactions necessary
to complete the data transfer operation are generated to an increasing range of addresses by
incrementing the destination address by the length of each data packet when each transaction is

generated.

8. The asynchronous data pipe (20) as claimed in claim 4 wherein the transactions necessary

to complete the data transfer operation are generated to a fixed address.

0. The asynchronous data pipe (20) as claimed in claim 3 wherein the register file (26)
further includes a packet counter value representing a number of packets remaining to be

transferred.

10. The asynchronous data pipe (20) as claimed in claim 9 wherein the application (12)
automatically increments the packet counter value by writing to a predetermined field in the

register file (26).

11. A method of managing a write data transfer operation between an application (12) and a
node coupled to a bus structure (58), independent of direct processor control and intervention by
the application comprising the steps of:
a. receiving parameters from the application (12) regarding a write data transfer
operation, the parameters including a packet counter value;
b. obtaining a packet of data from the application;
C. generating a header for the data transfer operation wherein the header 1s generated

without direct processor control or supervision by the application;

d. adding the header to the packet of data, wherein the header includes a destination

address for the packet of data; and
€. transferring the packet of data, including the header, onto the bus structure (58).

12. The method as claimed in claim 11 wherein the parameters received from the application

(12) are stored 1n a register file (26).

29

CA 02247341 2007-10-24

13. The method as claimed in claim 12 wherein the parameters include the destination

address, a length of data to be transferred, a length of each data packet to be transferred and a

packet counter value representing a number of packets to be transferred.

14. The method as claimed in claim 13 wherein the register file (26) is used as a template for
generating the header and transactions necessary to write a packet of data onto the bus structure

(58) without direct processor control or supervision by the application (12).

15. The method as claimed in claim 14 further comprising the steps of:

f. increasing the destination address by the length of a data packet;
g. decrementing the packet counter value; and
h. repeating steps b-g for each packet of data to be transferred until the packet

counter value 1s equal to zero.

16. The method as claimed in claim 15 further comprising a memory buffer loaded by the
application, wherein the packet of data is obtained from the data memory buffer (32).

17. A method of managing a read data transfer operation from a node coupled to a bus
structure (58) to an application comprising the steps of:
a. recelving parameters regarding a read data transfer operation from the application
(12) including an address at the node from where the data is to be sent from, a
data packet length and a packet counter value;
b. generating a transaction necessary, independent of direct processor control and
intervention by the application, in order to request that a packet of data from the
node be placed on the bus structure (58) wherein the transaction is generated

without direct processor control or supervision by the application (58);

C. transferring the transaction onto the bus structure (58);

d. obtaining the packet of data from the bus structure (58);

€. stripping header information from the packet of data; and

f. providing the packet of data without the header information to the application

(12).

30

CA 02247341 2007-10-24

18. The method as claimed in claim 17 wherein the parameters received from the application

(12) are stored in a register file (26).

19. The method as claimed in claim 18 wherein the parameters further include a length of

data to be transferred.
20. The method as claimed in claim 17 wherein the register file (26) is used as a template for
generating the transaction and header necessary to read a packet of data from the node without

direct processor control or supervision.

21. The method as claimed in claim 20 further comprising the steps of:

g. increasing the destination address by the length of a data packet;
h. decrementing the packet counter value; and
1. repeating steps b-h for each packet of data to be transferred until the packet

counter value is equal to zero.

22. The method as claimed in claim 17 wherein the packet of data is provided to the

application (12) through a data memory buffer (32).

23. An apparatus for managing asynchronous data transfer operations between one or more
applications (12 and 14) and a bus structure (58) comprising:

a. a plurality of asynchronous data pipes (20, 22, and 24) configured for coupling
between the one or more applications (12 and 14) and the bus structure (58), each
including:

1. means for receiving parameters from the one or more applications (12 and
14) regarding a data transfer operation; and

11. means for automatically generating transactions necessary to complete the

data transfer operation without direct processor control;

31

CA 02247341 2007-10-24

b. a physical bus interface (44) configured for coupling to the bus structure (58) for
placing data on the bus structure (58) and obtaining data from the bus structure
(38);

C. a multiplexing circuit (40) coupled between each asynchronous data pipe (20, 22
and 24) and the physical bus interface (44) for transmitting data packets from the
asynchronous data pipes (20, 22 and 24) to the bus structure (58); and

d. a demultiplexing circuit (42) coupled between each asynchronous data pipe (20,
22 and 24) and the physical bus interface (44) for routing data packets obtained

from the bus structure (58) to an appropriate one of the asynchronous data pipes
(20, 22 and 24).

24. The apparatus as claimed in claim 23 wherein each asynchronous data pipe (20, 22 and
24) further comprises a register file (26, 28 and 30) in which data and parameters regarding the

data transfer operation are stored.

25. The apparatus as claimed in claim 23 wherein the data and parameters are stored in the

register file (26) by one of the applications (12 and 14).

26. The apparatus as claimed in claim 23 wherein the register file (26) includes a destination
address in an address space of the bus structure (58) identifying the node where the data transfer

1S to occur, a length of data to be transferred, a length of each data packet and a direction of the

data transfer.

27. The apparatus as claimed in claim 23 wherein the register file (26) further includes a
transaction label value identifying the asynchronous data pipe (20) to which the data transfer
operation 1s to be routed wherein each of the asynchronous data pipes (20, 22 and 24) has a

unique transaction label value.

28. The apparatus as claimed in claim 23 wherein the register file (26) further includes a

range of transaction label values identifying the asynchronous data pipe (20) to which the data

32

CA 02247341 2007-10-24

transter operation is to be routed wherein each of the asynchronous data pipes (20, 22 and 24)

has a unique range of transaction label values.

29. The apparatus as claimed in claim 23 wherein the register file (26) is used as a template
for generating the transactions and headers necessary to complete the data transfer operation

without direct processor control or supervision.

30. The apparatus as claimed in claim 28 wherein the demultiplexing circuit (42) determines
the appropriate asynchronous data pipe (20) to which a data packet should be routed by the

transaction label value within the data packet.

31. The apparatus as claimed in claim 28 wherein the demultiplexing circuit (42) determines
the appropriate asynchronous data pipe (20) to which a write response packet should be routed
by the transaction label value within the data packet.

32, The apparatus as claimed in claim 26 wherein the transactions necessary to complete the
data transfer operation are generated to an increasing range of addresses, by increasing the

destination address by the length of each data packet when each transaction is generated.

33. The apparatus as claimed in claim 23 wherein the transactions necessary to complete the

data transfer operation are generated to a fixed address.

34. The apparatus as claimed in claim 23 wherein the bus structure (58) is an IEEE 1394
standard bus structure.

35. Anasynchronous data pipe (20) configured for coupling between an application (12) and
an IEEE 1394 standard bus structure for managing asynchronous data transfer operations to and
from the application over the bus structure (58) comprising:

a. a register file (26) including an address, a data packet length and a transfer

direction;

33

CA 02247341 2007-10-24

b. a programming circuit coupled to the register file (26) and configured for
coupling to the application (12) for receiving parameters from the application
regarding a data transfer operation from the application (12) and storing the
parameters in the register file (26); and

C. an automatic transaction generating circuit coupled to the register file (26) for
automatically generating transactions necessary to complete the data transfer

operation without direct processor control or supervision by the application (12).

36. The asynchronous data pipe (20) as claimed in claim 35 wherein the register file (26)

includes a length of data to be transferred.

37. The asynchronous data pipe (20) as claimed in claim 36 wherein the transactions
necessary to complete the data transfer operation are generated to an increasing range of

addresses.

38. The asynchronous data pipe (20) as claimed in claim 36 wherein the transactions

necessary to complete the data transfer operation are generated to a fixed address.

39. The asynchronous data pipe (20) as claimed in claim 36 wherein the register file (26)
further includes a packet counter value representing a number of packets remaining to be
transterred, wherein the packet counter value is decremented after each packet of data is

transferred.

40. The asynchronous data pipe (20) as claimed in claim 39 wherein the application (12)
automatically increments the packet counter value by writing to a predetermined field in the

register file (26).

41. An asynchronous data pipe (20) configured to couple between an application (12) and a
bus structure (58) comprising:

34

CA 02247341 2007-10-24

a. an interface circuit configured to receive parameters regarding a data transfer
operation, the parameters including an address in an address space of the bus
structure (58), a data packet length and a transfer direction; and

b. a transaction generating circuit configured to generate, without direct processor
control, transactions necessary to complete the data transfer operation between the
application (12) and a node coupled to the bus structure (58), wherein the
transactions are generated to an increasing range of addresses, by incrementing

the address by the data packet length.

42. The asynchronous data pipe (20) as claimed in claim 41 further comprising a register file

in which the application stores the parameters.

43. The asynchronous data pipe (20) as claimed in claim 42 wherein the register file is used

as a template to generate the transactions.

44. The asynchronous data pipe (20) as claimed in claim 41 further comprising a data buffer

coupled to the application for sending data to and receiving data from the application.

45. The asynchronous data pipe (20) as claimed in claim 41 wherein the bus structure is an
IEEE 1394 standard bus structure.

46. The asynchronous data pipe (20) as claimed in claim 42 wherein the register file includes

a packet counter value representing a number of packets remaining to be transferred.

47. The asynchronous data pipe (20) as claimed in claim 46 wherein the application

increments the packet counter value by writing to a predetermined field in the register file.

48. The asynchronous data pipe (20) as claimed in claim 41 wherein the parameters further

include a length of data to be transferred.

35

CA 02247341 2007-10-24

49. The asynchronous data pipe (20) as claimed in claim 41 wherein the transfer direction 1s

selected from going to the application and going tfrom the application.

50. The asynchronous data pipe (20) as claimed in claim 1 wherein the transfer direction is

selected from going to the application and going from the application.

51. The asynchronous data pipe (20) as claimed in claim 35 wherein the transfer direction 1s

selected from going to the application and going from the application.

52. An asynchronous data pipe (20) for coupling to a bus structure (58) comprising:

a. a processor configured to provide a set of parameters for a data transfer operation
over a bus, and configured to initiate the data transter operation, the parameters
including a data packet length and an address within a node coupled to the bus;
and

b. a circuit configured to generate, without intervention from the processor
subsequent to the initiation, a series of transactions on the bus for the data transfer

operation, the series having addresses formed by incrementing the address within

the node by the packet length.

53. The asynchronous data pipe (20) as claimed in claim 52 wherein the bus structure (58) 1s
an IEEE 1394 standard bus structure.

54. An asynchronous data pipe (20) for coupling to a bus structure (58), comprising:
a. means for receiving a set of parameters for a data transfer operation, the

parameters including a data packet length and an address within a node coupled to

a bus structure (58);

b. means for storing the parameters and for forming a template for a transaction
within the data transfer operation;

C. means for initializing a current address to the address within the node, for

incrementing the current address by the packet length and for generating a series

36

CA 02247341 2007-10-24

of the transactions using each value of the current address and using the template;

and

d. means for sending the transactions via the bus structure (58).

55. The asynchronous data pipe (20) as claimed in claim 54 wherein the bus structure (58) 1s
an IEEE 1394 standard bus structure.

56. An apparatus for managing asynchronous transfers between a processor and a bus
structure (58), comprising:

a. a plurality of means for coupling between a processor and a bus structure (58),
each including means for receiving from the processor a request for an
asynchronous transfer and for generating in response thereto a series of
transactions on the bus structure (58);

b. means for transmitting data packets of the transactions from any of the coupling
means to the bus structure; and

C. means for routing data packets of the transactions from the bus structure to a
corresponding one of the coupling means, the correspondence being based on a

label value of the transaction.

57. The apparatus as claimed in claim 56 wherein the bus structure (58) is an IEEE 1394
standard bus structure.

38. An apparatus for managing asynchronous transfers between a processor and a bus
structure (58), comprising:
a. a plurality of circuits each coupled between a processor and a bus structure (58),
each being configured to receive from the processor a request for an asynchronous

transfer and to generate in response thereto a series of transactions on the bus

structure (58);

b. a multiplexor configured to transmit data packets of the transactions from any of

the circuits to the bus structure (58); and

37

CA 02247341 2007-10-24

C. a demultiplexor configured to route data packets of the transactions from the bus
structure to a corresponding one of the circuits, the correspondence being based

on a label value of the transaction.

59. The apparatus as claimed in claim 58 wherein the bus structure (58) is an IEEE 1394

standard bus structure.

38

CA 02247341 1998-08-25

WO 97/33230 PCT/US97/02546 —

1/3

12
TRANSACTION LAYER
BUS LINK LAYER |
MANAGEMENT '

PHYSICAL [AYER |

FIG. 1
(PRIOR ART)

02247341 1998-08-25

CA

PCT/US97/62546

WO 97/33230

16

2/3

12
Application
|

jl Z
A

14
Application

I8
DS?Q\ﬁﬁﬂﬂm

e —— —

46 56
 Transmitter
50

Cycle Timer PHY

VF

48

|
|
49 L o e

FlG. 2

R A —

BUS
58

02247341 1998-08-25

CA

e

PCT/US97/02546

WO 97/33230

3/3

80
82 84 H
st | WVt) [y 1 by 7 [e T 0
!.I'll@gﬁ
Hi destination_ID destination_offset Hi
HE destination_offset Lo
 C | RW | dotalength | extended tCode
HH Packet counter
HH Packet counter bump
18 | Rw | ot
Map of ADP Control Registers
FIG. 3

16

12

14
Application Application

18
Application Interface

46
MUX '
:
50
Cycle Timer 34 | PHY
f52 CRC I/F

J8
Control Registers —44

Cycle Monitor

BUS
58

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - abstract drawing

