DEMANDE DE BREVET D'INVENTION

N° de publication: 2 715 787
(a n'utiliser que pour les commandes de reproduction)
N° d'enregistrement national: 94 01003
Int Cl° : H 04 L 12/26

Date de dépôt : 31.01.94.

Priorité : **

Date de la mise à disposition du public de la demande : 04.08.95 Bulletin 95/31.

Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule.

Références à d'autres documents nationaux apparentés : **

Demandeur(s) : ZOGHAIB Hussein — FR.

Inventeur(s) : Zoghaib Hussein, Dany Jean-Claude et Antoine Jacques.

Titulaire(s) : **

Mandataire : Cabinet Peuscet et Autres.

Système de transmission de trains d'impulsions.

Système de transmission de trains d'impulsions, comprenant un dispositif de transmission principal ou Maitre (100) et des dispositifs de transmission secondaires ou stations (20-36), lesdites stations (20-36) étant géographiquement disposées en chaînes ramifiées à partir du Maitre (100), le Maitre (100) et les stations (20-36) ayant chacun une adresse propre, les impulsions transmises par l'édit système étant gérées selon un protocole de communication ayant au moins une trame (D-F) comportant au moins l'adresse (S') de la station destinataire de l'information ainsi que l'adresse (Sr, Srj) de la (ou des) station(s) devant relayer l'information.
SYSTÈME DE TRANSMISSION DE TRAINS D'IMPULSIONS

La présente invention concerne les systèmes de transmission de trains d'impulsions destinés à assurer l'échange d'informations entre sites éloignés en acheminant l'information de proche en proche depuis l'expéditeur jusqu'au destinataire.

De tels systèmes de transmission de trains d'impulsions ont de nombreuses applications, comme la télésurveillance, la télécommande, le transfert de données. Pour des applications de ce type, notamment lorsqu'il s'agit de couvrir de longues distances, le vecteur de transmission est avantageusement la voie d'onde radioélectrique mais, bien entendu, tout autre vecteur de transmission, filaire ou non, convient également.

Plus particulièrement, la présente invention concerne un système de transmission de trains d'impulsions, dans lequel des dispositifs de transmission comprenant un émetteur et un récepteur accordés sur une même fréquence porteuse sont agencés en sorte que chaque dispositif de transmission peut recevoir une information provenant d'un autre dispositif de transmission et retransmettre cette information vers un autre dispositif de transmission, des moyens étant prévus pour, dans chaque dispositif de transmission, couper sa fonction réception dès que sa fonction émission est rendue opérationnelle.

Il est important que, pour qu'un tel système de transmission fonctionne correctement, toute perturbation soit évitée. Selon EP-A-0 331 573, on a proposé de minimiser les perturbations dues, dans certaines circonstances, à des impulsions parasites lorsque celles-ci ont des durées supérieures au temps pendant lequel la fonction réception du dispositif de transmission est coupée. Mais ceci n'est pas suffisant. En effet, les émissions des dispositifs de transmission étant multidirectionnelles, et tous les dispositifs de transmission étant activés simultanément, un même dispositif de transmission peut recevoir la même émission provenant de plusieurs dispositifs de transmission différents : des décalages dus au temps de transmission peuvent dès lors entraîner du fait d'interférences un bruit considérable et un parasitage ou un affaiblissement local du signal résultant ; chaque dispositif de transmission, destinataire ou non de l'information, répète l'information, ce qui augmente les risques de collision, voire de
cacophonie générale ; on comprendra également que, les émissions successives d'un dispositif de transmission à un autre dispositif de transmission s'effectuant sans aucun contrôle, le risque d'erreurs de transmission est d'autant plus grand que le système comporte de nombreux dispositifs de transmission.

L'invention, due à la collaboration entre le déposant inventeur et deux co-inventeurs, agents de l'Ecole Supérieure d'Electricité, SUPELEC, à Gif sur Yvette (France), a pour objet un système de transmission de trains d'impulsions du type ci-dessus ne présentant pas ces inconvénients.

Selon l'invention, un système de transmission de trains d'impulsions, dans lequel des dispositifs de transmission comprenant un émetteur et un récepteur accordés sur une même fréquence porteuse sont agencés en sorte que chaque dispositif de transmission peut recevoir une information provenant d'un autre dispositif de transmission et retransmettre cette information vers un autre dispositif de transmission, des moyens étant prévus pour dans chaque dispositif de transmission couper sa fonction réception dès que sa fonction émission est rendue opérationnelle, est caractérisé par le fait que les dispositifs de transmission comprennent un dispositif de transmission principal ou Maître et des dispositifs de transmission secondaires ou stations, lesdites stations étant géographiquement disposées en chaînes ramifiées à partir du Maître, chaque chaîne comportant au moins une branche principale, lesdites branches principales étant placées en étoile autour du Maître, le Maître et les stations ayant chacun une adresse propre, les impulsions transmises par ledit système étant gérées selon un protocole de communication ayant au moins une trame comportant au moins l'adresse de la station expéditeur de l'information et l'adresse de la station destinataire de l'information ainsi que l'adresse de la station devant relayer l'information.

Ainsi, grâce à cette disposition, pour la transmission d'une information, seules les stations nécessaires à cette transmission sont activées, les stations situées géographiquement entre la station émettrice et la station réceptrice jouant le rôle de stations relais ; les risques d'interférences sont dès lors notablement réduits.
Avantageusement, chaque branche principale est constituée de sous-branches pour que le système de transmission puisse mieux couvrir l'espace.

Avantageusement, la trame de transmission comporte des fanions de début et de fin de trame permettant à la station réceptrice de reconnaître le début et la fin de la trame, le fanion de début de trame étant précédé de deux octets de synchronisation, dite synchronisation-bit, placés en tête de la trame.

De préférence, le protocole de communication permet le contrôle de la transmission de la trame : selon ce contrôle, un dialogue est établi entre la station émettrice et la station réceptrice, un tel dialogue permettant à la station émettrice de vérifier que la station réceptrice est bien en état de recevoir et à la station réceptrice d'envoyer à la station émettrice un accusé réception de la trame.

Pour augmenter la fiabilité de la transmission de l'information, il est bon de vérifier, à chaque transmission entre deux stations, que la trame reçue par la station réceptrice est reçue sans erreur ; pour ce faire, le protocole de communication permet au moyen d'une clé calculée d'effectuer cette vérification.

La transmission de trains d'impulsions par le système selon l'invention nécessite bien entendu que tout le système soit en fonctionnement ; une panne dans une station étant toujours possible, avantageusement des moyens sont prévus pour assurer le bon fonctionnement du système ; de même, des moyens sont prévus pour tester le bon fonctionnement de l'ensemble des stations ; ces moyens de test comprennent de préférence l'émission régulière d'une trame spéciale de vérification vers toutes les stations, ce qui permet d'identifier la (ou les) station(s) en panne ; de préférence, cette trame spéciale de vérification est émise régulièrement par le Maître ; en variante, elle est émise par la station la plus éloignée du Maître.

De préférence, la transmission est effectuée par voie radioélectrique ; avantageusement, la transmission est assurée en modulation de phase, couplée à une démodulation différentielle ; ceci permet, pour un taux d'erreur de transmission donné, de réduire la complexité de réalisation de l'émetteur et du récepteur.
Avantageusement, la puissance d'émission de chaque station est réglée en sorte que chaque station, lorsqu'elle émet, ne peut atteindre que les stations géographiquement voisines appartenant à la même branche ou sous-branche que celle à laquelle elle appartient : dès lors, la puissance consommée est réduite et les interférences possibles sont limitées ; si l'une des stations est en panne, selon l'invention la puissance des stations situées en amont et en aval, et sur la même branche, par rapport à la station en panne, est augmentée temporairement pour que les deux dites stations amont et aval puissent communiquer entre elles : ainsi, l'acheminement de l'information reste assuré malgré cette panne.

En fonction de l'espace à atteindre, il peut être nécessaire, dans au moins certaines zones, d'avoir à rapprocher l'une de l'autre des branches ou sous-branches ; pour limiter au maximum les risques d'interférences, avantageusement chaque station est équipée d'au moins deux antennes directionnelles orientées respectivement vers au moins deux stations, un moyen commutateur permettant de rendre opérationnelle l'antenne nécessaire compte tenu de la direction de transmission choisie pour l'information en cours.

Pour mieux faire comprendre l'objet de l'invention, on va en décrire maintenant, à titre purement illustratif et non limitatif, un exemple de réalisation représenté sur les dessins annexés.

Sur ces dessins :
- la figure 1 est un schéma partiel montrant la structure du réseau qui constitue un système de transmission selon l'invention ;
- la figure 2 est un schéma bloc illustrant la constitution d'une station du système de transmission selon l'invention ;
- la figure 3 montre un exemple de structure d'une trame du protocole de communication utilisé pour la mise en œuvre du système selon l'invention ;
- la figure 4 montre un exemple d'adressage d'une station du système selon l'invention.

En se reportant à la figure 1, un système de transmission de trains d'impulsions, par voie radioélectrique selon l'exemple décrit, comprend un dispositif de transmission principal ou Maître 100 et des dispositifs de transmission secondaires ou stations disposées
géographiquement en chaînes ramifiées à partir du Maître 100 ; chaque chaîne comprend une branche principale ; les branches principales sont placées en étoile autour du Maître 100 ; dans l'exemple qui va être décrit, quinze branches sont prévues ; sur la figure 1, seule la branche 1 a été déployée en exemple, les branches 2, 3, 15 étant esquissées ; pour ne pas compliquer la figure 1, le nombre de stations a été limité ; la branche 1 est constituée de quatre sous-branches : la sous-branche 20, 21, 22 à 25, 26 à 28 - la sous-branche 20, 21, 22 à 25, 29, 30 - la sous-branche 20, 21, 31, 32, 33, 34 - la sous-branche 20, 21, 31, 32, 35, 36.

Le système de transmission selon l'invention constitue un système d'échange d'informations pour lequel sont utilisées des procédures normalisées ; de telles procédures normalisées sont bien connues et ne seront pas détaillées ici ; il suffit de se reporter, par exemple, aux documents ISO 7498 et CCITT X.200, ou à l'ouvrage "Réseaux et Télématicque de G. PUJOLLE" publié aux éditions EYROLLES. Cet état de la technique comprend un protocole de communication dit HDLC (abréviation de l'expression anglaise High Data Link Control) définissant en particulier le contenu des trames transmises. La présente invention utilise, et c'est là une de ses particularités importantes, comme protocole de communication, non pas le protocole HDLC mais un protocole dérivé du protocole HDLC : en effet, le système de transmission selon l'invention transmet une trame qui inclut, non pas une seule adresse de station, qui est la station qui reçoit ou celle qui répond, comme dans le protocole HDLC, mais trois adresses, à savoir l'adresse de la station expéditrice, l'adresse de la station destinataire et l'adresse de la station qui suit la station émettrice et qui joue le rôle de relais, celle-ci étant modifiée à chaque passage.

Le Maître 100 et chaque station ont une adresse propre. En choisissant un adressage à deux octets, on peut réserver, par exemple, comme le montre la figure 4, quatre bits B1 à B4 pour coder le numéro de la branche à laquelle appartient la station, quatre bits B5 à B8 pour coder le numéro de sa sous-branche et huit bits S9 à S16 pour coder le numéro de la station dans sa sous-branche.
Ainsi, les numéros de branche vont de 0000 à 1110, le numéro 1111 étant un numéro commun à toutes les branches ; il y a donc quinze numéros de branche.

Les quatre bits b5 à b8 de désignation d'une sous-branche sont utilisés ainsi : les deux premiers bits b5 et b6 représentent le nombre de sous-branches auquel la station appartient ; 00 signifie qu'elle appartient aux quatre sous-branches (station 21 par exemple), 10 signifie qu'elle appartient à deux sous-branches codées par le bit b7 (station 24 par exemple), 01 signifie qu'elle appartient à une sous-branche codée par les deux bits b7 et b8 (station 29 par exemple) ; il est à noter que 11 est l'adresse commune aux quatre sous-branches.

Les huit bits S9 à S16 codent le numéro de la station dans la sous-branche ; le Maître 100 étant codé 00000000, la station la plus proche du Maître 100 est codée 00000001 et la station la plus éloignée du Maître 100 est codée 11111110 ; il y a donc deux cent cinquante quatre adresses de stations, l'adresse 11111111 étant l'adresse commune à toutes les stations.

Ainsi toutes les stations et le Maître étant adressés, la transmission s'effectue, dans un sens, entre le Maître et une station désignée par son adresse, et, dans l'autre sens, sur ordre du Maître, depuis une station désignée par son adresse vers le Maître ; dans chaque cas, les stations situées entre le Maître et la station concernée sont des relais de transfert de l'information ; la transmission s'effectue donc par bonds d'une station à une autre.

Bien entendu, le protocole utilisé, dérivé du protocole HDLC, présente aussi les avantages du protocole HDLC notamment l'unicité du format pour toutes les trames, le contrôle de toutes les trames, même les trames sans données, pour qu'en cas d'erreur l'émetteur retransmette la trame, et la transparence totale par rapport aux codes utilisés ; le protocole utilisé, dérivé du protocole HDLC, permet en outre l'identification de la station en panne, pour que, dans ce cas, non seulement le service maintenance puisse intervenir immédiatement auprès de la station défaillante mais pour qu'égalemen les mesures soient prises pour transmettre tout de même l'information.

Le contrôle de la trame transmise, permettant de vérifier que la trame a été transmise sans erreur, est obtenu en ménageant dans
chaque trame un espace pour une clé de contrôle en fin de trame, tel que montré en C_e sur la figure 3 ; cette clé de contrôle est fonction du contenu complet de la trame et obtenue par une opération mathématique à partir de ses constituants ; la station réceptrice disposant de l'équation mathématique fait l'opération et calcule la clé de la trame telle que reçue : la comparaison, en fin de transmission de la trame, entre la clé calculée par la station réceptrice et la clé présente en fin de trame, permet à la station réceptrice d'émettre un accusé de bonne réception ; dans le cas contraire, la station émettrice ne recevant pas cet accusé de réception réémet la trame.

L'identification de(s) station(s) en panne est obtenue en testant le bon fonctionnement du système ; à cet effet, le Maître 100 envoie régulièrement une trame spéciale comportant deux cent cinquante six bits, soit trente deux octets, tous mis à zéro, à destination de toutes les stations d'une même sous-branche ; chaque station recevant cette trame pose un 1 à l'emplacement correspondant à son numéro dans la sous-branche puis transmet cette trame à la station suivante ; la dernière station de la sous-branche renvoie la trame au Maître 100 qui repère le (ou les) bit(s) à zéro, identifiant ainsi la (ou les) station(s) en panne, ainsi bien entendu que les stations inexistantes si la sous-branche contient moins de deux cent cinquante quatre stations.

En variant, la trame spéciale est envoyée par la dernière station de la sous-branche, la plus éloignée du Maître, à la demande du Maître.

Une trame du protocole utilisé a au moins la structure suivante. En tête de la trame, sont placés deux octets D de synchronisation-bit utilisés pour la récupération du rythme, à savoir que les transitions entre les bits de ces deux octets D permettent de caler en phase l'horloge-bit de la station réceptrice avec celle de la station émettrice ; ces octets sont suivis d'un fanion F annonçant le début de la trame, lui-même suivi du deuxième octet $S r_2$ de l'adresse de la station relais qui doit relayer l'information ; vient ensuite l'octet de contrôle de trame C_t, lui-même suivi du premier octet $S r_1$ de l'adresse de la station relais, lui-même suivi de l'adresse S_d de la station destinataire, elle-même suivie de l'adresse S_e de la station.
expéditeur. La trame se termine par les deux octets de contrôle d'erreur \(C_e \), ou clé, et par un fanion \(F \) de fin de trame ; la trame qui vient d'être décrite peut être une simple trame de supervision ; bien entendu, l'information à transmettre est portée par une trame d'information qui ne diffère de la précédente que par le fait qu'elle porte le champ d'information \(I \) ; ce champ d'information \(I \) est placé en fin de trame, entre l'adresse \(S_e \) de la station expéditeur et les deux octets \(C_e \) de contrôle d'erreur ; une telle trame d'information est illustrée par la figure 3.

Dans le mode de réalisation selon lequel la transmission s'effectue par voie radioélectrique, toutes les stations sont réglées sur une même fréquence porteuse ; le choix de la fréquence porteuse est déterminé par des considérations technico-économiques visant à réduire la sensibilité au bruit et à minimiser les gains d'antennes nécessaires ; pour pouvoir rapprocher l'une de l'autre, en fonction de l'espace à atteindre, des branches ou sous-branches, chaque station est équipée d'antennes directionnelles orientées vers les stations situées sur la même sous-branche immédiatement en amont et en aval ; la fréquence porteuse est choisie en sorte que ces antennes soient de taille convenable compte tenu du gain d'antenne nécessaire ; ce gain est, comme on le sait, fonction de l'atténuation du signal entre deux stations ; selon l'exemple décrit, les stations sont distantes d'environ vingt kilomètres ; pour un rapport signal/bruit supérieur à vingt décibels pendant 99,99% du temps, le gain des antennes directionnelles doit être de l'ordre de dix décibels ; dès lors, une fréquence porteuse de 150 à 200 MHz conduit à utiliser des antennes de l'ordre de trois mètres, ce qui est une taille raisonnable ; la fréquence choisie est donc d'au moins 150 MHz. Toutefois, la démodulation étant, comme on le sait, d'autant plus sensible aux variations de la fréquence porteuse que celle-ci est élevée, pour éviter d'avoir à utiliser un oscillateur d'émission très stable et donc très coûteux, la fréquence porteuse sera limitée par exemple à 250 MHz ; ainsi, la fréquence choisie est comprise entre 150 et 250 MHz.

Pour transmettre une information, le signal porteur devant être modifié dans le temps, la modulation choisie est une modulation de phase à deux états ; une telle modulation de phase, couplée à une
démodulation différentielle, présente en effet une excellente performance, eu égard à sa simplicité de mise en œuvre. La modulation de phase est en fait une modulation d'amplitude par plus ou moins un : le signal porteur est modulé par le signal d'information dont la rapidité de modulation est choisie en fonction du débit binaire désiré ; pour un débit de 10 kbits/sec, la rapidité de modulation est de 10 kbauds.

En se reportant à la figure 2, chaque station de transmission comporte un module de transmission 100. La station étant équipée de moyens propres, tels que des moyens d'acquisition et/ou de stockage de données 200, le module de transmission 100 comporte une interface Entrée/Sortie 101 reliée par des moyens de liaison 201 aux moyens propres 200 de la station.

Le module de transmission 100 comprend principalement un microprocesseur 102 et un contrôleur de communication 103.

Le microprocesseur 102 est chargé du contrôle des flux d'informations, de la reconnaissance des trames et de leur accusé réception ; le contrôleur de communication 103 est plus particulièrement chargé du contrôle d'erreurs, de la gestion des données, de la configuration des trames conformément au protocole de transmission, de la récupération du rythme, et de la vérification d'une partie des adressages. C'est le microprocesseur 102 qui est chargé en cas de panne d'une station d'établir la transmission directement avec la station suivante ; le microprocesseur 102 contrôle, bien entendu, l'acheminement de l'information jusqu'à la station destinataire, en prenant en compte l'adresse de ladite station, après vérification de l'autre partie des adressages.

Un modulateur 105, un démodulateur 106, un émetteur 109 et un récepteur 108 assurent la transmission radioélectrique en modulation de phase.

Entre le modulateur 105 et l'émetteur 109 est disposé un atténuateur 107 qui permet de modifier la puissance d'émission d'une station émettrice lorsqu'une station voisine est en panne et qu'elle doit la sauter : cette modification est obtenue par la mise à zéro de l'atténuation qui est prévue pour le fonctionnement normal ; cette atténuation normale est par exemple de l'ordre de dix décibels.
La fréquence porteuse utilisée par le modulateur 105 est générée par un synthétiseur de fréquence 104 ; cette fréquence porteuse émise par le synthétiseur de fréquence 104 est également utilisée par le récepteur 108.

Le récepteur 108 est protégé, compte tenu de la puissance de l'émetteur 109, par un dispositif de découplage ou découplage 110.

Le module de transmission 100 est relié par ses bornes 114 et 115 à deux antennes directionnelles respectivement 112 et 113 ; le récepteur 108 est relié par l'intermédiaire du découplage 110, d'une part, en permanence à l'antenne 113 et, d'autre part, à la borne commune 116 d'un commutateur 111 à deux positions, une position dans laquelle il relie la borne 116 à la borne 114 donc à l'antenne 112, et une autre position dans laquelle il relie la borne 116 à la borne 115 donc à l'antenne 113 ; l'émetteur 109 est relié à la borne 116, en sorte que l'émetteur n'est susceptible de n'émettre que par une seule des deux antennes 112 et 113, en fonction de la position du commutateur 111 : ceci permet, en évitant une émission dans les deux directions, d'induire d'éventuelles interférences nuisibles pour les autres stations. Le commutateur 111 est géré par le microprocesseur 102 et, bien entendu, lorsque la station est en veille, le microprocesseur 102 place le commutateur 111 dans la position pour laquelle les bornes 116 et 114 sont reliées, position qui est celle représentée sur la figure 2, ce qui permet à la station d'être prête à recevoir un message d'où qu'il vienne, c'est-à-dire depuis la station située en amont ou depuis la station située en aval, sur la même sous-branche qu'elle.

Lorsqu'une station est en panne, l'information saute ladite station à destination de la station suivante ; les antennes étant directionnelles, ceci n'est possible que si l'antenne de la station précédant celle qui est en panne est orientée non seulement vers ladite station en panne, mais également vers la station qui la suit ; ou bien ceci n'est pas possible géographiquement, ou bien ceci risque de créer des interférences entre stations ; pour pallier ces inconvénients il est possible, selon une variante, d'équiper les stations, disposées respectivement en amont et en aval d'une station, de deux antennes directionnelles orientées dans le même sens de transfert de l'information mais l'une vers la station voisine et l'autre vers la station
suivante. Pour ne pas doter chaque station d'une puissance d'émission trop importante, tout en permettant à l'information, en cas de panne d'une station, de sauter ladite station, il est possible de disposer les stations d'une même sous-branche à environ dix kilomètres l'une de l'autre au lieu de vingt, comme décrit ci-dessus.

Le système de transmission fonctionne de la manière suivante. Le Maître 100 échange des informations avec une station d'une même branche en interrogeant la station de la branche par exemple la station 28 la plus éloignée, la réponse de cette station 28 étant bloquée dans la station 20 la plus proche du Maître 100 ; bien entendu, pendant que cette information transite par toutes les stations, le Maître 100 peut échanger des informations avec une autre station d'une autre branche ; de façon à avoir la réponse à sa première question, le Maître interroge la station la plus proche périodiquement jusqu'à ce qu'il ait obtenu la réponse ; il peut alors interroger une autre station, et ainsi de suite. Comme on le voit, le Maître communique avec les différentes branches les unes après les autres, en envoyant successivement les messages destinés à une station à chaque branche et à collecter périodiquement les réponses. Grâce à ce système, il est possible pour chaque station de communiquer avec n'importe quelle autre station, ces deux stations appartenant ou non à la même sous-branche.

On a décrit une trame d'information portant la totalité de l'information I ; il est possible de découper une information à transmettre en plusieurs tronçons et de disposer ainsi de plusieurs trames pour transmettre la totalité de l'information ; une telle disposition peut dans certains cas permettre un gain en rapidité de transfert de l'information, chacune desdites trames comportant environ une trentaine d'octets d'information.

Comme cela a été dit plus haut, le système de transmission peut utiliser la voie de transmission filaire ; bien entendu, selon cette variante, le vecteur radioélectrique est remplacé par le vecteur filaire : la ramification filaire des branches en étoile à partir du Maître est assurée par des liaisons filaires entre les stations des différentes branches, toutes les stations étant reliées selon un réseau analogue à
celui représenté à la figure 1 ; chacune des antennes directives équipant une station radioélectrique est remplacée par une liaison filaire.
REVENDICATIONS

1 - Système de transmission de trains d'impulsions, dans lequel des dispositifs de transmission comprenant un émetteur (109) et un récepteur (108) accordés sur une même fréquence porteuse sont agencés en sorte que chaque dispositif de transmission peut recevoir une information provenant d'un autre dispositif de transmission et retransmettre cette information vers un autre dispositif de transmission, des moyens étant prévus pour, dans chaque dispositif de transmission, couper sa fonction réception dès que sa fonction émission est rendue opérationnelle, caractérisé par le fait que les dispositifs de transmission comprennent un dispositif de transmission principal ou Maître (100) et des dispositifs de transmission secondaires ou stations (20-36), lesdites stations (20-36) étant géographiquement disposées en chaînes ramifiées à partir du Maître (100), chaque chaîne comportant au moins une branche principale (1-15), lesdites branches principales (11-15) étant placées en étoile autour du Maître (100), le Maître (100) et les stations (20-36) ayant chacun une adresse propre, les impulsions transmises par le système étant gérées selon un protocole de communication ayant au moins une trame (D-F) comportant au moins l'adresse (S_e) de la station expéditeur de l'information et l'adresse (S_d) de la station destinataire de l'information ainsi que l'adresse (S_{r1}, S_{r2}) de la station devant relayer l'information.

2 - Système selon la revendication 1, caractérisé par le fait que chaque branche (1-15) principale est constituée de sous-branches.

3 - Système selon l'une des revendications 1 ou 2, caractérisé par le fait que la trame (D-F) comporte des fanions (F) de début et de fin de trame (D-F) reconnus par la station (20-36) réceptrice, le fanion (F) de début de trame étant précédé de deux octets (D) de synchronisation-bit placés en tête de la trame (D-F).

4 - Système selon l'une des revendications 1 à 3, caractérisé par le fait que le protocole de communication permet le contrôle de la transmission de la trame (D-F) selon lequel un dialogue, établi entre la station (20-36) émettrice et la station (20-36) réceptrice, permet à la station émettrice de vérifier que la station réceptrice est bien en état de recevoir et à la station réceptrice d'envoyer un accusé réception de la trame à la station émettrice.
5 - Système selon l'une des revendications 1 à 4, caractérisé par le fait que des moyens sont prévus pour assurer le bon fonctionnement du système.

6 - Système selon l'une des revendications 1 à 5, caractérisé par le fait que des moyens sont prévus pour tester le bon fonctionnement de l'ensemble des stations.

7 - Système selon la revendication 6, caractérisé par le fait que ces moyens de test de bon fonctionnement de l'ensemble des stations comprennent une trame spéciale de vérification émise régulièrement vers toutes les stations (20-36).

8 - Système selon l'une des revendications 1 à 7, caractérisé par le fait que la transmission est effectuée par voie radioélectrique.

9 - Système selon la revendication 8, caractérisé par le fait que la transmission est une transmission en modulation de phase, couplée à une démodulation différentielle.

10 - Système selon l'une des revendications 5 à 9, caractérisé par le fait que la puissance d'émission de chaque station est réglée en sorte que chaque station, lorsqu'elle émet, ne peut atteindre que les stations géographiquement voisines appartenant à la même branche ou sous-branche que celle à laquelle elle appartient et en ce que, si l'une des stations est en panne, la puissance des stations situées en amont et en aval, et sur la même branche, par rapport à la station en panne, est augmentée temporairement pour que les deux dites stations amont et aval puissent communiquer entre elles.

11 - Système selon l'une des revendications 1 à 10, caractérisé par le fait que le Maître (100) est équipé d'une antenne multidirectionnelle et chaque station est équipée d'au moins deux antennes (112, 113) directionnelles orientées respectivement vers au moins deux stations, un moyen commutateur (111) permettant de rendre opérationnelle l'antenne nécessaire compte tenu de la direction de transmission choisie pour l'information en cours.
DOCUMENTS CONSIDERES COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendications concernées de la demande examinée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>A.S. TANENBAUM 'COMPUTER NETWORKS' 1989, PRENTICE HALL INTERNATIONAL, USA</td>
<td>1-6,8,10</td>
</tr>
<tr>
<td>A</td>
<td>* paragraphe 2.7.1. * * paragraphe 3.7.1 * * paragraphe 3.7.2 *</td>
<td>9,11</td>
</tr>
<tr>
<td>Y</td>
<td>GB-A-2 254 982 (BRITISH AEROSPACE PLC.) * revendications 3,4,7 * * figure 1 *</td>
<td>1-6,8,10</td>
</tr>
<tr>
<td>A</td>
<td>EP-A-0 173 508 (XEROX CORPORATION) * page 4, ligne 23 - page 5, ligne 11 * * figure 1 *</td>
<td>1,5-7</td>
</tr>
<tr>
<td>D,A</td>
<td>EP-A-0 331 573 (DEVOTEC S.A.) * abrégé * * colonne 1, ligne 25 - ligne 34 *</td>
<td>1,11</td>
</tr>
<tr>
<td>A</td>
<td>LOCAL NETWORKS FOR COMPUTER COMMUNICATIONS, 1981, AMSTERDAM, NL pages 1 - 23 J.H. SALTZER ET AL. 'Source routing for campus-wide internet transport' * le document en entier *</td>
<td>1</td>
</tr>
</tbody>
</table>

DOMAINES TECHNIQUES RECHERCHES (B06C1/50)

- HO4L

Date d'achèvement de la recherche

28 Octobre 1994

Examinateur

Perez Perez, J

CATEGORIE DES DOCUMENTS CITES

- T : thèse ou principe à la base de l'invention
- E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a pas été publié qu'à cette date de dépôt ou à une date postérieure.
- D : cité dans la demande
- L : cité pour d'autres raisons
- X : particulièrement pertinent à lui seul
- Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
- A : pertinent à l'endroit d'un moins une revendication ou artère-plan technologique général
- O : divulgation non-écrite
- F : document intercausal

- : membre de la même famille, document correspondant