(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2014/001904 A1

(43) International Publication Date 3 January 2014 (03.01.2014)

(51) International Patent Classification: A61K 47/34 (2006.01) A61K 31/57 (2006.01) A61K 31/445 (2006.01) A61K 38/13 (2006.01) A61K 31/565 (2006.01)

(21) International Application Number:

PCT/IB2013/001547

(22) International Filing Date:

27 June 2013 (27.06.2013)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

27 June 2012 (27.06.2012) 61/665,192

LIS

- (71) Applicant: MEDINCELL [FR/FR]; 1, avenue Charles Cros, F-34830 Jacou (FR).
- (72) Inventors: GAUDRIAULT, Georges; 334, rue Louis-Martin Berthoud, F-34080 Montpellier (FR). ROBERGE, Christophe; 25, rue de la Garenne, F-34920 Le Crès (FR).
- (74) Agent: ERNEST GUTMANN YVES PLASSERAUD SAS; 3, rue Auber, F-75009 Paris (FR).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

BIODEGRADABLE DRUG DELIVERY FOR HYDROPHOBIC COMPOSITIONS

FIELD OF THE INVENTION

5

10

15

20

25

30

35

The present invention relates to biodegradable drug delivery compositions comprising a triblock copolymer containing a polyester and a polyethylene glycol and a diblock copolymer containing a polyester and an end-capped polyethylene glycol, as well as a pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine. The ratio of triblock copolymer to diblock copolymer in this formulation is 1:3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1. Methods for producing these biodegradable drug compositions using organic solvents are also disclosed.

BACKGROUND OF THE PRESENT INVENTION

Drug delivery systems such as diblock and triblock copolymers have been used to deliver a variety of drugs and are generally formulated to deliver specific drugs whether they are hydrophobic drugs or hydrophilic drugs. Depending on the drug solubility these drug formulations differ in polymer concentrations, types of polymers utilized, molecular weights of the polymers and solvents used in the formulations.

Also the type of environment in which the drug is delivered is an important consideration in formulating a drug delivery system. Thus, there exist drug delivery compositions that are prepared using temperature sensitive polymers, phase sensitive polymers, pH sensitive polymers and photosensitive polymers. See, for example, K. Al-Tahami and J. Singh "Smart Polymer Based Delivery Systems for Peptide and Proteins," Recent Patents on Drug Delivery & Formulation, 1: pages: 65-71 Bentham Science Publishers, LTD. 2007.

U.S. Patent No. 6,592,899 describes a PLA/PLGA oligomer combined with a block copolymer for enhancing the solubility of a hydrophobic drug into a hydrophilic environment. More specifically this polymer composition has a polyester oligomer

having a molecular weight of between 400 and 10,000 daltons and a biodegradable AB-type, ABA-type or BAB type block copolymer. The hydrophobic A part is a polyester, while the hydrophilic B part is a polyethylene glycol having a molecular weight of between 2,400 and 4,999 daltons. This polymeric composition is soluble in an aqueous environment.

5

10

15

20

25

30

U.S. Patent 6, 541,033 describes a sustained release pharmaceutical composition based on thermosensitive, biodegradable hydrogels, consisting of a block copolymer of PLA or PLGA and PEG, for the sustained delivery of biologically active agents, such as leptin. The sustained release is for a period of a week or more and preferably up to one month.

Hydrogels containing triblock copolymers are described in U.S. Patent 6,350,812. These hydrogels retain water weight at least equal to the water weight of the copolymer and are soft hydrogels.

U.S. Patent 7,875,677 provides micelle-forming compositions comprising a hydrophobic drug, a biocompatible block copolymer, which has a hydrophilic protein comprising a polyethylene oxide and a hydrophobic portion having a polyester and a biocompatible water soluble polymer, wherein the water soluble polymer is present in a sufficient amount to make the micelle-forming composition injectable.

It is well known in the art that poorly water soluble or hydrophobic drugs often result in slow drug absorption leading to inadequate and variable bioavailability and gastrointestinal mucosal toxicity. Hence, formulating hydrophobic drugs is a challenge well known in this art.

None of the patents nor the literature cited above describes drug delivery compositions that are injectable, *in situ* forming and are biodegradable and turn into solid implants when injected into the body and deliver pharmaceutically hydrophobic active principles. The biodegradable drug compositions of the present invention comprise triblock copolymers and diblock copolymers formulated in such a manner that the diblock copolymer serves as a reservoir while the triblock copolymer acts as a frame in the formulations and increases the lifespan of the diblock copolymer.

Furthermore, the biodegradable drug delivery compositions of the present invention can be long acting formulations, which reduce the initial burst release of the drug and modulate the release rate of the drug or hydrophobic drug over time. This phenomenon is illustrated in the flattening of the drug release curves.

SUMMARY OF THE INVENTION

The present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

 C_y - A_z

5

10

20

25

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1:3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 in said biodegradable drug composition; and (c) at least one pharmaceutically active principle.

The present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

 $A_v-B_w-A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

 C_v-A_z

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically active principle.

The present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle.

15

20

10

5

The present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

$$C_{v}-A_{z}$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.

30

25

The present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

$$A_v - B_w - A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units and v=x or $v\neq x$; (b) a biodegradable diblock copolymer having the formula:

C_y-A_z

5

10

25

30

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1: 3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 in said biodegradable drug composition; and (c) at least one pharmaceutically active principle.

The present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

 A_v - B_w - A_x

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units and v=x or $v\neq x$; (b) a biodegradable diblock copolymer having the formula:

 C_{v} - A_{z}

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1: 3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically active principle.

The present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

 $A_v - B_w - A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090, v and x being ester repeat units

5

and w being ethylene oxide repeat units and v=x or $v\neq x$; (b) a biodegradable diblock copolymer having the formula:

5

10

15

30

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1: 3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle.

The present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

$$C_y-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.

A biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

6

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically active principle.

A biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

5

15

20

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically active principle.

A biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or $v\neq x$; (b) a biodegradable diblock copolymer having the formula:

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically hydrophobic active principle.

A biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or $v\neq x$; (b) a biodegradable diblock copolymer having the formula:

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.

A biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

wherein v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090 v and x being ester repeat units and w being ethylene oxide repeat units and v=x or $v\neq x$; (b) a biodegradable diblock copolymer having the formula:

$$\mathsf{PEG}_y\text{-}\mathsf{PLA}_z$$

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically active principle

25

30

20

5

10

15

A biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

wherein v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090 v and x being ester repeat units and w being ethylene oxide repeat units and v=x or $v\neq x$; (b) a biodegradable diblock copolymer having the formula:

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the

biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically active principle

5

10

15

20

25

30

A biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

wherein v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090 v and x being ester repeat units and w being ethylene oxide repeat units and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically hydrophobic active principle

A biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

wherein v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090 v and x being ester repeat units and w being ethylene oxide repeat units and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.

In yet another aspect a biodegradable drug delivery composition is provided, which comprises:(a) a biodegradable triblock copolymer present in an amount of 3% to 45% (w%/w%) of the total composition having the formula:

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; (b) a biodegradable diblock copolymer present in an amount of 8.0% to 50% (w%/w%) of the total composition having the formula:

10

15

20

25

30

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 in said biodegradable drug composition and wherein the PEG in the diblock is end capped and (c) at least one pharmaceutically active principle is present in an amount of 1% to 20% (w%/w%) of the total composition or the at least one pharmaceutically active principle is present in an amount of 1 to 200 mg/ml.

In yet another aspect a biodegradable drug delivery composition is provided, which comprises:(a) a biodegradable triblock copolymer present in an amount of 3% to 45% (w%/w%) or 2% to 45% (w%/w%) or 1.2% to 30% (w%/w%) of the total composition having the formula:

PLA_v-PEG_w-PLA_x

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; (b) a biodegradable diblock copolymer present in an amount of 8.0% to 50% (w%/w%) or 1% to 28% (w%/w%) of the total composition having the formula:

PEG_v-PLA_z

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end capped and (c) at least one pharmaceutically active principle is present in an amount of 1% to 20% (w%/w%) of the total composition or the at least one pharmaceutically active principle is present in an amount of 1 to 200 mg/ml.

In yet another aspect a biodegradable drug delivery composition is provided, which comprises:(a) a biodegradable triblock copolymer present in an amount of 3.0% to 45% (w%/w%) or 2% to 45% (w%/w%) or 1.2% to 30% (w%/w%)of the total composition having the formula:

PLA_v-PEG_w-PLA_x

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or $v\neq x$; (b) a biodegradable diblock copolymer present in an amount of 8.0% to 50% (w%/w%) or 1% to 28% (w%/w%) of the total composition having the formula:

PEG_v-PLA_z

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 in said biodegradable drug composition and wherein the PEG in the diblock is end capped and (c) at least one pharmaceutically hydrophobic active principle is present in an amount of 1% to 20% (w%/w%) of the total composition or the at least one pharmaceutically active principle is present in an amount of 1 to 200 mg/ml.

20

5

10

15

In yet another aspect a biodegradable drug delivery composition is provided, which comprises:(a) a biodegradable triblock copolymer present in an amount of 3.0% to 45% (w%/w%) or 2.0% to 45% (w%/w%) or 1.2% to 30% (w%/w%)of the total composition having the formula:

25

PLA_v-PEG_w-PLA_x

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or $v\neq x$; (b) a biodegradable diblock copolymer present in an amount of 8.0% to 50% (w%/w%) or 1% to 28% (w%/w%) of the total composition having the formula:

30

PEG_v-PLA_z

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1: 3 to 1:8 or 3:2 to 1:19 or 1:1 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG

in the diblock is end capped and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine. is present in an amount of 10% to 40% (w%/w%) or 1% to 40% (w%/w%)of the total composition or the at least one pharmaceutically active principle is present in an amount of 1 to 200 mg/ml or 0.1 to 200 mg/ml.

5

10

15

20

25

30

The biodegradable drug delivery compositions of the invention can have a lactic acid to ethylene oxide molar ratio in the composition of between 0.5 to 3.5 or from 0.5 to 2.5 or 0.5 to 22.3 for the triblock copolymer and between 2 to 6 or 0.8 to 13 for the diblock copolymer.

In another aspect the biodegradable drug delivery compositions of the invention can have a lactic acid to ethylene oxide molar ratio in the composition of between 0.5 to 22.3 for the triblock copolymer and between 0.8 to 13 for the diblock copolymer.

In yet another aspect the biodegradable drug delivery compositions of the invention can have a lactic acid to ethylene oxide molar ratio in the composition of between 0.5 to 2.5 for the triblock copolymer and between 3 to 5 for the diblock copolymer.

In one aspect the biodegradable drug delivery composition is an injectable liquid that when it is inserted into the body of an animal or plant becomes a hardened implant.

In yet another aspect the biodegradable delivery drug composition can be used as a spatial formulation such that it can be applied onto or inside the body of an animal or plant. For example, it can be dispensed during surgery to treat a wound or inside a plant to treat a virus.

In another aspect the biodegradable drug composition is prepared as small solid particles, which are placed directly on the injured site of the body of an animal or plant.

In another aspect the biodegradable drug composition is in the form of a rod implant.

A method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

5

15

20

30

$A_v-B_w-A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090 wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

$$C_{y}-A_{z}$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 (a):(b) to form a polymer mixture; and (ii) adding at least one pharmaceutically active principle to said polymer mixture, is yet another aspect of the invention.

A method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$A_{v}-B_{w}-A_{v}$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090 wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; and

(ii) adding at least one pharmaceutically active principle to said polymer mixture, is yet another aspect of the invention.

A method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

5

$A_v - B_w - A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090 wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

10

20

25

30

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; and

15 (ii) adding at least one pharmaceutically hydrophobic active principle to said polymer mixture, is yet another aspect of the invention.

A method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$A_v - B_w - A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090 wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

$C_{v}-A_{r}$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; and

(ii) adding at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture, is yet another aspect of the invention.

Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

 $A_v-B_w-A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1060 wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 in (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically active principle to said polymer mixture; and (iii) evaporating said solvent.

15

20

Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1060 wherein v=x or $v\neq x$; and (b) a biodegradable diblock copolymer having the formula:

25

30

 $C_{v}-A_{z}$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically active principle to said polymer mixture; and (iii) evaporating said solvent.

Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method

comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1060 wherein v=x or $v\neq x$; and (b) a biodegradable diblock copolymer having the formula:

5

10

15

20

25

30

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle to said polymer mixture; and (iii) evaporating said solvent.

Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v - B_w - A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090 wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture; and (iii) evaporating said solvent.

Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

 C_y - A_z

5

10

15

20

25

30

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1:3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 (a):b) to form a polymer mixture; (ii) adding at least one pharmaceutically active principle to said polymer mixture; and (iii) evaporating said solvent.

Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v - B_w - A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 (a):b) to form a polymer mixture; (ii) adding at least one pharmaceutically active principle to said polymer mixture; and (iii) evaporating said solvent.

Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

5

10

15

20

25

 C_y-A_z

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 (a):b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle to said polymer mixture; and (iii) evaporating said solvent.

Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

 $A_v-B_w-A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

 C_v-A_z

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture; and (iii) evaporating said solvent.

30

In the above methods the organic solvent can be present in an amount of 40% to 74% (w%/w%) or 30% to 70% (w%/w%) or 26% to 90% (w%/w%) of the total composition. Mixtures of solvents can also be used.

Other aspects and embodiments are set forth below, or will readily arise from the following description of the preferred embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

5

Fig. 1 is a graph showing the *in vitro* release rate of the drug from formulations based on 40% P6R1(TB):dP2R4(DB) in ratios of 1:0 (- \circ -), 1:2 (- Δ -), 1:4 (- \bullet -), 1:6 (- ∇ -) and 1:9 (- * -) over time in days. This graph shows that formulations based on TB:DB are sustaining the release for more than 30 days.

10

15

20

25

30

- Fig. 2 is a graph showing the *in vitro* cumulative percent release curve from candidate formulations of Figure 1 over time (days). This graph illustrates that the initial burst is reduced and the drug release curve is flattened in the combination of triblock copolymer and diblock copolymer compositions compared to the triblock copolymer composition alone. It should be noted that the 1:9 curve is overlapping the 1:4 curve.
- Fig. 3 is a graph showing the injectability of formulations based on 40% P6R1 (TB);dP2R4(DB) in various ratios ranging from 1:0 triblock copolymer to diblock copolymer to 0:1 triblock copolymer to diblock copolymer. This graph illustrates that all formulations are injectable using a classical injection device.
- Fig. 4 is a graph showing the *in vitro* cumulative percentage release curve from candidate formulations over time (days) of various compositions of the invention. The compositions described as numbers 177, 246, 224, 225 and 250 are described in Table1.
- Fig. 5 is a graph showing the *in vitro* release rate from candidate formulations in micrograms per hour per gram of formulation (μg/h/gr of formulation) The compositions described as numbers 177, 246, 224, 225 and 250 are described in Table 1.
- Fig. 6 is a graph showing the M53 plasma concentration in nanograms per milliliter (ng/ml) over time in days. Day zero is the day that the composition was

administered subcutaneously. The compositions indicated as numbers 177, 246, 224, 225 and 250 are described in Table1.

- Fig. 7 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.2R5 (4 units of ethylene oxide and 24 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 8 is a graph showing the *in vitro* cumulative percent release of
 acetaminophen over time (days) from formulations based on triblock copolymer
 P0.2R14 (4 units of ethylene oxide and 58 units of lactic acid) mixed with various
 diblock copolymers (see Table 2 for details).
- Fig. 9 is a graph showing the *in vitro* cumulative percent release of
 acetaminophen over time (days) from formulations based on triblock copolymer
 P0.2R22 (4 units of ethylene oxide and 89 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 10 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.4R4 (9 units of ethylene oxide and 41 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 11 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.4R7 (9 units of ethylene oxide and 67 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 12 is a graph showing the *in vitro* cumulative percent release of
 acetaminophen over time (days) from formulations based on triblock copolymer
 P0.6R1 (13 units of ethylene oxide and 26 units of lactic acid) mixed with various
 diblock copolymers (see Table 2 for details).

Fig. 13 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.6R3 (13 units of ethylene oxide and 40 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).

5

Fig. 14 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.6R4 (13 units of ethylene oxide and 55 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).

10

Fig. 15 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P1R2 (22 units of ethylene oxide and 47 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).

15.

Fig. 16 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P1R3 (22 units of ethylene oxide and 68 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).

20

Fig. 17 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P1R4 (22 units of ethylene oxide and 88 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).

25

Fig. 18 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P2R2 (45 units of ethylene oxide and 88 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).

30

Fig. 19 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblockco polymer P2R3 (45 units of ethylene oxide and 157 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).

Fig. 20 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P2R5 (45 units of ethylene oxide and 216 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).

5

10

15

20

25

30

- Fig. 21 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P3R1 (68 units of ethylene oxide and 66 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 22 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P3R2 (68 units of ethylene oxide and 154 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 23 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P3R3 (68 units of ethylene oxide and 218 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 24 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P6R0.9 (136 units of ethylene oxide and 125 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 25 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P6R1.6 (136 units of ethylene oxide and 218 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 26 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer

P6R2 (136 units of ethylene oxide and 272 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).

Fig. 27 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P2R4 (45 units of ethylene oxide and 157 units of lactic acid) mixed with diblock copolymer dP0.4R6 (7 units of ethylene oxide and 42 units of lactic acid) at different ratios (see Table 2 for details).

Fig. 28 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P2R4 (45 units of ethylene oxide and 157 units of lactic acid) mixed with diblock copolymer dP0.6R5 (12 units of ethylene oxide and 54 units of lactic acid) at different ratios (see Table 2 for details).

15

5

Fig. 29 is a graph showing the *in vitro* cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P2R5 (45 units of ethylene oxide and 216 units of lactic acid) mixed with diblock copolymer dP0.2R13 (3 units of ethylene oxide and 39 units of lactic acid) at different ratios (see Table 2 for details).

Fig. 30 is a graph showing the *in vitro* release rate of buprenorphine over time (days) from formulations n°33 (10%BN/ 8%P2R2/ 32%dP0.4R10), n°47 (10%BN/ 8%P2R2/ 32%dP1R3) and n°58 (10%BN/ 10%P0.4R8/ 40%dP1R2).

25

20

Fig. 31 is a graph showing the plasma concentration of buprenorphine over time (days) in rats injected with formulations n°33 (10%BN/ 8%P2R2/ 32%dP0.4R10), n°47 (10%BN/ 8%P2R2/ 32%dP1R3) and n°58 (10%BN/ 10%P0.4R8/ 40%dP1R2).

30

Fig. 32 is a graph showing the *in vitro* release rate of risperidone over time (days) from formulations based on triblock polymer P2R5 (45 units of ethylene oxide and 216 units of lactic acid) mixed with diblock polymer dP0.2R13 (3 units of ethylene oxide and 39 units of lactic acid) at different ratios (see Table 2 for details).

Fig. 33 is a graph showing the plasma concentration of risperidone and 9-OH risperidone over time (days) in rats injected with formulations n°10 (5%RSP/ 16%P2R2/ 24%dP2R2/ DMSO), n°29 (10%RSP/ 24%P1R4/ 16%dP0.4R5/ DMSO) and n°31 (10%RSP/ 18%P2R4/ 12%dP0.4R5/ DMSO).

5

10

15

20

25

Fig. 34 is a graph showing the plasma concentration of ivermectin over time (days) in dogs injected with formulations n°7 (5%IVM/ 15%P3R3/ 25%dP0.4R5/ DMSO), n°9 (5%IVM/ 15%P2R4/ 25%dP2R3/ DMSO) and n°10 (5%IVM/ 15%P2R5/ 25%dP2R2/ DMSO).

Fig. 35 is a graph showing the *in vitro* release rate of medroxyprogesterone acetate (MPA) from candidate formulations in milligrams per gram of formulation per day (mg MPA/gr of formulation/day) The formulations described as numbers 33, 34 and 49 as described in Table 6. *In vitro* release obtained with Depo-SubQ Provera is shown as a control.

Fig. 36 is a graph showing the *in vitro* cumulative percent release of medroxyprogesterone acetate over time (days) from formulations described 33, 34 and 49 as described in Table 6. *In vitro* release obtained with Depo-SubQ Provera is shown as a control.

Fig. 37 is a graph showing the *in vitro* release rate of medroxyprogesterone acetate from candidate formulations in milligrams per gram of formulation per day (mg/gr of formulation/day) The formulations described as numbers 12, 32 and 36 are described in Table 6. In vitro release obtained with Depo-SubQ Provera is shown as a control.

Fig. 38 is a graph showing the *in vitro* cumulative percent release of medroxyprogesterone acetate from formulations described 12, 32 and 36 per days are described in Table 6. *In vitro* release obtained with Depo-SubQ Provera is shown as a control.

Fig. 39 is a graph showing the plasma concentration of medroxyprogesterone acetate (MPA) in female dogs over time (days) injected with formulations 33, 34 and 49 described in Table 6. Each dog received a single 3 mg/kg dose of MPA.

Fig. 40 is a graph showing the plasma concentration of medroxyprogesterone acetate (MPA) in dogs over time (days) injected with formulations 12, 32 and 36 are described in Table 6. For formulations 32, 36 and the control group (receiving DeposubQ-Provera), each dog received a single 3 mg/kg MPA dose. The group receiving formulation 12 was dosed at 6 mg/kg MPA.

5

10

20

25

- Fig. 41 is a graph showing the *in vitro* percent total release of medroxyprogesterone acetate (MPA) over time (days) from formulations 7, 10 and 13 described in Table 6.
- Fig. 42 is a graph showing the *in vitro* percent total release of medroxyprogesterone acetate (MPA) over time (days) from formulations 32 and 33 described in Table 6.
 - Fig 43 is a graph showing the *in vitro* percent total release of medroxyprogesterone acetate (MPA) over time (days) from formulations 25, 27 and 30 described in Table 6.
 - Fig 44 is a graph showing the *in vitro* percent total release of progesterone (Pro) over time (days) from formulations 11, 13 and 7 described in Table 7.
 - Fig. 45 is a graph showing the *in vitro* percent total release of progesterone (Pro) over time (days) from formulations 10, 12 and 5 described in Table 7.
- Fig. 46 is a graph showing the *in vitro* percent total release of Levonorgestrel (Levo) over time (days) from formulations 7, 8 and 9 described in Table 8.
 - Fig 47 is a graph showing the *in vitro* percent total release of Levonorgestrel (Levo) over time (days) from formulations 4, 5 and 6 described in Table 8.

Fig. 48 Fig 42 is a graph showing the *in vitro* percent total release of cyclosporine (CSP) over time (days) from formulations 19, 20, 21, 22, 23 and 24 described in Table 9.

Fig. 49 is a graph showing the *in vitro* percent total release of Bupivacaine base (Bupi) over time (days) from formulations based on formulations 42, 47, 37, 35 and 34 described in Table 10.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

10

15

20

25

30

5

As used herein the term "biodegradable" means that the triblock and diblock copolymers will after a period of time erode or degrade *in vivo* to form smaller nontoxic components.

The term "parenteral administration" encompasses intramuscular, intraperitoneal, intra-abdominal, subcutaneous, intravenous and intraarterial. It also encompasses intradermal, intracavernous, intravitreal, intracerebral, intrathecal, epidurall and intraosseous administration.

The term "animals" encompasses all members of the Kingdom Animalia.

As used herein the term "plant" encompasses all members of the Plant Kingdom.

"Active principle" means a drug or medicine for treating various medical illnesses. Thus active principles, drugs and medicines are used interchangeably. The term drug or active principle as used herein includes without limitation physiologically or pharmacologically active substances that act locally or systemically in the body of an animal or plant. At least one active principle is present in the biodegradable drug composition of the invention.

As used herein "disease" means any disorder in a human, animal or plant caused by infection, diet, or by faulty functioning of a process.

The term "implant" means that the drug delivery compositions are injectable, are *in situ* forming and are biodegradable and turn into solid implants when injected into the body. Thus, that the formulations that are synthesized are liquids such that they can be easily injected through a syringe without excessive force.

5

The term "spatial formulations" encompass any formulations that can be applied on or into the animal or plant body and do not necessarily have to be administered through a syringe.

10

15

As used herein "repeat units" are the fundamental recurring units of a polymer.

By "end-capped polyethylene glycol" (cPEG) refers to PEG's in which one terminal hydroxyl group is reacted and includes alkoxy-capped PEG's, urethane-capped PEG's ester-capped PEG's and like compounds. The capping group is a chemical group which does not contain a chemical function susceptible to react with cyclic esters like lactide, glycolactide, caprolactone and the like or other esters and mixtures thereof. The reaction of an end-capped PEG polymer with lactide generates a diblock cPEG-PLA copolymer.

20

As used herein polyethylene glycol, as abbreviated PEG throughout the application, is sometimes referred to as poly(ethylene oxide) or poly(oxyethylene) and the terms are used interchangeably in the present invention.

The abbreviation of "PLA" refers to poly(lactic acid).

25

The abbreviation of "PLGA" refers to poly(lactic-co-glycolic acid).

The abbreviation "T" or "TB" refers to a triblock copolymer(s), while the abbreviation "D" or "DB" refers to a diblock copolymer(s).

30

The term "diblock" as used herein refers, for example, to an end-capped PEGpolyester coplymer. "mPEG" refers to methoxy polyethylene glycol.

The term "triblock" refers, for example, to a polyester-PEG-polyester copolymer.

As used herein the term "partial suspension" means that the pharmaceutically active principle is in a partly soluble and partly solid form.

As used herein "hydrophobic" when referring to the pharmaceutically active principles means drugs that have poor solubility in aqueous solutions. The International Union of Pure and Applied Chemistry (IUPAC) defines solubility as "the analytical composition of a saturated solution expressed as a proportion of a designated solute in a designated solvent." A substance is said to be soluble if more than 0.1 g of that substance dissolves in 100 ml of distilled water at 250°C. If less than 0.1 g dissolves in 100 ml of distilled water at 250°C the substance is sparingly soluble or insoluble at a particular temperature.

15

20

25

30

10

5

The LA/EO ratio refers to the molar ratio of lactic acid units to ethylene oxide units that is present in the biodegradable drug delivery composition. It is determined experimentally by NMR. The LA/EO molar ratio of the combined triblock copolymer can range from 0.5 to 3.5. In another aspect the LA/EO molar ratio in the triblock can range from 0.5 to 2.5 in the biodegradable drug delivery composition described herein. In yet another aspect the LA/EO ratio in the triblock can range from 0.5 to 22.3.

The LA/EO ratio in the diblock can range from 2 to 6. In another aspect the LA/EO ratio in the diblock can range from 3 to 5 in the biodegradable drug delivery composition. In another aspect the LA/EO ratio in the diblock can range from 0.8 to 13.

The degree of polymerization or DP is the number of repeat units in an average polymer chain at time *t* in a polymerization reaction. For example, the degree of polymerization for PEG is about 45 to 170 or it can be 4 to 273 or 3 to 45 or 0.55 to 68, while for PLA it can range from about 84 to 327 or it can be 24 to 682 or 7 to 327 or 39.9 to 170.

The present invention thus relates to a biodegradable drug composition comprising a triblock copolymer and a diblock copolymer. The biodegradable triblock copolymer has the formula: A_v - B_w - A_x , wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging, for example, from 4 to 1090 or from 6 to 1090 and v=x or v \neq x. w is the degree of polymerization (number of repeat units) for PEG. The degree of polymerization for DP-PEG is calculated by dividing the PEG molecular weight by the EO unit molecular weight (44 Da). v + x equals the degree of polymerization (number of repeat units) for PLA. DP-PLA is calculated by multiplying DP-PEG by the LA/EO ratio.

10

15

5

However the number of repeat units of v, w and x in the triblock composition may vary due to the targeted time of release of the active principle and the type of active principle itself. Therefore the number of repeat units in the triblock of v, w and x can range from 4 to 1090 or from 6 to 1090 or from 8 to 1090, from 10 to 850, from 20 to 700, from 30 to 650 and v=x or v \neq x. For instance, w can be 273, while x + y can be 682 and v=x or v \neq x or w can be 136 and x + y can be 273 and v=x or v \neq x or w can be 45.5 and x + y can be 546 or w can be 273 and x + y can be 136.

The size of the PEG in the triblock can range from 194 Da to 12,000 Da.

20

The polyester in the triblock can be polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA) or polyhydroxyalkanoate (PHA). In one embodiment the polyester that is used is polylactic acid.

25

The triblock copolymer is then combined with a biodegradable diblock copolymer having the formula: C_y - A_z , wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or from 3 to 327 or 3 to 237. This combination has a ratio of triblock copolymer to diblock copolymer ranging from 1:3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1.

30

Examples of end-capped polyethylene glycols include alkoxy capped PEG's such as methoxyPEG or ethoxyPEG, urethane-capped PEG's, ester-capped PEG's, amine-capped PEG's and amide-capped PEG's. This list of end-capped PEG's is

not exhaustive and a person skilled in the art would recognize additional end-capped PEG's, which are not listed.

However the number of repeat units (degree of polymerization (DP)) of y and z in the diblock composition may also vary. Thus, y can, for example, range from 7 to 43 or 3 to 45 or 0.55 to 68 and z can range from 32 to 123 or 7 to 327 or 39.9 to 170. For example, y can be 25 and z can be 123, y can be 34.5 and z can be 123 or y can be 45 and z can be 32. The degree of polymerization for DP-PEG is calculated by dividing the PEG molecular weight of the capped PEG by the EO unit molecular weight (44 Da). The DP-PLA is calculated by multiplying DP-PEG by the LA/EO ratio.

5

10

15

20

25

30

The polyester in the diblock can be polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA), poly(lactic-co-glycolic acid) (PLGA) or polyhydroxyalkanoate (PHA). In one embodiment the polyester that is used is polylactic acid. In another embodiment the polyester is poly(lactic-co-glycolic acid).

In another aspect the present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x the number of are repeat units ranging from 4 to 1090 or from 6 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units and v=x or $v\neq x$; (b) a biodegradable diblock copolymer having the formula:

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1: 3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 in said biodegradable drug composition; and (c) at least one pharmaceutically active principle.

In another aspect the present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x the number of are repeat units ranging from 4 to 1090 or from 6 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1: 3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle.

In another aspect the present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

20

25

30

$A_v - B_w - A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x the number of are repeat units ranging from 4 to 1090 or from 6 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1: 3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.

In another aspect the present invention provides a biodegradable drug delivery composition comprising a biodegradable triblock copolymer having the formula: PLA_v-PEG_w-PLA_x, wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; a biodegradable diblock copolymer having the formula: mPEG_y-PLA_z, wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 327, wherein the ratio of the biodegradable triblock copolymer and the biodegradable diblock copolymer is 1: 6 in said biodegradable drug composition; and at least one pharmaceutically active principle.

10

15

5

In another aspect the present invention provides a biodegradable drug delivery composition comprising a biodegradable triblock copolymer having the formula: PLA_v-PEG_w-PLA_x, wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; a biodegradable diblock copolymer having the formula: mPEG_y-PLA_z, wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 327, wherein the ratio of the biodegradable triblock copolymer and the biodegradable diblock copolymer is 1: 6 in said biodegradable drug composition; and at least one pharmaceutically hydrophobic active principle.

20

25

In another aspect the present invention provides a biodegradable drug delivery composition comprising a biodegradable triblock copolymer having the formula: PLA_v-PEG_w-PLA_x, wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; a biodegradable diblock copolymer having the formula: mPEG_y-PLA_z, wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 327, wherein the ratio of the biodegradable triblock copolymer and the biodegradable diblock copolymer is 1: 6 or 2:3 or 3:2 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate levonorgestrel, cyclosporine, progesterone or bupivacaine.

30

In another aspect a biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

PLA_v-PEG_w-PLA_x

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

mPEG_v-PLA_z

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1: 4 in said biodegradable drug composition; and (c) at least one pharmaceutically active principle.

In another aspect a biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or $v\neq x$; (b) a biodegradable diblock copolymer having the formula:

mPEG_v-PLA_z

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1: 4 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle.

In another aspect a biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or $v\neq x$; (b) a biodegradable diblock copolymer having the formula:

 $\mathsf{mPEG_{v}} ext{-}\mathsf{PLA_{z}}$

5

10

15

20

25

30

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1: 4 or 2:3 or 3:2 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.

The ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1: 3 to 1: 8 or 1:1 to 1:19 or 3:2 to 1:19 in said biodegradable drug composition. In one embodiment the ratio of the biodegradable triblock copolymer of and the biodegradable CA diblock copolymer is selected from the group of 1:3, 1:4, 1:5, 1:6, 1:7 and 1:8 or 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17, 1:18 and 1:19. It can also be 3:2 or 2:3 or 4:1. In another aspect the ratio of the triblock to the diblock is 1:6.

5

10

15

20

25

30

The length of the polyester chain is defined by its polyester to ethylene oxide molar ratio, which is between 0.5 to 3.5 or 0.5 to 2.5 or 0.5 to 22.3 for the triblock copolymer and 3 to 5 or 2 to 6 or 0.8 to 13 for the diblock copolymer. Thus, for example, if polylactic acid is used the chain length is defined by the lactic acid/ethylene oxide molar ratio. Similarly if polyglycolic acid is used, the chain length is defined by the polyglycolic acid/ethylene oxide molar ratio or the polycaprolactone/ ethylene oxide molar ratio or the polyhydroxyalkanoate/ethylene oxide molar ratio. If poly(lactic-co-glycolic) acid is used the chain length is defined by the ratio of LA + G/EO.

The mass of the end-capped polyethylene glycol can range from 164 Da to 2,000 Da or from 100 Da to 2 kDa. It can range in the lower 100 to 300 Da range or in the 1 kDa to 2 kDa range.

The size of the polyethylene glycol chain ranges from 200 Da to 12 kDa in the biodegradable drug delivery composition or it can range from 400 Da to 12 kDa or 194 Da to 12 kDA.

The polymers are present in an amount of 20% to 50% (w%/w%) of the total weight of the composition. In another aspect the total weight of the polymers present in the biodegradable drug composition is 30% to 50% (w%/w%) of the total weight of the composition. In yet another aspect the polymers are present in the biodegradable drug composition at 40% to 50% (w%/w%) of the total weight of the composition. In another aspect the polymers are present in an amount of 5% to 40% (w%/w%) of the total composition or 5% to 50% (w%/w%) of the total composition. In yet another aspect the polymers are present in the biodegradable drug composition

at 2.5% to 40% (w%/w%) or 2.5% to 50% (w%/w%) of the total weight of the composition.

Thus, the triblock copolymer is present in an amount of 3.0% to 45% (w%/w%) of the total weight of the composition. In another aspect the triblock copolymer is present in an amount of 6% to 10% (w%/w%) of the total weight of the composition. In yet another aspect the triblock copolymer is present in an amount of 20% to 40% (w%/w%) of the total weight of the composition. In yet another aspect the triblock copolymer is present in an amount of 1.2 % to 30% (w%/w%) of the total weight of the composition or 1.2% to 45% (w%/w%) of the total weight of the composition.

In another embodiment the triblock copolymer is present in 3.3% to 4.0% (w%/w%) or 3.5% (w%) or 4.0% (w%) or 1.9% to 4.0%(w%/w%) of the total weight of the composition.

15

20

5

10

Likewise the diblock copolymer can be present in the biodegradable drug composition in an amount of 8% to 50% (w%/w%) of the total weight of the composition. In another aspect the diblock copolymer is present in an amount of 10% to 20% (w%/w%) of the total weight of the composition. In yet another aspect the diblock copolymer is present in an amount of 20% to 40% (w%/w%) of the total weight of the composition. In yet another aspect the diblock copolymer is present in an amount of 1% to 28% (w%/w%) of the total weight of the composition or 1% to 50% (w%/w%) of the total weight of composition.

25

In yet another embodiment the diblock is present in an amount of 2.48% to 5.02% (w%/w%) or 2.3% to 5.4% (w%/w%) or 2.5% to 5.1% (w%/w%) or 2.3% (w%) or 2.3% to 5.8% (w%/w%) of the total weight of the composition.

The at least one pharmaceutically active principle is entrapped in the
triblock:diblock biodegradable drug delivery composition. Representative drugs and
biologically active agents to be used in the invention include, without limitation,
peptide drugs, protein drugs, desensitizing agents, antigens, vaccines, vaccine
antigens, anti-infectives, antibiotics, antimicrobials, antiallergenics, anti-diabetics,

steroidal anti-inflammatory agents, decongestants, miotics, anticholinergics, sympathomimetics, sedatives, hypnotics, psychic energizers, tranquilizers, androgenic steroids, estrogens, progestational agents, medroxyprogesterone acetate, humoral agents, prostaglandins, analgesics, corticosteroids, antispasmodics, antimalarials, antihistamines, cardioactive agents, non-steroidal anti-inflammatory agents, antiparkinsonian agents, antihypertensive agents, beta-adrenergic blocking agents, nutritional agents, gonadotrophin releasing hormone agonists, insecticides, anti-helminthic agents and the benzophenanthridine alkaloids.

5

10

15

20

25

30

Thus combinations of drugs can also be used in the biodegradable drug delivery composition of this invention. For instance, if one needs to treat Lupus erythematosis, non-steroidal anti-inflammatory agents and corticosteroids can be administered together in the present invention.

In an embodiment the pharmaceutically active principle is a hydrophobic drug having a low solubility or is insoluble in aqueous solutions. Hydrophobic drugs are described herein and include, for example, amphotericin, anthralin, beclomethasone, betamethasone, camptothecin, curcumin, dexamethasone, genistein, indomethacin, lidocaine, taxol, tetracycline, tretinoin, therapeutic proteins that are insoluble in water and the like. In one embodiment the pharmaceutically active principle is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.

Veterinary medicaments such as medicines for the treatment of worms or vaccines for animals are also part of the present invention. Hydrophobic veterinary drugs can also be formulated in the biodegradable drug compositions as described herein.

Viral medicaments for plants such as those viruses from *Potyviridae*, *Geminiviridae*, the *Tospovirus* genus of *Bunyaviridiae* and *Banana streak* virus are also encompassed by the present invention. Also medicaments for tobacco mosaic virus, turnip crinkle, barley yellow dwarf, ring spot watermelon and cucumber mosaic virus can be used in the biodegradable drug delivery composition of the invention.

Hydrophobic viral medicaments for plants can also be formulated in the biodegradable drug compositions as described herein.

To those skilled in the art, other drugs or biologically active agents that can be released in an aqueous environment can be utilized in the described delivery system. Also, various forms of the drugs or biologically active agents may be used. These include without limitation forms such as uncharged molecules, molecular complexes, salts, ethers, esters, amides, etc., which are biologically activated when injected into the animal or plant or used as a spatial formulation such that it can be applied on or inside the body of an animal or plant or as a rod implant.

The pharmaceutically effective amount of an active principle or hydrophobic active principle may vary depending on the active principle, the extent of the animal's or plants medical condition and the time required to deliver the active principle or hydrophobic active principle. There is no critical upper limit on the amount of active principle or hydrophobic active principle incorporated into the polymer solution except for that of an acceptable solution or dispersion viscosity for injection through a syringe needle and that it can effectively treat the medical condition without subjecting the animal or plant to an overdose. The lower limit of the active principle or hydrophobic active principle incorporated into the delivery system is dependent simply upon the activity of the active principle or hydrophobic active principle and the length of time needed for treatment.

For instance some active principles or hydrophobic active principles may be present in the biodegradable drug delivery composition from 10 to 200 mg/ml. In another aspect the drugs should be present in the amount of 10 to 40 µg/ml. In another aspect the drugs should be present in the amount of 10 to 500 mg/ml. For a small molecule, for instance, the active principle can be loaded as high as 100 to 200 mg per ml.

30

5

10

15

20

25

Generally the pharmaceutically active principle is present in an amount of 1 % to 20% (w%/w%) of the total weight of the composition. In another aspect the active principle is present in 1% to 4% (w%/w%) of the total weight of the composition. In another aspect the active principle is present in 2% to 4% (w%/w%) of the total

weight of the composition. In yet another aspect the active principle, which is a small molecule, is present in an amount of 10% to 20% (w%/w%) of the total weight of the composition. In another aspect the active principle is present in an amount of 10% to 40% (w%/w%) of the total composition. In another embodiment the pharmaceutically active hydrophobic active principle is present in the amounts of 1% to 40% (w%/w%).

As examples, the medroxyprogesterone acetate can be present in an amount of 10% to 40% (w%/w%) of the total weight of the biodegradable drug delivery compositions; the progesterone can be present in an amount of 20% to 40% (w%/w%) of the total weight of the biodegradable drug delivery compositions; the cyclosporine can be present in an amount of 5% to 21.1% (w%/w%) of the total weight of the biodegradable drug delivery compositions; levonorgestrel can be present in an amount of 10% to 20% (w%/w%) of the total weight of the biodegradable drug delivery compositions; and the bupivacaine can be present in an amount of 1% to 15% (w%/w%) of the total weight of the biodegradable drug delivery compositions.

In the biodegradable drug delivery composition of the present invention, the pharmaceutically effective amount can be released gradually over an extended period of time. This slow release can be continuous or discontinuous, linear or non-linear and can vary due to the composition of the triblock copolymer and diblock copolymer. Thus, the higher the lactic acid content of the triblock and diblock copolymers in comparison with the polyethylene glycol content, as well as the amount of triblock and diblock copolymers present in the biodegradable drug composition the longer the release of the active principle or hydrophobic active principle or drug. In other words, the higher the LA/EO molar ratio and the greater weight percentage of the triblock and diblock copolymers, the longer it will take for the active principle or hydrophobic active principle to be released from the drug composition.

30

5

10

15

20

25

The active principle or hydrophobic active principle can be released for a duration of between 7 days to 1 year or longer depending upon the type of treatment needed and the biodegradable drug delivery composition used. In one aspect the biodegradable drug delivery composition can deliver the active principle or

hydrophobic active principle for at least 7 days. In another aspect the biodegradable drug delivery composition can deliver the active principle or hydrophobic active principle for at least 30 days. In one aspect the biodegradable drug delivery composition can deliver the active principle or hydrophobic active principle for at least 90 days. In yet another aspect the biodegradable drug delivery composition can deliver an active principle or hydrophobic active principle for 1 year or longer.

5

10

15

20

25

30

The biodegradable drug delivery composition can be an injectable liquid or a partial suspension at room temperature and be injected through a syringe without excessive force. But these biodegradable drug delivery compositions are also *in situ* forming and biodegradable and turn into solid implants when injected into the animal or plant. Alternatively the biodegradable drug composition is produced as a solid, prepared as small particles and used as a powder which is sprinkled on the injured site. In another aspect the drug delivery composition is a rod implant, which can be implanted under the skin or in another compartment in the body. In another aspect the drug delivery composition can be prepared and applied as a film. In yet another aspect the biodegradable delivery drug composition can be used as a spatial formulation such that it can be applied onto or inside the body of an animal or plant. It can be applied anywhere on the body, including in the eye. In another aspect the biodegradable drug composition can be produced as a partial suspension, the drug being in between the state of being partly soluble and partly solid.

The biodegradable drug delivery composition can further comprise a pharmaceutically acceptable carrier, adjuvant or vehicle. An acceptable carrier can be saline, buffered saline and the like. It can be added to the biodegradable drug delivery composition after its formulation with the drug and diblock copolymer and triblock copolymer.

The adjuvant can be formulated simultaneously when mixing the drug. In this regard the adjuvants that can be used are alum, aluminum phosphate, calcium phosphate, MPL™, CpG motifs, modified toxins, saponins, endogenous stimulatory adjuvants such as cytokines, Freunds complete and incomplete adjuvants, ISCOM type adjuvants, muramyl peptides and the like.

The vehicle can be any diluent, additional solvent, filler or binder that may alter the delivery of the active principle when needed in the biodegradable drug delivery composition. Examples include small amounts of triglycerides such as triacetin or tripropionin. The amount that can be used in the present biodegradable drug deliver compositions of the present invention can vary from 12% to 20% (w%/w%). In one aspect a triacetin can be added in the formulation at 17.0% (w%/w%). In another aspect tripropionin (abbreviated herein as Tripro) can be added at 16% (w%/w%). In yet another aspect benzyl alcohol can be added at 15% to 35% (w%/w%).

A method for preparing the biodegradable drug delivery composition of the invention is also encompassed by the invention. This method comprises: (i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula: A_v-B_w-A_x, wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090; and (b) a biodegradable diblock copolymer having the formula: C_y-A_z, wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371or 3 to 237 in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or

3:2 to 1:19 triblock to diblock to form a polymer mixture; and adding at least one

pharmaceutically active principle to said polymer mixture.

20

25

30

5

A method for preparing the biodegradable drug delivery composition of the invention is also encompassed by the invention. This method comprises: (i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula: A_v - B_w - A_x , wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090; and (b) a biodegradable diblock copolymer having the formula: C_y - A_z , wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371or 3 to 237 in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 triblock to diblock to form a polymer mixture; and adding at least one pharmaceutically hydrophobic active principle to said polymer mixture.

A method for preparing the biodegradable drug delivery composition of the invention is also encompassed by the invention. This method comprises: (i)

dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

5

10

15

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090; and (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_{z_i}$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237 in a ratio of1: 3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 triblock to diblock to form a polymer mixture; and adding at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture.

A method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v - B_w - A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 (a):(b) to form a polymer mixture; and (ii) adding at least one pharmaceutically active principle to said polymer mixture, is yet another aspect of the invention.

A method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$A_v-B_w-A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1:3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; and

(ii) adding at least one pharmaceutically hydrophobic active principle to said polymer mixture, is yet another aspect of the invention.

15

10

5

A method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

20

25

30

$A_v-B_w-A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units wherein v=x or $v\neq x$; and (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; and

(ii) adding at least one pharmaceutically active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture, is yet another aspect of the invention.

Yet another aspect the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

 C_v - A_z

5

15

20

30

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 137 in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically active principle to said polymer mixture; and (iii) evaporating said solvent.

Yet another aspect the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$A_v-B_w-A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

 C_v-A_z

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 137 in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle to said polymer mixture; and (iii) evaporating said solvent.

Yet another aspect the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method

comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

5

10

15

30

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 137 in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture; and (iii) evaporating said solvent.

Yet another aspect the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v - B_w - A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1:4 (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically active principle to said polymer mixture; and (iii) evaporating said solvent.

Yet another aspect the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$A_v - B_w - A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

5

10

15

20

25

30

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1:4 (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle to said polymer mixture; and (iii) evaporating said solvent.

Yet another aspect the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units wherein v=x or $v\neq x$; and (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1:4 or 2:3 or 3:2 or 4:1 (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture; and (iii) evaporating said solvent.

Another embodiment provides a method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

A_v-B_w-A_x,wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090; and (b) a biodegradable diblock copolymer having the formula: C_y-A_z, wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237 in a ratio of 1:6 triblock to diblock to form a polymer mixture; adding at least one pharmaceutically active principle to said polymer mixture; and evaporating said solvent. In this aspect no solvent is present in the biodegradable drug delivery composition.

Another embodiment provides a method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula: A_v-B_w-A_x, wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090; and (b) a biodegradable diblock copolymer having the formula: C_y-A_z, wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237 in a ratio of 1:6 triblock to diblock to form a polymer mixture; adding at least one pharmaceutically hydrophobic active principle to said polymer mixture; and evaporating said solvent. In this aspect no solvent is present in the biodegradable drug delivery composition.

Another embodiment provides a method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula: A_V-B_W-A_X, wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090; and (b) a biodegradable diblock copolymer having the formula: C_y-A_z, wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237 in a ratio of 1:6 or 2:3 or 3:2 or 4:1 or 2.3 to 4.1 triblock to diblock to form a polymer mixture; adding at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture; and evaporating said solvent. In this aspect no solvent is present in the biodegradable drug delivery composition.

The organic solvent that can be used in the method decribed herein is selected from the group of: benzyl alcohol, benzyl benzoate, diethylene glycol dimethyl ether (Diglyme), diethylene glycol monoethyl ether (DEGMEE), dimethyl isosorbide (DMI), dimethyl sulfoxide (DMSO), ethyl acetate, ethyl benzoate, ethyl lactate, ethylene glycol monoethyl ether acetate, glycerol formal, methyl ethyl ketone, methyl isobutyl ketone, N-ethyl-2-pyrrolidone, N-methyl-2-pyrrolidone(NMP), pyrrolidone-2, tetraglycol, triacetin, tributyrin, tripropionin (tripro), or triethylene glycol dimethyl ether (triglyme) and mixtures thereof.

10

15

20

25

5

The organic solvent is present in an amount of 40% to 74% (w%/w%) of the total composition. In another aspect the organic solvent used in the preparation of the biodegradable drug delivery composition is present in an amount of 50% to 60% (w%/w%) of the total composition. In yet another aspect the solvent used in the preparation of the biodegradable drug delivery composition is present in an amount of 60% to 70% (w%/w%) of the total composition. In yet another aspect, the solvent used in the preparation of the biodegradable drug delivery system is present in the amount of 30%% to 70% (w%/w%) of the total composition. In another embodiment the organic solvent is present in the amount of 30% to 90% (w%/w%) of the total composition.

As examples, when medroxyprogesterone acetate is the active principle 30% to 70% (w%/w%) of the total composition of solvent is used; when progesterone is the active principle 40% to 80% (w%/w%) of the total composition of solvent is used; when cyclosporine is the active principle 55% to 72.9% (w%/w%) of the total composition of solvent is used; when levonorestrel is the active principle 70% to 90% (w%/w%) of the total composition of solvent is used; and when bupivacaine base is the active principle 62.5 % to 80% (w%/w%) of the total composition of solvent is used.

30

Some mPEG-OH are contaminated with a small amount of OH-PEG-OH. By following the methods of the present invention and using the contaminated mPEG-OH the final product would be mPEG-PLA contaminated with a small amount of PLA-

PEG-PLA, which is encompassed by the present invention. This contamination is less than 2%.

Another aspect of the present invention is the use of diblock and triblock copolymers for the manufacture of a biodegradable drug composition. In this respect the biodegradable triblock copolymer has the formula: A_v - B_w - A_x , wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v=x. The polyester can be polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA) or polyhydroxyalkanoate (PHA). In one embodiment the polyester that is used is poly(lactic) acid.

The triblock copolymer is then combined with a biodegradable diblock copolymer having the formula: C_y-A_z, wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237. The polyester can be polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA), poly(lactic-co-glycolic acid (PLGA) or polyhydroxyalkanoate (PHA). In one embodiment the polyester that is used is poly(lactic) acid.

The pharmaceutically active principle is then combined with the triblock and diblock

In yet another aspect of the present invention is the use of diblock and triblock copolymers for the manufacture of a biodegradable drug composition. In this respect the biodegradable triblock copolymer has the formula: A_v - B_w - A_x , wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x. The polyester can be polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA) or polyhydroxyalkanoate (PHA). In one embodiment the polyester that is used is poly(lactic) acid.

30

5

10

15

20

25

The triblock copolymer is then combined with a biodegradable diblock copolymer having the formula: C_y-A_z, wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237. The polyester can be polylactic acid (PLA), polycaprolactone

(PCL), polyglycolic acid (PGA), poly(lactic-co-glycolic acid (PLGA) or polyhydroxyalkanoate (PHA). In one embodiment the polyester that is used is poly(lactic) acid.

5

10

15

20

25

30

. The pharmaceutically hydrophobic active principle is then combined with the triblock and diblock and can be medroxyprogesterone acetate levonorgestrel, cyclosporine, progesterone or bupivacaine base.

The ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1: 3 to 1: 8 in said biodegradable drug composition. In one embodiment the ratio of the biodegradable triblock copolymer of and the biodegradable CA diblock copolymer is selected from the group of 1:3, 1:4, 1:5, 1:6, 1:7 and 1:8. or 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17, 1:18 and 1:19. In another aspect the ratio of the triblock to the diblock is 1:6. It can also be 3:2 or 2:3 or 4:1 or 2.3 to 4.1.

The length of the polyester chain is defined by its polyester to ethylene oxide molar ratio, which is between 0.5 to 3.5 or 0.5 to 2.5 or 0.5 to 22.3 for the triblock and 3 to 5 or 2 to 6 or 0.8 to 13 for the diblock.

The mass of the end-capped polyethylene glycol can range from 100 Da to 2 kDa or 164 Da to 2 kDa. It can range in the 100 to 300 Da range or in the 1 kDa to 2 kDa range.

The size of the polyethylene glycol chain ranges from 200 Da to 12 kDa in the biodegradable drug delivery composition or it can range from 400 Da to 12 kDa or 194 Da to 12 kDa.

A number of embodiments and/or aspects of the invention have been described. Nevertheless it will be understood that various modifications may be made without departing from the spirit and scope of the invention.

EXAMPLES

Example 1- Polymer synthesis

Copolymers were synthesized according to the method described in the U.S. Patent No. 6,350,812, incorporated herein by reference, with minor modifications. Typically, the necessary amount of PEG (gives the triblock coploymer) or methoxy-PEG (gives the diblock copolymer) was heated at 65°C and dried under vacuum for 2 hours in a reactor vessel. DL-lactide (corresponding to the targeted LA/EO molar ratio) and zinc lactate (1/1000 of amount of lactide) were added. The reaction mixture was first dehydrated by three short vaccum/N2 cycles. The reaction mixture was heated at 140°C and rapidly degassed under vacuum. The reaction was conducted for four days at 140°C under constant nitrogen flow (0.2 bar). The reaction was cooled to room temperature and its content was dissolved in acetone and then subjected to precipitation with ethanol. The product obtained was subsequently dried under reduced pressure. The final product was characterized by ¹H NMR for its lactate content. The triblock PLA-PEG-PLA polymers described herein were labeled PxRy where x represent the size of the PEG chain in kDa and y is the LA/EO molar ratio. The diblock mPEG-PLA polymers described herein were labeled dPxRy where x represent the size of the PEG chain in kDa and y is the LA/EO molar ratio.

Example 2-Formulation Preparation Specific for the peptide M53

20

25

30

5

10

15

The formulations described herein were based on organic solution of polymers containing as the drug, the peptide M53, a GLP-1 analogue. Typically, 0.4 grams of polymers, corresponding to a mix of a diblock copolymer and a triblock copolymer in defined mass ratio, were dissolved in 0.57 grams of a biocompatible solvent at room temperature overnight under constant magnetic stirring. The solvent was either a single solvent or a combination of solvents. The next day, 20 mg of drug was added to the polymer solution and stirred until complete dissolution. When the drug was not soluble in the solvent, a suspension of the drug in a polymer solution was obtained. Alternatively, the drug was dissolved or suspended in the biocompatible solvent and the polymer(s) added subsequently. The formulations were loaded in a syringe before use.

Example 3-The Formulations that were prepared

Following Examples 1 and 2 various formulations were prepared, which are set forth in Table 1 for the peptide M53

Table 1

		M5 3	Trib	lock	copo	olyme	er (Ti	3)	Dil	olock	сор	olym	er (D	В)	Sol	/ent		vent
N°	Ratio DB/T B	% (w/w)	% (w/w)	Cod e	PEG size (kDa)	Rati o (LA/ EO)	DP- PEG	DP- PLA	% (w/w)	Cod e	PEG size (kDa)	Rati o (LA/ EO)	DP- PEG	DP- PLA	Nam e	% (w/w)	Nam e	% (w/w)
10	4,0	4,0	10,0%	P12 R0. 5	12	0,5	273	136	40,0 %	dP2 R3	2	3,2	45	143	DE GM EE	46,0 %		
12	4,0	4,0	10,0%	P12 R3	12	2,5	273	682	40,0 %	dP2 R3	2	3,2	45	143	DE GM EE	46,0 %		
21	4,0	4,0	10,0%	P12 R0. 5	12	0,5	273	136	40,0 %	dP2 R3	2	3,2	45	143	Digl yme	46,0 %		
23	4,0	4,0	10,0%	P12 R3	12	2,5	273	682	40,0 %	dP2 R3	2	3,2	45	143	Digl yme	46,0 %		
34	4,0	4,0	10,0%	P12 R0. 5	12	0,5	273	136	40,0 %	dP2 R3	2	3,2	45	143	DMI	46,0 %		
45	4,0	4,0	10,0%	P12 R3	12	2,5	273	682	40,0 %	dP2 R3	2	3,2	45	143	DMI	46,0 %		
66	4,0	4,0	10,0%	P12 R0. 5	12	0,5	273	136	40,0 %	dP2 R3	2	3,2	45	143	Digl yme	46,0 %		
68	4,0	4,0	10,0%	P12 R3	12	2,5	273	682	40,0 %	dP2 R3	2	3,2	45	143	Digl yme	46,0 %		
76	4,0	4,0	10,0%	P12 R0. 5	12	0,5	273	136	40,0 %	dP2 R3	2	3,2	45	143	DM SO	46,0 %		
78	4,0	4,0	10,0%	P12 R3	12	2,5	273	682	40,0 %	dP2 R3	2	3,2	45	143	DM SO	46,0 %		
80	4,0	4,0	10,0%	P12 R0. 5	12	0,5	273	136	40,0 %	dP2 R3	2	3,2	45	143	Et Lact ate	46,0 %		
82	4,0	4,0	10,0%	P12 R3	12	2,5	273	682	40,0 %	dP2 R3	2	3,2	45	143	Et Lact ate	46,0 %		
105	4,0	4,0	8,0%	P6R 0.9	6	0,9	136	123	32,0 %	dP2 R4	2	4,4	45	200	Digl yme	56,0 %		
116	4,0	4,0	8,0%	P6R 0.9	6	0,9	136	123	32,0 %	dP2 R4	2	4,4	45	200	Digl yme	56,0 %		
123	4,0	4,0	8,0%	P3R 1	3	1,0	68	68	32,0 %	dP2 R4	2	4,3	45	195	DM SO	56,0 %		
124	4,0	4,0	8,0%	P6R 0.9	6	0,9	136	123	32,0 %	dP2 R4	2	4,3	45	195	DM SO	56,0 %		
153	4,0	4,0	7,0%	P12 R0.	12	0,5	273	136	28,0 %	dP2 R4	2	4,3	45	195	DM SO	61,0 %		

51

	_															_		$\overline{}$
				5													L	
159	4,0	4,0	7,0%	P12	12	0,5	273	136	28,0	dP2	2	4,3	45	195	DΜ	44,0	Tra	17,0
	` i			R0.					%	R4					SO	%	ceti	%
			_	5_													n_	
169	5,7	2,0	6,0%	P6R	6	0,9	136	123	34,0	dP2	2	4,3	45	195	DM	58,0		
				0.9					%	R4					SO	%		
177	5,7	2,0	7,5%	P6R	6	0,9	136	123	42,5	dP2	2	4,3	45	195	DM	48,0		
				0.9					_ %	R4					so	%		
198	9,0	4,0	4,0%	P6R	6	0,9	136	123	36,0	dP2	2	4,3	45	195	Digl	37,0	Trip	19,0
1 1				0.9					%	R4					yme	%	ro	%_
200	9,0	2,0	5,0%	P6R	6	0,9	136	123	45,0	dP2	2	3	45	136	DM	48,0		
				0.9		_	l		%	R3					so	%		
203	4,0	2,0	10,0%	P6R	6	0,9	136	123	40,0	dP2	2	7,2	45	327	DM	48,0	!	
				0.9		_			%	R7	L				so	%		
207	5,7	4,0	6,0%	P6R	6	0,9	136	123	34,0	dP2	2	4,3	45	195	Digi	40,0	Trip	16,0
		l j		0.9			L		%	R4	_				yme	%	ro	%_
209	4,0	2,0	9,0%	P6R	6	0,9	136	123	36,0	dP2	2	7,2	45	327	DM	53,0		
1 1				0.9					%	R7					SO	%		
210	4,0	2,0	8,0%	P6R	6	0,9	136	123	32,0	dP2	2	7,2	45	327	DM	58,0		
				0.9					_%	R7					so	%		
221	9,0	4,0	5,0%	P6R	6	0,9	136	123	45,0	dP2	2	4,3	45	195	Digl	33,0	Trip	13,0
				0.9					%	R4					yme	%	ro	%_
224	5,7	2,0	6,0%	P6R	6	0,9	136	123	34,0	dP2	2	4,3	45	195	Digl	41,4	Trip	16,6
				0.9		L .			%	R4		<u> </u>			yme	%	ro	%_
225	9,0	2,0	5,0%	P6R	6	0,9	136	123	45,0	dP2	2	4,3	45	195	Digl	34,0	Trip	13,6
				0.9		<u> </u>	ļ	Ì	%	R4					yme	%	ro	%
230	5,7	2,0	7,5%	P6R	6	0,9	136	123	42,5	dP1	1	5,4	23	123	DM	48,0		
				0.9			<u> </u>	<u> </u>	%	R5		<u> </u>			so	%		
234	5,7	2,0	6,0%	P6R	6	0,9	136	123	34,0	dP1	1	5,4	23	123	Digl	41,4	Trip	16,6
				0.9			<u> </u>		%	R5		ļ			yme	%	ro	%_
241	5,9	2,0	6,5%	P6R	6	0,9	136	123	38,5	dP1	1	5,4	23	123	DM	53,0		
				0.9			<u> </u>	L	%	R5		<u> </u>			SO	%		
245	5,9	2,0	6,5%	P2R	2	2	45	91	38,5	dP1	1	5,4	23	123	DM	53	1]]
				2_			<u> </u>		%	R5		ļ		<u> </u>	so	%		
246	5,7	2,0	7,5%	P2R	2	2	45	91	42,5	dP1	1	5,4	23	123	DM	48,0		1 1
				2		ļ	<u> </u>	<u> </u>	%	R5		ļ	<u> </u>	<u> </u>	SO	%		<u> </u>
247	9,0	2,0	5,0%	P2R	2	2	45	91	45,0	dP1	1	5,4	23	123	DM	48,0	•	[]
				2_				<u> </u>	%	R5		ļ		L	so	%	<u> </u>	<u> </u>
250	9,0	4,0	5,0%	P6R	6	0,9	136	123	45,0	dP2	2	4,3	45	195	Digl	33,2	Trip	12,8
		<u>L</u> .		0.9		<u> </u>			%	R4					yme	%	ro	%

Example 4-Acetaminophen's formulations preparation

The formulations described herein were based on organic solution of polymers prepared as in Example 1, containing as the drug, acetaminophen. Typically, 0.4 grams of polymers, corresponding to a mix of a diblock copolymer and a triblock copolymer in defined mass ratio, were dissolved in 0.55 grams of dimethyl sulfoxide at room temperature overnight under constant magnetic stirring. The next day, 50 mg of acetaminophen was added to the polymer solution and stirred until complete dissolution. The formulations were loaded in a syringe before use. The composition

of the various formulations is shown in Table 2 below, where the solvent used is DMSO.

Figures 7 to 26 illustrate the results of these formulations which show all possible combinations of 15 triblock copolymers with 20 diblocks copolymers.

5

Table 2

		Tr	ibloc	k cor	oolym	ner (T	B)		oldio	k co	polyn	ner (E)B)	So	lvent
Exp n°	Ratio DB/T B	% (w/w)	Cod e	PEG (kD a)	Rati o (LA/ EO)	DP- PEG	DP- PLA	% (w/w)	Cod e	PEG (kDa)	Rati o (LA/ EO)	DP- PEG	DP- PLA	Name	% (w/w)
1	4,0	8%	P0.2 R14	0,2	14,5	4	58	32%	dP0. 2R6	0,2	5,8	3	17	DMS O	55%
2	4,0	8%	P0.2 R14	0,2	14,5	4	58	32%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
3	4,0	8%	P0.2 R14	0,2	14,5	4	58	32%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
4	4,0	8%	P0.2 R14	0,2	14,5	4	58	32%	dP1 R4	1,0	4,0	22	89	DMS O	55%
5	4,0	8%	P0.2 R14	0,2	14,5	4	58	32%	dP2 R3	2,0	2,8	45	125	DMS O	55%
6	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP0. 2R6	0,2	5,8	3	17	DMS O	55%
7	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
8	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
9	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP1 R4	1,0	4,0	22	89	DMS O	55%
10	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP2 R3	2,0	2,8	45	125	DMS O	55%
11	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP0. 2R6	0,2	5,8	3	17	DMS O	55%
12	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
13	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
14	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP1 R4	1,0	4,0	22	89	DMS O	55%
15	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP2 R3	2,0	2,8	45	125	DMS O	55%
16	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP0. 2R6	0,2	5,8	3	17	DMS O	55%
17	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
18	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
19	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP1 R4	1,0	4,0	22	89	DMS O	55%
20	4,0	8%	P2R	2,0	3,5	45	157	32%	dP2	2,0	2,8	45	125	DMS	55%

			3						R3					O	
21	4,0	8%	P3R	3,0	2,3	68	154	32%	dP0.	0,2	5,8	3	17	DMS	55%
'	4,0	0 /6		3,0	2,3	00	104	3Z /Q	2R6	0,2	3,6	0	17	O	55%
		00/	2				454	000/			-		- 10		
22	4,0	8%	P3R	3,0	2,3	68	154	32%	dP0.	0,4	5,8	7	42	DMS	55%
			2						4R6		_				
23	4,0	8%	P3R	3,0	2,3	68	154	32%	dP0.	0,6	4,6	12	54	DMS	55%
			2						6 <u>R</u> 5					0	
24	4,0	8%	P3R	3,0	2,3	68	154	32%	dP1	1,0	4,0	22	89	DMS	55%
i l			2						R4		·			0	
25	4,0	8%	P3R	3,0	2,3	68	154	32%	dP2	2,0	2,8	45	125	DMS	55%
	,		2	.,.	- •				R3	_,-	_,-			0	
26	4,0	8%	P6R	6,0	1,6	136	218	32%	dP0.	0,2	5,8	3	17	DMS	55%
	.,0	0,0	2	0,0	.,0	,00		0270	2R6	٠,٠	0,0	Ŭ	''	0	0070
27	4,0	8%	P6R	6,0	1,6	136	218	32%	dP0.	0,4	5,8	7	42	DMS	55%
-	7,0	0 /6	2	0,0	1,0	130	210	JZ /6	4R6	0,4	3,0	, ,	42	O	JJ /6
28	4.0	00/	P6R	- 6 0	1.0	100	010	200/		~	4.0	10	54		
20	4,0	8%		6,0	1,6	136	218	32%	dP0.	0,6	4,6	12	54	DMS	55%
L			2						6R5		<u> </u>			0	
29	4,0	8%	P6R	6,0	1,6	136	218	32%	dP1	1,0	4,0	22	89	DMS	55%
<u> </u>			2				;		R4					0	
30	4,0	8%	P6R	6,0	1,6	136	218	32%	dP2	2,0	2,8	45	125	DMS	55%
			2						R3					0	
31	4,0	8%	P0.2	0,2	5,9	4	24	32%	dP0.	0,2	2,2	3	7	DMS	55%
1 1			R6	'					2R2					0	
32	4,0	8%	P0.2	0,2	5,9	4	24	32%	dP0.	0,2	13,0	3	39	DMS	55%
	'		R6						2R1	-,-	,-	_		0	
		f	```						3						

33	4,0	8%	P0.2	0,2	5,9	4	24	32%	dP0.	0,4	2,0	7	14	DMS	55%
		L	R6			_			4R2			7	61	O DMS	55%
34	4,0	8%	P0.2 R6	0,2	5,9	4	24	32%	dP0. 4R8	0,4	8,4		01	O	55%
35	4,0	8%	P0.2 R6	0,2	5,9	4	24	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
36	4,0	8%	P0.2 R6	0,2	5,9	4	24	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
37	4,0	8%	P0.2	0,2	5,9	4	24	32%	dP1	1,0	3,0	22	66	DMS	55%
38	4,0	8%	R6 P0.2	0,2	5,9	4	24	32%	R3 dP1	1,0	5,4	22	119	O DMS	55%
39	4,0	8%	R6 P0.2	0,2	5,9	4	24	32%	R5 dP2	2,0	1,3	45	58	O DMS	55%
40	4,0	8%	R6 P0.2	0,2	5,9	4	24	32%	R1 dP2	2,0	5,3	45	237	O DMS	55%
			R6						R5				7	0	
41	4,0	8%	P0.2 R22	0,2	22,3	4	89	32%	dP0. 2R2	0,2	2,2	3		DMS O	55%
42	4,0	8%	P0.2 R22	0,2	22,3	4	89	32%	dP0. 2R1	0,2	13,0	3	39	DMS O	55%
43	4,0	8%	P0.2	0,2	22,3	4	89	32%	3 dP0.	0,4	2,0	7	14	DMS	55%
44		8%	R22				89	32%	4R2 dP0.		8,4	7	61	O DMS	55%
	4,0		P0.2 R22	0,2	22,3	4			4R8	0,4	·			0	
45	4,0	8%	P0.2 R22	0,2	22,3	4	89	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
46	4,0	8%	P0.2 R22	0,2	22,3	4	89	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
47	4,0	8%	P0.2 R22	0,2	22,3	4	89	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
48	4,0	8%	P0.2 R22	0,2	22,3	4	89	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
49	4,0	8%	P0.2 R22	0,2	22,3	4	89	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
50	4,0	8%	P0.2 R22	0,2	22,3	4	89	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
51	4,0	8%	P0.4 R5	0,4	4,7	9	41	32%		0,2	2,2	3	7	DMS O	55%
52	4,0	8%	P0.4 R5	0,4	4,7	9	41	32%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
53	4,0	8%	P0.4 R5	0,4	4,7	9	41	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
54	4,0	8%	P0.4 R5	0,4	4,7	9	41	32%	dP0. 4R8	0,4	8,4	7	61	DMS	55%
55	4,0	8%	P0.4 R5	0,4	4,7	9	41	32%		0,6	3,0	12	35	DMS	55%
56	4,0	8%	P0.4 R5	0,4	4,7	9	41	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
57	4,0	8%	P0.4 R5	0,4	4,7	9	41	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
58	4,0	8%	P0.4 R5	0,4	4,7	9	41	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
59	4,0	8%	P0.4 R5	0,4	4,7	9	41	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
60	4,0	8%	P0.4 R5	0,4	4,7	9	41	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%

61	4,0	8%	P0.4	0,4	7,7	9	67	32%	dP0.	0,2	2,2	3	7	DMS	55%
62	4,0	8%	R8 P0.4	0,4	7,7	9	67	32%	2R2 dP0.	0,2	13,0	3	39	O DMS	55%
	.,0		R8	, . 	-,-			0270	2R1 3	0, E	10,0	ļ		0	0070
63	4,0	8%	P0.4 R8	0,4	7,7	9	67	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
64	4,0	8%	P0.4 R8	0,4	7,7	9	67	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
65	4,0	8%	P0.4 R8	0,4	7,7	9	67	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
66	4,0	8%	P0.4 R8	0,4	7,7	9	67	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
67	4,0	8%	P0.4 R8	0,4	7,7	9	67	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
68	4,0	8%	P0.4 R8	0,4	7,7	9	67	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
69	4,0	8%	P0.4 R8	0,4	7,7	9	67	32%	dP2 R1	2,0	1,3	45 	58	DMS O	55%
70	4,0	8%	P0.4 R8	0,4	7,7	9	67	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
71	4,0	8%	P0.6 R2	0,6	1,9	13	26	32%	dP0. 2R2	0,2	2,2	3	7	DMS O	55%
72	4,0	8%	P0.6 R2	0,6	1,9	13	26	32%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
73	4,0	8%	P0.6 R2	0,6	1,9	13	26	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
74	4,0	8%	P0.6 R2	0,6	1,9	13	26	32%	dP0. 4R8	0,4	8,4	7	61	DM\$ O	55%
75	4,0	8%	P0.6 R2	0,6	1,9	13	26	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
76	4,0	8%	P0.6 R2	0,6	1,9	13	26	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
77	4,0	8%	P0.6 R2	0,6	1,9	13	26	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
78	4,0	8%	P0.6 R2	0,6	1,9	13	26	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
79	4,0	8%	P0.6 R2	0,6	1,9	13	26	32%	dP2 R1	2,0	1,3	45 	58	DMS O	55%
80	4,0	8%	P0.6 R2	0,6	1,9	13	26	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
81	4,0	8%	P0.6 R4	0,6	4,2	13	55	32%	dP0. 2R2	0,2	2,2	3	7	DMS O	55%
82	4,0	8%	P0.6 R4	0,6	4,2	13	55	32%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
83	4,0	8%	P0.6 R4	0,6	4,2	13	55	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
84	4,0	8%	P0.6 R4	0,6	4,2	13	55	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
85	4,0	8%	P0.6 R4	0,6	4,2	13	55	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
86	4,0	8%	P0.6 R4	0,6	4,2	13	55	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
87	4,0	8%	P0.6 R4	0,6	4,2	13	55	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%

88	4,0	8%	P0.6	0,6	4,2	13	55	32%	dP1	1,0	5,4	22	119	DMS	55%
			R4	_					R5					0	
89	4,0	8%	P0.6 R4	0,6	4,2	13	55	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
90	4,0	8%	P0.6 R4	0,6	4,2	13	55	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
91	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP0. 2R2	0,2	2,2	3	7	DMS O	55%
92	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
93	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
94	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
95	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
96	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
97	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
98	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
99	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
100	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
101	4,0	8%	P1R 4	1,0	4,0	22	88	32%	dP0. 2R2	0,2	2,2	3	7	DMS O	55%
102	4,0	8%	P1R 4	1,0	4,0	22	88	32%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
103	4,0	8%	P1R 4	1,0	4,0	22	88	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
104	4,0	8%	P1R 4	1,0	4,0	22	88	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
105	4,0	8%	P1R 4	1,0	4,0	22	88	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
106	4,0	8%	P1R 4	1,0	4,0	22	88	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
107	4,0	8%	P1R 4	1,0	4,0	22	88	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
108	4,0	8%	P1R 4	1,0	4,0	22	88	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
109	4,0	8%	P1R 4	1,0	4,0	22	88	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
110	4,0	8%	P1R 4	1,0	4,0	22	88	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
111	4,0	8%	P2R 2	2,0	2,0	45	88	32%	dP0. 2R2	0,2	2,2	3	7	DMS O	55%
112	4,0	8%	P2R 2	2,0	2,0	45	88	32%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
113	4,0	8%	P2R 2	2,0	2,0	45	88	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
114	4,0	8%	P2R 2	2,0	2,0	45	88	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%

115	4,0	8%	P2R	2,0	2,0	45	88	32%	dP0. 6R3	0,6	3,0	12	35	DMS	55%
116	4,0	8%	2 P2R 2	2,0	2,0	45	88	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
117	4,0	8%	P2R 2	2,0	2,0	45	88	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
118	4,0	8%	P2R 2	2,0	2,0	45	88	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
119	4,0	8%	P2R 2	2,0	2,0	45	88	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
120	4,0	8%	P2R 2	2,0	2,0	45	88	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
121	4,0	8%	P2R 5	2,0	4,8	45	216	32%	dP0. 2R2	0,2	2,2	3	7	DMS O	55%
122	4,0	8%	P2R 5	2,0	4,8	45	216	32%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
123	4,0	8%	P2R 5	2,0	4,8	45	216	32%	dP0. 4R2	0,4	2,0	7	14	DMS	55%
124	4,0	8%	P2R 5	2,0	4,8	45	216	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
125	4,0	8%	P2R 5	2,0	4,8	45	216	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
126	4,0	8%	P2R 5	2,0	4,8	45	216	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
127	4,0	8%	P2R 5	2,0	4,8	45	216	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
128	4,0	8%	P2R 5	2,0	4,8	45	216	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
129	4,0	8%	P2R 5	2,0	4,8	45	216	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
130	4,0	8%	P2R 5	2,0	4,8	45	216	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
131	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP0. 2R2	0,2	2,2	თ	7	DMS O	55%
132	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
133	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
134	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
135	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
136	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
137	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
138	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
139	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
140	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
141	4,0	8%	P3R 3	3,0	3,2	68	218	32%	dP0. 2R2	0,2	2,2	3	7	DMS O	55%

142	4,0	8%	P3R	3,0	3,2	68	218	32%	dP0.	0,2	13,0	3	39	DMS	55%
1 1			3		·				2R1	,	·	l		0	i
143	4,0	8%	P3R	3,0	3,2	68	218	32%	3 dP0.	0,4	2,0	7	14	DMS	55%
143	4,0	0 /0	3	3,0	٥,٢	05	210	32.70	4R2	0,4	2,0		14	0	3376
144	4,0	8%	P3R	3,0	3,2	68	218	32%	dP0.	0,4	8,4	7	61	DMS	55%
145	4,0	8%	9 P3R	3,0	3,2	68	218	32%	4R8 dP0.	0,6	3,0	12	35	O DMS	55%
			3_						6R3		,			0	
146	4,0	8%	P3R 3	3,0	3,2	68	218	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
147	4,0	8%	P3R 3	3,0	3,2	68	218	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
148	4,0	8%	P3R 3	3,0	3,2	68	218	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
149	4,0	8%	P3R 3	3,0	3,2	68	218	32%	dP2 R1	2,0	1,3	45	58	DMS	55%
150	4,0	8%	P3R	3,0	3,2	68	218	32%	dP2	2,0	5,3	45	237	O DMS	55%
151	4,0	8%	B P6R	6,0	0,9	136	125	32%	R5 dP0.	0,2	2,2	3	7	O DMS	55%
			0.9						2R2					0	
152	4,0	8%	P6R 0.9	6,0	0,9	136	125	32%	dP0. 2R1	0,2	13,0	3	39	DMS O	55%
			0.9	:					3	l		_		J	
153	4,0	8%	P6R 0.9	6,0	0,9	136	125	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
154	4,0	8%	P6R 0.9	6,0	0,9	136	125	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
155	4,0	8%	P6R	6,0	0,9	136	125	32%	dP0.	0,6	3,0	12	35	DMS	55%
156	4,0	8%	0.9 P6R	6,0	0,9	136	125	32%	6R3 dP0.	0,6	5,1	12	60	O DMS	55%
			0.9						6R5					0	
157	4,0	8%	P6R 0.9	6,0	0,9	136	125	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
158	4,0	8%	P6R 0.9	6,0	0,9	136	125	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
159	4,0	8%	P6R 0.9	6,0	0,9	136	125	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
160	4,0	8%	P6R	6,0	0,9	136	125	32%	dP2	2,0	5,3	45	237	DMS	55%
161	4,0	8%	0.9 P6R	6,0	2,0	136	272	32%	R5 dP0.	0,2	2,2	3	7	O DMS	55%
			2						2 R 2					0	
162	4,0	8%	P6R 2	6,0	2,0	136	272	32%	dP0. 2R1	0,2	13,0	3	39	DMS O	55%
									3						
163	4,0	8%	P6R 2	6,0	2,0	136	272	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
164	4,0	8%	P6R 2	6,0	2,0	136	272	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
165	4,0	8%	P6R 2	6,0	2,0	136	272	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
166	4,0	8%	P6R 2	6,0	2,0	136	272	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
167	4,0	8%	P6R	6,0	2,0	136	272	32%	dP1	1,0	3,0	22	66	DMS	55%
168	4,0	8%	P6R	6,0	2,0	136	272	32%	R3 dP1	1,0	5,4	22	119	O DMS	55%
	.,-		2	,	_,_				R5					0	

171 4,0 8% P0.2 0,2 5,9 4 24 32% dP0. 0,4 5,8 7 42 DMS 5	5%
171 4,0 8% P0.2 0,2 5,9 4 24 32% dP0. 0,2 5,8 3 17 DMS 5	
172	5%
173 4,0 8% P0.2 0,2 5,9 4 24 32% dP0. 0,6 4,6 12 54 DMS 5 0 0 0 0 0 0 0 0 0	5%
173	5%
174	5%
175	5%
176	5%
177	5%
178 4,0 8% P0.2 P0.2 P0.2 P0.2 P0.2 P0.2 P0.2 P0.2	5%
179	5%
180	5%
181 4,0 8% P0.4 R5 4,7 9 41 32% dP0. 2R6 0,2 5,8 3 17 DMS O O O O O O O O O O O O O O O O O O O	5%
182 4,0 8% P0.4 P0.4 P0.4 PS 4,7 PS 9 PMS 41 PMS 32% PMS P0.4 PMS PMS <t< th=""><th>5%</th></t<>	5%
183 4,0 8% P0.4 R5 0,4 4,7 9 41 32% dP0. 6R5 0,6 4,6 12 54 DMS O O 50 184 4,0 8% P0.4 D,4 R5 0,4 4,7 9 41 32% dP1 D,4 1,0 4,0 22 89 DMS D,4 D,5 50 185 4,0 8% P0.4 D,4 4,7 9 41 32% dP2 D,4 2,0 2,8 45 125 DMS D,4 50 186 4,0 8% P0.4 D,4 7,7 9 67 32% dP0. D,2 5,8 3 17 DMS D,5 50 187 4,0 8% P0.4 D,4 7,7 9 67 32% dP0. D,4 D,4 5,8 7 42 DMS D,4 50 188 4,0 8% P0.4 D,4 7,7 9 67 32% dP0. D,6 0,6 4,6 12 54 DMS D,5 54 189 4,0 8% P0.4 D,4 7,7 9	5%
184 4,0 8% P0.4 P0.4 P0.4 PR5 0,4 4,7 9 41 32% P0.4 P0.4 P1 P1.0 P1.0 P1.0 P1.0 P1.0 P1.0 P1.0 P	5%
185 4,0 8% P0.4 R5 0,4 A,7 R5 9 41 S2% R3 32% R3 45 S2% R3 125 DMS O O S2% R3 5 DMS O O C S2% R3 5 DMS O O C S2% R3 67 S2% R8 68 S2% R5 7 S2% R8 68 S2% R5 7 S2% R5 S2% R5	5%
186 4,0 8% P0.4 R8 0,4 7,7 PR 9 PR 67 PR 32% PR P0.4 PR <	5%
187 4,0 8% P0.4 R8 0,4 7,7 9 67 32% dP0. 4R6 0,4 F8 7 42 DMS O DMS	5%
188 4,0 8% P0.4 R8 0,4 7,7 Point Poi	5%
189 4,0 8% P0.4 R8 7,7 9 67 32% dP1 R4 1,0 4,0 22 89 DMS O DMS	5%
190 4,0 8% P0.4 0,4 7,7 9 67 32% dP2 2,0 2,8 45 125 DMS 5 R8 R8 R8 R3 R3 </th <th>5%</th>	5%
191 4,0 8% P0.6 0,6 1,9 13 26 32% dP0. 0,2 5,8 3 17 DMS 5	5%
	5%
┣ ╒╸ ╾┫╶╌╉╾┈┽══╸┼┈╼┼═╴┼┈══┿═┈┨═══┞┈╶═┿══┼┈┈┼╬┈┈┼ ═╒ ══╅╏╌┈═┼┷┈	5%
	5%
▎▔▗▗ ▊▀▀▔▐▗▃▀░▘▔▗▎▀▀▕▗▗▀▄▎▀▗░▄▀▊▘▔▗░▃▀▗▍▗▃▆▍▘▁▗░▃▔░▃▔░▃▀	5%
	5%
┠╸╸┋═╼╸┫╶┈┪╸╶╬═╸ ╎┈╾┿╾╴ ╎╼╍┋╸ ┈┼╾╼┼╶ ╺╡╸ ┼┈╴┪ ╸╸ ┤┈╴	5%
┠ ┍╸┈╏┈┈╸ ╏┈┈┼┈┈┼┈┈┼┈┈┼┈┈┼┈┈┼╴ ┈┈ ┞╸┈┼╶┈┈┼┈┈┼┈┈┼┈┈┼┈┈┼┈┈	5%

198	4,0	8%	P0.6	0,6	4,2	13	55	32%	dP0.	0,6	4,6	12	54	DMS	55%
199	4,0	8%	R4 P0.6	0,6	4,2	13	55	32%	6R5 dP1	1,0	4,0	22	89	O DMS	55%
200	4,0	8%	R4 P0.6	0,6	4,2	13	55	32%	R4 dP2	2,0	2,8	45	125	O DMS	55%
201	4,0	8%	R4 P1R	1,0	2,1	22	47	32%	R3 dP0.	0,2	5,8	3	17	O DMS	55%
202	4,0	8%	2 P1R			22	47	32%	2R6 dP0.	0,4	5,8	7	42	O DMS	55%
			2	1,0	2,1				4R6					0	
203	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
204	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP1 R4	1,0	4,0	22	89	DMS O	55%
205	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP2 R3	2,0	2,8	45	125	DMS O	55%
206	4,0	8%	P1R 4	1,0	4,0	22	88	32%	dP0. 2R6	0,2	5,8	3	17	DMS O	55%
207	4,0	8%	P1R	1,0	4,0	22	88	32%	dP0.	0,4	5,8	7	42	DMS	55%
208	4,0	8%	P1R	1,0	4,0	22	88	32%	4R6 dP0.	0,6	4,6	12	54	O DMS	55%
209	4,0	8%	P1R	1,0	4,0	22	88	32%	6R5 dP1	1,0	4,0	22	89	O DMS	55%
210	4,0	8%	4 P1R	1,0	4,0	22	88	32%	R4 dP2	2,0	2,8	45	125	O DMS	55%
211	4,0	8%	4 P2R	2,0	2,0	45	88	32%	R3 dP0.	0,2	5,8	3	17	O DMS	55%
			2						2R6					0	
212	4,0	8%	P2R 2	2,0	2,0	45	88	32%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
213	4,0	8%	P2R 2	2,0	2,0	45	88	32%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
214	4,0	8%	P2R 2	2,0	2,0	45	88	32%	dP1 R4	1,0	4,0	22	89	DMS O	55%
215	4,0	8%	P2R 2	2,0	2,0	45	88	32%	dP2 R3	2,0	2,8	45	125	DMS O	55%
216	4,0	8%	P2R	2,0	4,8	45	216	32%	dP0.	0,2	5,8	3	17	DMS	55%
217	4,0	8%	P2R	2,0	4,8	45	216	32%	2R6 dP0.	0,4	5,8	7	42	DMS	55%
218	4,0	8%	5 P2R	2,0	4,8	45	216	32%	4R6 dP0.	0,6	4,6	12	54	DMS	55%
219	4,0	8%	5 P2R	2,0	4,8	45	216	32%	6R5 dP1	1,0	4,0	22	89	O DMS	55%
220	4,0	8%	5 P2R	2,0	4,8	45	216	32%	R4 dP2	2,0	2,8	45	125	O DMS	55%
		8%	5						R3			3	17	0	
221	4,0		P3R 1	3,0	1,0	68	66	32%	dP0. 2R6	0,2	5,8			DMS O	55%
222	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
223	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
224	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP1 R4	1,0	4,0	22	89	DMS O	55%
225	4,0	8%	P3R 1	3,0	1,0	68	66	32%	dP2 R3	2,0	2,8	45	125	DMS	55%
226	4,0	8%	P3R	3,0	3,2	68	218	32%	dP0.	0,2	5,8	3	17	DMS	55%
		L	3		<u> </u>		<u> </u>	<u> </u>	2R6			<u> </u>	<u> </u>	0	

227	4,0	8%	P3R	3,0	3,2	68	218	32%	dP0.	0,4	5,8	7	42	DMS	55%
			3		<u>.</u>				4R6					0	
228	4,0	8%	P3R 3	3,0	3,2	68	218	32%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
229	4,0	8%	P3R 3	3,0	3,2	68	218	32%	dP1 R4	1,0	4,0	22	89	DMS O	55%
230	4,0	8%	P3R 3	3,0	3,2	68	218	32%	dP2 R3	2,0	2,8	45	125	DMS O	55%
231	4,0	8%	P6R 0.9	6,0	0,9	136	125	32%	dP0. 2R6	0,2	5,8	3	17	DMS O	55%
232	4,0	8%	P6R 0.9	6,0	0,9	136	125	32%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
233	4,0	8%	P6R	6,0	0,9	136	125	32%	dP0. 6R5	0,6	4,6	12	54	DMS	55%
234	4,0	8%	0.9 P6R	6,0	0,9	136	125	32%	dP1	1,0	4,0	22	89	DMS	55%
235	4,0	8%	0.9 P6R	6,0	0,9	136	125	32%	R4 dP2	2,0	2,8	45	125	DMS	55%
236	4,0	8%	0.9 P6R	6,0	2,0	136	272	32%	dP0.	0,2	5,8	3	17	DMS	55%
237	4,0	8%	P6R	6,0	2,0	136	272	32%	2R6 dP0.	0,4	5,8	7	42	O DMS	55%
238	4,0	8%	P6R	6,0	2,0	136	272	32%	4R6 dP0.	0,6	4,6	12	54	O DMS	55%
239	4,0	8%	P6R	6,0	2,0	136	272	32%	6R5 dP1	1,0	4,0	22	89	O DMS	55%
240	4,0	8%	P6R	6,0	2,0	136	272	32%	R4 dP2	2,0	2,8	45	125	O DMS	55%
241	4,0	8%	2 P0.2	0,2	14,5	4	58	32%	R3 dP0.	0,2	2,2	3	7	O DMS	55%
242	4,0	8%	R14 P0.2	0,2	14,5	4	58	32%	2R2 dP0.	0,2	13,0	3	39	O DMS	55%
			R14						2R1 3					0	
243	4,0	8%	P0.2 R14	0,2	14,5	4	58	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
244	4,0	8%	P0.2 R14	0,2	14,5	4	58	32%	dP0. 4R8	0,4	8,4	7	61	DMS :	55%
245	4,0	8%	P0.2 R14	0,2	14,5	4	58	32%		0,6	3,0	12	35	DMS O	55%
246	4,0	8%	P0.2 R14	0,2	14,5	4	58	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
247	4,0	8%	P0.2 R14	0,2	14,5	4	58	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
248	4,0	8%	P0.2 R14	0,2	14,5	4	58	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
249	4,0	8%	P0.2 R14	0,2	14,5	4	58	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
250	4,0	8%	P0.2	0,2	14,5	4	58	32%	dP2	2,0	5,3	45	237	DMS	55%
251	4,0	8%	R14 P0.6	0,6	3,0	13	40	32%	dP0.	0,2	2,2	3	7	DMS	55%
252	4,0	8%	P0.6	0,6	3,0	13	40	32%	2R2 dP0.	0,2	13,0	3	39	DMS	55%
			R3						2R1 3					0	
253	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
254	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
	_		110		<u> </u>	L	<u> </u>		7110	<u> </u>			l		LJ

255	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
256	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
257	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
258	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
259	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
260	4,0	8%	P0.6 R3	0,6	3,0	13	40	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
261	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP0. 2R2	0,2	2,2	3	7	DMS O	55%
262	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
263	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
264	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
265	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
266	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
267	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
268	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
269	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
270	4,0	8%	P1R 3	1,0	3,1	22	68	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
271	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP0. 2R2	0,2	2,2	3	7	DMS O	55%
272	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
273	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
274	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
275	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
276	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
277	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
278	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
279	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
280	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
281	4,0	8%	P3R 2	3,0	2,3	68	154	32%	dP0. 2R2	0,2	2,2	3	7	DMS O	55%

282	4,0	8%	P3R	3,0	2,3	68	154	32%	dP0.	0,2	13,0	3	39	DMS	55%
		•	2						2R1 3					0	
283	4,0	8%	P3R 2	3,0	2,3	68	154	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
284	4,0	8%	P3R 2	3,0	2,3	68	154	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
285	4,0	8%	P3R 2	3,0	2,3	68	154	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
286	4,0	8%	P3R 2	3,0	2,3	68	154	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
287	4,0	8%	P3R 2	3,0	2,3	68	154	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
288	4,0	8%	P3R 2	3,0	2,3	68	154	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
289	4,0	8%	P3R 2	3,0	2,3	68	154	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
290	4,0	8%	P3R 2	3,0	2,3	68	154	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
291	4,0	8%	P6R 2	6,0	1,6	136	218	32%	dP0. 2R2	0,2	2,2	3	7	DMS O	55%
292	4,0	8%	P6R 2	6,0	1,6	136	218	32%	dP0. 2R1	0,2	13,0	3	39	DMS O	55%
222				-					3						
293	4,0	8%	P6R 2	6,0	1,6	136	218	32%	dP0. 4R2	0,4	2,0	7	14	DMS O	55%
294	4,0	8%	P6R 2	6,0	1,6	136	218	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
295	4,0	8%	P6R 2	6,0	1,6	136	218	32%	dP0. 6R3	0,6	3,0	12	35	DMS O	55%
296	4,0	8%	P6R 2	6,0	1,6	136	218	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
297	4,0	8%	P6R 2	6,0	1,6	136	218	32%	dP1 R3	1,0	3,0	22	66	DMS O	55%
298	4,0	8%	P6R 2	6,0	1,6	136	218	32%	dP1 R5	1,0	5,4	22	119	DMS O	55%
299	4,0	8%	P6R 2	6,0	1,6	136	218	32%	dP2 R1	2,0	1,3	45	58	DMS O	55%
300	4,0	8%	P6R 2	6,0	1,6	136	218	32%	dP2 R5	2,0	5,3	45	237	DMS O	55%
301	0,0	40%	P2R 3	2,0	3,5	45	157	0%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
302	0,05	38%	P2R 3	2,0	3,5	45	157	2%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
303	0,11	36%	P2R 3	2,0	3,5	45	157	4%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
304	0,25	32%	P2R 3	2,0	3,5	45	157	8%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
305	1,00	20%	P2R 3	2,0	3,5	45	157	20%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
306	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
307	9,0	4%	P2R 3	2,0	3,5	45	157	36%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
308	19,0	2%	P2R 3	2,0	3,5	45	157	38%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
309	80	0%	P2R 3	2,0	3,5	45	157	40%	dP0. 4R6	0,4	5,8	7	42	DMS O	55%
							_		· -						

310	0,0	40%	P2R	2,0	3,5	45	157	0%	dP0.	0,6	4,6	12	54	DMS	55%
311	0,05	38%	3 P2R	2,0	3,5	45	157	2%	6R5 dP0.	0,6	4,6	12	54	O DMS	55%
	<u> </u>		3	_	,				6R5					0	
312	0,11	36%	P2R 3	2,0	3,5	45	157	4%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
313	0,25	32%	P2R 3	2,0	3,5	45	157	8%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
314	1,00	20%	P2R 3	2,0	3,5	45	157	20%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
315	4,0	8%	P2R 3	2,0	3,5	45	157	32%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
316	9,0	4%	P2R 3	2,0	3,5	45	157	36%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
317	19,0	2%	P2R 3	2,0	3,5	45	157	38%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
318	×o	0%	P2R 3	2,0	3,5	45	157	40%	dP0. 6R5	0,6	4,6	12	54	DMS O	55%
319	0,0	40%	P0.4 R8	0,4	7,7	9	67	0%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
320	0,05	38%	P0.4 R8	0,4	7,7	9	67	2%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
321	0,11	36%	P0.4 R8	0,4	7,7	9	67	4%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
322	0,25	32%	P0.4 R8	0,4	7,7	9	67	8%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
323	1,00	20%	P0.4 R8	0,4	7,7	9	67	20%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
324	4,0	8%	P0.4 R8	0,4	7,7	9	67	32%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
325	9,0	4%	P0.4 R8	0,4	7,7	9	67	36%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
326	19,0	2%	P0.4 R8	0,4	7,7	9	67	38%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
327	8	0%	P0.4 R8	0,4	7,7	9	67	40%	dP0. 4R8	0,4	8,4	7	61	DMS O	55%
328	0,0	40%	P1R 2	1,0	2,1	22	47	0%	dP0. 6R5	0,6	5,1	12	60	DM\$ O	55%
329	0,05	38%	P1R 2	1,0	2,1	22	47	2%	dP0. 6R5	0,6	5,1	12	60	DM\$ O	55%
330	0,11	36%	P1R 2	1,0	2,1	22	47	4%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
331	0,25	32%	P1R 2	1,0	2,1	22	47	8%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
332	1,00	20%	P1R 2	1,0	2,1	22	47	20%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
333	4,0	8%	P1R 2	1,0	2,1	22	47	32%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
334	9,0	4%	P1R 2	1,0	2,1	22	47	36%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
335	19,0	2%	P1R 2	1,0	2,1	22	47	38%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
336	æ	0%	P1R 2	1,0	2,1	22	47	40%	dP0. 6R5	0,6	5,1	12	60	DMS O	55%
337	0,0	40%	P2R 5	2,0	4,8	45	216	0%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%

338	0,05	38%	P2R 5	2,0	4,8	45	216	2%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
339	0,11	36%	P2R 5	2,0	4,8	45	216	4%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
340	0,25	32%	P2R 5	2,0	4,8	45	216	8%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
341	1,00	20%	P2R 5	2,0	4,8	45	216	20%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
342	4,0	8%	P2R 5	2,0	4,8	45	216	32%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
343	9,0	4%	P2R 5	2,0	4,8	45	216	36%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
344	19,0	2%	P2R 5	2,0	4,8	45	216	38%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%
345	80	0%	P2R 5	2,0	4,8	45	216	40%	dP0. 2R1 3	0,2	13,0	3	39	DMS O	55%

Example 5-Buprenorphine's formulations preparation

The formulations described herein were based on organic solution of polymers prepared as in Example 1, containing as the drug, buprenorphine. Typically, 0.4 grams of polymers, corresponding to a mix of a diblock copolymer and a triblock copolymer in defined mass ratio, were dissolved in 0.5 grams of dimethyl sulfoxide at room temperature overnight under constant magnetic stirring. The next day, 100 mg of buprenorphine was added to the polymer solution and stirred until complete dissolution. The formulations were loaded in a syringe before use.

Three different formulations were selected for *in vivo* experiments. The composition of these formulations is shown in Table 3 below. The formulations were injected subcutaneously in the interscapular space of male rats (200-250 gr) at a final dose of 100 mg/kg of buprenorphine. Blood samples were withdraw periodically and analyzed for buprenorphine concentrations by LC/MS/MS.

The formulations are shown in Table 3 below.

15

Table 3

		Trib	loc	k cop	olym	er (T	В)	Di	blocl	cop	olym	er (D	B)	Solvent		
Exp n°	Rati o DB/ TB	% (w/w)	Co de	PEG (kDa)	Rati o (LA/ EO)	DP- PEG	DP- PLA	% (w/w)	Cod e	PEG (kDa)	Rati o (LA/ EO)	DP- PEG	DP- PLA	Nam e	% (w/w)	
1	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP0. 4R1 0	0,35	9,8	8	78	DM SO	40,0 %	
2	4,0	10,0%	P2 R2	2	2,2	45	101	40,0 %	dP0. 4R1 0	0,35	9,8	8	78	DM SO	40,0 %	
3	4,0	10,0%	P2 R3	2	3,3	45	150	40,0 %	dP0. 4R1 0	0,35	9,8	8	78	DM SO	40,0 %	
4	4,0	10,0%	P2 R4	2	4,3	45	195	40,0 %	dP0. 4R1 0	0,35	9,8	8	78	DM SO	40,0 %	
5	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP1 R4	1	4,2	23	95	DM SO	40,0 %	
6	4,0	10,0%	P2 R2	2	2,2	45	101	40,0 _%	dP1 R4	1	4,2	23	95	DM SO	40,0 %	
7	4,0	10,0%	P2 R3	2	3,3	45	150	40,0 %	dP1 R4	1	4,2	23	95	DM SO	40,0 %	
8	4,0	10,0%	P2 R4	2	4,3	45	195	40,0 %	dP1 R4	1	4,2	23	95	DM SO	40,0 %	
9	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP1 R5	1	5,4	23	123	DM SO	40,0 %	
10	4,0	10,0%	P2 R2	2	2,2	45	101	40,0 %	dP1 R5	1	5,4	23	123	DM SO	40,0 %	
11	4,0	10,0%	P2 R3	2	3,3	45	150	40,0 %	dP1 R5	1	5,4	23	123	DM SO	40,0 %	
12	4,0	10,0%	P2 R4	2	4,3	45	195	40,0 %	dP1 R5	1	5,4	23	123	DM SO	40,0 %	
13	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP2 R3	2	2,7	45	120	DM SO	40,0 %	
14	4,0	10,0%	P2 R2	2	2,2	45	101	40,0 %	dP2 R3	2	2,7	45	120	DM SO	40,0 %	
15	4,0	10,0%	P2 R3	2	3,3	45	150	40,0 %	dP2 R3	2	2,7	45	120	DM SO	40,0 %	
16	4,0	10,0%	P2 R4	2	4,3	45	195	40,0 %	dP2 R3	2	2,7	45	120	DM SO	40,0 %	
17	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP2 R4	2	4,1	45	186	DM SO	40,0 %	
18	4,0	10,0%	P2 R2	2	2,2	45	101	40,0 %	dP2 R4	2	4,1	45	186	DM SO	40,0 %	
19	4,0	10,0%	P2 R3	2	3,3	45	150	40,0 %	dP2 R4	2	4,1	45	186	DM SO	40,0 %	
20	4,0	10,0%	P2 R4	2	4,3	45	195	40,0 %	dP2 R4	2	4,1	45	186	DM SO	40,0 %	

21	4,0	10,0%	P0	0,4	7,7	9	70	40,0	dP2	2	5,3	45	241	DM	40,0
	,,,	10,070	.4	0, .	.,,		'	%	R5	_	0,0			SO	%
			R8 :							اا	_				
22	4,0	10,0%	P2	2	2,2	45	101	40,0 %	dP2	2	5,3	45	241	DM SO	40,0
23	4,0	10,0%	R2 P2	2	3,3	45	150	40,0	R5 dP2	2	5,3	45	241	DM	% 40,0
	-1,0	10,070	R3	~	0,0	70		%	R5		0,0		- ' '	so	%
24	4,0	10,0%	P2 R4	2	4,3	45	195	40,0 %	dP2 R5	2	5,3	45	241	DM SO	40,0 %
26	4,0	9,0%	P0	0,4	7,7	9	70	36,0	dP0.	0,35	9,8	8	78	DM	45,0
	,,-	,,,,,,,	.4		.,.			%	4R1	', '	_,-			SO	%
		0.00/	R8				101		0				<u> </u>	·	15.0
27	4,0	9,0%	P2 R2	2	2,2	45	101	36,0 %	dP0. 4R1	0,35	9,8	8	78	DM SO	45,0 %
			,nz					/6	0					30	/6
28	4,0	9,0%	P2	2	3,3	45	150	36,0	dP0.	0,35	9,8	8	78	DM	45,0
			R3					%	4R1					so	%
29	4,0	9,0%	P0	0,4	7,7	9	70	36,0	0 dP1	1	4,2	23	95	DM	45,0
23	4,∪	3,0 /0	.4	0,4	1,1	3	´゚	36,0 %	R4	'	~+,∠	20	30	SO	45,0 %
			R8						<u> </u>						
30	4,0	9,0%	P2	2	2,2	45	101	36,0	dP1	1	4,2	23	95	DM	45,0
31	4,0	9,0%	R2 P2	2	2,2	45	101	% 36,0	R4 dP2	2	2,7	45	120	SO DM	% 45,0
] "']	4,0	9,0%	R2	_	2,2	45	101	36,0 %	R3	-	2,1	45	120	SO	43,0 %
32	4,0	8,0%	P0	0,4	7,7	9	-70	32,0	dP0.	0,35	9,8	8	78	DM	50,0
			.4					%	4R1					so	%
33	4,0	8,0%	R8 P2	2	2,2	45	101	32,0	0 dP0.	0,35	9,8	8	78	DM	50,0
"	4,0	0,078	R2	2	<u>ک</u> رک	45	'''	%	4R1	0,00	3,0		′°	SO	%
									0		_	<u> </u>			
34	4,0	8,0%	P2	2	3,3	45	.150	32,0	dP0.	0,35	9,8	8	78	DM	50,0
1			R3				1	%	4R1 0			}	1	so	%
35	4,0	8,0%	P0	0,4	7,7	9	70	32,0	dP1	1	4,2	23	95	DM	50,0
			.4					%	R4					so	%
36	4,0	8,0%	R8 P2	2	2 2	45	101	32,0	dP1	1	4.0	23	95	DM	50,0
30	4,0	0,070	R2		2,2	40	101	32,0 %	R4	'	4,2	23	95	SO	% %
37	4,0	8,0%	P2	2	2,2	45	101	32,0	dP2	2	2,7	45	120	DM	50,0
	4.0	10.00/	R2	0.4			70	%	R3					SO	%
38	4,0	10,0%	P0 .4	0,4	7,7	9	70	40,0 %	dP1 R3	1	2,7	23	61	DM SO	40,0 %
			R8					,,	'''			!			~
39	4,0	10,0%	P2	2	2,2	45	101	40,0	dP1	1	2,7	23	61	DM	40,0
40	4.0	10.09/	R2	0	6.0	15	150	<u>%</u>	R3	1	0.7	00	04	SO	% 40.0
40	4,0	10,0%	P2 R3	2	3,3	45	150	40,0 %	dP1 R3	1	2,7	23	61	DM SO	40,0 %
41	4,0	10,0%	P2	2	4,3	45	195	40,0	dP1	1	2,7	23	61	DM	40,0
		0	R4					%	R3	<u> </u>				so	%
42	4,0	9,0%	P0	0,4	7,7	9	70	36,0 %	dP1	1	2,7	23	61	DM SO	45,0 %
			.4 R8					70	R3	1				30	70
43	4,0	9,0%	P2	2	2,2	45	101	36,0	dP1	1	2,7	23	61	DM	45,0
		A 251	R2					%	R3					SO	. %
44	4,0	9,0%	P2 R3	2	3,3	45	150	36,0 %	dP1 R3	1	2,7	23	61	DM SO	45,0 %
45	4,0	9,0%	P2	2	4,3	45	195	36,0	dP1	1	2,7	23	61	DM	45,0
``		5,575	R4	_	٠,٠			%	R3		, <i>,</i>]	so	-5,0 -%
								_							_

46	4,0	8,0%	P0	0,4	7,7	9	70	32,0	dP1	1	2,7	23	61	DM	50,0
	.,•		.4 R8					%	R3	_	,			so	%
47	4,0	8,0%	P2 R2	2	2,2	45	101	32,0 %	dP1 R3	1	2,7	23	61	DM SO	50,0 %
48	4,0	8,0%	P2 R3	2	3,3	45	150	32,0 %	dP1 R3	1	2,7	23	61	DM SO	50,0 %
49	4,0	8,0%	P2 R4	2	4,3	45	195	32,0 %	dP1 R3	1	2,7	23	61	DM SO	50,0 %
51	4,0	10,0%	P2 R2	2	2,2	45	101	40,0 %	dP0. 4R8	0,35	7,9	8	63	DM SO	40,0 %
52	4,0	10,0%	P2 R2	2	2,2	45	101	40,0 %	dP0. 4R5	0,35	4,9	8	39	DM SO	40,0 %
53	4,0	10,0%	P2 R2	2	2,2	45	101	40,0 %	dP1 R2	1	2,1	23	48	DM SO	40,0 %
54	4,0	10,0%	P2 R2	2	2,2	45	101	40,0 %	dP2 R0. 8	2	0,8	45	34	DM SO	40,0 %
55	4,0	10,0%	P2 R2	2	2,2	45	101	40,0 %	dP2 R2	2	1,5	45	68	DM SO	40,0 %
56	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP0. 4R8	0,35	7,9	8	63	DM SO	40,0 %
57	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP0. 4R5	0,35	4,9	8	39	DM SO	40,0 %
58	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP1 R2	1	2,1	23	48	DM SO	40,0 %
59	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP2 R0. 8	2	0,8	45	34	DM SO	40,0 %
60	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP2 R2	2	1,5	45	68	DM SO	40,0 %
61	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP0. 4R1 0	0,35	9,8	8	78	DE GM EE	40,0 %
62	4,0	10,0%	P2 R4	2	4,3	45	195	40,0 %	dP0. 4R1 0	0,35	9,8	8	78	DE GM EE	40,0 %
63	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP1 R3	1	2,7	23	61	DE GM EE	40,0 %
64	4,0	10,0%	P2 R4	2	4,3	45	195	40,0 %	dP1 R3	1	2,7	23	61	DE GM EE	40,0 %
65	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP2 Fl4	2	4,1	45	186	DE GM EE	40,0 %
66	4,0	10,0%	P2 R4	2	4,3	45	195	40,0 %	dP2 R4	2	4,1	45	186	DE GM EE	40,0 %
67	4,0	10,0%	P0 .4 R8	0,4	7,7	9	70	40,0 %	dP0. 4R1 0	0,35	9,8	8	78	Digl yme	40,0 %
68	4,0	10,0%	P2 R4	2	4,3	45	195	40,0 %	dP0. 4R1 0	0,35	9,8	8	78	Digl yme	40,0 %

69	4,0	10,0%	P0	0,4	7,7	9	70	40,0	dP1	1	2,7	23	61	Digl	40,0
	.,-		.4	.,.	.,.	-		%	R3		_,			yme	%
		10.00/	R8		1.0	45		40.0	160.4						10.0
70	4,0	10,0%	P2 R4	2	4,3	45	195	40,0 %	dP1 R3	1	2,7	23	61	Digl yme	40,0 %
71	4,0	10,0%	P0	0,4	7,7	9	70	40,0	dP2	2	4,1	45	186	Digl	40,0
	, ,		.4	_,	. ,-	_		%	R4		- 7 -			yme	%
			R8												
72	4,0	10,0%	P2	2	4,3	45	195	40,0 %	dP2	2	4,1	45	186	Digl	40,0
73	4,0	9,0%	R4 P0	0,4	7,7	9	70	36,0	R4 dP1	1	2,1	23	48	yme DM	% 45,0
'	-1,0	0,070	.4	0,7	,,,		'	%	R2		-, '	2.0		so	%
			R8												
74	4,0	8,0%	P0	0,4	7,7	9	70	32,0	dP1	1	2,1	23	48	DM	50,0
			.4 R8					%	R2					so	%
75	3,0	10,0%	PO	0,4	7,7	9	70	30,0	dP1	1	2,1	23	48	DM	50,0
	, , ,		.4	-,-		_		%	R2		,			SO	%
		E	R8					0.15	Jrn :		A 3			<u> </u>	F0.5
76	6,0	5,7%	P0 .4	0,4	7,7	9	70	34,3 %	dP1 R2	1	2,1	23	48	DM SO	50,0 %
			.4 R8					/0	112						′°
77	4,0	8,0%	P0	0,4	4,7	9	43	32,0	dP1	1	2,1	23	48	DM	50,0
			.4					%	R2					so	%
78	4,0	8,0%	R5 P1	1	2,1	23	48	32,0	dP1	1	2,1	23	48	DM	50,0
′°	4,0	0,0%	R2		۷,۱	23	40	32,0 %	R2	,	۷,۱	23	40	SO	%
79	4,0	8,0%	P1	1	2,8	23	64	32,0	dP1	1	2,1	23	48	DM	50,0
			R3					%	R2					so	%
80	4,0	8,0%	PO	0,4	4,7	9	43	32,0	dP1	1	2,7	23	61	DM	50,0
			.4 R5					%	R3					so	%
81	4,0	8,0%	P1	1	2,1	23	48	32,0	dP1	1	2,7	23	61	DМ	50,0
			R2					%	R3					so	%
82	4,0	8,0%	P1	1	2,8	23	64	32,0	dP1	1	2,7	23	61	DM	50,0
83	4,0	8,0%	R3 P0	0,4	4,7	9	43	% 32,0	R3 dP0.	0,35	4,9	8	39	SO DM	% 50,0
00	4,0	0,076	.4	0,4	7,7		40	%	4R5	0,00	4,0		55	SO	%
			R5							<u> </u>					
84	4,0	8,0%	P1	1	2,1	23	48	32,0	dP0.	0,35	4,9	8	39	DM	50,0
85	4,0	8,0%	R2 P1	ï	2,8	23	64	% 32,0	4R5 dP0.	0,35	4,9	8	39	SO DM	% 50,0
°°	,∪	0,076	R3	'	∠,∪	ر ع	"	%	4R5	0,00	,,,,		09	SO	%
86	4,0	10,0%	P2	2	4,3	45	195	40,0	dP2	2	4,1	45	186	DE	40,0
			R4					%	R4					GM	%
87	4,0	8,0%	P0	0,4	4,7	9	43	32,0	dP1	1	2,1	23	48	EE DE	50,0
°′	4,∪	0,076	.4	0,4	4,7	ש	43	32,0 %	R2	'	۱,۲	23	40	GM	50,0 %
L			R5											EE	ا لِـــــــا
88	4,0	8,0%	P1	1	2,1	23	48	32,0	dP1	1	2,1	23	48	DE	50,0
			R2					%	R2					GM EE	%
89	4,0	8,0%	P1	1	2,8	23	64	32,0	dP1	1	2,1	23	48	DE	50,0
ਁ	',	0,070	R3	•	~,·			%	R2	'			"	GM	%
										ļ				EE	
90	4,0	10,0%	P2	2	4,3	45	195	40,0	dP2	2	4,1	45	186	Digl	40,0
	L		R4			L	<u></u>	%	R4	L		L	L	yme	%

91	4,0	8,0%	P0	0,4	4,7	9	43	32,0	dP1	1	2,1	23	48	Digl	50,0
			.4 R5			'		%	R2					yme	%
92	4,0	8,0%	P1 R2	1	2,1	23	48	32,0 %	dP1 R2	1	2,1	23	48	Digl yme	50,0 %
93	4,0	8,0%	P1 R3	1	2,8	23	64	32,0 %	dP1 R2	1	2,1	23	48	Digl yme	50,0 %
95	4,0	10,0%	P2 R4	2	4,3	45	195	40,0 %	dP2 R4	2	4,1	45	186	DM SO	40,0 %
96	4,0	8,0%	P0 .4 R5	0,4	4,7	9	43	32,0 %	dP1 R2	1	2,1	23	48	DM SO	50,0 %
97	4,0	8,0%	P1 R2	1	2,1	23	48	32,0 %	dP1 R2	1	2,1	23	48	DM SO	50,0 %
98	4,0	8,0%	P1 R3	1	2,8	23	64	32,0 %	dP1 R2	1	2,1	23	48	DM SO	50,0 %

The results of these formulations are illustrated in Figures 30 and 31.

Example 6-Risperidone's formulations preparation

5

10

15

20

The formulations described herein were based on organic solution of polymers prepared as in Example 1, containing as the drug, risperidone. Typically, 0.4 grams of polymers, corresponding to a mix of a diblock copolymer and a triblock copolymer in defined mass ratio, were dissolved in 0.5 grams of dimethyl sulfoxide at room temperature overnight under constant magnetic stirring. The next day, 100 mg of risperidone was added to the polymer solution and stirred. The formulations were loaded in a syringe before use.

Three different formulations were selected for *in vivo* experiments. The composition of these formulations is shown in Table 4 below. The formulations were injected subcutaneously in the interscapular space of male rats (300 gr) at a final dose of 21 mg/kg of risperidone. Blood samples were withdraw periodically and analyzed for risperidone and 9-OH risperidone concentrations by LC/MS/MS.

The formulations are shown in Table 4 below.

Table 4

		Risp	Trib	ock	cop	olyn	ner (1	В)	Dil	olock	cop	olym	er (D	В)	Sol	vent
Exp n°	Rati o DB/T B	(w/w)	% (w/w)	Co de	PE G (kD a)	Rati o (LA/ EO)	DP- PEG	DP- PLA	% (w/w)	Cod e	PEG (kDa)	Rati o (LA/ EO)	DP- PEG	DP- PLA	Name	% (w/w)
5	1,5	2,5%	16,0%	P2 R3	2	3,5	45	158, 6	24,0 %	dP2 R3	2	2,7	45	122, 7	DMS O	57,5%
6	1,5	2,5%	16,0%	P2 R2	2	2,3	45	104, 5	24,0 %	dP1 R3	1	2,7	23	61,4	DMS O	57,5%
10	1,5	5,0%	16,0%	P2 R2	2	2,3	45	104, 5	24,0 %	dP2 R3	2	2,7	45	122, 7	DMS O	55,0%
11	1,5	5,0%	16,0%	P2 R3	2	3,5	45	158, 6	24,0 %	dP2 R3	2	2,7	45	122, 7	DMS O	55,0%
12	1,5	5,0%	16,0%	P2 R2	2	2,3	45	104, 5	2 4, 0 %	dP1 R3	1	2,7	23	61,4	DMS O	55,0%
16	0,7	5,0%	24,0%	P2 R3	2	3,5	45	158, 6	16,0 %	dP0 .4R 5	0,35	4,9	8	39,0	DMS O	55,0%
17	1,5	5,0%	16,0%	P3 R2	თ	2,3	68	156, 8	24,0 %	dP2 R3	2	2,9	45	131, 8	DMS O	55,0%
19	1,5	5,0%	16,0%	P3 R3	3	3,2	68	218, 2	24,0 %	dP2 R3	2	2,7	45	122, 7	DMS O	55,0%
20	1,5	5,0%	16,0%	P1 R4	1	3,8	23	86,4	24,0 %	dP2 R3	2	2,9	45	131, 8	DMS O	55,0%
21	0,7	5,0%	24,0%	P1 R4	1	3,8	23	86,4	16,0 %	dP0 .4R 5	0,35	4,9	8	39,0	DMS O	55,0%
22	1,5	10,0%	16,0%	P2 R2	2	2,3	45	104, 5	24,0 %	dP2 R3	2	2,7	45	122, 7	DMS O	50,0%
23	1,5	10,0%	16,0%	P2 R3	2	3,5	45	158, 6	24,0 %	dP2 R3	2	2,7	45	122, 7	DMS O	50,0%
25	0,7	10,0%	24,0%	P2 R3	2	3,5	45	158, 6	16,0 %	dP0 .4R 5	0,35	4,9	8	39,0	DMS O	50,0%
26	1,5	10,0%	16,0%	P3 R3	з	3,2	68	218, 2	24,0 %	dP2 R3	2	2,7	45	122, 7	DMS O	50,0%
27	1,5	10,0%	16,0%	P1 R4	1	3,8	23	86,4	24,0 %	dP2 R3	2	2,9	45	13 1 ,	DMS O	50,0%
28	0,7	5,0%	18,0%	P1 R4	1	3,8	23	86,4	12,0 %	dP0 .4R 5	0,35	4,9	8	39,0	DMS O	65,0%
29	0,7	10,0%	24,0%	P1 R4	1	3,8	23	86,4	16,0 %	dP0 .4R 5	0,35	4,9	8	39,0	DMS O	60,0%
30	0,7	10,0%	18,0%	P1 R4	1	3,8	23	86,4	12,0 %	dP0 .4R 5	0,35	4,9	8	39,0	DMS O	60,0%
31	0,7	10,0%	18,0%	P2 R3	2	3,5	45	158, 6	12,0 %	dP0 .4R 5	0,35	4,9	8	39,0	DMS O	60,0%
32	1,5	10,0%	12,0%	P1 R4	1	3,8	23	86,4	18,0 %	dP2 R3	2	2,9	45	131, 8	DMS O	60,0%

,5	10,0%	12,0%	P3	3		68	218,	18,0	dP2	2	2,7	45	122,	DMS	60,0%
			R3		3,2		2	%	R3			i	7	0	
),7	15,0%	18,0%	P1	1		23	86,4	12,0	dP0	0,35	4,9	8	39,0	DMS	55,0%
ľ			R4		3,8			%						0	
	15 00/	10.00				45	104	100			0.7		400	5140	EE 00/
,5	15,0%	12,0%		2	20	45				2	2,7	45		_	55,0%
\ 7	1E 09/	10.00/		_	2,3	A.E.				0.05	40	-			55.00/
,, <i>'</i>	15,0%	10,0%		2	2 5	40				0,35	4,9	, 8	39,01	_	55,0%
			no		3,5			70							
),7	10.0%	24.0%	P1	1		23	86.4	16.0		0.35	5.02	8	39.9	DMS	60,0%
"	1 - 7 - 1	,- /-	1	-	3.8					O,OO	0,02		00,0	0	00,070
									5						
),7	10,0%	18,0%	P2	2		45	158,	12,0	dP0	0,35	5,02	8	39,9	DMS	60,0%
1			R3		3,5		6	%	.4R					0	
									5						
),7	10,0%	24,0%		1		23	89,8			0,35	5,02	8	39,9	DMS	60,0%
1			R4		4,0			%						0	
	10.001	94.004					20.4		_						
),/	10,0%	24,0%		7	امما	23	86,4	-		0,35	5,02	8	39,9	_	60,0%
1			H4		3,8			%						0	
, - - [10.0%	24.0%	P1	1		23	80 B	160	_	0.35	5.02		30 0	DMS	60.09/
''' [10,070	24,0/6		'	40	20	08,0			0,33	0,02	O	38,8		60,0%
			[[7,0			/6							
i 0	,5 ,7 ,7	,5 15,0% ,7 15,0% ,7 10,0% ,7 10,0% ,7 10,0%	,5 15,0% 12,0% ,7 15,0% 18,0% ,7 10,0% 24,0% ,7 10,0% 24,0% ,7 10,0% 24,0%	,7 15,0% 18,0% P1 R4 R4 R4 R4 R5 R5 R5 R5	,7 15,0% 18,0% P1 R4 1 ,5 15,0% 12,0% P2 R2 2 ,7 15,0% 18,0% P2 R3 2 ,7 10,0% 24,0% P1 R4 1 ,7 10,0% 24,0% P1 T 1	,7 15,0% 18,0% P1 1 3,8 ,5 15,0% 12,0% P2 2 2,3 ,7 15,0% 18,0% P2 2 3,5 ,7 10,0% 24,0% P1 1 3,8 ,7 10,0% 18,0% P2 2 3,5 ,7 10,0% 24,0% P1 1 4,0 ,7 10,0% 24,0% P1 1 3,8 ,7 10,0% 24,0% P1 1 3,8 ,7 10,0% 24,0% P1 1 3,8	,7 15,0% 18,0% P1 R4 1 3,8 23 ,5 15,0% 12,0% P2 P2 P2 P2 P2 P3 45 ,7 15,0% 18,0% P2 P2 P2 P3 2 3,5 45 ,7 10,0% 24,0% P1 P	15,0% 18,0% P1	,7 15,0% 18,0% P1 R4 1 R4 23 86,4 12,0 % ,5 15,0% 12,0% P2 R2 R2 2,3 45 104, 18,0 % 5 % ,7 15,0% 18,0% P2 R2 R2 2 R3 45 158, 12,0 % ,7 10,0% 24,0% P1 R4 1 R4 3,8 23 86,4 16,0 % ,7 10,0% 18,0% P2 R3 2 R3 45 158, 12,0 % 158, 12,0 % ,7 10,0% 24,0% P1 R4 1 R4 23 89,8 16,0 % ,7 10,0% 24,0% P1 R4 1 R4 3,8 23 86,4 16,0 % ,7 10,0% 24,0% P1 R4 1 R4 3,8 23 86,4 16,0 % ,7 10,0% 24,0% P1 R4 1 R4 3,8 23 86,4 16,0 %	,7 15,0% 18,0% P1 R4 1 R4 23 86,4 12,0 dP0 R4 S6,4 R5 ,5 15,0% 12,0% P2 R2 R2 R2 R3 45 104, 18,0 dP2 S6 R3 R3 ,7 15,0% 18,0% P2 R3 R3 R3 23 86,4 16,0 dP0 S6 R3 ,7 10,0% 24,0% P1 R4 R4 R4 R4 3,8 23 86,4 16,0 dP0 S6 R3 ,7 10,0% 18,0% P2 R3 R3 R4 23 89,8 16,0 dP0 S6 R4 ,7 10,0% 24,0% P1 R4 R4 R4 3,8 23 89,8 16,0 dP0 S6 R4 ,7 10,0% 24,0% P1 R4 R4 R4 3,8 23 89,8 16,0 dP0 S6 R4 ,7 10,0% 24,0% P1 R4 R4 3,8 23 89,8 16,0 dP0 S6 R4 ,7 10,0% 24,0% P1 R4 R4 3,8 23 89,8 16,0 dP0 S6 R4 ,7 10,0% 24,0% P1 R4 R4 3,8 23 89,8 16,0 dP0 R6	7 15,0% 18,0% P1 R4 R4 1 R4 R4 R4 23 R6,4 R3 R6,4 R8 R8 R8 R8 R4 R4 R8	7 15,0% 18,0% P1 R4 R4 3,8 23 86,4 12,0 dP0 (AR) AR S (AR) A	7 15,0% 18,0% P1 R4 R4 1 R4 R4 23 R6,4 R3 R3 R6,4 R8 R3 12,0 R9 R3 R8	Note	R3

The results of these formulations are illustrated in Figures 32 and 33.

Example 7-Ivermectin's formulations preparation

The formulations described herein were based on organic solution of polymers prepared as in Example 1, containing as the drug, ivermectin. Typically, 0.4 grams of polymers, corresponding to a mix of a diblock copolymer and a triblock copolymer in defined mass ratio, were dissolved in 0.55 grams of dimethyl sulfoxide at room temperature overnight under constant magnetic stirring. The next day, 50 mg of ivermectin was added to the polymer solution and stirred until complete dissolution. Three different formulations were selected for in vivo experiments. The composition of these formulations is shown in Table 5 below. The formulations were injected subcutaneously in the interscapular space of male dogs (10 to 17 kg) at a final dose of 0.6 mg/kg of ivermectin. Blood samples were withdraw periodically and analyzed for ivermectin concentrations by LC/MS/MS.

The formulations are shown in Table 5.

5

10

15

Table 5

		iVM	Trib	lock	сор	olym	er (T	В)	Dil	olock	сор	olym	er (C)B)	Solve	nt
Exp n°	Rati o DB/T B	% (w/w)	% (w/w)	Co de	PEG (kD a)	Rati o (LA/ EO)	DP- PEG	DP- PLA	% (w/ w)	Cod e	PEG (kD a)	Rati o (LA/ EO)	DP- PEG	DP- PLA	Name	% (w/w)
9	1,7	5,0%	15,0%	P3 R3	3	3,2	68	218	25, 0%	dP0 .4R 5	0,3 5	4,9	8	39	DMSO	55,0%
10	1,7	5,0%	15,0%	P2 R3	2	3,5	45	159	25, 0%	dP2 R3	2	2,9	45	132	DMSO	55,0%
11	1,7	5,0%	15,0%	P2 R5	2	5,3	45	241	25, 0%	dP2 R2	2	2,3	45	105	DMSO	55,0%

The results are illustrated in Figure 34.

5

10

15

20

Example 8-Methdroxyprogesterone Acetate's formulations preparations

The formulations as described herein are based on organic solutions of the polymers as described in Example 1, containing as the drug medroxyprogesterone acetate. Typically 0.4 grams of polymers corresponding to a mix of diblock and triblock copolymer in a defined mass ratio were dissolved in 0.3 grams of DMSO or a combination of DMSO and benzyl alcohol at room temperature overnight with constant magnetic stirring. The next day the polymer solution was filtered through a 0.22 µm filter and 0.3 grams of medroxyprogesterone acetate was added to the filtered polymer solution and stirred until a homogeneous suspension of the drug was obtained. The formulations were loaded into a syringe before use. The compositions are shown in Table 6 below. The formulations were injected subcutaneously in the interscapular space of female dogs (11.4 to 14.1 kg). Blood samples were withdrawn periodically and analyzed for medroxyprogesterone acetate concentrations by LC/MS/MS having a below limit of quantification of 0.25 ng/ml. The results are shown in Figure 35.

The formulations are shown in Table 6.

Table 6

Mail of the relation																	_	·			
APERILI Invitor release 15	grO emiT				i	Stir Overnight @Room Temp		Stir Overnight @Room Temp	Stir Overnight @Room Temp	Stir Ovemight Room Temp	Stir Overnight Room Temp	Stir Overnight @Room Temp	Stir Overnight @Room Temp								
Heritation Designation D																					
Heritation Designation D																					
ARTOLOGY In vitro release 19 Mediconyprogedence 20% ARTOLOGY In vitro release 20% Mediconyprogedence 20% ARTOLOGY AR	Solvent 2																				
Page 21 Page 21 Page 22 Page 23 Page 32 Page 33 Page 34 Page						25%	45%	35%	20%	40%	30%	20%	40%	30%		20%	20%	45%	40%	20%	40%
Part	F inevios					OSMO	OSMO	OSWIO	OSMO	OSWIC	OSMO	OSMO	OSMO	OSWQ		DIMISO	OSMO	OSMO	OSMO	DINISO	DIMSO
APROLIC Desire solution APROLIC Desire solution APROLIC Submerrice APROLIC Desire solution APROLIC A	A J9-90					6'66	6 ['] 68	39,9	6'68	39,9	39,9	122,7	122,7	122,7		39,9	668	6,66	39,9	99,9	39,9
APROLID Designation APROLID Invito release 195 Medroxyprogesterore 1974 10 10 10 10 10 10 10 1	D34-40			<u> </u>		80	ω,	80	8	œ-	80	45	\$	45		8	80	80	α,	80	8
ARGO Duration ARGO ARG	Ratio (LA/EO)					2,02	205	2,05	5,02	5,02	2,02	2,7	2,7	2,7		5,02	20'5	5,02	2,02	5,02	5,02
AR02.01 Disting curine Southern Sout	LEG (KDS)					0,35	SE, 0	SS, 0	98'0	SE, 0	0 32	2	22	2		38,0	0,35	0,35	0,35	0,35	0,35
AR02.01 Desirg curve 9 Medroxyprogesterone 10% 4 Medroxyprogesterone 10% 40% 10%				<u> </u>		21%	21%	21%	24%	24%	24%	24%	24%	24%		18%	12%	14%	16%	12%	16%
AR08.01 In vitro release 195 Medroxyprogesterone 20% 40% 16% 2 3,49	A19-90					8'68	868	8,9,8	8'68	868	8'68	9'851	158,6	158,6		868	8,68	8'68	8'68	158,6	158,6
AR05.01 Nulto release 195 Medroxyprogesterone 10% 40% 10%	DP-PEG					ន	ន	প্ত	ន	8	ឌ	2	5	45		ន	ន	8	ম	45	45
AR03.01 In vitro release 195 Medroxyprogesterone 20% 40% 16% AR13.01 In vitro release 195 Medroxyprogesterone 20% 30% 40% 16% AR13.01 In vitro release 195 Medroxyprogesterone 20% 40% 16% AR13.01 In vitro release 195 Medroxyprogesterone 20% 40% 16% 40% 16% AR13.01 In vitro release 195 Medroxyprogesterone 20% 40% 16% 40% 16% AR13.01 In vitro release 342 Medroxyprogesterone 20% 40% 16% 40% 16% AR13.01 In vitro release 195 Medroxyprogesterone 20% 40% 16% 40% 16% AR13.01 In vitro release 342 Medroxyprogesterone 20% 40% 16% 40% 16% AR13.01 In vitro release 199 Medroxyprogesterone 20% 30% 40% 16% 40% 16% AR13.01 In vitro release 199 Medroxyprogesterone 20% 30% 40% 16% 40% 16% AR13.01 In vitro release 199 Medroxyprogesterone 20% 30% 16% 24% AR13.01 In vitro release 199 Medroxyprogesterone 20% 30% 24% 16% AR13.01 In vitro release 199 Medroxyprogesterone 20% 30% 24% 16% AR13.01 In vitro release 189 Medroxyprogesterone 20% 30% 24% 24% AR14.01 In vitro release 189 Medroxyprogesterone 20% 30% 24% 24% AR15.01 In vitro release 189 Medroxyprogesterone 20% 20% 24% 24% AR16.01 In vitro release 389 Medroxyprogesterone 20% 20% 24% 24% 24% 24% 24% 24% 24% 24% 24% 24	Ratio (LA/EO)					3,95	3,95	3,95	3,95	3,95	3,95	3,49	3,49	3,49		3,95	3,95	3,95	3,95	3,49	3,49
AR03.01 In vitro release 195 Medroxyprogesterone 20% 40% 167 HS 18.01.01 In vitro release 189 Medroxyprogesterone 20% 40% 167 HS 18.01.01 In vitro release 189 Medroxyprogesterone 20% 40% 167 HS 18.01.01 In vitro release 189 Medroxyprogesterone 20% 40% 168 HS 18.01.01 In vitro release 189 Medroxyprogesterone 20% 40% 168 HS 18.01.01 In vitro release 195 Medroxyprogesterone 20% 40% 168 HS 18.01.01 In vitro release 195 Medroxyprogesterone 20% 40% 168 HS 18.01.01 In vitro release 195 Medroxyprogesterone 20% 40% 168 HS 18.01.01 In vitro release 195 Medroxyprogesterone 20% 40% 168 HS 18.01.01 In vitro release 195 Medroxyprogesterone 20% 40% 168 HS 18.01.01 In vitro release 195 Medroxyprogesterone 20% 40% 168 HS 18.01 In vitro release 189 Medroxyprogesterone 20% 30% 169 HS 189 Medroxyprogesterone 20% 249 KS 249 HS 189 Medroxyprogesterone 20% 20% 20% 249 KS 249 MS 189 Medroxyprogesterone 20% 20% 249 KS 249 MS				<u> </u>		-	-	-	-	-	-	~	C4	2	_	-	-	-	-	CV	62
AR03.01 In vitro release 195 Medroxyprogesterone 10% 409 AR13.01 In vitro release 189 Medroxyprogesterone 20% 409 AR13.01 In vitro release 199 Medroxyprogesterone 10% 409 AR13.01 In vitro release 1995 Medroxyprogesterone 20% 409 AR13.01 In vitro release 1995 Medroxyprogesterone 20% 409 AR13.01 In vitro release 1995 Medroxyprogesterone 20% 409 AR13.01 In vitro release 1999 Medroxyprogesterone 20% 409 AR13.01 In vitro release 1999 Medroxyprogesterone 20% 309 AR13.01 In vitro release 1999 Medroxyprogesterone 20% 409 AR13.01 In vitro release 1999 Medroxyprogesterone 20% 309 AR13.01 In vitro release 1999 Medroxyprogesterone 20% 409 AR13.01 In vitro release 300 Medroxyprogesterone 300 Medroxyprogesterone 300 Medrox	ր թուրխվ%						14%		16%	16%				16%	L						
AR02.01 Dosing curve 9 Medroxyprogesterone 10° AR02.01 In vitro release 195 Medroxyprogesterone 10° AR02.01 In vitro release 195 Medroxyprogesterone 10° AR03.01 In vitro release 195 Medroxyprogesterone 10° AR03.01 In vitro release 195 Medroxyprogesterone 10° AR03.01 In vitro release 195 Medroxyprogesterone 10° AR11.01 In vitro release 196 Medroxyprogesterone 10° AR11.01 In vitro release 198 Medroxyprogesterone 20° AR11.01 In vitro release 33°	Polymer % (w/w)					32%	32%	35%	40%	40%	40%	40%	40%	40%		30%	%06	35%	40%	30%	40%
AR03.01 AR02.01 AR02.01 AR02.01 AR02.01 AR02.01 Solvent 28 Solubility AR03.01 Buffer solubility 4 AR03.01 Buffer solubility 4 AR03.01 In vitro release 195 AR05.01 In vitro release 195 AR03.01 In vitro release 195 AR03.01 In vitro release 195 AR11.01 In vitro release 196 AR11.01 In vitro release 199 AR11.01 In vitro release 190	Drug loading (w/w) %					40%	50%	30%	10%	20%	30%	10%	20%	30%		50%	20%	50%	20%	50%	20%
AR03.01 In vitro release AR10.01 In vitro release BJ01.01 In vitro release AR11.01 In vitro release	eqự gund	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterane	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterane	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogestarone	Depot SubQ Provera	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogastarone
AR03.01 AR03.01 AR03.01 AR03.01 AR03.01 AR03.01 AR03.01 AR03.01 AR03.01 AR10.01 BJ01.01 AR12.01 AR12.01 AR13.01 AR14.01 AR14.01 AR14.01 AR14.01 AR14.01 AR14.01	Duration (days)	6	28	4	5	195	195	195	195	195	195	342	342	342	146	189	189	189	189	189	338
	Expediment type	Dosing curve	Solvent solubility	Buffer solubility	Buffer solubility	In vitro refease	in vitro release	In vitro release	In vitro release	In vitro refease	In vitro release	In vitro release	In vitro release	In vitro release							
	ebcO .qx3	AR01.01	AR02.01	AR03.01	AR04.01	AR05.01	AR06.01	AR07.01	AR08.01	AR09.01	AR10.01	BJ01.01	BJ02.01	BJ03.01	AR11.01	AR12.01	AR13.01	AR14.01	AR15.01	AR16.01	BJ04.01
	°n qx∃	,-	2	60	4	5	မ	2	8	6	우	=	12	13	14	15	16	17	8	9	50

		<u> </u>	_			ļ —													
Stir Overnight @Room Temp	Stir Overnight @Room Temp	Stir Overnight @Room Temp	Stir Overnight @Room Temp	Stir Overnight @Boom Temp	Stir Overnight	Stir Overnight @Room Temp	Stir Overnight @Room Temp	Stir Overnight @Room Temp	Stir Overnight @Roam Temp										
			_										30%		30%	15%	%0£	15%	30%
													Benzyl Alcohol		Benzyl Alcohol	Benzyl Alcohol	Benzyl Alcohol	Benzyl Alcohol	Benzyl Alcohol
20%	45%	%09	%09	%09	%09	%09	%09	%09	%09	%09	%09	25%	30%	%09	%06	45%	30%	45%	30%
DMSO	DMSO	DMSO	DMSO	DMISO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DWSO	DMSO	DMSO	DWSO	DWSO	OSMO	DMSO	DMSO
122,7	122,7	6'66	39,9	6,66	6,66	99,9	122,7	122,7	122,7		122,7	122,7	122,7	122,7	6,65	39,9	122,7	122,7	122,7
45	45	80	60	۵	80	æ	45	45	45		45	45	45	5	œ		45	45	45
2,7	2,7	5,02	5,02	5,02	5,02	5,02	2,7	2,7	2,7		2,7	2,7	2,7	2,7	5,02	5,02	2,7	2,7	2,7
2	CI.	98'0	98'0	0,35	0,35	98'0	2	2	2		CI.	61	2	~	38,0	98'0	2	2	2
18%	21%	12%	%8	%	%8	4%	12%	8%	4%		4%	2%	4%	10%	%8	%	%8	%8	%8
158,6	158,6	8'68	863,8	86,8	158,6	158,6	158,6	158,6	158,6	158,6	158,6	158,6	158,6		158,6	158,6	158,6	158,6	150,0
42	\$	23	S	83	45	45	ĉ	42	45	2	5	45	45		42	45	45	53	45
3,49	3,49	3,95	3,95	3,95	3,49	3,49	3,49	3,49	3,49	3,49	3,49	3,49	3,49		3,49	3,49	3,49	3,49	3,3
۲۵	cu .	_	-	-	2	2	2	2	2	2	~	2	~		7	CZ	2	2	2
12%	14%	%8	12%	16%	15%	16%	8%	12%	16%	30%	%9	%8	%9		12%	12%	15%	12%	12%
30%	35%	20%	20%	70%	20%	20%	20%	20%	20%	%0g	40%	2%	10%	10%	20%	30%	20%	20%	20%
20%	20%	50%	20%	20%	20%	20%	20%	50%	20%	20%	30%	40%	%06	30%	20%	50%	20%	20%	20%
Medroxyprogesterone	Medroxyprogesterone	Medraxyprogesterone	Medraxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone
336	336	182	182	182	182	182	182	329	329	329	55	55	35	£3.	908	900	191	191	191
In vitro release	In vitro refease	In vitro release	In vitro release	In vitro refease	In vitro refease	In vitro release	In vitro release	In vitro refease	In vitro release	In vitro release	In vitro refease	In vitro release	In vitro release	In vitro release	in vitro refease				
BJ05.01	BJ06.01	AR17.01	AR18.01	AR19,01	AR20.01	AR21.01	AR22.01	BJ07.01	BJ08.01	BJ09.01	BJ10.01	BJ11.01	BJ12.01	8313.01	BJ14.01	BJ15.01	AR23.01	AR24.01	AR25.01
~	83	R	8	ध	98	27	82	53	8	£.	S	g	뚕	æ	မ္တ	37	88	88	8

_				_			•				-				-								
				30%		30%		35%				####	####		%0'08	35,0%			####	20,5%		30,0%	32'0%
		!		Benzyl Alcohol		Benzył Alcohol		Benzyl Alcohol				Benzyl Alcohol	Benzyl Alcohol		Benzyl Alcohol	Benzyl Alcohol			Benzyl Alcohol	Benzyl Alcohol		Benzyl Alcohol	Benzyl Alcohol
28%	25%	%09	22%	30%	%09	30%	40%	35%			54,5%	####	####		30,0%	35,0%	54,5%	26,0%	####	20,5%		30,0%	35,0%
DIMSO	OSWO	DMSO	DIMISO	DMSO	DIMSO	DIMISO	OSMO	DIMSO			DMSO	OSMO	OSWO		DMSO	DMSO	OSMO	OSMO	DIMSO	OSMO	OSMO	OSMO	DMSO
	122,7	122,7	122,7	122,7	122,7	39,9	106,4	106,4			112,7	112,7	112,7		112,7	112,7	112,7	112,7	112,7	112,7		112,7	112,7
	45	15	.	45	5	Б.	2	45			45	45	45		45	45	45		45	45		45	\$
	2,7	2,7	2,7	2,7	2,7	5,02	2,34	2,34			2,48	2,48	2,48		2,48	2,48	2,48	2,48	2,48	2,48		2,48	2,48
	2	2	~	2	2	0,35	84	5			2	2	2		2	2	2	2	2	2		2	2
	5%	4%	5%	4%	4%	8%	24%	4%			5%	4%	4%		4%	4%	5%	2%	4%	4%		4%	4%
	158,6	158,6	158,6	158,6	158,6	158,6	170,0	170,0			163,6	163,6	163,6		163,6	163,6	163,6	163,6	163,6	163,6		163,6	163,6
	45	45	45	45	45	42	45	45			2	45	45		45	45	45	45	45	45		45	45
	3,49	3,49	3,49	3,49	3,49	3,49	3,74	3,74			3,6	3,6	3,6		9'6	3,6	3,6	3,6	3,6	3,6		3,6	3,6
_	cı	2	2	2	~	2	2	લ			2	2	2		2	2	2	2	2	2		2	2
	3%	%9	3%	%9	%9	12%	16%	%9			3%	%9	%9		%9	%9 	3%	3%	%9	%9		%	%9
	2%	10%	2%	10%	10%	20%	40%	10%			2%	10%	40%		10%	10%	%	2%	10%	10%		10%	10%
45%	40%	30%	40%	%06	30%	20%	50% 20%	50%			40%	%06	20%	_	30%	20%	40%	40%	50%	50%		30%	50%
Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone Ir	Medroxyprogesterone Ir	Medroxyprogestarone Ir	Medroxyprogesterone Ir	Medroxyprogesterone Ir	Medroxyprogesterone Ir	Medroxyprogesterone Ir	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone Ir	Medroxyprogesterone Ir	Medroxyprogesterone Ir	Depot SubQ Provera	Medroxyprogesterone Ir	Medroxyprogesterone Ir	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone	Medroxyprogesterone Ir	Medroxyprogesterone fr
49	267	165	165	165		143	190	115	23	2	111	111	111	1111	64	54	96	96	96	96	-	20	50
In vitro release	In vitro release	In Vivo Study	In Vivo Study	In Vivo Study	In Vivo Sludy	In Vivo Study	In Vivo Study	In Vivo Study	Solvent Solubitity	Dosing curve	In vitro release	in vitro release	In vitro refease	in vitro release	fn vitro release	in vitro release	In vitro release	In vitro release	In vitro release	In vitro release	Solvent Solubility	In vitro release	In vitro release
BJ16.01	BJ17.01	AR26.01	AR27.01	AR28.01	AR29.01	AR30.01	AR31.01	AR32,01	AR33.01	AR34.01	AR35.01	AR36.01	AR37.01	AR38.01	AR39.01	AR40.01	AR41.01	AR42.01	AR43.01	AR44.01	AR45.01	AR46.01	AR47.01
4	42	£	4	45	46	47	49	67	90	25	25	ß	<u>ჯ</u>	22	SS.	25	88	23	8	25	62	63	55

WO 2014/001904

S Jnevio? % (w/w)	i] 	<u> </u>				
S JnevioS												-
f Jnevlo2 % (w/w)	25.0%	45.0%	35.0%	20.0%	40.0%	30.0%	20.0%	40.0%	30.0%	50.0%	20.0%	45.0%
F Inevios	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO
AJq-qQ	6	49	40	40	40	9	123	123	123	40	40	40
DP-PEG	æ	8	ဆ	8	8	80	45	45	45	8	80	8
(O∃\AJ) oitsH	5.0	5.0	5.0	5.0	5.0	5.0	2.7	2.7	2.7	5.0	5.0	5.0
bE¢ (kD₃)	0.35	0.35	0.35	0.35	0.35	0.35	2	2	21	0.35	0.35	0.35
Batch number	MIC173-C1	MIC173-C1	MIC173-C1	MIC173-C1	MIC173-C1	MIC173-C1	MIC138-A	MIC138-A	MIC138-A	MIC173-C1	MIC173-C1	MIC173-C1
Polymer 2 code	dP0.35R5	dP0.35R5	dP0.35R5	dP0.35R5	dP0.35R5	dP0.35R5	dP2B3	dP2R3	dP2R3	dP0.35R5	dP0.35R5	dP0.35R5
% Polymer 2	21%	21%	21%	24%	24%	24%	24%	24%	24%	18%	12%	14%
DP-PLA	06	06	90	06	90	90	159	159	159	90	06	96
DP-PEG	23	23	23	23	23	23	45	45	45	23	23	23
(O∃\AJ) oi1sЯ	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	4.0	4.0	4.0
PEG (kDa)	-	-	-	-	-	-	2	2	2	-	 -	-
Batch number	MIC180-C	MIC180-C	MIC180-C	MIC180-C	MIC180-C	MIC180-C	MIC166-C	MIC166-C	MIC166-C	MIC180-C	MIC180-C	MIC180-C
Polymer 1 code	P1R4	P1R4	P1R4	P1R4	P1R4	P1R4	P2R3	P2R3	P2R3	P1R4	P1R4	P1R4
% Polymer 1	14%	14%	14%	16%	16%	16%	16%	16%	16%	12%	18%	21%
Sloq\rloq oitsA	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	1.5	7.7
Polymer % (w/w)	35%	35%	35%	40%	40%	40%	40%	40%	40%	30%	30%	35%
gnibeol gu10 (w/w) %	10%	20%	30%	10%	20%	30%	10%	20%	30%	20%	20%	20%
°n qx∃	מו	9	7	æ	6	10	F	12	13	15	16	17

				-											30.0%	30.0%	15.0%	30.0%
															Benzyl Alcohol	Benzyl Alcohol	Benzyl Alcohol	Benzyl Alcohoi
40.0%	50.0%	40.0%	50.0%	45.0%	%0.09	%0.09	%0'09	%0.09	%0.09	%0.09	%0.09	%0.09	60.0%	55.0%	30.0%	30.0%	45.0%	30.0%
DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	OMICO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO
40	40	40	123	123	40	40	40	40	40	123	123	123	123	123	123	40	40	123
8	8	8	54	45	8	æ	ω	æ	8	45	45	45	45	45	45	ω	80	45
5.0	5.0	5.0	2.7	2.7	5.0	5.0	5.0	5.0	5.0	2.7	2.7	2.7	2.7	2.7	2.7	5.0	5.0	2.7
0.35	0.35	0.35	7	2	0.35	0.35	0.35	96.0	9:35	2	2	2	2	7	2	0.35	0.35	2
MIC173-C1	MIC173-C1	MIC173-C1	MIC138-A	MIC138-A	MIC173-C1	MIC173-C1	MIC173-C1	MIC173-C1	MIC173-C1	MIC138-A	MIC138-A	MIC138-A	MIC138-A	MIC138-A	MIC138-A	MIC173-C1	MIC173-C1	MIC138-A
dP0.35R5	dP0.35R5	dP0.35R5	dP2R3	dP2R3	dP0.35R5	dP0.35R5	dP0.35R5	dP0.35R5	dP0.35R5	dP2R3	dP2R3	dP2R3	dP2R3	dP2R3	dP2R3	dP0.35R5	dP0.35R5	dP2R3
16%	12%	16%	18%	21%	12%	%8	4%	8%	4%	12%	%8	4%	4%	5%	4%	%8	%8	8%
90	159	159	159	159	90	06	06	159	159	159	159	159	159	159	159	159	159	159
23	45	45	45	45	23	23	23	45	45	45	45	45	45	45	45	45	45	45
4.0	3.5	3.5	3.5	3.5	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
-	2	8	2	2	-	-	-	5	2	2	2	7	2	2	2	2	2	2
MIC180-C	MIC166-C	MIC166-C	MIC166-C	MIC166-C	MIC180-C	MIC180-C	MIC180-C	MIC166-C	MIC166-C	MIC166-C	MIC166-C	MIC166-C	MIC166-C	MIC166-C	MIC166-C	MIC166-C	MIC166-C	MIC166-C
P1R4	P2H3	P2R3	P2H3	P2R3	P1R4	P1R4	P1R4	P2R3	P2R3	P2R3	P2R3	P2R3	P2R3	P2R3	P2R3	P2R3	P2R3	P2R3
24%	18%	24%	12%	14%	%8	12%	16%	12%	16%	%8	12%	16%	%9	3%	%9	12%	12%	12%
1.5	ī.	1.5	0.7	0.7	0.7	1.5	4.0	1.5	4.0	0.7	1.5	4.0	1,5	1.5	5.5	<u>.</u> تن	7.	1.5
40%	30%	40%	30%	35%	20%	20%	20%	20%	20%	20%	20%	20%	10%	2%	10%	20%	20%	20%
20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	30%	40%	30%	20%	20%	20%
2	19	20	2	22	23	24	25	56	27	28	29	30	32	33	34	99	37	38

					1	_	
15.0%	30.0%					34.8%	20.5%
DMSO 45.0% Benzyl 15.0% Alcohol	DMSO 30.0% Benzyl Alcohol					DMSO 34.8% Benzyl Alcohol	DMSO 20.5% Benzyl Alcohol
45.0%	30.0%	58.0%	55.0%	54.5%	26.0%	34.8%	20.5%
DMSO	DMSO	DMSO 58.0%	DMSO 55.0%	DMSO 54.5%	DMSO 26.0%	DMSO	DMSO
123	123		123	113	113	113	113
45	45		45	45	45	45	45 113
2.7	2.7		2.7	2.5	2.5	2.5	2.5
2	2	·	2	2	2	2	2
MIC138-A	MIC138-A		MIC138-A	MIC226	MIC226	MIC226	MIC226
dP2R3	dP2R3		dP2R3	dP2R2	dP2R2	dP2R2	dP2R2
8%	8%		2%	2%	%7	4%	4%
159	150		159	164	164	164	164
45	45		45	45	45	45	45
3.5	3.3	ļ	3.5	3.6	3.6	3.6	3.6
2	2		2	2	2	2	23
1.5 12% P2H3 MIC166-C	MIC205		P2R3 MIC166-C	MIC227	MIC227	MIC227	MIC227
P2R3	1.5 12% P2R3		P2R3	P2R4	P2R4	P2R4	P2R4
12%	12%		3%	3%	3%	%9	%9
ر تن			1.5	1.5	.	1.5	5.
20% 20%		i	2%	2%	%9	10%	10%
20%	50% 20%	42%	40%	40%	40%	20%	50%
39	40	41	42	58	29	09	15

Example 9-Progesterone formulations preparations

5

10

The formulations as described herein are based on organic solutions of the polymers as described in Example 1, containing as the drug progesterone. Typically 0.1 grams of polymers corresponding to a mix of diblock and triblock copolymer in a defined mass ratio were dissolved in 0.6 grams of DMSO at room temperature overnight with constant magnetic stirring. The next day the polymer solution was filtered through a 0.22 µm filter and 0.3 grams of progesterone was added to the filtered polymer solution and stirred until a homogeneous suspension of the drug was obtained. The formulations were loaded into a syringe before use. The compositions are shown in Table 7 below.

I able / DRUG: PROGESTERONE

f Jnevios % (w/w)	40.0%	%0.09	60.0%	55.0%	%0.09	70.0%	%0.09	80.08	57.5%	75.0%
Solvent 1	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO
DP-PLA	106	106	43	106	106	106			106	106
DP-PEG	45	45	8	45	45	45			45	45
(O3\A1) oitsR	2.3	2.3	5.4	2.3	2.3	2.3			2.3	2.3
PEG (KDa)	2	2	0.35	2	2	2			2	2
Batch number	MIC238	MIC238	MIC251- C	MIC238	MIC238	MIC238			MIC238	MIC238
Połymer 2 code	dP2R2	dP2R2	dP0.35R5	dP2R2	dP2R2	dP2R2			dP2R2	dP2R2
% Polymer 2 - Diblock	24%	4%	%8	2.0%	4%	4.0%			1.0%	2.0%
AJ9-90	159	159	158	159	159	158			159	158
Db-bEG	45	45	45	45	45	45			45	45
Ratio (LA/EO)	3.5	3.5	3.5	3.5	3.5	3.5			3.5	3.5
PEG (KDa)	2	2	2	2	2	2			2	2
Batch number	MIC239-C	MIC239-C	MIC239-C	MIC239-C	MIC239-C	MIC239-C			MIC239-C	MIC239-C
Polymer 1	P1R3	P1R3	P1R3	P1R3	P1R3	P1R3			P1R3	P1R3
% Polymer 1 – Triblock	16%	%9	12%	3.0%	%9	%0.9			1.5%	3.0%
Sloq\tloq oitsA	0.7	1.5	1.5	ر :	7.5	7.5			 	1.5
Polymer % (w/w)	40%	10%	20%	2%	10%	10%	%0	%	2.5%	5%
Drug loading (w/w) %	20%	30%	20%	40%	30%	20%	40%	20%	40%	20%
°n qx∃	~	က	4	rv	ဟ		무	=	12	13

Example 10-Levonorgestrel formulations preparations

5

10

15

The formulations as described herein are based on organic solutions of the polymers as described in Example 1, containing as the drug Levonorgestrel. Typically 0.1 grams of polymers corresponding to a mix of diblock and triblock copolymer in a defined mass ratio were dissolved in 0.7 grams of DMSO at room temperature overnight with constant magnetic stirring. The next day the polymer solution was filtered through a 0.22 µm filter and 0.2 grams[of Levonorgestrel was added to the filtered polymer solution and stirred until a homogeneous suspension of the drug was obtained. The formulations were loaded into a syringe before use. The compositions are shown in Table 8 below.

DRUG: LEVONORGESTREL

f tnevles % (w/w)	80%	75%	20%	%06	87.5%	85%
f Jnsvlo2	DMSO	DMSO	DMSO	DMSO	DMSO	DMSO
V7d-d0		106	106		106	106
DP-PEG		45	45		45	45
(O3/AJ) oitsA		2.3	2.3		2.3	2.3
PEG (KDa)		2	2		2	2
Batch number		MIC238	MIC238		MIC238	MIC238
Polymer 2 code		dP2R2	dP2R2		dP2R2	dP2R2
% Ројутет 2 - Diblock		2%	4%		2%	4%
DP-PLA		158	158		159	159
Db-bE@		45	45		45	45
(OA/AJ) oitsA		3.5	3.5		3.5	3.5
PEG (KDa)		2	2		2	2
Batch number		MIC239-C	MIC239-C		MIC239-C	MIC239-C
Polymer 1 code		P2R3	P2R3		P2R3	P2R3
% Polymer 1 - Triblock		3%	%9		3%	%9
Sloq\rloq oijsA	,	1.5	1.5	t	1.5	1.5
Polymer % (w/w)	%0	2%	10%	%0	2%	10%
Drug loading % (w/w)	20%	20%	20%	10%	10%	10%
exp n°	4	2	9	2	œ	თ

Example 10-Cyclosporine formulations preparations

5

10

The formulations as described herein are based on organic solutions of the polymers as described in Example 1, containing as the drug cyclosporine. Typically 0.15grams of polymers corresponding to a mix of diblock and triblock copolymer in a defined mass ratio were dissolved in 0.65 grams of DMSO at room temperature overnight with constant magnetic stirring. The next day the polymer solution was filtered through a 0.22 µm filter and 0.2 grams of cyclosporine was added to the filtered polymer solution and stirred until a homogeneous suspension of the drug was obtained. The formulations were loaded into a syringe before use. The compositions are shown in Table 9 below.

15

DRUG: CYCLOSPORINE

	_				_				_		_		
% Solvent 1 (w/w)	%0.09	%0'09	60.0%	55.0%	61.5%	64.0%	68.1%	71.8%	72.9%	70.0%	67.5%	65.0%	62.5%
l tnevlo2	DMSO												
AJ9-9Ū	85	111	09	85	85	85	85	85	85	85	85	85	85
DP-PEG	22	45	12	22	22	22	22	22	22	22	22	22	22
(CA/EO)	3.9	2.5	5.1	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9
bE¢ (κD₃)	1.0	2.0	0.55	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Batch number	MIC225-C	MIC245-C	MIC187-C	MIC225-C									
Polymer 2 code	dP1R4	dP2R2	dP0.6R5	dP1R4									
% Polymer 2 - Diblock	28.0%	28.0%	28.0%	28.0%	20.7%	16.0%	11.3%	7.5%	4.8%	8.0%	10.0%	12.0%	14.0%
DP-PLA	68	68	68	68	68	68	68	68	68	68	68	68	88
Db-PEG	22	22	22	22	22	22	22	52	22	22	22	22	ช
(O∃\A) oitsR	4.0	4.0	0.4	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
bEሮ (κD ^g)	1.0	0.1	1.0	0.1	0.	1.0	0.	1.0	1.0	0.1	0.1	0.1	1.0
Batch number	MIC243-C												
Polymer 1 code	P1R4												
% Polymer 1 - Triblock	%0'.2	%0'.2	7.0%	%0'.2	2.0%	4.1%	2.9%	1.9%	1.2%	2.0%	2.5%	3.0%	3.5%
Floq\sloq oitsA	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Polymer % (w/w)	35.0%	35.0%	35.0%	35.0%	25.7%	20.1%	14.2%	9.4%	6.0%	10.0%	12.5%	15.0%	17.5%
Drug loading % (w/w)	2.0%	5.0%	5.0%	10.0%	12.8%	15.9%	17.7%	18.8%	21.1%	20.0%	20.0%	20.0%	20.0%
Exp n°	12	13	4	16	12	8	19	20	12	ន	83	24	22

Example 11-Bupivacaine formulations preparations

The formulations as described herein are based on organic solutions of the polymers as described in Example 1, containing as the drug Bupivacaine base. Typically 0.1 grams of polymers corresponding to a mix of diblock and triblock copolymer in a defined mass ratio were dissolved in 0.75 grams of DMSO at room temperature overnight with constant magnetic stirring. The next day the polymer solution was filtered through a 0.22 µm filter and 0.15 grams of Bupivacaine base was added to the filtered polymer solution and stirred until a homogeneous suspension of the drug was obtained. The formulations were loaded into a syringe before use. The compositions are shown in Table 10 below.

10

5

Table 10

DRUG: BUPIVACAINE FORMULATIONS (BUPI)

%0.69 %0.69 %0.69 %0.69 68.7% 68.7% 68.7% 68.7% %0.69 %0.69 65.0% (m/m)I finavios % DMSO DMSO DMSO DMSO DMSO DMSO DMSO DMSO Solvent 1 8 90 106 46 46 46 46 9 88 46 DP-PLA 88 45 5 45 8 DP-PEG 23 ω ω 00 8 ∞ ω 5.8 3.9 5.8 Ratio (LA/EO) 0.35 0.35 0.35 0.35 0.35 0.35 PEG (kDa) Q Q Ø Ċ MIC207-C MIC207-C MIC207-C MIC207-C MIC225-C Ç MIC238 MIC238 MIC238 MIC207-MIC225-MIC207gstch number dP0.35R6 dP0.35R6 dP0.35R6 dP0.35R6 dP0.35R6 dP0.35R6 dP2R2 dP2R2 dP1R4 dP1R4 coge Polymer 2 Diblock 10% 10% % 10% 15% 10% 10% 5% 10% 10% % Polymer 2 -110 28 28 128 28 AJQ-QQ 9 9 9 9 9 9 8 g क 45 89 98 8 45 DP-PEG 83 8 33 3.5 2.4 Ratio (LA/EO) LEC (KDS) _ CAL Q ന m Ø MIC243-C MIC243-C MIC239-C MIC239-C MIC195-C MIC195-C MIC243-C MIC243-C MIC243-C MIC243-C MIC230 Batch number P1R4 P1R4 P2R3 P1R4 P2R2 P3R2 P3R2 P1R4 P1R4 epop 7 Polymer 1 - Triblock 됴 20% 20% 20% 20% 20% 20% 20% 15% 20% 15% % Polymer 1 2.0 2.0 2.0 2.0 2.0 2.0 ö 2,0 2.0 **1**.0 2.0 Ratio Pol1/Pol2 %: 30.0% 30.0% 30.0% 30.0% 30.0% 30.0% 30.0% 30.0% %0; % (M/M) % Polymer 8 8 8 (M/M) % 1.3% 1.3% 1.3% 1.3% % % % % % % Drug loading 2 껕 3 Exb u。 Ξ ø ŝ 4 S 9 7 O

1.3% 30.0% 1.0 15% P2R2 MIC230 2 2.4 45 110 15% dP1R4 MIC225-C 1 3.9 23 69 DMSO 50.0% 2.0 20.0% PPR4 MIC230 2 2.4 45 110 15% dP1R4 MIC225-C 1 3.9 23 69 DMSO 50.0% 2.0 20.0% PPR4 MIC230 2 2.4 45 110 15% dP1R4 MIC225-C 1 3.9 23 68 DMSO 1.0 15.0 PPR4 MIC225-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 10.0% 20.0 20.0% PPR4 MIC230 2 2.4 45 110 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 10.0% 20.0 20.0% PPR4 MIC230 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 10.0% 20.0% 1.0 15.0% PPR4 MIC230-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 10.0% 20.0% 1.0 12.5% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 10.0% 20.0% 1.0 10.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 12.5% 20.0% 1.0 10.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 13.5% 20.0% 1.0 10.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 13.5% 20.0% 1.0 10.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 13.5% 20.0% 1.0 10.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 13.5% 20.0% 1.0 10.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 13.5% 20.0% 1.0 10.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 13.5% 20.0% 1.0 10.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 13.5% 10.0% 10.0% 10.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 13.5% 10.0% 10.0% 10.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 13.5% 10.0% 10.0 5.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 13.5% 10.0 5.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC225-C 1 3.9 23 68 DMSO 13.5% 10.0% 10.0 5.0% PPR4 MIC243-C 1 4.0 23 91 10.0 5.0 4PPR4 MIC225-C 1 3.9 23 68 DMSO 13.5% 10.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0																		
1.3% 30.0% 1.0 15% PPABE MIC230 2 2.4 4.5 110 15% dPPABE MIC225C 1 3.9 2.8 88 5.0% 1.0 165% PPABE MIC243C 1 4.0 23 91 10.0% dPPABE MIC225C 1 3.9 23 88 1.0% 30.0% 2.0 20.0% PPHA MIC243C 1 4.0 23 91 10.0% dPPAB MIC225C 1 3.9 23 88 1.0% 30.0% 2.0 20.0% PPHA MIC243C 1 4.0 23 91 15.0% dPPHA MIC225C 1 3.9 23 88 1.0% 2.0 2.0 </td <td>68.7%</td> <td>68.7%</td> <td>68.7%</td> <td>65.0%</td> <td>69.0%</td> <td>%0.69</td> <td>65.0%</td> <td>%0.09</td> <td>65.0%</td> <td>62.5%</td> <td>70.0%</td> <td>67.5%</td> <td>65.0%</td> <td>65.0%</td> <td>72.5%</td> <td>80.0%</td> <td>77.5%</td> <td>75.0%</td>	68.7%	68.7%	68.7%	65.0%	69.0%	%0.69	65.0%	%0.09	65.0%	62.5%	70.0%	67.5%	65.0%	65.0%	72.5%	80.0%	77.5%	75.0%
1.3% 30.0% 1.0 15% PPR2 MIC230 2 4 45 110 15% 4P0.35RB MIC23C-C 1.3 5.8 8 1.3% 30.0% 2.0 20% PPR2 MIC23O 2 2.4 45 110 10% 4P1R4 MIC22C-C 1 3.9 23 1.3% 30.0% 1.0 15% PPR2 MIC23O 2 2.4 45 110 10% 4P1R4 MIC22C-C 1 3.9 23 1.0% 30.0% 2.0 20.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC22C-C 1 3.9 23 1.0% 30.0% 2.0 20.0% P1R4 MIC243-C 1 4.0 23 91 15.0% dP1R4 MIC22C-C 1 3.9 23 1.0% 30.0% 1.0 15.0% P1R4 MIC22C-C 1 4.0 23 <td< td=""><td>DMSO</td><td>DMSO</td><td>DMSO</td><td>DMSO</td><td>DMSO</td><td>DMSO</td><td>DMSO</td><td>DMSO</td><td>DMSO</td><td>DMSO</td><td>DMSO</td><td>DMSO</td><td>DMSO</td><td>OSMO</td><td>DMSO</td><td>DMSO</td><td>DMSO</td><td>DMSO</td></td<>	DMSO	OSMO	DMSO	DMSO	DMSO	DMSO												
1.3% 30.0% 1.0 15% PPRP MIC230 2 2.4 45 110 15% dPnR4 MIC25-C 1 3.9 1.3% 30.0% 2.0 20% PPRP MIC230 2 2.4 45 110 15% dPnR4 MIC25-C 1 3.9 1.3% 30.0% 1.0 15% PPRP MIC243-C 1 4.0 23 91 10.0% dPnR4 MIC25-C 1 3.9 1.0% 30.0% 2.0 20.0% PPRP MIC243-C 1 4.0 23 91 10.0% dPnR4 MIC25-C 1 3.9 1.0% 30.0% 2.0 20.0% PPRP MIC243-C 1 4.0 23 91 15.0% dPnR4 MIC25-C 1 3.9 1.0% 30.0% 1.0 15.0% PPRP MIC243-C 1 4.0 23 91 15.0% dPnR4 MIC25-C 1	46	88	88	43	88	64	88	88	88	88	88	88	88	135	88	88	88	88
1.3% 30.0% 1.0 15% PPR2 MIC230 2 2.4 45 110 15% dP0.35R6 MIC207-C 0.35 1.3% 30.0% 2.0 20% PPR2 MIC230 2 2.4 45 110 10% dP1R4 MIC25-C 1 1 1.3% 30.0% 2.0 20.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 1.0% 30.0% 2.0 20.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 1.0% 30.0% 1.0 15.0% P1R4 MIC243-C 1 4.0 23 91 15.0% dP1R4 MIC25-C 1 1 10.0% dP1R4 MIC25-C 1 1 10.0% 25.0% 1.0 15.0% P1R4 MIC243-C 1 4.0 23 91 15.0% dP1R4 MIC25-C 1 1 10.0% 25.0% 1.0 12.5% P1R4 MIC243-C 1 4.0 23 91 15.0% dP1R4 MIC25-C 1 1 10.0% 25.0% 1.0 12.5% P1R4 MIC243-C 1 4.0 23 91 15.0% dP1R4 MIC25-C 1 1 10.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 10.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 10.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC243-C 1 4.0 23 91 5.0% dP1R4 MIC25-C 1 1 15.0% P1R4 MIC2		ន	83	œ	23	œ	23	23	23	23	62	23	23	45	23	23	23	23
1.3% 30.0% 1.0 15% PPR2 MIC230 2 2.4 45 110 15% dP0.35R6 MIC26-C 1.3% 30.0% 2.0 20% PPR2 MIC230 2 2.4 45 110 15% dP1R4 MIC26-C 5.0% 30.0% 1.0 15% PPR2 MIC230 2 2.4 45 110 15% dP1R4 MIC26-C 5.0% 30.0% 1.0 15% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC226-C 1.0% 30.0% 1.0 15.0% PPR4 MIC243-C 1 4.0 23 91 10.0% dP1R4 MIC226-C 1.0% 30.0% 1.0 15.0% PPR4 MIC243-C 1 4.0 23 91 15.0% dP1R4 MIC226-C 10.0% 1.0 15.0% PPR4 MIC243-C 1 4.0 23 91 <	5.8	3.9	3.9	5.4	3.9	5.4	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.0	3.9	3.9	3.9	3.9
1.3% 30.0% 1.0 15% PPRE MICZ30 2 2.4 45 110 15% dP0.35R6 1.3% 30.0% 2.0 20% PPRE MICZ30 2 2.4 45 110 15% dP1R4 1.3% 30.0% 1.0 15% PPRE MICZ43-C 1 4.0 23 91 10.0% dP1R4 5.0% 30.0% 2.0 20.0% P1R4 MICZ43-C 1 4.0 23 91 10.0% dP1R4 1.0% 30.0% 2.0 20.0% P1R4 MICZ43-C 1 4.0 23 91 10.0% dP1R4 1.0% 30.0% 1.0 15.0% P1R4 MICZ43-C 1 4.0 23 91 15.0% dP1R4 10.0% P1R4 MICZ43-C 1 4.0 23 91 15.0% dP1R4 10.0% P1R4 MICZ43-C 1 4.0 23	0.35	-	-	0.35	-	0.35	-	1	-	-	+	-	+	2	1	-	-	-
1.3% 30.0% 1.0 15% P2R2 MIC230 2 2.4 45 110 15% 1.3% 30.0% 2.0 20% P2R2 MIC230 2 2.4 45 110 10% 1.3% 30.0% 1.0 16% P2R2 MIC243-C 1 4.0 23 91 10.0% 1.0% 30.0% 2.0 20.0% P1R4 MIC243-C 1 4.0 23 91 10.0% 1.0% 30.0% 2.0 20.0% P1R4 MIC243-C 1 4.0 23 91 10.0% 1.0% 30.0% 1.0 15.0% P1R4 MIC243-C 1 4.0 23 91 15.0% 10.0% 20.0% 1.0 15.0% P1R4 MIC243-C 1 4.0 23 91 10.0% 10.0% 20.0% 1.0 10.0% P1R4 MIC243-C 1 4.0 23 91 10.	MIC207-C	MIC225-C	MIC225-C	MIC251-C	MIC225-C	MIC251-C	MIC225-C	MIC252-C	MIC225-C	MIC225-C	MIC225-C	MIC225-C						
1.3% 30.0% 1.0 15% P2R2 MIC230 2 2.4 45 110 1.3% 30.0% 2.0 20% P2R2 MIC230 2 2.4 45 110 1.3% 30.0% 1.0 15% P2R2 MIC230 2 2.4 45 110 5.0% 30.0% 1.0 15% P1R4 MIC243-C 1 4.0 23 91 1.0% 30.0% 2.0 20.0% P1R4 MIC243-C 1 4.0 23 91 1.0% 30.0% 1.0 15.0% P1R4 MIC243-C 1 4.0 23 91 10.0% 20.0% 1.0 15.0% P1R4 MIC243-C 1 4.0 23 91 10.0% 20.0% 1.0 10.0% P1R4 MIC243-C 1 4.0 23 91 15.0% 20.0% 1.0 10.0% P1R4 MIC243-C 1	dP0.35R6	dP1R4	dP1R4	dP0.35R5	4P1R4	dP0.35R5	dP1R4	dP1R4	4P1R4	dP1R4	dP1R4	dP1R4	dP1R4	dP2R3	dP1R4	dP1R4	dP1R4	dP1R4
1.3% 30.0% 1.0 15% PPR2 MIC230 2 2.4 45 1.3% 30.0% 2.0 20% PPR2 MIC230 2 2.4 45 1.3% 30.0% 1.0 15% PPR2 MIC230 2 2.4 45 5.0% 30.0% 1.0 15% PPR4 MIC243-C 1 4.0 23 1.0% 30.0% 2.0 20.0% PPR4 MIC243-C 1 4.0 23 1.0% 30.0% 1.0 15.0% PPR4 MIC243-C 1 4.0 23 10.0% 20.0% PPR4 MIC243-C 1 4.0 23 10.0% PPR4 MIC243-C 1 4.0 23 10.0% PPR4 MIC243-C 1 4.0 23 12.5% PPR4 MIC243-C 1 4.0 23 15.0% 1.0 10.0% PPR4 MIC243-C 1 4.0 23 15.0% 1.0 10.0% PPR4 MIC243-C<	15%	10%	15%	10.0%	10.0%	10.0%	15.0%	15.0%	12.5%	12.5%	10.0%	10.0%	10.0%	6.7%	7.5%	5.0%	2.0%	5.0%
1.3% 30.0% 1.0 15% P2R2 MIC230 2 24 1.3% 30.0% 2.0 20% P2R2 MIC230 2 2.4 1.3% 30.0% 1.0 15% P2R2 MIC230 2 2.4 5.0% 30.0% 2.0 20.0% P1R4 MIC243-C 1 4.0 1.0% 30.0% 2.0 20.0% P1R4 MIC243-C 1 4.0 1.0% 30.0% 1.0 15.0% P1R4 MIC243-C 1 4.0 10.0% 25.0% 1.0 12.5% P1R4 MIC243-C 1 4.0 10.0% 25.0% 1.0 12.5% P1R4 MIC243-C 1 4.0 12.5% 20.0% 1.0 10.0% P1R4 MIC243-C 1 4.0 15.0% 1.0 10.0% P1R4 MIC243-C 1 4.0 15.0% 20.0% 1.0 10.0% P1R4 MIC243-C 1 4.0 15.0% 10.0% P1R4 MI	110	110	110	91	91	110	91	91	91	16	91	91	91	91	91	91	91	91
1.3% 30.0% 1.0 15% P2R2 MIC230 2 1.3% 30.0% 2.0 20% P2R2 MIC230 2 1.3% 30.0% 1.0 15% P2R2 MIC243-C 1 1.0% 30.0% 2.0 20.0% P1R4 MIC243-C 1 1.0% 30.0% 2.0 20.0% P1R4 MIC243-C 1 1.0% 30.0% 1.0 15.0% P1R4 MIC243-C 1 1.0.% 30.0% 1.0 15.0% P1R4 MIC243-C 1 1.0.% 25.0% 1.0 12.5% P1R4 MIC243-C 1 10.0% 25.0% 1.0 10.0% P1R4 MIC243-C 1 15.0% 20.0% 1.0 10.0% P1R4<	45	45	45	23	23	45	23	23	23	23	23	83	23	83	23	83	23	23
1.3% 30.0% 1.0 15% P2R2 MIC230 1.3% 30.0% 2.0 20% P2R2 MIC230 1.3% 30.0% 1.0 15% P2R2 MIC230 5.0% 30.0% 1.0 15.0% P1R4 MIC243-C 1.0% 30.0% 2.0 20.0% P1R4 MIC243-C 1.0% 30.0% 1.0 15.0% P1R4 MIC243-C 10.0% 25.0% 1.0 12.5% P1R4 MIC243-C 10.0% 25.0% 1.0 12.5% P1R4 MIC243-C 15.0% 1.0 10.0% P1R4 MIC243-C 15.0% 1.0 1.0 5.0% P1R4 MIC243-C 10.0% 1.0 5.0% P1R4 MIC243-C <td>2.4</td> <td>2.4</td> <td>2.4</td> <td>4.0</td> <td>4.0</td> <td>2.4</td> <td>4.0</td>	2.4	2.4	2.4	4.0	4.0	2.4	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
1.3% 30.0% 1.0 15% P2R2 1.3% 30.0% 2.0 20% P2R2 1.3% 30.0% 1.0 15% P2R2 5.0% 30.0% 1.0 15% P1R4 1.0% 30.0% 2.0 20.0% P1R4 1.0% 30.0% 1.0 15.0% P1R4 10.0% 25.0% 1.0 12.5% P1R4 10.0% 25.0% 1.0 12.5% P1R4 10.0% 20.0% 1.0 12.5% P1R4 15.0% 20.0% 1.0 10.0% P1R4 15.0% 1.0 10.0% P1R4 15.0% 1.0 7.5% P1R4 10.0% 1.0 5.0% P1R4 10.0% 1.0 5.0% P1R4 10.0% 1.0 5.0% P1R4	N	23	2	-	1	2	1	-	1	-	-	-	-	-	-	-	_	-
1.3% 30.0% 1.0 15% 1.3% 30.0% 2.0 20% 1.3% 30.0% 2.0 20.0% 5.0% 30.0% 2.0 20.0% 1.0% 30.0% 2.0 20.0% 1.0% 30.0% 2.0 20.0% 10.0% 30.0% 1.0 15.0% 10.0% 25.0% 1.0 12.5% 10.0% 20.0% 1.0 10.0% 15.0% 20.0% 1.0 10.0% 15.0% 20.0% 1.0 10.0% 15.0% 20.0% 1.0 10.0% 16.0% 10.0% 1.0 5.0% 12.5% 15.0% 1.0 5.0% 12.5% 10.0% 1.0 5.0%	MIC230	MIC230	MIC230	MIC243-C	MIC243-C	MIC230	MIC243-C											
1.3% 30.0% 1.0 1.3% 30.0% 1.0 1.3% 30.0% 2.0 1.0% 30.0% 2.0 1.0% 30.0% 1.0 10.0% 25.0% 1.0 10.0% 25.0% 1.0 12.5% 25.0% 1.0 12.5% 20.0% 1.0 15.0% 20.0% 1.0 15.0% 20.0% 1.0 15.0% 10.0% 1.0	P2R2	P2R2	P2R2	P1R4	P1R4	P2R2	P1R4											
1.3% 30.0% 1.3% 30.0% 1.3% 30.0% 1.0% 30.0% 1.0% 30.0% 10.0% 25.0% 12.5% 25.0% 12.5% 20.0% 15.0% 20.0% 15.0% 20.0% 15.0% 10.0% 15.0% 10.0%	15%	20%	15%	20.0%	20.0%	20.0%	15.0%	15.0%	12.5%	12.5%	10.0%	10.0%	10.0%	13.3%	7.5%	9.0%	2.0%	2.0%
1.3% 1.3% 1.3% 1.0% 1.0% 10.0% 12.5% 12.5% 12.5% 12.5% 12.5%	0.	2.0	1.0	2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0
1.3% 1.3% 1.3% 1.0% 1.0% 10.0% 12.5% 12.5% 12.5% 12.5% 12.5%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	25.0%	25.0%	20.0%	20.0%	20.0%	20.0%	15.0%	10.0%	10.0%	10.0%
~ 	1.3%				1.0%			_										15.0%
- - - - - - - - - - -	14	15	16	ဓင္တ	3	32	33	34	35	36	37	38	39	40	41	42	43	44

1 4.0 23 91	1 4.0 23 91 3.3%	1 4.0 23 91 7.5%	1 4.0 23 91 7.5%	1 4.0 23 91 7.5%
45 12.5% 15.0% 2.0 10.0% P1R4 MIC243-C	46 15.0% 10.0% 2.0 6.7% P1R4 MIC243-C	47 10.0% 15.0% 1.0 7.5% P1R4 MIC243-C	48 11.0% 15.0% 1.0 7.5% P1R4 MIC243-C	49 12.0% 15.0% 1.0 7.5% P1R4 MIC243-C
5.0% 2.0 10.0%	0.0% 2.0 6.7%	5.0% 1.0 7.5%	5.0% 1.0 7.5%	5.0% 1.0 7.5%
45 12.5% 18	46 15.0% 10	47 10.0% 1	48 11.0% 15	49 12.0% 15

Example 12-Injectability of differing compositions

Various formulations were tested for injectability using formulations with different ratios of triblock (TB) and diblock (DB). Different solutions in DMSO based on a mixture of the triblock copolymer P6R1(TB) and the diblock copolymer dP2R4(DB) were prepared.

A 50% weight%/weight % polymer/formulation mass was used in these viscosity experiments. The weight% / weight % of triblock to diblock that was used in this experiment were the following: 50 wt. %:0 wt. %, 45 wt. %:5 wt. %, 20 wt. %:5 wt. %, 35 wt. %:15 wt. %, 15 wt. %:10 wt. %, 25 wt. %:25 wt. %, 10 wt. %:15 wt. %, 15 wt. %; 5 wt. %; 5 wt. %; 45 wt. % and 0 wt. %; 50 wt. %.

The injectability results are shown in Figure 3.

15

5

10

Example 13- In vitro Release Assay

100 to 500 mg of formulation was added to 20 to 50 ml of physiological buffer. The physiological buffer that was used was KRT containing 50 ml Krebs / Ringer / Tris (KRT) buffer pH 7.4, which is 143 mM Sodium Chloride, 5.1 mM Potassium Chloride, 2.7 mM Calcium Chloride, 1.34 mM Magnesium Sulfate, 25 mM Tris-Cl pH 7.4 and 0.1% sodium azide. Upon injection, the solvent diffused away from the formulation and the remaining polymer formed a solid biodegradable implant within the aqueous environment.

25

30

20

In order to maintain sink conditions, for drug release, the release medium was maintained under constant shaking at 180 rpm (Unimax 1010 apparatus, Heidolph) at 37°C. At pre-determined time intervals, media are collected and analyzed by HPLC. The amount of the GLP-1 analogue peptide M53, released from the formulation was calculated from a calibration curve. The concentration of M53 ranged between 0 and 5 mg/ml or it ranged between 0 and 200 µg/ml.

The results are shown in Figure 4 and Figure 5. Figure 5 illustrates the release rate of formulations 177, 224, 225, 246 and 250 as shown in Table 1, while Figure 4 shows the cumulative release of drug from the indicated formulations.

When the GPL-1 analogue was incorporated into the polymer solution, it was encapsulated within the polymer matrix as it solidified. The drug was then released either by diffusion inside the matrix or by biodegradation of the matrix.

Example 14- Pharmacokinetic study

10

15

5

Several formulations were tested in a pharmacokinetic study in rats.

Compositions containing 1 mg of drug per animal of the formulations of 177, 224, 225, 246 and 250, as set forth in Table 1 were subcutaneously administered to rats. Blood samples were collected into EDTA tubes at different time points, centrifuged and the plasma from each time point was retained. The plasma samples were analyzed by LC/MS/MS and quantified for drug content. Results are presented as ng/ml of plasma measured over time.

The results of one pharmacokinetic study are shown in Figure 6. As shown in this Figure three of the five formulations sustain plasma concentration higher than 0.1 ng/ml for more than 28 days while giving a moderate initial drug burst release below 30 ng/ml.

Example 15- Blood Glucose Levels

25

Blood glucose levels with patients suffering from diabetes type 2 are taken prior to treatment. A control group having no treatment is used for this study. Patients of either gender are used in this study provided that they have diabetes type 2 and are between the ages of 35 and 60.

30

A GPL-1 analogue is formulated according to Examples 1 and 2 and has the chemical characteristics of number 230 in Table 1. The injectable liquid that is obtained is then injected into several patients at a dosage of 8 mg/ml. The control group is given PBS.

The amount of blood sugar levels and fructosamine is then measured for a period of 30 days, twice weekly, before meals and 2 hours after meals. The amounts of blood glucose after treatment are measured and the results are averaged. The values are shown in Table 11:

5

Table 11

Week number	Patient number	Blood Glucose	Blood Glucose	Fructosamine	
		Level Before	Level After	μmol	
		Meals	Meals		
		in mmol/l	In mmol/i		
Prior to	1	150	190	300	
Treatment					
	2	130	175	320	
	3	200	230	330	
	4	220	240	360	
1	1	90	150	280	
	2	98	110	290	
	3	120	160	330	
	4	215	240	365	
2	1	92	120	275	
	2	95	100	287	
	3	118	158	300	
	4	210	230	370	
3	1	92	110	270	
	2	98	101	275	
	3	115	155	280	
	4	211	222	385	
4	1	93	110	260	
	2	85	100	260	
	3	110	150	265	
	4	223	244	365	

Normal results for the glucose levels before meals range from 80 to 120 mmol/l. Normal results for the glucose levels after meals should be 160 mmol/l or less. Normal fructosamine levels are under 265. Between 265 and 280 indicates excellent blood glucose control; 280 and 500 indicates good blood glucose control; between 320 and 340 indicates fair blood glucose control; and over 350 indicates poor blood glucose control.

Patient 4 was administered the placebo.

5

15

These results show that when administered the biodegradable drug delivery compositions of the present invention are effective to treat diabetes type 2.

While the invention has been described in terms of various preferred embodiments, the skilled artisan will appreciate that various modifications, substitutions, omissions and changes may be made without departing from the scope thereof. Accordingly, it is intended that the scope of the present invention be limited by the scope of the claims, including equivalents thereof.

CLAIMS

What is claimed is:

5

10

15

30

35

1. A biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

$$A_v$$
- B_w - A_x

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

$$C_y$$
- A_z

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle.

- The biodegradable drug delivery composition according to Claim 1, wherein the at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine base.
- 3. A biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:

$$A_v - B_w - A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units and v=x or $v\neq x$; (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio

of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1: 3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle.

5

4. The biodegradable drug composition according to Claim 3, wherein the at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.

10

15

20

5. A biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or $v\neq x$; (b) a biodegradable diblock copolymer having the formula:

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically hydrophobic active principle.

- 25
- 6. The biodegradable drug delivery composition according to Claim 5, wherein the at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.
- 7. A b 30 tribl
 - 7. A biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:

PLA_v-PEG_w-PLA_x

wherein v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090 v and x being ester repeat units and w being ethylene oxide repeat units and v=x or v≠x; (b) a biodegradable diblock copolymer having the formula:

PEG_v-PLA_z

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically hydrophobic active principle

5

10

15

20

25

30

- 8. The biodegradable drug delivery composition according to Vlaim 7, wherein the at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.
- 9. A biodegradable drug delivery composition is provided, which comprises:(a) a biodegradable triblock copolymer present in an amount of 3.0% to 45% (w%/w%) or 2% to 45% (w%/w%)of the total composition having the formula:

PLAy-PEGw-PLAx

wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v=x or v≠x; (b) a biodegradable diblock copolymer present in an amount of 8.0% to 50% (w%/w%) of the total composition having the formula:

PEG_v-PLA_z

wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1:3 to 1:8 or 1: 1 to 1:19 or 3:2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end capped and (c) at least one pharmaceutically hydrophobic active principle is present in an amount of 1% to 20% (w%/w%) or 1% to 40% of the total composition or the at least one pharmaceutically active principle is present in an amount of 1 to 200 mg/ml.

10. The biodegradable drug delivery composition according to Claim 9, wherein the at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine,

progesterone or bupivacaine. is present in an amount of 1% to 40% (w%/w%)of the total composition or the at least one pharmaceutically active principle is present in an amount of 1 to 200 mg/ml or 0.1 to 200 mg/ml.

5

11. The biodegradable drug delivery compositions according to any one of Claims 1 to 10, wherein a lactic acid to ethylene oxide molar ratio in said composition is between 0.5 to 3.5 or between 0.5 to 2.5 or between 0.5 to 22.3 for the triblock copolymer and between 2 to 6 or between 0.8 to 13 or between 3 to 5 for the diblock copolymer.

10

12. The biodegradable drug delivery compositions according to any one of Claims 1 to 11, wherein said compositions are an injectable liquid that when inserted into the body of an animal or plant becomes a hardened implant.

15

13. A method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

20

$A_v-B_w-A_x$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090 wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

25

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; and

- 30
- (ii) adding at least one pharmaceutically hydrophobic active principle to said polymer mixture, is yet another aspect of the invention.
 - 14. The method for preparing the biodegradable drug delivery compositions according to Claim 13, the at least one pharmaceutically hydrophobic

active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture, is yet another aspect of the invention.

15.A method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v - B_w - A_x$$

5

10

15

20

25

30

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1060 wherein v=x or v≠x; and (b) a biodegradable diblock copolymer having the formula:

$$C_v-A_z$$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1: 3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1in (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle to said polymer mixture; and (iii) evaporating said solvent.

- 16. The method according to Claim 15, wherein the at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine
- 17.A method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:

$$A_v-B_w-A_x$$

wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units wherein v=x or $v\neq x$; and (b) a biodegradable diblock copolymer having the formula:

$C_{v}-A_{z}$

wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of

ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1:3 to 1:8 or 1:1 to 1:19 or 3.2 to 1:19 or 2:3 or 4:1 or 2.3 to 4.1 (a):b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle to said polymer mixture; and (iii) evaporating said solvent.

5

18. The method according to Claim 17, wherein the at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.

10

19. The method according to any one of Claims 13 to 18, the organic solvent is be present in an amount of 40% to 74% (w%/w%) or 30% to 70% (w%/w%) or 26% to 90% (w%/w%) of the total composition.

15

% cumulative release

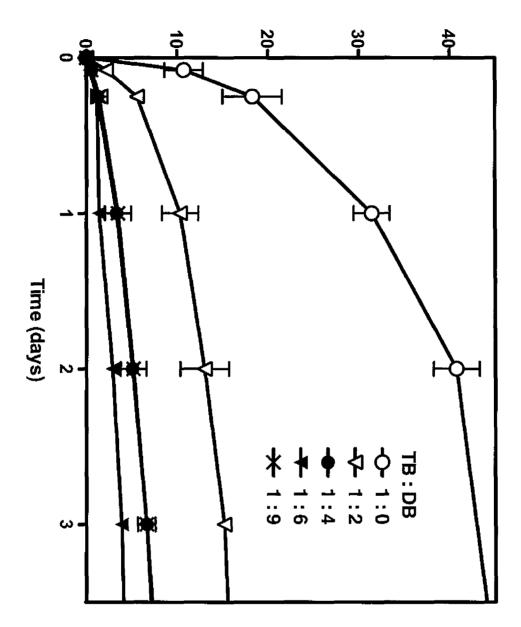


FIGURE 1

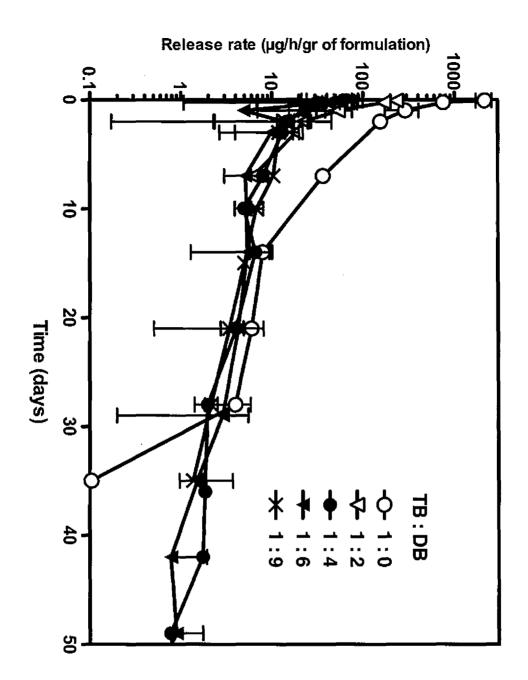


FIGURE 2

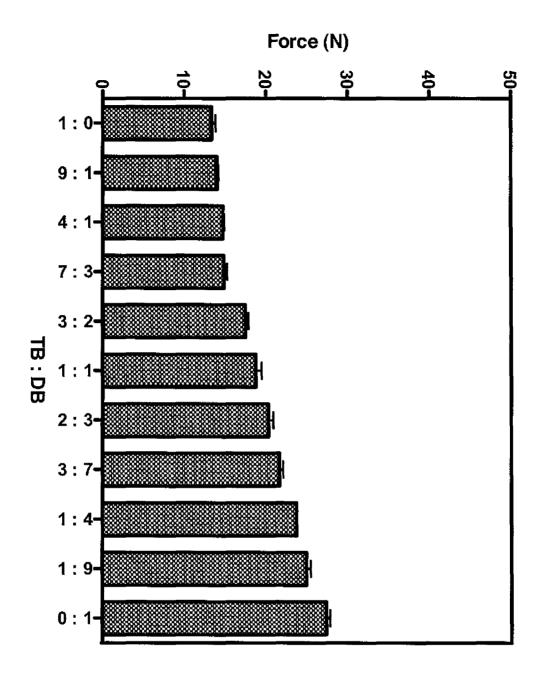


FIGURE 3

Cumulative release %

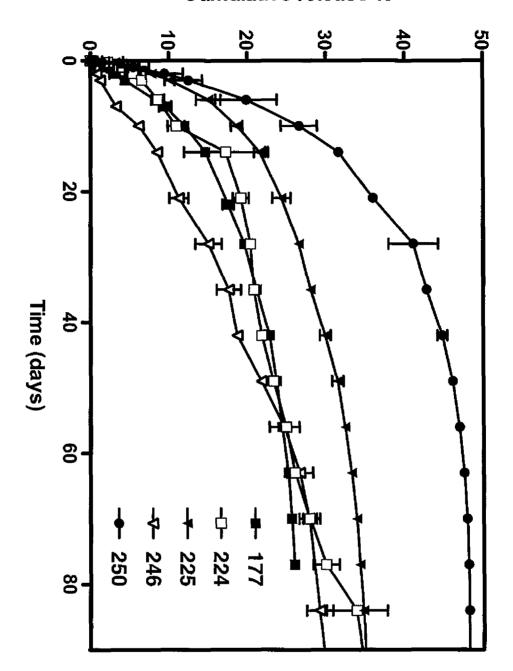


FIGURE 4

Release rate (µg/h/gr of formulation)

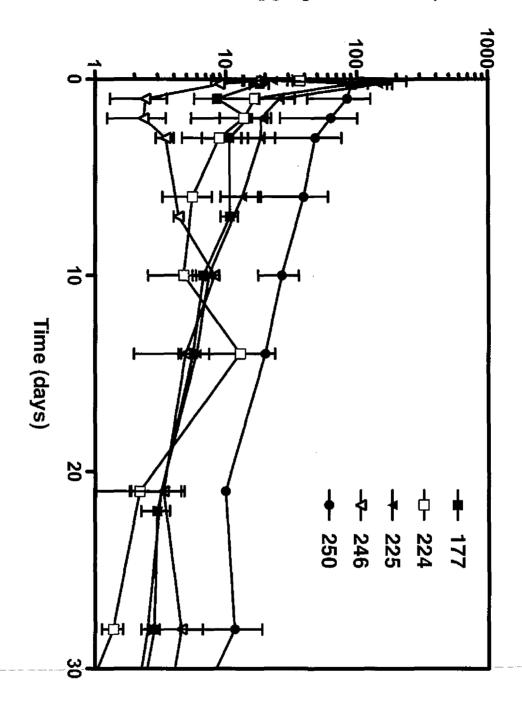
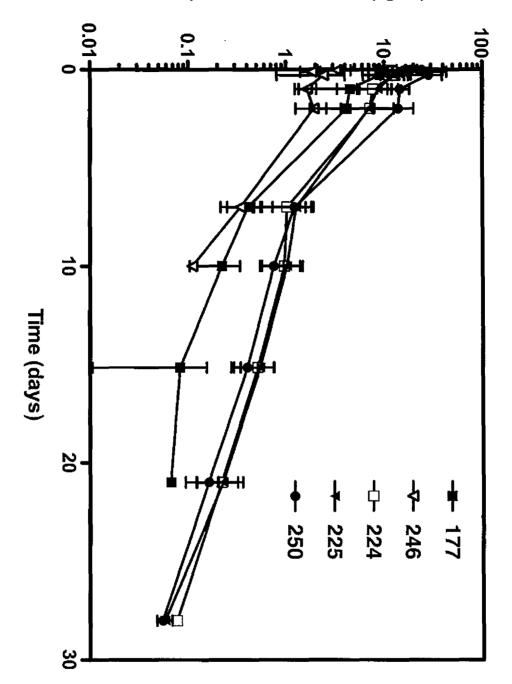
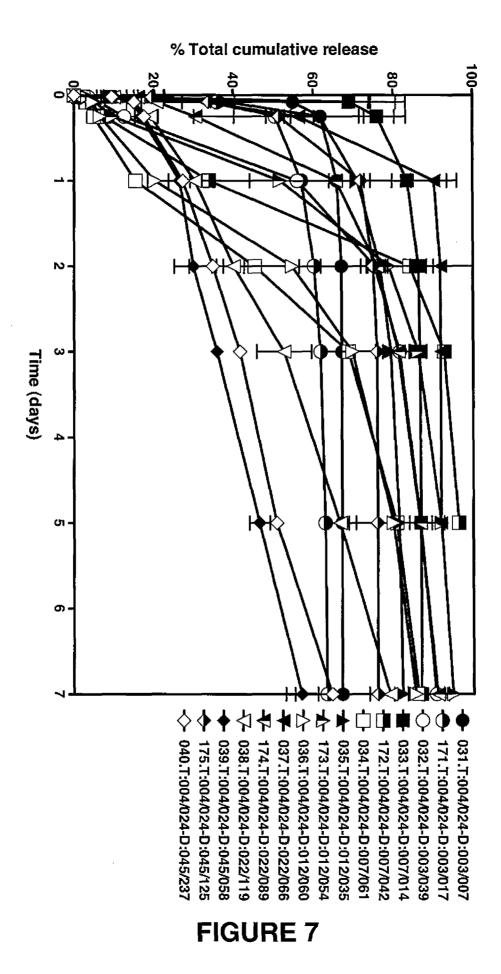
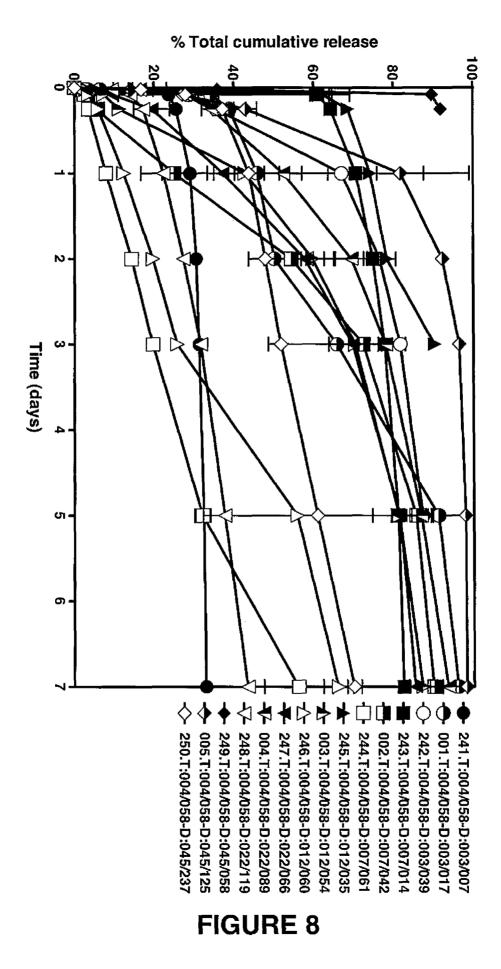
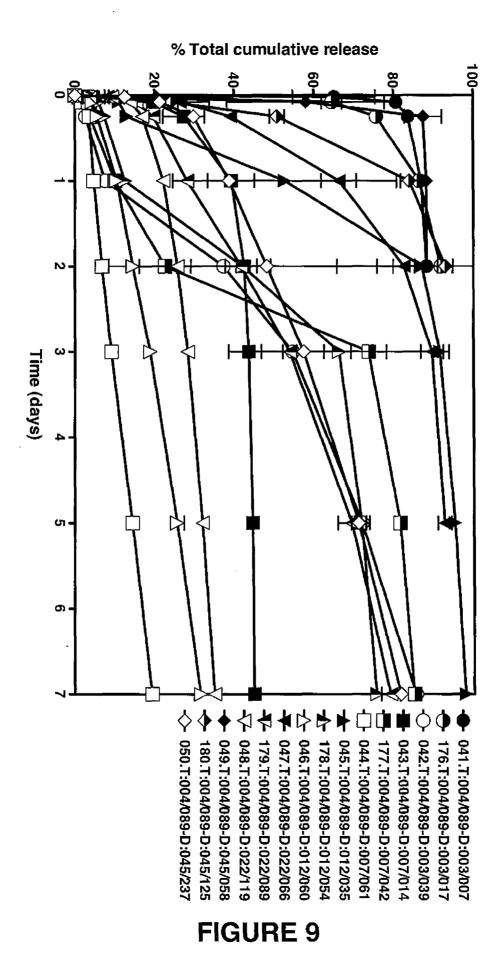
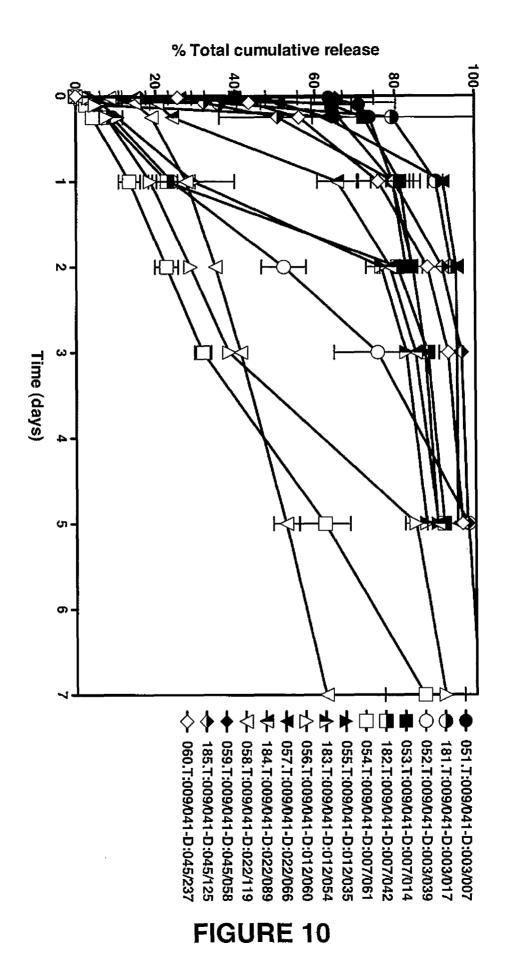


FIGURE 5

M53 plasma concentration (ng/ml)


FIGURE 6


7/49

8/49

9/49

10/49

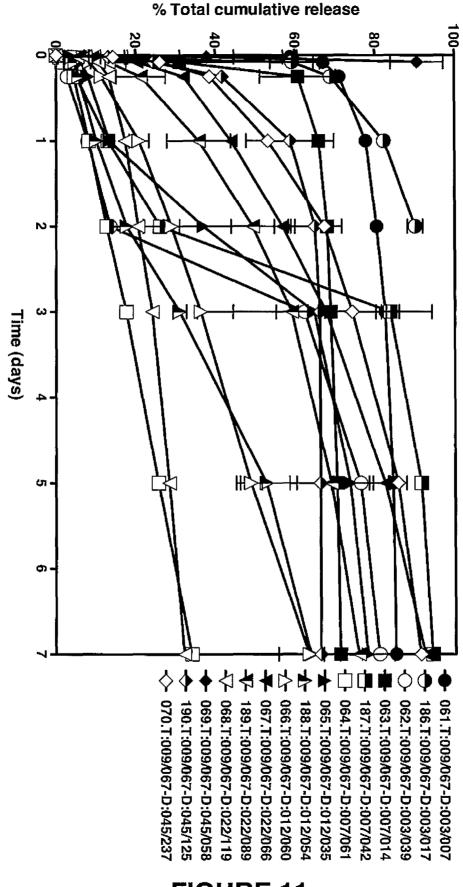
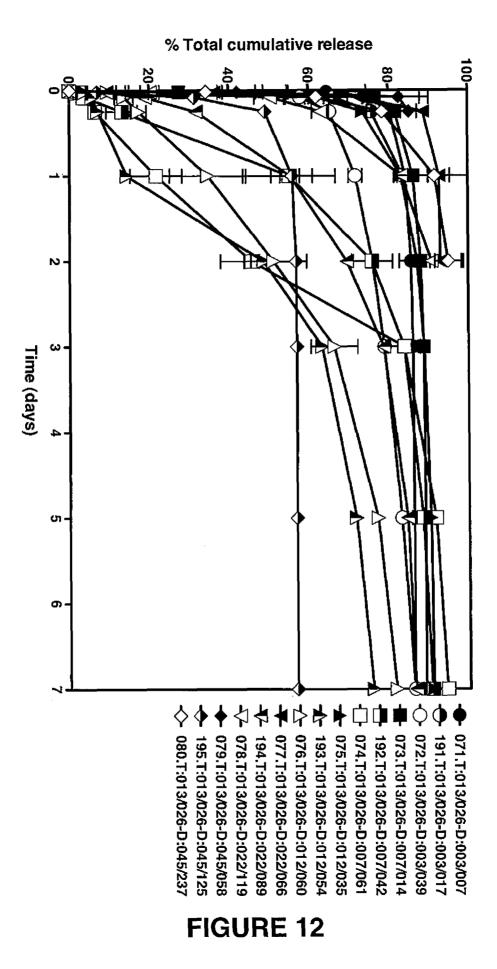
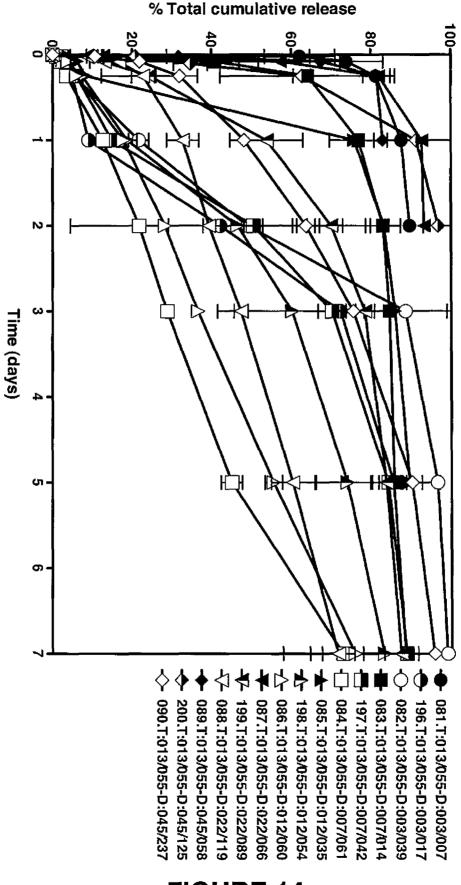
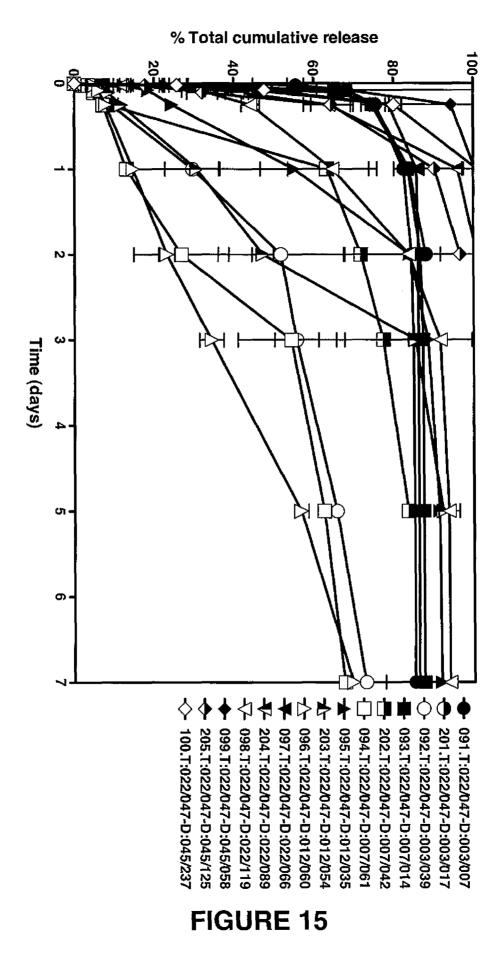
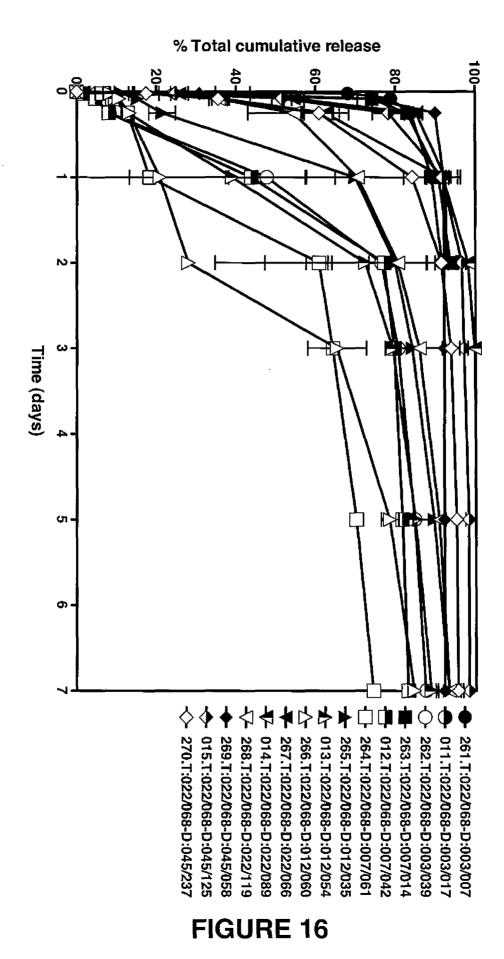



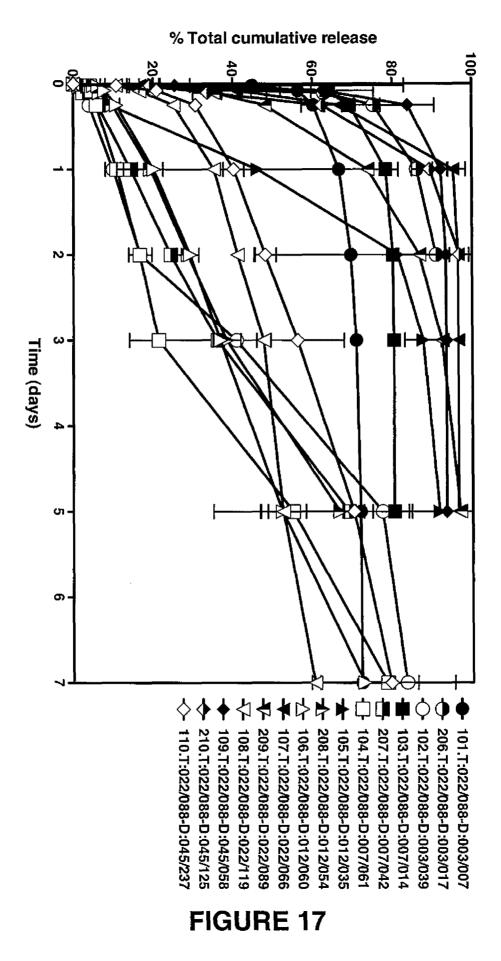
FIGURE 11

12/49



FIGURE 13


FIGURE 14

15/49

16/49

17/49

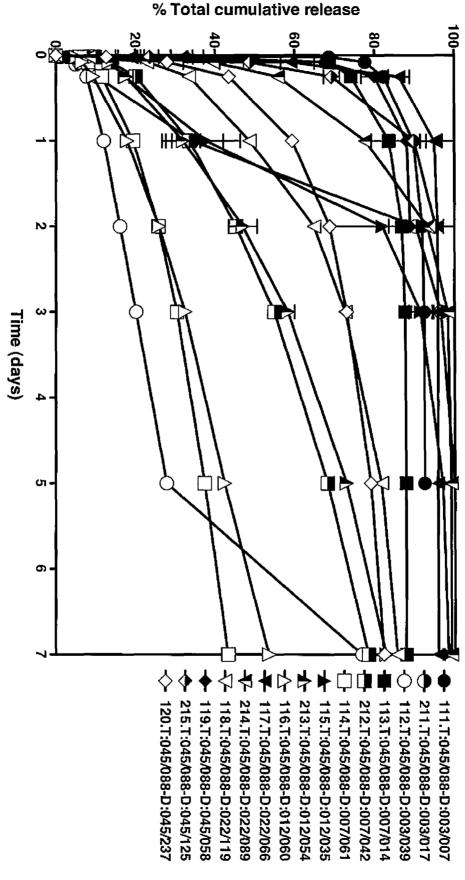
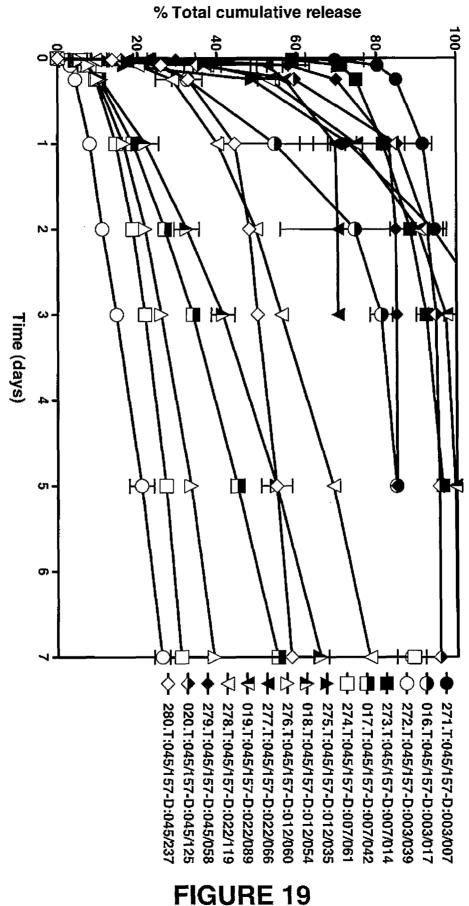
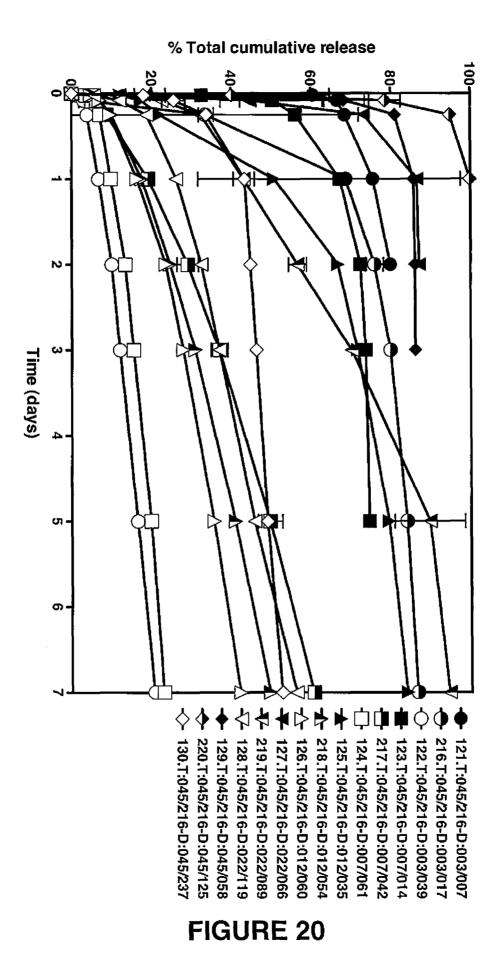
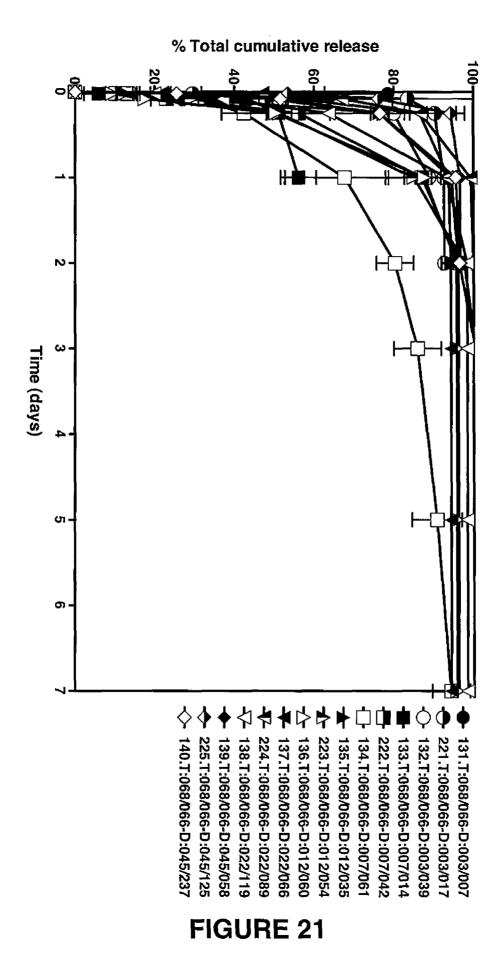
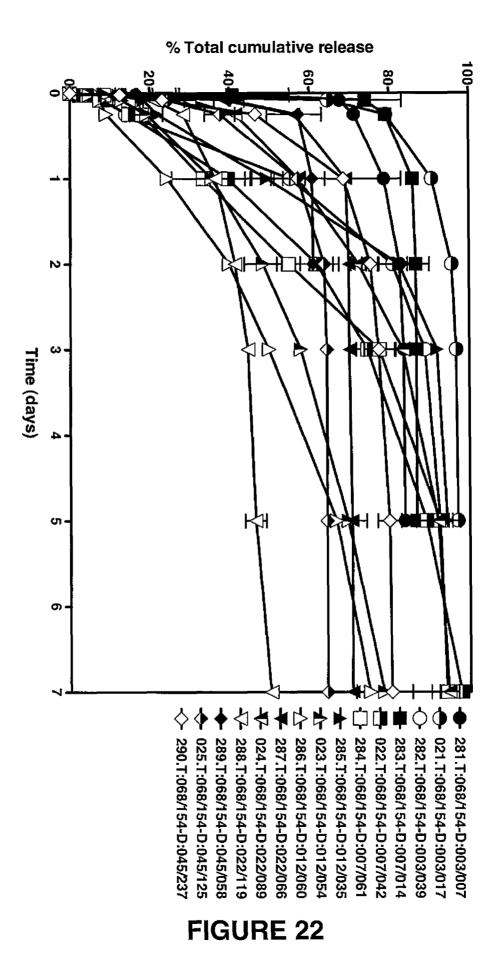
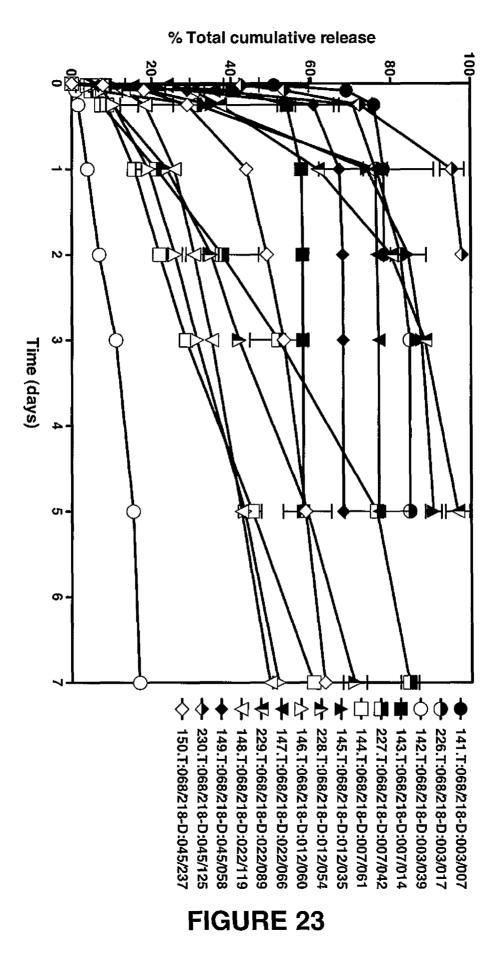





FIGURE 18




20/49

21/49

22/49

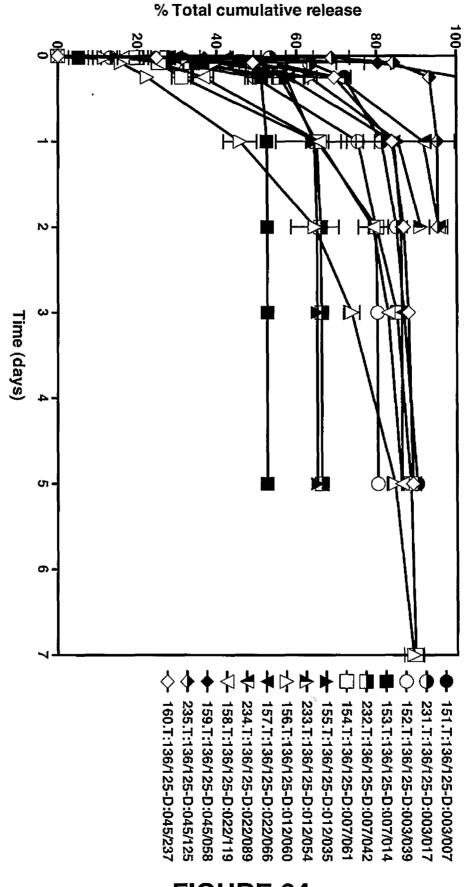
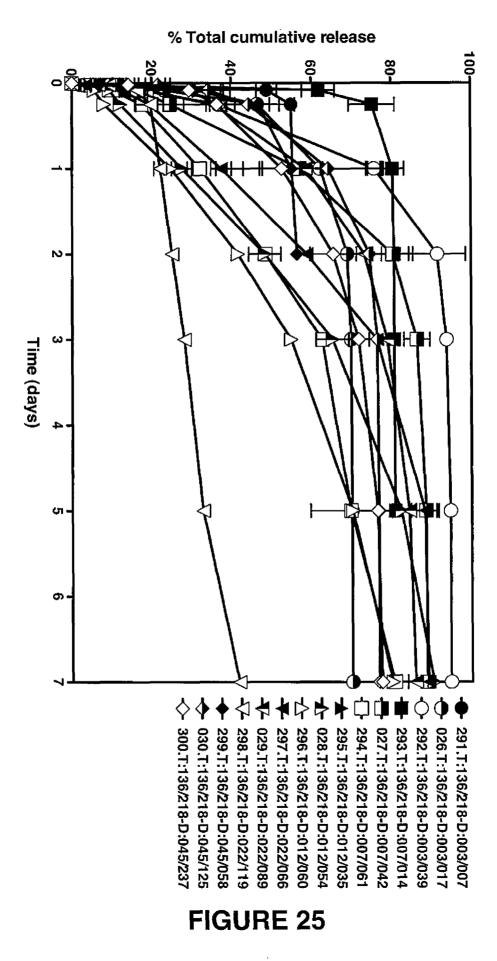
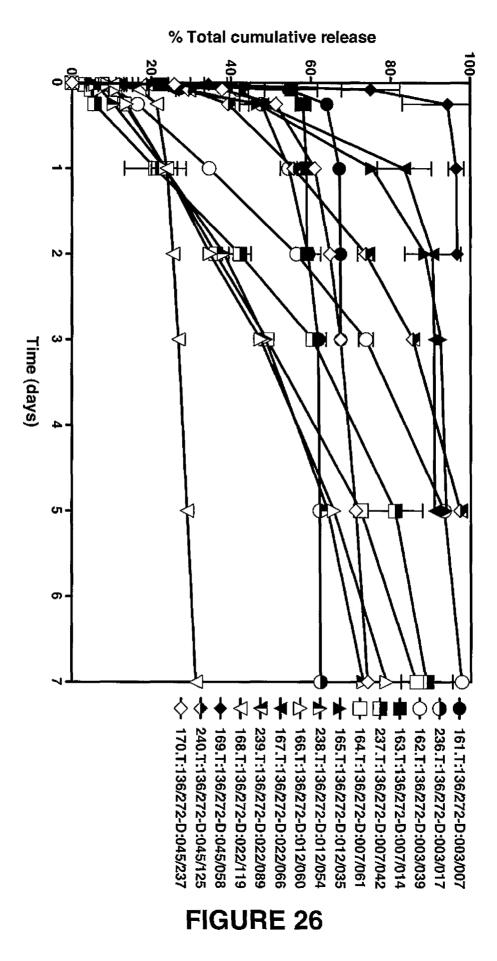




FIGURE 24

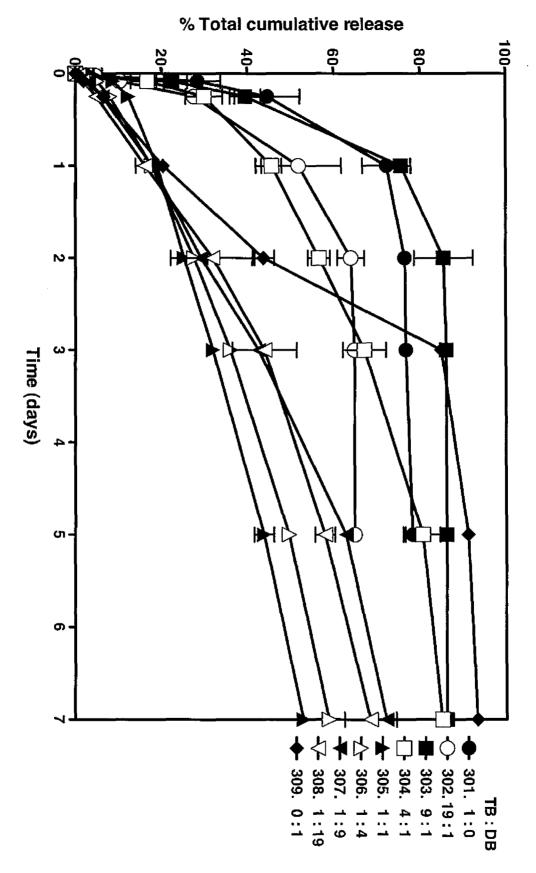


FIGURE 27

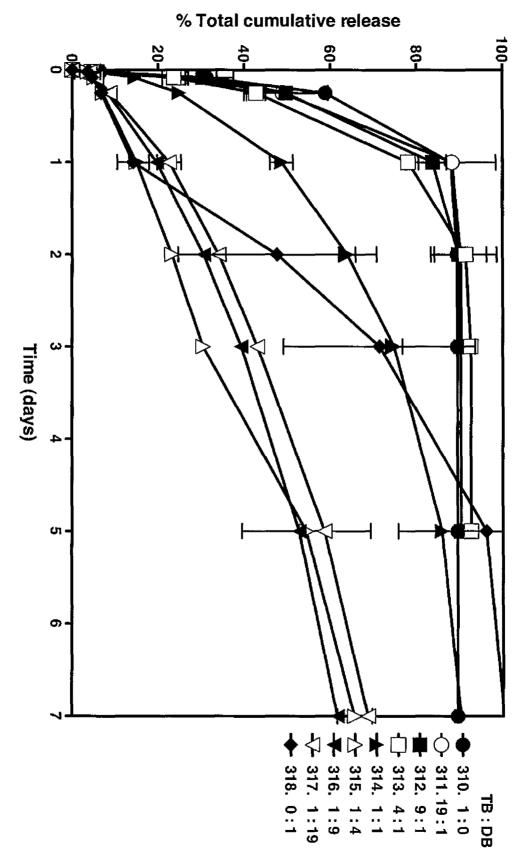


FIGURE 28

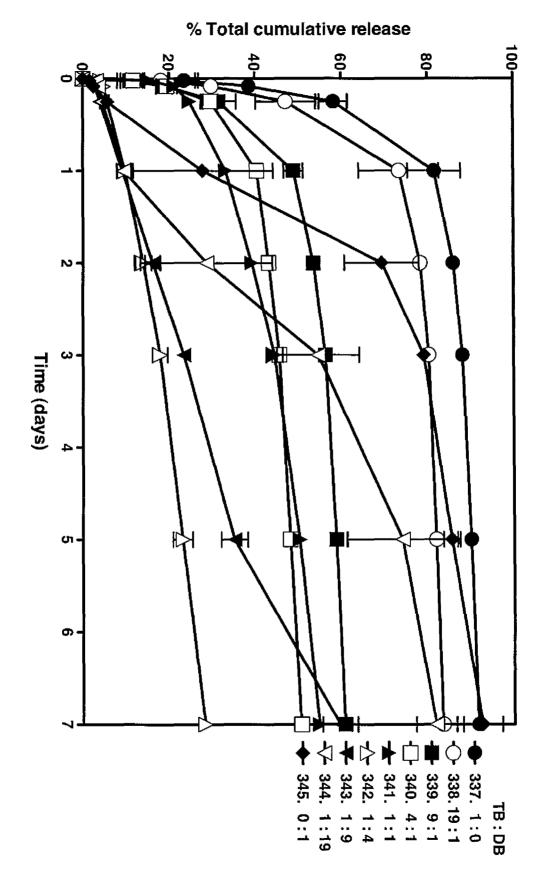


FIGURE 29

Buprenorphine release rate (µg active / day / gr formulation)

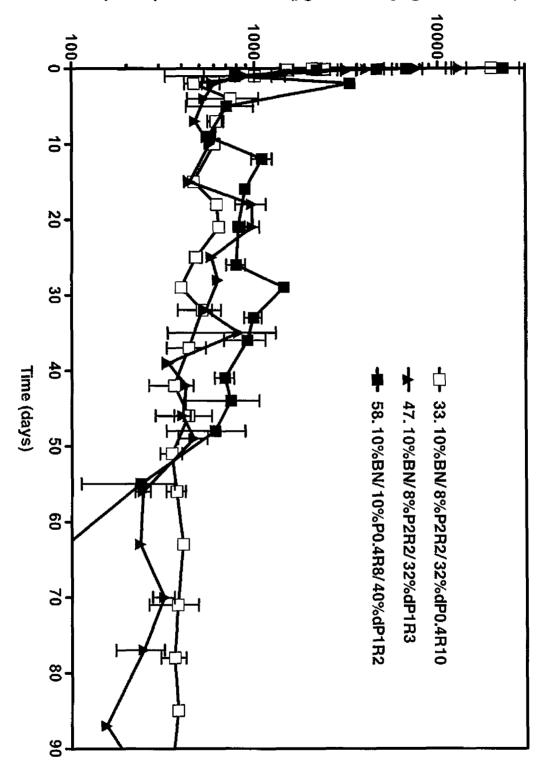


FIGURE 30

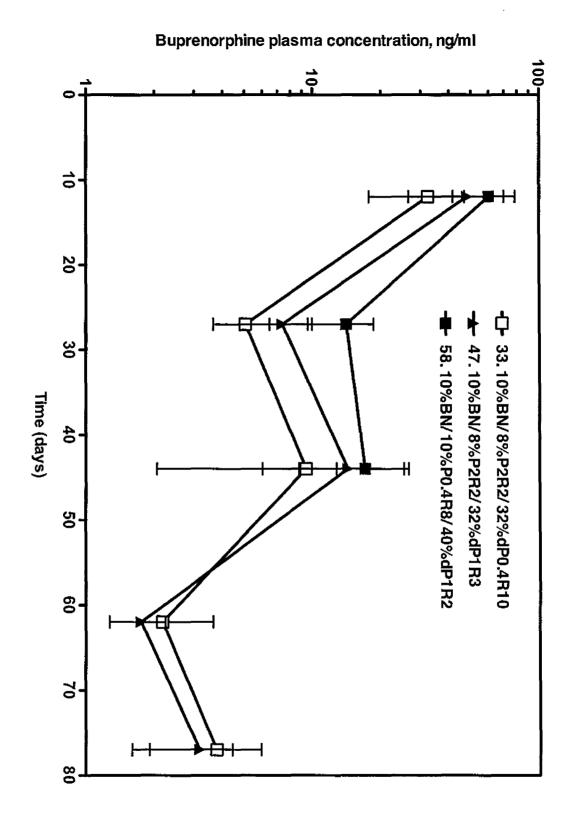


FIGURE 31

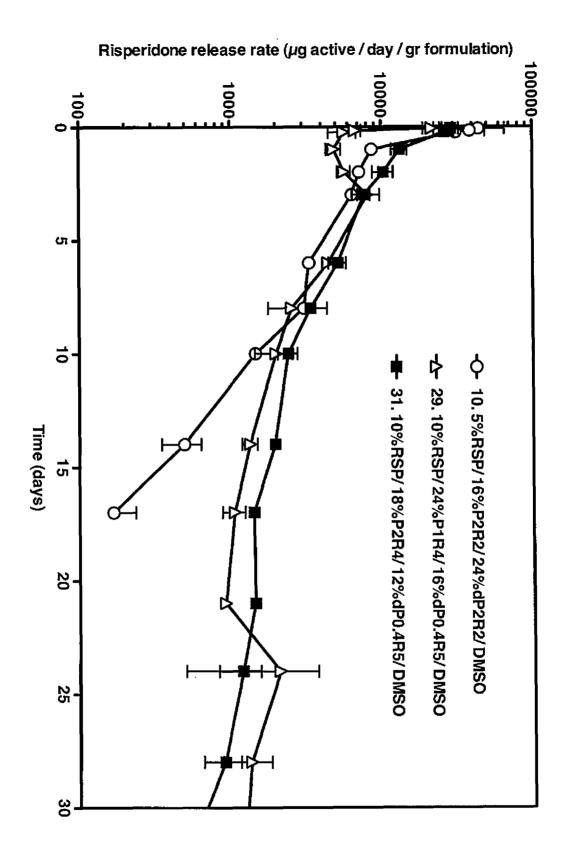


FIGURE 32

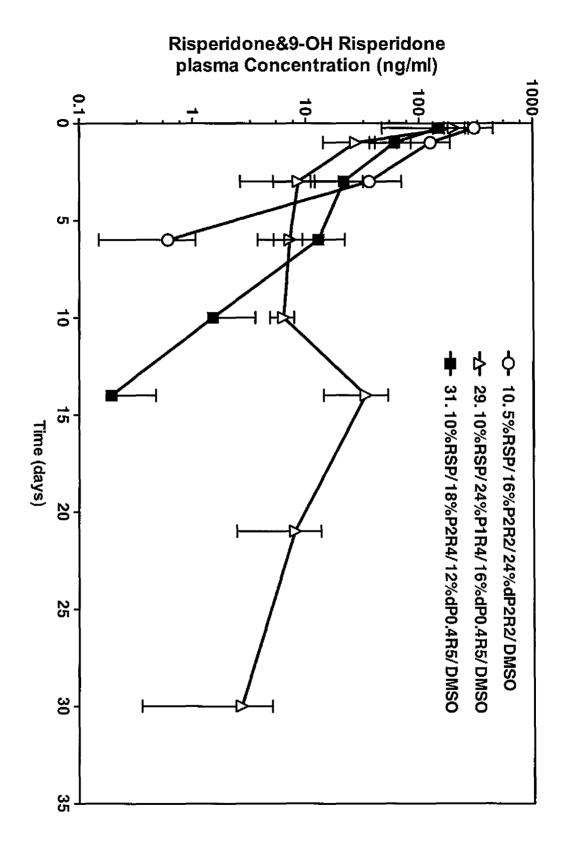


FIGURE 33

Ivermectin Plasma Concentration (ng/ml)

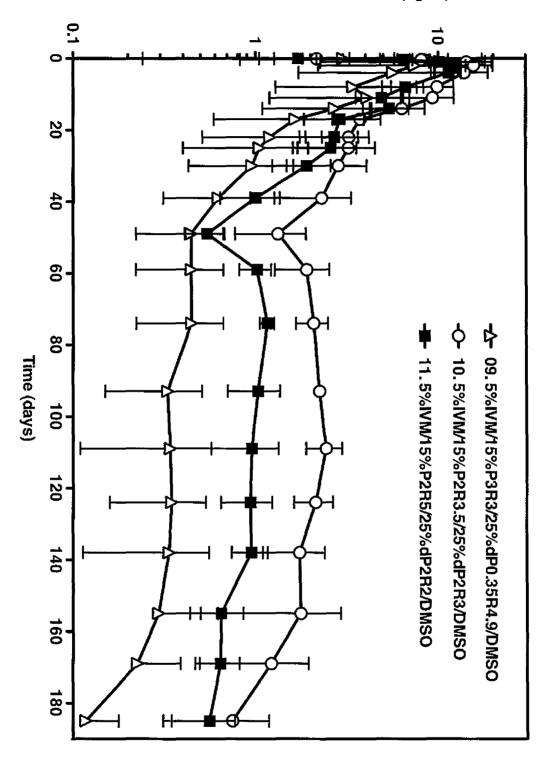
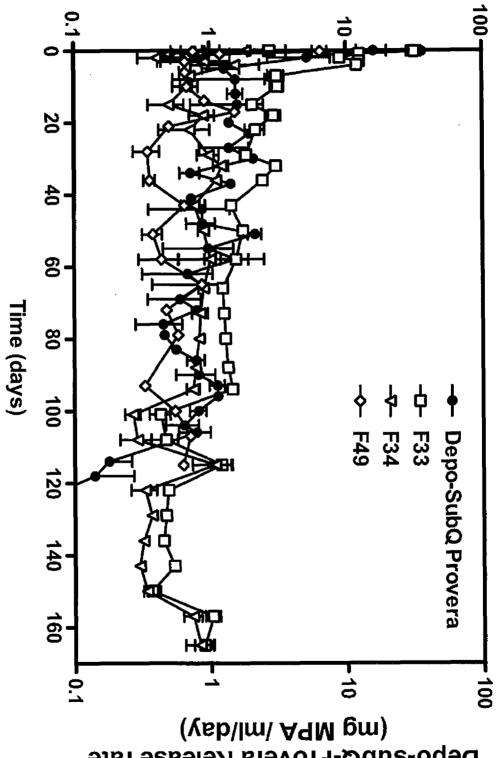



FIGURE 34

Formulation Release rate (mg MPA /gr formulation/day)

Depo-sub Q-Provera Release rate

FIGURE 35

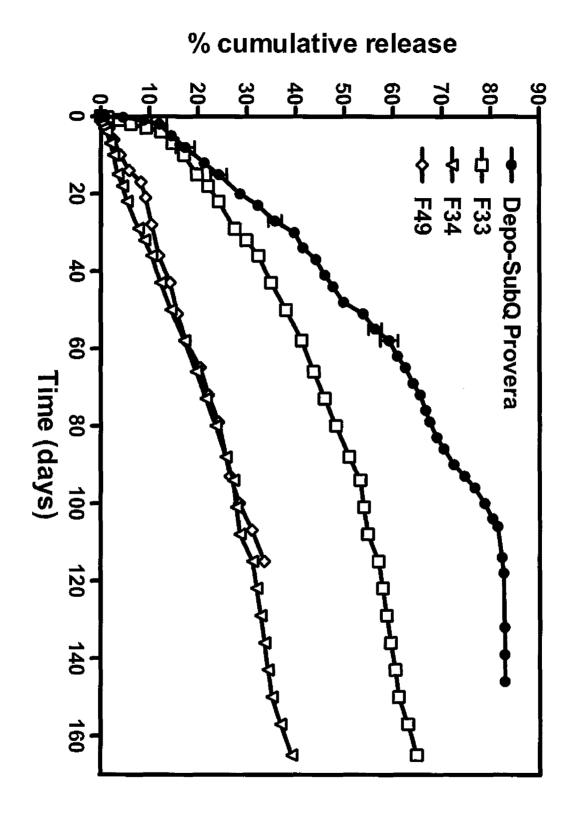
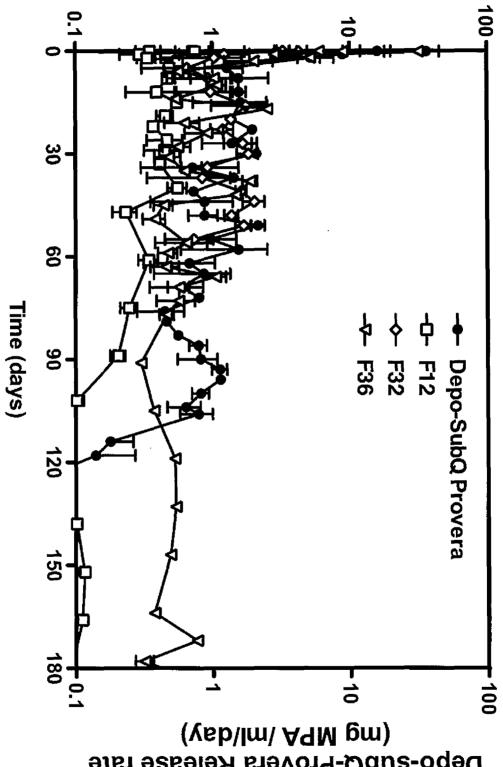



FIGURE 36

Formulation Release rate (mg MPA /gr formulation/day)

Depo-subQ-Provera Release rate

FIGURE 37

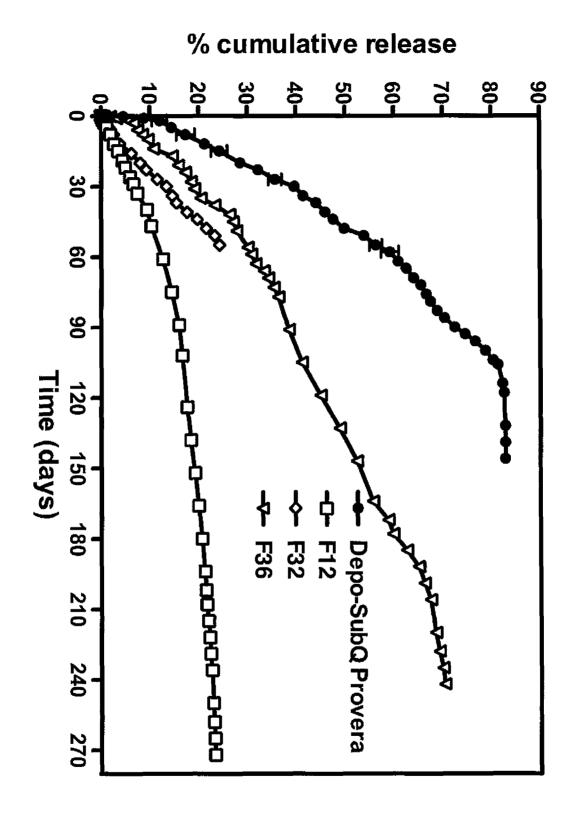


FIGURE 38

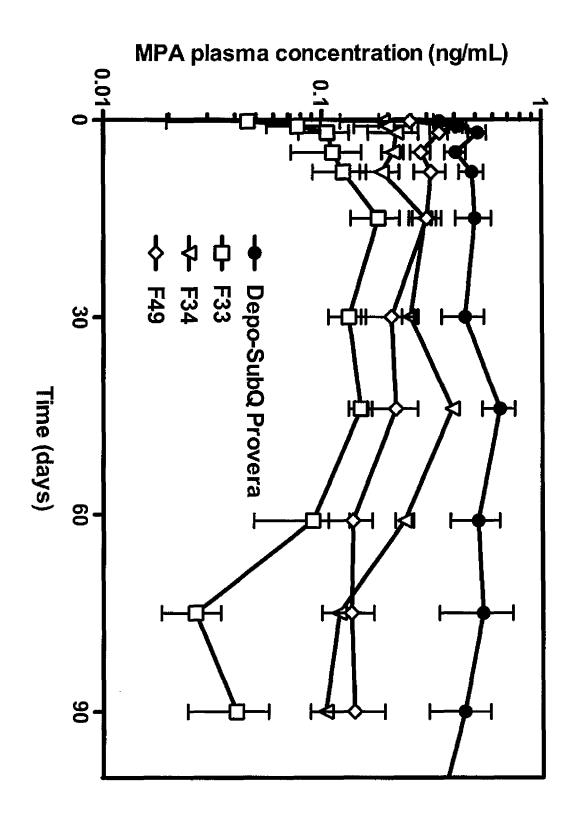


FIGURE 39

MPA plasma concentration (ng/mL)

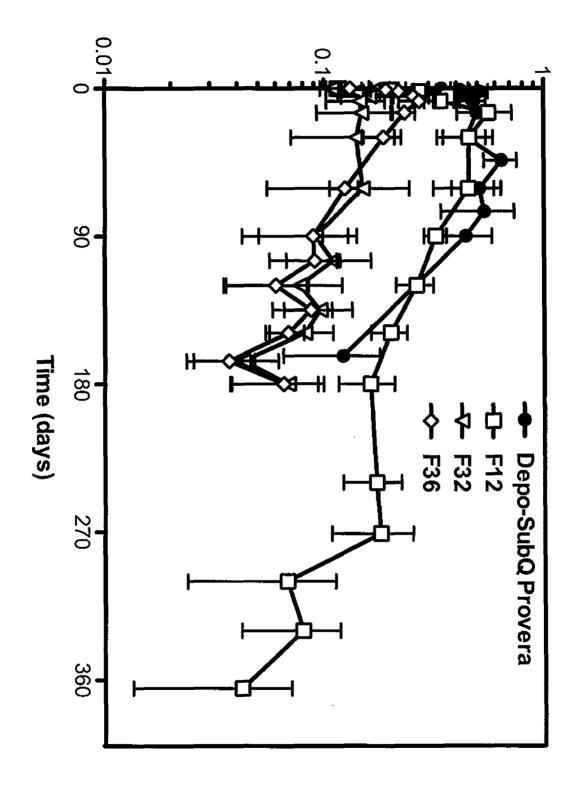


FIGURE 40

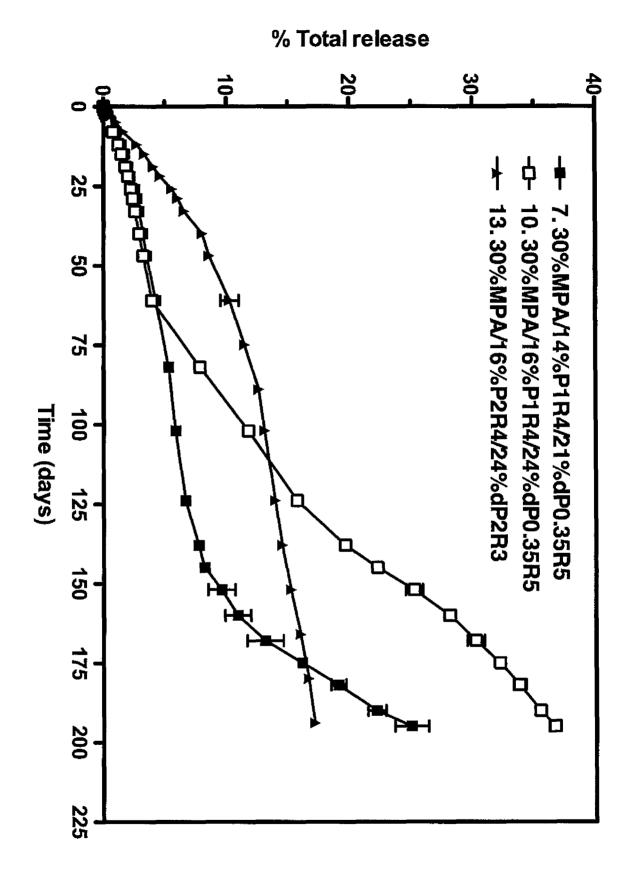


FIGURE 41

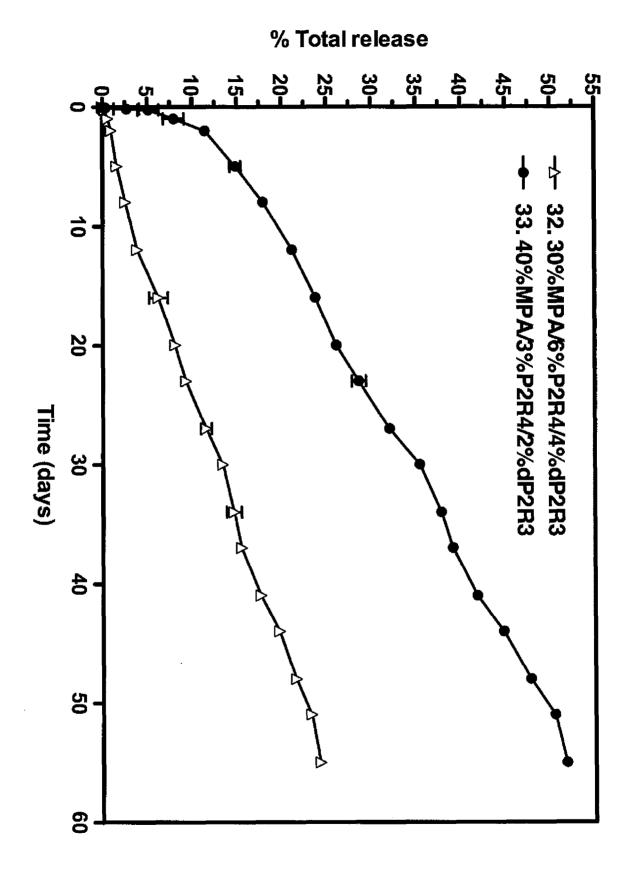


FIGURE 42

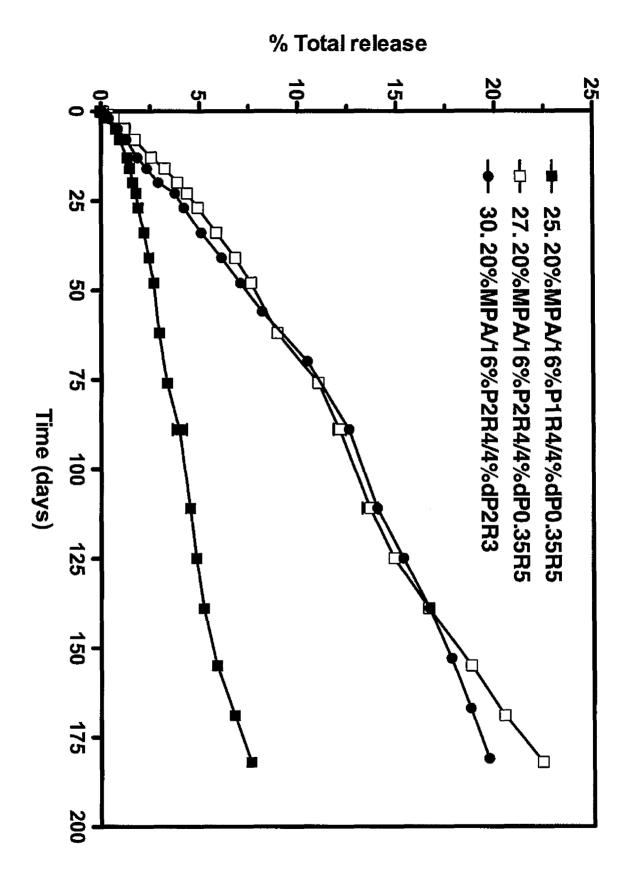


FIGURE 43

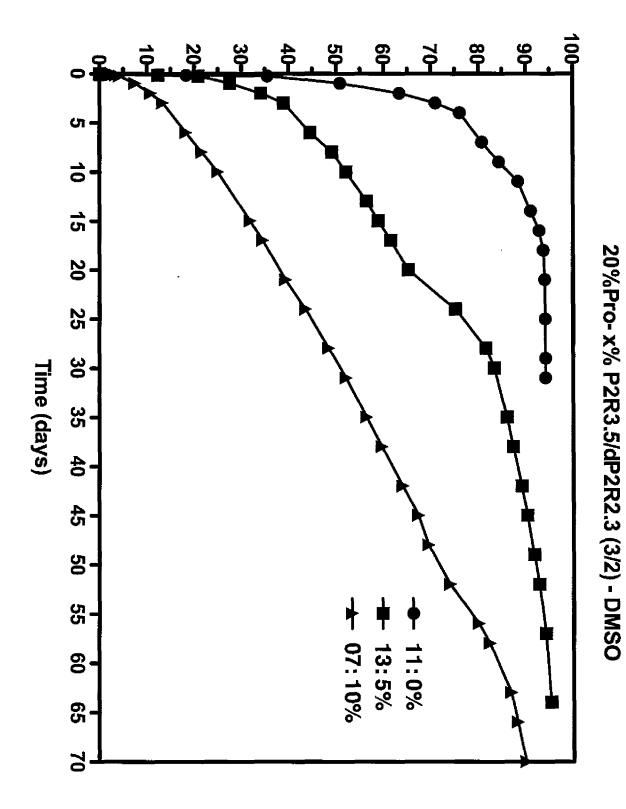


FIGURE 44

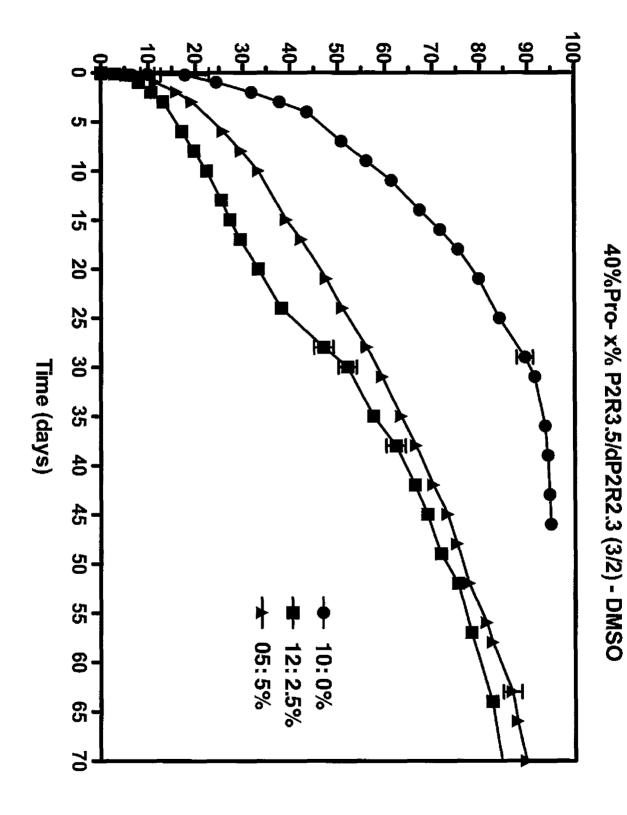


FIGURE 45

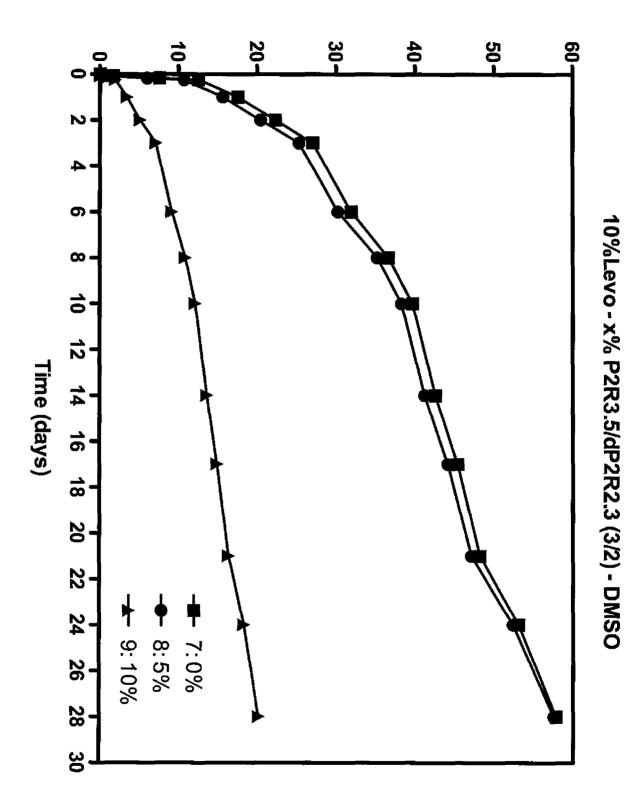


FIGURE 46

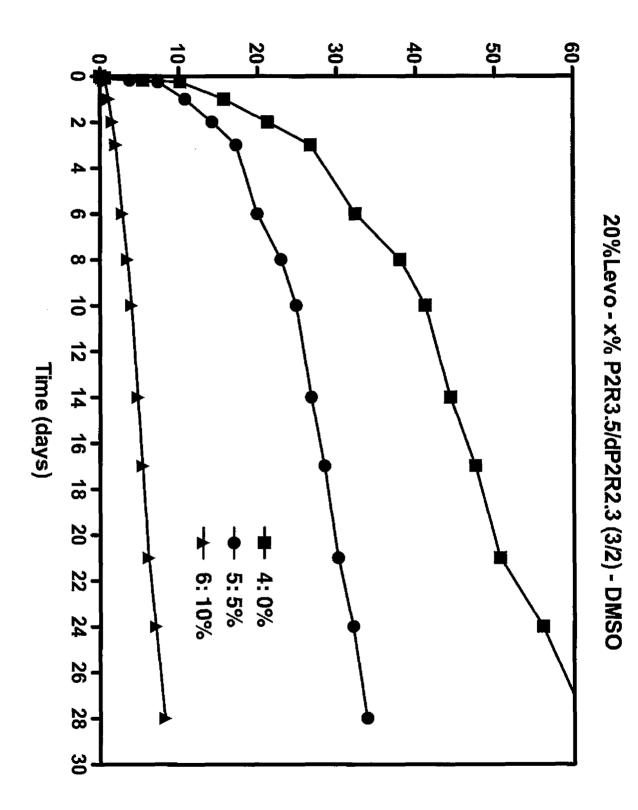


FIGURE 47

% Total cumulative release

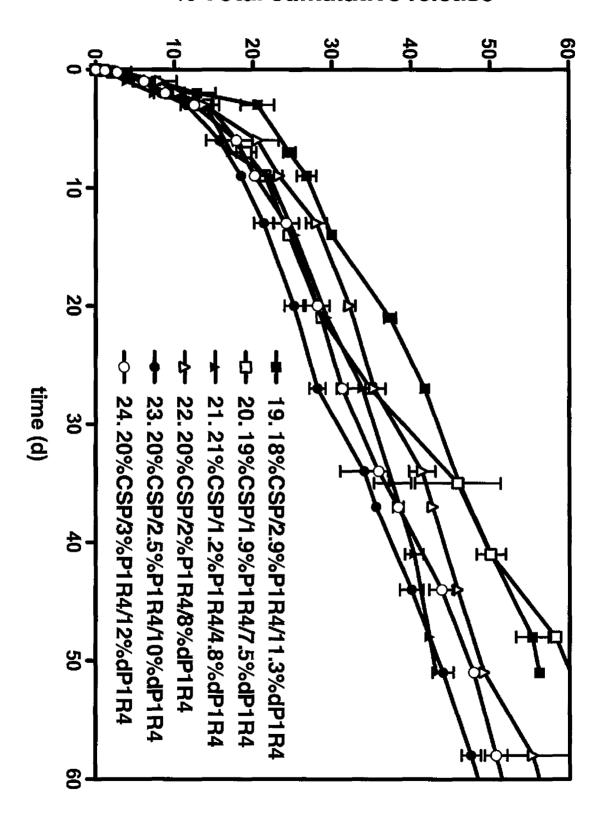


FIGURE 48

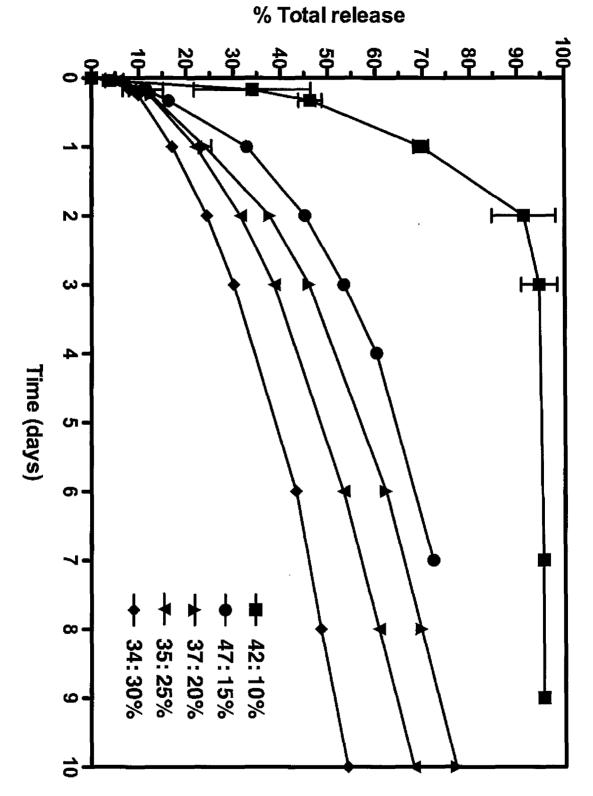


FIGURE 49

International application No
PCT/IB2013/001547

A. CLASSIFICATION OF SUBJECT MATTER INV. A61K47/34 A61K A61K31/445 A61K31/565 A61K31/57 A61K38/13 ADD. According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal, WPI Data, BIOSIS, EMBASE, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Χ DATABASE WPI 1-19 Section Ch, Week 201064 Thomson Scientific, London, GB; Class A96, AN 2010-L68935 XP002716536. LI X; LIU Y; ZHANG Y; ZHOU Y: "Polymer micelle composition used for preventing transplant rejection after organism or tissue transplant, or autoimmune or autoimmune related disease, comprises cyclosporine A and block copolymer" -& CN 101 810 560 A ((UYPK) UNIV PEKING) 25 August 2010 (2010-08-25) the whole document -/--IX I Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 22 November 2013 03/12/2013 Authorized officer Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016 Gómez Gallardo, S

1

International application No
PCT/IB2013/001547

C(Continua	ntion). DOCUMENTS CONSIDERED TO BE RELEVANT	<u> </u>
- Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	US 2005/112170 A1 (HOSSAINY SYED F [US] ET AL) 26 May 2005 (2005-05-26) page 1, paragraph 9 page 4, paragraph 46 - page 5, paragraph 52 page 5, paragraph 58-67 page 6, paragraphs 78,79 page 8 - page 9; examples 5-7 claims 1-36	1-19
X	WO 93/24154 A1 (FUISZ TECHNOLOGIES LTD [US]; FUISZ RICHARD C [US]) 9 December 1993 (1993-12-09) page 7, lines 23-28 page 15, lines 7-27 page 18, line 12 - page 19, line 28 page 20, lines 29-35 claims 1-26	1-19
X	WO 2009/129509 A2 (WARSAW ORTHOPEDIC INC [US]; MEDTRONIC INC [US]) 22 October 2009 (2009-10-22) page 3, paragraph 8 - page 6, paragraph 14 page 20, paragraph 81 page 48 - page 50; example 2 page 53 - page 56; examples 4,5	1-19
Α	WO 97/10849 A1 (SAM YANG CO [KR]) 27 March 1997 (1997-03-27) the whole document	1-19
Α	US 6 592 899 B2 (FOWERS KIRK DEE [US] ET AL) 15 July 2003 (2003-07-15) cited in the application column 3, line 27 - column 4, line 13 column 10, line 58 - column 11, line 13 column 11 - column 12; examples 1-3 column 12 - column 13; example 6 column 13 - column 14; example 9 column 14, line 60 - column 15, line 16 claims 1-79	1-19
A	WO 2007/019439 A2 (ANGIOTECH INT AG [CH]; ANGIOTECH PHARM INC [US]) 15 February 2007 (2007-02-15) page 4, line 10 - page 5, line 29 page 18, lines 8-28 page 19, line 19 - page 20, line 21 page 36, lines 5-28 page 37, line 17 - page 38, line 16 page 44, line 24 - page 45, line 26	1-19
A	US 4 745 160 A (CHURCHILL JEFFREY R [GB] ET AL) 17 May 1988 (1988-05-17) the whole document	1-19

1

International application No
PCT/IB2013/001547

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 2 359 860 A2 (SAMYANG CORP [KR]) 24 August 2011 (2011-08-24) the whole document	1-19
А	US 6 350 812 B1 (VERT MICHEL [FR] ET AL) 26 February 2002 (2002-02-26) cited in the application the whole document	1-19
Α	WO 02/45689 A1 (SAMYANG CORP [KR]) 13 June 2002 (2002-06-13) the whole document	1-19
A	DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; 2005, CHEN SIBAO ET AL: "In vitro release of levonorgestrel from phase sensitive and thermosensitive smart polymer delivery systems", XP002716537, Database accession no. NLM15926681 the whole document & CHEN SIBAO ET AL: "In vitro release of levonorgestrel from phase sensitive and thermosensitive smart polymer delivery systems", PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY 2005, vol. 10, no. 2, 2005, pages 319-325, ISSN: 1083-7450	1-19
А	WO 93/00070 A1 (ENDORECHERCHE INC [CA]) 7 January 1993 (1993-01-07) page 1, paragraph 1 page 43, last paragraph - page 44, paragraph 1 page 47, paragraph 2 page 55 - page 57; examples 3,4	1-19
Х,Р	WO 2012/090070 A2 (MEDINCELL [FR]) 5 July 2012 (2012-07-05)	1,3,5,7, 9,11-13, 15,17,19
L	the whole document	13,17,13

1

Information on patent family members

International application No
PCT/IB2013/001547

Patent document cited in search report		Publication date	Patent family Publication member(s) date
CN 101810560	A	25-08-2010	NONE
US 2005112170	A1	26-05-2005	AT 389423 T 15-04-2008 DE 602004012597 T2 16-04-2009 EP 1689462 A1 16-08-2006 EP 1932551 A1 18-06-2008 JP 2007512094 A 17-05-2007 US 2005112170 A1 26-05-2005 WO 2005051449 A1 09-06-2005
WO 9324154	A1	09-12-1993	AU 665844 B2 18-01-1996 AU 4405893 A 30-12-1993 CA 2137268 A1 09-12-1993 DE 69332210 D1 19-09-2002 DE 69332210 T2 24-04-2003 EP 0746342 A1 11-12-1996 JP 3941878 B2 04-07-2007 JP H07507548 A 24-08-1995 US 5518730 A 21-05-1996 WO 9324154 A1 09-12-1993
WO 2009129509	A2	22-10-2009	AU 2009236089 A1 22-10-2009 CA 2700736 A1 22-10-2009 CN 101842099 A 22-09-2010 EP 2229171 A2 22-09-2010 JP 2011518187 A 23-06-2011 US 2009264472 A1 22-10-2009 WO 2009129509 A2 22-10-2009
WO 9710849	A1	27-03-1997	AU 699988 B2 17-12-1998 CA 2231886 A1 27-03-1997 CN 1197396 A 28-10-1998 DE 69625921 D1 27-02-2003 DE 69625921 T2 07-08-2003 EP 0854731 A1 29-07-1998 ES 2188787 T3 01-07-2003 JP 3634377 B2 30-03-2005 JP H10512287 A 24-11-1998 US 6322805 B1 27-11-2001 WO 9710849 A1 27-03-1997
US 6592899	B2	15-07-2003	TW 592726 B 21-06-2004 US 2003068377 A1 10-04-2003 WO 03028589 A1 10-04-2003
WO 2007019439	A2	15-02-2007	AU 2006278328 A1 15-02-2007 CA 2618404 A1 15-02-2007 EP 1909774 A2 16-04-2008 US 2008247987 A1 09-10-2008 WO 2007019439 A2 15-02-2007
US 4745160	Α	17-05-1988	AU 587977 B2 07-09-1989 AU 4315085 A 02-01-1986 CA 1247271 A1 20-12-1988 DE 3582088 D1 18-04-1991 DK 287885 A 27-12-1985 EP 0166596 A2 02-01-1986 ES 8609374 A1 16-12-1986

Information on patent family members

International application No
PCT/IB2013/001547

					2013/00154/
Patent document cited in search report	Publication date		Patent family member(s)		Publication date
		ES ES ES FI GR HU IE IL JP JP JP NO NZ PT US VU ZA	8704726 8705221 8705222 852374 851474 193994 196301 58678 75407 H0751517 H0769929 H0769930 S6115846 H07106987 H07106987 407106988 852547 212538 80710 4745160 4877606 106385 8504188	A1 A1 BBABAAABBAAAAAAAAAAAAAAAAAAAAAAAA	01-07-1987 16-07-1987 16-07-1987 27-12-1985 25-11-1985 28-12-1987 28-11-1988 03-11-1988 05-06-1995 14-03-1995 14-03-1995 23-01-1986 15-11-1995 27-12-1985 12-02-1988 01-07-1985 17-05-1988 31-10-1989 31-10-1988
EP 2359860 A2	24-08-2011	CN EP JP KR US WO	102292109 2359860 2012509318 20110091515 2011224151 2010059001	A2 A A A1	21-12-2011 24-08-2011 19-04-2012 11-08-2011 15-09-2011 27-05-2010
US 6350812 B1	26-02-2002	AT DE DK EP ES FR GR JP JP PT US WO	202373 69613481 69613481 0863933 0863933 2159767 2741628 3036586 4521067 2000500803 2008056935 863933 6350812 9719973	D1 T2 T3 A1 T3 A1 T3 B2 A A E B1	15-07-2001 26-07-2001 25-04-2002 24-09-2001 16-09-1998 16-10-2001 30-05-1997 31-12-2001 11-08-2010 25-01-2000 13-03-2008 28-12-2001 26-02-2002 05-06-1997
WO 0245689 A1	13-06-2002	AT AU AU CA CN EP JP KR US WO	405251 2273302 2002222733 2430481 1477952 1339389 2004514734 20020045569 2004037885 0245689	A B2 A1 A A1 A A	15-09-2008 18-06-2002 30-03-2006 13-06-2002 25-02-2004 03-09-2003 20-05-2004 19-06-2002 26-02-2004 13-06-2002
WO 9300070 A1	07-01-1993	AT AU	161173 672750		15-01-1998 17-10-1996

Information on patent family members

International application No
PCT/IB2013/001547

				PCT/IB2013/001547	
Patent document cited in search report	Publication date	Patent family member(s)			Publication date
		AU CA CZ DE EP FIU E LL PY NO NZ NZ US	70746 211239 28597 6922362 6922362 059131 93589 22256 92212 10244 H0650862 13109 93474 24337 27263 31456 214227 14789 543414 554117 562936 581434 586138	3 A A A A A A A A A A A A A A A A A A A	08-07-1999 07-01-1993 15-12-1999 29-01-1998 23-04-1998 13-04-1994 28-12-1993 28-07-2003 30-12-1992 10-03-1998 29-09-1994 31-07-2007 21-12-1993 27-02-1996 28-05-1996 24-06-1997 29-09-2000 10-12-1999 07-09-1994 18-07-1995 30-07-1996 13-05-1997 29-09-1998 19-01-1999 07-01-1993
WO 2012090070	A2 05-07-2012	AU CA EP SG US WO	201135089 282285 265852 19141 201217245 201209007	4 A1 5 A2 4 A1 4 A1	11-07-2013 05-07-2012 06-11-2013 30-08-2013 05-07-2012 05-07-2012