A 0 0 A O O T

02/082261 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Burcau

(43) International Publication Date

17 October 2002 (17.10.2002)

PCT

(10) International Publication Number

WO 02/082261 A2

(51) International Patent Classification”:
(21) International Application Number:
(22) International Filing Date:

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:
01/04643
02/02314

GO6F 9/40

PCT/IB02/01061

4 April 2002 (04.04.2002)

English

English

5 April 2001 (05.04.2001) FR
18 February 2002 (18.02.2002) FR

(71) Applicant (for all designgted States except US):
SCHLUMBERGER SYSTEMES [FR/FR]; 50, av-
enue Jean Jaures, F-92120 Montrouge (FR).

(71) Applicant (for MC only): SCHLUMBERGER MALCO,
INC. [US/US]; 9800 Reistertown, Owing Mills, MD 21117

(Us).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CABOS, Philippe
[FR/FR]; 44 rue Périer, F-92120 Montrouge (FR). DER-
OUET, Odile [FR/FR]; 76 rue des Carves, F-92120 Mon-

trouge (FR).

(74) Common Representative:

Jaures, F-92120 Montrouge (FR).

SCHLUMBERGER SYS-
TEMES; C/O GUILLERM, Patrick, 50, avenue Jean

81

34

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ,NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND DEVICE FOR COMPRESSION AND DECOMPRESSION OF CODES OF AN APPLICATION,
WRITTEN IN HIGH LANGUAGE, ESPECIALLY IN MOBILE TELEPHONY.

12

14 /4

/10

/24

<

\22

< \20

18 6
Trar

(57) Abstract: A method of loading an application comprising codes onto a subscriber identification module (8), the method com-
prising: - a compression step in which each code of a pre-defined set of codes is replaced by a reference to that code so as to obtain a
compressed application; - a loading step in which the compressed application is loaded onto the subscriber identification module; - a
decompression step in which each reference comprised in the compressed application is replaced by the code that is referred to so as
to reconstitute the application; - and a storage step in which the application is stored in a memory of the subscriber identity module.

5

10

15

WO 02/082261 PCT/IB02/01061

1

METHOD AND DEVICE FOR COMPRESSION AND DECOMPRESSION OF
CODES OF AN APPLICATION, WRITTEN IN HIGH LEVEL LANGUAGE,
ESPECIALLY IN MOBILE TELEPHONY

This invention concerns the compression and decompression of codes of
an application, such as an application written in high level language,
especially in mobile telephony.

It has a general application in data processing and more especially in
mobile telephony.

Most mobile telephony operators require an increasing number of
services using the SMS (Short Message Service) channel of their network to
transmit application data written in high level language (for example applets
written in JAVA language) between the subscriber's mobile device
(telecommunication terminal generally equipped with a subscriber
identification module) and a computer equipment managing this service.

The mobile telephony communication standard, for example GSM
(Global System for Mobile communication) allocates a very small passband
(only several hundred bytes per second) for the SMS channel which was
initially only planned for transmission of text messages not exceeding 180
bytes.

The operator's equipment is quickly congested by a non negligible
quantity of data to be transmitted on this low speed SMS channel.
Consequently, there is a high latency time for the subscriber.

Improving the performance involves extremely costly investments in
network equipment which the operator finds more and more difficult to
amortise. In addition, it is always limited by the maximum speed of the SMS
channel.

The Applicant therefore decided to study the problem of reducing the
number of data bytes transmitted, especially on this SMS channel.

This invention provides a solution to this problem.

It concerns a data processing method for a mobile communication

device equipped with a subscriber identification module, the said data

10

20

30

WO 02/082261 PCT/1B02/01061

2

including codes belonging to an application written in high level language

from a remote transmitting set.

The subject of the invention is a method of loading an application
comprising codes onto a subscriber identification module (8), the method
comprising:

- a compression step in which each code of a pre-defined set of codes
is replaced by a reference to that code so as to obtain a compressed
application;

- a loading step in which the compressed application is loaded onto
the subscriber identification module;

- a decompression step in which each reference comprised in the
compressed application is replaced by the code that is referred to so
as to reconstitute the application;

- and a storage step in which the application is stored in a memory of

the subscriber identity module.

In ourl illustrated example, the method used is of the type which
includes the following known steps:

- equip the subscriber identification module with an interpreter able to
interpret the codes of an application written in high level language;

- equip the subscriber identification module and the transmitting set
with a communication protocol according to which the mobile device is able

to obtain the codes of a desired application from the said transmitting set.

According to a first embodiment, the method also includes for the
transmitting set the following steps:

- process dynamically at least some byte sequences contained in the
said codes so as to recognise in these byte sequences, the byte sequences
identically duplicated at least twice, and

- for at least one duplicated sequence, define a compression sequence,

and store this compression sequence at an address chosen in a compression

10

15

20

o]
(5,1

30

WO 02/082261 PCT/1B02/01061

3

table, replace at least one duplicated sequence in the original data by the
address (the reference) of the corresponding compression sequence, and

send the codes so compressed to the mobile subscriber device.

In our first embodiment, the method includes, for the subscriber
identification module, the following steps:

-1) receive the codes so compressed from the transmitting set and
reassemble them;

-2) recognise in the data so reassembled the non duplicated byte
sequences and the compression sequences; and

-3) store each non duplicated byte sequence in a decompression table at
a respective address, and replace at least one compression sequence by the
corresponding non duplicated byte sequence located in the decompression
table at the address indicated in the compression sequence, and thereby

obtain decompressed codes.

According to a second embodiment, the method includes for the
transmitting set the following step:

- process statically at least some byte sequences of the said codes, and
convert the said byte sequences into bit strings (the reference) according to a
predetermined conversion rule, replace each byte sequence by its
corresponding bit string, and transmit the codes so converted to the mobile
subscriber device.

Advantageously, the dynamic and the static process are implemented
more or less simultaneously, the codes transmitted to the mobile subscriber

device being both converted and so compressed.

In our second embodiment, the bit string length depends on the
frequency of the codes in the application to be processed.
Advantageously, in this second embodiment, the method includes for

the subscriber identification module the following step:

10

15

20

25

30

WO 02/082261 PCT/1B02/01061

4_

-receive the codes so converted from the transmitting set, reassemble
them, and replace at least one bit string by the corresponding byte sequence
according to a predetermined conversion function.

Advantageously, this last step and the above step 3 are implemented
simultaneously, the codes processed in the subscriber identification module
being converted and decompressed more or less simultaneously.

The data can be of different types. For example, when the data is
applets, it is planned according to the invention to equip the transmitting set
with an applet server, and to download applets from the said server to the
subscriber identification module.

In another example, in which the data is messages, the method
according to the invention also includes a first additional step planning a
gateway connected to a message management centre and positioned between
the mobile device and a remote application server, and a second additional
step planning the use by the mobile subscriber device, the management
centre, the gateway and the application server of a communication protocol
according to which the mobile device is able to obtain the codes of a desired
application following a request to the remote server via the said message
management centre and the said gateway, the gateway compressing the
messages at least according to steps ¢} and d) of the above-mentioned
method.

This invention also concerns a data processing device for loading an
application comprising codes onto a subscriber identification module, the
method comprising:

- Means for replacing each code of a pre-defined set of codes by a

reference to that code so as to obtain a compressed application;

- Means for loading the compressed application onto the subscriber

identification module;

- Means for replacing each reference comprised in the compressed

application by the code that is referred to so as to reconstitute the
application; and means for storing the application in a memory of

the subscriber identity module.

10

15

25

30

WO 02/082261 PCT/1B02/01061

5

The invention also concerns a subscriber identification module being

arranged to effect

the above decompression step in which each reference comprised in
the compressed application is replaced by the code that is referred to
so as to reconstitute the application;

and the above storage step in which the application is stored in a

memory of the subscriber identity module.

The invention also concerns a server being arranged to effect

the above compression step in which each code of a pre-defined set
of codes is replaced by a reference to that code so as to obtain a
compressed application;

the above loading step in which the compressed application is

loaded onto the subscriber identification module;

The invention also concerns a computer program product for a data

processing device, the computer program product including an instruction

set which when the instruction set is loaded in the data processing device,

makes the data processing device perform the above steps of

decompression in which each reference comprised in the compressed
application is replaced by the code that is referred to so as to
reconstitute the application;

storage in which the application is stored in a memory of the

subscriber identity module

The invention also concerns a computer program product for a data

processing device, the computer program product including an

instruction set which when the instruction set is loaded in

the data processing device, makes the data processing device

perform the the above steps of

10

15

25

30

WO 02/082261 PCT/1B02/01061

6

- -compression in which each code of a pre-defined set of codes is
replaced by a reference to that code so as to obtain a compressed
application;

- loading in which the compressed application is loaded onto the

subscriber identification module;

Other features and advantages of the invention will appear on reading
the detailed description below and the drawings in which:

- figure 1 is a diagrammatic representation of the architecture of the
processing device according to the invention;

- figure 2 is a flowchart illustrating the dynamic compression according
to the invention;

- figure 3 is a flowchart illustrating the static compression according to
the invention;

- figure 4 is a flowchart illustrating the dynamic decompression
according to the invention; and

- figure 5 illustrates the static decompression according to the
invention.

- figure 6 illustrates another embodiment of the invention.

Figure 1 represents an SMS message processing device according to the
invention finding an application for example in the second generation GSM
mobile telephony network.

In this network, a mobile subscriber terminal 2 can access services or
applications 6 (applets) stored on a remote application server 4.

For example, the applications 6 are pages written in WML (Wireless
Markup Language) which is a content description language for small
portable wireless devices. As a variant, the applications are written in SATML
(Simalliance Toolkit Markup Language) produced by the company
Simalliance. This company, founded in 2000, writes technical specifications
used to share the advantages of the Internet world and the world of mobile

telephones and more especially the subscriber identification modules (SIM).

10

15

20

25

30

WO 02/082261 PCT/1B02/01061

7

The most important technical specifications can be obtained from

http: / /www.simalliance.org/.

The subscriber terminal 2 can access pages of the Internet from a
simple mobile communication device 2 which does not have a WAP (Wireless
Application Protocol) type browser. Unlike this type of mobile device where
the page browser is integrated in the telephone terminal, the terminal 2 of
the invention includes a SIM TOOLKIT type browser 8 as described in the
GSM specification 11.14.

When a subscriber wants to obtain a service or an application 6 such as
a page of an Internet site, the terminal 2 transmits a request 10 in SMS
format as described in the GSM specifications 11.14, 03.48 and 03.40 and
S@T (Simalliance toolbox specifications) 01.22, 01.20. This request 10 is
transmitted via the SMS message management centre 12 of the GSM
network to a gateway 14 which handles the transmission of this type of
request 10 to the remote server 4 located on the Internet which hosts the
requested page. The content of the page 16 is then sent to the gateway 14
which encodes it and transfers the interpretable code 20 so generated to the
SMS message management centre 12 of the subscriber's telephony operator.
The management centre 12 then transmits the encoded page 22 to the
terminal 2, whose interpreter 24 is able to interpret the interpretable code so
received.

The Applicant has observed that to reduce the user's waiting time, the
size of the data transmitted by the server 12 on the SMS channel of the GSM
network to mobile communication terminals 2 must be reduced.

To reach this objective, the stream of data produced by encoding the
page at the gateway 14 is compressed and decompressed in a
complementary way in the subscriber module of the mobile device.

In reference to figure 2, the flowchart of the compression algorithm in
the gateway according to the invention includes the following steps.

In step E1, the codes of the application 16 (bytecode) from the
application server 4 are read and at least some byte sequences contained in

the said codes are processed dynamically. Preferably, all bytes are processed.

10

15

20

30

WO 02/082261 PCT/1B02/01061

8

In step E2, the byte sequences identically duplicated at least twice in
these byte sequences are recognised.

In step E3, for at least one duplicated sequence, a compression
sequence is defined, and this compression sequence is stored at an address
chosen in a compression table.

In step E4, at least one duplicated sequence in the original message is
replaced by the address of the corresponding compression sequence, and the
codes so compressed are sent to the mobile device.

In other words, the redundant bit patterns are detected dynamically. In
our example, a table or dictionary is built as the file is being read. The
algorithm learns the bit patterns of the file during the read. When a
character string already read is detected, the address of this string is
encoded in a table, instead of the string itself.

In our example, the procedure is as follows: start to read the text and
store it in a buffer memory. As each new character is read, check whether it
is already in the table. If it is not, add it to the table. If it is, write its address
in the compressed file together with a tag indicating that it is an address and
check whether the following characters coincide.

For example, the table has a capacity of about 512 bytes. The table is
written in RAM. As soon as the table exceeds this limit, go back to the start
of the table.

The compression according to the invention can be implemented on a
text written in hexadecimal with for example the following content
"ABCDEF12345678ABCDEF1234".

At step O, the buffer memory is initialised to 000...0.

At step 1, since byte AB is not in the buffer memory, the buffer memory
is equal to AB0O0O...0.

At step 2, since byte CD is not in the buffer memory, the buffer memory
now contains ABCDO000...0, and so on up to step 8 where, since byte 78 is
not in the buffer memory, the Dbuffer memory contains
ABCDEF12345678000...0.

10

15

20

25

30

WO 02/082261 PCT/1B02/01061

9

At step 15: ABCDEF1234 is in the buffer memory. Now write the text
previously read with an index on the number of bytes written together with a
tag indicating the number of redundant bytes and their address.

The file so compressed becomes 07ABCDEF123456788A00. The file
includes a start tag BA1 and an end tag BA2.

The start tag BA1 is a tag which locates the non compressed text and
its size. For example, tag BA1 is encoded according to a format (one byte) in
which the first bit is O to indicate that the next text is not compressed, and
bits 2 to 8 indicate the size of the next text. In the example, tag BAl is "07"
therefore indicating that the next seven bytes are not compressed.

The end tag BA2 is a tag which indicates the compression sequence and
its address in the table. This tag BA2 is encoded for example of two bytes.
The first bit set to 1 indicates that it is an address. Bits two to seven of the
first byte indicate the number of consecutive bytes and bits eight to sixteen
represent the address in the buffer memory. For example, tag BA2 equal to
"8A00" indicates that there are five redundant bytes at address O.

In reference to figure 3, the compression algorithm according to the
invention also includes a static processing loop.

In this loop, at least some byte sequences of the codes are processed
statically (step E10).

Then (step E11), the said byte sequences are converted into bit strings
according to a predetermined conversion rule.

In step E12, each byte sequence is replaced by its corresponding bit
string and the codes so converted are transmitted to the mobile device.

This static algorithm is simpler than the dynamic algorithm described
in reference to figure 2.

To improve efficiency, static compression is carried out after dynamic
compression. In fact, dynamic compression does not compress, or
compresses very little, the tags used in the files processed, such as the
DECK files described in the Simalliance specifications. These tags are

common to all files and therefore appear more frequently than the others.

10

15

20

30

WO 02/082261 PCT/1B02/01061

10

A statistical evaluation of the frequency of appearance of these tags can
be calculated beforehand. A table is then created where each character is
encoded on a number of bits inversely proportional to its frequency.

Note that the interpretable codes (bytecode), in this case tags,
characters or other are generally encoded on one byte. The result of
converting the byte sequences of the bytecodes into bit strings of size less
than 8 bits is to reconvert all the bytecodes.

For example, the byte FF can be represented by the bit string 11. In
order to differentiate this string from the others during the decoding, none of
the remaining characters can start with this string. Consequently,
characters starting with 11 must be encoded again. Weights must therefore
be allocated to each remaining character.

Once the part of the file or text including tags has been processed,
processing can start on the pages composed of text written in a given
language. However, unlike the tagged part of the files, it is impossible to
know a priori the language used in the text.

In our example, punctuation characters are placed at the start of the
file since many languages share the same punctuation. We then consider
that English is the language most commonly used and therefore encode the
characters according to their frequency of appearance in this language. It is
also possible to store the static table in the EEPROM memory of the
subscriber identification module so that each operator can calculate this
table according to the user's country and language.

In reference to figure 4, the decompression algorithm is symmetric to
the compression.

In step E20, the codes so compressed are received from the gateway 14,
via the management centre 12, and are reassembled since they do not
necessarily arrive in the correct order. In other words, the compressed file is
fully written in EEPROM memory and then decompressed.

In step E21, the non duplicated byte sequences and the compression

sequences are recognised in the message so reassembled.

10

15

20

[oo)
(%2}

30

WO 02/082261 PCT/1B02/01061

11

In step E22, each non duplicated byte sequence is stored in a
decompression table at a respective address, and at least one compression
sequence is replaced by the corresponding non duplicated byte sequence
located in the decompression table at the address indicated in the
compression sequence, thereby obtaining decompressed codes.

In our example, the decompression table is built in RAM. A tag indicates
the type of byte sequence, i.e. address (compression sequence) or character
(non duplicated sequence). If it is an address, the corresponding value is
read in the decompression table and processing continues. However, if it is a
character forming text, this text is added to the decompression table.

In our example, the file to be processed is written in the place where the
decompressed file will be stored. The file to be processed is progressively
overwritten by the decompressed text. The files are therefore decompressed
from the end, so that the decompressed part does not overwrite a useful part
of the compressed file.

Note that the fact that the decompression table is created dynamically
is important in terms of memory size since this dynamic table is not added
to the compressed file. This table, in fact, contains not only information on
the bit pattern redundancy, but also information on the content of the text.

In reference to figure 5, the decompression of the static processing is
carried out symmetrically.

According to step E30, the codes of the desired application so converted
are received, reassembled, and at least one bit string is replaced by the
corresponding byte sequence according to a predetermined conversion
function.

A table contains the value of each character converted to enable
decompression and regenerate the initial text.

Advantageously, it is planned to combine the static and dynamic
processes in the same loop, which considerably reduces the size of the code
and the decompression time.

It is possible that the compression may not be efficient with small files

(less than 100 bytes) and that the result gives a file of size greater than the

10

15

20

25

30

WO 02/082261 PCT/1B02/01061

12

initial file. In this case, a tag indicates that decompression is unnecessary
and the file is transmitted uncompressed.

Using the invention, it is possible to obtain an average gain of
approximately 34% with 0% for a very small file (64 bytes) and 50% for a file
of 900 bytes. On average, the dynamic part of the compression results in a
gain of approximately 25%, and the remaining 10% result from the static
part.

Concerning the decompression, the memory size required is
approximately 1100 bytes of which 575 are allocated to storing the character
frequency table. The table built in RAM may require 512 bytes.

A detailed description has been given of an example in which the
processed data is messages exchanged between a WML/S@Tml page browser
installed on a SIM card and a content server located on the Internet. The
invention can also be applied to other types of data. For example, the data
may also be applets to be downloaded. In this case, the gateway 14 is
replaced by a transmitting set which includes an applet server from which
the subscriber identification module downloads applets over the air. In this
example, the compression according to the invention is implemented directly

in the applet server.

A second example of realisation illustrating this solution is as follows.
This example illustrates the factorisation mechanism at the very centre of a
command. Figure 6 shows a memory block of the CEA memory used to store

a service.

This service includes several commands (C1-C11). Each command Cn
has its own index and uses a decoding rule specific to the command type.
Thus, depending on the user's reaction after executing a command Cx, the
execution of this command may lead to various other commands,

differentiated by their respective indices. For example, if a command

10

15

20

25

30

WO 02/082261 PCT/1B02/01061

13

concerns the entry of a PIN code by the user, the next command depends on
whether the user enters the code correctly or incorrectly.

Consequently, an index must be stored in each command of the service
for each potential future command.

The decoding rules for each command C3, C5, C8 involved in the
execution of a particular command C1 must also be included in the byte
string of the command C1 to be executed. The number of bytes associated

with a command may become very large.

Cl may lead to the execution of command C3, C5, or C8. This
command therefore includes the indices of commands C3, C5 and C8 and"

their respective decoding rules.

We will consider the case, for example, when there are ten command
types. Ten different rules are therefore required to decode the command byte

string.

In order to illustrate this example, we assume

that the execution of a command may result in the execution of at least
2 different commands from C3, C5 and C8;

and that the total number A of commands does not exceed 25 per

service.

According to the principle of the solution, each command is replaced by
a reference X (58,35,13) which will both

point directly in a field CH1 to obtain the index (OFFC3,0FFC5,0FFC8)
of the next command to be executed, respectively;

and give the type Z of the command to be executed in order to execute
the associated decoding rule.

Once the index of the command in question and its type have been

found, the next command can be executed.

10

15

25

30

WO 02/082261 PCT/1B02/01061

14

In our example, this reference is an artificial parameter marked X on
Figure 6. Preferably, this reference will have the least possible number of
bytes to minimise the space required. It will depend on the maximum

number possible for each command type.

The solution consists of using this reference X and of using two
separate mathematical functions which can supply two results, one of which

gives an index and the other a pointer to a decoding rule.

The range of possible values for this byte is then divided into equal
intervals for each command type. A non-limiting way of determining the
command types could be as follows:

if the reference X is from O to 24 inclusive, the command will be type 1,

if the reference X is from 25 to 49 inclusive, the command will be type
2, and so on.

In our example of realisation, the DIV operator will provide such a
result. The command type is obtained by the mathematical operation:

Z =Xdiv A,

i.e., with A=25, Z= X div25

The mathematical operation
Y = X mod A,
i.e., with A= 25, Y = X mod 25

is used to obtain the index of the next command to be executed in the
field CH1 defined previously.

As a reminder, the properties of the DIV and MOD operators are as
follows:

n DIV p = q: integer division of n by q gives the integer part of the
quotient

n MOD p= r: modulo division of n by p gives the remainder r.

10

15

20

25

30

WO 02/082261 PCT/1B02/01061

15

CLAIMS

1. A method of loading an application comprising codes onto a

subscriber identification module (8), the method comprising:

t

a compression step in which each code of a pre-defined set of codes
is replaced by a reference to that code so as to obtain a compressed
application;

- a loading step in which the compressed application is loaded onto
the subscriber identification module;

- a decompression step in which each reference comprised in the
compressed application is replaced by the code that is referred to so
as to reconstitute the application;

- and a storage step in which the application is stored in a memory of

the subscriber identity module.

2. The method according to claim 1, wherein compression includes the
followings steps:

- process dynamically at least some byte sequences contained in the
said codes so as to recognise in these byte sequences, the byte sequences
identically duplicated at least twice,

- for at least one duplicated sequence, define a compression sequence,
and store this compression sequence at an address chosen in a compression
table, replace at least one duplicated sequence in the original data by the

address of the corresponding compression sequence.

3. The method according to claim 1 or 2, characterised in that it also
includes, for the subscriber identification module, the following steps:

- receive the codes so compressed from the transmitting set (4, 14), and
reassemble them;

- recognise in the message so reassembled the non duplicated byte

sequences and the compression sequences;

10

15

20

25

30

WO 02/082261 PCT/1B02/01061

16

- store each non duplicated byte sequence in a decompression table at a
respective address, and replace at least one compression sequence by the
corresponding non duplicated byte sequence located in the decompression
table at the address indicated in the compression sequence, and thereby

obtain decompressed codes.

4. The method according to claim 1, wherein compression includes the

following step:

- process statically at least some byte sequences of the said codes, and
convert the said byte sequences into bit strings according to a
predetermined conversion rule,

- replace each byte sequence by its corresponding bit string,

- and transmit the codes so converted to the mobile device.

5. The method according to claim 4, characterised in that the bit string
length depends on the frequency of the interpreted codes in the application

to be processed.

6. The method according to claim 4, characterised in that bit strings are
stored in a static table containing the value of each compressed code to
enable decompression and regenerating the initial code.

ld

7. A Subscriber identification module being arranged to effect the

decompression step and the storage step as claimed in claim 1.

8. A Server being arranged to effect the compression and the loading

step as claimed in claim 1.

9- The server according to claim 8, characterised in that it includes
processing means (18) able to process dynamically at least some byte
sequences contained in the said codes, to recognise in these byte sequences,

the byte sequences identically duplicated at least twice, for at least one

10

15

20

WO 02/082261 PCT/1B02/01061

17

duplicated sequence, to define a compression sequence, and to store this
compression sequence at an address chosen in a table, to replace at least
one duplicated sequence in the original message by the address of the

corresponding compression sequence.

10. The server according to claim 8, characterised in that the processing
means of server (18) are also able to process statically at least some byte
sequences of the said interpreted codes, to convert the said byte sequences
into bit strings according to a predetermined conversion rule, to replace each

byte sequence by its corresponding bit string.

11. A Computer program product for a data processing device, the
computer program product including an instruction set which when the
instruction set is loaded in the data processing device, makes the data
processing device perform the step of decompression and the step of storage

as claimed in claim 1.

12. A Computer program product for a data processing device, the
computer program product including an instruction set which when the
instruction set is loaded in the data processing device, makes the data
processing device perform the step compression and the step of loading as

claimed in claim 1.

WO 02/082261 PCT/1B02/01061

1/5

/14
—
Vi
G—
\16

e 12
l
< \20

N]
° gy
- e
o <
N
A\ T~ ©
|

FIG. 1

WO 02/082261 PCT/1B02/01061

2/5

read the application codes 16 from the remote application
server 4 and process dynamically at least some byte Py E1
sequences contained in the codes

recognise in these byte sequences, the byte sequences
identically duplicated at least twice P E2

'

for at least one duplicated sequence, define a compression
sequence, and store this compression sequence at an P E3
address chosen in a compression table

replace at least one duplicated sequence in the original

message by the address of the corresponding e E4

compression sequence, and transmit the codes so
compressed to the terminal 2

FIG. 2

WO 02/082261 PCT/1B02/01061

3/5
process statically at least some byte sequences of the codes

e E10

convert the said byte sequences into bit strings according
to a chosen conversion rule - E11

v

replace each byte sequence by its corresponding bit string,

and transmit the codes so converted Ve E12

FIG. 3

WO 02/082261 PCT/1B02/01061

4/5

receive the compressed codes from the gateway and
reassemble them |~ E20

recognise in the message so reassembled the non
duplicated byte sequences and the compression sequences e E21

A

store each non duplicated byte sequence in a
decompression table at a respective address, and P E22
replace at least one compression sequence by the

corresponding non duplicated byte sequence located
in the decompression table at the address indicated in
the compression sequence, and thereby obtain
decompressed codes

FIG. 4

WO 02/082261 o PCT/1B02/01061

5/5

FIG. 5

receive the converted codes of the desired application,

reassemble them, and replace at least one bit string by Ve E30

~ the corresponding byte sequence according to a chosen
conversion function

S —
offca| - |OFFa| ¢
cL C3
Ch cs c¢
1 | s
C) C.'lo) l cu
- X d _A
@ \%J;&VA - | “}D

(‘I3 \36- 5% Ci

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

