发明名称
制造高分子量聚乙烯纤维的方法

摘要
本发明涉及制造高分子量聚乙烯纤维的方法，包括在重均分子量为至少500000克/摩尔、Mw/Mn比为最多6且200/110单面取向参数为至少3的聚乙烯条带的整个宽度上在该条带的厚度方向上对该条带施力。本发明还涉及Mw为至少500000克/摩尔、Mw/Mn比为最多6且020单面取向值为最多55°的聚乙烯纤维。还要求保护这些纤维在各种应用中的用途。低线密度纤维的制备特别优选。
1. 制造020单面取向参数为最多55°的高分子量聚乙烯纤维的方法，其包含在重均分子量为至少500000克/摩尔、Mw/Mn比为最多6且200/110单面取向参数为至少3的聚乙烯条带的整个宽度上在该条带的厚度方向上对条带施力。

2. 根据权利要求1的方法，包括下列步骤：对重均分子量为至少500000克/摩尔、在160℃下熔融后立即测得的弹性剪切模量为最多1.4MPa且Mw/Mn比为最多6的起始UHMWPE，在该聚合物的温度在其加工过程中从未升至其熔点以上的值的条件下，施以压实步骤和拉伸步骤，其中所施加的总拉伸比为至少120，以形成重均分子量为至少500000克/摩尔、Mw/Mn比为最多6且200/110单面取向参数为至少3的聚乙烯条带，并在该条带的整个宽度上在该条带的厚度方向上对该条带施力。

3. 权利要求2的方法，其中该聚乙烯粉末具有最多0.9MPa的在160℃下熔融后立即测得的弹性剪切模量。

4. 权利要求2的方法，其中该聚乙烯粉末具有最多0.8MPa的在160℃下熔融后立即测得的弹性剪切模量。

5. 权利要求2的方法，其中该聚乙烯粉末具有最多0.7MPa的在160℃下熔融后立即测得的弹性剪切模量。

6. 权利要求2-5任一项的方法，其中总拉伸比为至少140。

7. 权利要求2-5任一项的方法，其中总拉伸比为至少160。

8. 权利要求2-5任一项的方法，其中总拉伸比为至少180。

9. 权利要求2-5任一项的方法，其中总拉伸比为至少200。

10. 权利要求2-5任一项的方法，其中通过在该条带的厚度方向上在该条带与空气或其他喷射介质接触或通过在在该条带的厚度方向上施力的辅助上传送该条带，在该条带的整个宽度上在该条带的厚度方向上对该拉伸材料施力。

11. 权利要求2-5任一项的方法，其中在该拉伸材料上施加的力低于10巴。

12. 权利要求2-5任一项的方法，其中由该条带获得的纤维具有最多50dtex的平均线密度。

13. 权利要求2-5任一项的方法，其中由该条带获得的纤维具有最多35dtex的平均线密度。

14. 聚乙烯纤维，其Mw为至少500000克/摩尔、Mw/Mn比为最多6且020单面取向值为最多55°。

15. 根据权利要求14的聚乙烯纤维，其具有最多50dtex的平均线密度。

16. 根据权利要求14的聚乙烯纤维，其具有最多35dtex的平均线密度。

17. 根据权利要求14-16任一项的纤维，其具有至少2.06GPa的拉伸强度和至少30J/gGPa的拉伸断裂能。

18. 根据权利要求17的纤维，其具有至少2.5GPa的拉伸强度。

19. 根据权利要求17的纤维，其具有至少3.0GPa的拉伸强度。

20. 根据权利要求17的纤维，其具有至少3.5GPa的拉伸强度。

21. 根据权利要求17的纤维，其具有至少4.0GPa的拉伸强度。

22. 根据权利要求17的纤维，其具有至少35J/gGPa的拉伸断裂能。

23. 根据权利要求17的纤维，其具有至少40J/gGPa的拉伸断裂能。
24. 根据权利要求 17 的纤维，其具有至少 50 J/g GPa 的拉伸断裂能。
25. 根据权利要求 14-16 任一项的纤维，其具有最多 5 的 Mw/Mn 比。
26. 根据权利要求 14-16 任一项的纤维，其具有最多 4 的 Mw/Mn 比。
27. 根据权利要求 14-16 任一项的纤维，其具有最多 3 的 Mw/Mn 比。
28. 根据权利要求 14-16 任一项的纤维，其具有最多 2.5 的 Mw/Mn 比。
29. 根据权利要求 14-16 任一项的纤维，其具有最多 2 的 Mw/Mn 比。
30. 根据权利要求 14-16 任一项的纤维，其具有最多 45° 的 020 单面取向值。
31. 根据权利要求 14-16 任一项的纤维，其具有最多 30° 的 020 单面取向值。
32. 根据权利要求 14-16 任一项的纤维，其具有最多 25° 的 020 单面取向值。
33. 根据权利要求 14-16 任一项的纤维，其具有小于 100 ppm（0.01 重量 %）的有机聚合物溶剂含量。

34. 权利要求 14-33 任一项的聚乙烯纤维用于冲击应用、绳索、缆线、网、织物和防护应用的用途。
35. 包含根据权利要求 14-33 任一项的聚乙烯纤维的冲击用品、绳索、缆线和网、织物和防护器具。
高分子量聚乙烯纤维及高分子量聚乙烯纤维

本发明涉及制造高分子量聚乙烯纤维的方法。本发明还涉及高分子量聚乙烯纤维。

高分子量聚乙烯纤维及其制造方法是本领域中已知的。

US 4,344,908 描述了通过在该聚合物的溶胀点与熔点之间的温度下拉伸含溶剂的聚合物长丝来制造具有高拉伸强度和高模量的聚合物长丝的方法。

EP 231,547 描述了通过在加工系统中在催化剂体系存在下聚合乙烯以形成分子量为 4×10^5 至 5×10^6 g/摩尔的线型聚乙烯溶液，将该溶液转化成含溶剂的物体，如纤维，将该物体冷却形成凝胶并对该物体施以拉伸步骤来制造高强度高模量聚乙烯物体的方法。

US 2004/0267313 描述了在该纤维与其它纤维一起纺丝之前或之后对凝胶纺成的超分子量聚乙烯纤维加工步骤以除去溶剂的方法。

上述方法的缺点在于，它们都涉及在聚合物制造中使用溶剂。因此，由此获得的纤维含有一定量的残留溶剂，这有害地影响纤维的性质。此外，溶剂回收是非常不经济的。

JP6010254 描述了由高分子量聚乙烯纤维的无溶剂方法。

US 5,578,373 描述了通过在加工及高分子量聚乙烯纤维及随后对聚乙烯纤维以切片来制造长丝的聚乙烯拉伸材料的方法。尽管提到如分层、加捻、搓条、梭织、使用空气射流以及使用超声波和冲击波之类的方法，但使用多种类型切器（splitters）的机械切法是优选的。

US2003/0127768 描述了经由熔体加工的制造超高分子量聚乙烯的成型部件的方法，其中超高分子量聚乙烯在 130 至 136℃的温度下退火至少 1 小时，在 142℃以上的温度下转化成成型部件，随后冷却至 135℃以下的温度。为形成纤维，该退火材料可通过喷头将分子以形成长丝，其随后在纤维的熔点与该熔点低不多于 10℃的温度之间的温度下拉伸。该方法仍具有许多缺点。该参考文献的方法包括最好避免的退火步骤。此外，由于熔融的超高分子量聚乙烯的高粘度，超高分子量聚合物熔体的纺丝需要详细的工艺控制，因此不容易在商业实践中实施。

因此，本领域中需要由高分子量聚乙烯制造无溶剂纤维的方法，该方法在商业实践中容易实施并提供高品质纤维，特别是低线密度纤维。本发明提供这样的方法。本发明提供具有良好性质的高分子量聚乙烯纤维。
[0012] 本发明因此涉及制造高分子质聚乙烯纤维的方法，包括在重均分子量为至少 500000 克 / 摩尔、Mw/Mn 比为最多 6 且 200/110 单面取向参数为至少 3 的聚乙烯条带的整个宽度上在该条带的厚度方向上对该条带施力。

[0013] 已经发现，重均分子量为至少 500000 克 / 摩尔、Mw/Mn 比为最多 6 且 200/110 单面取向参数为至少 3 的聚乙烯条带可通过过该条带的整个宽度上在该条带的厚度垂直的方向上对该拉伸材料施力的操作来转化成纤维。不必如本领域常规做法那样实施精确步骤。

[0014] 要指出，低分子量分布和 200/110 单面取向参数的最小值对本发明的方法而言是基本的。已经发现，如果不满足任一要求，则不可能或至少极难实施本发明的方法。此外，不能获得有吸引力的低线密度纤维。至少 500000 克 / 摩尔的分子量有利于获得有吸引力的拉伸性质。

[0015] 要指出，Mw/Mn 比为最多 6 的高分子量聚乙烯是本领域中已知的，例如从 WO2004/113057 中获取。该参考文献提到，该材料可用于制备型部件，如长丝、薄膜或模制品或挤出制品。它们特别被描述为用于医疗用途，如人工髋关节或人工膝关节的元件。没有描述长丝的制造。

[0016] EP292074 描述了由高分子量低 Mw/Mn 比聚乙烯制成的长丝，其通过在一定温度下与加工助剂一起压制成型的步骤获得，所述温度优选比聚合物和加工助剂的混合物的溶解温度低 30°C。随后通过使其通过热的开口接着拉伸来加工该材料。该参考文献没有描述本发明的具体方法，也没有描述可由此获得的特定纤维。

[0017] EP374785 描述了通过对高分子量聚烯烃粉末施以在该聚合物的熔点以下的压实步骤，接着锻轧和拉伸所得压模聚烯烃来连续制造高强度高模量聚烯烃材料的方法。

[0019] H. van der Werf 和 A. J. Pennings, Colloid Polymer Sci 269; 747-763(1991) 描述了通过凝胶纺丝获得的分子量为 5.5.10^6 千克 / 摩尔且 Mw/Mn 比为 3 的聚乙烯纤维。已经发现，凝胶纺丝纤维未表现出最多 55° 的 020 单面取向参数。

[0020] 本发明的方法中所用的条带通常是长度不定的条带。该条带的宽度对本发明的方法不重要。合适的带宽为 0.5 毫米至 30 毫米。在一个实施方案中，该带宽可以为 0.5 毫米至 20 毫米，特别是 0.5 毫米至 10 毫米，更特别是 0.5 毫米至 5 毫米。

[0021] 该条带的厚度不受特别限制。其通常为 1 微米至 100 微米。由于将该条带分成单纤维所需的力会随该条带的厚度降低，该条带优选具有最多 50 微米，更优选最多 25 微米，再更优选最多 10 微米的厚度。

[0022] 该条带的宽度与该条带的厚度之间的比率通常为至少 10 : 1，特别是至少 50 : 1。

[0023] 在本文中，超高分子量聚乙烯也被称作 UHMWPE。
PL-GPC220)。使用在 5*10^3 至 8*10^6 克 / 摩尔的分子量范围内的十六个聚苯乙烯标样（Mw/Mn < 1.1）校准该系统。

也可以使用熔体流变测定法测定分子量分布。在测量之前，已添加了 0.5 重量％抗氧化剂，如 IRGANOX 1010，以防止热氧化降解的聚乙烯样品首先在 50℃ 和 200 巴下烧结。将由烧结聚乙烯获得的 8 毫米直径和 1 毫米厚的盘在流变仪中在氮气环境下快速加热（～30℃ / 分钟）至远高于平衡熔融温度。例如，该盘在 180℃ 下保持 2 小时或更久。可以借助示波器检查样品和流变仪盘之间的滑移量。在动态实验过程中，通过示波器连续监测来自流变仪的两个输出信号，即一个信号对应正弦应变，另一信号对应所产生的应力响应。在低应变值下可实现的完美正弦应力响应表明在样品和盘之间没有滑移。

可以使用板-板流变仪，如来自 TA Instruments 的 Rheometrics RMS800 进行流变测定。利用 Mead 算法的由 TA Instruments 提供的 Orchestrator 软件可用于由对该聚合物熔体测得的模量 vs 频率数据测定摩尔质量和摩尔质量分布。在 160-220℃ 的等温条件下获得数据。为获得良好拟合，应选择在 0.001 至 100 rad/s 之间的角频率区和在 0.5 到 2％的线性粘弹性区中的恒定应变。在 190℃ 的参考温度下采用时间 - 温度叠加。为测定在 0.001 频率 (rad/s) 以下的模量，可以进行应力松弛实验。在应力松弛实验中，对在固定温度下的聚合物熔体施加单瞬时变形 (步应变 (step strain))，并在样品上保持，并记录时间依赖性应力衰减。

本发明中所用的 UHMWPE 可以是乙烯均聚物，或乙烯与共聚单体（其是另外 α-烯烃或环烯烃；两者通常具有 3 至 20 个碳原子）的共聚物。实例包括丙烯、- 丁烯，- 戊烯，- 己烯，- 乙烯，- 环己烯和环己烯。也可以使用具有最多 20 个碳原子的二烯，例如丁二烯或 1,4-己二烯。本发明中的方法所用的乙烯均聚物或共聚物中的 (非乙烯) α-烯烃的量优选为最多 10 摩尔%、优选最多 5 摩尔%，更优选最多 1 摩尔%。如果使用 (非乙烯) α-烯烃，则其通常以至少 0.001 摩尔%，特别是至少 0.01 摩尔%，更特别至少 0.1 摩尔% 的量存在。明显地，上文对原材料给出的范围也适用于最终聚合物纤维。

本发明中所用的 UHMWPE 和本发明的纤维的分子量分布相对较窄。这通过最多 6 的 Mw (重均分子量) 与 Mn (数均分子量) 比率表示。Mw/Mn 比更特别为最多 5，再更特别最多 4，更特别最多 3。特别考虑使用 Mw/Mn 比为最多 2.5 或甚至最多 2 的材料。已经发现，如果该条带没有所需 Mw/Mn 比，则该条带不能纵切成单纤维，而仅分成有限数量的片段。

本发明中用作原材料的条带具有至少 3 的 200/110 单面取向参数 c。200/110 单面取向参数 c 是指根据反射几何学中测得的该条带样品的 X-射线衍射 (XRD) 图中 200 与 100 峰面积之间的比率。

广角 X-射线散射 (WAXS) 是提供关于相关结晶结构的信息的技术。该技术明确涉及大角度散射的布拉格峰的分析。布拉格峰来自长程结构秩序。WAXS 测量产生衍射图，即作为衍射角 2θ (即衍射束与原射线束之间的角度) 的函数的强度。

该 200/110 单面取向参数给出关于 200 和 110 晶面相对于条带表面的取向程度的信息。对于具有高 200/110 单面取向的条带样品，该 200 晶面高度平行于条带表面取向。具有无规取向微晶的试样的 200 与 110 峰面积之间的比率约为 0.4。

可以使用 X-射线衍射计测定 200/110 单面取向参数的值。配有产生 Cu-Kα 射线 (K 波长 = 1.5418 Å) 的聚焦多层 X-射线光学装置 (Göbel 镜) 的 Bruker-AXS D8
衍射计是合适的。测量条件：2 毫米反散射缝隙，0.2 毫米探测器缝隙和发生器设置 40kV，35mA。将条带试样安装在样品支架上，例如用一些双面固定胶带。该条带样品的优选尺寸为 15mm x 15mm (l x w)。应小心使样品保持完全平整并准样品支架。随后将带有该条带试样的样品支架以反射几何放于 D8 衍射计中（该条带的法线垂直于测角器并垂直于样品支架）。衍射图的扫描范围为 5° 至 40° (2θ)，步长为 0.02° (2θ) 且计数时间为 2 秒/步。在该测量过程中，样品支架围绕该条带的法线以 15 转/分钟旋转，以致不再需要样品校准。随后作为衍射角 2θ 的函数测量强度。使用标准轮廓 (profile) 拟合软件，例如来自 Bruker-AXS 的 Topas 测定 200 和 110 反射的峰面积。由于 200 和 110 反射是单峰，该拟合法是直接的，且选择和进行适当的拟合程序在技术人员的能力范围内。200/110 单面取向参数是指 200 和 110 峰面积之间的比率。这一参数是 200/110 单面取向的定量衡量标准。

[0033] 如上所述，在本发明中用作原材料的条带具有至少 3 的 200/110 单面取向参数。该值优选为至少 4, 更特别至少 5, 或至少 7。更高的值，如至少 10 或甚至至少 15 的值特别优选。如果峰面积 110 等于 0，则该参数的理论最大值是无穷的。

[0034] 在本发明的方法中，在具有分子量 Mw/Mn 比和 200/110 单面取向参数的所需值的条带的整个宽度上该条带的厚度方向上对该条带施力。这可以以许多方式进行。例如，可以使该条带在该条带的厚度方向上与空气流接触。又例如，在辊上传送该条带，该辊在该条带的方向上将力施加到该条带。在另一实施方案中，通过纵向加捻条带来施力，以此在与该条带方向垂直的方向上施力。在另一实施方案中，通过从该条带上剥离长丝来施力。在再一实施方案中，使该条带与空气挤出器或其它卷曲变形装置 (texturizing device)，如卷曲机、假捻机或空气卷曲变形装置 (texturizing device) 接触。例如，可以使用来自 Heberlein 的平行板喷射器 (型号 PP1600)。这些喷射器已使用于纺织工业。它们可改造以使它们适用于本发明。例如，可以并行使用多个空气喷射器，或可以使用空气软管。也可以使用喷射其它材质，如水的喷射器或狭缝。

[0035] 将该条带转化成纤维所需的力不必非常强。尽管使用强力对该产品无害，但从操作角度看不需要此。因此，在一个实施方案中，所施加的力低于 10 巴。

[0036] 所需的最小力将取决于该条带的性质，特别取决于其厚度和 200/110 单面取向参数的值。

[0037] 该条带越薄，将该条带分成单纤维所需的力越低。200/110 单面取向参数的值越高，该条带中的聚合物越平行取向，将该条带分成单纤维所需的力越低。确定尽可能最低的力在技术人员的能力范围内。通常，该力为至少 0.1 巴。

[0038] 如上所述在条带上施力时，该材料将其自身分成单纤维。

[0039] 单纤维的尺寸通常如下。

[0040] 纤维宽度通常为 1 微米至 50 微米，特别是 1 微米至 20 微米。更特别是 5 微米至 50 微米。

[0041] 纤维厚度通常为 1 微米至 100 微米，特别是 1 微米至 50 微米，更特别是 1 微米至 25 微米。

[0042] 宽度与厚度之间的比率通常为 10 : 1 至 1 : 1，更特别 5 : 1 至 1 : 1，再更特别 3 : 1 至 1 : 1。

[0043] 本发明能够制造具有比通过常规方法，如纵切获得的纤维低的线密度的纤维。因
此，在一个实施方案中，该纤维具有最多 50dtx，更特别最多 35dtx 的平均线密度。平均线密度是指起始条带的线密度除以由此起始条带制成的纤维数。起始条带的线密度由一米条带的重量计算。通过沿与该起始条带的边缘垂直的线计数形成的纤维数，测定由该起始条带制成的纤维数。可以例如如下进行计数，在交叉方向上尽可能均匀地铺开由条带获得的纤维，将铺开的纤维固定到胶带上，在与该条带方向垂直的方向上在该条带上划一条线并计数穿过该线的纤维数。

【0044】通过该条带上施力，由此将该条带转化成许多单纤维。对于相同条带，该条带被分成的纤维数主要取决于该拉伸材料的宽度。通常，将该条带分成至少 10 根纤维，更特别分成至少 20 根纤维，再更特别至少 35 根纤维。对于宽度至少 4 厘米的条带，可以获得多于 50 根纤维，或甚至多于 100 根。再通过沿与起始条带的长度垂直的线计数形成的纤维数来测定纤维数。

【0045】可以将由此获得的纤维束分成更小的束，或可以将更小的束合并形成更粗的束。优选就这样进一步加工由单条带获得的纤维束，而非进一步分开它们或合并它们。要指出，本发明的方法的结果不必是环状纤维束。该纤维可以是网络状构造形式。

【0046】本发明的纤维和纤维束可根据本领域中已知的方法进一步加工。例如，可以为它们提供整理剂，它们可以加捻、编织、针织或纺纱。

【0047】本发明还涉及具有指定性质的新型聚乙烯纤维。可以通过本发明的方法获得这些纤维。

【0048】本发明的纤维是 Mw 为至少 500000 克 / 摩尔，Mw/Mn 比为最多 6 且 020 单面取向参数为最多 55°的超高分子量聚乙烯纤维。

【0049】关于 PE 性质，Mw 和 Mw/Mn 比的进一步阐述和优选范围，参考上文对原材料陈述的那些。

【0050】本发明的纤维以最多 55°的 020 单面取向参数为特征。该 020 单面取向参数给出关于 020 晶面相对于纤维表面的取向程度的信息。

【0051】如下测量 020 单面取向参数。将该样品置于衍射计的测角仪中，纵向垂直于原 X 射线束。随后，作为测角仪旋转角 Φ 的函数测量 020 反射的强度（即峰面积）。这相当于围绕样品长轴（与纵向一致）的样品旋转。这造成标为 020 的晶面相对于长轴方向的取向分布。020 单面取向参数是指该取向分布的半宽度（FWHM）。

【0052】可以使用带有 HiStar 2D 检测器的 Bruker P4 进行测量，其是位置敏感的充气多线检测器系统。这种衍射计配有产生 Cu-Kα 射线（K 波长 =1.5418Å）的石墨单色仪。测量条件：0.5 毫米针孔准直器，样品 - 检测器距离 77 毫米，发生器设置 40kV, 40mA，每图像至少 100 秒计数时间。

【0053】将纤维样品置于衍射计的测角仪中，其纵向垂直于原 X 射线束（透射几何）。随后，作为测角仪旋转角 Φ 的函数测量 020 反射的强度（即峰面积）。以 1°（Φ）步长和每步至少 300 秒的计数时间测量 2D 衍射图。

【0054】使用该装置的标准软件针对空间失真、检测器不均匀性和空气散射校正所测得的 2D 衍射图。实施这些校正在技术人员的能力范围内。将各个 2D 衍射图合并成 1D 衍射图，所谓的径向 2θ 曲线。通过完全在技术人员能力范围内的标准轮廓 (profile) 拟合程序测定 020 反射的峰面积。020 单面取向参数是通过作为该样品的旋转角 Φ 的函数的 020
反射的峰面积测得的取向分布度中的 FWHM。

[0055] 如上所述，本发明的纤维具有最高 55° 的 020 单面取向参数。该 020 单面取向参数优选为最高 45°，更优选最高 30°。在一些实施方案中，该 020 单面取向值可以为最高 25°。已经发现，具有在规定范围内的 020 单面取向参数的纤维具有高强度和高致密长度。

[0056] 类似于 200/110 单面取向参数，020 单面取向参数是该纤维中的聚合物取向的量度。两个参数的使用源自下述事实：即 200/110 单面取向参数不能用于纤维，因为不可能将纤维样品适当放置在该装置中。200/110 单面取向参数适用于宽度 0.5 毫米或更大的物体。另一方面，020 单面取向参数原则上适于所有宽度的材料，因此既适于纤维，又适于条带。但是，该方法在操作上不如 200/110 方法实用。因此，在本说明书书中，020 单面取向参数仅为宽度小于 0.5 毫米的纤维。但是，在本发明的方法中用作原材料的条带具有原则上限有地与上文对本发明的纤维给出的那些相同的 020 单面取向参数值。

[0057] 如上所述，本发明的纤维具有高拉伸强度和高断裂能。

[0058] 在本发明的一个实施方案中，该纤维具有根据 ASTM D882-00 测得的至少 2.0 GPa 的拉伸强度。可以获得至少 2.5 GPa，特别是至少 3.0 GPa，更特别至少 3.5 GPa 的拉伸强度。也可以获得至少 4.0 GPa 的拉伸强度。

[0059] 在本发明的一个实施方案中，该纤维具有至少 30 J/g 的拉伸断裂能。根据 ASTM D882-00 使用 50% / 分钟的应变速率测定拉伸断裂能。其通过积分在应力 - 应变曲线下的每单位质量的能量来计算。在一个实施方案中，本发明的纤维具有至少 35 J/g，特别是至少 40 J/g，更特别至少 50 J/g 的拉伸断裂能。

[0060] 可通过下列方法求得该拉伸断裂能。这些等同于上述根据 ASTM D882-00 测得的拉伸断裂能的合理近似值。

[0061] 可以通过积分所吸收的总能量和将其除以该样品的原始计数 (gage) 区的质量来获得拉伸断裂能的近似值。特别是，由于制成超过 2.0 GPa 的 UHMWPE 样品的应力 - 应变曲线近似直线，可通过下列公式计算拉伸断裂能

\[
TEB = \frac{\sigma * EAB}{\rho} * 10
\]

其中 Ω 是根据 ASTM D882-00 的以 GPa 为单位的拉伸强度，ρ 是以克 / 立方厘米为单位的密度，EAB 是根据 ASTM D882-00 的以百分比表示的致密伸长，TEB 是以 J/g 为单位的拉伸断裂能。

[0064] 可以根据下列公式求得拉伸模量和拉伸强度推导拉伸断裂能 TEB 的另一近似值

\[
TEB = \frac{\sigma^2}{2 * \text{Modulus} * \rho} * 10^3
\]

[0065] 本发明的 UHMWPE 纤维的模量 (Modulus) 通常为至少 80 GPa。根据 ASTM D822-00 测定模量。根据拉伸比，可以获得至少 100 GPa，更特别至少 120 GPa 的模量。可以获得至少 140 GPa 或至少 150 GPa 的模量。

[0066] 本发明的纤维和纤维束可用于许多用途，包括冲击应用、绳索、缆线、网、织物和防护用途。由本发明的纤维制成的冲击用品 (ballistic attributes)、绳索、缆线、网、织物和
防护器具也是本发明的一部分。

[0068] 如上所述，本发明的方法中，原材料是重均分子量为至少 500000 克 / 摩尔，Mw /Mn 比为最多 6 且 200/110 单面取向参数为至少 3 的聚乙烯条带。符合这些规格的条带可通过包括下列步骤的方法获得：对重均分子量为至少 500000 克 / 摩尔，在 160°C 下熔融后立即测得的弹形剪切模量为最多 1.4MPa 且 Mw /Mn 比为最多 6 的起始 UHMWPE，使该聚合物的在加工过程中从未升至其熔点以上的热的条件下，施以压实步骤和拉伸步骤，其中所施加的总拉伸比为至少 120。

[0069] 已经发现，重均分子量为至少 500000 克 / 摩尔，在 160°C 下熔融后立即测得的弹性剪切模量为最多 1.4MPa 且 Mw /Mn 比为最多 6 的起始 UHMWPE 与固定加工和至少 120 的总拉伸比的结合能够制造 200/110 单面取向参数为至少 3 的条带。可以在相同分子量、更低 Mw /Mn 比和更高拉伸比下，以更低弹性剪切模量获得更高的 200/110 单面取向参数值。

[0070] 在一个实施方案中，本发明因此涉及制造高分子量聚乙烯纤维的方法，包括下列步骤：对重均分子量为至少 500000 克 / 摩尔，在 160°C 下熔融后立即测得的弹性剪切模量为最多 1.4MPa 且 Mw /Mn 比为最多 6 的起始 UHMWPE，使该聚合物的温度在其加工过程中从未升至其熔点以上的热的条件下，施以压实步骤和拉伸步骤，其中所施加的总拉伸比为至少 120，以形成重均分子量为至少 500000 克 / 摩尔，Mw /Mn 比为最多 6 且 200/110 单面取向参数为至少 3 的聚乙烯条带，并在该条带的整体宽度上该条带的厚度方向上对该条带施力。

[0071] 如上所述，起始 UHMWPE 具有最多 1.4MPa，特别是最多 0.9MPa，更特别最多 0.8MPa，再更特别最多 0.7MPa 的在 160°C 下熔融后立即测得的弹性剪切模量 G_N。术语“在熔融后立即”是指在该聚合物熔融后马上，特别是在该聚合物熔融后 15 秒内测定弹性剪切模量。对于这种聚合物熔体，G_N 通常根据摩尔质量在 1.2 或更长时间内从 0.6 升至 2.0MPa。在 160°C 下熔融后立即测得的弹性剪切模量是本发明中所用的非常松散的 (disentangled) 的 UHMWPE 的特征之一。

[0072] G_N 是橡胶平坦区中的弹性剪切模量。其与缠结之间的平均分子量 M_r 相关，后者又与缠结密度成反比。在具有均匀缠结分布的热力学稳定熔体中，可以由 G_N 经由公式 G_N = \gamma_0 \rho R T / M_r \text{计算} M_r，其中 \gamma_0 是设定在 1 的数字因数，\rho 是以克 / 立方厘米为单位的密度，R 是气体常数，且 T 是以 K 为单位的绝对温度。

[0074] 本发明中所用的 UHMWPE 优选具有至少 74%，更特别至少 80% 的 DSC 结晶度。可以使用差示扫描量热法 (DSC)，例如在 Perkin Elmer DSC7 上表征该条带的形态。由此，将已知重量 (2 毫克) 的样品以 10°C / 分钟从 30°C 加热至 180°C，在 180°C 下保持 5 分钟，随后以 10°C / 分钟冷却。DSC 扫描结果可作为热流 (mW 或 mJ/s ; y 轴) vs. 温度 (x-轴) 的曲线。
图绘制。使用来自该扫描的加热部分的数据测量结晶度。通过测定该曲线图下的从正要开始熔融过程（吸热）前测得的温度到刚观察到熔融完成后的温度的面积，计算该结晶熔融过程的熔化焓 ΔH (以 J/g 为单位)。随后将计算出的 ΔH 与在大约 140℃的熔体温度下对 100%结晶 PE 测得的理论熔化焓 (293 J/g 的 ΔH_c) 进行比较。以百分比 $100 \times (\Delta H / \Delta H_c)$ 表示 DSC 结晶度指数。

[0075] 在本发明的方法中用作原材料的条带和本发明的纤维也优选具有如上所述的结晶度。

[0076] 本发明中所用的起始聚合物可通过聚合法制备，其中乙烯，任选在如上所述的其它单体存在下，在单点聚合催化剂存在下在该聚合物结晶温度以下的温度下聚合，以使该聚合物在形成后立即结晶。特别地，选择反应条件以便聚合速度低于结晶速度。这些合成条件促使分子链在它们形成后立即结晶，造成与由溶液或熔体获得的形态基本不同的相当独特的形态。在催化剂表面处产生的结晶形态取决于该聚合物的结晶速率与生长速率之间的比率。此外，合成温度 — 在这种特定情况下也是结晶温度 — 极大影响所得 UHMWPE 粉末的形态。在一个实施方案中，反应温度为 -50 至 +50℃，更特别 -15 至 +30℃。与催化剂类型、聚合物浓度和影响反应的其它参数一起经由常规试算法确定哪种反应温度适当完全在技术人员的能力范围内。

[0077] 为了获得高度松散的（disentangled）UHMWPE，重要的是，聚合位点彼此充分远离以防止聚合物链在合成过程中缠结。这可以使用以低浓度均匀散布在结晶介质中的单点催化剂实现。更特别地，低于 1.014 摩尔催化剂/升，特别是低于 1.015 摩尔催化剂/升反应介质的浓度可能适当。也可以使用负载型单点催化剂，只要小心活性位点彼此充分远离以防止聚合物在形成过程中明显缠结。

[0078] 适用于制造本发明中所用的起始 UHMWPE 的方法是现有技术中已知的。参考例如 WO01/21668 和 US20060142521。

[0079] 该聚合物以微粒形式，例如以粉末形式，或以任何其它合适的微粒形式提供。合适的粒子具有最小 5000 微米，优选最小 2000 微米，更特别最小 1000 微米的粒度。该粒子优选具有至少 1 微米，更特别至少 10 微米的粒度。

[0080] 可以如下通过激光衍射 (PSD,Sympatec Quixel) 测定粒度分布。将样品分散到含表面活性剂的水中并超声处理 30 秒以除去附聚物/缠结。将样品泵送通过激光束并检测散射光。光衍射量是粒度的量度。

[0081] 用作原材料的 UHMWPE 粉末可具有相对较低的堆密度。更特别地，该材料可具有 0.25 克/立方厘米以下，特别是 0.18 克/立方厘米以下，再更特别 0.13 克/立方厘米以下的堆密度。可以根据 ASTM-D1895 测定堆密度。可如下获得该值的合理近似值。将 UHMWPE 粉末样品倒入确切 100 毫升的测量烧杯中。在刮除多余材料后，测定烧杯内容物的重量并计算堆密度。

[0082] 进行压实步骤以使聚合物粒子结合成单一物体，例如母板形式。进行拉伸步骤以便为该聚合物提供取向并制造最终产物。这两个步骤在相互垂直的方向上进行。要指出，将这些事项合并在单一步骤中或在不同的步骤中进行该方法（各步骤进行压实和拉伸项中的一个或多个）在本发明的范围内。例如，在本发明的方法的一个实施方案中，该方法包括将聚合物粉末压实形成母板，将该板轭轧形成轭轧母板并对该轭轧母板施以拉伸步骤以
形成聚合物条带的步骤。

[0083] 在本发明的方法中施加的压实力通常为 10-100000 N/cm²，特别是 50-50000 N/cm²，更特别 100-20000 N/cm²。该材料在压实后的密度通常为 0.8 至 1 kg/dm³，特别是 0.9 至 1 kg/dm³。

[0084] 在本发明的方法中，压实时和压形步骤通常在比该聚合物的无约束熔点低至少 1°C，特别是比该聚合物的无约束熔点低至少 3°C，再更特别比该聚合物的无约束熔点低至少 5°C 的温度下进行。通常，该压实时和在该聚合物的无约束熔点低最多 40°C，特别是比该聚合物的无约束熔点低最多 30°C，更特别比该聚合物的无约束熔点低最多 10°C 的温度下进行。

[0085] 该聚合物的初始熔点高度取决于分子链的长度。特别重要的是，分子量分布窄以防止任何低分子量组分的熔融。这种部分熔融造成分子链的各向同性卷绕。这使该条带在该条带的整个宽度上在该条带厚度方向上施力时不分成纤维，或仅分成有限数量的纤维。

[0086] 在本发明的方法中，该拉伸步骤通常在该聚合物在工艺条件下的熔点低至少 1°C，特别是比该聚合物在工艺条件下的熔点低至少 3°C，再更特别比该聚合物在工艺条件下的熔点低至少 5°C 的温度下进行。如技术人员所知，聚合物的熔点取决于它们受到的约束。这意味着在工艺条件下的熔融温度视情况而变。其容易地作为该工艺中的应力张力急剧降低时的温度测定。通常，该拉伸步骤在该聚合物在工艺条件下的熔点低至少 30°C，特别是比该聚合物在工艺条件下的熔点低至少 20°C，更特别至少 15°C 的温度下进行。

[0087] 在本发明的一个实施方案中，该拉伸步骤包括至少两个独立拉伸步骤，其中第一拉伸步骤在比第二以及任选的进一步拉伸步骤低的温度下进行。在一个实施方案中，该拉伸步骤包括至少两个独立拉伸步骤，其中各进一步拉伸步骤在比前一拉伸步骤的温度高的一度下进行。

[0088] 如技术人员显而易见的是，该方法可以以能区分各步骤的方式进行，例如在指定温度的各热板上送给该薄膜的形成。该方法也可以以连续方式进行，其中在拉伸过程中开始时对该薄膜施以较低温度，在拉伸过程结束时对其施以较高温度，在它们之间施加温度梯度。这种实施方案可以例如通过在配有温度区的热板上传递该薄膜来执行，其中最近压实时装置的热板末端区域的温度低于离压实装置最远的热板末端区域。

[0089] 在一个实施方案中，拉伸步骤中施加的最低温度与拉伸步骤中施加的最高温度之差为至少 3°C，特别是至少 7°C，更特别至少 10°C。通常，拉伸步骤中施加的最低温度与拉伸步骤中施加的最高温度之差为最多 30°C，特别是最多 25°C。

[0090] 起始聚合物的无约束熔融温度为 138 至 142°C 并容易由本领域技术人员确定。利用上文指出的值，能够计算适当的拉伸温度。可以在氩气中在 +30 至 +180°C 的温度范围内以 10°C / 分钟的升温速率经由 DSC（差示扫描量热法）测定无约束熔点。在此估计在 80 至 170°C 下的最大吸热峰最大值为熔点。

[0091] 也已经发现，与 UHMWPE 的常规加工相比，可以在更高形变速度下加工度为至少 2GPa 的材料。形变速度与该产品的生产性能直接相关。出于经济原因，重要的是在不会不利地影响该薄膜的机械性质的情况下在尽可能高的形变速度下制造。特别地，已经发现，通过以至少 4% / 秒的速率进行将产品强度从 1.5GPa 提高到至少 2GPa 所需的拉伸步骤的方法，可以加工强度为至少 2GPa 的材料。在常规聚乙烯加工中，不可能以此速率进行这种拉伸步骤。尽管在常规 UHMWPE 加工中，可以以 4% / 秒以上的速率进行初始拉伸步骤至例如
1 或 1.5GPa 的强度，但将该薄膜的强度提高至 2GPa 或更高值所需的最终步骤必须以远低于 4% / 秒的速率进行，否则该薄膜会破裂。相反，在本发明的方法中，已经发现，可以以至少 4% / 秒的速率拉伸强度为 1.5GPa 的中薄膜以获得强度为至少 2GPa 的材料。关于强度的进一步优化值，参考上文阐述的那些。已经发现，此步骤中施加的速率可以为至少 5% / 秒，至少 7% / 秒，至少 10% / 秒，或甚至至少 15% / 秒。

[0092] 该薄膜的强度与所施加的拉伸比相关。因此，该效应也可以如下表示。在本发明的一个实施方案中，本发明的方法的拉伸步骤可以如下式进行：上述拉伸速率进行从 80 拉伸比到至少 100，特别是至少 120，更特别至少 140，再更特别至少 160 的拉伸比的拉伸步骤。

[0093] 在另一实施方案中，本发明的方法的拉伸步骤可以以下式方式进行：上述速率进行从 60GPa 重量的材料到至少 80GPa，特别是至少 100GPa，更特别至少 120GPa，至少 140GPa 或至少 150GPa 重量的材料的拉伸步骤。

[0094] 技术人员显而易见的是，分别使用强度 1.5GPa、拉伸比 80 和 / 或重量 60GPa 的中间产物作为计算何时开始高速拉伸步骤的起点。这并不意味着进行独立可识别的拉伸步骤，其中原材料具有指定的强度，拉伸比或重量值，可以在拉伸步骤中形成具有这些性质的产物作为中间产物。随后将该拉伸比计算回具有指定初始性质的产物。要指出，上述高拉伸速率取决于所有拉伸步骤，包括高速拉伸步骤应在该聚合物在工艺条件下的熔点低的温度下进行的要求。

[0095] 可使用常规装置进行压实步骤，轧制和拉伸步骤。合适的装置包括加热辊、环形带等。

[0096] 进行本发明的方法中的拉伸步骤以制造聚合物条带。可以以本领域中常规的方式在一个或多个步骤中进行拉伸步骤。合适的方式包括在那以加工方向滚动的一组轴上在一个或多个步骤中传送该条带，其中第二轴比第一轴更快滚动。可以在热板上或在空气循环炉中进行拉伸。通常难以将这类设备的温度控制在 1 度内，这能使技术人员认识到由本发明的方法提供的增宽的操作范围。

[0097] 如上所述，在本发明的方法中，所施加的总拉伸比为至少 120。与聚合物和其它制造条件的选择相结合，这种高拉伸比的使用能使仅通过对拉伸材料施加与拉伸方向垂直的力的步骤来将该拉伸物体转化成纤维。

[0098] 特别地，所施加的总拉伸比为至少 140，更特别至少 160。已经发现，在总拉伸比为至少 180 或甚至至少 200 时获得极好的结果。总拉伸比是指压实母板的横截面积除以由该母板制成的拉伸条带的横截面积。

[0099] 本发明的方法在固态下进行。该聚合物条带具有小于 0.05 重量%，特别小于 0.025 重量%，更特别小于 100ppm(0.01 重量%) 的聚合物溶剂含量。相同值适用于本发明的纤维。

[0100] 通过下列实施例举例说明本发明，但不限于此。

[0101] 实施例和对比例

[0102] 使用在 6 巴压力下运行的 EnkaTechnicaJet-PP1600 喷气交织机对各种条带施以缠结步骤。在 12 米 / 分钟的线速下，张力为大约 0.5g/dtex。在对所得纤维施以 100 次 / 米的加捻后，进行拉伸试验。
<table>
<thead>
<tr>
<th>200/110</th>
<th>Mw/Mn</th>
<th>Mw</th>
<th>韧度 GPa</th>
<th>LD dtex</th>
<th>厚度 微米</th>
<th>020 韧度 GPa</th>
<th>#长丝</th>
<th>FLD dtex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.5</td>
<td>3.2</td>
<td>2.7*10^6</td>
<td>3.4</td>
<td>1151</td>
<td>15 <55°</td>
<td>2.7</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>8.8</td>
<td>3.2</td>
<td>2.7*10^6</td>
<td>2.8</td>
<td>1287</td>
<td>30 <55°</td>
<td>2.1</td>
<td>47</td>
</tr>
</tbody>
</table>

表2 概括不符合本发明的要求的条带的相应性质（200/100 取向参数、Mw/Mn 比、Mw、韧性、条带厚度和线密度）和使用相同方法制成的纤维的性质。

表2：对比

<table>
<thead>
<tr>
<th>200/110</th>
<th>Mw/Mn</th>
<th>Mw</th>
<th>韧度 GPa</th>
<th>LD dtex</th>
<th>厚度 微米</th>
<th>020 韧度 GPa</th>
<th>#长丝</th>
<th>FLD dtex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7</td>
<td>8.34</td>
<td>3.6*10^6</td>
<td>1.8</td>
<td>3565</td>
<td>51 <55°</td>
<td>1.4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5.7</td>
<td>9.79</td>
<td>4.3*10^6</td>
<td>2.1</td>
<td>3459</td>
<td>49 <55°</td>
<td>1.6</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9.79</td>
<td>4.3*10^6</td>
<td>2.3</td>
<td>3074</td>
<td>28 <55°</td>
<td>1.6</td>
<td>32</td>
</tr>
</tbody>
</table>

从这两个表的比较可以看出，当起始条带没有在所主张范围内的 Mw/Mn 比时，该条带不纵裂成纤维，而是仅分成独立片段。200/110 取向参数也具有影响。200/110 取向参数越高，由独立条带形成的纤维数越高。但正是这两个参数的组合造成本发明的获得具有高强度的低线密度纤维的有吸引力的效果。