I*I Innovation, Sciences et Innovation, Science and CA 2817196 C 2018/11/06

Développement economique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (11)(21) 2 81 7 1 96
(12 BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2010/12/18 (51) CLInt./Int.Cl. GO6F 9/24(2006.01),
(87) Date publication PCT/PCT Publication Date: 2012/06/14 GO6F 1/26(2006.01), GO6F 7/30(2006.01)
- . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2018/11/06 YIGUN. MEHMET. US:
(85) Entree phase nationale/National Entry: 2013/05/07 BAK YEVGENIY US
(86) N° demande PCT/PCT Application No.: US 2010/061180 WILSON, EMILY N. US;
] o o | STARK, K RSTEN V., US;
(87) N° publication PCT/PCT Publication No.: 2012/0/8175 ZHANG. SUSHU, US:
(30) Priorité/Priority: 2010/12/06 (US12/9260,835) STEMEN, PATRICK L., US;
(73) Proprietaire/Owner:
MICROSOFT TECHNOLOGY LICENSING, LLC, US
(74) Agent: SMART & BIGGAR

(54) Titre : DEMARRAGE RAPIDE D'ORDINATEUR
54) Title: FAST COMPUTER STARTUP

MEMORY

' |
! |
| | Y
! } 132 134]
- — :: APPLICATION (™ ™ USER o
S i INSTRUCTIONS ™+ (4) 8 ¥ sTATEDATA / il !
i \ il ‘ > " |
| SOFTWARE N(3) 4 = | I
| \ /| / R
o\ /il maNAgeR || OSSERVICES % ! 140
| 152 Vo __ \ | f:/:_
| it !: _ ‘\ '1 o
; 310 1 144 DRIVERS | —146(| 148 SYSTEM I
' R o
; I e i —i—i—m S L) |
| U W P e e ;o
! \ L |
i 310 |
| ‘
' |
} B00T Ly PROCESSOR i
@ 5
| |
! i
| |
s -

(57) Abrégée/Abstract:
Fast computer startup Is provided by, upon receipt of a shutdown command, recording state information representing a target
state. |n this target state, the computing device may have closed all user sessions, such that no user state information is included In

50 rue Victoria e Place du Portage1l e Gatineau, (Québec) K1AOC9 e www.opic.ic.gc.ca I*’I
50 Victoria Street e Place du Portage 1 ¢ Gatineau, Quebec K1AO0C9 e www.cipo.ic.gc.ca al l a

CA 2817196 C 2018/11/06

anen 2 817 196
13) C

(72) Inventeurs(suite)/Inventors(continued): KING, BRIAN E., US; KARAGOUNIS, VASILIOS, US; JAIN, NEEL, US

(57) Abrege(suite)/Abstract(continued):

the target state. However, the operating system may still be executing. In response to a command to startup the computer, this
target state may be quickly reestablished from the recorded target state information. Portions of a startup sequence may be
performed to complete the startup process, including establishing user state. To protect user expectations despite changes In
response to a shutdown command, creation and use of the file holding the recorded state information may be conditional on
dynamically determined events. Also, user and programmatic interfaces may provide options to override creation or use of the

recorded state information.

WO 2012/078175 A1 [HJ 1! AT OO0 0 A A A

(43) International Publication Date

CA 02817196 2013-05-07

(19) World Intellectual Property
Organization
International Burecau

WIPOIPCT

14 June 2012 (14.06.2012)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2012/078175 Al

(1)

(21)

(22)

(25)

(26)
(30)

(71)

(72)

International Patent Classification:
GO6F 9/24 (2006.01) GO6F 1/28 (2006.01)
GO6F 1/30(2006.01)

International Application Number:
PCT/US2010/061180

International Filing Date:
18 December 2010 (18.12.2010)

Filing Language: English
Publication Language: English
Priority Data:

12/960,835 6 December 2010 (06.12.2010) US

Applicant (for all designated States except US). MI-

CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: IYIGUN, Mehmet; Microsoit Corporation,
Attn: LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). BAK, Yevgen-
iy; Microsoft Corporation, Attn: LCA - International Pat-
ents, One Microsoft Way, Redmond, Washington 98052-
6399 (US). WILSON, Emily N.; Microsoft Corporation,
Attn: LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). STARK,
Kirsten V.; Microsoft Corporation, Attn: LCA - Interna-
tional Patents, One Microsoft Way, Redmond, Washington

98052-6399 (US). ZHANG, Sushu; Microsott Corpora-

(54) Title: FAST COMPUTER STARTUP

(81)

(84)

N I B N R N

tion, Attn: LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US). STE-
MEN, Patrick L.; Microsofit Corporation, Attn: LCA - In-
ternational Patents, One Microsoft Way, Redmond, Wash-
igton 98052-6399 (US). KING, Brian E.; Microsott Cor-
poration, Attn: LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US). KARAG-
OUNIS, Vasilios; Microsotit Corporation, Attn: LCA - In-
ternational Patents, One Microsoft Way, Redmond, Wash-

ington 98052-6399 (US). JAIN, Neel; Microsoft Corpora-
tion, Attn: LCA - International Patents, One Microsoft

Way, Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
/M, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

[Continued on next page]

| |
| I
i] o
! \ i 132 134)
T | APPLICATION (=~ ™~ Y/ USER)
e - 1 INSTRUCTIONS ["4 8 ¥ STATE DATA N
i ~\ LT | ; - '__.'__.'__.'__.'_—.'_-.'_—.'__\.L“-_."__.‘_-.'_-._-. . ".('__.'_:_.'__.'_-.‘_-.'_-.'__. —— '__.'__.’_-.‘_-.'_i I

| SOFTWARE N{3: ; K 7 i
! oo FILE OS SERVICES x / o
! ! ™M42 / !(',/y—140
! ; \ 1 S
| I | | by
i] 148 Coy
! i DRIVERS |~ 1461 | ™/ SYSTEM /o
: ¥] ;/ STATEDATA / I} |
- e e e e N R B
l ' S
i e R R e R I
' | | |
| |
| |
i BOOT |1 |
| venory 1 PROCESSOR |
l |
; I
l $ '
: I
| |
i \154 N0 i
i :

FIG. 3

(57) Abstract: Fast computer startup 1s provided by, upon receipt of a shutdown command, recording state information representing
a target state. In this target state, the computing device may have closed all user sessions, such that no user state information 1s n -
cluded in the target state. However, the operating system may still be executing. In response to a command to startup the computer,
this target state may be quickly reestablished from the recorded target state information. Portions of a startup sequence may be per -
formed to complete the startup process, mcluding establishing user state. To protect user expectations despite changes in response to
a shutdown command, creation and use of the file holding the recorded state information may be conditional on dynamically determ -
ied events. Also, user and programmatic interfaces may provide options to override creation or use of the recorded state informa -

t10n.

CA 02817196 2013-05-07

WO 2012/078175 A1 IO A0 0 A R O R

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG). Published:

Declarations under Rule 4.17: — with international search report (Art. 21(3))

— as to the applicant'’s entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

— as to applicant's entitlement to apply for and be granted
a patent (Rule 4.17(ii))

N

10

-
N

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180
FAST COMPUTER STARTUP
BACKGROUND
[0001] Computers have several operating modes, ranging from full operation to

full shutdown. In full operation, software defining the executing portions of the operating
system has been loaded from non-volatile memory into volatile memory, from which 1t
can more quickly be executed. The computer enters this tull operation mode though a
“startup” process. The startup process configures the hardware and loads the operating
system of the computer. As part of the startup process, drivers are installed and operating
system services are started.

[0002] Once the computer 1s ready for operation by any user, a user may log on to
the computer. This log on may involve further configuration of the computer based on a
profile specific to user who is logged on. Either automatically or 1n response to user input,
applications may then be loaded, such that the applications can execute, taking advantage
of the capabilities of the hardware and operating system services of the computing device.
[0003] In the process of loading software, whether for the operating system or
applications, memory may be allocated, parameters of the software may be assigned
values based on the hardware configuration of the computer or a user profile, and other
configuration actions may be pertormed.

[0004] These actions establish a “state” of the computing device. Further changes
to the memory and other parameters of the system that define its operating state may also
be made as the user provides commands to interact with executing applications or
operating system services.

[0005] In full shutdown mode, power 1s not supplied to the hardware components
of the computer. No software or state information is stored in volatile memory, as this
memory does not retain information when 1t 1s powered off. Rather, any information that
will b¢c uscd later to re-configurc the computcer for a full opcration modc 1s stored 1n non-
volatile memory.

[0006] The computer enters shutdown mode through a process called shutdown.
During shutdown, any information that may be needed to re-configure the computer, 1f 1t
1s not alrcady storcd 1in non-volatilc memory, may be storcd mm non-volatile memory.
Software and other configuration information that was copied into volatile memory from

non-volatile memory is not copied back to non-volatile memory, because 1t can be re-

1

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

crcated upon a subscquent startup process. Howcever, to the cxtent that the volatile
memory caches data copied from non-volatile memory that was modified after 1t was
copied (sometimes called “dirty” data), that data 1s copied to non-volatile memory during
shutdown.

[0007] A turther variation 1s called log off. In a computer that supports uscr
sessions, users may log on to the computer 1in order to access 1ts functionality. Though
shutdown effectively logs off users, a separate log off process may be performed
following which the computer does not power down. Rather, the operating system
remams loaded and ready for another user to log on. During logoit, the computer “breaks
down’ user sessions. Breaking down a user session may entail ¢losing applications
launched by the user and storing user specific data not already in non-volatile memory.
[0008] In addition to a full shutdown or log off, there may be power saving modes
1n which power to some or all of the hardware components of the computer 1s turned off.
In a power saving mode, sometime called sleep mode, power 1s turned off for the
computer processor, network interfaces and possibly other components. However, power
1s retained for volatile memory. In this way, any state information created during boot or
subsequent operation of the computer 1s retained m volatile memory. When power 1s
supplicd to the processor agam, 1t may resumc opceration in the statc where 1t Icft otf upon
entering sleep mode.

[0009] A further mode is sometimes called hibernate mode. The computer enters
this mode through a process called hibernation. During hibernation, a file capturing the
operating state of the computer 1s created and stored 1n non-volatile memory, typically a
hard disk. During a process of resuming from hibernate, this file may be read from the
disk and used to re-establish the state of the computer as it existed at the time of
hibernation. Resuming from hibernate restores in volatile memory copies of software or
parameters set during operation that existed at the time of hibernating, such that any user
state 1s also restored.

[0010] Resuming from hibernation can be faster than performing a full startup for
several reasons. One reason is that copying the state information in the hibernation file
into volatile memory re-creates the results of the full startup process, while avoiding the
time spent exccuting the steps of the startup proccess, such as CPU consumption, device
initialization and many other types of work that has to be done during boot. Additionally,
the information accessed during startup is stored 1n many different files, representing

different components that are accessed to load and configure what may be potentially tens

2

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

of thousands of componcnts 1n the opcrating systcm. These components, and the
information accessed to configure them, may be randomly distributed across the hard disk.
Because hard disk drives, and some other forms of high capacity storage, are most
efficient at accessing sequential data, accessing randomly distributed data may include
substantial disk acccss timge, Icading to a long startup proccss. In contrast, the acecss time
1s less 1n reading the hibernation file because mformation in that file may be stored
sequentially on the disk.

[0011] A further difference between resuming from hibernation and startup is that
hibernating and then resuming restores the full state of the computer, including any user
state for the user of the computer at the time the computer hibernated. In contrast, until a
user logs on, a startup will generically configure a computer for any user. Specific users
may then log on or otherwise take action to configure the computer for themselves. For
this reason, hibernation 1s generally sclected by a user who mtends to be away from a
computer for a while, but mtends to return to the computer. A shutdown 1s generally used
by a user who intends to be away from the computer for a longer time, possibly not
returning to the computer at all or who expects other users may use the computer 1n the

before the user returns.

SUMMARY
[0012] To improve a user experience, a computer may be configured to respond to
a user command to shutdown by entering hibernate mode. Such a computer may be ready
for operation by a user more quickly after the user provides a command to startup the
computer. To enable the computer to quickly be ready for operation 1n a state consistent
with a user’s expectation, a hibernation file captures a target state that implements user
expectations. In response to a shutdown command, the computer creates this target state
prior to hibernating by performing only a portion of the steps 1n a shutdown process. The
steps performed may place the computer 1 the target state, corresponding to a state 1n
which the operating system remains loaded, but user sessions have been broken down.
[0013] Upon receipt of a startup command, the computer system may, rather than
creating an operating state by loading and configuring software, re-create the target state
by copying the¢ hibcernation file into volatilc memory. The computer then may perform
only portions of the startup sequence. Those portions may include the operations that

would conventionally occur during a startup sequence after the operating system is loaded.

CA 02817196 2015-11-30

51331-1403

10

15

20

Those steps may include, for example, interacting with a user to perform a user log on and
load applications that define a user state.

[0014] In some embodiments, conditional processing may be performed in
response to a user command indicating a shutdown. The computing device may
determine, for example, whether the computing device is in an operating state where a full
shutdown is required or whether creating a hibernation file to use in response to a
subsequent startup command 1s appropriate.

[0015] Such a state may be i1dentified in any of a number of ways, including by '
determining that configuration settings ‘of some installed component were changed and
will not be applied until the component again is loaded as part of a full startup sequence.
Alternatively, a programming interfacc may be provided that allows application
components to register as requiring a full shutdown.

[0016] If such a condition 1s detected, conventional shutdown processing may be
performed until the computing device is fully powered down. If not, the shutdown
sequence may be performed until the computing device is in the target state, from which a
hibernation file may be made.

[0017] In some embodiments, conditional processing may be performed in
response to a user command to startup. That conditional processing may include
determining whether a hibernation file exists. If so, a further check may be made on
whether it 1s possible that the target state of the computing device could have changed
between the time when the hibernation file was created and the time at which the startup

command was received. If events that could have caused a change in state are detected,

the computing device may perform a full startup sequence.

10

15

20

25

30

>1331-1403

[0017a] According to an aspect of the present invention, there is provided a method
performed on a computing device comprising a plurality of hardware components including a
volatile memory retaining any user state of the computing device and system state of the
computing device, the method comprising performing a shutdown sequence configured for
shutting down the computing device in response to receiving a shutdown command, the
shutdown sequence comprising: breaking-down any user sessions on the computing device
resulting in the user state no longer being retained in the volatile memory; copying,
subsequent to the breaking-down, contents of the volatile memory to non-volatile INemory,
the copied contents comprising the retained system state but not the no-longer retained user
state; and powering down at least a portion of the plurality of hardware components of the

computing device.

[0017b] According to another aspect of the present invention, there is provided at least
one computer storage device storing computer executable instructions that, when executed by
a computing device comprising a plurality of hardware components including a volatile

memory retaining any user state of the computing device and system state of the computing

device, cause the computing device to perform a shutdown sequence configured for shutting
down the computing device in response to receiving a shutdown command, the shutdown
sequence comprising: breaking-down any user sessions on the computing device resulting in
the user state no longer being retained in the volatile memory; copying, subsequent to the
breaking-down, contents of the volatile memory to non-volatile memory, the copied contents

comprising the retained system state but not the no-longer retained user state; and powering

down at least a portion of the plurality of hardware components of the computing device.

(0017 ¢] According to still another aspect of the present invention, there is provided a
computing device comprising: at least one program module configured for performing a
shutdown sequence configured for shutting down the computing device in response to
receiving a shutdown command, the computing device comprising a plurality of hardware
components including a volatile memory retaining any user state of the computing device and
system state of the computing device, the shutdown sequence further configured for
performing actions comprising: breaking-down any user sessions on the computing device

resulting 1n the user state no longer being retained in the volatile memory; copying,
4a

CA 2817196 2017-10-18

10

51331-1403

subsequent to the breaking-down, contents of the volatile memory to non-volatile memory,
the copied contents comprising the retained system state but not the no-longer retained user
state; and powering down at least a portion of the plurality of hardware components of the

computing device.

[0018] The foregoing 1s a non-limiting summary of the invention, which is defined by

the attached claims.
BRIEF DESCRIPTION OF DRAWINGS

[0019] The accompanying drawings are not intended to be drawn to scale. In the
drawings, each 1dentical or nearly identical component that is illustrated in various figures is
represented by a like numeral. For purposes of clarity, not every component may be labeled in

every drawing. In the drawings:

[0020] FIG. 1 is a conceptual block diagram illustrating a startup sequence in a

computing device;

4b

CA 2817196 2017-10-18

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

|0021] F1G. 2 1s a functional block diagram illustrating a rcsumc from hibcernation
sequence m a computing device;

[0022] FIG. 3 1s a functional block diagram illustrating a fast startup sequence
according to some embodiments of the mvention;

|0023] F1G. 4 1s a flow chart illustrating a mcthod of opcrating a computcer to
respond to a startup command according to some embodiments of the mvention;

[0024] FIG. 5 1s a tflow chart of a method of operating a computing device to
respond to a shutdown command according to some embodiments of the invention;

[0025] FIG. 6 1s a flow chart of a portion of a startup sequence that may be
conditionally executed according to some embodiments of the mnvention;

[0026] FIG. 7 1s a sketch of a portion of a graphical user iterface through which a
user may select between commands that cause different behaviors of a computing device
upon shutdown; and

[0027] FIG. 8 1s a block diagram of an exemplary computing device, illustrating an

environment in which embodiments of the invention may operation.

DETAILED DESCRIPTION

[0028] The inventors have recognized and appreciated that an experience of a user
of a computing device may be improved through the use of a hibernation file in
conjunction with portions of a shutdown and/or startup sequence of the computing device.
Such a file may be created selectively upon shutdown and used selectively upon startup
such that the performance of the computing device matches user expectations. Even when
a hibernation file is created or used, portions of conventional shutdown or startup
sequences may be performed.

[0029] To provide operation of the computing device that 1s consistent with user
expectations, hibernation may be used in conjunction with portions of a traditional
shutdown sequence of the computing device that places the computing device 1 a target
state. Those portions may include, upon receipt of a shutdown command, operations that
brcak down uscr scssions. In addition, as part of responding to a shutdown command,
information retained 1n volatile memory after user sessions are broken down, but that 1s

intended to be retained 1n non-volatile memory 1s moved to non-volatile memory. For

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

cxamplc, traditional cache flushing opcrations that mimic thosc pertformed during a
conventional shutdown may be performed.

[0030] Conversely, upon processing of a startup command, a resume from
hibernation may be performed along with portions of a startup sequence. That sequence
may include any part of the startup scquence that occurs atter the opcrating system 1s
loaded and ready for operation. That part of the startup sequence may include user log on
and loading of applications, for example.

[0031] Further, to provide operation consistent with user expectations, creation or
use of a hibernation file as part of shutdown or startup may be conditioned upon
dynamically determined events. In scenarios i which a component has been reconfigured
during an operating session, such that configuration changes are not applied until the next
time the component 1s loaded, no hibernation file may be created. In response to the next
startup command from a user, the computer will detect that no hibernation file 1s available
and create the target state by reloading the operating system. Alternatively or additionally,
the operating system may provide an interface through which other components can
register to signify that they require a full shutdown or startup to function effectively.
When executing components are registered, a full shutdown sequence may be performed
In responsc to a shutdown command.

[0032] Further, to operate consistently with user expectations, 1 some
embodiments, a user intertace may be provided through which a user may specity whether
to perform a conventional shutdown or a modified shutdown in which a target state 1s
created and then the hibernation process 1s performed. Such a user interface may present
separate options for a conventional shutdown and a modified shutdown sequence
incorporating hibernation. A computing device may conditionally invoke the modified
shutdown sequence in response to an input labeled as a conventional shutdown command.
A separate command option may be provided through the intertace with which a user may
specify a conventional shutdown.

[0033] Turning now to FIG. 1, a function block diagram of a full startup sequence
1s 1llustrated. FIG. 1 illustrates a functional block diagram of a computing device 100 that
may be adapted to operate according to embodiments of the mvention.

|0034] In this cxamplc, computing device 100 includes volatilc memory 120.
Volatile memory 120 may be implemented using DRAM or any other suitable memory

components. A startup sequence performed by computing device 100 involves creating

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

statc information within volatilc memory 120 that allows computing device 100 to
perform computing operations as are known in the art.

[0035] In this example, that state information 1s depicted as having two portions,
user state information 130 and system state information 140. System state information
140 represents the state mtormation that gencrically configures computing deviee 100 for
operation by any user. In contrast, user state information 130 represents state information
that may be generated when computing device 100 is operated or configured for operation
by a specific user.

[0036] System state information 140 and user state information 130 may be
created 1n volatile memory 120 according to a startup process as 1s known 1n the art. FIG.
1 illustrates, 1n simplified conceptual fashion, steps 1in a conventional startup sequence.
Such a sequence may be mitiated, for example, when computing device 100 1s powered on
or other command signifying a startup 1s provided.

[0037] Computing device 100 may include components as are known in the art.
Those components may include a processor 110. Processor 110 may be implemented as a
microprocessor or a collection of microprocessors or processor cores, as are known 1n the
art. The operations described herein may be the result of processor 110 executing
softwarc 1nstructions.

[0038] Additionally, computing device 100 may mcorporate multiple types of
computer storage media. In this case, those types include volatile memory and non-
volatile memory. In this example, volatile memory 120 i1s illustrated. Various types of
information are stored 1n non-volatile memory 150 and 152. Boot memory 154 1s also
non-volatile memory. Different physical devices may be used to implement non-volatile
memories 150 and 152 and boot memory 154, For example, non-volatile memory 150
may be a disk, such as a spinning hard disk or a solid state drive. Non-volatile memory
152 may similarly be a disk, and may be the same disk used to implement non-volatile
memory 150, a different partition on the same disk or a different disk entirely.

[0039] Non-volatile memory 154 may likewise be a portion of the same device
used to implement non-volatile memories 150 and 152. Though, in the embodiment
1llustrated, non-volatile memory 154 may be a non-volatile memory chip connected to
proccssor 110. Accordingly, 1t should be appreciated that FIG. 1 represents just onc
example of a memory architecture, and any suitable memory architecture may be used.
[0040] In this example, non-volatile and volatile memories are illustrated. Such a

configuration represents a traditional computer architecture. Though, 1t 1s not a

7

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

rcquircment that this specific architccture be used. Rather, volatilc memory 120 1s an
example of operating memory. During operation of computing device 100, processor 110
may predominantly access the software and data to perform operations from volatile
memory 120. This memory may be relatively high speed such that operations may be
pcrformed by processor 110 quickly.

[0041] In contrast, non-volatile memories, such as non-volatile memory 150 and
152, may be capable of storing large quantities of data, but may operate more slowly than
volatile memory 120. Generally, the cost of storing information in such non-volatile
memorics may be relatively small in comparison to the cost of storing information 1n
volatile memory 120. To achieve cost etfective, yet high speed operation, information
may be transferred between non-volatile memories and the volatile memories. These
transfers are performed to create a state within volatile memory 120 that supports desired
operation of computing device 100.

[0042] Other components of a computer system may be present, but are omitted
for simplicity. More detail of components that may be present in other embodiments 1s
provided below in connection with FIG. 8. However, the simplified illustration in FIG. 1
1s adequate for an explanation of a startup process.

[0043] In rcsponsc to a startup command, proccssor 110 may access and cxccute
instructions m boot memory 154. Boot memory 154 may contain instructions that cause
processor 110 to access non-volatile memories 150 and 152 and, based on software and
data stored in those memories, generate an appropriate state in volatile memory 120.
[0044] The mstructions 1 boot memory 154 may cause processor 110 to load
software from non-volatile memory 150. As part of loading software components,
processor 110 may transfer software instructions to volatile memory 120 from which that
software may be executed. Though, loading software may include other operations,
including execution of some components.

[0045] Execution of some components from volatile memory 120 may transform
the software from the state in which it 1s stored to the state in which 1t 1s used or cause
other components to be transferred from non-volatile memory to volatile memory 120. In
the process of loading software, processor 110 may configure the software based on data
storcd 1n non-volatilc memory 152 or other information. That information may mnclude,
for example, information about hardware components installed 1n computing device 100.

Accordingly, FIG. 1 illustrates that a second and third steps of the startup process may be

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

to acquirc softwarc from non-volatilc memory 150 and data from non-volatilc memory
152.

[0046] The first software loaded in this process may establish system state 140.
The software mitially loaded may add to the system state 140 drivers 146, which control
hardwarc componcnts. Bcfore loading a driver, hardwarc componcnts associatcd with
computing device 100 may be identified and an appropriate driver may be selected. Once
the driver 1s installed, operating system services, and other components, may interact with
the device controlled through the driver.

[0047] Operating system services 142 may then be loaded. One example of such a
service 1s file manager 144. File manager 144 may organize data in volatile memory such
that executing operating system services and applications may access data i non-volatile
memory organized according to files. Other services provided by an operating system
may include interacting with a user mtertace, establishing a network connection or sending
information to a printer. Though, the specific operating system services 142 1s not a
l[imitation on the mvention.

[0048] Additionally, during the process of establishing the system state 140,
processor 110 may store system state data 148. Such data may be copied from non-
volatilc mcmory, such as non-volatilc memory 152, or may be gencrated by exccution of
software components. The data, for example, may be generated when processor 110
executes instructions that discover devices installed within computing device 100. As a
specitic example, upon discovering a specific network interface card, processor 110 may
record as part of system state data 148 a type or capabilitics of the network interface card.
This data may then be used during operation of the computing device to control
interactions with the network interface card. Though, 1t should be appreciated that the
specific data stored as system state data 148 1s not critical to the invention.

[0049] Regardless of the specific operating system services 142 and system state
data 148 that 1s created 1n system state information 140, when that system state
information 140 1s created, computing device 100 may be ready for operation by a user.
Accordingly, the startup sequence may continue with a process sometimes referred to as
user log on. As part of user log on, a specitfic user may be 1dentified and further state
information may be created in volatile memory 120 to allow computing device 100 to
perform operations for that user. In this example, user state mmformation 130 1s 1llustrated

as containing application instructions 132 and user state data 134,

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

|00S50] As with the instructions representing operation system componcents and the
data representing system state, application instructions 132 may be loaded mto memory
based on software stored on volatile memory 150. Though, the process of loading
software may entail executing functions that appropriately configure the software or
computing dcvice for operation. That configuration may be dependent on system state
data 148 or user state data 134,

[0051] As just one example, upon loading application instructions implementing a
web browser, processor 110 may access information representing user data, either from
non-volatile memory 152 or user state data 134, that identifies specific web sites that a
user has 1dentified as “favorites.” In this example, establishing user state data 130
configures the web browser for execution in accordance with user preferences, which will
include presenting the list of the favorites customized for a specific user that has logged on
to computing device 100.

[0052] Once user log on 1s completed, the user may then interact with the
computing device 100. These mteractions may result in more software being loaded or
some loaded applications being closed. Additionally, user interactions may set parameters
or take other actions that can change either user state 130 or system state 140. These
intcractions may continuc until a uscr mputs a command 1ndicating an imntent to cnd the
$€SS10M.

[0053] The session may be ended in one of multiple ways. For example, when a
user completes a session of interaction with computing device 100, the user may log oft
and/or shutdown computing device 100. Logott results in the user session bemng broken
down such that user state information 130 1s no longer available 1n memory 120. Part of
the log off sequence may entail removing user specific settings from the system state 140.
In this way, a second user may log on to computing device 100 without being influenced
by or being able to access state information generated by a prior user. The operations to
achieve this result may sometimes be described as breaking down a user session.

[0054] System state 140 may be retained following a logott because power to
memory 120 may be maintained. In contrast, shutdown may result in both user state 130
and system state 140 being removed from volatile memory 120. Because power 1s turned
oft to volatilc mcmory 120, any information in volatilc memory 120 at the end of the
shutdown sequence will be lost. Accordingly, any information needed to re-create that

state, 1f not already stored in no-volatile memory, may be moved to non-volatile memory.

10

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

[0055] Log off and/or shutdown scquencces arc not nccessarily the reverse of the
startup sequence because there 1s no need to return any information generated from non-
volatile memories. That same information can be generated again upon subsequent
startup. However, portions of the user state 130 that were dynamically generated during
the scssion and cannot be re-crcated from the information 1n non-volatilc memory, may, as
part of the log off or shutdown operation, be recorded in non-volatile memory. Similarly,
upon shutdown, portions of the system state data 148 that cannot be re-created upon re-
execution of the startup sequence may be transterred to non-volatile memory as part of the
shutdown sequence.

[0056] As one example, system state data 148 may contain a cache, intended to act
as a working copy of data items stored 1n non-volatile memory 152. A cache speeds up
operation of computing device 100 by establishing 1 volatile memory a copy of
information that should be retained 1in non-volatile memory. Reading or writing
information 1n a faster volatile memory location speeds up operation of the computing
device in comparison to accessing that same data in non-volatile memory.

[0057] When a copy of data in volatile memory 1s changed, it no longer matches
the corresponding data 1 non-volatile memory. The data 1n the cache 1s said to be “dirty.”
To kcep the non-volatilc memory synchronized with the copy 1n the cache, dirty data 1s
copied, from time-to-time, into non-volatile memory. Usually, dirty data is copied back
when the computer is not otherwise busy.

[0058] Though, delaying the copying of dirty data creates the possibility that at
shut down the data 1n the cache will not match what 1s 1n non-volatile memory. To avoid
Inconsistencies, prior to shutting down computing device 100, an operation, sometimes
referred to as a flushing dirty data, may be performed. During this operation, dirty data is
copied to non-volatile storage.

[0059] Though the startup sequence illustrated i FIG. 1 1s desirable because it
configures computing device 100 for operation by a user, the startup sequence can, 1n
some mstances, be a source of frustration. An operating system and applications desired
by a user may collectively contain thousands or tens of thousands of components. The
startup sequence, therefore, may entail multiple read operations from non-volatile
mcmorics 150 and 152. Bcecausc these memorics gencrally opcerate slowly, the overall
process may be relatively slow. Additionally, a startup sequence may entail time
consuming operations other than storage-related operations. Additionally time may be

spent, for example, on computations by the CPU or device mitialization.

11

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

[0060)] F1G. 2 illustrates an altcrnative approach for creating statc information 1n
volatile memory. FIG. 2 illustrates computing device 100 during a sequence of operation
in which state information 1s created in volatile memory 120 as part of a resume from
hibernation sequence.

|0061] Hibcrnation 1s an opcrating modc that may be crcated by copying state
information from volatile memory to non-volatile memory. Such state information may be
organized any suitable way. In the embodiment illustrated in FIG. 2, that state information
1s 1llustrated as being stored in hibernation file 210 in non-volatile memory 152. During
hibernation, processor 110 may copy state information, including user state information
130 and system state information 140, into hibernation file 210. Hibernation mode 1s then
entered by shutting off power to all or a portion of the components of computer system
100. When the power 1s shut off, state information n volatile memory 120 1s lost.
However, it may be re-created as a resume from hibernation by copying the hibernation
file into volatile memory.

[0062] Accordingly, FIG. 2 shows that the resume from hibernation sequence may
begin similarly to the startup sequence 1llustrated in FIG. 1 by processor 110 accessing
instructions stored i boot memory 154. Those mstructions cause processor 110 to check
for the presence of hibernation filc 210. In this cxamplc, upon detecting hibernation file
210, processor 110 copies the contents of hibernation file 210 into volatile memory 120.
The copying may entail direct copying or may entail processing to transform the
information in some way as it 1s copied, such as decompressing the file. Regardless of
whether processing 1s performed as part of the processing, the end result will result 1
restoring state information. Once the state information 1s restored, a user may resume a
computing session that was interrupted at the time of hibernation. Both system state data
148 and user state data 134 will be returned to volatile memory 120. Additionally,
applications 132, operating system services 142 and drivers 146 will likewise be returned
to volatile memory 120 and ready for execution.

[0063] Frequently, a resume from hibernation will be faster than performing the
full startup sequence 1illustrated in connection with FIG. 1. Though the same amount of
information may ultimately be placed into volatile memory 120 during a resume from
hibernation and a full startup, simply copying that information from a filc may be faster
than generating 1t by loading software and configuration data.

[0064] However, entering hibernation mode and then resuming from hibernation is

not always a suttable substitute for performing a shut down and then a startup sequence.

12

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

Thc Applicants havc rccognized and appreciated that performing a hibernation 1n responsc
to a user command to shut down a computing device and subsequently resuming from
hibernation in response to a command from a user to startup a computing device may not
result in operation of the computing device that meets the user’s expectation.

|0065] The mventors have 1dentificd a way to provide a faster opcrating
experience, without disrupting existing user expectations. FIG. 3 illustrates a functional
block diagram 1n which computing device 100 may conditionally incorporate hibernation
into a shut down sequence. Additionally, the computing device may conditionally
Incorporate a resume from hibernation 1n a startup sequence.

[0066] In the embodiment 1llustrated in FIG. 3, computing device 100 1s shown to
contain state mformation copied into non-volatile memory 152. In this embodiment, the
state information 1s formatted as a hibernation file 310. Hibernation file 310 may be 1n the
form of a hibernation file as 1s known 1n the art. Though 1t should be appreciated that any
suitable format may be used to store state information 1in non-volatile memory.

[0067] In contrast to the information stored 1n hibernation file 210, hibernation file
310 contains system state 140. User state 130 need not be stored as part of hibernation file
310; though 1s some embodiments, portions of the user state may be stored. Accordingly,
when a uscr supplics a startup command to computing device 100, proccssor 110 may
begin executing instructions from boot memory 154, similar to what occurs in the
operating mode illustrated in FIG. 2. Upon detecting the presence of hibernation file 310,
processor 110 may copy the contents of hibernation file 310 into volatile memory 120.
This copying re-creates the system state 140 1n volatile memory 120.

[0068] This state may mimic the state of computing device 100 during the startup
sequence 1llustrated 1 FIG. 1 after operating system software 1s loaded, but before a user
log on occurs. Accordingly, to complete the creation of state information 1n volatile
memory 120, processor 110 may perform steps of the startup sequence described above 1n
connection with FIG. 1 that occur after system state 1s created. In this case, those
operations may mclude loading application mstructions 132 and creating user state data
134 by reading software instructions from non-volatile memory 150 and configuring 1t
based on data in non-volatile memory 152. Upon completion of these sequence of
opcrations, the statc mformation 1n volatilc memory 120 may be comparablc to that loaded
as a result of executing the startup sequence as described above in connection with FIG. 1.

However, the time required to respond to a startup command using the sequence illustrated

13

10

15

20

30)

WO 2012/078175

CA 02817196 2013-05-07
PCT/US2010/061180

in F1G. 3 may be shorter than that required to ecxccutc a startup scquence as described 1n
connection with FIG. 1.

[0069] In the example 1llustrated in FIG. 3, hibernation file 310, though of the
same format as hibernation file 210 (FIG. 2), contains different information. Additionally,
hibcrnation filc 310 1s crecated m a different way than hibernation file 210. As described
above, hibernation file 210 (FIG. 2) records the state of computing device 100 as
represented in volatile memory 120 at the time of a hibernation command. In contrast,
hibernation file 310 1s created in response to a shut down command. Though, the state
information captured i hibernation file 310 does not represent the full state of computing
device 100 at the time of the shut down command.

[0070] Rather some processing may be performed to place computing device 100
In a target state, at which time the hibernation file 310 may be created. In the embodiment
1llustrated, the target state represents a state that may have been generated upon loading of
an operating system but without a user logging on to computing device 100. Such a target
state may be created, at least 1n part, by executing a portion of the shut down sequence.
For example, that portion may include logging off a user or users of computing device 100
or otherwise breaking down user connections. Such processing may be performed using
tcchniques as arc known 1n the art.

[0071] Other processing may alternatively or additionally be performed for place
computing device 100 1n a target state. For example, processing may include flushing
dirty data from system state data 148.

[0072] Moreover, as noted above, to preserve a user expectation of the reaction of
computing device 100 to a shut down command, a shut down sequence involving
hibernation may be conditionally performed based on conditions that may exist at the
time. Similarly, a startup sequence may conditionally involve a resume from hibernation.
FIGS. 4, 5 and 6 1llustrate such conditional processing.

[0073] FI1G. 4 1llustrates a startup sequence such as may be performed by
computing device 100 1n response to a startup command. A startup command may, for
example, by provided to computing device 100 by a user pressing an on button, supplying
power to computing device 100 or otherwise initiating operation of computing device 100.
[0074] Rcgardlcss of the manncr 1n which the startup scqucencce 1s itiated, the
process may begin at block 410. At block 410, processor 110 may fetch and execute

instructions from boot memory 154 that initiate the process. Though, 1n later steps of the

14

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

proccss, mstructions may be fetched from non-volatile memory 150 or from any other
suttable source, including from over a network connection.

[0075] Regardless of the source of the mstructions used to control processor 110 to
initiate the startup sequence, the process may branch at decision block 412, depending on
whether a hibernation file 1s detected i non-volatile memory 152. 1f so, the proccss may
branch to termination point A, to continue on with a process as illustrated in FIG. 6.
Conversely, 1f no hibernation file exists, the process may proceed to subprocess 450.
[0076] Subprocess 450 may represent a sequence of operations that implement a
startup sequence generally as 1s known 1n the art. In this example, the processing at blocks
420,422, 424, 426, 428, 430 and 432 may represent processing as 1in a known startup
sequence. Though, 1t should be appreciated that any suitable sequence of operations,
using any suitable techniques, may be used.

[0077] Regardless of the specitfic approach used, processing within subprocess 450
may begin at block 420. At block 420, processor 110 executes an operating system loader.
Such a loader may be a software component that, when executed, loads components of an
operating system from non-volatile memory 150 to volatile memory 120.

[0078] At block 422 operations that configure the 1mage of the operating system
being crcated as part of the system state 140 may be configurcd. This configuration may
involve any suitable processing, including setting values of parameters of components
loaded into volatile memory or executing instructions that configure other aspects of the
system state 140.

[0079] Also as part of the startup subprocess 4350, computing device 100 may
detect devices. Any suitable devices may be detected, such as printers, network interfaces
or other peripherals connected to computing device 100. Based on the detected devices, a
driver loader may be executed at block 426. A driver loader may be a software
component, constructed usimg known techniques, that loads a driver. Execution of driver
loader may involve identifying and loading driver software for the detected devices. Once
the drivers have been loaded, they may be started at block 428. This processing may make
the drivers and the devices that they control available for use by other components loaded
on computing device 100.

[0080] Thce process may continuc to block 430 whcre opcrating systcm scrvices
may be started. Once the devices and services of the operating system are available for

use, processing may proceed to block 432, At block 432 application components may be

15

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

loadcd. This proccssing may be performed at part of a uscr log on proccss, using
techniques as are known 1n the art, or in any other suitable way.

[0081] As application components are loaded, the process illustrated in FIG. 4 may
branch depending on the nature of the application component loaded at block 432.
Branching at dccision block 444 allows for the computing dcevice to amcliorate problems
that might occur 1f one or more application components does not operate properly when
computing device 100 performs a shutdown sequence using hibernation rather than a
conventional shutdown sequence. Some components may require a reboot, meaning that a
full startup sequence 1s performed when the computing device 1s next powered on such
that state will be re-created using a loading process.

[0082] As an example, an application component that performs operations
differently depending on the time at which computing device 100 starts up may not
perform as expected by a user 1f a shutdown sequence incorporating hibernation as
illustrated in FIG. 3 1s performed. For those components, when a subsequent startup 1s
performed, 1f that startup 1s performed based on a restore from hibernation, the application
component may be configured based on state information restored from hibernation file
310. That state information may contain an indication of a time when the computer last
pcrformed a full startup scquence. Accordingly, the application componcent being
configured upon loading based on that state information will not be configured with a time
value representing when the startup sequence illustrated in FIG. 4 was initiated.

[0083] In contrast with possible user expectations, that component will be
contigured with a time value representing a prior time when the full startup sequence was
performed. In this case, behavior of the application component will be based on a time
that differs from a user expectation because the user would expect the application
component to be configured based on the time that which the process of FIG. 4 began.
[0084] Accordingly, when such an application component 1s loaded on computing
device 100, 1t may be desirable to determine that the component requires a full shutdown
sequence m response to a shutdown command from a user. When such a component is
executing, the computing device may respond to a shutdown command by performing a
full shutdown sequence. In this way, upon a subsequence receipt of a startup command,
no hibcrnation filc will be availablc, and a full startup scquence, as illustrated, for
example, in FIG. 1, will be performed. At other times, the computing device may respond

to a shutdown command with a shutdown sequence incorporating hibernation as illustrated

in FIG. 3.

16

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

[0085] To support such bchavior consistent with uscr cxpectation, a mechanism
may be provided for an application program to designate that it requires a full shutdown
and full startup sequence to be performed. In the example of FIG. 4, that mechanism may
be implemented through an application programming mtertace (APT) supported by the
opcrating systcm of computing device 100. Even application componcnts that do not, 1n
all instances, require a full shutdown and full startup sequence may place a call through
such an API.

[0086] Accordingly, if 1t 1s determined at block 440 that an application component
bemg loaded requires a reboot, processing may branch to block 442. At block 442, the
application programming mterface may be called to register that application component.
In this example, the API allows the operating system to track whether the application
component requesting a reboot 1s still executing when a startup command 1s subsequently
received. Though, 1t should be appreciated that such a call may be made at any time. Any
component, for example, that 1s reconfigured or otherwise encounters an operating state 1n
which 1t determines a full shutdown and full startup sequence be performed may make a
call through the API.

[0087] It no such call 1s made through the API, when a shutdown command 1s
subscquently rcecived, the opcerating systecm may dcetermine that a shutdown scquence,
incorporating hibernation as illustrated in FIG. 3, may be used. Conversely, 1f a call has
been made through the API to signify a full shut down and full startup sequence are
requested, the operating system may perform a full shutdown sequence, without creating a
hibernation file such that, upon subsequent receipt ot a startup command, a tull startup
sequence may be performed.

[0088] Any suitable mechanism may be used to determine whether an application
component needs a reboot, involving a full shutdown and subsequent full startup
sequence. As one example, the application component may be programmed to call the
API indicated at block 442. Alternatively, the operating system may contain computer
cxecutable mstructions to analyze application components as they are being loaded to
identify functions that may require a reboot. In that scenario, processing at decision block
44() may mmvolve analyzing each application component as 1t 1s loaded. Though, any
suttable tcchniques may be uscd at decision block 440 to determine whether a reboot may
be needed based on application components loaded.

[0089] Though FIG. 4 illustrates determining whether a reboot 1s needed based on

application components loaded, similar processing may be performed for other elements

17

10

15

20

30)

WO 2012/078175

CA 02817196 2013-05-07
PCT/US2010/061180

of computing dcvice 100. For ecxamplc, stmilar processing may be performed for
operating system components. Alternatively or additionally, similar processing may be
performed based on devices installed in computing device 100 or to which computing
device 100 1s connected.

[0090] Rcgardlcss of the conditions 1dentificd at decision block 440 that may
indicate a need for a reboot, 1f those conditions are identified, processing may branch to
block 442 where an indication 1s stored. That indication may trigger a full shutdown in
response to a shutdown command from a user or, alternatively or additionally, may trigger
a full startup sequence 1n response to a user command to startup, even if a hibernation file
1s available. If those conditions are not detected, processing may proceed to block 444.
[0091] At block 444, data may be collected to allow computing device 100 to
determine the effectiveness of using a startup sequence that mcorporates hibernation. In
this example, processing at block 444 records the time to perform subprocess 450, which
in this example mmdicates execution of a full startup sequence. This information may be
recorded in any suitable way. For example, information on startup time may be recorded
in non-volatile memory 152. The information may be recorded as individual startup times,
indicating a time required to perform a full startup sequence each time such a full startup
scquence 1s performed. Alternatively, the information may be recorded as a running
average over multiple full startup sequences, or in any other suitable way.

[0092] Information on startup time¢ may be determined in any suitable way at block
444. As one example, a timer may be started at the initiation of subprocess 450 and read
when processing reaches block 444. Though, other time measurement techniques are
known and may be applied at block 444.

[0093] Once the startup time 1s recorded, processing may proceed to block 446.
Here, conventional operation of computing device 100 may occur. Such operation may
continue until a shutdown command 1s recerved.

[0094] FIG. 5 illustrates processmg that may be performed 1n response to such a
shutdown command. The process illustrated in FIG. 5 includes a block 510, representing
operation of computing device 100 using techniques as are known in the art. During
operation, a shutdown command 512 may be received. Shutdown command 512 may be
gencrated by uscr mput 1n any suitable way, such as through graphical uscr mmterface or a
hardware control.

[0095] In some embodiments, computing device 100 may support multiple types

of user mput that can trigger a shutdown sequence. FIG. 7 1s an 1llustration of a graphical

18

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

uscr intertacc through which a uscr may mput shutdown commands. In this cxample, the
graphical user interface 710 is invoked by pressing a button labeled “start” that appears on
a user interface presented by a computer operating system. Though, 1t should be
appreciated that different operating systems support different imnterfaces and any suitable
tcchnique to invoke a uscr mterface may be uscd.

[0096] In response to pressing that button, graphical user interface 710 may be
presented by an operating system, using techniques as are known in the art. Through
graphical user interface 710, a user of computing device 100 may select among multiple
possible commands for ending a current session on the computing device. Here, three
options are shown.

[0097] Command 714 1s here labeled “shutdown.” Such a shutdown command 1s
conventional on many computing devices and has traditionally been used to indicate that
the computing device should pertorm a full shutdown sequence. However, 1n the
embodiment 1llustrated 1n FIG. 5, user selection of shutdown command 714 may result in
the operating system of computing device 100 determining whether a partial shutdown
sequence mcorporating hibernation may instead be performed. In this embodiment, an
operating system uses a label for a command having semantic meaning to a user 1in a way
that 1s potcentially inconsistent with that mcaning. Noncthcelcss, the conditional processing
Preserves user expectations.

[0098] Though, i1f a user wants to ensure that a full shutdown sequence 1s
performed, a separate command, with a different label may be supplied for that reason. If
a user desires to instruct the computing device to pertorm a full shutdown, without
creating a hibernation file such that, upon a subsequent startup command, the operating
system state will be generated by loading software from non-volatile memory 150 and
configuring it with data from non-volatile memory 152, the user may select command 7135.
In this example, command 7135 1s labeled “reboot.” Such a labeling 1s used to identity to a
user that a full shutdown sequence will be performed such that, upon a subsequent startup
command, a full startup sequence will be performed. In this case, command 715 performs
actions that are similar to those performed 1n a conventional computing system when a
“shutdown” command 1s 1ssued. However, m the computing device presenting graphical
uscr imterface 710, the scmantic label associated with a traditional shutdown command has
been applied to command 714. Accordingly, command 715 is given a different label.
[0099] Graphical user interface 710 may also contain other options for ending a

user session. In this example, graphical user mterface 710 mcludes a command 716.

19

CA 02817196 2013-05-07
WO 2012/0781735 PCT/US2010/061180

Upon sclcction of command 716, computing devicee 100 may respond by breaking down a
session for a designated user. Such behavior of a computing device 1s known 1n the art. In
this case, command 716 may correspond to a conventional logoff command. Though,
many suitable command options may be included mn graphical user interface 710, n the
5 cmbodiment illustrated, only sclection of command 714 or 716 rcsults 1n itiation of the
process 1llustrated in FIG. 5.
[00100] Regardless of the manner in which the shutdown command 1s received and
its nature, in response to receipt of the command, processing may transition from block
510 to block 514. At block 514, the beginning portions of a shutdown sequence may be
10 performed. The portion of the shutdown sequence performed at block 514 may involve
conventional processing. In this example, the processing at block 514 ends any user
session or sessions on computing device 100. As described above 1n connection with FIG.
1, such processing may imnvolve closing applications and saving user state data 134 or
performing any other suitable actions. As a result of those actions, any information 1n user
15 state 130 that is persisted from one user session to the next 1s moved from user state data
134 to non-volatile memory, such as non-volatile memory 152.
[00101] Regardless of the specific steps taken to end user sessions or otherwise
persist uscr statc data 134, when thosc steps arc complcted, processing may proceed to
decision block 516. At decision block 516, the process of FIG. 5 may branch depending
20 on whether a reboot has been requested. Processing at block 516 may be performed in any
suitable way. Any one or more criteria may be applied at decision block 516 to determine
whether a reboot has been requested. As one example, user mput may be used at decision
block 516 to determine whether a reboot has been requested. For example, when a user

selects reboot command 715 (FIG. 7), that user selection may serve as an indication that a

25 reboot has been requested.
[00102] As another example, 1t was described m connection with FIG. 4 that an
application component may request a reboot, such as by calling an API at block 442 (FIG.
4). If such a call has been made, processing at decision block 516 may determine that a
reboot has been requested. Though in some embodiments, the processing at decision

30 block 516 may be conditioned on multiple criteria. For example, processing may
dcterming that an application componcent has rcgistered a requcest for a reboot through a
call to an API at block 442. Further processing at decision block 516 may determine
whether such a request should be honored. Such processing may include, for example,

determining whether the requesting application component 1s still executing at the time the

20

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

proccss of FIG. 5 1s exceuted. Alternatively or additionally, processing at decision block
516 may entail determining whether the requesting component has sufficient access
privileges to command a reboot.

[00103] Regardless of the nature of the processing performed at decision block 516,
1f, as a rcsult of that processing, it 1s determined that a reboot has been requested, the
process branches to block 530. In this scenario, block 530 represents a full shutdown
sequence. Such a full shutdown sequence may be performed as 1s known in the art. It
may entail breaking down user sessions, flushing dirty data and powering off the
computing device. Regardless of the specific steps taken in performing the shutdown
sequence, upon completion, the process of FIG. 5 may end, leaving computing device 100
in a powered off state.

[00104] Conversely, if a reboot has not been requested at decision block 516, the
process may proceed to decision block 518. Processing at decision block 518 1s an
example of conditional processing to determine whether a full shutdown sequence should
be performed or a partial shutdown, followed by hibernation should be performed.
Generally, processing at decision block 518 may entail application of any suitable policy.
Such a policy may be evaluated at the time a shutdown command 1s received.

[00105] In the examplc 1llustrated, the policy applicd rclates to time savings
achieved using hibernation. At decision block 518, 1t may be determined whether a time
savings is achieved by starting up from hibernation. Such a determination may be made
by comparing recorded information about relative times for placing computing device 100
In an operation state with a full startup sequence or a resume from hibernation followed by
a partial startup sequence. Information on a time for performing a full startup may be
based, for example, on information stored at block 444 (FIG. 4). Information on the time
required to place computing device 100 in an operational state following a resume from
hibernation may be determined in a similar way based on information recorded at the end
of execution of the process of FIG. 6.

[00106] If the times for creating an operating state based on a resume followed by a
partial startup are slower than times for performing a full startup, the processing may
branch from decision block 518 to subprocess 530. Conversely, 1f processing at decision
block 518 dctermincs that a resumce from hibernation followed by partial cxccution of a
startup sequence 1s preferable, processing may proceed to decision block 520.

[00107] At decision block 520, further conditional processing may be performed to

determine whether the computing device 100 1s 1n a state approprniate for a partial

21

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

shutdown scqucencce mcorporating hibernation. Such proccssing may cntail determining
whether, during the current session, configuration changes were specified for any
components. If such configuration changes require a reboot to become effective, a
shutdown mvolving hibernation may not implement user expectation for the behavior of
computing device 100 becausc sclecting the shutdown command 714 (FI1G. 7) 1s
associated with a label that traditionally would cause the computing device to apply
configuration changes at the next startup.

[00108] If computing device 100 implements a shutdown sequence involving
hibernation 1n response to a command with a label traditionally used to indicate a full
startup, upon a subsequent startup, the state of those components will resume their
previous state rather than a state based on configuration changes. Accordingly, a scenario
may exist i which user expectations of nvoking a command that might otherwise be
assoclated with a full shutdown sequence will not exhibit expected behaviors. To avoid
computing device 100 operating 1n a way inconsistent with expected user behaviors, the
process of FIG. 5 may branch depending on whether the computing device automatically
determines that a full shutdown sequence should be performed in order to obtain operation
consistent with user expectations. If so, the process branches to subprocess 530, where a
full shutdown scqucence 1s performed as described above.

[00109] In the embodiment 1llustrated, a condition under which a full shutdown
sequence 1s to be performed is 1dentified by determining whether any components have
had configuration settings changed during the current session. Techniques as are known
in the art for making this determination may be applied at decision block 520. As one
example, processing to change configuration settings of executing components may entail
setting a flag or otherwise recording an indication of a configuration change. In that
scenarlio, processing at decision block 520 may entail checking the value of the status flag.
Though, other suitable processing alternatively or additionally may be used. For example,
processing may entail scanning one or more memory locations to detect unapplied
configuration settings.

[00110] Regardless of how the determination is made at decision block 520, 1f no
condition exists under which a full shut down and/or subsequent tull startup 1s required,
proccssing may procced to decision block 522. At block 522, opcrations to fully place
computing device 100 1n a target state from which hibernation occurs are performed. As
described above in connection with FIG. 3, that target state may correspond to a state in

which the operating system state 1s mamtaied but all user sessions have been broken

22

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

down and any uscr statc that 1s rcquircd upon subscquent logon of the uscr has been
persisted, 1n an appropriate form, 1n non-volatile memory.

[00111] An example of an operation that may be performed to achieve this target
state 1s flushing dirty data. Alternatively or additionally, 1f other data stored as part of
systcm statc data 148 rclates to a scssion of a logged on uscr, proccssing at block 522 may
entail storing that data 1in non-volatile memory 152,

[00112] Regardless of what operations are performed to fully achieve the target
state, processing may then proceed to block 524. Block 524, information that later may be
used to ascertain the suitability of a hibernation file for recreating a target state on
computing device 100 may be taken. As an example, some computing devices may be
configured with multiple operating systems or multiple instances of an operating system.
A hibernation file created as part of shut down of a specific instance of an operating
system may be used to restore operating system state only 1n response to a command to
startup the same instance of the operating system.

[00113] However, the possibility that a computing device may be operated with an
operating system other than the one in use when the hibernation file was created creates a
possibility that an operating system will be executing on the computing device between
thc ttmc when a hibernation filc was created and a subscquent startup command that
would trigger re-creation of state based on that file. Intervening operation by another
operating system or instance of the same operating system may create the possibility that
the state captured in the hibernation file no longer represents the state of the computing
device that should be created in order to achieve operation consistent with user
expectations.

[00114] For example, if a user has, after shutting down operation with a first
operating system, loaded a second operating system and made changes to any data or other
component used by the first operating system, resuming from a hibernation file 1n this
instance will result 1 creating a state that does not retlect the intervening user changes.
[00115] Accordingly, a mechanism may be employed to determine whether, upon a
subsequent startup command, a hibernation file 1s suitable for use in recreating the
operating state of computing device 100. In the embodiment illustrated in FIG. 5, that
mcchanism cntails storing information at the timc the hibernation file 1s created. In this
specific example, that information 1s a sequence number maintained by a file system.
Specifically, the sequence number may be maintained by the NTFS file system or other

file system that may be operating on a computing device. Such a sequence number may

23

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

be mcremented cach time at volume of disk storage 1s loaded. Accordingly, processing at
block 524 may entail storing the NTFS sequence number associated with the volume
containing the hibernation file and other data associated with the operating system. This
value may be stored 1n non-volatile memory such that 1t may be accessed m connection
with a subscquent startup command.

[00116] Regardless of the specific information recorded at block 524 to allow a
subsequent determination of the usability of a hibernation file, the process may proceed to
subprocess 526. Subprocess 526 may involve storing the hibernation file. Processing at
block 526 may be performed using conventional techniques associated with hibernation of
a computing device. Though, it should be appreciated that any suitable technique
performing a hibernation file may be used.

[00117] Regardless of the specific technique used to store the hibernation file as
part of subprocess 526, upon storing the hibernation file, power may be shut down to
computing device 100. Computing device 100 may stay in the powered down state until a
startup command 1s received.

[00118] The subsequent startup command may be processed as illustrated in FIG. 4
and FIG. 6. FIG. 4 1llustrates processing that may be performed in response to receiving a
start command. That proccssing mcludcs processing at block 410 and at dccision block
412. When processing reaches decision block 412, the process may branch, depending on
whether a hibernation file exists, such as may exist if subprocess 526 was performed
during the immediately preceding shutdown. When that hibernation file exists, the
process of FIG. 4 may branch through the connector labeled A to continue with processing
as 1llustrated in FIG. 6.

[00119] Processing at FIG. 6 1llustrates a process that may be performed when a
hibernation file exists. The process of FIG. 6 may begin at block 601. At block 601, the
process may branch depending on whether the hibernation file detected at decision block
412 (FIG. 4) represents a hibernation file capturing a target state during a shut down such
as 1s mdicated 1n connection with subprocess 526. If 1t does, the process may proceed to
decision block 610.

[00120] Alternatively, the hibernation file may represent a conventional hibernation
filc mcorporating uscr statc in addition to systcm statc mnformation. Such a hibernation
file may be used 1n accordance with a conventional technique to restore that state. The
convention processing may be performed at subprocess 670 where the hibernation file 1s

used to reestablish a state of the computing device, including user state, at the time of the

24

CA 02817196 2015-11-30

51331-1403

10

13

20

25

30

prior hibernation. Following completion of subprocess 670, processing may continue to

block 638.
[00121] Conversely, if the hibernation file, as determined at decision block 601 was

recorded as part of a shutdown process, the process continues to decision block 610.
Beginning at decision block 610, one or more operations may be performed to determine
whether, 1n response to the startup command, a full startup sequence should be performed
or a resume from hibernation followed by a partial startup sequence should be performed.
In this example, multiple conditions are checked to determine whether a resume from
hibernation should be perfonned even though it is determined that a hibernation file exists.
One such condition checked at deciSion block 610 entails determining whether, for the
computiﬁg device 100, there has been a change in hardware configuration such that a
resume from a hibernation may result in re-creating state information that does not match
the current computer configuration. Such a change may be detected in any suitable way,
including checking. an inventory of hardware components that was created during a last
session of the computing device and stored in non-volatile memory. The hardware
configuration of the computing device upon subsequent startup can be check to ensure that
each item on the inventor is installed. Though‘, it should be appreciated that checking an
inventory is only one example of how such processing may be performed. Regardless of
how the determination is made, if the hardware configuration has changed, the processing
may branch from decision block 610 to subprocess 650. Subprocess 650 may entail
reloading the operating system. Processing at subprocess 650 may be performed using
techniques as are known in the art. Following loading of the operating system in
subprocess 650, the process may proceed to block 632.

[00122] Conversely, if processing at decision block 610 determines that 1o
hardware conﬁgﬁration occurred, processing may proceed to block 612. At block 612,
further processing may be performed to dynamically detcrmine whether computing device
100 1s 1n a state from which a resume from hibernation is to be performed. In this case,
processipg at decision block 612 may make use of information stored at block 524 (FIG.
5) to determine whether changes that occurred between the creation of the hibernation ﬁl'e
such that user expéctations would.not be met if a resume from hibernation were
performed. . . |

[00123] In this example, processing at block 612 involves checking the NTFS
sequence number associated with the volume-containing the hibernation file. If that

volume has not been loaded since the hibernation file was created, the sequence number

25

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

rcad at block 612 will diffcr from the scquence number stored at block 524 by a known
amount representing a chance 1n the sequence number upon startup. Conversely, 1f the
difference 1n sequence numbers 1s greater than the known amount, processing at block 612
will identify that changes possibly were made between the time of the creation of the
hibcrnation file and the startup command that triggcred the resume from hibernation.
[00124] At decision block 620, the process may branch based on the comparison
performed at block 612. If the sequence numbers are not consistent, the process branches
to subprocess 750. Such a branch may occur when a difference in the sequence numbers
indicates that the hibernation file may not establish an operating state of the computing
device that 1s consistent with user expectations. Accordingly, subprocess 6350 1s
performed 1n which the system state 140 1s created by reloading operating system
software.

[00125] Conversely, 1f the comparison performed at block 612 indicates that the
sequence numbers are consistent, the process may proceed to subprocess 630. When that
branch 1s taken, the hibernation file has been determined to be appropriate for re-
establishing the state of the computing device. Accordingly, subprocess 630 entails re-
establishing the target state of the computing device from the hibernation file. Subprocess
630 may bc performed using known techniques for resuming from hibernation. Though,
in this scenario, rather than reestablishing a state of the computing device including a user
state, resuming based on the hibernation file re-creates the target state at the time the
hibernation file was created. This state for example may represent the state of the
computing device at the start of subprocess 526 (FIG. 5). Though, 1n other embodiments,
partial user state may be stored in the hibernation file, such as may occur when the
operating system predicts applications likely to be opened by a user upon completion of a
startup sequence and stores the hibernation file to capture the state of the computing
device while those applications are still open.

[00126] Upon completion of subprocess 630, the process of FIG. 6 may proceed to
block 632. Regardless of whether processing arrives at block 632 through subprocess 630
or 650, at block 632

a time required to respond to a startup command may be recorded. The meaning of the
valuc rccorded may depend on the path by which processing rcached block 632, When
processing arrives at block 632 through subprocess 630, the time represents the time for
startup using a resume from hibernation as part of the processing, and is recorded

accordingly. Conversely, when processing arrives at block 632 through subprocess 650,

26

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

the timce represents the time for startup using a full startup scqucencee, and 1s recorded
accordingly. Processing at block 632 may be performed at any suitable way, including
using techniques as describe in connection with block 444 (FIG. 4).

[00127] As a result of recording mmformation at block 632, processing at decision
block 518 (FIG. 5) may havc information available to comparc the time to respond to a
startup command based on a full startup sequence that includes a resume from hibernation
and a portion of the startup sequence. This information may be recorded and compared in
any suitable way.

[00128] Processing may then proceed to subprocess 634. At subprocess 634, a
portion of a startup sequence may be performed to create a desired operating state for the
computing device. This portion may include logging on a user. This operation may be
performed in a known way and may include automated log on or may mclude presenting a
log on screen through which a user may present information to manually perform a log on
process. In scenarios m which processing arrived at subprocess 634 through subprocess
650, the combination of processing at subprocess 650 and subprocess 634 may represent a
full startup sequence. Conversely, if processing arrives at subprocess 634 through
subprocess 630, the response to the startup command involves a resume from hibernation
and a portion of the startup scquence.

[00129] In this example, that portion of the startup sequence represents logging on a
user 1n subprocess 634. Such processing may be performed using conventional
techniques. Though, the specitic steps used to complete the startup sequence following a
resume from hibernation may be any suitable techniques.

[00130] The process may then proceed to block 638, where the hibernation file may
be invalidated. Processing may also arrive at block 638 following subprocess 670.
Regardless of how processing arrives at block 638, The hibernation file may be
invalidated 1n any suitable way that indicates that the hibernation file 1s not to be later
used when 1t might re-create an incorrect operating state. The hibernation file may be
invalidated, for example, by altering its contents in some way, recording in a separate
memory structure that the file 1s invalid or by deleting the file.

[00131] The process of FIG. 6 may then end. When the process ends, computing
device 100 may be configurcd in an opcrating statc and may thercatter continuc opcrating
until a shutdown or reboot command 1s received.

[00132] FIG. 8 1llustrates an example of a suitable computing system environment

800 on which the mvention may be implemented. The computing system environment

27

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

800 1s only onc cxamplc of a suitablc computing cnvironment and 1s not mtended to
suggest any limitation as to the scope of use or functionality of the invention. Neither
should the computing environment 800 be interpreted as having any dependency or
requirement relating to any one or combination of components 1llustrated 1n the exemplary
opcrating cnvironment 800,

[00133] The mvention 1s operational with numerous other general purpose or
special purpose computing system environments or configurations. Examples of well
known computing systems, environments, and/or configurations that may be suitable for
use with the mvention include, but are not limited to, personal computers, server
computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based
systems, set top boxes, programmable consumer electronics, network PCs, minicomputers,
mainframe computers, distributed computing environments that include any of the above
systems or devices, and the like.

[00134] The computing environment may execute computer-executable
instructions, such as program modules. Generally, program modules include routines,
programs, objects, components, data structures, etc. that perform particular tasks or
implement particular abstract data types. The invention may also be practiced in
distributcd computing cnvironments wherc tasks arc performed by remote processing
devices that are linked through a communications network. In a distributed computing
environment, program modules may be located in both local and remote computer storage
media including memory storage devices.

[00135] With reterence to FIG. 8, an exemplary system for implementing the
invention includes a general purpose computing device m the form of a computer 810.
Components of computer 810 may include, but are not limited to, a processing unit 820, a
system memory 830, and a system bus 821 that couples various system components
including the system memory to the processing unit 820. The system bus 821 may be any
of several types of bus structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus architectures. By way of
example, and not hmitation, such architectures include Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Elcctronics Standards Association (VESA) local bus, and Pcriphcral Component
Interconnect (PCI) bus also known as Mezzanine bus.

[00136] Computer 810 typically includes a variety of computer readable media.

Computer readable media can be any available media that can be accessed by computer

28

CA 02817196 2013-05-07
WO 2012/0781735 PCT/US2010/061180

810 and includcs both volatilc and nonvolatilc mcdia, removablc and non-rcmovablc
media. By way of example, and not limitation, computer readable media may comprise
computer storage media and communication media. Computer storage media includes both
volatile and nonvolatile, removable and non-removable media implemented m any method
or tcchnology for storagc of information such as computer rcadablc instructions, data
structures, program modules or other data. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium which
can be used to store the desired information and which can accessed by computer 810.
Communication media typically embodies computer readable instructions, data structures,
program modules or other data 1n a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery media. The term “modulated
data signal” means a signal that has one or more of its characteristics set or changed in
such a manner as to encode information 1n the signal. By way of example, and not
limitation, communication media includes wired media such as a wired network or direct-
wired connection, and wireless media such as acoustic, RF, infrared and other wireless
mcdia. Combinations of the any of the above should also be mcluded within the scope of
computer readable media.

[00137] The system memory 830 mcludes computer storage media in the form of
volatile and/or nonvolatile memory such as read only memory (ROM) 831 and random
access memory (RAM) 832, A basic mput/output system 833 (BIOS), containing the
basic routines that help to transfer information between elements within computer 810,
such as during startup, is typically stored in ROM 831. RAM 832 typically contains data
and/or program modules that are immediately accessible to and/or presently being
operated on by processing unit 820. By way of example, and not limitation, FIG. 8
1llustrates operating system 834, application programs 835, other program modules 836,
and program data 837.

[00138] The computer 810 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 8 1llustrates a
hard disk drive 840 that rcads from or writcs to non-rcmovablc, nonvolatilc magnctic
media, a magnetic disk drive 851 that reads from or writes to a removable, nonvolatile
magnetic disk 852, and an optical disk drive 855 that reads from or writes to a removable,

nonvolatile optical disk 856 such as a CD ROM or other optical media. Hard disk drive

29

10

15

20

30)

WO 2012/078175

CA 02817196 2013-05-07
PCT/US2010/061180

840 may bc implemented as a spinning magnctic medium that contains onc or morg
magnetic heads that can write to or read from the magnetic media. Other removable/non-
removable, volatile/nonvolatile computer storage media that can be used 1n the exemplary
operating environment mclude, but are not limited to, magnetic tape cassettes, flash
mcmory cards, digital versatile disks, digital vidco tape, solid statc RAM, solid statc
ROM, and the like. The hard disk drive 841 is typically connected to the system bus 821
through an non-removable memory interface such as interface 840, and magnetic disk
drive 851 and optical disk drive 855 are typically connected to the system bus 821 by a
removable memory interface, such as interface 850.

[00139] The drives and their associated computer storage media discussed above
and 1illustrated in FIG. §, provide storage of computer readable instructions, data
structures, program modules and other data for the computer 810. In FIG. 8, for example,
hard disk drive 841 1s 1llustrated as storing operating system 844, application programs
845, other program modules 846, and program data 84°7. Note that these components can
cither be the same as or different from operating system 834, application programs 8335,
other program modules 836, and program data 837. Operating system 844, application
programs 845, other program modules 846, and program data 847 are given different
numbcrs herc to illustrate that, at a minimum, they arc diffcrent copics. A uscr may enter
commands and information into the computer 810 through mput devices such as a
keyboard 862 and pointing device 861, commonly referred to as a mouse, trackball or
touch pad. Other input devices (not shown) may include a microphone, joystick, game
pad, satellite dish, scanner, or the like. These and other mput devices are often connected
to the processing unit 820 through a user mput interface 860 that 1s coupled to the system
bus, but may be connected by other interface and bus structures, such as a parallel port,
game port or a universal serial bus (USB). A monitor 891 or other type of display device
1s also connected to the system bus 821 via an mterface, such as a video interface 890. In
addition to the monitor, computers may also mclude other peripheral output devices such
as speakers 897 and printer 896, which may be connected through an output peripheral
interface 8935.

[00140] The computer 810 may operate in a networked environment using logical
conncetions to onc or more remote computcers, such as a remotc computer 880, The remotc
computer 880 may be a personal computer, a server, a router, a network PC, a peer device
or other common network node, and typically includes many or all of the elements

described above relative to the computer 810, although only a memory storage device 881

30

CA 02817196 2015-11-30

51331-1403

10

15

20

25

30

has been illustrated in FIG. 8. The logical connections depicted in FIG. 8 include a local
area netwark (LAN) 871 and a wide area network (WAN) 873, but may also include other

networks. Such networking environments are commonplace in offices, enterprise-wide
computer networks, mtranets and the Internet.

[00141] When used in a LAN networking environment, the computer 810 is
connected to the LAN 871 through a network mterface or adapter 870. When used in a
WAN networking environment, the computer 810 typically includes a modem 872 or other
means for establishing communications over the WAN 873, such as the Internet. The
modem 872, which may be internal or exierﬁal, may be connected to the system bus 821
via the user mput interface 860, or other apprbpriate mechanism. In a networked
environment, program modules depicted relative to the computer 810, or portions thereof,
may be stored in the remote memory storage device. By way of example, and not
limitation, FIG. 8 illustrates remote application programs 885 as residing on memory
device 881. It will be appreciated that the network connections shown are exemplary and
other means of establishing a communications link between the computers may be used.
[00142] Having thus described several aspects of at least one embodiment of this
invention, it is to be appreciated that various alterations, modifications, and improvements
will readily occur to those skilled in the art.

[00143] For example, 1t 1s described that a determination is made upon startup of
whether to perform a full startup sequence or a resume from hibernation followed by a
portion of a startup sequence based on relative times observed for performing ¢ach
sequence. It should be appreciated that similar processing could be performed at
shutdown. If performed at shutdown, the decision could be implemented by storing or not
storing a hibernation file. Accordingly, it should be appreciated that operations described

as occurring upon startup may alternatively be performed upon shutdown, and vice versa.

[00144] Benefits as described above may be achieved in other ways. For example,
in addition to avoiding work by a computer’s CPU and other components, such as a disk,

during a process of setting up state, such an approach allows data to be saved in a
hibernation file in response to a shutdown command that will help speed up a user’s
experience during a response to a subsequent startup command and/or after processing of
the startup command has been completed. For example, when the user logs on, a number
of applications may be launched (e.g. WINDOWS EXPLOREIEMweb browser, startup
apps, etc). An operating system may explicitlﬁf frack files (and their offsels) that a user

accesses during a defined interval after processing of a startup command is completed.

31

CA 02817196 2015-11-30

51331-1403

10

15

20

25

30

Those applications, or other components, can be read into memory to be saved into the

hibernation filed created during a subsequent processing of a shutdown command. In this
way, these applications, or other components, will be read sequentially from disk into

memory instead of having to read it randomly as part of launching those applications.

[00145] Alsb, user log on and log off is described. It should be appreciated that a
shutdown command may be provided in scenarios on which multiple users are logged onto
a computer. 1fa shutdown sequence is partially 'pf;rformed and then a hibernation
operation is performed, the partial shutdown sequence may result in log off of multiple
users, but techniques as described above may none;theless be applied.

|100146]) For example, techniques as described herein may be used to provide

automated servicing without user intervention. For example, a computing device that has
responded to a shutdown command by performing a partial shutdown sequence and then
hibernating, may be configured to aulomatical{y wfake at a time when user activity 1s not
expected, such as in the middle of the night. Upon awaking, the computing device may
perform maintenance aclivities, such as applying software updates.. To the user, it appears
as 1f the computing device was shutdown at the end of the day, such that the maintenance
activities are transparent to the user. Such a capability may be implemented, for example,
if the computing device, in response to a shutdown command, detects that it has
maintenance activity or patches to apply and arms itself to wake at an opportune time.
When it wakes up, the computing'device performs whatever maintenance activity, such as
applying patches, is necessary. The system then does a full restart and then again performs
a partial shutdown followed by a hibernation. This scenario enables a software vendor to
offer a solution that makes maintenance activity invisible to the user. This capability can
be applied to both consumers and to enterpriée PCs. In addition to improving the user

experience, such an approach may also save power, particularly for enterprise users.

[00147) Such alterations, modifications, and improvements are intcnded to be part
of this disclosure, and are intended to be within the scope of the invention.
Accordingly, the foregoing description and drawings are by way of example only.
[00148] The above-described embodiments of the present invention can be
implemented in any of numerous ways. For example, the embodiments may be
implemented using hardware, software or a combination thereof When implemented in '
software, the software code can be executed on any suitable processor or collection of
processors, whether provided in a single computer or distributed among multiple

computers. Such processors may be implemented as integrated circuits, with one or more

32

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

proccssors 1n an integrated circuit component. Though, a proccssor may be implemented
using circuitry in any suitable format.

[00149] Further, it should be appreciated that a computer may be embodied in any
of a number of forms, such as a rack-mounted computer, a desktop computer, a laptop
computcr, or a tablct computer. Additionally, a computer may be cmbedded 1n a device
not generally regarded as a computer but with suitable processing capabilities, including a
Personal Digital Assistant (PDA), a smart phone or any other suitable portable or fixed
electronic device.

[00150] Also, a computer may have one or more mput and output devices. These
devices can be used, among other things, to present a user interface. Examples of output
devices that can be used to provide a user mtertace include printers or display screens for
visual presentation of output and speakers or other sound generating devices for audible
presentation of output. Examples of mput devices that can be used for a user imtertace
include keyboards, and pointing devices, such as mice, touch pads, and digitizing tablets.
As another example, a computer may receive input information through speech
recognition or in other audible format.

[00151] Such computers may be mterconnected by one or more networks 1 any
suttablc form, including as a local arca nctwork or a widc arca nctwork, such as an
enterprise network or the Internet. Such networks may be based on any suitable
technology and may operate according to any suitable protocol and may include wireless
networks, wired networks or fiber optic networks.

[00152] Also, the various methods or processes outlined herein may be coded as
software that 1s executable on on¢ or more processors that employ any on¢ of a variety of
operating systems or platforms. Additionally, such software may be written using any of a
number of suitable programming languages and/or programming or scripting tools, and
also may be compiled as executable machine language code or intermediate code that 1s
executed on a framework or virtual machine.

[00153] In this respect, the invention may be embodied as a computer readable
storage medium (or multiple computer readable media) (e.g., a computer memory, one or
more floppy discs, compact discs (CD), optical discs, digital video disks (DVD), magnetic
tapcs, flash memorics, circuit configurations m Ficld Programmablc Gatc Arrays or other
semiconductor devices, or other non-transitory, tangible computer storage medium)
encoded with one or more programs that, when executed on one or more computers or

other processors, perform methods that implement the various embodiments of the

33

10

15

20

30)

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

invention discusscd above. The computer rcadablc storage medium or media can be
transportable, such that the program or programs stored thereon can be loaded onto one or
more different computers or other processors to implement various aspects of the present
ivention as discussed above. As used herein, the term "non-transitory computer-
rcadablc storage medium” encompasscs only a computcr-rcadablc medium that can be
considered to be a manufacture (1.c., article of manufacture) or a machine. Alternatively
or additionally, the invention may be embodied as a computer readable medium other than
a computer-readable storage medium, such as a propagating signal.

[00154] The terms “program’ or “‘software” are used herein 1n a generic sense to
refer to any type of computer code or set of computer-executable instructions that can be
cmployed to program a computer or other processor to implement various aspects of the
present mvention as discussed above. Additionally, 1t should be appreciated that
according to onc aspect of this embodiment, one or more computer programs that when
executed perform methods of the present invention need not reside on a single computer or
processor, but may be distributed in a modular fashion amongst a number of different
computers or processors to implement various aspects of the present invention.

[00155] Computer-executable instructions may be 1n many forms, such as program
modulcs, cxccuted by onc or more computers or other devices. Generally, program
modules include routines, programs, objects, components, data structures, etc. that
perform particular tasks or implement particular abstract data types. Typically the
functionality of the program modules may be combined or distributed as desired in various
embodiments.

[00156] Also, data structures may be stored in computer-readable media 1 any
suitable form. For simplicity of illustration, data structures may be shown to have fields
that are related through location in the data structure. Such relationships may likewise be
achieved by assigning storage for the ficlds with locations 1n a computer-readable medium
that conveys relationship between the fields. However, any suitable mechanism may be
used to establish a relationship between information 1n fields of a data structure, including
through the use of pointers, tags or other mechanisms that establish relationship between
data elements.

[00157] Various aspccts of the present invention may be uscd along, 1n
combination, or in a varicty of arrangements not specifically discussed in the embodiments
described 1n the foregoing and is therefore not limited in 1ts application to the details and

arrangement of components set forth in the foregomg description or 1llustrated n the

34

10

15

CA 02817126 2013-05-07

WO 2012/078175 PCT/US2010/061180

drawings. For cxamplc, aspccts described in onc cmbodiment may be combined in any
manner with aspects described m other embodiments.

[00158] Also, the invention may be embodied as a method, of which an example
has been provided. The acts performed as part of the method may be ordered n any
suttablc way. Accordingly, cmbodimcents may be constructed 1in which acts arc performed
in an order different than 1llustrated, which may include performing some acts
simultancously, even though shown as sequential acts 1n illustrative embodiments.

[00159] Use of ordinal terms such as “first,” ““second,” “third,” etc., in the claims to
modify a claim element does not by 1tselt connote any priority, precedence, or order of one
claim element over another or the temporal order in which acts of a method are performed,
but are used merely as labels to distinguish one claim element having a certain name from
another element having a same name (but for use of the ordinal term) to distinguish the
claim elements.

[00160] Also, the phraseology and terminology used herein 1s for the purpose of
description and should not be regarded as limiting. The use of "including," "comprising,"

o e

or "having," “‘containing,” “‘mvolving,” and variations thereof herein, 1s meant to

encompass the 1tems listed thereafter and equivalents thereot as well as additional 1tems.

35

10

15

20

29

51331-1403

CLAIMS:

1. , A method performed on a computing device comprising a plurality of hardware
components including a volatile memory retaining any user state of the computing device and
system state of the computing device, the method comprising performing a shutdown

sequence configured for shutting down the computing device in response to receiving a

shutdown command, the shutdown sequence comprising:

breaking-down any user sessions on the computing device resulting in the user

state no longer being retained in the volatile memory;

copying, subsequent to the breaking-down, contents of the volatile memory to
non-volatile memory, the copied contents comprising the retained system state but not the no-

longer retained user state; and

powering down at least a portion of the plurality of hardware components of

the computing device.

2. The method of claim 1 where the breaking-down comprises removing user-

specific settings from the system state.
3. The method of claim 1, the shutdown sequence further comprising

powering up, subsequent to the powering down and in response to receiving a

startup command, at least the portion of the plurality of hardware components.

4 The method of claim 3, the shutdown sequence further comprising copying,
subsequent to the powering up, the copied contents from the non-volatile memory to the

volatile memory.

5. The method of claim 1 where the copying the copied contents is based on

detecting a file comprising the copied contents.

6. The method of claim 1 where the copying the contents comprises creating a

file.
36

CA 2817196 2017-10-18

10

15

2()

25

51331-1403

7. The method of claim 1 the shutdown sequence further comprising flushing

dirty data to the non-volatile storage.

8. At least one computer storage device storing computer executable instructions
that, when executed by a computing device comprising a plurality of hardware components
including a volatile memory retaining any user state of the computing device and system state
of the cdmputing device, cause the computing device to perform a shutdown sequence
configured for shutting down the computing device in response to receiving a shutdown

command, the shutdown sequence comprising:

breaking-down any user sessions on the computing device resulting in the user

state no longer being retained in the volatile memory;

copying, subsequent to the breaking-down, contents of the volatile memory to
non-volatile memory, the copied contents comprising the retained system state but not the no-

longer retained user state; and

powering down at least a portion of the plurality of hardware components of

the computing device.

9. The at least one computer storage device of claim 8 where the breaking-down

comprises removing user-specific settings from the system state.

10. The at least one computer storage device of claim 8, the shutdown sequence
further comprising powering up, subsequent to the powering down and in response to

recelving a startup command, at least the portion of the plurality of hardware components.

1. The at least one computer storage device of claim 10, the shutdown sequence

further comprising copying, subsequent to the powering up, the copied contents from the non-

volatile memory to the volatile memory.

12. - The at least one computer storage device of claim 8 where the copying the

copied contents is based on detecting a file comprising the copied contents.

37

e cTEmm I w A ae C e .

CA 2817196 2017-10-18

10

15

20

25

5>1331-1403

13. The at least one computer storage device of claim 8 where the copying the

contents comprises creating a file.

14, The at least one computer storage device of claim 8, the shutdown sequence

further comprising flushing dirty data to the non-volatile storage.

15. A computing device comprising: at least one program module configured for
performing a shutdown sequence configured for shutting down the computing device in

response to recetving a shutdown command, the computing device comprising a plurality of
hardware components including a volatile memory retaining any user state of the computing
device and system state of the computing device, the shutdown sequence further configured

for performing actions comprising:

breaking-down any user sessions on the computing device resulting in the user

state no longer being retained in the volatile memory;

copying, subsequent to the breaking-down, contents of the volatile memory to
non-volatile memory, the copied contents comprising the retained system state but not the no-

longer retained user state; and

powering down at least a portion of the plurality of hardware components of

the computing device.

16. The computing device of claim 15 where the breaking-down comprises

removing user-specific settings from the system state.

17. The computing device of claim 15, the shutdown sequence further comprising
powering up, subsequent to the powering down and in response to receiving a startup

command, at least the portion of the plurality of hardware components.

18. The computing device of claim 17, the shutdown sequence further comprising
copying, subsequent to the powering up, the copied contents from the non-volatile memory to

the volatile memory.

38

CA 2817196 2017-10-18

51331-1403

19. The computing device of claim 15 where the copying the copied contents 1s

based on detecting a file comprising the copied contents.

20. The computing device of claim 15 the shutdown sequence further comprising

flushing dirty data to the non-volatile storage.

39

CA 2817196 2017-10-18

CA 02817196 2013-05-07

PCT/US2010/061180

WO 2012/078175

1/8

|
|
|
|
|
|
_ OLL
|
“ o]
i P S N
1/ V1va3Lvis A
. NILSAS ,
. .
_ | |
t on—"
y
Ny
OpL ——*
. ﬂ.ll.:ll.:ll.:ll.:ll.:ll.:ll...I|.:I|.:I|.:I|.:I|...l\. llllllllll -
_ .
o V1Va
e JLVLS ¥3SN
o
s
e m
J et

d0SS3400dd

Y TEENr Y TEEEr Y IEE Y TEEE Y TEEE Y TEEE Y TEEEr Y I Y TEEEr Y TS v T

SNOILONYLSNI
NOILVOl1ddV

AJONEN

@ 1004
| ¥_ '/ ~ TN
........... .__ _. . VIva
N _ N
NS —
|
@ Nm_‘u\
|
_ — —
_ J4VM140S
— —
— —
~— -

-
LO
-—

CA 02817196 2013-05-07

PCT/US2010/061180

WO 2012/078175

2/8

Y GEENr Y TN Y I Y TGEEEr Y TEEE Y I Y TN Y I Y IS Y I Y T Y T Y TS Y TN Y T Y T Y T Y TN Y T Y T Y TS Y TN Y TN Y T Y TS Y T Y T Y TS Y T Y T Y T Y T Y T Y T Y T Y T Y T Y T Y T Y TN Y T Y T Y T Y TN Y T Y T Y TS Y TS Y TS Y TS Y TS Y .. v

OLl 141"
AJONW3N
[o '// \,{\\J\\ T

| \ V1Vd JLVIS \h "
o .
¥ NALSAS ovl SHANINA “

SNOILOMNELSNI
NOILVOl 1ddV

CA 02817196 2013-05-07

PCT/US2010/061180

WO 2012/078175

3/8

“ 0Ll bG1
@
|
_ AHOWIAN
_ ¥0SSIO0Nd LA 008
_
“ 0L€
@ ["I.I.“ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |_'L/:.... _ N
e w—— =l e 17N viva
- \ V1vd 31VIS o 1 o
L NILSAS - i &&\N\t —=
. apL |\ or SENNe byl opm / v
i : _ AW |

I_\K / \ b1 _ U / N@F
— . | / \ |
By / S3d0INd3S SO N_m_w,.a___w__,q_\/_ _.\.\ / — T
Y ! \
_ _ ._|..||..||..||..||..||..||..||..||..||..||..||..||..||.:P.l.|.|.|.|..||..||..||..||..||..||..||..||..||..||..||..||..||..||..||..||..||..|. _ @ MW_<>>|_|H_om
Bk ¥
e \ vivd dlvls SNOILONYLSNI ¥ —————
Bk d3SN NOILVOI1ddY | — -
I .-
S |
o] /oﬁ
T T T T T T T T T T T T T T T
_

WO 2012/078175

CA 02817196 2013-05-07

4/8

< STﬂI\RT >

PCT/US2010/061180

FETCH AND EXECUTE FROM
BOOT MEMORY

NEEDS REBOOT?

442
/

NO

CALL API TO
REGISTER APP

RECORD STARTUP TIME

I

i

EXECUTE OS LOADER |~ 420 |
I

| @

I

CONFIGURE OS IMAGE 442 g
I

| i

I

DETECT DEVICES — 424 i

I

| @

I

EXECUTE DRIVER LOADER »— *° g
I

I i

I

START DRIVERS T 428 |

I

| i

START SERVICES 40 :

@

\ !

I

EXECUTE APPLICATION 432 i
I

|

440 ;
YES !

I

@

|

|

|

|

|

|

|

OPERATE

CA 02817196 2013-05-07

WO 2012/078175 PCT/US2010/061180
5/8

< STA\\RT >

/ 510
—> OPERATE e
COMMAND ,
51/ END USER SESSION(S) —514
516

YES

REBOOT
REQUESTED?

RESUME TIMES
FAVORABLE?

CONFIGURATION
CHANGED?

530
522
- .

FLUSH DIRTY DATA SHUT-

I DOWN

RECORD NTFS SEQUENCE
NUMBER ‘
| - 524
STORE HIBER
FILE

< - > FIG. 5

WO 2012/078175

CA 02817196 2013-05-07

6/8

HIBER-BOOT?

610

YES CONFIGURATIO

CHANGE

PCT/US2010/061180

612 \ NO
CHECK NTFS SEQUENCE
NUMBER

SEQUENCE
NUMBERS
CONSISTENT?

RELOAD
0S5

RE-ESTABLISH

FROM HIBER FILE

650

TARGET STATE | |~

670

\

RE-ESTABLISH
USER STATE AND
SYSTEM STATE
FROM HIBER FILE

630

RECORD STARTUP TIME

LOG ON SCREEN

PRESENT USER | 634

INVALIDATE HIBERNATION FILE 630

CA 02817196 2013-05-07

PCT/US2010/061180

WO 2012/078175

7/8

L Dl

N
v.
-'n

")

MR O
T

t:

. o

.-

-

. - - - - ‘. a - - - " gy WS S e W) L

- ryo-r ey v, I-.\\!V‘l.\..‘n b4 ..L.W“.' o_-tu. " .r\ - l.} .s!l.ui\.t‘ilﬂ.liﬁll«“\ cl-u-!.ﬁflts.- r(!\.. - t.ﬂ\i “.-Q\! -b.lu v UAM1‘.I.\.“$“WH\M|...§ 4 -\n
e iwm I . A, ' L N T ¥ D N O X O A LR «\\v\\u‘\..-..r.xa. B e R
AT re - r;\l H e e Pl Vai tal et At Il AT e w sty a LA i~ a2 X VA W) am
A ru. shrd sy . PRI L B X N O I MR S A tu\c...c e \- P ket \.!\-\n it
PR P h_\....- " b L KL L0 S R Ay U P TN it \.-.N‘ﬂwwﬁh\h et)..r o L .)l.-\v A
..-..uann.\\f\iliusn -“hsl e s TV A= ‘l.l‘hl\nl.lkuar clnq.l..!vsﬁ..ﬂ\.\..\,\u\“ﬁ..\\u‘l] .rnwwl.v’-... FaIA T vuv-
Lt - -, o P e R e e S N T Sy A e e - St S e W ol o o s e e el Kt
i L™ t\v N ra 7] \ '\ - n a
VRN Bt A e e e e L A S N L
\.“!.Jl\c“‘\u.!\ \.,nol.a\ - .A'«-\W-.u.sol-.n.u!.o.\.-r. epar sy -.rtl_-.\...\if.kl..i Rt 3 L e S el P w'- R AT A

. . atas e . . - .‘!.Mwnlt-..;

LI CateTm L A ma ey ._-l\\....k\ju.\! s u-. Lo r.ll Jﬂh-...\.ﬂ.fr«!\ﬂlu-.\-ll -n.f“- -.L...l.l.\l.‘..lll.n..h. \-.K”\u.buu.\l.“v\ Inv t\;u"-vtn\n\nnﬂah.ﬁ.\ Py a Ay

e W R R X L T R N B i R L i g et u-\v.\”.n..-lsu. L o e !.-N..n.\...v

: . ILIC I ot g R A s R s -4 L M D W S N S k) RS- s

AN LY ety et e D SRS a_rs s : R, .un,\...m- oM\N. 3 A e

' : *r. - Tt - - - - B . - . N -

LT TSI A s R R T S i R A O 1)

. “ - .

P v Vo r- - - a v o N

s - [L= v, o g P A A

1*v e v . o N - -a - a - ot el A SR)
- g [PR e - LS o "~

"z om .swv.ﬁ-...nv..m\l\.s..l..n.\lbl‘l\-lu P

re v o e Y L e e s e DA T

e » o -4

aiv e r L 3

featet M

.s1.4|\

RN X

R

e e w

P

Tty

nex,

- -

4
LI}
FLt
A

st A
N
‘.."l:;!h N

N

. r

T

L I 4

-, - -l .
hath e A o ey AL
-t P iy Ay
Tl iz T
L. A g4
s T v .

JOO(QaY

= . . - = P e N T] PR I LT LT e FATTL IV LV 3 P 0 AN IR BB Vit AR AL AL RN A NN R RN
BN PP Lk 1 L T r At A - - . -

Tttty . oy
gy : : 2 A y .o W.. o O _(-\-ﬂu;-ﬁn
-Qu\;h‘\-n.. : 'V'fV\u

M,,.

A2 y
V. .
u._.)\nv.-. eia . Sue el
R e
\Wu..lrll.\..\ T
.. <.
PR

aainy

.
-t

Lo e

-rvl. 1

RO)
uv..u. B e LTSN Tt
iy - P o P -u.- . ' i
) LA R AR CE ORI MO AR & S ; : Py d
-k Lt W WA S “{s...wmm),... ..u..va.... aviebnd : - ! p : N
“_n -\sv-.r-:...l: -n.-m ' A M LA . . e ") .su-..-hl f W et &
At i T T PR el A RO e e L bl g . A T A

.l&..
e i nd il e e dy : e ave Dk i e Whivisdismdires v pdenade.
EARECI DA S AT P e B O Y A : ke it r v

x

ik e : . o, ke
S HH . AP O A d R ' -
\\-u..-n . . wr i " L-ch.;\hwa...-
P2l " M . . \h rd
IS T PR T h . S
T LA T v '
ey edgmgTLe €al IR T
T . o LA T
as N0 Te TS
el

ideavem i

o
N

an

&

e

)
P

N

: u.n.w..m. A
Tats A,
RPN T X

4‘! N de Pak

cy-

.
Rt AR Rt
s miRissmsmrem

swee Ill- -q‘l#l'r-rvln.\.

St

1

PSR TN TS

1 oa=y

-c
e 4 ae . wad W
C L T T T 3 et i o I r.n
LA O TO O : : LIS o, =.s ; : ST T T R
e ; . srew .
2y ; cha BRETE) e % .Mwna..a..s....,.n.._....s.a. .
3 . : S s

', ..st.nl.“l-n..ﬁ“-(rﬂ- o)
B p\-ﬁm.m
wrt

O Cuy
NS H
V.lJ..“-m-u e Ul op
O R R TR . woy Balc%-
a e A A . . N SRrATeemm
L TN AT I T r IR) . R)
B A R O i
AL ROC At DA .
‘I\ut.....u.l.'&-\.thhvﬂlrdcom-.ﬂnn.d.l ."n N
! R R A Tt
PN Nim 2h
. w....v\ ey
F.CJlL422% . R o . een
NI T LRS- G A T

QO

4
.

g9

$EX
!

. @

'

TR
"
v,

L]
el

.4

vt T PR
Fagditianiyisen; . et
Sy e Y oe e K e Falalr 4= & (S .vai'e
. svgepmpre s dale

s, -Ju-.' .

;_l.
ety

. -
-
PR
it =4
wesnd
LR
v, '}?
e e i e

- Y F e
-~y

Seoatiyd e nigie
RIS SR P
A1 TiR il
"TIRRRT]i' ST
¥ omee "Y-..\

4\

g
R LA T

- e
N

Ao o

Tl o
T e Bt T

r~

e R
AL K

roi ate
4

Flateo Fieseonn o
et fh b et mul ‘a¥)
O e)

LI

»

I
Pl it M

[P \..‘.sn. -.....-..ln.
R e
...\unk.-.\.-

u;:-s{ .
-

-
g
Logees

rem i
’ v .
PR PR

.

£
-
L

L
ne

o~

R T O ATy mres! EECREP ki

.A.M.m w-n.- L e upran . Srwes 5..;.)1-..%. 2 PR .v...n-.r\ nr\o\m.-"-"“.-.wnv\«- e
i e LTy nipean, LAY ¥ LG T T
Ty opeasak phe Sedus b PN AR R

AN M NNE u\.. aras-C gy dalrame Loy . .

P L S AR et A PRt . sasge b abuy e dalalaBus

bals

'

g AV et - A ATt
ATws i w e e et cch Food
h tee % M abas
TR S TRt O S ..ns... s.....%]
b SR bt P Y e
S IS B N
R W IR AL W N
I Fienbwar 2'al ol
Srees M A
.).-a\.«w.v.m.mw.“.“u-\-n-s : ‘.
St SR NN AN Sl e
e i\utu#.-n.-...s. -..-Cd\lx.ujh.
A X R X o
..«... L"-...sA.. .-..m... as v.s...
T, e ST e e
.-x..w..n.amu) .\.l.lu.;a.uvﬂ”-. D) .‘..
SRR AP

s len

Conanion

b

DmikTek s) beaTati .
e AR IR AN
- 2 ; YRGS
..\. nM..u .M.»\..»- u-\.-w\m LR .Ml-_.. ..r.):-..no € u.-...ul. Lo
o) I“I-. nUnTAT LTI R -.-.-..ur\u-\o‘.-r.
T aw ...nn-sn.q.:.:,.-un...rw..u.._.r 23400 e : &t '
LN T croace L Mt Sl At M i 5 :] et .
s L) bR et E LN St L, ; . Q.ﬁ. >fﬁhiaﬂn..-u\.v
; : ANy R Mo A R

RS

YA 3

IS H

E L

e~
.-,

b

T L LA QT aa 4
"

el B
L

WY
Rl]

N .

L

>

- e cepettal timel lu-ﬂl
- -.h..: o A
LN 1~.u_._....,.r.,...

SRR B e ey
TP T R R P H A R FE SR
.uu.m.ﬂu.ruu:wll..lo.oun. "y - X
F IR P PEY Tt 7T SR N B IR el - e ¥

P

M
-
W

v

-
-

V.D!Uﬁu" *

PR

PR S e

-

L4LE f-n.\.-.ﬂ \.hﬂ.{)\
LRI X » .
. : . ;ﬁ.. .H.\.}...W. ARl AR AL
A lwiaim ma R PR D e Wiktm.,.\.u.f \f\...‘.
. Elesigegeary . : : et " - .
O] “imtuill Ll - R o . A N ..w...u..f........wﬁ. Suiia il
-.ﬁ-.a-..q:--..#\..a..a:-\-._uﬂ u“.rv.a....t.-u. sme Yelmiam . Fodiapbm Fofad sl o il ad abes e Yale

.mn.......h.,m....... prrey
wasdls A .
et T S P O

-

CA 02817196 2013-05-07

PCT/US2010/061180

WO 2012/078175

8

8/

G883 SAVYI0U
NOLLYJITddv y~ V08
FL0N¥

8 Ol

o8 G178 b3
ASNON 53 1NAON SNVH904d NALSAS

ANVH90dd NYH4O04d 43HLO NOILYOl'lddV ONILYH3dO

298 QUVOEAIN g

d3d.LNdN00
110W38

118

= ANEIN J0V443INI V443N =VAREI

WOMIIN 1NaNl| ASONZN “TOA-NON ASONEN “TOA-NON

WYOMIIN VANV VOO0 d4SN 7 19YAON 3 19YAONIH-NON
098 128
SNE W3LSAS
SHINVACS
/68
40V4441N
O4dIA

J68

=
AN

AJOWIWN INJLSAS

| 6%

100
/ 120 130
I I ;f;_. . ;j;_.]
150\ .i:_._._._._._._._._._._._._._._._._._. ._._._._._._._._._._._._._._._._._._._.!: :
— T !! APPLICATION 5 134\ USER S
_/__/_// I! i | I
— | INSTRUGTIONS [+ (4) 5 ,® STATE DATA il
~ l e e e '_—.'__.'__.'__.'_-.'__}' ¢, e, e e e :_. e '_-.°__.'__.'_-.'__.'_i " .
SOFTWARE N (3) i \ 7 (i]
\ / f 1
T) i maNaGeR || OSSERVICES it 1140
\ ! S
' i
!
DRIVERS ~ |—1461 | m— 1
Lo STATE DATA o
e e m t e e S Ly
_______________________________________ S O B
| | |
|
|
BOOT -
1Y PROCESSOR i
vEMORY [;
|
|
|
|

d S 4 AEE ¢ AN J SN 4 A4 W4 NN 4 N4 AN A, A Wm0 A4 W4 NN WS W WA Wm0 AN W4 NSNS WG AENSA R A, WA AR WA AN WA AN WA W4 ARG W4 A4, 4 AR WEEmA R4 A4 W4 A W4 A A, W4 wmm"y w4 wmmo

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - abstract drawing

