Another aspect provides methods for treating a disease, disorder, or condition. Provided herein are compositions and methods for treatment of a disease, disorder, or condition, such as a proliferative disease, disorder, or condition. One aspect provides a kit including a first composition including a bare ligand or a ligand coupled to a molecule or substrate, and a second composition including a receptor coupled to a radioisotope. Another aspect provides methods for treating a disease, disorder, or condition.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of U.S. Provisional Application Serial No. 62/075,182 filed on 04 November 2014, U.S. Provisional Application Serial No. 62/049,863 filed on 12 September 2014, and U.S. Provisional Application Serial No. 61/929,717 filed on 21 January 2014, which are incorporated herein by reference in their entireties.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.

MATERIAL INCORPORATED-BY-REFERENCE

Not Applicable.

FIELD OF THE INVENTION

The present disclosure generally relates to kits, compositions, or methods for the treatment of a disease, disorder, or condition, such as a proliferative disease, disorder, or condition, including a first composition including a bare ligand or a ligand coupled to a molecule or substrate; and a second composition including a receptor coupled to a radioisotope.

BACKGROUND OF THE INVENTION

Malignant pleural mesothelioma (MPM) is a rare tumor that usually forms on the tissue lining organs. The cancer is treatable but not curable. A common cause of MPM is exposure to asbestos (a silicate mineral), and although asbestos use has decreased, the cases of MPM is expected to rise. MPM can present as a pleural effusion or as localized plaque-like pleural lesions. Pleural effusion, a condition where liquid buildup in between lung walls leads to shortness of breath, affects 95% of MPM patients. MPM is conventionally treated by stripping of the pleura if possible followed by evacuation of the effusion by suction and injecting a solution of talc particles into the residual cavity to inflame the surfaces, thereby
allowing the parietal and visceral pleura to adhere to each other, closing the cavity and preventing the recurrence of the effusion. Follow-up treatment include systemic chemotherapy to remove residual cancerous cells (e.g., free-floating persistent microscopic tumor cells). But these follow-up treatments are not selective in their targeting or may not penetrate into the now poorly vascularized, inflamed, tumor-contaminated pleural space or pleurodesed surfaces. Recurrence of tumors from cancerous cells left behind can be a common outcome.

SUMMARY OF THE INVENTION

Among the various aspects of the present disclosure is the provision of a kit for treatment of a proliferative disease, disorder, or condition. In some embodiments, the kit can include a first composition having (i) a ligand coupled to molecule or a substrate or (ii) a ligand; and a second composition having a receptor coupled to a radioisotope, where the ligand can include specific or non-specific affinity for the receptor.

In some embodiments, the ligand includes a streptavidin, streptavidin variant, avidin, avidin variant, or molecularly imprinted polymer. In some embodiments, the ligand is a PEGylated ligand. In some embodiments, the first composition consists essentially of a ligand and the ligand has specific or non-specific affinity for a target tissue associated with the disease, disorder, or condition.

In some embodiments, the receptor includes a biotin.

In some embodiments, the radioisotope includes lutetium-177, yttrium-90, iodine-131, phosphorus-32, boron-10, radium-223, bismuth-213, lead-212, holmium-166, dysprosium-165, erbium-169, iodine-125, iridium-192, rhenium-186, rhenium-188, samarium-153, strontium-89, a caesium radioisotope, a gold radioisotope, or a ruthenium radioisotope.

In some embodiments, the molecule or substrate comprises natural or artificial material. In some embodiments, the molecule or substrate includes: (i) a silicate, talc, fibrin, fibrin glue, gelatin, or gelfoam, or combinations thereof; (ii) gold, tantalum, iridium, platinum, nitinol, stainless steel, platinum, titanium, tantalum, nickel-titanium, cobalt-chromium, magnesium, ferromagnetic, nonferromagnetic, alloys thereof, fiber, cellulose, a biodegradable polymer, or a non-biodegradable polymer, or a combinations thereof; (iii) a non-
biodegradable polymer selected from the group consisting of polyetheretherketone (PEEK),
PEEK derivatives, polyethyleneteraphthalate, polyetherimide, polymide, polyethylene,
polyvinylfluoride, polyphenylene, polytetrafluroethylene-co-hexafluoropropylene,
polymethylmethacrylate, polyetherketone, poly (ethylene-co-hexafluoropropylene),
polyphenylenesulfide, polycarbonate, poly (vinylidene fluoride-co-hexafluoropropylene), poly
(tetrafluoroethylene-co-ethylene), polypropylene, or polyvinylidene fluoride, or combinations
thereof; (iv) a biodegradable material selected from the group consisting of polycaprolactone,
poly (D,-lactide), polyhydroxyvalerate, polyanhydrides, polyhydroxybutyrate, polyorthoesters,
polyglycolide, poly (L-lactide), copolymers of lactide and glycolide, polyphosphazenes, or
polytrimethylene carbonate, or combinations thereof; (v) a drug-delivering vascular stent, self-
expanding stent, balloon-expanded stent, vascular device, graft, catheter, valve, artificial
heart, heart assist device, implantable defibrillator, defibrillator lead, blood oxygenator device,
blood oxygenator tubing, blood oxygenator membrane, surgical device, suture, staple,
anastomosis device, vertebral disk, bone pin, suture anchor, hemostatic barrier, clamp,
screw, plate, clip, vascular implant, tissue adhesive or sealant, tissue scaffold, membrane,
cell culture device, chromatographic support material, biosensor, shunt for hydrocephalus,
wound management device, endoscopic device, infection control device, orthopedic device,
joint orthopedic implant, orthopedic fracture repair device, dental device, dental implant,
dental fracture repair device, urological device, penile urological device, sphincter urological
device, urethral urological device, bladder urological device, prostrate urological device,
vaginal urological device, fallopian urological device, renal urological device, urological
catheter, colostomy bag attachment device, ophthalmic device, ocular coil ophthalmic device,
glaucoma drain shunt, synthetic prostheses, breast synthetic prostheses, intraocular lens,
respiratory device, peripheral device, cardiovascular device, spinal device, neurological
device, dental device, gastro-intestinal device, gastro-esophageal device, ear/nose/throat
device, ear drainage tube device, renal device, iliac device, cardiac device, aortic devices,
aortic graft, aortic stent, dialysis device, dialysis tubing, dialysis membrane, dialysis graft,
urinary catheter, antimicrobial surface-coated urinary catheter, intravenous catheter,
intravenous catheter treated with antithrombotic agent comprising heparin, hirudin, or
Coumadin, tissue graft, small diameter tissue graft, tissue scaffold, vascular graft, artificial
lung catheter, atrial septal defect closure, electro-stimulation leads for cardiac rhythm
management, pacer leads, glucose sensor, long-term glucose sensor, short-term glucose sensor, degradable coronary stent, non-degradable coronary stent, partially degradable coronary stent, blood pressure and stent graft catheter, birth control device, benign prostate implant, prostate cancer implant, bone repair device, bone augmentation device, breast implant, cartilage repair device, dental implant, implanted drug infusion tube, intravitreal drug delivery device, nerve regeneration conduit, oncological implant, electrostimulation lead, pain management implant, spinal repair device, orthopedic repair device, wound dressing, embolic protection filter, abdominal aortic aneurysm graft, heart valve, mechanical heart valve, polymeric heart valve, tissue heart valve, percutaneous, carbon heart valve, sewing cuff heart valve, valve annuloplasty device, mitral valve repair device, vascular intervention device, left ventricle assist device, neuro aneurysm treatment coil, neurological catheter, left atrial appendage filter, hemodialysis device, catheter cuff, anastomotic closure, vascular access catheter, cardiac sensor, uterine bleeding patch, uterine stent or stent-like device, cervix treatment device, urological catheter, urological stent, urological implant, gastro-esophageal stent, aneurysm exclusion device, neuropatch, vena cava filter, urinary dialator, endoscopic surgical tissue extractor, endoscopic drug delivery device, fluid delivery device, atherectomy catheter, atherectomy device, imaging catheter, imaging device, Intravascular Ultrasound imaging catheter or device, Magnetic Resonance Imaging catheter or device, Optical Coherence Tomography imaging catheter or device, thrombosis extraction catheter or device, clot extraction catheter or device, thrombectomy device, percutaneous transluminal angioplasty catheter or device, PTCA catheter, stylet, vascular stylet, non-vascular stylet, guiding catheter, drug infusion catheter, esophageal stent, pulmonary stent, bronchial stent, circulatory support system, angiographic catheter, transition sheath, transition dilator, coronary guidewire, hemodialysis catheter, peripheral guidewire, hemodialysis catheter, neurovascular balloon catheter or device, tympanostomy vent tube, cerebro-spinal fluid shunt, defibrillator lead, percutaneous closure device, drainage tube, thoracic cavity suction drainage catheter, electrophysiology catheter or device, stroke therapy catheter or device, abscess drainage catheter, biliary drainage device, dialysis catheter, central venous access catheter, parental feeding catheter or device, implantable vascular access port, blood storage bag, vascular stent, blood tubing, arterial catheter, vascular graft, intraaortic balloon pump, suture, cardiovascular suture, total artificial heart, ventricular assist pump, extracorporeal
device, blood oxygenator, blood filter, hemodialysis unit, hemoperfusion unit, plasmapheresis unit, hybrid artificial organ, hybrid artificial pancreas, hybrid artificial liver, hybrid artificial lung, blood vessel emboli filter, distal protection device, distal embolic protection device, or combinations thereof; or (vi) combinations thereof.

Another aspect provides a method of treating a disease, disorder, or condition in a subject. In some embodiments, the method includes (a) administering to a subject in need thereof a first composition including a ligand coupled to a molecule or substrate; and administering to the subject a second composition including a receptor coupled to a radioisotope; or (b) administering a kit described above, wherein administering comprises (i) administering to a subject in need thereof the first composition comprising the ligand coupled to the molecule or substrate and (ii) administering to the subject the second composition comprising the receptor coupled to the radioisotope.

In some embodiments, the first composition is administered to the subject before the second composition.

In some disease, disorder, or condition comprises a proliferative disease, disorder, or condition. In some embodiments, the disease, disorder, or condition comprises one or more selected from the group consisting of: a cancer, malignant pleural mesothelioma, peritoneal carcinomatosis, leukemia, lymphoma, non-small cell lung cancer, testicular cancer, lung cancer, abdominal cancer, ovarian cancer, uterine cancer, cervical cancer, pancreatic cancer, colorectal cancer, breast cancer, prostate cancer, gastric cancer, colon cancer, skin cancer, stomach cancer, liver cancer, liver metastasis, esophageal cancer, bladder cancer, appendiceal carcinoma, gastric carcinoma, pancreatic carcinoma, peritoneal mesothelioma, pseudomyxoma peritonei, blood vessel proliferative disorder, fibrotic disorder, mesangial cell proliferative disorder, psoriasis, actinic keratoses, seborrheic keratoses, warts, keloid scars, eczema, viral-associated hyperproliferative disease, papilloma viral infection, mesothelioma, Meigs Syndrome, sarcoma, appendiceal carcinoma, pseudomyxoma peritonei, prostate cancer, prostate cancer lymph node dissection beds, rectovesical pouch tumor bed, ovarian cancer resection bed and peritoneal spread, uterine cancer resection cavities, pleural and peritoneal mesothelioma resection bed and peritoneal seeding, colorectal carcinoma, appendiceal carcinoma, pancreatic carcinoma, liver metastases, gastric
carcinoma, renal carcinoma, retroperitoneal tumors, retroperitoneal sarcoma, retroperitoneal carcinoma, breast cancer, breast cancer lumpectomy, breast cancer lumpectomy dissection cavity, breast cancer lymph node, breast cancer lymph node dissection cavity, melanoma, melanoma node dissection cavity, sarcoma, sarcoma resection cavities, head or neck cancer, head or neck cancer resection cavity, neck cancer lymph node, neck lymph node dissection cavities, scalp lesion, glioblastoma, glioblastoma resection cavity, brain surface tumor lesion, resected brain surface tumor lesion, non resected brain surface tumor lesion, trunk sarcoma, trunk sarcoma resection cavity, extremity sarcoma, and extremity sarcoma resection cavity, or a combination thereof. In some embodiments, the proliferative disease, disorder, or condition comprises a cancer.

In some embodiments, the first composition is administered to the subject post-operatively in or near a surgically operated area. In some embodiments, the first composition is administered to the subject post-operatively in a cavity where proliferative cells or tissue were surgically removed.

In some embodiments, the first composition or the second composition is administered in an amount effective to inhibit replication of cancer cells; inhibit spread of the disease, disorder, or condition; reduce tumor size; decrease tumor vascularization; increase tumor permeability; reduce recurrence of tumor growth; prevent recurrence of tumor growth; reduce a number of cancerous cells in the subject; or ameliorate a symptom of the disease, disorder, or condition.

Other objects and features will be in part apparent and in part pointed out hereinafter.

DESCRIPTION OF THE DRAWINGS

Those of skill in the art will understand that the drawings, described below, are for illustrative purposes only. The drawings are not intended to limit the scope of the present teachings in any way.

FIG. 1A-B are a series of microscopy images depicting the binding capacity of proteins to Talc using a FITC filter and a Rhodamine filter.

FIG. 1A shows Biotin Rhodamine binding to talc.

FIG. 1B shows Anti-Avidin FITC binding to talc.
FIG. 2A-J are a series of microscopy images depicting Avidin and Avidin Rhodamine after washing.

FIG. 2A shows 100 µM Avidin and Avidin Rhodamine in reaction after washing with 3x with 1 ml 1x PBS.

FIG. 2B shows 100 µM Avidin and Avidin Rhodamine in reaction after washing with 3x with 1 ml 1x PBS followed by washing 3x with 0.2% EDTA.

FIG. 2C shows 10 µM Avidin and Avidin Rhodamine after washing with 3x with 1 ml 1x PBS.

FIG. 2D shows 10 µM Avidin and Avidin Rhodamine after washing with 3x with 1 ml 1x PBS followed by washing 3x with 0.2% EDTA (0.5 ml).

FIG. 2E shows 1 µM Avidin and Avidin Rhodamine after washing with 3x with 1 ml 1x PBS.

FIG. 2F shows 1 µM Avidin and Avidin Rhodamine after washing with 3x with 1 ml 1x PBS followed by washing 3x with 0.2% EDTA.

FIG. 2G shows 100 nM Avidin and Avidin Rhodamine after washing with 3x with 1 ml 1x PBS.

FIG. 2H shows 100 nM Avidin and Avidin Rhodamine after washing with 3x with 1 ml 1x PBS followed by washing 3x with 0.2% EDTA.

FIG. 2I shows 10 nM Avidin and Avidin Rhodamine after washing with 3x with 1 ml 1x PBS.

FIG. 2J shows 10 nM Avidin and Avidin Rhodamine after washing with 3x with 1 ml 1x PBS followed by washing 3x with 0.2% EDTA.

FIG. 3 is a scatter plot depicting the saturation amount of Avidin with 100 mg talc.

FIG. 4 is a scatter plot depicting the amount of Avidin removed from the surface of talc during wash.

FIG. 5 shows the data points for the scatter plot in FIG. 4.

FIG. 6 is a scatter plot depicting Avidin bound to the surface of talc.
FIG. 7 are a series of flow cytometry data for FITC and Rodamine labeled talc.

FIG. 8A shows Optical Density (OD) values for HRP Avidin remaining in supernatant following overnight incubation with talc.

FIG. 8B shows Optical Density (OD) values for HRP Avidin at varying concentrations.

FIG. 9A shows Optical Density (OD) values for HRP Avidin remaining in supernatant following overnight incubation with talc.

FIG. 10 are a series of flow cytometry data for bleomycin and talc at various excitation and emission wavelengths.

FIG. 11 are a series of flow cytometry data for bleomycin and talc at various excitation and emission wavelengths (repeated study).

FIG. 12 are a series of flow cytometry data for bleomycin and talc at various excitation and emission wavelengths (repeated study).

FIG. 13 is a scatter plot depicting % survival NCI-28H cells after incubation for 72 hrs with talc and talc bound to bleomycin.

FIG. 14 is a scatter plot depicting % survival NCI-28H cells after 72 hours of bleomycin treatment.

FIG. 15 are a series of flow cytometry data for washed samples of bleomycin and talc at various excitation and emission wavelengths.

FIG. 16 is a scatter plot depicting % NCI-28H cells survival after 72 hours of doxorubicin treatment.

FIG. 17 is a box plot of % NCI-28H cells survival after various treatments.

FIG. 18 is a scatter plot depicting % NCI-28H cells survival after 72 hours of exposure to cisplatin.

FIG. 19 is the data and a box plot of comparison of survival NCI-28H cells with different treatments.

FIG. 20 is the data and a box plot of comparison of survival NCI-28H cells with different treatments.
FIG. 2.1 is a scatter plot depicting % NCI-28H cells survival after 72 hours of paclitaxel treatment.

FIG. 2.2 is a scatter plot depicting % NCI-28H cells survival after exposure to talc or talc bound to paclitaxel.

FIG. 2.3 is the data and a box plot of comparison of survival NCI-28H cells with different treatments.

FIG. 2.4 is a scatter plot depicting % NCI-28H cells survival after exposure to carboplatin.

FIG. 2.5 is a scatter plot depicting % NCI-28H cells survival after 72 hours exposure to talc or talc/carboplatin.

FIG. 2.6 is the data and a box plot of comparison of survival NCI-28H cells with different treatments.

FIG. 2.7 is a scatter plot depicting % NCI-28H cells survival after 72 hours exposure to mitomycin.

FIG. 2.8 is a scatter plot depicting % NCI-28H cells survival after exposure to talc or talc bound to mitomycin.

FIG. 2.9 is a scatter plot depicting % NCI-28H cells survival after 72 hours exposure to talc or talc bound to gemcitabine.

FIG. 2.10 is a scatter plot depicting % NCI-28H cells survival after 72 hours exposure to talc or talc bound to gemcitabine.

FIG. 2.11 is a scatter plot depicting % NCI-2052H cells survival after 72 hours exposure to bleomycin.

FIG. 2.12 is a scatter plot depicting % NCI-2052H cells survival after exposure to talc or talc/bleomycin.

FIG. 2.13 is the data and a box plot of comparison of survival NCI-2052H cells with different treatments.

FIG. 2.14 is a scatter plot depicting % NCI-2052H cells survival after 72 hours exposure
to mitomycin.

FIG. 35 is a scatter plot depicting % NCI-2052H cells survival after 72 hours exposure to doxorubicin.

FIG. 36 is a scatter plot depicting % NCI-2052H cells survival after exposure to talc or talc/doxorubicin.

FIG. 37 is a scatter plot depicting % NCI-2052H cells survival after 72 hours exposure to paclitaxel.

FIG. 38 is a scatter plot depicting % NCI-2052H cells survival after 72 hours exposure to talc or talc/paclitaxel.

FIG. 39 is the data and a box plot of comparison of survival NCI-2052H cells with different treatments.

FIG. 40 is a scatter plot depicting % NCI-2052H cells survival after 72 hours exposure to talc or talc/mitomycin.

FIG. 41 is a scatter plot depicting % NCI-2052H cells survival after 72 hours exposure to mitomycin.

DETAILED DESCRIPTION OF THE INVENTION

The present disclosure is based, at least in part, on the discovery that a combination of a ligand coupled to (an endogenous or exogenous) molecule or substrate and a receptor coupled to a radioisotope (or vice versa, a receptor coupled to molecule or substrate and a ligand coupled to a radioisotope) can be used to precisely deliver targeted radiotherapy to a tissue of a subject in need thereof. Such an approach can provide a ligand-based pre-target for a subsequent administration of receptor-radioisotope complex. Such an approach can be amenable to a broad array of natural and artificial materials including, but not limited to, polylactic materials, glass, or other surgical, prosthetic, implantable materials, or endogenous tissues. Various approaches described herein can prolong the life of a subject with a neoplastic disorder, such as intracavitary cancer, or supplement or replace chemotherapy.

Various technologies described herein can target cancerous cells after pleurodesis. In one embodiment, talc (a type of mineral), or a similar silicate, functionalized with ligand...
(e.g., avidin or streptavidin) can be injected into the pleural cavity of a subject after pleurodesis, and the subject can then be treated with a receptor-conjugated radioisotope (e.g., a biotin-conjugated radioisotope). Because biotin has a high affinity for avidin or streptavidin, radioisotopes can be selectively targeted to a tumor-contaminated pleural space given the presence of the avidin or streptavidin target. In some embodiments, a ligand (e.g., avidin or streptavidin) bound to substrate (e.g., talc) can be used as a pretargeting agent. When pleurodesis is performed, the substrate (e.g., talc) can be trapped in the potential pleural space formed, and the ligand (e.g., avidin or streptavidin) can serve as a target for ligand-coupled radioisotopes (e.g., biotinylated radioisotopes) (e.g., at a binding constant ~ 10E-15 for biotin-avidin). Accordingly, targeted radiotherapy of a pleurodesed space can be performed (e.g., repeatedly performed) without compromising surrounding tissue, or without excessive systemic toxicity.

By linking a ligand (e.g., avidin or related molecules) to a molecule or substrate (e.g., talc itself or to molecules or particles that can be mixed with talc), the pleurodesed areas containing the ligand can be positioned to bind tightly to any circulating receptor-containing small molecules (e.g., biotin-radioisotope) with which they come in contact, with an extraordinarily high association constant (e.g., 10 E-15). It follows from the above that if biodegradable ligand-conjugated molecules or particles (e.g., avidin-talc) can be deposited in a tissue in a controlled uniform manner, they can precisely determine the shape and intensity of radiotherapy delivered by alpha-emitting receptor-conjugated radioisotopes (e.g., biotin-radioisotope) attracted to the site.

Various systems described herein can include the use of receptor-conjugated alpha emitting isotopes, for example Radium 223 or Bismuth 212, which emit energetic alpha particles over a short range (e.g., about 110 microns or less), thus effectively killing cells in their vicinity but not significantly or substantially harming more distant tissues or bone marrow. In some embodiments, an isotope can be safely given repeatedly as often as weekly or monthly with no rise in side effects attributable to the drug.

In one embodiment, avidin- or streptavidin-conjugated silica or talc can be injected into the pleural space of a subject to attract biotin-labeled alpha emitting isotopes (e.g., Radium 223, Bismuth 212, Yttrium 190) for precisely targeted radiotherapy of mesothelioma.
or other cancers occupying the pleural space needing such treatment.

The approach of combining the use of streptavidin- or avidin-labeled silica or talc in pleurodesis, so as to serve as a third party target for radioisotope-mediated cell death has not been previously reported.

In one embodiment, a ligand (e.g., avidin or streptavidin) can be coupled directly or indirectly to fibrinogen. The ligand-fibrinogen complex can then be incorporated into a fibrin "glue", or a fibrin mesh or gel, and activated with thrombin. After activation, the ligand-fibrin glue, mesh, or gel can be used as a support, sealant, clot-promoting agent, or surgical adhesive. Thus can be provided pretargeting of difficult to reach surgical areas for postoperative radiation supplied by, e.g., intravenously injecting a receptor-radioisotope (e.g., a biotinylated alpha emitting radioisotope).

In another embodiment, a ligand (e.g., avidin or streptavidin) can be coupled to gelatin, such as can be present in a conventional surgical gelfoam (e.g., in the form of a powder or gauze). The stability of the ligand-gelfoam complex may be incrementally enhanced and adjusted by crosslinking the proteins by exposing the mixture to ultraviolet light. The gelfoam can then be used as is, or optionally incorporated into a fibrin "glue", or a fibrin mesh or gel, and activated with thrombin. The avidin-gelfoam material can itself serve as a support, sealant, clot-promoting agent, or surgical adhesive. Thus can be provided pretargeting of difficult to reach surgical areas for postoperative radiation supplied by, e.g., intravenously injecting a receptor-radioisotope (e.g., a biotinylated alpha emitting radioisotope).

Also provided are compositions, systems, or methods in which the ligand is not coupled to a molecule or substrate prior to administration to a subject. In some embodiments, a "bare" ligand has specific or non-specific binding affinity for a biological tissue associated with a disease, disorder, or condition described herein. For example, a ligand such as avidin having a highly positive charge can adhere to a negatively charged tissue, such as a peritoneal surface. Avidin administered to at or near the peritoneal membrane (e.g., by injection), where it binds. A receptor-radioisotope complex (e.g., a biotinylated radioisotope) can be directly introduced into the cavity (e.g., by radiologically guided catheter), where it would bind to avidin (or other ligand) on exposed surfaces. Intravenous avidin could simultaneously "clear" some or all isotope escaping from the peritoneal cavity.
Above exemplary compositions, systems, or methods are further described herein.

MOLECULE OR SUBSTRATE

As described herein, a molecule or substrate, or plurality or combination thereof, can be coupled to a ligand (e.g., avidin or streptavidin) so as to attract a radioisotope coupled to a corresponding receptor (e.g., biotin). Such an approach can provide targeted radiotherapy in a subject via selective binding of the ligand and receptor. A molecule can be a plurality of molecules. A substrate can be a plurality of substrates.

A molecule can be a molecule endogenous or exogenous to the subject. A molecule as described herein can be a microsphere or other particle. A molecule as described herein can be a microsphere or other particle introduced into talc. A molecule or a plurality of molecules coupled or attached to part of a ligand/receptor pair can be any molecule present in or introduced into a subject having a proliferative disease, disorder, or condition.

A substrate can be any natural or artificial material. Exemplary substrates include, but are not limited to, talc, fibrin, polymeric materials, plastics, plastic fillers, latex particles, gels, polylactic materials, microspheres, glass, proteinaceous materials, carbohydrate materials, or other surgical, prosthetic, or implantable materials, such as a mesh, suture, tissue scaffold, or other such materials.

A molecule or substrate can be an endogenous tissue of the subject (e.g., a peritoneal membrane).

Silicates, talc.

A molecule or a plurality of molecules coupled or attached to part of a ligand/receptor pair can be, for example, silica, silicate, or talc.

Talc is understood to be a metamorphic mineral composed of hydrated magnesium silicate with the chemical formula $\text{H}_2\text{Mg}_3(\text{SiO}_3)_4$ or $\text{Mg}_3\text{Si}_4\text{O}_{10}(\text{OH})_2$. Talc is understood to have a tri-octahedral layered structure, similar to that of pyrophyllite, but with magnesium in the octahedral sites of the composite layers. As used herein, talc can mean a hydrated magnesium silicate (e.g., $\text{H}_2\text{Mg}_3(\text{SiO}_3)_4$ or $\text{Mg}_3\text{Si}_4\text{O}_{10}(\text{OH})_2$), a variant thereof, or a similar silicate. For example, a molecule or a plurality of molecules coupled or attached to part of a
ligand/receptor pair can be a soft mineral similar to talc, such as steatite, pinite, pyrophyllite (aka French chalk). As another example, a molecule or a plurality of molecules coupled or attached to part of a ligand/receptor pair can be a talc-schist, such as steatite.

Talc and asbestos are both naturally occurring silicate minerals. Asbestos is understood as a set of naturally occurring silicate minerals that share an eponymous asbestiform habit of long, thin crystals (e.g., serpentine, chrysotile, amphibole, amosite, crocidolite, tremolite, actinolite, anthophyllite, richterite, winchite). Surface features and binding characteristics of asbestos (see generally, Nagai et al. 2011 Cancer Science 102(112), 2118-2125) can be useful for characterizing binding of talc, or another silicate, to one part of a ligand/receptor pair (e.g., avidin or streptavidin). While under no obligation to provide a mechanism, and in no way limited the scope of the present disclosure, it is presently thought that talc has a high capacity to absorb and accommodate biomolecules (e.g., a ligand or a receptor) on its surface area. Accordingly, talc or other silicates should have a high capacity for linkage to a ligand or a receptor, as described herein. Such predictive mechanism has been confirmed by preliminary talc-avidin binding studies.

Fibrin.

A molecule or substrate can be fibrin. One part of a ligand/receptor pair can be coupled or attached to fibrin. Fibrin is generally understood as a fibrous, non-globular protein involved in the clotting of blood, which can be formed by the action of protease thrombin on fibrinogen (a glycoprotein), which causes the latter to polymerize. Fibrin sealant has been used with increasing frequency in a variety of surgical field for its unique hemostatic and adhesive abilities, such as mimicking the last step of the coagulation cascade independently of a subject's coagulation status (see generally, Lee, 2005, Surg Innov, 12(3), 203-213; Gibble and Ness, 1990, Transfusion, 30(8), 741-747; Canonico, 2003, Acta Bio Medica, 74 Supp 2, 21-25; Handagama et al., 1989, J Clin Invest, 84, 73-82). Except as otherwise noted herein, therefore, the process of the present disclosure can be carried out in accordance with such uses of fibrin or fibrin glue.

In some embodiments, fibrin or fibrinogen can be coupled to avidin. Fibrinogen can be dispensed as a “glue”, where after being applied, it can be treated with thrombin (so as to polymerize and form fibrin) to produce a biotinylated clot. A subject can be given intravenous
avidin to displace any unbound biotin, and some time later (e.g., about 24 hours later), a biotinylated radioisotope can be given, which would then bind to the avidin immobilized on the fibrinogen clot.

In some embodiments, fibrin or fibrinogen can be biotinylated. For example, a protein such as fibrinogen (e.g., about 10 to about 20 mg/ml) can be dialyzed against 1.0 M NaCl/0.03 M N-Tris[hydroxymethyl]methyl-2-aminoethane sulfonic acid, pH 7.42. Biotinyl-epsilon-aminocaproic acid N-hydroxysuccinate ester (about 50 mg/ml in dimethyl-formamide) can be added (e.g., in a 1:100 dilution, vol/vol), and the mixture incubated (e.g., at 20°C for 30 min, then at 4°C for 90 min). Samples can then be dialyzed extensively against the NaCl/TES buffer, and finally against 0.15 M NaCl/0.01 M NaPO4, pH 7.4, at 20°C.

The biotinylated fibrinogen can then be dispensed as a "glue", where after being applied, it can be treated with thrombin (so as to polymerize and form fibrin) to produce a biotinylated clot. Some time later (e.g., one day), the subject can be given intravenous avidin which would be expected to bind to the biotinylated fibrinogen. Unbound avidin can be expected to be cleared after some amount of time (e.g., about 2 hours, about 3 hours, or up to 24 hours). Some portion of the avidin would be remain at the site of the biotinylated fibrin glue, but would present binding sites for addition biotin, which would represent a "pretarget" for the biotinylated isotope. Biotinylated radioactive isotopes can then be injected, which would then bind to the molecule immobilized on the fibrinogen clot. Such a "double-decker" approach can allow for amplification of the number of sites to which the radioactive isotopes can bind.

A molecule (e.g., talc) coupled to a ligand (e.g., avidin) can be mixed, coated or suspended in or on another composition, such as a fibrin/gelatin matrix (e.g., an FDA-approved fibrin/gelatin matrix).

Gelatin or Gelfoam.

A molecule or a plurality of molecules coupled or attached to part of a ligand/receptor pair can be, for example, a gelatin. It has been discovered that positively charged avidin can form multiple linkages with a gelatin matrix, such as that used in a gelfoam. The avidin-gelatin bond can withstand repeated washing with serum. A gelfoam can be understood to be a particulate embolic agent that can temporarily occlude blood vessels for a period of time
(e.g., up to five weeks) by absorbing liquid and plugging the vessel. A gelfoam can be a frequently used surgical hemostatic device. A gelfoam can be composed of water-insoluble gelatin particles that may travel distally and occlude smaller capillaries. A ligand described herein, such as avidin, can be mixed with gelatin particles so as to form a gelfoam of gelatin bound to ligand (e.g., gelatin-avidin complex). Gelfoam can be commercially available (e.g., Gelfoam®, Pfizer/Baxter). Conventional use of gelfoam is understood in the art. Except as otherwise noted herein, therefore, methods and compositions of the present disclosure (e.g., ligand-gelatin complex in a gelfoam) can be carried out in accordance with such processes.

For example, gelatin can be coupled to a ligand (e.g., avidin or streptavidin). The gelatin can be present in a conventional surgical gelfoam (e.g., in the form of a powder or gauze). The gelfoam can then be used as is, or optionally incorporated into a fibrin "glue", or a fibrin mesh or gel, and activated with thrombin. The avidin-gelfoam material can itself serve as a support, sealant, clot-promoting agent, or surgical adhesive. Thus can be provided pretargeting of difficult to reach surgical areas for postoperative radiation supplied by, e.g., intravenously injecting a receptor-radioisotope (e.g., a biotinylated alpha emitting radioisotope).

In some embodiments, the ligand-molecule or substrate complex can be exposed to ultraviolet light for a period of time sufficient to stabilize or strength the coupling there between. For example, the stability of the ligand-gelfoam complex may be incrementally enhanced and adjusted by crosslinking the proteins by exposing the mixture to ultraviolet light.

It has been discovered that gelfoam loaded with avidin may lose some of the attached material when exposed to serum. This may be a problem if the loaded gauze is placed in juxtaposition with tissues for long periods. It has further been discovered that exposing gelfoam (e.g., gauze or pellets) to ultraviolet light for varying periods of time can stabilize the bond between gelfoam and avidin while retaining an ability to bind biotin. In some embodiments, no reagents are needed other than gelfoam and avidin.

Substrate.

One part of a ligand/receptor pair can be coupled or attached to a substrate. A substrate can include an implantable devices, for example: drug-delivering vascular stents
(e.g., self-expanding stents typically made from nitinol, balloon-expanded stents typically prepared from stainless steel, cobalt chrome, and others); other vascular devices (e.g., grafts, catheters, valves, artificial hearts, heart assist devices); implantable defibrillators, especially defibrillator leads; blood oxygenator devices (e.g., tubing, membranes); surgical devices (e.g., sutures, staples, anastomosis devices, vertebral disks, bone pins, suture anchors, hemostatic barriers, clamps, screws, plates, clips, vascular implants, tissue adhesives and sealants, tissue scaffolds); membranes; cell culture devices; chromatographic support materials; biosensors; shunts for hydrocephalus; wound management devices; endoscopic devices; infection control devices; orthopedic devices (e.g., for joint implants, fracture repairs); dental devices (e.g., dental implants, fracture repair devices), urological devices (e.g., penile, sphincter, urethral, bladder, prostrate, vaginal, fallopian, and renal devices, and catheters); colostomy bag attachment devices; ophthalmic devices (e.g., ocular coils); glaucoma drain shunts; synthetic protheses (e.g., breast); intraocular lenses; respiratory, peripheral, cardiovascular, spinal, neurological, dental, gastro-intestinal, gastro-esophageal (e.g., for Barrett’s Esophagus or pre-cancerous esophageal tissue or cells), ear/nose/throat (e.g., ear drainage tubes) devices; renal devices; iliac devices; cardiac devices; aortic devices (e.g., grafts or stents); and dialysis devices (e.g., tubing, membranes, grafts).

Non-limiting examples of substrates include urinary catheters (e.g., surface-coated with antimicrobial agents such as vancomycin or norfloxacin), intravenous catheters (e.g., treated with additional antithrombotic agents such as heparin, hirudin, or Coumadin), tissue grafts including small diameter grafts, tissue scaffolds including artificial or natural materials, vascular grafts, artificial lung catheters, atrial septal defect closures, electro-stimulation leads for cardiac rhythm management (e.g., pacer leads), glucose sensors (long-term and short-term), degradable, non-degradable, or partially degradable coronary stents, blood pressure and stent graft catheters, birth control devices, benign prostate and prostate cancer implants, bone repair/augmentation devices, breast implants, cartilage repair devices, dental implants, implanted drug infusion tubes, intravitreal drug delivery devices, nerve regeneration conduits, oncological implants, electrostimulation leads, pain management implants, spinal/orthopedic repair devices, wound dressings, embolic protection filters, abdominal aortic aneurysm grafts, heart valves (e.g., mechanical, polymeric, tissue, percutaneous, carbon, sewing cuff), valve
annuloplasty devices, mitral valve repair devices, vascular intervention devices, left ventricle assist devices, neuro aneurysm treatment coils, neurological catheters, left atrial appendage filters, hemodialysis devices, catheter cuff, anastomotic closures, vascular access catheters, cardiac sensors, uterine bleeding patches, uterine stent or stent-like devices, cervix treatment devices, urological catheters/stents/implants, gastro-esophageal stents, treatments for lower esophageal sphincter, in vitro diagnostics, aneurysm exclusion devices, and neuropatches.

Non-limiting examples of substrates include vena cava filters, urinary dialators, endoscopic surgical tissue extractors, endoscopic drug or fluid delivery devices, atherectomy catheters or devices, imaging catheters or devices (e.g., Intravascular Ultrasound (IVUS), Magnetic Resonance Imaging (MRI), or Optical Coherence Tomography (OCT) catheters or devices), thrombis or clot extraction catheters or devices (e.g., thrombectomy devices), percutaneous transluminal angioplasty catheters or devices, PTCA catheters, stylets (vascular and non-vascular), guiding catheters, drug infusion catheters, esophageal stents, pulmonary stents, bronchial stents, circulatory support systems, angiographic catheters, transition sheaths and dilators, coronary and peripheral guidewires, hemodialysis catheters, neurovascular balloon catheters or devices, tympanostomy vent tubes, cerebro-spinal fluid shunts, defibrillator leads, percutaneous closure devices, drainage tubes, thoracic cavity suction drainage catheters, electrophysiology catheters or devices, stroke therapy catheters or devices, abscess drainage catheters, biliary drainage products, dialysis catheters, central venous access catheters, and parental feeding catheters or devices.

Non-limiting examples of substrates include catheters, implantable vascular access ports, blood storage bags, vascular stents, blood tubing, arterial catheters, vascular grafts, intraaortic balloon pumps, sutures (e.g., cardiovascular), total artificial hearts and ventricular assist pumps, extracorporeal devices such as blood oxygenators, blood filters, hemodialysis units, hemoperfusion units, plasmapheresis units, hybrid artificial organs such as pancreas or liver and artificial lungs, as well as filters adapted for deployment in a blood vessel in order to trap emboli (also known as "distal protection devices" or "distal embolic protection devices").

As another example, a ligand (e.g., avidin or streptavidin) can be coupled to a biodegradable or non-biodegradable substrate, such as sutures, clips or meshes, implanted adjacent to or within delicate, relatively inaccessible surgically operated areas (e.g.,
pancreatic head, superior mesenteric artery region) or tumor-cell-contaminated surgical fields (e.g., surface of kidney in contact with a resected retroperitoneal sarcoma) to pre-target the region for postoperative chemotherapy while reducing the risk of radiation injury to the liver or kidney.

As another example, a ligand can be coupled to a fibrin sealant sprayed on a synthetic bioabsorbable sheet made of mixture of polyabsorbable material such as a mixture of polyglycolic and acid and polylactic acid (e.g., Resomer®, GMP). As another example, a ligand can be coupled to a PGA fabric, nonwoven homopolymer (e.g., Neovell, Gunze, Kyoto Japan) that hydrolozyes and disintegrates by about 50% in about 10 days, with remaining product disintegrating in about 15 weeks. As another example, a ligand can be coupled to a transparent fibrin glue film dressing that can be sprayed onto a surface. As another example, a ligand can be coupled to an aerosolized fibrin sealant (Bolheal, Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan). As another example, a ligand can be coupled to an acrylic spray, such as a polymer sprayed to seal lungs (e.g., Optispray). As another example, a ligand can be coupled to a collagen or chitosan patch (e.g., chitosan g21 0, Pronova Biopolymer). As another example, a ligand can be coupled to a hydrocolloid dressing (a dispersion of gelatin, pectin and carboxy-methylcellulose together with other polymers and adhesives). As another example, a ligand can be coupled to a collagen filler, such as used to hold moisture in ostomy appliances. As another example, a ligand can be coupled to a bioengineered human collagen dermal fillers (e.g., CosmoDerm I, CosmoDerm II, CosmoPlast), which contain collagen fillers and lidocaine. As another example, a ligand can be coupled to a Bovine collagen (e.g., Zyderm I, Zyderm II, and Zyplast). As another example, a ligand can be coupled to sheets of collagen coated with fibrinogen, thrombin, or aprotinin (e.g., TachoComb®, Nycomed Pharma; TachoSil®, Takeda Pharmaceuticals).

A molecule or substrate can be composed of any suitable biocompatible, bioerodable, or bio-tolerant material including, but not limited to, gold, tantalum, iridium, platinum, nitinol, stainless steel, platinum, titanium, tantalum, nickel-titanium, cobalt-chromium, magnesium, ferromagnetic, nonferromagnetic, alloys thereof, fiber, cellulose, various biodegradable or non-biodegradable polymers, or combinations thereof. For example, a substrate can be composed of MP35N or MP20N (trade names for alloys of cobalt, nickel, chromium, and molybdenum, Standard Press Steel Co., PA). A substrate can be a metal (e.g., transition,
actinide, or lanthanide metal). A substrate can be non-magnetic, magnetic, ferromagnetic, paramagnetic, or superparamagnetic. A substrate can further include strength-reinforcement materials that include but are not limited to, thickened sections of base material, modified surface properties (e.g., for promotion of endothelial progenitor cells), modified geometries, intermediate material, coating, fibers (such as composites, carbon, cellulose or glass), kevlar, or other material(s).

A molecule or substrate can be composed of a biodegradable, a bioerodable, a non-biodegradable material, a non-bioerodable material, or a combination thereof. A molecule or substrate can be permanent or temporary. A temporary molecule or substrate can be resident for a period of time such as about one day, about 10 days, about 15 days, about 30 days, about 60 days, about 90 days, or longer.

A molecule or substrate can be composed, in whole or in part, of a non-biodegradable polymer such as polyetheretherketone (PEEK), PEEK derivatives, polyethylene terephthalate, polyetherimide, polimide, polyethylene, polyvinylfluoride, polyphenylene, polytetrafluoroethylene-co-hexafluoropropylene, polymethylmethacrylate, polyetherketone, poly (ethylene-co-hexafluoropropylene), polyphenylenesulfide, polycarbonate, poly (vinylidene fluoride-co-hexafluoropropylene), poly (tetrafluoroethylene-co-ethylene), polypropylene, or polyvinylidene fluoride.

A molecule or substrate can be composed, in whole or in part, of a biodegradable materials, such as polycaprolactone, poly (D-lactide), polyhydroxyvalerate, polyanhydrides, polyhydroxybutyrate, polyorthoesters, polyglycolide, poly (L-lactide), copolymers of lactide and glycolide, polyphosphazenes, or polytrimethylene carbonate.

LIGAND

As described herein, a ligand (e.g., a streptavidin or an avidin) can be coupled to a molecule or substrate so as to attract a radioisotope coupled to a corresponding receptor. Such an approach can provide targeted radiotherapy in a subject via selective binding of the ligand and receptor. A ligand can be selective or non-selective for a receptor. A ligand can be preferably selective for a receptor (or vice versa, a receptor can be preferably selective for a ligand).
Streptavidin.

A ligand can be a streptavidin. A streptavidin can be a protein having a high affinity for biotin (e.g., Kd of about 10^{-14} mol/L). A streptavidin or a nucleotide encoding such, can be isolated from the bacterium Streptomyces (e.g., Streptomyces avidinii). A streptavidin can be any commercially available streptavidin (e.g., Invitrogen; Qiagen; Thermo Scientific; Jackson ImmununoResearch; Sigma Aldrich; Cell Signaling Technology). A streptavidin can be a variant of a naturally occurring streptavidin having at least about 80%, 85%, 90%, 95%, or 99% sequence identity thereto and retaining or substantially retaining high affinity for biotin. A streptavidin can be a tetramer, with each subunit binding a biotin with equal or substantially equal affinity. A streptavidin can have a mildly acidic isoelectric point (pi) (e.g., about 5). A streptavidin can lack any carbohydrate modification. Where a streptavidin has no carbohydrate modification and a near-neutral pi, it can have substantially lower nonspecific binding compared to avidin.

A streptavidin can be an streptavidin coupled to a glycan. A streptavidin can be a glycol streptavidin (e.g., a, ethylene glycol streptavidin; or an streptavidin-poly (ethylene glycol)(PEG)). In some embodiments, a streptavidin be attached in a branched form incorporating polyethylene glycol (e.g., PEG- streptavidin), which can give the streptavidin a branched structure, allowing it to bind more biotin.

A streptavidin can be a streptavidin variant. For example, a streptavidin can be a monovalent, divalent, and trivalent variant. As another example, a variant streptavidin can have a near-neutral pi.

Avidin.

A ligand can be an avidin. An avidin can be a protein having a high affinity for biotin (e.g., Kd of about 10^{-15} mol/L). An avidin or a nucleotide encoding such, can be isolated from egg white. Wild type avidin has about 30% sequence identity to wild type streptavidin, but highly similar secondary, tertiary and quaternary structure. An avidin can be glycosylated, positively charged, or have pseudo-catalytic activity (i.e., enhance alkaline hydrolysis of an ester linkage between biotin and a nitrophenyl group) or can have a higher tendency for aggregation as compared to a streptavidin. An avidin can be a tetramer of about 66-69 kDa in size. An avidin can have about 10% of molecular weight attributed to carbohydrate content.
composed of about 4 to 5 mannose or about three N-acetylglucosamine residues.

An avidin can be a streptavidin variant. For example, an avidin can be a non-glycosylated avidin. As another example, an avidin can be a deglycosylated avidin (e.g., Neutravidin), which can be more comparable to the size, pi or nonspecific binding of a wild type streptavidin. As another example, an avidin can be a deglycosylated avidin having modified arginines, exhibiting a more neutral isoelectric point (pi) and can better overcome problems of non-specific binding. Deglycosylated, neutral forms of avidin are commercially available (e.g., Extravidin, Sigma-Aldrich; Neutravidin, Thermo Scientific or Invitrogen; NeutraLite, Belovo). As another example, an avidin can be an avidin coupled to a glycan. As another example, an avidin can be a glycol avidin (e.g., a, ethylene glycol avidin; or an avidin-poly(ethylene glycol) (avidin-PEG)) (see generally, Caliceti et al., 2002, Journal of Controlled Release, 83, 97-1 08; Salmaso et al., 2005, Biochimica et Biophysica Acta, 1726, 57-66). In some embodiments, an avidin be attached in a branched form incorporating polyethylene glycol (e.g., PEG-avidin), which can give the avidin a branched structure, allowing it to bind more biotin.

An avidin can be a variant AvidinOX™, which can be obtained by 4-hydroxyazobenzene-2'-carboxylic acid-assisted sodium periodate oxidation of avidin (see generally De Santis et al., 2010, Cancer Biother Radiopharm, 25(2), 143-148; U.S. Patent No. 8,562,947). This method can generate aldehyde groups from avidin carbohydrates, sparing biotin-binding sites from inactivation. An avidin variant, such as AvidinOX, can have an increased tissue half-life (e.g., one, two, or more weeks).

In some embodiments, avidin can be pegylated to produce a much larger molecule (e.g., MW>1 00kDA) with more binding sites, and then periodation can be used to form Schiff bases, which could then bind tightly to the amino groups of proteins. The pegylated molecule would be too large to pass easily out of the peritoneal cavity; and it could be introduced in a large volume of solution, and be allowed to attach to surfaces, then flushed out, and biotinylated isotopes (e.g., tracer biotinylated isotopes) could then be introduced, which would likewise coat the surfaces, and allowed to remain.

An avidin can have reversible binding characteristics through nitration or iodination of a binding site tyrosine, or exhibit strong biotin binding characteristics at about pH 4 or biotin
release at a pH of about 10 or higher. An avidin can be a monovalent, divalent, and trivalent variant of avidin.

Processes for linking a ligand, such as avidin or streptavidin, to a molecule or substrate are well known (see e.g. Savage, 1992, Avidin-Biotin Chemistry: A Handbook, Pierce Chemical Co, ISBN-1 0 09359401 11, ISBN-1 3 978-09359401 14; McMahon, 2010, Avidin-Biotin Interactions: Methods and Applications, Humana Press, ASIN B00GA4420E; Hermanson, 2010, Bioconjugate Techniques, Academic Press, ASIN B005YXETUU). Except as otherwise noted herein, therefore, the process of the present disclosure can be carried out in accordance with such processes.

In some embodiments, avidin can be coupled to talc, for example, using both Rhodamine and fluorescein avidin bound to talc then thrice washed, or using HRP-labeled avidin, which has shown saturation of binding (e.g., from 1:10 to 10:1 HRP to natural Avidin, e.g., 1:1). In some embodiments, talc can bind in excess of 2 nanograms of avidin per mg of talc (i.e., about 2 micrograms per gram). For context, about 2 grams of talc can be conventionally used for pleurodesis.

Molecularly Imprinted Polymer.

A ligand can be a molecularly imprinted polymer (MPI). A MPI is understood as a synthetic compound that can select, recognize or capture biological substances. MPIs can be generated via the polymerization of monomers in the presence of a template (see generally, Alvarez-Lorenzo and Concheiro, Ed., 2013, Handbook of Molecularly Imprinted Polymers, Smithers Rapra Technology, ISBN-1 0 : 1847359604).

A MPI can be processed using a molecular imprinting technique that leaves cavities in polymer matrix with affinity to a chosen "template" molecule. The process can involve initiating polymerization of monomers in the presence of a template molecule that can be extracted afterwards, thus leaving complementary cavities behind. Such polymers can have affinity for the original molecule and have been used in applications such as chemical separations, catalysis, or molecular sensors. Binding activity of MIPs, or so called "plastic antibodies", can be about two orders of magnitude lower than specific antibodies but are still highly specific binding sites that can be made easily and are relatively inexpensive.
MPIs can be generated as specific for receptors described herein. For example, MPIs can be specific for biotin (see e.g., WO201 4/030002). MPIs can be coupled to a molecule or substrate described herein.

RADIOISOTOPE

As described herein, a radioisotope can be coupled to a receptor so as to provide targeted radiotherapy via selective binding to a molecule or substrate coupled to a ligand. Systemic radioisotope therapy can be a form of targeted therapy. As described herein, targeting a radioisotope can be achieved by attaching it to one part of a ligand/receptor combination, where the other part can be attached to a target.

A radioisotope can be used to destroy or weaken cells associated with a proliferative disease, disorder, or condition. A radioisotope that generates radiation can be localized in a desired location (e.g., a tissue) according to approaches described herein. In some embodiments, beta radiation from the radioisotope can result in the destruction of cells, which is a process understood as radionuclide therapy (RNT) or radiotherapy. Short-range radiotherapy may be known as brachytherapy.

A radioisotope for use with compositions and methods described herein can be a strong beta emitter, optionally with sufficient gamma to enable imaging, such as lutetium-177. Lutetium-177 can be prepared from ytterbium-176, which is irradiated to become Yb-177, which decays rapidly to Lu-177. Lu-177 can emit sufficient beta radiation for therapy on small (e.g., endocrine) tumors.

Another exemplary radioisotope for use with compositions and methods described herein includes Yttrium-90, which can be conventionally used for treatment of cancer, particularly non-Hodgkin’s lymphoma and liver cancer, and as a silicate colloid for the relieving the pain of arthritis in larger synovial joints.

Other exemplary radioisotopes for use with compositions and methods described herein include Iodine-131 or phosphorus-32. Iodine-131 has been conventionally used to treat the thyroid for cancers and other abnormal conditions such as hyperthyroidism (i.e., over-active thyroid). Iodine-131 is a strong gamma emitter, and can be conventionally used for beta therapy. Phosphorus-32 has been conventionally used to treat Polycytemia vera, in
which an excess of red blood cells is produced in the bone marrow and Phosphorus-32 can be used to control this excess.

Another exemplary radioisotope for use with compositions and methods described herein includes boron-10. A subject administered a composition including Boron-10 can be irradiated with neutrons which are strongly absorbed by the boron, to produce high-energy alpha particles that can kill cells including those associated with a proliferative disease, disorder, or condition.

Another exemplary radioisotope for use with compositions and methods described herein includes Radium-223, which can be conventionally used for treatment of prostate cancer.

Another exemplary radioisotope for use with compositions and methods described herein includes bismuth-213. Bismuth-213, having a 46-minute half-life and high energy (8.4 MeV), can be formed from readily available Actinium-225 (via 3 alpha decays).

Another exemplary radioisotope for use with compositions and methods described herein includes lead-212, having a half-life of 10.6 hours. Lead-212 has been conventionally attached to monoclonal antibodies for cancer treatment. Such approaches can be adapted for methods and compositions described herein. The decay chain of lead-212 includes the short-lived isotopes bismuth-212 by beta decay, polonium-212 by beta decay, and thallium-208 by alpha decay of the bismuth, with further alpha and beta decays respectively to Pb-208, all over about an hour.

Other exemplary radioisotopes for use with compositions and methods described herein include Holmium-166, having a 26 hour half-life and conventionally used for treatment of liver tumor; Dysprosium-165, having a 2 hour half-life and conventionally used as aggregated hydroxide for synovectomy treatment of arthritis; Erbium-169, having a 9.4 day half-life and conventionally used for relieving arthritis pain in synovial joints; Holmium-166, having a 26 hour half-life and conventionally used for treatment of liver tumors; Iodine-125, having a 60 day half-life and conventionally used in cancer brachytherapy, including prostate and brain; Iridium-192, a beta emitter having a 74 day half-life; Rhenium-186, having a 3.8 day half-life, conventionally used for pain relief in bone cancer; Rhenium-188, having a 17 hour half-life, conventionally used to beta irradiate coronary arteries; Samarium-153, having a
47 hour half-life, conventionally used for relieving pain of secondary cancers lodged in the bone and for prostate and breast cancer; Strontium-89, having a 50 day half-life, conventionally used for reducing pain of prostate and bone cancer; and radioisotopes of caesium, gold or ruthenium.

Radioisotopes can be obtained from a variety or commercial or research sources including, but not limited to MDS Nordion, IRE, Covidien, NTP, ANSTO, and Isotop-IIAR.

A conjugated radioisotope can be administered by any conventional route. For example, a conjugated radioisotope can be delivered through infusion (e.g., into the bloodstream) or ingestion.

In some embodiments, yttrium-90 radioactive glass or resin microspheres (e.g., SIR-Spheres and TheraSphere) coupled to a receptor, such as biotin, can be injected into the hepatic artery to radioembolize liver tumors or liver metastases. Such microspheres can be used in treatment approach known as selective internal radiation therapy. The microspheres can be approximately 30 μm in diameter and can be delivered directly into an artery supplying blood to the tumors. Such treatments can begin by guiding a catheter up through the femoral artery in the leg, navigating to the desired target site and administering treatment. A molecule or substrate coupled to a ligand, such as avidin or biotin, can be introduced into tissue at, in or near a tumor. Blood feeding the tumor can carry the microspheres directly to the tumor, allowing specific binding to the ligand-coupled molecule or substrate, thus providing a more selective approach than traditional systemic chemotherapy.

In some embodiments, a receptor (e.g., biotin) coupled to strontium-89 or samarium (153Sm) lexidronam can be used in the treatment of bone metastasis from cancer. The coupled radioisotopes can travel selectively to areas of damaged bone, in or around which have been introduced a ligand (e.g., avidin or streptavidin) coupled to a molecule or substrate, and spare normal undamaged bone.

In some embodiments, a receptor (e.g., biotin) can be coupled to ibritumomab tiuxetan (i.e., Zevalin), which is an FDA approved anti-CD20 monoclonal antibody conjugated to yttrium-90. In some embodiments, a receptor (e.g., biotin) can be coupled to one or more parts of tositumomab/iodine (131I) tositumomab regimen (Bexxar), which is a combination of an iodine-131 labeled and an unlabeled anti-CD20 monoclonal antibody. Such medications
can be used for, e.g., the treatment of refractory non-Hodgkins lymphoma according to approaches described herein.

Coupling can be any type attraction, link, or reaction that serves to immobilize a ligand on a molecule. Coupling can be via a bond. A radioisotope-receptor bond is understood as an attraction between atoms of a radioisotope and atoms of a receptor that allows the formation of a linkage between atoms of the biomolecule and the matrix material. A bond can be caused by an electrostatic force of attraction between opposite charges, either between electrons and nuclei, or as the result of a dipole attraction. A bond (e.g., between a biomolecule and a matrix material) can be, for example, a covalent bond, a coordinate covalent bond, an ionic bond, polar covalent, a dipole-dipole interaction, a London dispersion force, a cation-pi interaction, or hydrogen bonding.

Process for coupling a radioisotope to a receptor or ligand (e.g., biotin) are well known (see, e.g., Savage, 1992, Avidin-Biotin Chemistry: A Handbook, Pierce Chemical Co, ISBN-10 09359401 11, ISBN-13 978-09359401 14; McMahon, 2010, Avidin-Biotin Interactions: Methods and Applications, Humana Press, ASIN B00GA4420E; Hermanson, 2010, Bioconjugate Techniques, Academic Press, ASIN B005YXETUU; Bolzati et al., 2006, Nuclear Medicine and Biology, 34, 511-522; Runn-Dufault et al., 2000, Nuclear Medicine and Biology, 27, 803-807). Except as otherwise noted herein, therefore, the process of the present disclosure can be carried out in accordance with such processes.

RECEPTOR

As described herein, a receptor (e.g., a biotin) can be coupled to a radioisotope so as to provide targeted radiotherapy via selective binding to a molecule or substrate coupled to a ligand. A receptor can be selective or non-selective for a ligand. A receptor can be preferably selective for a ligand (or vice versa, a ligand can be preferably selective for a receptor).

Biotin.

A receptor can be a biotin. A biotin can be a water soluble B-complex vitamin (e.g., vitamin B\(_7\), vitamin H, or coenzyme R). A biotin can be a heterocyclic sulfur-containing (mono-)carboxylic acid. A biotin can comprise an imidazole ring and thiophene ring fused. A biotin can comprise a ureido (tetrahydroimidizalone) ring fused with a tetrahydrothiophene ring.
ring, optionally with a veleric acid substituent on a carbon of the tetrahydrothiophene ring.

Streptavidin or avidin can bind biotin with high affinity (e.g., Kd of 10^{-14} mol/l to 10^{-15} mol/l) and specificity.

A biotin can be any commercially available biotin (e.g., Invitrogen; Qiagen; Thermo Scientific; Jackson ImmunoResearch; Sigma Aldrich; Cell Signaling Technology). A biotin can be a variant compound of a naturally occurring biotin that retains or substantially retaining high affinity for streptavidin.

A biotin can have a structural formula according to C$_{10}$H$_{16}$O$_3$N$_2$S. A biotin can have a structure as follows:

```
H   NH
|  |  |
S   |-  |
|   |  COOH
```

Biotin can be attached to a molecule or substrate by biotinylation. Biotinylated proteins of interest can be isolated from a sample by exploiting this highly stable interaction.

Biotinylation can be the process of covalently attaching a biotin to a molecule or substrate. Biotinylation can be generally rapid, specific and can be unlikely to perturb the natural function of the molecule or substrate to which it is attached given the small size of a biotin (e.g., MW = 244.31 g/mol). Biotin can bind to streptavidin or avidin with an extremely high affinity, fast on-rate, and high specificity, and these interactions can be exploited as described herein. Biotin-binding to streptavidin or avidin can be resistant to extremes of heat, pH, or proteolysis, which can allow use of a biotinylated molecule or substrate in a wide variety of environments. Furthermore, multiple biotin molecules can be conjugated to a molecule or substrate, which can allow binding of multiple streptavidin, avidin, or Neutravidin. A large number of biotinylation reagents are known in the art and commercially available.

Various assays are available to determine extent of biotinylation.

The HABA (2-(4-hydroxyazobenzene) benzoic acid) assay can be used to determine the extent of biotinylation. HABA dye can be bound to avidin or streptavidin and yields a characteristic absorbance. When biotinylated proteins or other molecules are introduced, the biotin displaces the dye, resulting in a change in absorbance at 500 nm. This change can be
directly proportional to the level of biotin in the sample. A HABA assay can require a relatively large amount of sample.

Extent of biotinylation can also be measured by streptavidin gel-shift, since streptavidin remains bound to biotin during agarose gel electrophoresis or polyacrylamide gel electrophoresis. The proportion of target biotinylated can be measured via the change in band intensity of the target with or without excess streptavidin, seen quickly and quantitatively by Coomassie Brilliant Blue staining.

Biotinylation, also called biotin labeling, can be most commonly performed through chemical means, although enzymatic methods are also available. Chemical biotinylation can use various conjugation chemistries to yield a nonspecific biotinylation of amines, carboxylates, sulfhydryls or carbohydrates (e.g., NHS-coupling gives biotinylation of a primary amines). Chemical biotinylation reagents can include a reactive group attached via a linker to the valeric acid side chain of biotin. Because the biotin binding pocket in avidin or streptavidin can be buried beneath the protein surface, a biotinylation reagent possessing a longer linker can be desirable, as such longer linker can enable the biotin molecule to be more accessible to binding avidin, streptavidin, or Neutravidin. A linker can also mediate the solubility of a biotinylation reagent. Linkers that incorporate poly(ethylene) glycol (PEG) can make water-insoluble reagents soluble or increase the solubility of biotinylation reagents that are already soluble to some extent.

Primary Amine Biotinylation.

Biotin can be conjugated to an amine group on the molecule or substrate. A primary amine group can be present as a lysine side chain epsilon-amine or N-terminal a-amine. Amine-reactive biotinylation reagents can be divided into two groups based on water solubility.

N-hydroxysuccinimide (NHS) esters have poor solubility in aqueous solutions. For reactions in aqueous solution, NHS can be first be dissolved in an organic solvent, then diluted into the aqueous reaction mixture. Commonly used organic solvents for this purpose can include dimethyl sulfoxide (DMSO) and dimethyl formamide (DMF). Because of the hydrophobicity of NHS-esters, NHS biotinylation reagents can also diffuse through the cell membrane, meaning that they will biotinylate both internal and external components of a cell.
Sulfo-NHS esters are more soluble in water and can be dissolved in water just before use because they hydrolyze easily. The water solubility of sulfo-NHS-esters can be due at least in part from a sulfonate group on the N-hydroxysuccinimide ring. Water solubility can eliminate a need to dissolve the reagent in an organic solvent. Sulfo-NHS-esters of biotin do not penetrate the cell membrane.

The chemical reactions of NHS- and sulfo-NHS esters can be identical, in that they can both react spontaneously with amines to form an amide bond. Because the target for the ester is a deprotonated primary amine, the reaction can be favored under basic conditions (above pH 7). Hydrolysis of the NHS ester can be a major competing reaction, and the rate of hydrolysis increases with increasing pH. NHS- and sulfo-NHS-esters have a half-life of several hours at pH 7 but only a few minutes at pH 9.

There can be additional flexibility in the conditions for conjugating NHS-esters to primary amines. Incubation temperatures can range from about 4-37°C, pH values in the reaction range from about 7-9, or incubation times range from a few minutes to about 12 hours. Buffers containing amines (e.g., Tris or glycine) can be avoided, because they compete with the reaction.

Sulphydryl biotinylation

An alternative to primary amine biotinylation can be to label sulphydryl groups with biotin. Sulphydryl-reactive groups such as maleimides, haloacetyllys, or pyridyl disulfides, can require free sulphydryl groups for conjugation; disulfide bonds can be first reduced to free up the sulphydryl groups for biotinylation. If no free sulphydryl groups are available, lysines can be modified with various thiolation reagents (Traut's Reagent, SAT(PEG4), SATA and SATP), resulting in the addition of a free sulphydryl. Sulphydryl biotinylation can be performed at a slightly lower pH (e.g., about 6.5-7.5) than labeling with NHS esters.

Carboxyl biotinylation.

Biotinylation reagents that target carboxyl groups do not have a carboxyl-reactive moiety per se but instead rely on a carbodiimide crosslinker such as EDC to bind the primary amine on a biotinylation reagent to a carboxyl group on the target.

Biotinylation at carboxyl groups can occur at a pH of about 4.5-5.5. To prevent
crossreactivity of the crosslinker with buffer constituents, buffers should not contain primary amines (e.g., Tris, glycine) or carboxyls (e.g., acetate, citrate).

Glycoprotein biotinylation

Glycoproteins can be biotinylated by modifying the carbohydrate residues to aldehydes, which can then react with hydrazine- or alkoxyamine-based biotinylation reagents. Sodium periodate can oxidize a sialic acid on glycoproteins to aldehydes to form these stable linkages at a pH of about 4-6.

Antibodies can be heavily glycosylated, and because glycosylation does not interfere with the antibody activity, biotinylating the glycosyl groups can be an ideal strategy to generate biotinylated antibodies.

Biotinylation at carboxyl groups can occur at a pH of about 4.5-5.5. To prevent crossreactivity of the crosslinker with buffer constituents, buffers should not contain primary amines (e.g., Tris, glycine) or carboxyls (e.g., acetate, citrate).

Oligonucleotide biotinylation.

Oligonucleotides can be readily biotinylated in the course of oligonucleotide synthesis by the phosphoramidite method using, e.g., commercial biotin phosphoramidite. Upon the standard deprotection, the conjugates obtained can be purified using reverse-phase or anion-exchange HPLC.

Non-specific biotinylation.

Photoactivatable biotinylation reagents can be useful when primary amines, sulphydryls, carboxyls or carbohydrates are not available or not desired for labeling. A photoactivatable biotinylation reagent relies on aryl azides, which become activated by ultraviolet light (UV; >350 nm), which then react at C-H and N-H bonds. A photoactivatable biotinylation reagent can also be used to activate biotinylation at specific times by simply exposing the reaction to UV light at the specific time or condition.

Process for coupling a receptor or ligand (e.g., biotin) to a radioisotope are well known (see e.g., Savage, 1992, Avidin-Biotin Chemistry: A Handbook, Pierce Chemical Co, ISBN-10 09359401 11, ISBN-13 978-09359401 14; McMahon, 2010, Avidin-Biotin Interactions: Methods and Applications, Humana Press, ASIN B00GA4420E; Hermanson, 2010,
Bioconjugate Techniques, Academic Press, ASIN B005YXETUU). Except as otherwise noted herein, therefore, the process of the present disclosure can be carried out in accordance with such processes.

COUPLING.

Coupling can be any type attraction, link, or reaction that serves to immobilize a ligand on a molecule/substrate or a receptor on a radioisotope (or vice versa, a receptor on a molecule/substrate or ligand on a radioisotope). Coupling can be via a bond. A molecule-ligand bond is understood as an attraction between atoms of a molecule and atoms of a ligand that allows the formation of a linkage between atoms of the biomolecule and the matrix material. A bond can be caused by an electrostatic force of attraction between opposite charges, either between electrons and nuclei, or as the result of a dipole attraction. A bond (e.g., between a biomolecule and a matrix material) can be, for example, a covalent bond, a coordinate covalent bond, an ionic bond, polar covalent, a dipole-dipole interaction, a London dispersion force, a cation-pi interaction, or hydrogen bonding. Coupling can be reversible or irreversible. One of ordinary skill will understand that coupling does not necessarily need to be irreversible and can be preferred to be reversible coupling.

Processes for coupling a molecule or substrate to a receptor or ligand (e.g., avidin or streptavidin) are well known (see e.g., Savage, 1992, Avidin-Biotin Chemistry: A Handbook, Pierce Chemical Co, ISBN-1 0 09359401 11, ISBN-1 3 978-09359401 14; McMahon, 2010, Avidin-Biotin Interactions: Methods and Applications, Humana Press, ASIN B00GA4420E; Hermanson, 2010, Bioconjugate Techniques, Academic Press, ASIN B005YXETUU). Except as otherwise noted herein, therefore, the process of the present disclosure can be carried out in accordance with such processes.

MOLECULAR ENGINEERING

The following definitions and methods are provided to better define the present disclosure and to guide those of ordinary skill in the art in the practice of the present invention. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art.
The terms "heterologous DNA sequence", "exogenous DNA segment" or "heterologous nucleic acid," as used herein, each refer to a sequence that originates from a source foreign to the particular host cell or, if from the same source, is modified from its original form. Thus, a heterologous gene in a host cell includes a gene that can be endogenous to the particular host cell but has been modified through, for example, the use of DNA shuffling. The terms also include non-naturally occurring multiple copies of a naturally occurring DNA sequence. Thus, the terms refer to a DNA segment that can be foreign or heterologous to the cell, or homologous to the cell but in a position within the host cell nucleic acid in which the element is not ordinarily found. Exogenous DNA segments are expressed to yield exogenous polypeptides. A "homologous" DNA sequence can be a DNA sequence that is naturally associated with a host cell into which it can be introduced.

Expression vector, expression construct, plasmid, or recombinant DNA construct is generally understood to refer to a nucleic acid that has been generated via human intervention, including by recombinant means or direct chemical synthesis, with a series of specified nucleic acid elements that permit transcription or translation of a particular nucleic acid in, for example, a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector can include a nucleic acid to be transcribed operably linked to a promoter.

A "promoter" is generally understood as a nucleic acid control sequence that directs transcription of a nucleic acid. An inducible promoter is generally understood as a promoter that mediates transcription of an operably linked gene in response to a particular stimulus. A promoter can include necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter can optionally include distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription.

A "transcribable nucleic acid molecule" as used herein refers to any nucleic acid molecule capable of being transcribed into a RNA molecule. Methods are known for introducing constructs into a cell in such a manner that the transcribable nucleic acid molecule can be transcribed into a functional mRNA molecule that can be translated and therefore expressed as a protein product. Constructs may also be constructed to be capable

The "transcription start site" or "initiation site" can be the position surrounding the first nucleotide that can be part of the transcribed sequence, which can also defined as position +1. With respect to this site all other sequences of the gene and its controlling regions can be numbered. Downstream sequences (i.e., further protein encoding sequences in the 3' direction) can be denominated positive, while upstream sequences (mostly of the controlling regions in the 5' direction) are denominated negative.

"Operably-linked" or "functionally linked" refers preferably to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one can be affected by the other. For example, a regulatory DNA sequence can be said to be "operably linked to" or "associated with" a DNA sequence that codes for an RNA or a polypeptide if the two sequences are situated such that the regulatory DNA sequence affects expression of the coding DNA sequence (i.e., that the coding sequence or functional RNA can be under the transcriptional control of the promoter). Coding sequences can be operably-linked to regulatory sequences in sense or antisense orientation. The two nucleic acid molecules may be part of a single contiguous nucleic acid molecule and may be adjacent. For example, a promoter can be operably linked to a gene of interest if the promoter regulates or mediates transcription of the gene of interest in a cell.

A "construct" is generally understood as any recombinant nucleic acid molecule such as a plasmid, cosmid, virus, autonomously replicating nucleic acid molecule, phage, or linear or circular single-stranded or double-stranded DNA or RNA nucleic acid molecule, derived from any source, capable of genomic integration or autonomous replication, comprising a
nucleic acid molecule where one or more nucleic acid molecule has been operably linked.

A constructs of the present disclosure can contain a promoter operably linked to a transcribable nucleic acid molecule operably linked to a 3' transcription termination nucleic acid molecule. In addition, constructs can include but are not limited to additional regulatory nucleic acid molecules from, e.g., the 3'-untranslated region (3' UTR). Constructs can include but are not limited to the 5' untranslated regions (5' UTR) of an mRNA nucleic acid molecule which can play an important role in translation initiation and can also be a genetic component in an expression construct. These additional upstream and downstream regulatory nucleic acid molecules may be derived from a source that can be native or heterologous with respect to the other elements present on the promoter construct.

The term "transformation" refers to the transfer of a nucleic acid fragment into the genome of a host cell, resulting in genetically stable inheritance. Host cells containing the transformed nucleic acid fragments are referred to as "transgenic" cells, and organisms comprising transgenic cells are referred to as "transgenic organisms".

"Transformed," "transgenic," and "recombinant" refer to a host cell or organism such as a bacterium, cyanobacterium, animal or a plant into which a heterologous nucleic acid molecule has been introduced. The nucleic acid molecule can be stably integrated into the genome as generally known in the art and disclosed (Sambrook, 1989; Innis, 1995; Gelfand, 1995; Innis & Gelfand, 1999). Known methods of PCR include, but are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially mismatched primers, and the like. The term "untransformed" refers to normal cells that have not been through the transformation process.

"Wild-type" refers to a virus or organism found in nature without any known mutation.

Design, generation, and testing of the variant nucleotides, and their encoded polypeptides, having the above required percent identities and retaining a required activity of the expressed protein is within the skill of the art. For example, directed evolution and rapid isolation of mutants can be according to methods described in references including, but not limited to, Link et al., (2007), Nature Reviews, 5(9), 680-688; Sanger et al., (1991), Gene, 97(1), 119-123; Ghadessy et al., (2001), Proc Natl Acad Sci USA, 98(8), 4552-4557. Thus,
one skilled in the art could generate a large number of nucleotide or polypeptide variants having, for example, at least 95-99% identity to the reference sequence described herein and screen such for desired phenotypes according to methods routine in the art.

Nucleotide or amino acid sequence identity percent (%) can be understood as the percentage of nucleotide or amino acid residues that are identical with nucleotide or amino acid residues in a candidate sequence in comparison to a reference sequence when the two sequences are aligned. To determine percent identity, sequences are aligned and if necessary, gaps are introduced to achieve the maximum percent sequence identity. Sequence alignment procedures to determine percent identity are well known to those of skill in the art. Often publicly available computer software such as BLAST, BLAST2, ALIGN2 or Megalign (DNASTAR) software can be used to align sequences. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared. When sequences are aligned, the percent sequence identity of a given sequence A to, with, or against a given sequence B (which can alternatively be phrased as a given sequence A that has or comprises a certain percent sequence identity to, with, or against a given sequence B) can be calculated as: percent sequence identity = X/Y * 100, where X is the number of residues scored as identical matches by the sequence alignment program's or algorithm's alignment of A and B and Y is the total number of residues in B. If the length of sequence A is not equal to the length of sequence B, the percent sequence identity of A to B will not equal the percent sequence identity of B to A.

Generally, conservative substitutions can be made at any position so long as the required activity can be retained. So-called conservative exchanges can be carried out in which the amino acid which is replaced has a similar property as the original amino acid, for example the exchange of Glu by Asp, Gin by Asn, Val by lie, Leu by lie, and Ser by Thr. Deletion can be the replacement of an amino acid by a direct bond. Positions for deletions include the termini of a polypeptide and linkages between individual protein domains. Insertions are introductions of amino acids into the polypeptide chain, a direct bond formally being replaced by one or more amino acids. Amino acid sequence can be modulated with the help of art-known computer simulation programs that can produce a polypeptide with, for example, improved activity or altered regulation. On the basis of this artificially generated
polypeptide sequences, a corresponding nucleic acid molecule coding for such a modulated polypeptide can be synthesized in vitro using the specific codon-usage of the desired host cell.

"Highly stringent hybridization conditions" are defined as hybridization at 65 °C in a 6 X SSC buffer (i.e., 0.9 M sodium chloride and 0.09 M sodium citrate). Given these conditions, a determination can be made as to whether a given set of sequences will hybridize by calculating the melting temperature \(T_m \) of a DNA duplex between the two sequences. If a particular duplex has a melting temperature lower than 65°C in the salt conditions of a 6 X SSC, then the two sequences will not hybridize. On the other hand, if the melting temperature is above 65 °C in the same salt conditions, then the sequences will hybridize. In general, the melting temperature for any hybridized DNA:DNA sequence can be determined using the following formula:

\[
T_m = 81.5 \, ^\circ\text{C} + 16.6 (\log_2 [\text{Na}^+]) + 0.41 (\text{fraction } \text{G/C content}) - 0.63(\% \text{ formamide}) - (600/\text{l})
\]

Furthermore, the \(T_m \) of a DNA:DNA hybrid is decreased by 1-1.5°C for every 1% decrease in nucleotide identity (see, e.g., Sambrook and Russel, 2006).

Exemplary nucleic acids which may be introduced to a host cell include, for example, DNA sequences or genes from another species, or even genes or sequences which originate with or are present in the same species, but are incorporated into recipient cells by genetic engineering methods. The term "exogenous" can be also intended to refer to genes that are not normally present in the cell being transformed, or perhaps simply not present in the form,
structure, etc., as found in the transforming DNA segment or gene, or genes which are normally present and that one desires to express in a manner that differs from the natural expression pattern, e.g., to over-express. Thus, the term "exogenous" gene or DNA can be intended to refer to any gene or DNA segment that can be introduced into a recipient cell, regardless of whether a similar gene may already be present in such a cell. The type of DNA included in the exogenous DNA can include DNA which can be already present in the cell, DNA from another individual of the same type of organism, DNA from a different organism, or a DNA generated externally, such as a DNA sequence containing an antisense message of a gene, or a DNA sequence encoding a synthetic or modified version of a gene.

Methods of down-regulation or silencing genes are known in the art. For example, expressed protein activity can be down-regulated or eliminated using antisense oligonucleotides, protein aptamers, nucelotide aptamers, and RNA interference (RNAi) (e.g., small interfering RNAs (siRNA), short hairpin RNA (shRNA), and micro RNAs (miRNA) (see e.g., Fanning and Symonds, (2006) Handb Exp Pharmacol., 173, 289-303G, describing hammerhead ribozymes and small hairpin RNA; Helene, C , et al., (1992), Ann. N.Y. Acad. Sci., 660, 27-36; Maher, (1992), Bioassays, 14(12): 807-15, describing targeting deoxyribonucleotide sequences; Lee et al., (2006), Curr Opin Chem Biol., 10, 1-8, describing aptamers; Reynolds et al., (2004), Nature Biotechnology, 22(3), 326 - 330, describing RNAi; Pushparaj and Melendez, (2006), Clinical and Experimental Pharmacology and Physiology, 33(5-6), 504-510, describing RNAi; Dillon et al., (2005), Annual Review of Physiology, 67, 147-173, describing RNAi; Dykxhoorn and Lieberman, (2005), Annual Review of Medicine, 56, 401 -423, describing RNAi). RNAi molecules are commercially available from a variety of sources (e.g., Ambion, TX; Sigma Aldrich, MO; Invitrogen). Several siRNA molecule design programs using a variety of algorithms are known to the art (see e.g., Genix algorithm, Ambion; BLOCK-iT™ RNAi Designer, Invitrogen; siRNA Whitehead Institute Design Tools, Bioinformatics & Research Computing). Traits influential in defining optimal siRNA sequences
include G/C content at the termini of the siRNAs, Tm of specific internal domains of the siRNA, siRNA length, position of the target sequence within the CDS (coding region), and nucleotide content of the 3’ overhangs.

FORMULATION

The agents and compositions described herein can be formulated by any conventional manner using one or more pharmaceutically acceptable carriers or excipients as described in, for example, Remington's Pharmaceutical Sciences (A.R. Gennaro, Ed.), 21st edition, ISBN: 0781 746736 (2005), incorporated herein by reference in its entirety. Such formulations will contain a therapeutically effective amount of a biologically active agent described herein, which can be in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the subject.

The term “formulation” refers to preparing a drug in a form suitable for administration to a subject, such as a human. Thus, a “formulation” can include pharmaceutically acceptable excipients, including diluents or carriers.

The term "pharmaceutically acceptable" as used herein can describe substances or components that do not cause unacceptable losses of pharmacological activity or unacceptable adverse side effects. Examples of pharmaceutically acceptable ingredients can be those having monographs in United States Pharmacopeia (USP 29) and National Formulary (NF 24), United States Pharmacopeial Convention, Inc, Rockville, Maryland, 2005 ("USP/NF"), or a more recent edition, and the components listed in the continuously updated Inactive Ingredient Search online database of the FDA. Other useful components that are not described in the USP/NF, etc. may also be used.

The term "pharmaceutically acceptable excipient," as used herein, can include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic, or absorption delaying agents. The use of such media and agents for pharmaceutical active substances is well known in the art (see generally Remington's Pharmaceutical Sciences (A.R. Gennaro, Ed.), 21st edition, ISBN: 0781 746736 (2005)). Except insofar as any conventional media or agent is incompatible with an active ingredient, its use in the therapeutic compositions can be contemplated. Supplementary active ingredients can also be
incorporated into the compositions.

A "stable" formulation or composition can refer to a composition having sufficient stability to allow storage at a convenient temperature, such as between about 0 °C and about 60 °C, for a commercially reasonable period of time, such as at least about one day, at least about one week, at least about one month, at least about three months, at least about six months, at least about one year, or at least about two years.

The formulation should suit the mode of administration. The agents of use with the current disclosure can be formulated by known methods for administration to a subject using several routes which include, but are not limited to, parenteral, pulmonary, oral, topical, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, ophthalmic, buccal, and rectal. The individual agents may also be administered in combination with one or more additional agents or together with other biologically active or biologically inert agents. Such biologically active or inert agents may be in fluid or mechanical communication with the agent(s) or attached to the agent(s) by ionic, covalent, Van der Waals, hydrophobic, hydrophilic or other physical forces.

Controlled-release (or sustained-release) preparations may be formulated to extend the activity of the agent(s) and reduce dosage frequency. Controlled-release preparations can also be used to effect the time of onset of action or other characteristics, such as blood levels of the agent, and consequently affect the occurrence of side effects. Controlled-release preparations may be designed to initially release an amount of an agent(s) that produces the desired therapeutic effect, and gradually and continually release other amounts of the agent to maintain the level of therapeutic effect over an extended period of time. In order to maintain a near-constant level of an agent in the body, the agent can be released from the dosage form at a rate that will replace the amount of agent being metabolized or excreted from the body. The controlled-release of an agent may be stimulated by various inducers, e.g., change in pH, change in temperature, enzymes, water, or other physiological conditions or molecules.

Agents or compositions described herein (e.g., molecule-ligand or radioisotope-receptor) can also be used in combination with other therapeutic modalities, as described further below. Thus, in addition to the therapies described herein, one may also provide to the
subject other therapies known to be efficacious for treatment of the disease, disorder, or condition.

THERAPEUTIC METHODS

Another aspect provided herein is a process of treating a proliferative disease, disorder, or condition with a combination of a first composition including a ligand coupled to molecule or substrate and a second composition including a receptor coupled to a radioisotope (or vice versa, a receptor coupled to molecule or substrate and a ligand coupled to a radioisotope). Provided is a process of treating a proliferative disease, disorder, or condition in a subject in need administration of a therapeutically effective amount of the first composition and the second composition, so as to provide targeted or selective radiotherapy. The therapeutic method can include administration of a first composition including a ligand coupled to molecule or substrate and a second composition including a receptor coupled to a radioisotope.

Exemplary technology for rapidly delivering precisely calibrated and dispersed loads of microparticles into living tissue to depths of 2 cm include the use of air-powered injectors or sprays, and other methods known in the art. Such particles can be injected, e.g., directly into the walls or floor of the cavity created in breast tissue during lumpectomy for cancer, or in retroperitoneal tissues after excision of a pancreatic head cancer, or the cavity created in subcutaneous tissues of the thigh after radical excision of a sarcoma. Instead of conventional daily postoperative regimens of external beam radiation, a subject can be given, e.g., an intravenous dose of biotin-labeled radioisotope once monthly for one, two, three or more months until the recommended dose can be achieved.

According to the methods described herein, administration can be parenteral, pulmonary, oral, topical, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, ophthalmic, buccal, or rectal administration.

In some embodiments, administration can be according to conventional pleurodesis modified to incorporate compositions described herein.

Methods described herein are generally performed on a subject in need thereof. A subject in need of the therapeutic methods described herein can be a subject having,
diagnosed with, suspected of having, or at risk for developing proliferative disease, disorder, or condition. A determination of the need for treatment will typically be assessed by a history and physical exam consistent with the disease or condition at issue. Diagnosis of the various conditions treatable by the methods described herein is within the skill of the art. The subject can be an animal subject, including a mammal, such as horses, cows, dogs, cats, sheep, pigs, mice, rats, monkeys, hamsters, guinea pigs, and chickens, and humans. For example, the subject can be a human subject.

Compositions, systems, or methods described herein can be used to treat proliferative diseases, disorders, or conditions. For example, compositions, systems, or methods described herein can be used (e.g., operatively or post-operatively) to treat mesothelioma, Meigs Syndrome, sarcoma, appendiceal carcinoma, pseudomyxoma peritonei, prostate cancer, prostate cancer lymph node dissection beds, rectovesical pouch tumor bed, ovarian cancer resection bed and peritoneal spread, uterine cancer resection cavities, pleural and peritoneal mesothelioma resection bed and peritoneal seeding, colorectal carcinoma, appendiceal carcinoma, pancreatic carcinoma, liver metastases, gastric carcinoma, renal carcinoma, retroperitoneal tumors (sarcomas, carcinomas), breast lumpectomy or breast lymph node dissection cavities, melanoma node dissection cavities, sarcoma resection cavities, head and neck cancer resection cavities, neck lymph node dissection cavities, scalp lesions, glioblastoma resection cavities, brain surface tumor lesions (resected, non resected), or trunk and extremity sarcoma resection cavities.

Compositions, systems, or methods described herein can be used at post-operative sites associated with a disease, disorder, or condition described herein. For example, an avidin-talc complex (followed by a receptor-radioisotope complex) can be used at postoperative sites associated with a disease, disorder, or condition described herein. As another example, an avidin-fibrin glue complex (followed by a receptor-radioisotope complex) can be used at postoperative sites associated with a disease, disorder, or condition described herein. As another example, an avidin-gelfoam complex (followed by a receptor-radioisotope complex) can be used at postoperative sites associated with a disease, disorder, or condition described herein.

Compositions, systems, or methods described herein can be used to treat proliferative
diseases, disorders, or conditions. Examples of proliferative diseases, disorders, or conditions treatable with compositions described (e.g., molecule-ligand or radioisotope-receptor) include, but are not limited to, cancer; blood vessel proliferative disorders; fibrotic disorders; mesangial cell proliferative disorders; psoriasis; actinic keratoses; seborrheic keratoses; warts; keloid scars; eczema; and hyperproliferative diseases caused by virus infections, such as papilloma virus infection.

Cancer, or neoplasia, refers generally to any malignant neoplasm or spontaneous growth or proliferation of cells. A subject having "cancer", for example, may have a leukemia, lymphoma, or other malignancy of blood cells. In certain embodiments, the subject methods are used to treat a solid tumor. Exemplary solid tumors include but are not limited to non-small cell lung cancer (NSCLC), testicular cancer, lung cancer, ovarian cancer, uterine cancer, cervical cancer, pancreatic cancer, colorectal cancer (CRC), breast cancer, as well as prostate, gastric, colon, skin, stomach, esophageal, and bladder cancer. Systems and compositions described herein can be used in treatment methods for the above diseases or disorders.

Treatment of cancer or treating a subject having cancer can include inhibition of replication of cancer cells, inhibition of spread of cancer, reduction in tumor size, lessening or reducing the number of cancerous cells in the body of a subject, or amelioration or alleviation of symptoms of cancer. A treatment can be considered therapeutic if there can be or is a decrease in mortality or morbidity, and can be performed prophylactically, or therapeutically.

Methods described herein can be used to treat (e.g., reduce tumor size, decrease the vascularization, increase the permeability of, or reduce or prevent recurrence of tumor growth) an established tumor. An established tumor is generally understood as a solid tumor of sufficient size such that nutrients, e.g., oxygen, can no longer permeate to the center of the tumor from the subject’s vasculature by osmosis and therefore the tumor requires its own vascular supply to receive nutrients. Methods described herein can be used to treat a solid tumor that is not quiescent and can be actively undergoing exponential growth.

A therapeutic protocol can be modified according to permeability of a solid tumor. Permeability of a solid tumor generally refers to the permeability of a solid tumor to a therapeutic. A solid tumor may be said to be permeable to a therapeutic if the therapeutic is
able to reach cells at the center of the tumor. An agent that increases the permeability of a tumor may for example, normalize, e.g., maintain, the vasculature of a solid tumor. Tumor vascularization or tumor permeability can be determined by a variety of methods known in the art, such as, e.g. by immunohistochemical analysis of biopsy specimens, or by imaging techniques, such as sonography of the tumor, computed tomography (CT) or magnetic resonance imaging (MRI) scans.

For example, a ligand (e.g., avidin or streptavidin) can be conjugated to a biodegradable or non-biodegradable substrate, such as sutures, clips or meshes, implanted adjacent to or within delicate, relatively inaccessible surgically operated areas (e.g., pancreatic head, superior mesenteric artery region) or tumor-cell-contaminated surgical fields (e.g., surface of kidney in contact with a resected retroperitoneal sarcoma) to pre-target the region for postoperative chemotherapy while reducing the risk of radiation injury to the liver or kidney. As another example, a cancer treatment system can include avidin or streptavidin-conjugated biodegradable or non-biodegradable microspheres or other particles, introduced into a tumor-associated tissues (e.g., by air-powered needle-less injection) so to attract biotin-labeled alpha-emitting isotopes (e.g., Radium 223, Bismuth 212) for precisely targeted adjuvant radiotherapy of the surrounding marginal cavity of resected cancers (e.g., sarcoma, breast lumpectomy, pancreatic head, others) appropriate for such treatment, with at least one intent of forestalling local recurrence of tumor.

Abdominal Cancer.

In some embodiments, a general pleurodesis approach using compositions, systems, or methods described herein described herein can be adapted for other indications. For example, a molecule-ligand combination (e.g., the talc-avidin) can be mixed or suspended in matrix material (e.g., a fibrin/gelatin matrix), which may be used during abdominal cancer surgery to spread over tissue surfaces, particularly the so called "bare area" of the liver between the liver and diaphragm, so as to pretarget that area for postoperative radiotherapy, in a manner similar to its use in pleurodesis. It is understood that this area is conventionally difficult to completely clear of metastatic tumor, and that radiation therapy to this areas has been problematic.

Liver Metastasis.

44
In some embodiments, compositions, systems, or methods described herein (e.g., molecule-ligand-molecule or radioisotope-receptor) can be used as a substitute or replacement for glass microspheres-yttrium 90 in indications such as ablating liver metastasis. Conventionally, radioactive glass spheres are directly injected into the liver vasculature, and because of their size, are held up in small arterioles and precapillaries, where they irradiate the surrounding tissue. The drawbacks of this conventional technique, among others, can be the difficulty of controlling the dose without repeat cannulation. Molecule-ligand compositions described herein (e.g., talc-avidin) of a specific size (e.g., graded by flow cytometry) can be used to similarly permeate hepatic metastases, thus pretargeting the tissue for repeated doses of therapeutic radioisotopes. This approaches imparts greater flexibility in treatment by separating the interventional procedure from the radioactive dose, not requiring radioactive precautions, or allowing choice of isotope and repeated dosing.

Peritoneal Carcinomatosis.

As another example, compositions, systems, or methods described herein can be used as treatment (e.g., adjuvant treatment) of peritoneal carcinomatosis. Peritoneal carcinomatosis can be a frequent complication of ovarian carcinoma, colorectal or especially appendiceal carcinoma, gastric carcinoma, pancreatic carcinoma, peritoneal mesothelioma, or pseudomyxoma peritonei. Conventional treatment of these conditions can employ cytoreductive surgery. In cytoreductive surgery, as much tumor as possible can be surgically resected (e.g., all tumor nodules greater than about 5.0 mm across) then intraoperative "heated" chemotherapy can be given using conventional drugs. Subjects are then observed, with or without additional systemic chemotherapy. In some instances, a catheter can be placed into the abdominal cavity and additional chemotherapy can be given repeatedly in the outpatient setting. But chemotherapy drugs, including small molecules such as cisplatin, do not penetrate deeper than 4 or 5 cell layers beneath the peritoneum, or cannot reach tumor cells that are lodged as deep as 2.5 mm below the surface. While intraperitoneal radioisotopes have been used for treatment of peritoneal malignancies in the past, results were unsatisfactory due to poor delivery of cytotoxic energy to the relevant target, excessive local fibrotic reactions and inflammation, necessity for protection and radioactive shielding of patients and personnel, and systemic effects on the bone marrow. Such conventional
treatment can be adapted for use with compositions, systems, or methods described herein (e.g., as adjuvant treatment).

Various embodiments of the present disclosure provide an alpha-emitting cytotoxic isotope having short range radiation (usually under about 1 mm), with minimal marrow toxicity, and direct delivery of the isotope to the peritoneal surfaces. For example, avidin, which has a highly positive charged, can adhere to negatively charged normal peritoneal surfaces. When injected into the blood, avidin can be rapidly cleared (e.g., by about 5 hours) and can be cleared from the liver and circulation (e.g., by about 36 hours). Because of the structure of the peritoneal membrane, intraperitoneally injected avidin may also be taken up into the circulation or rapidly degraded in the reticuloendothelial system of the liver. In some embodiments, such as treatment of omentectomized patients, liver clearance may be slower (e.g., a few days). Using a branched polyethylene glycolavidin conjugate can slow its exit from the peritoneal compartment while retaining avidin's ability to bind biotin, and its ability to stick to peritoneal surfaces.

With avidin in place on the peritoneal surface, the unbound avidin can be washed off by peritoneal lavage. Biotinylated radioisotope can be directly introduced into the cavity by radiologically guided catheter, where it would bind to all exposed surfaces. Intravenous avidin can simultaneously be given to "clear" some or all isotope escaping from the peritoneal cavity. The above techniques can be accomplished with avidin alone, rather than conjugated to polyethylene glycol.

The above discussion references avidin as ligand and biotin as receptor, but one of ordinary skill will recognize such techniques can be performed with other ligands and receptors described herein.

When used in the treatments described herein, a therapeutically effective amount of a first composition (e.g., a ligand coupled to molecule or substrate) and a second composition (e.g., a receptor coupled to a radioisotope) can be employed in pure form or, where such forms exist, in pharmaceutically acceptable salt form and with or without a pharmaceutically acceptable excipient. For example, compounds, molecules, substrates, radioisotopes or other compositions or materials of the present disclosure can be administered, at a reasonable benefit/risk ratio applicable to any medical treatment, in a sufficient amount to provide a
sufficient therapeutic outcome, as described further herein.

An effective amount of a compound described herein is generally that which can exhibit a therapeutic effect (e.g., an anti-proliferative therapeutic effect) to an extent such as to ameliorate the treated disease, disorder, or condition. In some embodiments, an effective amount of compositions described herein can be that amount sufficient to affect a desired result on a cancerous cell or tumor, including, but not limited to, for example, inhibiting spread of the disease, disorder, or condition, reducing tumor size, reducing tumor volume, decreasing vascularization of a solid tumor, increasing the permeability of a solid tumor to an agent, either in vitro or in vivo, reducing or eliminating recurrence of a tumor, reduce recurrence of tumor growth; prevent recurrence of tumor growth; reduce a number of cancerous cells in the subject; or ameliorate a symptom of the disease, disorder, or condition. In certain embodiments, an effective amount of therapy can be the amount that results in a percent tumor reduction or inhibition of more than about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 99%, or about 100%.

In certain embodiments, an effective amount of therapy can be sufficient to achieve a desired clinical result, including but not limited to, for example, ameliorating disease, stabilizing a subject, preventing or delaying the development of, or progression of, a proliferative disease, disorder, or condition in a subject. An effective amount of therapy can be determined based on one administration or repeated administration. Methods of detection and measurement of the indicators above are known to those of skill in the art. Such methods include, but are not limited to measuring reduction in tumor burden, reduction of tumor size, reduction of tumor volume, reduction in proliferation of secondary tumors, decreased solid tumor vascularization, expression of genes in tumor tissue, presence of biomarkers, lymph node involvement, histologic grade, and nuclear grade.

In some embodiments, tumor burden can be determined. Tumor burden, also referred to as tumor load, generally refers to a total amount of tumor material distributed throughout the body of a subject. Tumor burden can refer to a total number of cancer cells or a total size of tumor(s), throughout the body, including lymph nodes and bone marrow. Tumor burden can be determined by a variety of methods known in the art, such as, for example, by measuring the dimensions of tumor(s) upon removal from the subject, e.g., using calipers, or while in the
body using imaging techniques, e.g., ultrasound, computed tomography (CT) or magnetic resonance imaging (MRI) scans. Tumor size can be determined, for example, by determining tumor weight or tumor volume.

The amount of a composition(s) described herein that can be combined with a pharmaceutically acceptable carrier to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. It will be appreciated by those skilled in the art that the unit content of agent contained in an individual dose of each dosage form need not in itself constitute a therapeutically effective amount, as the necessary therapeutically effective amount could be reached by administration of a number of individual doses.

Toxicity and therapeutic efficacy of compositions described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals for determining the LD50 (the dose lethal to 50% of the population) and the ED50, (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects can be the therapeutic index that can be expressed as the ratio LD50/ED50, where large therapeutic indices are preferred.

The specific therapeutically effective dose level for any particular subject will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration; the route of administration; the rate of excretion of the composition employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts (see e.g., Koda-Kimble et al., (2004), Applied Therapeutics: The Clinical Use of Drugs, Lippincott Williams & Wilkins, ISBN 0781748453; Winter, (2003), Basic Clinical Pharmacokinetics, 4th ed., Lippincott Williams & Wilkins, ISBN 0781741475; Sharqel, (2004), Applied Biopharmaceutics & Pharmacokinetics, McGraw-Hill/Appleton & Lange, ISBN 0071375503). For example, it is well within the skill of the art to start doses of agents at levels lower than those required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect can be achieved. If desired, the effective daily dose may be divided into multiple doses for purposes of
administration. Consequently, single dose compositions may contain such amounts or
submultiples thereof to make up the daily dose. It will be understood, however, that the total
daily usage of the compounds and compositions of the present disclosure will be decided by
an attending physician within the scope of sound medical judgment.

Again, each of the states, diseases, disorders, and conditions, described herein, as
well as others, can benefit from compositions and methods described herein. Generally,
treating a state, disease, disorder, or condition includes preventing or delaying the
appearance of clinical symptoms in a subject that may be afflicted with or predisposed to the
state, disease, disorder, or condition but does not yet experience or display clinical or
subclinical symptoms thereof. Treating can also include inhibiting the state, disease, disorder,
or condition, e.g., arresting or reducing the development of the disease or at least one clinical
or subclinical symptom thereof. Furthermore, treating can include relieving the disease, e.g.,
causing regression of the state, disease, disorder, or condition or at least one of its clinical or
subclinical symptoms. A benefit to a subject to be treated can be either statistically significant
or at least perceptible to the subject or to a physician.

Administration of compositions described herein can occur as a single event, a
periodic event, or over a time course of treatment. For example, agents can be administered
daily, weekly, bi-weekly, or monthly. As another example, agents can be administered in
multiple treatment sessions, such as 2 weeks on, 2 weeks off, and then repeated twice; or
every 3rd day for 3 weeks. A first composition including a ligand coupled to molecule or
substrate and a second composition including a receptor coupled to a radioisotope can have
the same or different administration protocols. One of ordinary skill will understand these
regimes to be exemplary and could design other suitable periodic regimes. For treatment of
acute conditions, the time course of treatment will usually be at least several days. Certain
conditions could extend treatment from several days to several weeks. For example,
treatment could extend over one week, two weeks, or three weeks. For more chronic
conditions, treatment could extend from several weeks to several months or even a year or
more.

Treatment in accord with the methods described herein can be performed prior to,
concurrent with, or after conventional treatment modalities for a proliferative disease,
disorder, or condition.

A combination of a first composition including a ligand coupled to molecule or substrate and a second composition including a receptor coupled to a radioisotope can be administered simultaneously or sequentially with another agent, such as an antibiotic, an anti-inflammatory, or another agent. Simultaneous administration can occur through administration of separate compositions, each containing one or more of a molecule or substrate, a ligand, a radioisotope, and receptor, an antibiotic, an anti-inflammatory, or another agent.

ADMINISTRATION

Agents and compositions described herein can be administered according to methods described herein in a variety of means known to the art. The agents and composition can be used therapeutically either as exogenous materials or as endogenous materials. Exogenous agents are those produced or manufactured outside of the body and administered to the body. Endogenous agents are those produced or manufactured inside the body by some type of device (biologic or other) for delivery within or to other organs in the body.

As discussed above, administration can be parenteral, pulmonary, oral, topical, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, ophthalmic, buccal, or rectal administration.

Agents and compositions described herein can be administered in a variety of methods well known in the arts. Administration can include, for example, methods involving oral ingestion, direct injection (e.g., systemic or stereotactic), implantation of cells engineered to secrete the factor of interest, drug-releasing biomaterials, polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, implantable matrix devices, mini-osmotic pumps, implantable pumps, injectable gels and hydrogels, liposomes, micelles (e.g., up to 30 \(\mu \text{m} \)), nanospheres (e.g., less than 1 \(\mu \text{m} \)), microspheres (e.g., 1-100 \(\mu \text{m} \)), reservoir devices, a combination of any of the above, or other suitable delivery vehicles to provide the desired release profile in varying proportions. Other methods of controlled-release delivery of agents or compositions will be known to the skilled artisan and are within the scope of the present disclosure.
Delivery systems may include, for example, an infusion pump which may be used to administer the agent or composition in a manner similar to that used for delivering insulin or chemotherapy to specific organs or tumors. Typically, using such a system, an agent or composition can be administered in combination with a biodegradable, biocompatible polymeric implant that releases the agent over a controlled period of time at a selected site. Examples of polymeric materials include polyanhydrides, polyorthoesters, polyglycolic acid, polylactic acid, polyethylene vinyl acetate, and copolymers and combinations thereof. In addition, a controlled release system can be placed in proximity of a therapeutic target, thus requiring only a fraction of a systemic dosage.

Agents can be encapsulated and administered in a variety of carrier delivery systems. Examples of carrier delivery systems include microspheres, hydrogels, polymeric implants, smart polymeric carriers, and liposomes (see generally, Uchegbu and Schatzlein, eds. (2006), Polymers in Drug Delivery, CRC, ISBN-10: 0849325331). Carrier-based systems for molecular or biomolecular agent delivery can: provide for intracellular delivery; tailor biomolecule/agent release rates; increase the proportion of biomolecule that reaches its site of action; improve the transport of the drug to its site of action; allow colocalized deposition with other agents or excipients; improve the stability of the agent in vivo; prolong the residence time of the agent at its site of action by reducing clearance; decrease the nonspecific delivery of the agent to non-target tissues; decrease irritation caused by the agent; decrease toxicity due to high initial doses of the agent; alter the immunogenicity of the agent; decrease dosage frequency, improve taste of the product; or improve shelf life of the product.

KITS

Also provided are kits. Such kits can include an agent or composition described herein and, in certain embodiments, instructions for administration. Such kits can facilitate performance of the methods described herein. When supplied as a kit, the different components of the composition can be packaged in separate containers and admixed immediately before use. Components include, but are not limited to a first composition including a ligand coupled to molecule or substrate and a second composition including a
receptor coupled to a radioisotope (or vice versa, a receptor coupled to molecule or substrate and a ligand coupled to a radioisotope). Such packaging of the components separately can, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the composition. The pack may, for example, comprise metal or plastic foil such as a blister pack. Such packaging of the components separately can also, in certain instances, permit long-term storage without losing activity of the components.

Kits may also include reagents in separate containers such as, for example, sterile water or saline to be added to a lyophilized active component packaged separately. For example, sealed glass ampules may contain a lyophilized component and in a separate ampule, sterile water, sterile saline or sterile each of which has been packaged under a neutral non-reacting gas, such as nitrogen. Ampules may consist of any suitable material, such as glass, organic polymers, such as polycarbonate, polystyrene, ceramic, metal or any other material typically employed to hold reagents. Other examples of suitable containers include bottles that may be fabricated from similar substances as ampules, and envelopes that may consist of foil-lined interiors, such as aluminum or an alloy. Other containers include test tubes, vials, flasks, bottles, syringes, and the like. Containers may have a sterile access port, such as a bottle having a stopper that can be pierced by a hypodermic injection needle. Other containers may have two compartments that are separated by a readily removable membrane that upon removal permits the components to mix. Removable membranes may be glass, plastic, rubber, and the like.

In certain embodiments, kits can be supplied with instructional materials. Instructions may be printed on paper or other substrate, or may be supplied as an electronic-readable medium, such as a floppy disc, mini-CD-ROM, CD-ROM, DVD-ROM, Zip disc, videotape, audio tape, and the like. Detailed instructions may not be physically associated with the kit; instead, a user may be directed to an Internet web site specified by the manufacturer or distributor of the kit.

Compositions and methods described herein utilizing molecular biology protocols can be according to a variety of standard techniques known to the art (see, e.g., Sambrook and Russel, (2006), Condensed Protocols from Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, ISBN-10: 0879697717; Ausubel et al., (2002), Short
Definitions and methods described herein are provided to better define the present disclosure and to guide those of ordinary skill in the art in the practice of the present disclosure. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art.

In some embodiments, numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth, used to describe and claim certain embodiments of the present disclosure are to be understood as being modified in some instances by the term "about." In some embodiments, the term "about" is used to indicate that a value includes the standard deviation of the mean for the device or method being employed to determine the value. In some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the present disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some embodiments of the present disclosure may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements. The recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein.

In some embodiments, the terms "a" and "an" and "the" and similar references used in
the context of describing a particular embodiment (especially in the context of certain of the following claims) can be construed to cover both the singular and the plural, unless specifically noted otherwise. In some embodiments, the term "or" as used herein, including the claims, is used to mean "and/or" unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive.

The terms "comprise," "have", or "include" are open-ended linking verbs. Any forms or tenses of one or more of these verbs, such as "comprises," "comprising," "has," "having," "includes", or "including," are also open-ended. For example, any method that "comprises," "has" or "includes" one or more steps is not limited to possessing only those one or more steps and can also cover other unlisted steps. Similarly, any composition or device that "comprises," "has", or "includes" one or more features is not limited to possessing only those one or more features and can cover other unlisted features.

All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. "such as") provided with respect to certain embodiments herein is intended merely to better illuminate the present disclosure and does not pose a limitation on the scope of the present disclosure otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the present disclosure.

Groupings of alternative elements or embodiments of the present disclosure disclosed herein are not to be construed as limitations. Each group member can be referred to and claimed individually or in any combination with other members of the group or other elements found herein. One or more members of a group can be included in, or deleted from, a group for reasons of convenience or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.

Citation of a reference herein shall not be construed as an admission that such is prior art to the present disclosure.

Having described the present disclosure in detail, it will be apparent that modifications, variations, and equivalent embodiments are possible without departing the scope of the
present disclosure defined in the appended claims. Furthermore, it should be appreciated that all examples in the present disclosure are provided as non-limiting examples.

EXAMPLES

The following non-limiting examples are provided to further illustrate the present disclosure. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent approaches the inventors have found function well in the practice of the present disclosure, and thus can be considered to constitute examples of modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope of the present disclosure.

EXAMPLE 1: BINDING CAPACITY OF BIOTIN-RHODAMINE AND ANTI-AVIDIN-FITC TO TALC

The following Example determined if talc naturally binds to proteins without cross-linkers or chemical reactions.

Talc was used as nanoparticles to bind to Anti-Avidin FITC and Biotin Rhodamine. This combinatorial nanoparticle was observed under microscopy for efficiency and efficacy.

Materials used in this Example, include:

1. Sterile Talc powder (Bryan Corporation, Cat #: 1690, Lot #: 3M021, Exp. Date: Dec. 2016)

2. Albumin solution from bovine serum (30%) (Sigma-Aldrich cat. #: A7284-50 mL, lot #: SLBD8234B)

3. Monoclonal Anti-Avidin FITC conjugate, Clone WC19.10 (Sigma-Aldrich, cat. #: F1269)

4. Biotin Rhodamine 110 (Biotium, cat. #: 80022 at 5 mg in 311.4 µl DMSO; 20 mM or 16 µg/µl)

5. Tween 20 (Fisher, cat. #: BP337-500, lot # 145162)

6. PBS (10x) (Sigma cat. #: P5493, lot #: SLBH0296)
Day 1:
1. Take 30mg of Talc and mix with 1mL of 1xPBS
2. Centrifuge Talc at 1500 rpm 5 min
3. Remove supernatant liquid
4. Block Talc at RT using 1ml blocking buffer 1 hour (Buffer soln.: 978.5 µl PBS + 16.5 µl 30% BSA + 5 µl 10% Tween20 or PBS + 0.5% BSA + 0.05% Tween20)
 * Protect reaction from light.
5. Remove blocking buffer and incubate talc overnight at 4°C in 1 mL Blocking Buffer containing 1:500 dilution of Anti-Avidin FITC
7. Remove supernatant.
8. Wash Talc 5x with 1 mL washing buffer (buffer soln.: PBS + 0.05% Tween20).
9. Mount onto slides.
10. Analyze under microscope using FITC filter and Rhodamine filter.

Photographs of results under microscopy filters are shown in FIG. 1A-B.
The study showed proteins binding to talc after incubation for several hours at 4 °C.
EXAMPLE 2: AVIDIN AND AVIDIN-RHODAMINE BINDING TO TALC

The following Example determined if the binding of Avidin and Avidin/Rhodamine to talc can be destroyed by washing with either PBS or PBS followed by 0.2% EDTA.

100 mg of talc was mixed with different levels of concentrations of Avidin and Avidin/Rhodamine overnight. The resulting mixtures were then washed with PBS and then washed with 0.2% EDTA.

Materials:
1. Avidin Rhodamine (Rhodamine Conjugated Avidin from Rockland, Cat. #: A 003-00, Lot #: 2496).
2. Avidin from egg white (Sigma, Cat. #: A 9275-100 mg, lot #: SLBB9685)
3. Sterile talc powder (Brian Corporation, Cat. #: 1690, Lot#: 3M021 ; exp. Date: December 2016)

Day 1:
1. Calculate the solutions for the experiment:

 - Avidin Rhodamine: Add 1 mL of water to 2 mg of Avidin producing a molecular weight of 66 kDa and a Molarity of 30.3 μΜ. Because the above was not enough to use for the experiment, it was mixed with pure Avidin and then added to the talc.

 - Avidin from egg white: 5 mL of 100 μΜ Avidin was prepared (33 mg Avidin + 5mL of PBS) and stored at 4 °C for one week.

 - Sterile Talc Powder

 - Make 1x PBS : 9mL of water + 1 mL of IOXPBS

 - Make 0.2%EDTA: First make stock solution of 2% EDTA = 98.63 mL water + 13.7 mL of 0.5 M EDTA. Then make a 1:10 dilution to get 0.2% EDTA.

2. Prepare 10 tubes with 100 mg of Talc in each labeled as in TABLE 1:

TABLE 1. 10 samples with concentrations of Avidin/Avidin Rhodamine.

<table>
<thead>
<tr>
<th>1-1a</th>
<th>1-1b</th>
<th>Added: 100 μΜ Avidin/Avidin Rhod.</th>
</tr>
</thead>
</table>
All "a" tubes: Talc after last wash with only PBS collected for slides.

All "b" tubes: Talc after three washes with PBS and three washes with 0.2% EDTA transferred for slides.

3. Mix 1 mL of 100 μM of Avidin with 500 μL of 30.3 μM of Avidin Rhodamine (keep lights off).

4. Add 500 mL of mixed Avidin to Talc in tubes 1-1a and 1-1b. Mix well to bring the dry talc powder to evenly distributed reaction solution.

5. Prepare 1.5 mL of 10 μM mixed Avidin: 1.35 mL of PBS + 150 μL of 100 μM mixed Avidin. Add 500 μL of 10 μM mixed Avidin to the tubes 1-2a and 1-2b. Mix well to bring the dry talc powder to evenly distributed reaction solution.

6. Continue step 5 in 1:10 dilutions until you get to the last and lowest concentration of Avidin.

7. Tightly cover the tubes with aluminum foil as to protect Rhodamine from the light.

8. Place tubes on the rotator and incubate overnight at 4 °C.

Day 2:

1. Centrifuge all tubes at 3200 rpm for 3min.

2. Discard the supernatant liquid.

3. Wash the talc in all tubes 3x in 1 mL PBS (discard the supernatant liquid after each wash).

4. Take all "a" labeled tubes and make slides, store them in the dark at 4 °C.

5. Continue to wash all "b" labeled tubes with 0.2% EDTA. Wash 3x in 0.5 mL EDTA.
6. Take all "b" labeled tubes and make slides, store them in the dark at 4 °C.

7. View slides under fluorescent microscope.

8. Photographs of results under microscopy filters are shown in FIG. 2A-J.

The study showed Avidin and Avidin-Rhodamine remained bound to talc despite multiple washes.

EXAMPLE 3: BINDING AVIDIN TO STERILE TALC POWDER

The following Example defined the Avidin plateau (i.e., concentration of Avidin which fully saturates 100 mg of talc) and determined the release of Avidin from talc surface during subsequent washings.

100 mg of sterile Talc was mixed with different concentrations of Avidin (i.e., 50 µM, 5 µM, 0.5 µM, 50 nM, 5 nM) overnight at 4 °C in 0.5 mL of PBS. After the incubation period, wash talc 3x with 1 mL PBS and 3x with 0.5 mL of 0.2% EDTA. Collect the supernatant liquid from two tubes containing the two highest concentrations of Avidin at varying points.

Materials:

1. Sterile Talc Powder (Bryan Corporation, Cat #: 1690, Lot #: 3M021, Exp. Date: Dec. 2016)
2. Avidin from egg white (Sigma, Cat #: A9275-100 mg, Lot#: SLBB9685)
3. PBS (Sigma, Cat #:P5493-1 L, Lot #: SLBH0296)
4. 0.5 M EDTA (Fischer Scientific)
5. Pierce 660 nm Protein Assay Kit (Thermo Scientific, Cat #: 22662). Methods are based on the instructions provided in the kit.

Day 1:

1. Mix 100 mg of sterile talc with different concentrations of Avidin (50 µM, 5 µM, 0.5 µM, 50 nM, 5 nM) overnight at 4 °C in 0.5 mL of PBS.
2. After the incubation period, wash talc 3x with 1 mL PBS and 3x with 0.5 mL of 0.2% EDTA.
3. Collect the supernatant liquid from two tubes containing the two highest concentrations of Avidin at varying points:
 - Before mixing with Talc
 - Right after incubation
 - After each wash with PBS
 - After each wash with EDTA
 - For other tubes, collect supernatant at points:
 - Before mixing with Talc
 - Right after incubation
 - After last wash with PBS
 - After last wash with EDTA

4. Run total protein assay using Pierce microplate kit and read plate in plate reader.

5. Calculate reaction:
 - To make 1 mL of 50 µM of Avidin = 3.3 mg Avidin + 1 mL of 1x PBS (the molecular weight of Avidin is 66,000 Da)
 - Reserve 0.5 mL of 50 µM Avidin for the first tube and make 1:10 dilution to get 5 µM Avidin solution (900 µL of PBS + 100 µL of 50 µM stock solution, then use the same proportions going down)
 - Make 1x PBS = 9 mL of water + 1 mL of 10x PBS
 - Make 0.2% EDTA = make stock 2% EDTA = 98.63 mL of water + 13.7 mL of 0.5 M EDTA. Then make 1:10 dilution to get 0.2% EDTA.

6. Prepare five tubes with 100 mg of Talc in each tube.
7. Dampen the Talc powder with 1 mL of PBS and mix the two.
8. Centrifuge at 3200 rpm 5 min.
9. Remove supernatant liquid as much as possible.
10. Add the prepared concentrations of Avidin in each tube.

11. Mix Talc again with the solution of Avidin. Protect the tubes from light.

12. Mix overnight at 4°C.

13. Take 100 µL of different concentrations of Avidin and transfer to new tubes labeled as shown in TABLE 2.

TABLE 2. Avidin tube numbers and corresponding concentrations.

<table>
<thead>
<tr>
<th>Tube</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-0</td>
<td>50 µM</td>
</tr>
<tr>
<td>2-0</td>
<td>5 µM</td>
</tr>
<tr>
<td>3-0</td>
<td>0.5 µM</td>
</tr>
<tr>
<td>4-0</td>
<td>50 nM</td>
</tr>
<tr>
<td>5-0</td>
<td>5 nM</td>
</tr>
</tbody>
</table>

14. Store at 4 °C.

Day 2:

1. Centrifuge all tubes at 3200 rpm for 3 min.

2. Collect supernatant liquid and distribute accordingly to tubes labeled as shown in TABLE 3.

TABLE 3. Supernatant collected and labeled.

<table>
<thead>
<tr>
<th>Tube</th>
<th>Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td></td>
</tr>
<tr>
<td>3-1</td>
<td></td>
</tr>
<tr>
<td>4-1</td>
<td></td>
</tr>
<tr>
<td>5-1</td>
<td></td>
</tr>
</tbody>
</table>

Tube 1- has the highest concentration of Avidin, Tube 5- has the lowest concentration of Avidin.

* Keep on ice

3. Add 1 mL of 1x PBS and mix well.
4. Centrifuge all tubes at 3200 rpm for 3 min.

5. Collect supernatant to the tubes labeled as shown in TABLE 4.

TABLE 4. Supernatant collected to the below labeled tubes.

<table>
<thead>
<tr>
<th>Tube</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2a</td>
<td>50 µM</td>
</tr>
<tr>
<td>2-2a</td>
<td>5 µM</td>
</tr>
<tr>
<td>3-2a</td>
<td>0.5 µM</td>
</tr>
<tr>
<td>4-2a</td>
<td>50 nM</td>
</tr>
<tr>
<td>5-2a</td>
<td>5 nM</td>
</tr>
</tbody>
</table>

6. Wash all tubes in PBS two times, collecting the supernatant liquid from each wash ONLY from the two highest concentrations of Avidin (tubes labeled 1-2b, 1-2c, and 2-2b, 2-2c).

7. Continue to wash 3x with 0.5 mL of 0.2% EDTA.

8. Collect the supernatant from each wash and transfer to the new tubes only from the original tubes with the highest concentration of Avidin (50 µM and 5 µM). Collect only the FIRST wash with EDTA solution for the other tubes.

9. Keep the supernatant on ice.

10. Run the total protein assay (see e.g., Example 1) using all the collected supernatant liquid.

Day 3:

1. Check all the data from the previous day's protein assay.

2. One reading (e.g., sample 1-1) is more than the highest standard. Therefore, you need to repeat assay run in only two samples:

TABLE 5. Two samples ran.

<table>
<thead>
<tr>
<th>Tube</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-0</td>
<td>1:10</td>
</tr>
<tr>
<td>1-1</td>
<td>1:10</td>
</tr>
</tbody>
</table>
3. See e.g., TABLE 6, TABLE 7, FIG. 3 and FIG. 4 for results.

4. Use reading from the last run in the final analysis of data.

TABLE 6. Data for determining the saturation amount of Avidin with 100 mg talc (see e.g., FIG. 3).

<table>
<thead>
<tr>
<th></th>
<th>3300.6</th>
<th>396.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>cone. AVIDIN µg/ml (0.5ml)</td>
<td>1650.3</td>
<td>198.4</td>
</tr>
<tr>
<td>AVIDIN in supernatant after incubation, µg/ml</td>
<td>2370</td>
<td>27.4</td>
</tr>
<tr>
<td>AVIDIN in supernatant after incubation, µg/0.5ml</td>
<td>1185</td>
<td>13.7</td>
</tr>
<tr>
<td>Avidin bound to talc, µg</td>
<td>465.3</td>
<td>184.7</td>
</tr>
<tr>
<td>total surface area of 100mg talc, cm²</td>
<td>74.4</td>
<td>74.4</td>
</tr>
<tr>
<td>Saturation of AVIDIN to the combine surface of 100mg talc, µg/cm²</td>
<td>6.25</td>
<td>2.48</td>
</tr>
</tbody>
</table>

TABLE 7. Amount of Avidin, µg/ml removed by PBS and EDTA wash (see e.g., FIG. 4A, FIG. 4B, FIG. 4C).

<table>
<thead>
<tr>
<th></th>
<th>1650.3Mg</th>
<th>198.4pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st wash with PBS</td>
<td>307.4</td>
<td>31.4</td>
</tr>
<tr>
<td>2nd wash with PBS</td>
<td>67.3</td>
<td>27.6</td>
</tr>
<tr>
<td>3rd wash with PBS</td>
<td>40.3</td>
<td>32.7</td>
</tr>
<tr>
<td>1st wash with EDTA</td>
<td>13.2</td>
<td>15.8</td>
</tr>
<tr>
<td>2nd wash with EDTA</td>
<td>12.3</td>
<td>19.8</td>
</tr>
<tr>
<td>3rd wash with EDTA</td>
<td>13.2</td>
<td>13</td>
</tr>
</tbody>
</table>

Estimation of sphere surface.

1. Talc particles

Bryan Corporation Talc is sterile and free of asbestos. The shape is similar to a nugget, and the calculations will substitute it's geometry with spheres. The Talc is calibrated to the distribution of 90% particles at size from 30 pm to 35 pm. Less than 5% is below that range, and above that range.

2. Volume and the surface area of the sphere

\[V = \frac{4}{3} \pi d^3 = [\text{mm}^3] \quad A = \pi d^2 = [\text{mm}^2] \]
3. Specific gravity of the talc is: \(p = 2.75 \text{ g/cm}^3 = 0.00275 \text{ g/m}^3 \)

4. Weight if each particle is: \(G = v \times p \) [g],

\[
G = V \times r = 0.000014136 \times 0.00275 = 0.000000038 \text{ g}
\]

5. Number of particles in 1 gram of Talc and total surface area

\[
N_p = \frac{1}{0.000000038} = 26315789.47 \text{ (particles)}
\]

The total surface area of 1 gram of Talc is: \(A_{tot} = N_p \times A \)

\[
A_{tot} = 26315789.47 \times 0.002827 = 74394.737 \text{ mm}^2
\]

The study showed that even at highest concentration of Avidin (50 \(\mu \text{M} \)), talc particles were not fully saturated. Only first wash removed quantifiable amounts of Avidin from talc surface.

EXAMPLE 4: OPTIMIZATION OF AMOUNT OF AVIDIN WHICH COMPLETELY SATURATES TALC

The following Example determined the Avidin plateau by exposing 100 mg of talc to significantly higher concentrations of Avidin.

The below study describes the optimization of the amount of Avidin that was completely saturated in 100 mg of talc. This study's aim was to see the maximum ability of Talc saturation with Avidin by increasing the amount of Avidin added to 100 mg of Talc (see plateau in the curved slope).

Materials:

1. Sterile Talc Powder (Bryan Corporation, Cat #: 1690, Lot #: 3M021, Exp. Date: Dec. 2016)
2. Avidin from egg white (Sigma, Cat #: A9275-1 00mg, Lot #: SLBB9685)
3. PBS (Sigma, Cat #: P5493-1 L, Lot #: SLBH0296)
Day 1:

1. Add 100 mg of Talc to each of the six Eppendorf tubes (round bottom).

2. Weigh Avidin and add the increments of varying weights of Avidin to the new tubes numerically labeled as in TABLE 8.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>9.9 mg</td>
</tr>
<tr>
<td>#2</td>
<td>6.6 mg</td>
</tr>
<tr>
<td>#3</td>
<td>3.3 mg</td>
</tr>
<tr>
<td>#4</td>
<td>3.3 mg</td>
</tr>
</tbody>
</table>

5. Make solutions with the following calculations in TABLE 9.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0.5 mL 1x PBS + 9.9 mg Avidin</td>
</tr>
<tr>
<td>#2</td>
<td>0.5 mL 1x PBS + 6/6 mg Avidin</td>
</tr>
<tr>
<td>#3</td>
<td>0.5 mL 1x PBS + 3.3 mg Avidin</td>
</tr>
<tr>
<td>#4</td>
<td>1.0 mL 1x PBS + 3.3 mg Avidin</td>
</tr>
<tr>
<td>#5</td>
<td>0.5 mL 1x PBS + 0.5 mL of 50 µM Avidin</td>
</tr>
<tr>
<td>#6</td>
<td>0.4 mL 1x PBS + 0.1 mL of 25 µM Avidin</td>
</tr>
</tbody>
</table>

4. Dampen talc by adding 500 µL of 1x PBS. Mix well.

5. Centrifuge tubes at 3200 rpm for 5 min

7. Add diluted Avidin (see above) and incubate Talc overnight at 4 °C, constantly mixing.

Day 2:

1. Centrifuge all tubes with Avidin/Talc for 5 min and incubated overnight at 3200 rpm at 4 °C.

2. Collect the supernatant from each tube but discard the pellet.

3. Run the Pierce total protein assay using the following dilutions of the collected
supernatant.

TABLE 10. Dilutions for the Pierce protocol.

<table>
<thead>
<tr>
<th>#1</th>
<th>1:100</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2</td>
<td>1:100</td>
</tr>
<tr>
<td>#3</td>
<td>1:10</td>
</tr>
<tr>
<td>#4</td>
<td>1:10</td>
</tr>
<tr>
<td>#5</td>
<td>Straight</td>
</tr>
<tr>
<td>#6</td>
<td>Straight</td>
</tr>
</tbody>
</table>

4. Read plate in the plate reader (absorbance assay) at 660nm wavelength.

5. See e.g., TABLE 11, TABLE 12, and FIG. 6 for results.

TABLE 11. Data for Avidin binding to talc (see e.g., FIG. 6).

<table>
<thead>
<tr>
<th>ID</th>
<th>Avidin µg/ml added</th>
<th>Avidin µg. ml in supernatant</th>
<th>Avidin µg/ml bounded with talc</th>
<th>Combine surface of 100mg talc:cm²</th>
<th>Avidin µg/cm² talc surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19800</td>
<td>7633.3</td>
<td>12166.7</td>
<td>74.4</td>
<td>163.5</td>
</tr>
<tr>
<td>2</td>
<td>13200</td>
<td>5247.3</td>
<td>7952.7</td>
<td>74.4</td>
<td>106.9</td>
</tr>
<tr>
<td>3</td>
<td>6600</td>
<td>1968.5</td>
<td>4631.5</td>
<td>74.4</td>
<td>62.3</td>
</tr>
<tr>
<td>4</td>
<td>3300</td>
<td>847.3</td>
<td>2452.7</td>
<td>74.4</td>
<td>33.0</td>
</tr>
<tr>
<td>5</td>
<td>330</td>
<td>219.6</td>
<td>110.4</td>
<td>74.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>

TABLE 12. Data for Avidin binding to talc (see e.g., FIG. 6).

<table>
<thead>
<tr>
<th>Avidin µg/ml added</th>
<th>Avidin µg/cm² talc surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>330</td>
<td>1.5</td>
</tr>
<tr>
<td>3300</td>
<td>33</td>
</tr>
<tr>
<td>6600</td>
<td>62.3</td>
</tr>
<tr>
<td>13200</td>
<td>106.9</td>
</tr>
<tr>
<td>19800</td>
<td>163.5</td>
</tr>
</tbody>
</table>

According to the above results, the plateau was not reached. It was determined that the concentration of Avidin needs to be increased. Thus, the study showed that even with increasing concentrations of Avidin, talc particles were not fully saturated. Therefore, subsequent experiment(s) used decreased amounts of talc.
EXAMPLE 5: DETERMINATION OF FLOW CYTOMETRY ABILITY TO ANALYZE FITC- AND RHODAMINE-LABELED TALC

The following Example determined if talc binding to FITC-Biotin/Rhodamine and anti-Avidin-FITC can be analyzed by Flow Cytometry. The following Example shows the size and shape of talc does not preclude analysis of talc samples by Flow Cytometry.

The aim of the below study was to determine if the Flow Cytometry can successfully analyze 50 mg of Talc added to Anti-Avidin FITC and Biotin Rhodamine.

Materials:
1. Monoclonal Anti-Avidin FITC conjugate, Clone WC19.10 (Sigma-Aldrich, Cat. #: F1269, Log #: 111M4813)
2. Biotin Rhodamine 110 Biotium (Cat. #: 80022); 5 mg/3.1 1.4 uL DMSO or 1.6 mg/mL or 20 mM
3. 10x PBS (Sigma, Cat. #: P5493, Lot #: SLBH0296)

Day 1:
1. Prepare three round bottom Eppendorf tubes with 50 mg of Talc in each.
2. Dampen two tubes with 1 mL of PBS
3. Centrifuge at 3200 rpm for 5 min
4. Discard supernatant
5. Prepare 1 mL solution of 1x PBS, containing 5 uL (or 9.5 μg) of Anti-Avidin (concentration of 1.9 mg/mL).
6. Prepare 1 mL of 1x PBS containing 2 uL (3.2 μg) of Biotin Rhodamine (concentration of 1.6 mg/mL).
7. Incubate Talc with above solutions overnight at 4 °C constantly mixing it.

Day 2:
1. Centrifuge incubated tubes at 3200 rpm for 5 min
2. Discard the supernatant liquid.

3. Wash Talc 3x with 1 ml PBS.

4. Resuspend after last wash at 1 ml PBS.

5. Store at 4 °C.

6. Dampen dry 50 mg of Talc in third tube with 1 ml PBS. Use this Talc as the negative control - request from the flow cytometry technician.

7. Transfer all three tubes to flow cytometry to perform an analysis of the samples.

8. See e.g., Fig. 7 for results.

The study showed that the size and shape of the talc samples can be successfully run through the Flow Cytometry instruments as the level of the dye is detectable. Thus, the study showed FITC and Rhodamine present on the surface of talc is detectable.

EXAMPLE 6: VARYING CONCENTRATIONS OF TALC INCUBATED WITH HRP-AVIDIN IN 96-WELL PLATES TO DETERMINE THE PLATEAU

The following Example attempted to determine the plateau by using decreasing amounts of talc exposed to HRP-Avidin because increasing the amount of Avidin was not successful in determining the plateau (see e.g., Example 4).

1 mg, 5 mg, 10 mg, and 20 mg of Talc was incubated with HRP Avidin in 96 Well Plate To Find The Plateau.

The aim of this study was to define the plateau (the full saturation of Talc) by incubating small amounts of Talc in a 96 well plate with different concentrations of HRP Avidin.

Materials:

1. HRP Avidin

2. Talc

3. 10x PBS

4. TMB (ENZO, Cat. #: 80-0350, Lot #: 01071401)
5. Stop Solution 2 (ENZO, Cat. #: 80-0377, Lot #: 031 9 306)

Day 1:

1. This experiment uses the following concentrations of HRP Avidin (see TABLE 13).

TABLE 13. Concentrations of HRP Avidin.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 ng/mL</td>
<td>(260 pM)</td>
</tr>
<tr>
<td>20 ng/mL</td>
<td>(130 pM)</td>
</tr>
<tr>
<td>10 ng/mL</td>
<td>(65 pM)</td>
</tr>
<tr>
<td>5 ng/mL</td>
<td>(32.5 pM)</td>
</tr>
</tbody>
</table>

2. Calculations of stock dilutions: 5.75 mg/mL or 5.75 pg/µL or 32.5 µM of HRP Avidin stock (see TABLE 14).

TABLE 14. Calculations of stock dilutions: 5.75 mg/mL or 5.75 pg/µL or 32.5 µM of HRP Avidin stock.

<table>
<thead>
<tr>
<th>Dilution Type</th>
<th>Volume Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:100 HRP Avidin stock dilution</td>
<td>198 µL of PBS + 2 µL of HRP Avidin</td>
</tr>
<tr>
<td>1:1000 HRP Avidin stock dilution</td>
<td>198 µL of PBS + 2 µL of 1:100 HPR Avidin dilution</td>
</tr>
<tr>
<td>1.5 mL of 40 ng/mL or 260 pM of solution</td>
<td>1.488 mL of PBS + 12 µL of 1:1000 HRP Avidin dilution</td>
</tr>
<tr>
<td>1:2 serial dilutions down*</td>
<td>0.75 mL of PBS + 0.75 mL of the previous dilution*</td>
</tr>
</tbody>
</table>

*Continued to dilute these solutions until the last concentration.

3. Weigh 200 mg of Talc and resuspend in 1 mL of PBS. This makes 200 mg/1 000 µL or 0.2 mg/1 µL.

4. Follow the following calculations to get the proper amount of Talc in the wells (see TABLE 15).

TABLE 15. Calculations for concentration of Talc in the wells.

<table>
<thead>
<tr>
<th>20 mg of Talc</th>
<th>100 µL of Talc stock</th>
</tr>
</thead>
</table>
5. Follow the plate layout and calculations to fill up the plate with Talc.

6. Centrifuge plate at 3200 rpm for 3 min.

7. Take out supernatant liquid as much as possible.

* Do not touch pellet.

8. Fill up the plate with HRP solutions (see plate layout).

9. Incubate plate overnight at 4 °C, constantly mixing it.

* sample was protected from light.

Day 2:

1. Finishing Day 1 experiment, wash wells with Talc 3x with 300 uL of PBS.

2. After final wash, resuspend Talc in 100uL PBS.

3. Add 100 uL of TMB to all the wells used in the experiment.

4. Incubate at Room Temperature for 20min

5. Add 100 uL Stop solution 2.

6. Read plate at absorbance setting of 450nm.

7. See e.g., TABLE 16, TABLE 17, TABLE 18, and TABLE 19 for results.

TABLE 16. Concentration Avidin HRP.

<table>
<thead>
<tr>
<th>Talc, mg</th>
<th>40ng/ml</th>
<th>20ng/ml</th>
<th>10ng/ml</th>
<th>5ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.741</td>
<td>1.5835</td>
<td>1.1545</td>
<td>0.798</td>
</tr>
<tr>
<td>5</td>
<td>2.7495</td>
<td>2.4425</td>
<td>1.4245</td>
<td>1.051</td>
</tr>
<tr>
<td>10</td>
<td>3.1785</td>
<td>3.6495</td>
<td>3.296</td>
<td>2.6405</td>
</tr>
<tr>
<td>20</td>
<td>3.5645</td>
<td>3.475</td>
<td>3.0635</td>
<td>2.617</td>
</tr>
</tbody>
</table>

TABLE 17. Concentration Avidin HRP.
average stock OD

<table>
<thead>
<tr>
<th>concentration (ng/ml)</th>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>3.9855</td>
</tr>
<tr>
<td>20</td>
<td>3.958</td>
</tr>
<tr>
<td>10</td>
<td>3.826</td>
</tr>
<tr>
<td>5</td>
<td>2.908</td>
</tr>
</tbody>
</table>

TABLE 18. Combined surface of talc

<table>
<thead>
<tr>
<th>talc, mg</th>
<th>Combine surface of talc, cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.744</td>
</tr>
<tr>
<td>5</td>
<td>3.72</td>
</tr>
<tr>
<td>10</td>
<td>7.44</td>
</tr>
<tr>
<td>20</td>
<td>14.88</td>
</tr>
</tbody>
</table>

TABLE 19. HRP Avidin bound to cm² surface of talc, OD.

<table>
<thead>
<tr>
<th>talc, mg</th>
<th>40ng/ml</th>
<th>20ng/ml</th>
<th>10ng/ml</th>
<th>5ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.68</td>
<td>2.13</td>
<td>155</td>
<td>107</td>
</tr>
<tr>
<td>5</td>
<td>0.74</td>
<td>0.65</td>
<td>0.38</td>
<td>0.28</td>
</tr>
<tr>
<td>10</td>
<td>0.43</td>
<td>0.49</td>
<td>0.44</td>
<td>0.35</td>
</tr>
<tr>
<td>20</td>
<td>0.24</td>
<td>0.23</td>
<td>0.21</td>
<td>0.18</td>
</tr>
</tbody>
</table>

The results were unsuccessful in defining a plateau. The study showed HRP-Avidin readings were out of the range detectable by instrumentation. The experiment was repeated using a mixture of labeled and unlabeled Avidin.

EXAMPLE 7: HRP-AVIDIN: DETERMINATION OF THE AMOUNT OF AVIDIN COMPLETELY SATURATING 1 MG, 5 MG, 10 MG, AND 20 MG TALC

The following Example attempted to determine the plateau by repeating the experiment in Example 6 with subsequent collection of plate supernatants followed by analysis of same.

The aim of the study was to minimize the amount of Talc in the 96 well microplates by using increments of 20 mg, 10 mg, 5 mg, and 1 mg of Talc added to HRP Avidin to determine the point of full saturation of Talc.

Materials:

1. HRP Avidin
2. Talc
3. 10x PBS

4. TMB (ENZO, Cat. #: 80-0350, Lot #: 01071401)

5. Stop Solution 2 (ENZO, Cat. #: 80-0377, Lot #: 03191306)

Day 1:

5. This experiment uses the following concentrations of HRP Avidin (see TABLE 20).

TABLE 20. Concentrations of HRP Avidin.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>HRP Avidin</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 ng/mL</td>
<td>260 pM</td>
</tr>
<tr>
<td>20 ng/mL</td>
<td>130 pM</td>
</tr>
<tr>
<td>10 ng/mL</td>
<td>65 pM</td>
</tr>
<tr>
<td>5 ng/mL</td>
<td>32.5 pM</td>
</tr>
<tr>
<td>2.5 ng/mL</td>
<td>16.25 pM</td>
</tr>
<tr>
<td>1.25 ng/mL</td>
<td>8.13 pM</td>
</tr>
<tr>
<td>0.63 ng/mL</td>
<td>4.05 pM</td>
</tr>
</tbody>
</table>

2. Calculations of the HRP stock dilutions: 5.75 mg/mL or 575 pg/μL or 32.5 μM (see TABLE 21).

TABLE 21. Calculations of the HRP stock dilutions. *Continue to dilute these solutions down until the last concentration.

<table>
<thead>
<tr>
<th>Dilution</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:100 HRP Avidin</td>
<td>198 μL of PBS + 2 μL of HRP Avidin</td>
</tr>
<tr>
<td>1:1000 HRP Avidin</td>
<td>90 μL of PBS + 10 μL of 1:100 HRP Avidin dilution</td>
</tr>
<tr>
<td>3 mL of 40 ng/mL</td>
<td>3 mL of PBS + 24 μL of 1:1000 HRP Avidin dilution</td>
</tr>
<tr>
<td>1:2 serial</td>
<td>1.5 mL of PBS + 1.5 mL of the previous dilution*</td>
</tr>
</tbody>
</table>

3. Weigh 500 mg of Talc and resuspend it in 2.5 mL of PBS; resulting in a concentration of 200 mg/1000 μL.

4. Follow calculations to get the proper amount of Talc in the wells (see TABLE 22).
TABLE 22. Calculations for Talc concentrations in the wells.

<table>
<thead>
<tr>
<th>20mg of Talc</th>
<th>100 uL of Talc stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mg of Talc</td>
<td>50 uL of Talc stock</td>
</tr>
<tr>
<td>5 mg of Talc</td>
<td>25 uL of Talc stock</td>
</tr>
<tr>
<td>1 mg of Talc</td>
<td>5 uL of Talc stock</td>
</tr>
</tbody>
</table>

5. Fill up the plate with Talc.

6. Centrifuge plate at 3200 rpm for 3 min

5

7. Remove supernatant without touching the remaining pellet.

8. Fill up the plate with HRP solutions.

9. Mix Talc with the HRP solutions by pipetting up and down.

10. Incubate the plate overnight at 4 °C, constantly mixing. Protect it from the light.

Day 2:

10

1. Complete Day 1 experiments, wash wells with Talc 3x with 300 uL of PBS.

2. After the final wash, resuspend Talc in 100 uL of PBS.

3. Add 100 uL of TMB to all the wells used in the experiment.

4. Incubate at room temperature for 20 min.

5. Add 100 uL of Stop Solution 2.

15

6. Read the plate at absorbance bandwidth of 450 nm.

7. Centrifuge plate at 3200 rpm for 3 min

8. Remove the supernatant and transfer onto a new clean plate.

9. Read absorbance of samples (supernatant) in new plate at 450 nm.

10. Obtain results for plate 1 and plate 2 (see e.g., FIG. 8, FIG. 9).

The study was unsuccessful in determining the plateau. Next experiments will increase the amount of HRP Avidin, and work only with 1mg and 5 mg of Talc. Use min HRP Avidin + Cold Avidin to fill up surface of Talc. The study showed HRP-Avidin readings were out of the
range detectable by instrumentation. The experiment was repeated using mixture of labeled and unlabeled Avidin with 1 and 5 mg talc.

EXAMPLE 8: SATURATION OF AVIDIN TO TALC (CONTINUATION OF EXPERIMENT TO DETERMINE PLATEAU)

5 The following Example attempted to determine the plateau by utilizing small amounts of talc using mixtures of containing varying concentrations of labeled and unlabeled Avidin.

The aim of the following study was to optimize the concentration of Avidin to Talc by increasing the concentration of Avidin and to completely saturate 1 mg and 5 mg of Talc. Two experiments with different combinations of Avidin were designed as follows:

10 Experiment 1: Using a mixture of Horseradish Peroxidase (HRP) Avidin (hot Avidin) and cold Avidin.

Experiment 2: Using only a high concentration of HRP Avidin.

Materials:

1. Talc
2. HRP Avidin
3. Pure (cold) Avidin
4. TMB (ENZO, Cat. #: 80-0350, Lot #: 01071401)
5. Stop Solution 2 (ENZO, Cat. #: 80-0377, Lot #: 03191306)
6. 10x PBS

20 Day 1:

Experiment 1:

1. Calculate the amount of hot and cold Avidin that will be used to mix in Experiment 1.

TABLE 23. Calculated amount of hot and cold Avidin used in Experiment 1.

<table>
<thead>
<tr>
<th>Hot Avidin</th>
<th>+</th>
<th>Cold Avidin</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 ng/mL</td>
<td>+</td>
<td>70 mg/mL</td>
</tr>
</tbody>
</table>
2. Weigh 42 mg Avidin and resuspend it in 600 uL of PBS containing 40 ng/mL HRP Avidin (hot).

3. The following steps are the serial dilution preparations of the 40 ng/mL of hot Avidin:

 - 1:100 dilution of HRP Avidin stock solution: 198 uL of PBS + 2 uL of 32.5 μM HRP Avidin stock
 - 1:1000 dilution of HRP Avidin stock solution: 90 uL of PBS + 10 uL of 1:100 HRP Avidin stock
 - Prepare 600 uL of 40 ng/mL of hot Avidin: 595.2 uL of PBS + 4.8 uL of 1:1000 hot Avidin

4. Make 1:2 serial dilutions down to keep them above the planned concentrations of hot/cold Avidin mix:

 - #1: 595.2 uL of PBS + 4.8 uL of 1:1000 hot Avidin + 42 mg of cold Avidin
 - #2: 300 uL of PBS + 300 uL of #1 solution

5. Weigh 100 mg of Talc

6. Dampen Talc in 200 uL of PBS (100 mg/200 uL or 0.5 mg/uL) and mix gently until all the Talc is in solution.

7. Transfer Talc to the 96 well plate: Take 2 uL of Talc to get 1 mg of Talc in the well and 10 uL to get 5 mg of talc in the well following the plate layout (see TABLE 24).

TABLE 24. Experiment 1: mix of hot and cold Avidin. Avidin bound to talc, OD.
TABLE 25. Experiment 1: remaining Avidin (not bound to talc) in supernatant, OD.

<table>
<thead>
<tr>
<th>Talc, mg/well</th>
<th>40 ng/ml+70 mg/ml</th>
<th>HRP AVIDIN + cold AVIDIN added</th>
<th>20 ng/ml=35 mg/ml</th>
<th>10 ng/ml=17.5 mg/ml</th>
<th>5 ng/ml=8.75 mg/ml</th>
<th>2.5 ng/ml=4.37 mg/ml</th>
<th>1.25 ng/ml=2.18 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3.576</td>
<td>1.938</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3.46</td>
<td>1.869</td>
<td>1.177</td>
<td></td>
</tr>
</tbody>
</table>

* Repeat steps for experiment 2.

8. Mix the talc with 100 uL of Hot/Cold Avidin solutions prepared above (see plate layout).

Experiment 2:

1. This experiment only uses Hot HRP Avidin. Using the 1:1000 stock dilution that was used in Experiment 1, prepare the following concentrations of Hot Avidin:

TABLE 26. concentrations of Hot Avidin for Experiment 2.

<table>
<thead>
<tr>
<th>Concentration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>300 ng/mL</td>
<td></td>
</tr>
<tr>
<td>150 ng/mL</td>
<td></td>
</tr>
<tr>
<td>75 ng/mL</td>
<td></td>
</tr>
<tr>
<td>37.5 ng/mL</td>
<td></td>
</tr>
<tr>
<td>18.75 ng/mL</td>
<td></td>
</tr>
<tr>
<td>9.375 ng/mL</td>
<td></td>
</tr>
</tbody>
</table>

2. Prepare the following calculations for dilution of hot Avidin:

- Take 600 uL of 300 ng/mL of Hot Avidin=564 uL of PBS + 36 uL of 1:1000 HRP Avidin stock solution

- Make 600 uL of the next concentration: 300 uL of PBS + 300 uL of 300 ng/mL of Hot Avidin.

- Use the same proportions to get the last planned concentration.

3. Transfer 100 uL of prepared solutions to the well.
4. Cover the plate with aluminum foil.

5. Incubate overnight at 4 °C, constantly mixing the solutions.

Day 2:
1. Centrifuge plate at 3200 rpm for 3 min.

2. Using a new 96 well plate, transfer 80 uL of the supernatant to the new plate without disturbing the pellet of Talc.

3. Add 280 uL of PBS to the original plate with Talc and mix by pipetting up and down.

4. Centrifuge plate and discard the supernatant.

5. Repeat washing 2x with 300 uL of PBS and discard the supernatant.

6. After the last wash, resuspend the pellet in 100 uL PBS.

7. Add 100 uL of TMB solution to plate #1 with Talc.

8. Incubate Plate #1 at room temperature for 20 min.

9. Add 80 uL of TMB solution to the plate #2 (containing only the supernatant after overnight incubation).

10. Add 100 uL of Stop Solution 2 to the plate #1.

11. Add 80 uL of Stop Solution 2 to the plate #2.

12. Read absorbance at 450 nm.

TABLE 27. Experiment 2: Hot Avidin bound to talc, OD.

<table>
<thead>
<tr>
<th>Talc, mg/well</th>
<th>300ng/ml</th>
<th>150ng/ml</th>
<th>75ng/ml</th>
<th>37.5ng/ml</th>
<th>18.75ng/ml</th>
<th>9.375ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.951</td>
<td>3.801</td>
<td>3.659</td>
<td>1.77</td>
<td>1.091</td>
<td>1.041</td>
</tr>
<tr>
<td>5</td>
<td>3.899</td>
<td>2.626</td>
<td>2.552</td>
<td>1.855</td>
<td>1.752</td>
<td>1.214</td>
</tr>
</tbody>
</table>

TABLE 28. Experiment 2: Remaining Avidin (not bound to talc) in supernatant, OD.

<table>
<thead>
<tr>
<th>Talc, mg/well</th>
<th>300ng/ml</th>
<th>150ng/ml</th>
<th>75ng/ml</th>
<th>37.5ng/ml</th>
<th>18.75ng/ml</th>
<th>9.375ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.935</td>
<td>1.509</td>
<td>0.168</td>
<td>0.082</td>
<td>0.171</td>
<td>0.165</td>
</tr>
<tr>
<td>5</td>
<td>0.062</td>
<td>0.059</td>
<td>0.061</td>
<td>0.051</td>
<td>0.05</td>
<td>0.051</td>
</tr>
</tbody>
</table>
TABLE 29. OD of working solutions.

<table>
<thead>
<tr>
<th>hot AVIDIN</th>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>300ng/ml</td>
<td>3.608</td>
</tr>
<tr>
<td>150ng/ml</td>
<td>4</td>
</tr>
<tr>
<td>75 ng/ml</td>
<td>3.938</td>
</tr>
<tr>
<td>37.5 ng/ml</td>
<td>3.898</td>
</tr>
<tr>
<td>18.75 ng/ml</td>
<td>2.212</td>
</tr>
<tr>
<td>9.375 ng/ml</td>
<td>2.185</td>
</tr>
</tbody>
</table>

TABLE 30. OD of working solutions.

<table>
<thead>
<tr>
<th>Hot-cold AVIDIN</th>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>40ng/ml+70mg/ml</td>
<td>4</td>
</tr>
<tr>
<td>20ng/ml+35mg/ml</td>
<td>4</td>
</tr>
<tr>
<td>10ng/ml+17.5mg/ml</td>
<td>3.855</td>
</tr>
<tr>
<td>5ng/ml+8.75mg/ml</td>
<td>2.263</td>
</tr>
<tr>
<td>2.5ng/ml+4.37mg/ml</td>
<td>1.372</td>
</tr>
<tr>
<td>1.25ng/ml+2.18mg/ml</td>
<td>1.04</td>
</tr>
</tbody>
</table>

The study showed HRP-Avidin readings were out of the range detectable by instrumentation.

EXAMPLE 9: BINDING OF BLEOMYCIN TO TALC

The following example incubated talc with varying concentrations of bleomycin and determined the efficiency of binding with fluorescent microscopy.

50 mg of talc was incubated with different concentrations of bleomycin and the efficiency of binding was determined under the fluorescent microscope.

Materials:

1. Bleomycin Sulfate Streptomyces verticillus (Sigma-Aldrich, Cat. #: 15361-1mg, Lot #: BCBK 1641V)

2. Water (Sigma Life Science, Cat. #: W3500, Lot #: RNBD1156)

3. Talc (same as in previous examples)

4. Vectashield Mounting Medium

Day 1:
1. Reconstitute bleomycin by adding 100 µL of water to 1 mg of bleomycin. Get the concentration to 10 mg/mL and mix, keeping the drug at 4 °C.

2. Prepare three identical tubes with 50 mg of talc in each.

3. Make 1 mL of 100 µg/mL solution: 990 µL of water + 10 µL of 10 mg/mL of stock.

4. Make 1 mL of 1 µg/mL solution: 990 µL of water + 10 µL of 100 µg/mL solution.

5. Add 1 mL of water to tube with talc and label it as #1.

6. Add 990 µL of 100 µg/mL solution to the other tube with talc and label it as Tube #2.

7. Add 1 mL of 1 µg/mL solution to remaining tube with talc and label it as Tube #3.

8. Mix Talc with added solutions and cover the tubes with aluminum foil.

9. Incubate overnight at 4 °C, constantly mixing it.

Day 2:

1. Centrifuge tubes at 3200 rpm for 3 min.

2. Discard the supernatant.

3. Wash tubes 3x with 1 mL of water.

4. After last wash, complete, remove the water and resuspend the pellet in Vectashield mounting medium for fluorescence.

5. Take out -45 µL of mixture from each tube to the glass slides.

6. Check slides under fluorescent microscope under DAPI filter.

7. There is no difference in image between the negative control (talc that did not incubate with bleomycin) and positive samples (talc that incubated with bleomycin).

Conclusion: It is presently thought that emission signals are very weak (see e.g., same results in publication Periasamy et al, Localization of bleomycin in single living cell using three-photon excitation microscopy, SPIE Proceedings, 2001, p. 348, Vol. 4262). The same experiment as designed above was repeated, but it did not use the microscope to check the binding. Rather, an experiment using Flow Cytometry with excitation at 290 nm will be conducted and with an expected emission of around 420 nm.
The study showed there is no difference in fluorescent imaging between negative control and talc incubated with bleomycin. It is presently thought that the emission filter is not adequate or that signal is very weak and, thus, a repeat experiment was planned to analyze the binding with a flow cytometer at excitation wavelength of 290 nm and emission wavelength at approximately 420 nm (see e.g., Example 11).

EXAMPLE 10: "HOT" AND "COLD" AVIDIN MIX BINDS TO TALC (CONTINUATION OF PLATEAU DEFINITION)

The following Example verified the difference in absorbance between "cold" (unlabeled) Avidin binding to talc by utilizing a fixed amount (40 ng/ml) of "hot" (labeled) HRP-Avidin and adding different amounts of "cold" Avidin.

Materials:

1. Sterile talc powder (Bryan Corporation, Cat. #: 1690, Lot #: 3M021, Exp. Date: Dec. 2016)
2. Avidin from egg white (Sigma, Cat. #: A9275-100mg, Lot #: SLBB9685)
3. 10x PBS (Sigma, Cat. #: P5493-1L, Lot #: SLBB9685)
4. Immunopure Avidin, Horseradish Peroxidase, Conjugated (Thermo Scientific, Cat. #: 21123, Lot #: OJ1 93825)
5. Water (Sigma Life Science, Cat. #: 3500, Lot #: RNBD1 156)
6. Fetal Bovine Serum (ATCC, Cat. #: 30-2020, Lot #: 60353051, Bottle #: 2692)
7. TMB Substrate (ENZO, Cat. #: 80-0350, Lot #: 01071 401)
8. Stop Solution 2 (ENZO, Cat. #: 80-0377, Lot #: 02241430)

Day 1:

Preparation of HRP (Hot) Avidin:

1. Prepare 10 mL of 40 ng/mL (or 260 pM) HRP Avidin in 1x PBS using 5.75 mg/mL or 32.5 µM of HRP Avidin stock solution.

2. Make 1:100 dilution from HRP Avidin stock solution: 198 µL of PBS + 2 µL HRP
Avidin.

3. Make 1:1000 dilution: 90 µL of PBS + 10 µL of 1:100 HRP Avidin stock solution
dilution.

4. Make 10 mL of 40 ng/mL or 260 pM solution: 10 mL of PBS + 80 µL of 1:1000
dilation.

5. Keep solution on ice.

Preparation of Diluted Cold Avidin:

6. Weighed 12 mg of Avidin (cold Avidin), then resuspend it in 3 mL of PBS that
contained 40 ng/mL of "hot" Avidin. So the solution will now be 40 ng/mL hot Avidin + 4
mg/mL of Cold Avidin. Labeled this tube as #1.

7. Make 3mL of 1:1 dilution of solution in Tube #1 and make labeled Tube #2
containing 2.7 mL of 40 ng/mL in PBS + 300 µL of tube #1. The solution in the tube will
contain 40 ng/mL of Hot Avidin + 400 µg of Cold Avidin.

8. Make 1:2 dilution of solution in Tube #2 using as a diluted solvent of 4 ng/mL of Hot
Avidin in PBS. The final concentration will be 40 ng/mL of Hot Avidin + 200 µg/mL of Cold
Avidin. Label this tube as Tube #3.

9. Prepare 3 mL of solution from step 8: 1.5 mL of 40 ng/mL of Hot Avidin in PBS + 1.5
mL of Tube #2.

10. Make 1:2 dilution of solution in Tube #3, using as a solvent of 40 ng/mL Hot Avidin
in PBS. The final concentration will be 40 ng/mL of hot Avidin + 100 µg/mL of Cold Avidin.
Label this tube as Tube #4.

11. Prepare 3 mL of solution: 1.5 mL of 40 ng/mL of Hot Avidin in PBS + 1.5 mL of
Tube #3.

Preparation of Talc:

13. Weight 100 mg of Talc.

14. Resuspend Talc in 200 µL of PBS making 0.5 mg/µL.
15. This experiment will be using 1 mg and 5 mg of Talc. To get the correct amount of 1 mg of Talc into the 96 well microplate, 2 µL of Talc/PBS mixture will be transferred. To get 5 mg of Talc, 10 µL of Talc/PBS mixture will be taken.

16. Plate will be loaded as shown in TABLE 31.

TABLE 31. Plate design.

<table>
<thead>
<tr>
<th>Columns</th>
<th>Solutions Added:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3</td>
<td>40 ng/mL of Hot Avidin + 100 µg of Cold Avidin</td>
</tr>
<tr>
<td>4,5,6</td>
<td>40 ng/mL of Hot Avidin + 200 µg/mL of Cold Avidin</td>
</tr>
<tr>
<td>7,8,9</td>
<td>40 ng/mL of Hot Avidin + 400 µg/mL of Cold Avidin</td>
</tr>
<tr>
<td>10,11,12</td>
<td>40 ng/mL of Hot Avidin + 4 mg/mL of Cold Avidin</td>
</tr>
</tbody>
</table>

17. Add Talc mixture to proper wells.

18. Add 100 µL of Prepared hot/cold Avidin solutions stored on ice to the Talc following the design of the plate (see e.g., FIG. 7).

19. Using the pipetter, mix the Talc and Avidin mixture well by pumping up and down.

20. Cover the plate with Aluminum foil.

21. Incubate plate overnight at 4 °C, constantly mixing it on the rocker.

Day 2:

1. Transfer the plate to room temperature.

2. Centrifuge it at 1500 rpm for 3 min.

3. Wash the plate 3x with 300 µL PBS containing 10% FBS.

4. After the final wash, resuspend Talc in 100 µL of PBS.
5. Add 100 µL of TMB.

6. Incubate at room temperature in no light for 20min

7. Add 100 µL of Stop Solution 2.

8. Read absorbance at 450 nm using the plate reader.

9. See e.g., TABLE 32 for results.

TABLE 32. Efficiency of binding talc to different combinations of "hot" and "cold" Avidin, OD.

<table>
<thead>
<tr>
<th>Amount of talc (mg)</th>
<th>4 ng/ml hot Avidin + 100 µg/ml cold Avidin</th>
<th>40 ng/ml hot Avidin + 200 µg/ml cold Avidin</th>
<th>40 ng/ml hot Avidin + 400 µg/ml cold Avidin</th>
<th>40 ng/ml hot Avidin + 4 mg/ml cold Avidin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mg</td>
<td>1.91</td>
<td>1.65</td>
<td>1.21</td>
<td>1.07</td>
</tr>
<tr>
<td>5 mg</td>
<td>2.92</td>
<td>3.18</td>
<td>3.17</td>
<td>2.18</td>
</tr>
</tbody>
</table>

The study successfully obtained the plateau. The above experiment was repeated to verify results and included additional negative and positive controls (see e.g., Example 12).

EXAMPLE 11: BINDING OF BLEOMYCIN TO TALC: A REPEATED EXPERIMENT TO CHECK THE EFFICIENCY WITH FLOW CYTOMETRY

The following Example verified the binding efficiency of bleomycin to talc by incubating 25 mg talc with varying concentrations of bleomycin with subsequent reading by flow cytometry.

Binding Bleomycin to Talc (A Repeated Experiment): Checking The Efficiency Of The Flow Cytometry

Purpose: incubate 25mg talc with different concentration of BLEOMYCIN and check efficiency of binding under flow cytometry.

Materials:

1. Bleomycin sulfate Streptomyces verticillus (Sigma-Aldrich, cat # 15361 - 1 mg, lot# BCBK 1641V).

2. Talc, (same as used in previous Examples)

3. 10x PBS (Sigma, Cat. #: P5493-1 L, Lot #: SLBH0296)
Day 1:

1. Prepare four identical tubes with 25 mg talc in each one.

2. Make 0.5 mL of 500 mg/mL Bleomycin solution: 475 µL PBS + 25 µL of 10 mg/mL bleomycin stock solution.

3. Make 0.5 mL of 100 mg/ml Bleomycin solution: 475 µL PBS + 5 µL of 10 mg/ml solution.

4. Make 0.5 mL of 1 mg/mL Bleomycin solution: 495 µL PBS + 5 µL of 100 mg/mL solution.

5. Make the negative control: 500 µL of PBS + 25 mg of Talc.

6. Mix all tubes well.

7. Incubate overnight at 4 °C on the 360 rotator and protected from light.

Day 2:

1. Centrifuge all tubes at 3200rpm. 3min

2. Discard the supernatant liquid.

3. Wash tubes 3x with 1 mL of PBS.

4. After last wash completely remove PBS and resuspend pellet in 500 µL PBS.

5. Transfer tubes for flow cytometry for analysis.

6. Flow cytometry with bleomycin:

 a. 25 µL of each concentration was transferred into a glass falcon tube as shown in TABLE 33.

TABLE 33. Bleomycin sample concentration.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>PBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25ML control no bleomycin</td>
<td>+ 0.5ml of PBS</td>
</tr>
<tr>
<td>25ML of 1mg/ml bleomycin+</td>
<td>0.5ml of PBS</td>
</tr>
<tr>
<td>25ML of 100mg/ml bleomycin</td>
<td>+ 0.5ml of PBS</td>
</tr>
<tr>
<td>25ML of 500mg/ml bleomycin</td>
<td>+ 0.5ml of PBS</td>
</tr>
</tbody>
</table>
b. The control sample was placed in the flow cytometer to determine the control light scatter.

c. The emissions were set for 353 and 405 with excitation wavelength set between 244-248 nm and 289-294 nm.

d. Each concentration was placed in the flow cytometer and the data was uploaded.

e. The emissions and excitation wavelength was changed to the values shown in TABLE 34.

g. The data was placed into a graph and exported to a PDF.

7. Flow Cytometry Results showed that 1 mg/ml appeared below the control in each graph. It is presently thought that this could be due to too little amount remaining after washing to be detected by the sensor. 500 mg/ml showed the greatest excitation with every laser (see e.g., FIG. 10 and TABLE 35).

TABLE 34. Emission and excitation wavelengths (nm).

<table>
<thead>
<tr>
<th>UV/Excitation (Gray Laser)</th>
<th>UV/Excitation (Violet Laser)</th>
<th>UV/Excitation (Blue Laser)</th>
<th>UV/Excitation (Green Laser)</th>
<th>UV/Excitation (Red Laser)</th>
</tr>
</thead>
<tbody>
<tr>
<td>355/450</td>
<td>405/450</td>
<td>488/525</td>
<td>532/575</td>
<td>633/670</td>
</tr>
<tr>
<td>355/515</td>
<td>405/515</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355/620</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 35. Excitation of 1 mg, 100 mg, 500 mg, and control samples at various wavelengths.

<table>
<thead>
<tr>
<th>Sample</th>
<th>488/525 Ratio</th>
<th>633/670 Ratio</th>
<th>405/515 Ratio</th>
<th>355/450 Ratio</th>
<th>355/515 Ratio</th>
<th>355/620 Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mg</td>
<td>194.0</td>
<td>0.9</td>
<td>57.5</td>
<td>1.1</td>
<td>74.4</td>
<td>0.6</td>
</tr>
<tr>
<td>100mg</td>
<td>345.0</td>
<td>1.7</td>
<td>52.8</td>
<td>1.0</td>
<td>299.0</td>
<td>2.5</td>
</tr>
<tr>
<td>500mg</td>
<td>435.0</td>
<td>2.1</td>
<td>62.2</td>
<td>1.1</td>
<td>781.0</td>
<td>1.5</td>
</tr>
<tr>
<td>NC</td>
<td>208.0</td>
<td>1.0</td>
<td>54.7</td>
<td>1.0</td>
<td>119.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Flow Cytometry was able to detect the presence of bleomycin on Talc. Additionally, there is a one and a half log difference between the negative control and the highest
concentration of Avidin incubated 500 μg/mL of Talc. Following experiments concentrate on
excitation from the UV range of 355-405 nm and repeat the experiment again to verify prior
data.

The study showed bleomycin binds to talc and remains on surface of talc even
following multiple PBS washes.

EXAMPLE 12: "HOT" AND "COLD" AVIDIN MIX BINDS TO TALC (REPEAT OF EXPERIMENT)

The following Example repeated the hot/cold experiment shown in Example 10, with
the addition of multiple controls.

Materials:

1. Sterile Talc Powder (Bryan Corporation, Cat. #: 1690, Lot #: 3M021, Exp. Date:
Dec. 2016)

2. Avidin from egg white (Sigma, Cat. #: A9275-100mg, Lot #: SLBB9685)

3. 10x PBS (Sigma, Cat. #: P5493-1L, Lot #: SLBB9685)

4. Immunopure Avidin, Horseradish Peroxidase, Conjugated

5. Water (Sigma Life Science, Cat. #: 3500, Lot #: RNBD156)

6. Fetal Bovine Serum (ATCC, Cat. #: 30-2020, Lot #: 60353051, Bottle #: 2692)

7. TMB Substrate (ENZO, Cat. #: 80-0350, Lot #: 01071401)

8. Stop Solution 2 (ENZO, Cat. #: 80-0377, Lot #: 02241430)

Day 1:

Preparation of HRP (Hot) Avidin:

1. Prepare 10 mL of 40 ng/mL (or 260 mM) HRP Avidin in 1x PBS using 5.75 mg/mL or
32.5 μM of HRP Avidin stock solution.

2. Make 1:100 dilution from HRP Avidin stock solution: 198 μL of PBS + 2 μL HRP
Avidin.

3. Make 10 mL of 40 ng/mL or 260 pM solution: 10 mL of PBS + 80 μL of 1:1000
dilution.

5. Keep solution on ice.

Preparation of Diluted Cold Avidin:

6. Weigh 8 mg of Avidin (cold Avidin), then resuspend it in 2 mL of PBS that contains 40 ng/mL of "hot" Avidin. So the solution will now be 40 ng/mL hot Avidin + 4 mg/mL of Cold Avidin. Label this tube as #1.

7. Make 3 mL of 1:10 dilution of solution in Tube #1 and make labeled Tube #2 containing 2.7 mL of 40 ng/mL in Hot Avidin solution in PBS + 300 µL of Tube #1. The solution in the tube will contain 40 ng/mL of Hot Avidin + 200 µg/mL of Cold Avidin.

8. Make 1:2 dilution of solution in Tube #2 using as a diluted solvent of 4 ng/mL of Hot Avidin in PBS. Added 1 mL of Hot Avidin + 1 mL of Tube #2. The final concentration will be 40 ng/mL of Hot Avidin + 200 µg/mL of Cold Avidin. Label this tube as Tube #3.

9. Make 1:2 dilution of solution in Tube #3, using as a solvent of 40 ng/mL Hot Avidin in PBS Prepare 2 mL of solution: 1 mL of 40 ng/mL of Hot Avidin in PBS + 1 mL of Tube #3. The final concentration will be 40 ng/mL of hot Avidin + 100 µg/mL of Cold Avidin. Label this tube as Tube #4.

10. Keep solutions on ice.

Preparation of Talc:

11. Weigh 100 mg of Talc.

12. Resuspend Talc in 200 mL of PBS making 0.5 mg/ML.

13. This experiment will be using 1 mg and 5 mg of Talc. To get the correct amount of 1 mg of Talc into the 96 well microplate, 2 mL of Talc/PBS mixture will be transferred. To get 5 mg of Talc 10 mL of Talc/PBS mixture will be taken.

14. Design of the plate in TABLE 36.

TABLE 36. Plate design.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mg Talc:</td>
<td>40ng/mL</td>
</tr>
<tr>
<td>+100µg/mL</td>
<td>+100µg/mL</td>
<td>+100µg/mL</td>
<td>+200µg/mL</td>
<td>+200µg/mL</td>
<td>+200µg/mL</td>
<td>+200µg/mL</td>
<td>+200µg/mL</td>
<td>+200µg/mL</td>
<td>+200µg/mL</td>
<td>+400µg/mL</td>
<td>+400µg/mL</td>
</tr>
<tr>
<td>+400µg/mL</td>
</tr>
</tbody>
</table>
15. Add Talc mixture to proper wells.

16. Add 100 µL of prepared hot/cold Avidin solutions stored on ice to the Talc following the design of the plate (see TABLE 36).

17. Using the pipetter, mix the Talc and Avidin mixture well by pumping up and down.

18. Cover the plate with Aluminum foil.

19. Incubate plate overnight at 4 ºC, constantly mixing it on the rocker.

Day 2:

1. Transfer the plate to room temperature.

2. Centrifuge it at 1500 rpm for 3 min.

3. Wash the plate 3x with 300 µL PBS containing 10% FBS.

4. After the final wash, resuspend Talc in 100 µL of PBS.

5. Add 100 µL of TMB.
6. Incubate at room temperature in no light for 20 min.

7. Add 100 µl of Stop Solution 2.

8. Read absorbance at 450 nm using the plate reader.

9. See data in TABLE 37.

TABLE 37. Efficiency of binding hot/cold Avidin mixture, OD.

<table>
<thead>
<tr>
<th>sample</th>
<th>OD</th>
<th>sample</th>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROLS:</td>
<td></td>
<td>1mg Talc incubated:</td>
<td></td>
</tr>
<tr>
<td>1mg talc in PBS only:</td>
<td>0.48</td>
<td>40ng/mL of Hot Avidin +</td>
<td>1.45</td>
</tr>
<tr>
<td>5mg talc in PBS only:</td>
<td>1.32</td>
<td>100ug/mL of Cold Avidin:</td>
<td>1.45</td>
</tr>
<tr>
<td>1mg talc incubated with only 40ng/mL HRP Avidin in PBS</td>
<td>2.55</td>
<td>40ng/mL of Hot Avidin +</td>
<td>1.31</td>
</tr>
<tr>
<td>5mg talc incubated with only 40ng/mL HRP Avidin in PBS</td>
<td>2.33</td>
<td>400ug/mL of Cold Avidin:</td>
<td></td>
</tr>
<tr>
<td>1mg talc in 40ng/mL HRP Avidin in PBS containing 10% FBS</td>
<td>0.56</td>
<td>4mg/mL of Cold Avidin:</td>
<td>1.06</td>
</tr>
<tr>
<td>5mg talc in 40ng/mL HRP Avidin in PBS containing 10% FBS</td>
<td>0.76</td>
<td>400ug/mL of Cold Avidin:</td>
<td></td>
</tr>
<tr>
<td>1mg of Talc incubated with Cold Avidin only:</td>
<td></td>
<td>40ng/mL of Hot Avidin +</td>
<td>2.85</td>
</tr>
<tr>
<td>100ug/mL</td>
<td>0.31</td>
<td>100ug/mL of Cold Avidin:</td>
<td></td>
</tr>
<tr>
<td>200ug/mL</td>
<td>0.27</td>
<td>200ug/mL of Cold Avidin:</td>
<td>2.7</td>
</tr>
<tr>
<td>400ug/mL</td>
<td>0.3</td>
<td>40ng/mL of Hot Avidin +</td>
<td>2.65</td>
</tr>
<tr>
<td>4mg/MI</td>
<td>0.33</td>
<td>400ug/mL of Cold Avidin:</td>
<td>1.6</td>
</tr>
<tr>
<td>5mg of Talc incubated with Cold Avidin only:</td>
<td></td>
<td>4mg/mL of Cold Avidin:</td>
<td></td>
</tr>
</tbody>
</table>
The study determined the full saturation of talc and completion of the plateau determination.

EXAMPLE 13: BINDING OF BLEOMYCIN TO TALC: FLOW CYTOMETRY

The following Example repeated the experiments shown in Example 11 and determined the best excitation and emission parameters for flow cytometry in order to analyze the bleomycin-talc conjugate.

The study’s aim was to incubate 25 mg talc with different concentrations of bleomycin and determine the efficiency of binding under flow cytometry.
Materials:
1. Bleomycin sulfate Streptomyces verticillus (Sigma-Aldrich, cat # 15361-1 mg, lot # BCBK 1641V)
2. Talc (same as previous Examples).
3. 10x PBS (Sigma, Cat. #: P5493-1 L, Lot #: SLBH0296)

Day 1:
1. Prepare four identical tubes with 25 mg talc in each one.
2. Make 0.5 mL of 500 \(\text{mg/mL} \) Bleomycin solution: 475 µL PBS + 25 µL of 10 mg/mL bleomycin stock solution.
3. Make 0.5 mL of 100 \(\text{mg/mL} \) Bleomycin solution: 475 µL PBS + 5 µL of 10 mg/mL solution.
4. Make 0.5 mL of 1 \(\text{mg/mL} \) bleomycin solution: 495 µL PBS + 5 µL of 100 \(\text{mg/mL} \) solution.
5. Make the negative control: 500 mL of PBS + 25 mg of Talc.
6. Mix all tubes well.
7. Incubate overnight at 4 °C on the 360° rotator. Protect from light.

Day 2:
1. Split talc in tube containing 1 \(\text{mg/mL} \) solution in half; label tubes as 1 \(\text{mg/mL} \) (a) and 1 \(\text{mg/mL} \) (b). Keep tube (b) on ice. Not wash tube 1 \(\text{mg/mL} \) (b).
2. Centrifuge all other tubes at 3200rpm. 3min
3. Discard the supernatant liquid.
4. Wash tubes 3x with 1 mL of PBS.
5. After last wash completely remove PBS and resuspend pellet in 500 mL PBS.
6. Transfer tubes for flow cytometry for analysis.

Flow cytometry with Bleomycin
1. 25 μL of each concentration was transferred into a glass falcon tube:

TABLE 40. Bleomycin samples.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>25 μL of PBS</td>
</tr>
<tr>
<td>1 mg/μL</td>
<td>25 μL + 2 ml</td>
</tr>
<tr>
<td>100 mg/pL</td>
<td>25 μL + 2 ml</td>
</tr>
<tr>
<td>500 mg/pL</td>
<td>25 μL + 2 ml</td>
</tr>
</tbody>
</table>

2. The control sample was placed in the flow cytometer to determine the control light scatter.

3. The emissions was set for 353 and 405 with excitation wavelength set between 244-248 mm and 289-294 mm.

4. Each concentration was placed in the flow cytometer and the data was uploaded.

5. The emissions and excitation wavelength was changed to values as shown in TABLE 41.

6.

TABLE 41. Emissions and excitation wavelength.

<table>
<thead>
<tr>
<th>UV/Excitation (Gray Laser)</th>
<th>UV/Excitation (Violet Laser)</th>
<th>UV/Excitation (blue laser)</th>
<th>UV/Excitation (green laser)</th>
<th>UV/Excitation (Red laser)</th>
</tr>
</thead>
<tbody>
<tr>
<td>355/450</td>
<td>405/450</td>
<td>488/525</td>
<td>532/575</td>
<td>633/670</td>
</tr>
<tr>
<td>355/515</td>
<td>405/515</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355/620</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. The date was put into a graph and exported to a PDF (see e.g., FIG. 11A-H).

The study showed analysis utilizing different flow cytometry lasers. The data showed 1 mg/pL appears below the control in each graph. 500 mg/pL showed the greatest excitation with every laser.
EXAMPLE 14: TALC BOUND TO HRP- AND COLD-AVIDIN, INCUBATION FOR 48 HOURS IN PBS CONTAINING 10% FBS

The following Example determined stability of talc binding to Avidin at 48 hours.

Purpose: To check how strong the conjugate of hot/cold Avidin to Talc is. This is then washed (incubate) talc/Avidin conjugate for 48 hours with PBS containing 10% FBS solution. Absorbance will be checked twice- once before washing with PBS containing 10% FBS and after 48 hours, washing will be done.

Hypothesis: The presence of FBS will not destroy the conjugate talc/AVIDIN.

Materials:

1. Sterile Talc Powder
 (Bryan Corporation, Cat. #: 1690, Lot #: 3M021, Exp. Date: Dec. 2016)

2. Avidin from egg white
 (Sigma, Cat. #: A9275-100mg, Lot #: SLBB9685)

3. 10x PBS
 (Sigma, Cat. #: P5493-1 L, Lot #: SLBB9685)

4. Immunopure Avidin, Horseradish Peroxidase, Conjugated (Thermo Scientific, Cat. #: 21123, Lot #: OJ1 93825)

5. Water
 (Sigma Life Science, Cat. #: 3500, Lot #: RNBD1 156)

6. Fetal Bovine Serum
 (ATCC, Cat. #: 30-2020, Lot #: 60353051, Bottle #: 2692)

7. TMB Substrate
 (ENZO, Cat. #: 80-0350, Lot #: 01071401)

8. Stop Solution 2
 (ENZO, Cat. #: 80-0377, Lot #: 02241430)

Day 1: Preparation of HRP (Hot) Avidin:
1. Prepare 10mL of 40ng/ml (or 260pM) HRP Avidin in 1x PBS using 5.75mg/ml or 32.5µM of HRP Avidin stock solution.

2. Make 1:100 dilution from HRP Avidin stock solution: 198µL of PBS + 2µL HRP Avidin.

4. Make 10mL of 40ng/ml or 260pM solution: 10mL of PBS + 80µL of 1:1000 dilution.

5. Keep solution on ice.

Preparation of Diluted Cold Avidin:

6. Weigh 8mg of Avidin (cold Avidin), then resuspend it in 2mL of PBS containing 40ng/ml of "hot" Avidin. So the solution will now be 40ng/ml hot Avidin + 4mg/ml of Cold Avidin. Label this tube as #1.

7. Make 3mL of 1:10 dilution of solution in Tube #1 and make labeled Tube #2 containing 2.7mL of 40ng/ml in Hot Avidin solution in PBS + 300µL of Tube #1. The solution in the tube will contain 40ng/ml of Hot Avidin + 400µg of Cold Avidin.

8. Make 1:2 dilution of solution in Tube #2 using as a diluted solvent of 4ng/ml of Hot Avidin in PBS. Added 1.5mL of Hot Avidin + 1.5mL of Tube #2. The final concentration will be 40ng/ml of Hot Avidin + 200µg/ml of Cold Avidin. Label this tube as Tube #3.

9. Make 1:2 dilution of solution in Tube #3, using as a solvent of 40ng/mL Hot Avidin in PBS. Prepare 2mL of solution: 1mL of 40ng/mL of Hot Avidin in PBS + 1mL of Tube #3. The final concentration will be 40ng/mL of Hot Avidin + 100µg/ml of Cold Avidin. Label this tube as Tube #4.

10. Keep solutions on ice.

Preparation of Talc:

11. Weigh 200mg of Talc.

12. Resuspend Talc in 400µL of PBS, making 0.5mg/mL.

13. This experiment will be using 1mg and 5mg of Talc. To get the correct amount of
1mg of Talc into the 96 well microplate, 2µl of Talc/PBS mixture will be transferred. To get 5mg of Talc, 10µL of Talc/PBS mixture will be taken.

14. OD data of samples before 48hrs incubation of binded talc with PBS + 10%FBS and after incubation with FBS is over is needed to be required for the purpose of the experiment. Two identical microplates need to be set up, labeling them as: plate#1 and plate#2. Design of the plate:

15. Add Talc mixture to proper wells.

16. Add 100µL of Prepared hot/cold Avidin solutions stored on ice to the Talc following the design of the plate (see above).

17. Using the pipetter, mix the Talc and Avidin mixture well by pumping up and down.

18. Cover the plates with Aluminum foil.

19. Incubate plates overnight at 4°C, constantly mixing it on the rocker.

Day 2:

1. Transfer the plates to room temperature.

2. Centrifuge them at 1500 rpm. 3 min

3. Wash both plates 3x with 300µl PBS.

4. After the final wash, resuspend Talc in plate #1, that will be read for absorbance, in 100µl of PBS.

5. Add 150µl of PBS contains 10% FBS to talc in plate #2 and return plate to 4C to continue incubation for another 48hrs. Mix constantly, cover plate with Aluminum foil.

6. Add 100µl of TMB to samples in plate #1.

7. Incubate at room temperature in no light. 20 min

8. After incubation with TMB is over, add 100µl of Stop Solution 2.

9. Read absorbance at 450nm using the plate reader.

Day 3:

1. Continue incubation of plate#2
Day 4:

1. Transfer plate#2 to room temperature.

2. Centrifuge it at 1500 rpm.

3. Collect 100µL supernatant from samples except native controls and load on same plate.

4. Wash plate except supernatant samples 3x with 300µL PBS.

5. After the final wash, resuspend Talc in plate #2, that will be read for absorbance, in 100µL of PBS.

6. Add 100µL of TMB to all samples in plate#2.

7. Incubate at room temperature in no light for 20 min.

8. After incubation with TMB is over add 100µL of Stop Solution 2.

9. Read absorbance at 450nm using the plate reader.

10. See data in TABLE 42.

TABLE 42. Comparison of absorbance right after incubation of talc with hot/cold Avidin and after 48 hrs wash with FBS, OD.

<table>
<thead>
<tr>
<th>sample</th>
<th>right after en incubation with AVIDIN</th>
<th>after 48hrs of wash in PBS contained 10%FBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mg Talc incubated:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 100ug/mL of Cold Avidin:</td>
<td>1.79</td>
<td>1.35</td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 200ug/mL of Cold Avidin:</td>
<td>1.45</td>
<td>1.14</td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 400ug/mL of Cold Avidin:</td>
<td>1.27</td>
<td>0.92</td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 4mg/mL of Cold Avidin:</td>
<td>0.91</td>
<td>0.83</td>
</tr>
<tr>
<td>5mg Talc incubated:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 100ug/mL of Cold Avidin:</td>
<td>3.37</td>
<td>2.9</td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 200ug/mL of Cold Avidin:</td>
<td>3.24</td>
<td>3.07</td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 400ug/mL of Cold Avidin:</td>
<td>2.66</td>
<td>2.49</td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 4mg/mL of Cold Avidin:</td>
<td>1.98</td>
<td>2.28</td>
</tr>
<tr>
<td>5mg Talc in PBS only (rep control)</td>
<td>1.74</td>
<td>1.33</td>
</tr>
</tbody>
</table>

TABLE 43. Supernatant after 48 hrs wash (PBS + 10% FBS).

<table>
<thead>
<tr>
<th>Supernatant after 48 hrs wash (PBS+10%FBS)</th>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mg Talc binded:</td>
<td></td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 100ug/mL of Cold Avidin</td>
<td>2.94</td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 200ug/mL of Cold Avidin</td>
<td>2.66</td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 4mg/mL of Cold Avidin</td>
<td>2.41</td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 400ug/mL of Cold Avidin</td>
<td>2.55</td>
</tr>
<tr>
<td>5mg Talc binded:</td>
<td></td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 100ug/mL of Cold Avidin</td>
<td>2.9</td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 200ug/mL of Cold Avidin</td>
<td>3.07</td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 400ug/mL of Cold Avidin</td>
<td>2.49</td>
</tr>
<tr>
<td>40ng/mL of Hot Avidin + 4mg/mL of Cold Avidin</td>
<td>2.28</td>
</tr>
</tbody>
</table>
The study showed binding of Avidin to talc is unchanged at 48 hours.

EXAMPLE 15: BINDING OF BLEOMYCIN TO TALC: FLOW CYTOMETRY

The following Example repeated the experiments shown in Example 11 and determined the best excitation and emission parameters for flow cytometry in order to analyze bleomycin-talc conjugate.

The aim of the study was to incubate 25 mg talc with different concentration of bleomycin and check efficiency of binding under flow cytometry.

Materials:

1. Bleomycin sulfate Streptomyces verticillus (Sigma-Aldrich, cat # 15361 - 1 mg, lot # BCBK 1641V)
2. Talc (same as previous Examples)
3. 10x PBS (Sigma, Cat. #: P5493-1 L, Lot #: SLBH0296)

Day 1:

1. Prepare four identical tubes with 25 mg talc in each one.
2. Make 0.5 ml of 500 µg/mL Bleomycin solution: 475 µL PBS + 25 µL of 10 mg/mL bleomycin stock solution.
3. Make 0.5 ml of 100 µg/ml bleomycin solution: 475 µL PBS + 5 µL of 10 mg/mL solution.
4. Make 0.5 ml of 1 µg/mL Bleomycin solution: 495 µL PBS + 5 µL of 100 µg/mL solution.
5. Make the negative control: 500 µL of PBS + 25 mg of Talc.
6. Mix all tubes well.
7. Incubate overnight at 4 °C on the 360° rotator. Protect from light.

Day 2:

1. Split talc in tube containing 1 µg/ml solution in half; label tubes as 1 µg/ml (a) and 1 µg/ml (b). Keep tube (b) on ice. Not wash tube 1 µg/ml (b).
2. Centrifuge all other tubes at 3200 rpm for 3min
3. Discard the supernatant liquid.
4. Wash tubes 3x with 1 ml of PBS.
5. After last wash completely remove PBS and resuspend pellet in 500 µL PBS.
6. Transfer tubes for flow cytometry for analysis.

Flow cytometry with Bleomycin

1. 25 µL of each concentration was transferred into a glass falcon tube as shown in TABLE 45.

<table>
<thead>
<tr>
<th>TABLE 45. Bleomycin samples.</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 µL control no bleomycin + 2 ml of PBS</td>
</tr>
<tr>
<td>25 µL of 1 mg/µL bleomycin + 2 ml of PBS</td>
</tr>
<tr>
<td>25 µL of 100 mg/µL bleomycin + 2 ml of PBS</td>
</tr>
<tr>
<td>25 µL of 500 mg/µL bleomycin + 2 ml of PBS</td>
</tr>
</tbody>
</table>

2. The control sample was placed in the flow cytometer to determine the control light scatter.
3. The emissions were set for 353 and 405 with excitation wavelength set between 244-248 mm and 289-294 mm.
4. Each concentration was placed in the flow cytometer and the data was uploaded.
5. The emissions and excitation wavelength was changed to values as shown in TABLE 46.

<table>
<thead>
<tr>
<th>TABLE 46. Emission and excitation wavelengths.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV/Excitation (Gray Laser)</td>
</tr>
<tr>
<td>355/450</td>
</tr>
<tr>
<td>355/515</td>
</tr>
</tbody>
</table>
The data was placed into a graph and exported to a PDF (see e.g., FIG. 12A-H).

The study showed analysis utilizing different flow cytometry lasers. Results showed that 1 mg/μL appeared below the control in each graph. 500 mg/μL showed the greatest excitation with every laser.

EXAMPLE 16: CYTOTOXICITY ASSAY: NCI-28H CELLS TREATED WITH DIFFERENT COMPOUNDS-BLEOMYCIN, TALC, AND TALC BOUND TO BLEOMYCIN

The following Example determined which of the above three compounds is more cytotoxic to NCI-28H cells.

The study added different type of compounds to NCI-28H cells: only bleomycin, only talc, and talc that was previously incubated with bleomycin. Read absorbance (MTS assay) and calculate cells survive rate.

Materials:

1. Bleomycin sulfate Streptomyces verticillus (Sigma-Aldrich, cat # 15361 -1 mg, lot# BCBK 1641V)

2. Sterile Talc Powder (Bryan Corporation, cat.# NDC 63256-200-05; lot
3. DPBS, 1x (ATCC, Cat. #: 30-2200, Lot #: 61443818)
4. NCI-28H (ATCC, cat. #: CRL-5820, lot #: 7379248)
5. RPMI-1640 media (ATCC cat. #: 30-2001, lot #: 62027197).
6. Trypsin-EDTA (ATCC cat. #30-2101, lot #: 61618818).
7. Fetal Bovine serum (ATCC cat. #: 3022).
8. CellTiter 96 AQueous One Solution cell proliferation assay (Promega cat #: G3581)
mg/ml or 6.25 mM (mw=1600).

3. Make 400 µl of 1 mg/ml Bleomycin solution using 360 µl DPBS + 40 µl of 10 mg/ml stock of drug. Final concentration was 1 mg/ml or 625 µM.

4. Mix 56.2 mg talc in tube #1 with 400 µl of 625 µM bleomycin.

5. Mix 63.3 mg talc with 400 µl DPBS.

6. Protect tubes from light, tape them on rotator and incubate overnight at 4 °C.

DAY 2

Preparation of Talc

1. Bring back tubes from cold room to laboratory. Centrifuge 3200 rpm for 3 min. Take out supernatant. Wash pellet 3 times with 1.0 ml of DPBS (sterile) after last wash add to tube #1: contains 56.2 mg talc, 112.4 µl of media; final concentration talc in tube will be 0.5 mg/µL. Add to tube #2 contains 63.3mg talc, 126.6 µl of media; final concentration talc in tube will be 0.5 mg/µL.

2. Keep tubes with talc at 4°C

3. Prepare first dilution of each of the above tubes by adding 540µl media + 60 µl of tube #1 or tube #2 solution.

4. After preparation of the above solution, prepare 3 subsequent 1:2 serial dilutions of each of the above preparations (300 µl media + 300 µl of previous dilution).

5. Add 100 µl of the above preparations in steps #3, #4 to the proper wells as indicated in the 96-well plate. The resultant preparation added to each well will give presence of talc in the wells as following: 0.6 mg talc/well, 1.25 mg talc/well, 2.5 mg talc/well, and 5.0 mg talc/well after sequential dilutions (1:2) across plate.

6. The above procedure was again utilized for the second tube (#1) which contains bleomycin bound to talc.

Preparation of bleomycin:

Prepare the following dilutions of bleomycin

(1) 1 mg/ml (625 µM),
Prepare 500 µL stock solution of 625 µM Bleomycin as follows:

1. 450 mL media + 50 µL of stock (6.25 mM bleomycin).

2. Following preparation of above solution prepare the above 9 sequential serial dilutions using the following formula: 375 mL media + 125 mL of prior dilution.

3. Add 100 mL of each 10 preparations of diluted bleomycin (step 1 and 2) to the proper wells according to a plate layout.

4. Add 100 mL of media for untreated cells that will use as a control and not contain any drug or any kind of talc.

5. Check the plate and start incubation at 37 °C/5% CO₂

DAY 3

1. Check plate under microscope, no visible sign of contamination is present.

2. Mix by pipetting up and down media in the wells containing talc.

3. Continue incubation plate at 37 °C/5% CO₂

DAY 4

1. Check plate under microscope, no visible sign of contamination is present.
2. Mix by pipetting up and down media in the wells containing talc.

3. Continue incubation plate at 37 °C/5% CO₂.

DAY 5

1. Check plate under microscope, no visible sign of contamination is present.

5. Mix talc/media liquid in the wells. Using needle/vacuum system remove all liquid from all wells.

3. Wash cells 2x 300 µl DPBS, remove final wash.

4. Add 120 µl fresh media to all wells.

5. Add 20 µl of CellTiter 96 Aqueous One solution to each well.

6. Incubate plate 1 hr at 37 °C, 5% CO₂.

7. Read absorbance in plate reader at 490nm.

8. See e.g., TABLE 48, TABLE 49, TABLE 50, FIG. 13, and FIG. 14 for results.

TABLE 48. Cells treated with talc.

<table>
<thead>
<tr>
<th>amount of talc added to cells, mg</th>
<th>0</th>
<th>0.62</th>
<th>1.25</th>
<th>2.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>talc only, no BLEOMYCIN</td>
<td>1.87</td>
<td>1.01</td>
<td>0.82</td>
<td>0.90</td>
<td>1.36</td>
</tr>
<tr>
<td>Talc bound to 1mg/ml BLEOMYCIN</td>
<td>1.87</td>
<td>0.47</td>
<td>0.45</td>
<td>0.51</td>
<td>0.60</td>
</tr>
</tbody>
</table>

TABLE 49. % survival after incubation with talc.

<table>
<thead>
<tr>
<th>amount of talc added to cells, mg</th>
<th>0</th>
<th>0.62</th>
<th>1.25</th>
<th>2.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>talc only, no BLEOMYCIN</td>
<td>100</td>
<td>53.87</td>
<td>43.97</td>
<td>48.20</td>
<td>72.31</td>
</tr>
<tr>
<td>Talc bound to 1mg/ml BLEOMYCIN</td>
<td>100</td>
<td>25.23</td>
<td>24.11</td>
<td>27.24</td>
<td>31.81</td>
</tr>
</tbody>
</table>

TABLE 50. % survival NCI-28H cells after treatment with bleomycin.

<table>
<thead>
<tr>
<th>% survival NCI-28H cells after treatment with BLEOMYCIN</th>
<th>Bleomycin, ug/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.004</td>
</tr>
<tr>
<td>100</td>
<td>92.41</td>
</tr>
</tbody>
</table>

The above data suggests a clear toxic effect on NCI-28H cells with talc alone and an even more toxic effect when cells were exposed to talc bound to bleomycin. Toxicity of talc and talc bound to bleomycin was even higher than when cells were exposed to pure...
bleomycin.

Thus, the study showed that following exposure of NCI-28H cells to the above compounds, it was found that talc-bleomycin was more toxic than talc alone, and talc alone is more toxic than bleomycin alone.

EXAMPLE 17: BIOTIN-HRP: DETERMINATION OF CONCENTRATION RANGE FOR ABSORBANCE ASSAY

The following Example determined the maximum detection range for absorbance at 440 nm by utilizing varying concentrations of Biotin-HRP.

BIOTIN HRP: determination of concentration range for absorbance assay.

Plan: make different concentration of BIOTIN HRP to find out the maximum detection range for absorbance assay (450nm).

MATERIAL:

- Biotinylated Peroxidase; Invitrogen, cat.# 432040, lot# 1482487A.
- TMB substrate; ENZO, cat.# 80-0350 lot# 01071401.
- Stop Solution 2; ENZO, cat.# 80-0377, lot# 02241430.
- 10x PBS; (Sigma, Cat. #: P5493-1 L, Lot #: SLBB9685).
- Water; (Sigma Life Science, Cat. #: 3500, Lot #: RNBD1 156)

DAY 1

1. Prepare dilution (1:5) of Biotin HRP (2.5mg/ml) stock in following range: 5µg/ml - 1mg/ml - 200ng/ml - 40ng/ml - 8ng/ml - 1.6ng/ml - 0.3ng/ml-0.06ng/ml.

2. Make first dilution (Spg/ml): 998µL PBS + 2µL of stock 2.5mg/ml Biotin HRP.

3. Make serial dilution (1:5) down using formula: 800µL PBS + 200µL of previous dilution of Biotin HRP.

4. Add 100µL of each dilution (2 wells for each dilution) to the proper wells in 96 wells microplate.

5. Add 100µL TMB substrate, incubate at RT for 20 min.
6. Add 100 µL Stop Solution 2.

7. Read absorbance in plate reader using 450nm setting.

CONCLUSION: for further experiments, concentrations of BIOTIN HRP more than 1.6 ng/ml was shown to be not optimal. The working range was shown to be optimal between 0.3 ng/ml to 1.6 ng/ml.

The study showed a concentration of 1.6 ng/ml was the preferred maximum concentration of Biotin-HRP for detection. Therefore, for future experimentation, a range of 0.3 ng/ml - 1.6 ng/ml is appropriate for the absorbance assay.

EXAMPLE 18: BINDING OF BLEOMYCIN TO TALC: FLOW CYTOMETRY ANALYSIS OF WASHED AND UNWASHED BLEOMYCIN-TALC PARTICLES

The following Example determined if repeated washing removes bleomycin from surface of talc by flow cytometry analysis of particles prior to and following PBS washing.

Purpose: incubate 25mg talc with different concentration of BLEOMYCIN and check efficiency of binding under flow cytometry using washed and not washed talc

Materials:

1. Bleomycin sulfate Streptomyces verticillus Sigma-Aldrich, cat # 15361-1mg, lot# BCBL 531 3V

2. Talc, same as before; see previous experiments

3. 10x PBS Sigma, Cat. #: P5493-1 L, Lot #: SLBH0296

Day 1:

1. Prepare 3 identical tubes with 25mg talc in each one.

2. Reconstitute Bleomycin with 100µL water, making final dilution as 10mg/ml.

3. Make 0.5ml of 500Mg/mL Bleomycin solution: 475µL PBS+ 25µL of 10mg/mL Bleomycin stock solution.

4. Make 0.5 ml of 100pg/ml Bleomycin solution: 475µL PBS+ 5µL of 10mg/ml solution.
5. Make the negative control: 500µL of PBS + 25mg of Talc.

6. Mix all tubes well.

7. Incubate overnight at 4°C on the 360° rotator. Protect from light.

Day 2:

1. Split talc in tubes containing 100pg/ml and 500pg/ml solution in half. Keep one tube from each dilution of drug on ice. Not wash it.

2. Centrifuge all other tubes at 3200rpm. 3min

3. Discard the supernatant liquid.

4. Wash tubes 3x with 1ml of PBS.

5. After last wash completely remove PBS and resuspend pellet in 250µL of PBS.

6. Transfer tubes for flow cytometry for analysis.

Flow cytometry with Bleomycin

1. 25µL of each concentration was transferred into a glass falcon tube (see TABLE 51).

<table>
<thead>
<tr>
<th>Sample concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>25µL control no bleomycin + 0.5ml of PBS</td>
</tr>
<tr>
<td>25µL of 100mg/ml not washed bleomycin + 0.5ml of PBS</td>
</tr>
<tr>
<td>25µL of 100mg/ml washed bleomycin + 0.5ml of PBS</td>
</tr>
<tr>
<td>25µL of 500mg/ml not washed bleomycin + 0.5ml of PBS</td>
</tr>
<tr>
<td>25µL of 500mg/ml washed bleomycin + 0.5ml of PBS</td>
</tr>
</tbody>
</table>

2. The control sample was placed in the flow cytometer to determine the control light scatter.

3. The emissions was set for 353 and 405 with excitation wavelength set between 244-248mm and 289-294mm.

4. Each concentration was placed in the flow cytometer and the data was uploaded.
5. The emissions and excitation wavelength was changed to

6.

TABLE 51. Emission and excitation wavelengths.

<table>
<thead>
<tr>
<th>UV/Excitation (Gray Laser)</th>
<th>UV/Excitation (Violet Laser)</th>
<th>UV/Excitation (blue laser)</th>
<th>UV/Excitation (green laser)</th>
<th>UV/Excitation (Red laser)</th>
</tr>
</thead>
<tbody>
<tr>
<td>355/450</td>
<td>405/450</td>
<td>488/525</td>
<td>532/575</td>
<td>633/670</td>
</tr>
<tr>
<td>355/515</td>
<td>405/515</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355/620</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. The data was put into a graph and exported to a PDF (see e.g., FIG. 15A-H).

5

TABLE 52. Raw data.

<table>
<thead>
<tr>
<th>Sample</th>
<th>488/625 ratio</th>
<th>633/670 ratio</th>
<th>405/615 ratio</th>
<th>365/450 ratio</th>
<th>355/515 ratio</th>
<th>365/450 ratio</th>
<th>405/450 ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>not washed 100mg</td>
<td>155</td>
<td>2.29</td>
<td>91.1</td>
<td>1.96</td>
<td>192</td>
<td>2.07</td>
<td>95.2</td>
</tr>
<tr>
<td>washed 100mg</td>
<td>152</td>
<td>2.24</td>
<td>75.4</td>
<td>1.91</td>
<td>124</td>
<td>2.81</td>
<td>87.5</td>
</tr>
<tr>
<td>not washed 500mg</td>
<td>199</td>
<td>2.94</td>
<td>95</td>
<td>2.5</td>
<td>222</td>
<td>5.68</td>
<td>205</td>
</tr>
<tr>
<td>washed 500mg</td>
<td>184</td>
<td>2.42</td>
<td>82.2</td>
<td>2.98</td>
<td>190</td>
<td>3.03</td>
<td>168</td>
</tr>
<tr>
<td>Control</td>
<td>67.6</td>
<td>1</td>
<td>75.3</td>
<td>0.85</td>
<td>54</td>
<td>1</td>
<td>37.7</td>
</tr>
</tbody>
</table>

TABLE 52 (continued). Raw data.

<table>
<thead>
<tr>
<th>532/575 ratio</th>
<th>355/620 ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>1.61</td>
</tr>
<tr>
<td>142</td>
<td>1.58</td>
</tr>
<tr>
<td>199</td>
<td>2.07</td>
</tr>
<tr>
<td>173</td>
<td>1.7</td>
</tr>
<tr>
<td>96.1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Thus, the study showed that there is very little difference in washed and unwashed bleomycin-talc as shown by analysis at 405 nm and 488 nm excitation and emission. It is presently thought that the agent (bleomycin) is absorbed by talc.

EXAMPLE 19: TALC BOUND TO COLD AVIDIN/BIOTIN HRP AND ONLY TO BIOTIN/HRP

The following Example determined if there is a difference in binding of Biotin/HRP to talc which has or does not have Avidin on its surface.

Plan: prepare two different kind of particles: talc bound with different amounts of cold AVIDIN and talc that did not exposed to cold Avidin. Incubate both particles to 1ng/ml biotin HRP and find difference in binding.
MATERIAL:

- Biotinylated Peroxidase; Invitrogen, cat.# 432040, lot# 1482487A.
- Avidin from egg white. (Sigma, Cat. #: A9275- 100mg, Lot #: SLBB9685)

- TMB substrate; ENZO, cat.# 80-0350 lot # 01071401.
- Stop Solution 2; ENZO, cat.# 80-0377, lot# 02241430.
- 10x PBS; (Sigma, Cat. #: P5493-1 L, Lot #: SLBB9685).
- Sterile Talc Powder, Bryan Corporation, cat.# NDC 63256-200-05; lot #:3M021 ; exp. Dec 2016

DAY 1

Preparation of Diluted Cold Avidin:

1. Weight 6mg of Avidin (cold Avidin), then resuspend it in 1.5mL of PBS. So the solution will now be 4mg/mL of Cold Avidin. Label it as tube #1.

2. Make 1.5mL of 1:2 dilution of solution in Tube #1 and make labeled Tube #2 containing 750μL PBS + 750μL of Tube #1. The solution in the tube will contain 2mg/ml of Cold Avidin.

3. Make 1:2 dilution of solution in Tube #2. Added 750μL PBS + 750μL of Tube #2. The final concentration 1mg/mL of Cold Avidin. Label this tube as Tube #3.

4. Make 1:2 dilution of solution in Tube #3 in PBS. Prepare 1.5mL of solution: 750μL of PBS + 750μL of Tube #3. The final concentration will be 0.5mg/ml of Avidin. Label this tube as Tube #4.

5. Keep solutions on ice.

Preparation of Talc:

6. Weight 150mg of Talc.

7. Resuspend Talc in 300μL of PBS making 0.5mg/pL.

8. This experiment will be using 1mg and 5mg of Talc. To get the correct amount of 1mg of Talc into the 96 well microplate, 2μL of Talc/PBS mixture will be transferred. To get
5mg of Talc, 10µL of Talc/PBS mixture will be taken.

10. Add Talc mixture to proper wells.

11. Add 100µL of Prepared cold Avidin or PBS to the Talc following the design of the plate.

12. Using the pipette, mix the Talc with Avidin mixture or PBS well by pumping up and down.

13. Cover the plate with Aluminum foil.

DAY 2

1. Transfer the plate to room temperature.

2. Centrifuge it at 1500 rpm. For 3 min and discard supernatant from wells containing Avidin only.

3. Wash those wells 3x with 300µL PBS.

4. After the final wash, centrifuge plate and remove all PBS from all wells except controls.

5. Prepare 4ml of 1ng/ml biotin HRP:
 - make 1ml of 5Mg/ml Biotin = 998µL PBS + 2µL of Bioitin HRP stock 2.5mg/ml;
 - make 1:100 dilution of 5Mg/ml =990µL PBS + 10µL of above dilution;
 - make 4ml of 1ng/ml Biotin HRP =3.92ml PBS + 80µL of 1:100 dilution.

6. Add 100µL of 1ng/ml solution to all wells (pre-incubated with Avidin and not exposed to Avidin) except controls.

7. Cover the plate with Aluminum foil.

8. Incubate plate for 1hr at 4°C, constantly mixing it on the rocker.

9. Transfer the plate to room temperature.
10. Centrifuge it at 1500 rpm 3 min and discard supernatant from all wells except control.

11. Wash wells 3x with 300µL PBS.

12. After the final wash, centrifuge plate and remove all PBS from all wells except controls.

13. Add 100µL PBS to wells.

14. Add 100µL TMB subtract to all wells, incubate 20 min at RT.

15. Add 100µL Stop Solution 2 to the wells and read absorbance in plate reader at 450nm setting.

16. See e.g., TABLE 53 for results.

TABLE 53. Absorbance: Biotin HRP bound to Avidin/talc complex.

<table>
<thead>
<tr>
<th>talc, mg/ml</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.19</td>
<td>0.81</td>
<td>0.83</td>
<td>0.83</td>
<td>0.86</td>
</tr>
<tr>
<td>5</td>
<td>1.05</td>
<td>2.66</td>
<td>2.21</td>
<td>1.70</td>
<td>1.60</td>
</tr>
</tbody>
</table>

The study showed talc having an Avidin on its surface binds greater amounts of Biotin/HRP than talc alone.

EXAMPLE 20: ABSORBANCE OF TALC BOUND TO AVIDIN-HP

The following Example determined effect of vacuum-drying and -20 °C storage of Avidin-talc conjugate.

Plan: check stability of Avidin HRP bound to talc if talc is completely dry and powder stored at -20 °C.

MATERIAL:

1. Sterile Talc Powder (Bryan Corporation, Cat. #: 1690, Lot #: 3M021, Exp. Date: Dec. 2016)

2. 10x PBS (Sigma, Cat. #: P5493-1 L, Lot #: SLBB9685)
3. Water (Sigma Life Science, Cat. #: 3500, Lot #: RNBD1 56)
4. TMB Substrate (ENZO, Cat. #: 80-0350, Lot #: 01071401)
5. Stop Solution 2 (ENZO, Cat. #: 80-0377, Lot #: 02241430)

EQUIPMENT:
1. Desi-Vac container. (Fischer Scientific; cat. #08-664-5A)
2. Rotator for 2ml tubes (360°)

DAY 1
1. Weigh 6 tubes with 25mg talc in each.
2. Prepare 5ml of 40ng/ml AVIDIN HRP:
 - Make 1:100 dilution of stock
 198 µL of PBS + 2µL of Avidin HRP
 - Make 1:1000 dilution
 90 µL of PBS + 10µL of 1:100 dilution
 - Make 5mL of 40 ng/mL
 5mL PBS + 40µL of 1:1000 dilution
3. Mix each tube with 1mL of 40ng/mL Avidin HRP solution. Add to tube #6 1mL of PBS (negative control)
4. Incubate overnight at 4 °C. Rotate tubes.

Day 2
1. Centrifuge all tubes. 3200 rpm for 3 minutes.
2. Discard the supernatant.
3. Wash all tubes with 1mL PBS 3x.
4. Take negative control and 1 tube bound Avidin HRP. Resuspend both tubes in
500 µL of PBS.

5. Run absorbance:
 - Using the 96 well micro-plate, transfer and split each tube into five wells in equal portions of 100 µL.

5
 - Add 100 µL of TMB substrate to each well.
 - Incubate for 20 min at RT.
 - Add 100 µL of Stop solution #2 and measure absorbance in 450nm.

6. See e.g., TABLE 54, TABLE 55, and FIG. 15 for β-μL.

TABLE 54. Average OD: 5 mg talc binds to Avidin HRP (powder format).

<table>
<thead>
<tr>
<th>samples</th>
<th>no AVIDIN added</th>
<th>after o/n incubation</th>
<th>after vacuum dry</th>
<th>24 hrs at -20°C</th>
<th>48 hrs at -20°C</th>
<th>7 days at -20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5mg talc with drug</td>
<td>1.97</td>
<td>3.06</td>
<td>2.08</td>
<td>2.306</td>
<td>1.92</td>
<td>2.162</td>
</tr>
</tbody>
</table>

TABLE 55. % from OD of pure talc.

<table>
<thead>
<tr>
<th>% from OD of pure talc</th>
<th>after o/n incubation</th>
<th>talc bound to AVIDIN after vacuum dry</th>
<th>powder stored for 24 hrs at -20°C</th>
<th>48 hrs at -20°C</th>
<th>7 days at -20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>negative control</td>
<td>106</td>
<td>155.32</td>
<td>105.36</td>
<td>117.06</td>
<td>97.46</td>
</tr>
</tbody>
</table>

TABLE 56. Average reading (Absorbance assay), OD Day 1.

- 5mg talc binded to AVIDIN HRP
 - DAY 1, right after incubation 3.06
- 5mg talc, no AVIDIN HRP added 1.97

TABLE 57. Average Absorbance of 5 mg Talc to Avidin HRP; Day 2, OD.

<table>
<thead>
<tr>
<th>samples</th>
<th>right after making powder, 24hrs after binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>5mg talc with 40ng/ml Avidin HRP</td>
<td>2.08</td>
</tr>
</tbody>
</table>

7. Take all the supernatant from the experimental four tubes and place them into four new tubes with tops open in the vacuum o/n in 4°C. The end result is the protein powder containing the bound Talc/Avidin HRP.

Day 3
1. Take one tube and run absorbance assay to check the presence of the Avidin HRP.

2. Resuspend powder in the one tube in 500 µL of PBS.

3. Run absorbance:
 - Using the 96 well micro-plate, transfer and split 500 µL tube into five wells in equal portions of 100 µL.
 - Add 100 µL of TMB substrate to each well.
 - Incubate for 20 min at RT.
 - Add 100 µL of Stop solution #2 and measure absorbance in 450 nm.

4. TABLE 58. Average Absorbance of 5 mg Talc bound to 40 ng/mL Avidin HRP; Day 3. OD.

<table>
<thead>
<tr>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.306</td>
</tr>
</tbody>
</table>

5. The other three tubes: transfer immediately into -20°C.

Day 4

1. Take one tube from the -20°C and run absorbance assay to check the presence of the Avidin HRP.

2. Resuspend powder in the one tube in 500 µL of PBS.

3. Run absorbance: split 500 µL tube into five wells in equal portions of 100 µL.
 - Using the 96 well micro-plate, transfer and split 500 µL tube into five wells in equal portions of 100 µL.
 - Add 100 µL of TMB substrate to each well.
 - Incubate for 20 min at RT.
 - Add 100 µL of Stop solution #2 and measure absorbance in 450 nm.

4.
Table 59. Average Absorbance of 5 mg Talc to Avidin HRP; Day 4, OD.

<table>
<thead>
<tr>
<th>OD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2</td>
</tr>
</tbody>
</table>

Day 5
1. Take one tube from the -20°C and run absorbance assay to check the presence of the Avidin HRP.
2. Resuspend powder in the one tube in 500 µL of PBS.
3. Run absorbance:
 - Using the 96 well micro-plate, transfer and split 500 µL tube into five wells in equal portions of 100 µL.
 - Add 100 µL of TMB substrate to each well.
 - Incubate for 20 min at RT.
 - Add 100 µL of Stop solution #2 and measure absorbance in 450 nm.

Day 6
1. Take one tube from the -20°C and run absorbance assay to check the presence of the Avidin HRP.
2. Resuspend powder in the one tube in 500 µL of PBS.
3. Run absorbance:
 - Using the 96 well micro-plate, transfer and split 500 µL tube into five wells in equal portions of 100 µL.
 - Add 100 µL of TMB substrate to each well.
 - Incubate for 20 min at RT.
 - Add 100 µL of Stop solution #2 and measure absorbance in 450 nm.
TABLE 60. Average absorbance of 5 mg Talc to Avidin HRP, Day 7, OD.

<table>
<thead>
<tr>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.162</td>
</tr>
</tbody>
</table>

The study showed that dry vacuum procedure is not optimal to reverse talc - Avidin HRP to powder again. Further studies optimize the procedure to store binding talc for longer periods of time.

The study showed both vacuum-drying and -20 °C storage did not show optimum stability preservation of Avidin-talc conjugate.

EXAMPLE 21: CYTOTOXICITY ASSAY: NCI-28H CELLS TREATED WITH DIFFERENT COMPOUNDS-DOXORUBICIN, CISPLATIN, PACLITAXEL, TALC ALONE, AND TALC BOUND TO EACH OF THESE COMPOUNDS

The following Example determined which of the above compounds is more cytotoxic to NCI-28H.

The following study exposed NCI-28H cells to different types of formulations: only drugs, only talc, and talc that was previously incubated with doxorubicin, cisplatin, or paditaxel. Read absorbance (MTS assay) and calculate cells survival rate. Compare survival rate between each formulation.

Materials:

1. Doxorubicin Hydrochloride, 50mg/25ml; Amneal- Agila LLC, cat.# NDC 531 50-315-01; lot # 7800982; exp. 03/2015

2. Cisplatin 100mg/ml; TEVA, cat.# NDC 0703--5748-1 1; lot # 13J04LA, exp.04-2015

3. Paditaxel, 300mg/ml; Sagent, cat.# NDC 25021 - 213-50; lot# 38J01 11; exp. 04/2015

4. Sterile Talc Powder,
 Bryan Corporation, cat.# NDC 63256-200-05; lot #:3M021 ; exp. Dec 2016

5. DPBS,1x
ATCC, Cat. #: 30-2200, Lot #: 61443818.

6. NCI-28H,
ATCC, cat. #: CRL-5820, lot #: 7379248

7. RPMI-1640 media; ATCC cat.#30-2001, lot# 620271 97.

8. Trypsin-EDTA; ATCC cat.#30-2101, lot# 61618818.

10. CellTiter 96 AQueous One Solution cell proliferation assay; Promega cat# G3581.

DAY 1

Cells preparation:

1. Set up 3 cytotoxicity plates for Day 2 experiment: trypsinize NCI-28H cells (T-75 flask, passage 12):
 - Remove old medium, wash cells with 7ml DPBS, remove DPBS, add 2ml trypsin, incubate plates for 1-2', when cells detached add 6ml fresh medium, mix cells and medium.
 - Count cells under the microscope using the glass slide. Average # of cells in slide is 29.3; average in 1ml of mix is 29.3x10,000=293,000 cells/ml;
 - Count how much cell/medium stock needed: use 3 plates (60 wells) in the assay; count extra wells for safety reason. If we need 200 wells, in each well will be 5,000 cells in 0.1 ml; so total we need 1,000,000 cells in 20ml. 1,000,000 cells/293,000=3.4ml of cells/media mix need to take from flask and transfer to 16.6ml media. In 50ml Falcon tube, combine 16.6ml fresh medium and 3.4 ml cells. Gently mix.

2. Transfer 100µl of prepared cells/medium mix to proper wells, keep overnight at 37°C, 5% CO2.

Talc preparation:

1. Under the hood transfer sterile talc approximately 25mg of talc to each of 3 sterile Eppendorf tubes, and approximately 100mg of sterile talc to one tube. Total tubes are 4. Close tubes and weigh how much exactly talc added to each tube. Result: tube #1=110 mg; tube #2 (dox) = 35.8mg, tube #3(CIS)=43.1 mg, tube #4 (Paclitaxel)=45.2 mg.
2. Talc/doxorubicin preparation: to make 500 µL of 1 µM doxorubicin solution use stock 3.45 mM; dilute stock 1:100 = 495 µL DPBS + 5 µL stock; combine 485.5 µL DPBS + 14.5 µL of 1:100 dilution of doxorubicin stock. Final solution is 500 µL of 1 µM doxorubicin. Mix talc in tube #2 with this solution.

3. Talc/cisplatin preparation: to make 500 µL of 20 µM CISPLATIN solution use stock 3.33 mM; dilute stock 1:10 = 90 µL DPBS + 10 µL stock; combine 470.0 µL DPBS + 30 µL of 1:10 dilution of CISPLATIN stock. Final solution is 500 µL of 20 µM cisplatin. Mix talc in tube #3 with this solution.

4. Talc/paclitaxel preparation: to make 500 µL of 1 µM paclitaxel solution use stock 7.03 mM; dilute stock 1:100 = 495 µL DPBS + 5 µL stock; combine 482 µL DPBS + 18.0 µL of 1:100 dilution of paclitaxel stock. Final solution is 500 µL of 1 µM paclitaxel. Mix talc in tube #4 with this solution.

5. Protect tubes from light, tape them on rotator and incubate overnight at RT.

DAY 2

Preparation of Talc

1. Centrifuge tubes at 3200 rpm for 3 min. Take out supernatant. Wash pellet 3 times with 1.0 mL of DPBS (sterile) after last wash add to tube #1: contains 110 mg talc, 220 µL of media; final concentration talc in tube will be 0.5 mg/µL. Add to tube #2 contains 35.8 mg talc, 71.6 µL of media; to tube #3 contains 43.1 mg talc add 86.2 µL media and for tube #4 contains.

45.2 mg talc add 90.4 µL media; final concentration talc in all tubes will be 0.5 mg/µL.

2. Keep tubes with talc at RT.

3. Prepare first working solution of talc from tube #1: 1.26 mL media + 140 µL of 0.5 mg/µL talc. Total concentration will be 5 mg/100 µL. Make dilutions 1:2 (700 µL media + 700 µL previous dilution) to make following concentration talc in well 2.5 mg talc/100 µL media; 1.25 mg/100 µL; 0.6 mg/100 µL.

4. Prepare first dilution of each of the above tubes #2, #3, #4 by adding 540 µL media + 60 µL of prepared above 0.5 mg talc and drug/µL.
5. After preparation of the above solution, prepare 3 subsequent 1:2 serial dilutions of each of the above preparations (300 µL media + 300 µL of previous dilution).

6. Add 100 µL of the above preparations in steps #3, #4, #5 to the proper wells as indicated in a 96-well plate layout. The resultant preparation added to each well will give presence of talc in the wells as following: 0.6 mg talc/well, 1.25 mg talc/well, 2.5 mg talc/well, and 5.0 mg talc/well after sequential dilutions (1:2) across plate.

Preparation of doxorubicin (stock 3.45 mM): Prepare the following dilutions (1:5) of drug:

\[(1) 5 \mu M\]
\[(2) 1 \mu M\]
\[(3) 0.2 \mu M\]
\[(4) 0.04 \mu M\]
\[(5) 0.008 \mu M\]
\[(6) 0.0016 \mu M\]
\[(7) 0.00032 \mu M\]
\[(8) 0.000064 \mu M\]

Prepare 600 µL of 100 µM doxorubicin solution (double concentration to keep 5 µM drug in total volume 200 µL media in well) as follows:

1. 582.6 µL media + 17.4 µL of 1:10 dilution of doxorubicin stock.

2. Following preparation of above solution prepare the above 7 sequential serial dilutions using the following formula: 480 µL media + 120 µL of prior dilution.

3. Add 100 µL of each 8 preparations of diluted doxorubicin (step 1 and 2) to the proper wells according to a plate layout.

Preparation of cisplatin (stock 3.33 mM):

Prepare the following dilutions (1:5) of drug:

\[(1) 100 \mu M\]
(2) 20µM
(3) 4µM
(4) 0.8µM
(5) 0.16µM
(6) 0.032µM
(7) 0.0064µM
(8) 0.00032µM

1. Prepare 600 µL of 200µM CISPLATIN solution (double concentration to keep 100µM drug in total volume 200µL media in well) as follows: 564.0µL media + 36.0µL of cisplatin stock.

2. Following preparation of above solution prepare the above 7 sequential serial dilutions using the following formula: 480µL media + 120µL of prior dilution.

3. Add 100 µL of each 8 preparations of diluted CISPLATIN to the proper wells according to a prepared plate layout.

Preparation of paditaxel (stock 7.03mM):

1. Prepare the following dilutions (1:5) of drug:

 (1) 10µM
 (2) 2µM
 (3) 0.4µM
 (4) 0.08µM
 (5) 0.016µM
 (6) 0.0032µM
 (7) 0.00064µM
 (8) 0.00013µM

2. Prepare 600 µL of 20µM paditaxel solution (double concentration to keep 10µM...
drug in total volume 200 μL media in well) as follows: 582.9 μL media + 17.1 μL of 1:10 dilution of paclitaxel stock.

3. Following preparation of above solution prepare the above 7 sequential serial dilutions using the following formula: $480 \mu L$ media + $120 \mu L$ of prior dilution.

4. Add 100 μL of each 8 preparations of diluted paclitaxel (step 1, 2, 3) to the proper wells according to a plate layout.

5. Add 100 μL of media for untreated cells that will use as a control and not contain any drug or any kind of talc.

6. Check the plate and start incubation at 37°C/5% CO$_2$

10 DAY 3

1. Continue incubation plate at 37°C/5% CO$_2$

DAY 4

1. Continue incubation plate at 37°C/5% CO$_2$.

DAY 5

15 1. Check plate under microscope, no visible sign of contamination is present.

2. Mix talc/media liquid in the wells. Using needle/vacuum system, remove all liquid from all wells.

3. Wash cells 1$x300 \mu L$ media, remove final wash.

4. Add 120μL fresh media to all wells.

20 5. Add 20μL of CellTiter 96 Aqueous One solution to each well.

6. Incubate plate 1hr at 37°C, 5% CO$_2$.

7. Read absorbance in plate reader at 490nm.

8. Data is shown below and in FIG. 16, FIG. 17, FIG. 18, FIG. 19, FIG. 20, FIG. 21, FIG. 22, and FIG. 23.

TABLE 61. Data for NCI-28H cells treated with Dox/Talc.
% survival from untreated by DOX cells (cells + talc)

<table>
<thead>
<tr>
<th>talc mg</th>
<th>0</th>
<th>0.6mg</th>
<th>1.25mg</th>
<th>2.5mg</th>
<th>5mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 talc</td>
<td>100</td>
<td>48.7</td>
<td>48.7</td>
<td>52.4</td>
<td>104.1</td>
</tr>
<tr>
<td>0 talc</td>
<td>1.38</td>
<td>0.83</td>
<td>1.16</td>
<td>1.21</td>
<td>1.72</td>
</tr>
<tr>
<td>0 talc</td>
<td>100</td>
<td>59.8</td>
<td>83.4</td>
<td>87.4</td>
<td>124.6</td>
</tr>
</tbody>
</table>

Average: cells + talc bound to 1 µM DOXORUBICIN

% survival NCI-28H cells after different treatment (compare to untreated cells)

<table>
<thead>
<tr>
<th>DOX µM</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 talc</td>
<td>1.37</td>
<td>1.06</td>
</tr>
<tr>
<td>0 talc</td>
<td>0.000064</td>
<td>0.00016</td>
</tr>
</tbody>
</table>

TABLE 62. Data for NCI-28H cells treated and untreated by Doxorubicin.

<table>
<thead>
<tr>
<th>Cisplatin, µM</th>
<th>0</th>
<th>0.0013</th>
<th>0.0064</th>
<th>0.032</th>
<th>0.16</th>
<th>0.8</th>
<th>4</th>
<th>20</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.50</td>
<td>1.37</td>
<td>1.19</td>
<td>1.15</td>
<td>1.20</td>
<td>1.23</td>
<td>1.18</td>
<td>0.48</td>
<td>0.59</td>
</tr>
</tbody>
</table>

TABLE 63. Average reading: cells + cisplatin

% survival from untreated cells (cells + cisplatin)

<table>
<thead>
<tr>
<th>DOX µM</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 talc</td>
<td>1.3545</td>
<td>0.6255</td>
</tr>
<tr>
<td>0 talc</td>
<td>0.6255</td>
<td>0.7745</td>
</tr>
</tbody>
</table>

TABLE 64. % survival from untreated cells (cells + cisplatin)

<table>
<thead>
<tr>
<th>Cisplatin, µM</th>
<th>0</th>
<th>0.0013</th>
<th>0.0064</th>
<th>0.032</th>
<th>0.16</th>
<th>0.8</th>
<th>4</th>
<th>20</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.50</td>
<td>1.37</td>
<td>1.19</td>
<td>1.15</td>
<td>1.20</td>
<td>1.23</td>
<td>1.18</td>
<td>0.48</td>
<td>0.59</td>
</tr>
</tbody>
</table>

TABLE 65. Average reading: cells + talc only.

% survival from untreated cells: cells + talc only.

<table>
<thead>
<tr>
<th>talc mg</th>
<th>0</th>
<th>0.6mg</th>
<th>1.25mg</th>
<th>2.5mg</th>
<th>5mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 talc</td>
<td>100</td>
<td>53.86</td>
<td>46.18</td>
<td>57.18</td>
<td>90.14</td>
</tr>
</tbody>
</table>

TABLE 66. % survival from untreated cells: cells + talc only.

<table>
<thead>
<tr>
<th>Cisplatin, µM</th>
<th>0</th>
<th>0.0013</th>
<th>0.0064</th>
<th>0.032</th>
<th>0.16</th>
<th>0.8</th>
<th>4</th>
<th>20</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.50</td>
<td>1.37</td>
<td>1.19</td>
<td>1.15</td>
<td>1.20</td>
<td>1.23</td>
<td>1.18</td>
<td>0.48</td>
<td>0.59</td>
</tr>
</tbody>
</table>

TABLE 67. Average readings: cells + talc incubated with 20 µM Cisplatin.
TABLE 68. % survival from untreated: cells + talc / 20 µM cisplatin.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.6mg/2.5MM</th>
<th>1.25mg/5µM CIS</th>
<th>2.5mg/10µM</th>
<th>5mg/0.20 µM CIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>51.48</td>
<td>54.76</td>
<td>84.75</td>
<td>123.08</td>
</tr>
</tbody>
</table>

TABLE 69. Paclitaxel, talc, cell data.

Average readings : cells+ drug

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.13</th>
<th>068</th>
<th>3.5</th>
<th>16</th>
<th>80</th>
<th>400</th>
<th>2000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.52</td>
<td>1.56</td>
<td>1.33</td>
<td>1.37</td>
<td>1.29</td>
<td>1.10</td>
<td>1.01</td>
<td>0.95</td>
<td>0.93</td>
</tr>
</tbody>
</table>

% survival (cells + drug)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.13</th>
<th>068</th>
<th>3.5</th>
<th>16</th>
<th>80</th>
<th>400</th>
<th>2000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>102.50</td>
<td>86.98</td>
<td>89.85</td>
<td>84.47</td>
<td>71.81</td>
<td>66.39</td>
<td>62.43</td>
<td>60.71</td>
</tr>
</tbody>
</table>

TABLE 70. Paclitaxel, talc, cell data.

Average reading: cells+talc

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.6mg</th>
<th>1.25mg</th>
<th>2.5mg</th>
<th>5mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.62</td>
<td>1.01</td>
<td>1.20</td>
<td>1.20</td>
<td>1.59</td>
</tr>
</tbody>
</table>

% survival from untreated cells: cells + talc only

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.6mg</th>
<th>1.25mg</th>
<th>2.5mg</th>
<th>5mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>62.40</td>
<td>74.09</td>
<td>74.09</td>
<td>98.58</td>
</tr>
</tbody>
</table>

Average reading: cells+talc binded to 1µM Paclitaxel

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.6mg</th>
<th>1.25mg</th>
<th>2.5mg</th>
<th>5mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4835</td>
<td>0.725</td>
<td>0.43</td>
<td>0.6875</td>
<td>1.011</td>
</tr>
</tbody>
</table>

% survival from untreated cells: cells + talc binded to 1µM Taxol

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.6mg</th>
<th>1.25mg</th>
<th>2.5mg</th>
<th>5mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>48.87</td>
<td>28.99</td>
<td>46.34</td>
<td>68.15</td>
</tr>
</tbody>
</table>

% survival from untreated cells : combine data

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.6mg</th>
<th>1.25mg</th>
<th>2.5mg</th>
<th>5mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>62.40</td>
<td>74.09</td>
<td>74.09</td>
<td>98.58</td>
</tr>
</tbody>
</table>

The study showed clear cytotoxic effect on NCI-28H cells with talc alone. But when talc is bound to doxorubicin and paclitaxel, toxicity is enhanced over either of these cytotoxic agents used alone. In contrast, there was no noticeable difference in toxicity of cisplatin when bound or unbound to talc. Therefore, it is presently thought that cisplatin may not be effective because it may not not bind to talc.
EXAMPLE 22: CYTOTOXICITY ASSAY: NCI-28H CELLS TREATED WITH DIFFERENT COMPOUNDS-CARBOPLATIN, MITOMYCIN, GEMCITABINE, TALC ALONE, AND TALC BOUND TO EACH OF THESE COMPOUNDS

The following Example determined which of the above compounds is more cytotoxic to NCI-28H.

Carboplatin, Mitomycin, Gemcitabine, talc, and talc bound to the drugs.

Plan: add to NCI-28H cells different type of compounds: only drugs, only talc and talc that previously incubated with Carboplatin, Mitomycin, Gemcitabine. Read absorbance (MTS assay) and calculate cells survive rate. Compare survival rate

Materials:

1. Carboplatin 450mg/45ml; Hospira, cat # NDC 61703-339-50, lot #A01 1711AA, exp. September 2014.
2. Mitomycin 20mg; Accord, cat. # NDC 16729-1 08->1 1, lot #PP01 516, exp.07/2015
3. Gemcitabine 200mg; SUN pharmaceutical industries LTD, cat. # NDC 47335-1 53-40, lot#JKL4371 A, exp. 08/2015.
4. Sterile Talc Powder,
 Bryan Corporation, cat.# NDC 63256-200-05; lot #:3M021 ; exp. Dec 2016
5. DPBS, 1x
 ATCC, Cat. #:30-2200, Lot #:6144381 8.
6. NCI-28H,
 ATCC, cat. #:CRL-5820, lot #7379248
7. RPMI-1640 media; ATCC cat.#30-2001 , lot# 620271 97.
8. Trypsin-EDTA; ATCC cat.#30-21 01, lot# 6161881 8.
9. Fetal Bovine serum, ATCC cat.# 3022
10. CellTiter 96 AQueous One Solution cell proliferation assay; Promega cat# G3581 .
11. 0.9% Sodium Chloride 50ml; BAXTER cat.# 2B1306, NDC 03380049-41 , lot# P300574, exp. April 2014.
DAY 1

Cells preparation:

1. Set up 3 cytotoxicity plates for tomorrow experiment: trypsinize NCI-28H cells (T-75 flask, passage 12):

 - Remove old medium, wash cells with 7ml DPBS, remove DPBS, add 2ml trypsin, incubate plates for 1-2', when cells detached add 6ml fresh medium, mix cells and medium.

 - Count cells under the microscope using the glass slide. Average # of cells in slide is 31; average in 1ml of mix is 31x10,000=31 000 cells/ml;

 - Count how much cell/medium stock needed: will use 3 plates (60 wells) in the assay; count extra wells for safety reason. If we need 200 wells, in each well will be 5,000 cells in 0.1 ml; so total we need 1,000,000 cells in 20ml.

 1,000,000cells/31 000=3. 2ml of cells/media mix need to take from flask and transfer to 16.8ml media. In 50ml Falcon tube, combine 16.8ml fresh medium and 3.2 ml cells. Gently mix.

2. Transfer 100µl of prepared cells/medium mix to proper wells, keep overnight at 37°C, 5% CO₂.

Talc preparation:

1. Under the hood transfer sterile talc approximately 25mg of talc to each of 3 sterile Eppendorf tubes, and approximately 100 mg of sterile talc to one tube. Total tubes are 4.

 Close tubes and weigh how much exactly talc added to each tube. Result: tube #1=89.1 mg; tube #2(CARBO) = 32.0mg, tube #3 (MITOMYCIN)=32.5 mg, tube #4 (GEM)=28.8 mg.

2. Talc/Carboplatin preparation: to make 500µl of 500µM carboplatin solution use stock 26.9mM; dilute stock 1:10=90 µl DPBS + 10µl stock; combine 407.0 µl DPBS + 93.0µl of 1:10 dilution of carboplatin stock. Final solution is 500µl of 500 µM carboplatin. Mix talc in tube #2 with this solution.

3. Talc/mitomycin preparation: reconstitute 20mg powder of drug with 20 ml sterile water, molarity of stock solution will be 2.99mM to make 500µl of 200µM Mitomycin solution use stock 2.99 mM; combine 466.6 µl DPBS + 33.4µl stock. Final solution is 500µl of
200 µM Mitomycin. Mix talc in tube #3 with this solution.

4. Talc/Gemcitabine preparation: To make 500 µL of 200 µM Gemcitabine, reconstitute drug with 5 ml of 0.9% Sodium Chloride; stock will be 133.48 mM; dilute stock 1:10=90 µL DPBS + 10 µL stock; combine 462.6 µL DPBS + 37.4 µL of 1:10 dilution of stock. Final solution is 500 µL of 200 µM Gemcitabine. Mix talc in tube #4 with this solution.

5. Protect tubes from light, tape them on rotator and incubate o/n at RT.

DAY 2

Preparation of Talc

1. Centrifuge tubes at 3200 rpm for 3 min. Take out supernatant. Wash pellet 3 times with 1.0 ml of DPBS (sterile) after last wash add to tube #1: contains 89.1 mg talc, 178.2 µL of media; final concentration talc in tube will be 0.5 mg/µL. Add to tube #2 contains 32.0 mg talc, 64.0 µL of media; to tube #3 contains 32.5 mg talc add 65.0 µL media and for tube #4 contains 28.8 mg talc add 57.6 µL media; final concentration talc in all tubes will be 0.5 mg/µL

2. Keep tubes with talc at RT.

3. Prepare first working solution of talc from tube #1: 1.35 ml media + 150 µL of 0.5 mg/L talc. Total concentration will be 5 µg/µL. Make dilutions 1:2 (750 µL media + 750 µL previous dilution) to make following concentration talc in well 2.5 mg talc/100 µL media; 1.25 mg/100 µL; 0.6 mg/100 µL.

4. Prepare first dilution of each of the above tubes #2, #3, #4 by adding 540 µL media + 60 µL of prepared above 0.5 mg talc and drug/µL.

5. After preparation of the above solution, prepare 3 subsequent 1:2 serial dilutions of each of the above preparations (300 µL media + 300 µL of previous dilution).

6. Add 100 µL of the above preparations in steps #3, #4, #5 to the proper wells as indicated in a 96-well plate layout. The resultant preparation added to each well will give presence of talc in the wells as following: 0.6 mg talc/well, 1.25 mg talc/well, 2.5 mg talc/well, and 5.0 mg talc/well after sequential dilutions (1:2) across plate.

Preparation of carboplatin (stock 26.9 mM): Prepare the following dilutions (1:5) of
drug:

(1) 500 μM
(2) 100 μM
(3) 20 μM
(4) 4 μM
(5) 0.8 μM
(6) 0.16 μM
(7) 0.032 μM
(8) 0.0064 μM

Prepare 600 μL of 1mM carboplatin solution (double concentration to keep 500 μM drug in total volume 200 μL media in well) as follows:

1. 577.7 μL media + 22.3 μL of carboplatin stock.

2. Following preparation of above solution prepare the above 7 sequential serial dilutions using the following formula: 480 μL media + 120 μL of prior dilution.

3. Add 100 μL of each 8 preparations of diluted carboplatin (step 1 and 2) to the proper wells according to a plate layout.

Preparation of mitomycin (stock 2.99 mM): Prepare the following dilutions (1:5) of drug:

(1) 200 μM
(2) 40 μM
(3) 8 μM
(4) 1.6 μM
(5) 0.32 μM
(6) 0.064 μM
(7) 0.013 μM
(8) 0.0026 µM

1. Prepare 600 µL of 400 µM Mitomycin solution (double concentration to keep 100 µM drug in total volume 200 µL media in well) as follows: 520.0 µL media + 80.2 µL of stock.

2. Following preparation of above solution prepare the above 7 sequential serial dilutions using the following formula: 480 µL media + 120 µL of prior dilution.

3. Add 100 µL of each 8 preparations of diluted mitomycin to the proper wells according to a plate layout.

Preparation of gemcitabine (stock 133.48 mM):

1. Prepare the following dilutions (1:5) of drug:

 (1) 200 µM
 (2) 40 µM
 (3) 8 µM
 (4) 1.6 µM
 (5) 0.32 µM
 (6) 0.064 µM
 (7) 0.013 µM
 (8) 0.0026 µM

2. Prepare 600 µL of 400 µM drug solution (double concentration to keep 200 µM drug in total volume 200 µL media in well) as follows:

 582.0 µL media + 18.0 µL of 1:10 dilution of stock.

3. Following preparation of above solution prepare the above 7 sequential serial dilutions using the following formula: 480 µL media + 120 µL of prior dilution.

4. Add 100 µL of each 8 preparations of diluted Gemcitabine (step 1, 2, 3) to the proper wells according to a plate layout.

5. Add 100 µL of media for untreated cells that will use as a control and not contain any drug or any kind of talc.
6. Check the plate and start incubation at 37 °C/5% CO₂.

DAY 3
1. Mix talc in wells by pipetting up and down. Continue incubation plate at 37°C/5% CO₂.

DAY 4
1. Mix talc in wells by pipetting up and down. Continue incubation plate at 37°C/5% CO₂.

DAY 5
1. Check plate under microscope, no visible sign of contamination is present.
2. Mix talc/media liquid in the wells. Using needle/vacuum system remove all liquid from all wells.
3. Wash all cells 1×300µL DPBS, remove final wash.
4. Add 120µL fresh media to all wells.
5. Add 20µL of CellTiter 96 Aqueous One solution to each well.
6. Incubate plate 1hr at 37C, 5% CO₂.
7. Read absorbance in plate reader at 490nm.

TABLE 71. Average reading: cells + drug, carboplatin, µM.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.006</th>
<th>0.032</th>
<th>0.16</th>
<th>0.8</th>
<th>4</th>
<th>20</th>
<th>100</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.65593</td>
<td>1.504233</td>
<td>1.514967</td>
<td>1.5334</td>
<td>1.4238</td>
<td>1.605067</td>
<td>1.7355</td>
<td>1.388067</td>
<td>0.618933</td>
</tr>
</tbody>
</table>

TABLE 72. % survival from untreated cells: cells + drug, carboplatin, µM.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.006</th>
<th>0.032</th>
<th>0.16</th>
<th>0.8</th>
<th>4</th>
<th>20</th>
<th>100</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>90.84</td>
<td>91.49</td>
<td>92.60</td>
<td>85.98</td>
<td>96.93</td>
<td>104.81</td>
<td>83.82</td>
<td>37.38</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>94.28</td>
<td>92.95</td>
<td>97.48</td>
<td>87.53</td>
<td>93.62</td>
<td>99.20</td>
<td>79.53</td>
<td>35.14</td>
</tr>
</tbody>
</table>

TABLE 73. Average absorbance reading talc + cells and cells + talc incubated with 500 µM.

<table>
<thead>
<tr>
<th></th>
<th>Omg</th>
<th>0.6mg</th>
<th>1.25mg</th>
<th>2.5mg</th>
<th>5mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>cells+talc</td>
<td>1.65593</td>
<td>0.771</td>
<td>0.78895</td>
<td>0.74915</td>
<td>0.9812</td>
</tr>
</tbody>
</table>
TABLE 74. % survival cells after talc and talc bound to carboplatin added.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Omg</th>
<th>0.6mg</th>
<th>1.25mg</th>
<th>2.5mg</th>
<th>5mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells+talc</td>
<td>100</td>
<td>46.56</td>
<td>47.64</td>
<td>45.24</td>
<td>59.25</td>
</tr>
<tr>
<td>Cells+talc/500MMCarbo</td>
<td>100</td>
<td>58.95</td>
<td>47.87</td>
<td>43.20</td>
<td>65.84</td>
</tr>
</tbody>
</table>

TABLE 73. Average reading: cells + drug, gemcitabine, µM.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Omg</th>
<th>0.0026</th>
<th>0.013</th>
<th>0.064</th>
<th>0.32</th>
<th>1.6</th>
<th>8</th>
<th>40</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omg</td>
<td>1.77441</td>
<td>2.033633</td>
<td>1.913633</td>
<td>1.430167</td>
<td>1.388733</td>
<td>1.1977</td>
<td>1.00395</td>
<td>1.0663</td>
<td>0.9352</td>
</tr>
</tbody>
</table>

TABLE 74. % survival from untreated cells: cells + drug, gemcitabine, µM.

<table>
<thead>
<tr>
<th>Gemcitabinem.pM</th>
<th>Omg</th>
<th>0.0026</th>
<th>0.013</th>
<th>0.064</th>
<th>0.32</th>
<th>1.6</th>
<th>8</th>
<th>40</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omg</td>
<td>114.61</td>
<td>107.85</td>
<td>80.60</td>
<td>78.26</td>
<td>67.50</td>
<td>56.58</td>
<td>60.09</td>
<td>52.70</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 75. Average absorbance readings: cells + drug, mitomycin, µM.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Omg</th>
<th>0.0026</th>
<th>0.013</th>
<th>0.064</th>
<th>0.32</th>
<th>1.6</th>
<th>8</th>
<th>40</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omg</td>
<td>1.91438</td>
<td>2.031533</td>
<td>1.965033</td>
<td>1.8766</td>
<td>1.827167</td>
<td>1.036467</td>
<td>0.3451</td>
<td>0.520033</td>
<td>0.246367</td>
</tr>
</tbody>
</table>

TABLE 76. % survival cells after exposure to drug for 72 hrs (cells + drug only), mitomycin, µM.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Omg</th>
<th>0.0026</th>
<th>0.013</th>
<th>0.064</th>
<th>0.32</th>
<th>1.6</th>
<th>8</th>
<th>40</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omg</td>
<td>100</td>
<td>106.12</td>
<td>102.65</td>
<td>98.03</td>
<td>95.44</td>
<td>54.14</td>
<td>18.03</td>
<td>27.16</td>
<td>12.87</td>
</tr>
</tbody>
</table>

TABLE 77. Average absorbance readings: survival cells after talc incubated to mitomycin added.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Omg</th>
<th>0.6mg</th>
<th>1.25mg</th>
<th>2.5mg</th>
<th>5mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells+talc</td>
<td>1.91438</td>
<td>1.7976</td>
<td>2.1208</td>
<td>1.99815</td>
<td>2.1156</td>
</tr>
<tr>
<td>Cells+talc/Mitomycin</td>
<td>1.91438</td>
<td>0.6719</td>
<td>0.6604</td>
<td>0.7877</td>
<td>1.22415</td>
</tr>
</tbody>
</table>

TABLE 78. % survival cells after talc and talc/mitomycin treatment.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Omg</th>
<th>0.6mg</th>
<th>1.25mg</th>
<th>2.5mg</th>
<th>5mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells+talc</td>
<td>100</td>
<td>93.90</td>
<td>110.78</td>
<td>104.38</td>
<td>110.51</td>
</tr>
<tr>
<td>Cells+talc/Mitomycin</td>
<td>100</td>
<td>35.10</td>
<td>34.50</td>
<td>41.15</td>
<td>63.94</td>
</tr>
</tbody>
</table>
The study showed clear cytotoxic effect on NCI-28H cells with talc, mitomycin, and gemcitabine when used as single-agents. However, when talc is bound to mitomycin or gemcitabine, toxicity is greatly enhanced over any of these agents when used alone. In contrast, there was no noticeable difference in toxicity of carboplatin-talc or talc alone on NCI-28H cells. Based on these findings, it is presently thought that carboplatin may not bind to talc or talc does not absorb carboplatin.

EXAMPLE 23: CYTOTOXICITY ASSAY: NCI-2052H CELLS TREATED WITH DIFFERENT COMPOUNDS-BLEOMYCIN, MITOMYCIN, DOXORUBICIN, PACLITAXEL, TALC ALONE AND TALC BOUND TO EACH OF THESE COMPOUNDS

The following example determined if cytotoxicity would also occur when another cell line was exposed to similar conditions, based on above experimental results with NCI-28H. Therefore, a similar experiment was designed utilizing NCI-2052H to determine if different
Compounds (talc, chemotherapy drugs, and talc conjugated to chemotherapy agents) would also be cytotoxic to NCI-2052H cells.

Plan: add to NCI-2052H cells different type of compounds: only drugs, only talc and talc that previously incubated with Bleomycin, Mitomycin, Doxorubicin and Paclitaxel.

Read absorbance (MTS assay) and calculate cells survival rate. Compare survival rate

Materials:
1. Bleomycin sulfate from Streptomyces verticillus; Sigma, cat # 15361-10mg, lot# BCBL0535V.
2. Mitomycin 20mg; Accord, cat.# NDC 16729-1 08-1 1, lot #PP01 5 16, exp.07/201 5.
3. Doxorubicin Hydrochloride, 50mg/25ml; Amneal- Agila LLC, cat.#NDC 531 50-31 5-01 ; lot # 7800982; exp.03/2015.
4. Paclitaxel, 300mg/ml; Sagent, cat.# NDC 25021 - 213-50;lot# 38J01 11; exp. 04/201 5.
5. Sterile Talc Powder, Bryan Corporation, cat.# NDC 63256-200-05; lot#:3M021 ; exp. Dec 201 6
6. DPBS 1x; ATCC, Cat. #:30-2200, Lot #:6144381 8.
7. NCI-2052H cell line, ATCC, cat. #:CRL-591 5, lot #:57608140.
8. RPMI-1640 media; ATCC cat.#30-2001 , lot# 620271 97.
9. Trypsin-EDTA; ATCC cat.#30-21 01, lot# 6161881 8.
10. Fetal Bovine serum, ATCC cat.# 3022
11. CellTiter 96 AQueous One Solution cell proliferation assay; Promega cat# G3581.

Day 1

Cells preparation:
1 Set up 4 cytotoxicity plates for tomorrow experiment: trypsinize NCI-28H cells (T-75 flask, passage 6):

-Remove old medium, wash cells with 7ml DPBS, remove DPBS, add 2 ml trypsin,
incubate plates for 1-2 min., when cells detached add 6ml fresh medium, mix cells and medium. -Count cells under the microscope using the glass slide. Average # of cells in slide is 44; average in 1ml of mix is 44x1 0,000=440,000 cells/ml;

-Count how much cell/medium stock needed: will use 4 plates (60 wells) in the assay; count extra wells for safety reason. If we need 300 wells, in each well will be 5,000 cells in 0.1 ml media; so total we need 1,500,000 cells in 30ml media. 1,500,000 cells/440,000=3.4 ml of cells/media mix need to take from flask and transfer to 26.6 ml media. In 50ml Falcon tube, combine 26.6 ml fresh medium and 3.4 ml cells. Gently mix.

2 Transfer 100µl of prepared cells/medium mix to proper wells, keep overnight at 37 °C, 5% CO₂.

Talc preparation:

1. Under the hood transfer sterile talc approximately 25mg of talc to each of 4 sterile Eppendorf tubes, and approximately 150mg of sterile talc to one tube. Total tubes are 5. Close tubes and weigh exactly how much talc added to each tube. Result: tube #1 (Bleomycin)=52.0 mg; tube #2(Mitomycin) = 35.2 mg, tube #3(Dox)=42.4 mg, tube #4 (Paclitaxel)=44.0 mg. Tube #5(no drugs)=1 33.6 mg.

2. Talc/Bleomycin preparation: need to make 400µl of 1 mg/ml solution. Reconstitute powder of drug in 100 µl of sterile water; stock of drug will be 10Omg/ml. To make 400µl of 1 mg/ml Bleomycin, combine 396.0 µl DPBS + 4.0 µl of Bleomycin stock. Final solution is 400µl of 1 mg/ml of Bleomycin. Mix talc in tube #1 with this solution.

3. Talc/Mitomycin preparation: use stock solution 2.99 mM to make 500µl of 200 µM Mitomycin solution use stock 2.99 mM; combine 466.6µl DPBS + 33.4µl stock. Final solution is 500µl of 200µM Mitomycin. Mix talc in tube #2 with this solution.

4. Talc/Doxorubicin preparation : to make 500µl of 1µM Doxorubicin use stock 3.45 mM; dilute stock 1:100=495.0 µl DPBS + 5µl stock; combine 485.5 µl DPBS + 14.5µl of 1:100 dilution of stock. Mix talc in tube #3 with this solution.

5. Talc/PACLITAXEL preparation : to make 500µl of 1µM paclitaxel solution use stock 7.03mM; dilute stock 1:100=495µl DPBS + 5µl stock; combine 482µl DPBS + 18.0µl of 1:100 dilution of paclitaxel stock. Final solution is 500µl of 1µM paclitaxel. Mix talc in tube #4
with this solution.

6. Add 1 ml DPBS in tube # 5, mix talc with DPBS.

7. Protect tubes from light, tape them on rotator and incubate o/n at RT.

DAY 2

Preparation of Talc

1. Centrifuge tubes at 3200 rpm for 3 min. Take out supernatant. Wash pellet in tubes #1, #2, #3, #4 3 times with 1.0 ml of DPBS (sterile) after last wash add to tube #1: contains 52.0 mg talc, 104.0 µL of media; final concentration talc in tube will be 0.5 mg/µL. Add to tube #2 contains 35.2 mg talc, 70.4 µL of media; to tube #3 contains 42.4mg talc add 84.8 µL media; for tube #4 contains 44.0 mg talc add 88.8 µL media; for tube #5 contains 133.6mg talc add 267.2 µL media; final concentration talc in all tubes will be 0.5 mg/µL.

2. Keep tubes with talc at RT.

3. Prepare first working solution of talc from tube #5: 1.8 ml media + 200 µL of 0.5mg/µL talc. Total concentration will be 5mg/100µL. Make dilutions 1:2 (900 µL media + 900 µL previous dilution) to make following concentration talc in well 2.5mg talc/100 µL media; 1.25mg/100 mL; 0.6mg/100 mL.

4. Prepare first dilution of each of the above tubes #1, #2, #3, #4 by adding 540 µL media + 60 µL of prepared above 0.5mg (talc and drug) µL media.

5. After preparation of the above solution, prepare 3 subsequent 1:2 serial dilutions of each of the above preparations (300 µL media + 300 µL of previous dilution).

6. Add 100 µL of the above preparations in steps #3, #4, #5 to the proper wells as indicated in a 96-well plate layout. The resultant preparation added to each well will give presence of talc in the wells as following: 0.6 mg talc/well, 1.25 mg talc/well, 2.5 mg talc/well, and 5.0 mg talc/well after sequential dilutions (1:2) across plate.

Preparation of Bleomycin:

Prepare the following dilutions of Bleomycin

(1) 1 mg/ml (625 µM),
250 \text{Mg/ml (156.3 \mu M)},

62.5 \text{Mg/ml (39 \mu M)},

15.6 \text{Mg/ml (9.75 \mu M)},

3.9 \text{Mg/ml (2.43 \mu M)},

0.97 \text{Mg/ml (0.6 \mu M)},

0.24 \text{Mg/ml (0.15 \mu M)},

0.06 \text{Mg/ml (0.038MM)}.

Prepare 500 \mu_l stock solution of 625 \mu M Bleomycin as follows:

1. 450 ML media + 50 ML of stock (6.25 mM bleomycin).

2. Following preparation of above solution prepare the above 7 sequential serial dilutions using the following formula: 375 ML media + 125 ML of prior dilution.

3. Add 100 ML of each 8 preparations of diluted bleomycin (step 1 and 2) to the proper wells according to a plate layout.

4. Add 100 ML of media for untreated cells that will use as a control and not contain any drug or any kind of talc.

5. Preparation of mitomycin (stock 2.99 mM):

Prepare the following dilutions (1:5) of drug:

(1) 200 \text{ mM}

(2) 40 \text{ mM}

(3) 8 \text{ mM}

(4) 1.6 \text{ mM}

(5) 0.32 \text{ mM}

(6) 0.064 \text{ mM}

(7) 0.013 \text{ mM}
6. Prepare 600 µL of 400 µM Mitomycin solution (double concentration to keep 200 µM drug in total volume 200 µL media in well) as follows: 520.0 µL media + 80.2 µL of stock.

7. Following preparation of above solution prepare the above 7 sequential serial dilutions using the following formula: 480 µL media + 120 µL of prior dilution.

8. Add 100 µL of each 8 preparations of diluted MITOMYCIN to the proper wells according to a plate layout.

Preparation of DOXORUBICIN (stock 3.45 mM): Prepare the following dilutions (1:5) of drug:

1. Prepare the following dilutions (1:5) of drug:

 (1) 10 µM
 (2) 2 µM
 (3) 0.4 µM
 (4) 0.08 µM
 (5) 0.016 µM
 (6) 0.0032 µM
 (7) 0.00064 µM
 (8) 0.000128 µM

Prepare 600 µL of 20 µM doxorubicin solution (double concentration to keep 10 µM drug in total volume 200 µL media in well) as follows:

1.565.2 µL media + 34.8 µL of 1:10 dilution of doxorubicin stock.

2. Following preparation of above solution prepare the above 7 sequential serial dilutions using the following formula: 480 µL media + 120 µL of prior dilution.

3. Add 100 µL of each 8 preparations of diluted doxorubicin (step 1 and 2) to the proper wells according to a plate layout. Preparation of paclitaxel (stock 7.03 mM):

 1. Prepare the following dilutions (1:5) of drug:

 (1) 20 µM
(2) 4 \mu M
(3) 0.8 \mu M
(4) 0.16 \mu M
(5) 0.032 \mu M
(6) 0.0064 \mu M
(7) 0.00128 \mu M
(8) 0.000256 \mu M

2. Prepare 600 \mu L of 40 \mu M paditaxel solution (double concentration to keep 20 \mu M drug in total volume 200 \mu L media in well) as follows:

565.8 \mu L media + 34.2 \mu L of 1:10 dilution of Paditaxel stock.

3. Following preparation of above solution prepare the above 7 sequential serial dilutions using the following formula: 480 \mu L media + 120 \mu L of prior dilution.

4. Add 100 \mu L of each 8 preparations of diluted paditaxel (step 1, 2, 3) to the proper wells according to a plate layout.

5. Add 100 \mu L of media for untreated cells that will use as a control and not contain any drug or any kind of talc.

6. Check the plates and start incubation for 72 hrs at 37°C/5% CO₂.

DAY 3

1. Mix talc in wells by pipetting up and down. Continue incubation plate at 37°C/5% CO₂.

DAY 4

1. Mix talc in wells by pipetting up and down. Continue incubation plate at 37°C/5% CO₂.

DAY 5

1. Check plate under microscope, no visible sign of contamination is present.
1. Mix talc/media liquid in the wells. Using needle/vacuum system, remove all liquid from all wells.

2. Wash all cells 1×300 μL DPBS, remove final wash.

3. Add 120 μL fresh media to all wells.

4. Add 20 μL of CellTiter 96 Aqueous One solution to each well.

5. Incubate plate 1 hr at 37 °C, 5% CO₂.

6. Read absorbance in plate reader at 490 nm.

7. TABLE 83. Average readings: cells + drug, bleomycin, μg/ml (see e.g., FIG. 31).

<table>
<thead>
<tr>
<th>Bleomycin, μg/ml</th>
<th>0</th>
<th>0.24</th>
<th>0.97</th>
<th>3.9</th>
<th>15.6</th>
<th>62.5</th>
<th>250</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.32366</td>
<td>1.3454</td>
<td>1.2884</td>
<td>1.1733</td>
<td>0.684633</td>
<td>0.507533</td>
<td>0.276567</td>
<td>0.193467</td>
</tr>
</tbody>
</table>

8. TABLE 84. % survival from untreated cells (see e.g., FIG. 31).

<table>
<thead>
<tr>
<th>Bleomycin, μg/ml</th>
<th>0</th>
<th>0.24</th>
<th>0.97</th>
<th>3.9</th>
<th>15.6</th>
<th>62.5</th>
<th>250</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>101.64</td>
<td>97.34</td>
<td>88.64</td>
<td>51.72</td>
<td>38.34</td>
<td>20.89</td>
<td>14.62</td>
</tr>
</tbody>
</table>

9. TABLE 85. Average readings: talc, talc + drug (see e.g., FIG. 32).

<table>
<thead>
<tr>
<th>talc, mg/well</th>
<th>0</th>
<th>0.62</th>
<th>1.25</th>
<th>2.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>talc only</td>
<td>1.32366</td>
<td>0.4757</td>
<td>0.47085</td>
<td>0.5883</td>
<td>0.97375</td>
</tr>
<tr>
<td>talc + Bleo</td>
<td>1.32366</td>
<td>0.3168</td>
<td>0.3819</td>
<td>0.46465</td>
<td>1.0287</td>
</tr>
</tbody>
</table>

10. TABLE 86. % survival from untreated cells (see e.g., FIG. 32).

<table>
<thead>
<tr>
<th>talc, mg/well</th>
<th>0</th>
<th>0.62</th>
<th>1.25</th>
<th>2.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>talc only</td>
<td>100</td>
<td>35.94</td>
<td>35.57</td>
<td>44.44</td>
<td>73.56</td>
</tr>
<tr>
<td>talc + Bleo</td>
<td>100</td>
<td>23.93</td>
<td>28.85</td>
<td>35.10</td>
<td>77.72</td>
</tr>
</tbody>
</table>

11. TABLE 87. Average reading: cells + drug, mitomycin, μM (see e.g., FIG. 34).

| 0 | 0.0026 | 0.013 | 0.064 | 0.32 | 1.6 | 8 | 40 | 200 |
TABLE 88. Average reading: cells + talc/mitomycin.

<table>
<thead>
<tr>
<th>talc, mg/well</th>
<th>0</th>
<th>0.62</th>
<th>125</th>
<th>2.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>cells+talc</td>
<td>1.57579</td>
<td>0.359</td>
<td>0.4202</td>
<td>0.5906</td>
<td>1.26305</td>
</tr>
<tr>
<td>cells+talc/Mitomycin</td>
<td>1.57579</td>
<td>0.4339</td>
<td>0.51025</td>
<td>0.79055</td>
<td>1.0963</td>
</tr>
</tbody>
</table>

TABLE 89. % survival from untreated cells.

<table>
<thead>
<tr>
<th>talc, mg/well</th>
<th>0</th>
<th>0.62</th>
<th>125</th>
<th>2.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>cells+talc</td>
<td>100</td>
<td>22.78</td>
<td>26.67</td>
<td>37.48</td>
<td>80.15</td>
</tr>
<tr>
<td>cells+talc/Mitomycin</td>
<td>100</td>
<td>27.54</td>
<td>32.38</td>
<td>50.17</td>
<td>69.57</td>
</tr>
</tbody>
</table>

TABLE 90. Average reading: cells after treated for 72 hrs with doxorubicin, nM (see e.g., FIG. 35).

<table>
<thead>
<tr>
<th>0</th>
<th>0.128</th>
<th>0.64</th>
<th>3.2</th>
<th>16</th>
<th>80</th>
<th>400</th>
<th>2000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.37733</td>
<td>1.082267</td>
<td>1.149067</td>
<td>1.084133</td>
<td>1.1113</td>
<td>1.1153</td>
<td>0.795533</td>
<td>0.352467</td>
<td>0.2605</td>
</tr>
</tbody>
</table>

TABLE 91. % survival from untreated cells, doxorubicin, nM (see e.g., FIG. 35).

<table>
<thead>
<tr>
<th>0</th>
<th>0.128</th>
<th>0.64</th>
<th>3.2</th>
<th>16</th>
<th>80</th>
<th>400</th>
<th>2000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>78.58</td>
<td>83.43</td>
<td>78.71</td>
<td>80.69</td>
<td>80.98</td>
<td>57.76</td>
<td>25.59</td>
<td>18.91</td>
</tr>
</tbody>
</table>

TABLE 92. Average readings: cells + talc/doxorubicin (see e.g., FIG. 36).

<table>
<thead>
<tr>
<th>talc, mg/well</th>
<th>0</th>
<th>0.6</th>
<th>1.25</th>
<th>2.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>cells+talc</td>
<td>1.37733</td>
<td>1.52825</td>
<td>1.5293</td>
<td>1.1036</td>
<td>1.2317</td>
</tr>
<tr>
<td>cells+talc/Dox</td>
<td>1.37733</td>
<td>0.5573</td>
<td>0.37065</td>
<td>0.3926</td>
<td>0.5758</td>
</tr>
</tbody>
</table>

TABLE 93. % survival from untreated cells (see e.g., FIG. 36).

<table>
<thead>
<tr>
<th>talc, mg/well</th>
<th>0</th>
<th>0.6</th>
<th>1.25</th>
<th>2.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>cells+talc</td>
<td>100</td>
<td>110.96</td>
<td>111.03</td>
<td>80.13</td>
<td>89.43</td>
</tr>
<tr>
<td>cells+talc/Dox</td>
<td>100</td>
<td>40.46</td>
<td>26.91</td>
<td>28.50</td>
<td>41.81</td>
</tr>
</tbody>
</table>
TABLE 94. Average reading: cells + drug, paclitaxel, nM (see e.g., FIG. 37).

<table>
<thead>
<tr>
<th>Paclitaxel, nM</th>
<th>0</th>
<th>0.256</th>
<th>1.28</th>
<th>6.4</th>
<th>32</th>
<th>160</th>
<th>800</th>
<th>4000</th>
<th>20,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.70244</td>
<td>1.4273</td>
<td>1.5873</td>
<td>1.539567</td>
<td>0.581767</td>
<td>0.436067</td>
<td>0.4326</td>
<td>0.552967</td>
<td>0.1647</td>
</tr>
</tbody>
</table>

TABLE 95. % survival from untreated cells (see e.g., FIG. 37).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.256</th>
<th>1.28</th>
<th>6.4</th>
<th>32</th>
<th>160</th>
<th>800</th>
<th>4000</th>
<th>20,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>83.84</td>
<td>93.24</td>
<td>90.43</td>
<td>34.17</td>
<td>25.61</td>
<td>25.41</td>
<td>32.48</td>
<td>9.67</td>
</tr>
</tbody>
</table>

TABLE 96. Average absorbance reading: cells + talc; cells + talc binds to paclitaxel.

<table>
<thead>
<tr>
<th>Talc, mg/well (see e.g., FIG. 38).</th>
<th>0</th>
<th>0.62</th>
<th>1.25</th>
<th>2.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>cells+talc</td>
<td>1.70244</td>
<td>0.6172</td>
<td>0.96435</td>
<td>0.29925</td>
<td>0.4724</td>
</tr>
<tr>
<td>cells+talc, that binds to Taxol</td>
<td>1.70244</td>
<td>0.20145</td>
<td>0.2091</td>
<td>0.3997</td>
<td>0.54495</td>
</tr>
</tbody>
</table>

TABLE 97. % survival from untreated cells (see e.g., FIG. 38).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.62</th>
<th>1.25</th>
<th>2.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>cells+talc</td>
<td>100</td>
<td>36.25</td>
<td>56.65</td>
<td>17.58</td>
<td>27.75</td>
</tr>
<tr>
<td>cells+talc, that binds to Taxol</td>
<td>100</td>
<td>11.83</td>
<td>12.28</td>
<td>23.48</td>
<td>32.01</td>
</tr>
</tbody>
</table>

The study showed enhanced cytotoxicity on NCI-2052H cells when cells are exposed to talc conjugated to the following chemotherapy drugs: bleomycin, doxorubicin, and paclitaxel vs. talc alone. But the talc-mitomycin conjugate demonstrated less cytotoxicity than talc alone. The result was not expected, thus, additional experiments for mitomycin and NCI-2052H were performed to test if the results were correct.

EXAMPLE 24: REPEATED CYTOTOXICITY EXPERIMENT: NCI-2052H CELLS TREATED WITH MITOMYCIN, TALC ALONE AND TALC BOUND TO MITOMYCIN

The following Example repeated the experiment in Example 23 with NCI-2052H and mitomycin.

Plan: repeat one more time experiment when NCI-2052H cells exposed for 72 hrs to Mitomycin, talc and talc bound to Mitomycin. Compare survival rate of cells.
Materials:

1. Mitomycin 20mg; Accord, cat.# NDC 16729-1 08->1 1, lot #PP01 5 1 6, exp.07/201 5.
3. DPBS 1x; ATCC, Cat. #:30-2200, Lot #:61443818.
4. NCI-2052H cell line, ATCC, cat. #:CRL-591 5, lot #:57608140.
5. RPMI-1640 media; ATCC cat.#30-2001 , lot# 620271 97.
6. Trypsin-EDTA; ATCC cat.#30-21 01, lot#: 61618818.
7. Fetal Bovine serum, ATCC cat.#3022.
8. CellTiter 96 AQueous One Solution cell proliferation assay; Promega cat# G3581.

DAY 1

1. Use NCI-2052H cells, passage 9 to fill up 96 well microplate with 5,000 cells per well. Protocol how to do that see in previous cytotoxicity experiment.
2. Incubate plate overnight at 37 °C, 5% CO₂.

3. Prepare talc: under the hood transfer sterile talc approximately 25 mg of talc to each of 2 sterile Eppendorf tubes. Close tubes and weigh how much exactly talc added to each tube. Result: tube #1 = 48.1 mg; tube #2=44.5 mg.

4. Add 500 µL DPBS (sterile) to tube #1, add 500 µL DPBS containing 200 µM Mitomycin to tube #2.

5. Talc/mitomycin preparation: use Mitomycin stock 2.99 mM. To make 500 µL of 200 µM Mitomycin combine 466.6 µL DPBS + 33.4 µL stock. Mix talc in tube #2 with this solution.

6. Incubate both tubes overnight at 4 °C, on rotator.

DAY 2

Preparation of Talc.

1. Centrifuge tubes at 3200 rpm for 3 min. Take out supernatant. Wash pellet in tubes # 1 and #2 3 times with 1.0 ml of DPBS (sterile) after last wash add to tube #1: contains 48.1
mg talc, 96.2 µL of media; final concentration talc in tube will be 0.5 mg/µL. Add to tube #2 contains 44.5 mg talc 89.0 µL of media; final concentration talc in the tube will be 0.5 mg/µL.

2. Keep tubes with talc at RT.

3. Prepare first dilution of talc from tube #1: 540 µL media + 60 µL of 0.5 mg/µL talc. Total concentration will be 5 mg/100 µL. Make dilutions 1:2 (300 µL media + 300 µL previous dilution) to make following concentration talc in well 2.5 mg talc/100 µL media; 1.25 mg/100 µL; 0.6 mg/100 µL.

4. Prepare dilutions from tube #2 by adding 540 µL media + 60 µL of prepared above 0.5 mg (talc bound to drug) µL media.

5. After preparation of the above solution, prepare 3 subsequent 1:2 serial dilutions (300 µL media + 300 µL of previous dilution).

6. Add 100 µL of the above preparations to the proper wells as indicated in a 96-well plate layout. The resultant preparation added to each well will give presence of talc in the wells as following: 0.6 mg talc/well, 1.25 mg talc/well, 2.5 mg talc/well, and 5.0 mg talc/well after sequential dilutions (1:2) across plate.

Preparation of mitomycin (stock 2.99 mM): Prepare the following dilutions (1:5) of drug:

(1) 200 µM
(2) 40 µM
(3) 8 µM
(4) 1.6 µM
(5) 0.32 µM
(6) 0.064 µM
(7) 0.013 µM
(8) 0.0026 µM

1. Prepare 600 µL of 400 µM Mitomycin solution (double concentration to keep 200 µM drug in total volume 200 µL media in well) as follows: 519.8 µL media + 80.2 µL of stock.
2. Following preparation of above solution prepare the above 7 sequential serial dilutions using the following formula: 480 µL media + 120 µL of prior dilution.

3. Add 100 µL of each 8 preparations of diluted mitomycin to the proper wells according to a plate layout.

INCUBATION

1. Incubate plate for 72 hrs at 37 °C, 5% CO₂.

DAY 3

1. Check plate under microscope. Continue incubation plate at 37 °C/5% CO₂.

DAY 4

1. Check plate under microscope. Continue incubation plate at 37 °C/5% CO₂.

DAY 5

1. Check plate under microscope, no visible sign of contamination is present.

2. Mix talc/media liquid in the wells. Using needle/vacuum system, remove all liquid from all wells.

3. Wash all wells 1x300 µL DPBS, remove final wash.

4. Add 120 µL fresh media to all wells.

5. Add 20 µL of CellTiter 96 Aqueous One solution to each well.

6. Incubate plate 1hr at 37 °C, 5% CO₂.

7. Read absorbance in plate reader at 490 nm.

RESULTS AND DATA

TABLE 98. Average absorbance reading: cells + talc + talc/drug (see e.g., FIG. 40).

<table>
<thead>
<tr>
<th></th>
<th>Talc.mg</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0.6mg</td>
<td>1.25mg</td>
<td>2.5mg</td>
<td>5mg</td>
</tr>
<tr>
<td>cells+talc</td>
<td>1.095</td>
<td>1.615</td>
<td>0.72</td>
<td>0.6485</td>
<td>1.0035</td>
</tr>
<tr>
<td>cells+talc/Mitomycin</td>
<td>1.095</td>
<td>1.076</td>
<td>0.659</td>
<td>0.316</td>
<td>1.28</td>
</tr>
</tbody>
</table>

TABLE 99. % survival from untreated cells (see e.g., FIG. 40).
TABLE 100. Average reading: drug + cells (see e.g., FIG. 41).

<table>
<thead>
<tr>
<th>Mitomycin, uM</th>
<th>0</th>
<th>0.026</th>
<th>0.013</th>
<th>0.064</th>
<th>0.32</th>
<th>1.6</th>
<th>8</th>
<th>40</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.095</td>
<td>0.8636</td>
<td>0.7906</td>
<td>0.8266</td>
<td>0.8223</td>
<td>0.677</td>
<td>0.4216</td>
<td>0.2256</td>
<td>0.2243</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study showed clear cytotoxic effect on NCI-2052H cells with talc alone. Further, when talc is bound to mitomycin, toxicity was enhanced.

EXAMPLE 25: INHIBITION OF NON-SPECIFIC BINDING OF BIOTIN-RHODAMINE TO TALC BY WASHING WITH LOW AND HIGH PH BUFFERS

The following Example determined if various buffers of varying pH (4.8-8.0) affect the binding of Biotin-Rhodamine to talc particles.

Plan: incubate talc with Biotin Rhodamine. Make washings using different pH buffers: PBS, TBS (pH 8.0), Citrate buffer (pH 4.8). Run fluorescent assay.

Materials:

1. Sterile Talc Powder (Bryan Corporation, Cat. #: 1690, Lot #: 3M021, Exp. Date: Dec. 2016)
2. 1x PBS (Sigma, Cat. #: P5493-1 L, Lot #: SLBB9685)
3. Water (Sigma Life Science, Cat. #: 3500, Lot #: RNBD1156)
4. Water deionized; Sigma-Aldrich, cat.# 38796-1L; lot# BCBM0010V
5. Biotin rhodamine 110; Biotium, cat.#80022.
6. Tris Buffered Saline ph 8.0, powder; Sigma cat.#T6664-1 0pak; lot#SLBK8366V.
Citrate Buffer solution, 0.09 M; Sigma, cat.# C2488-500ml, lot# SLBD8857V

DAY 1

1. Add 25 mg talc to the each of 4 eppendorf tubes (round bottom). Label tubes as #1, #2, #3, #4.

2. Add to each tube 500µL 1x PBS.

3. Add 5µL of Biotin Rhodamine (concentration: µg/µL) to the tubes #1, #2, #3, but not to tube #4.

4. Mix well, incubate all tubes for 1hr at 4 °C, rotator. Protect from light.

5. Wash talc in tube#1 three times with 500µL TBS; in tube #2 three times with 500 µL Citrate buffer and in tube #3 three times with PBS. (Centrifuge speed -3200 rpm for 3 min)

6. Centrifuge talc in tube #4 and remove supernatant.

7. Add to all tubes 200µL PBS, mix well.

8. Transfer 50µL talc mix from each tube to fluorescent assay 96 well plate. Then add to each well 100µL PBS to keep talc in equal distribution around well.

9. Run fluorescent assay using settings excitation/emission as 496nm/520nm.

TABLE 102. Average fluorescent signal (Rhodamine 110).

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Average fluorescent signal(RHODOMINE 110)</th>
</tr>
</thead>
<tbody>
<tr>
<td>talc/Biotin washed with TBS, pH 8.0</td>
<td>12868.68</td>
</tr>
<tr>
<td>talc/Biotin washed with Citrate buffer, pH 4.8</td>
<td>14027.61</td>
</tr>
<tr>
<td>talc/Biotin washed with PBS</td>
<td>13760.41</td>
</tr>
<tr>
<td>Talc in PBS, no Biotin</td>
<td>715.75</td>
</tr>
</tbody>
</table>

The evidence strongly suggests the presence of Biotin-Rhodamine on talc. Changing pH of washing buffers did not change amount of Biotin Rhodamine that nonspecifically bound with talc. Thus, the study showed strong evidence that pH does not affect the binding of Biotin-Rhodamine to talc particles.
CLAIMS

Claim 1. A kit for treatment of a proliferative disease, disorder, or condition comprising:

a first composition comprising (i) a ligand coupled to molecule or a substrate or (ii) a
ligand; and

a second composition comprising a receptor coupled to a radioisotope;
wherein the ligand comprises specific or non-specific affinity for the receptor.

Claim 2. The kit of claim 1, wherein the ligand comprises a streptavidin, streptavidin
variant, avidin, avidin variant, or molecularly imprinted polymer.

Claim 3. The kit of any one of claims 1-2, wherein the ligand is a PEGylated ligand.

Claim 4. The kit of any one of claims 1-3, wherein first composition consists essentially
of a ligand and the ligand has specific or non-specific affinity for a target tissue associated
with the disease, disorder, or condition.

Claim 5. The kit of any one of claims 1-4, wherein the receptor comprises a biotin.

Claim 6. The kit of any one of claims 1-5, wherein the radioisotope comprises lutetium-
177, yttrium-90, iodine-131, phosphorus-32, boron-10, radium-223, bismuth-213, lead-212,
holmium-166, dysprosium-165, erbium-169, iodine-125, iridium-192, rhenium-186, rhenium-
188, samarium-153, strontium-89, a caesium radioisotope, a gold radioisotope, or a
ruthenium radioisotope.

Claim 7. The kit of any one of claims 1-6, wherein the molecule or substrate comprises
natural or artificial material.

Claim 8. The kit of any one of claims 1-7, wherein the molecule or substrate
comprises:

(i) a silicate, talc, fibrin, fibrin glue, gelatin, or gelfoam, or combinations thereof;
(ii) gold, tantalum, iridium, platinum, nitinol, stainless steel, platinum, titanium, tantalum, nickel-titanium, cobalt-chromium, magnesium, ferromagnetic, nonferromagnetic, alloys thereof, fiber, cellulose, a biodegradable polymer, or a non-biodegradable polymer, or a combinations thereof;

(iii) a non-biodegradable polymer selected from the group consisting of polyetheretherketone (PEEK), PEEK derivatives, polyethyleneteraphthalate, polyetherimide, polymide, polyethylene, polyvinylfluoride, polyphenylene, polytetrafluoroethylene-co-hexafluoropropylene, polymethylmethacrylate, polyetherketone, poly (ethylene-co-hexafluoropropylene), polyphenylenesulfide, polycarbonate, poly (vinylidene fluoride-co-hexafluoropropylene), poly (tetrafluoroethylene-co-ethylene), polypropylene, or polyvinylidene fluoride, or combinations thereof;

(iv) a biodegradable material selected from the group consisting of polycaprolactone, poly (D,-lactide), polyhydroxyvalerate, polyanhydrides, polyhydroxybutyrate, polyorthoesters, polyglycolide, poly (L-lactide), copolymers of lactide and glycolide, polyphosphazenes, or polytrimethylenecarbonate, or combinations thereof;

(v) a drug-delivering vascular stent, self-expanding stent, balloon-expanded stent, vascular device, graft, catheter, valve, artificial heart, heart assist device, implantable defibrillator, defibrillator lead, blood oxygenator device, blood oxygenator tubing, blood oxygenator membrane, surgical device, suture, staple, anastomosis device, vertebral disk, bone pin, suture anchor, hemostatic barrier, clamp, screw, plate, clip, vascular implant, tissue adhesive or sealant, tissue scaffold, membrane, cell culture device, chromatographic support material, biosensor, shunt for hydrocephalus, wound management device, endoscopic device, infection control device, orthopedic device, joint orthopedic implant, orthopedic fracture repair device, dental device, dental implant, dental fracture repair device, urological device, penile urological device, sphincter urological device, urethral urological device, bladder urological device, prostrate urological device, vaginal urological device, fallopian urological device, renal urological device, urological catheter, colostomy bag attachment device, ophthalmic device, ocular coil ophthalmic device, glaucoma drain shunt, synthetic prostheses, breast synthetic prostheses, intraocular lens, respiratory device, peripheral device, cardiovascular device, spinal device, neurological device, dental device, gastrointestinal device, gastro-esophageal device, ear/nose/throat device, ear drainage tube.
device, renal device, iliac device, cardiac device, aortic devices, aortic graft, aortic stent,
dialysis device, dialysis tubing, dialysis membrane, dialysis graft, urinary catheter,
antimicrobial surface-coated urinary catheter, intravenous catheter, intravenous catheter treated with antithrombotic agent comprising heparin, hirudin, or Coumadin, tissue graft, small
diameter tissue graft, tissue scaffold, vascular graft, artificial lung catheter, atrial septal defect
closure, electro-stimulation leads for cardiac rhythm management, pacer leads, glucose
sensor, long-term glucose sensor, short-term glucose sensor, degradable coronary stent,
non-degradable coronary stent, partially degradable coronary stent, blood pressure and stent
graft catheter, birth control device, benign prostate implant, prostate cancer implant, bone
repair device, bone augmentation device, breast implant, cartilage repair device, dental
implant, implanted drug infusion tube, intravitreal drug delivery device, nerve regeneration
conduit, oncological implant, electrostimulation lead, pain management implant, spinal repair
device, orthopedic repair device, wound dressing, embolic protection filter, abdominal aortic
aneurysm graft, heart valve, mechanical heart valve, polymeric heart valve, tissue heart
valve, percutaneous, carbon heart valve, sewing cuff heart valve, valve annuloplasty device,
mitral valve repair device, vascular intervention device, left ventricle assist device, neuro
aneurysm treatment coil, neurological catheter, left atrial appendage filter, hemodialysis
device, catheter cuff, anastomotic closure, vascular access catheter, cardiac sensor, uterine
bleeding patch, uterine stent or stent-like device, cervix treatment device, urological catheter,
urological stent, urological implant, gastro-esophageal stent, aneurysm exclusion device,
neuropatch, vena cava filter, urinary dialator, endoscopic surgical tissue extractor,
endoscopic drug delivery device, fluid delivery device, atherectomy catheter, atherectomy
device, imaging catheter, imaging device, Intravascular Ultrasound imaging catheter or
device, Magnetic Resonance Imaging catheter or device, Optical Coherence Tomography
imaging catheter or device, thrombus extraction catheter or device, clot extraction catheter or
device, thrombectomy device, percutaneous transluminal angioplasty catheter or device,
PTCA catheter, stylet, vascular stylet, non-vascular stylet, guiding catheter, drug infusion
catheter, esophageal stent, pulmonary stent, bronchial stent, circulatory support system,
angiographic catheter, transition sheath, transition dilator, coronary guidewire, hemodialysis
catheter, peripheral guidewire, hemodialysis catheter, neurovascular balloon catheter or
device, tympanostomy vent tube, cerebro-spinal fluid shunt, defibrillator lead, percutaneous
closure device, drainage tube, thoracic cavity suction drainage catheter, electrophysiology catheter or device, stroke therapy catheter or device, abscess drainage catheter, biliary drainage device, dialysis catheter, central venous access catheter, parental feeding catheter or device, implantable vascular access port, blood storage bag, vascular stent, blood tubing, arterial catheter, vascular graft, intraaortic balloon pump, suture, cardiovascular suture, total artificial heart, ventricular assist pump, extracorporeal device, blood oxygenator, blood filter, hemodialysis unit, hemoperfusion unit, plasmapheresis unit, hybrid artificial organ, hybrid artificial pancreas, hybrid artificial liver, hybrid artificial lung, blood vessel emboli filter, distal protection device, distal embolic protection device, or combinations thereof; or

(vi) combinations thereof.

Claim 9. A method of treating a disease, disorder, or condition in a subject comprising:
(a) administering to a subject in need thereof a first composition comprising a ligand coupled to a molecule or substrate; and
administering to the subject a second composition comprising a receptor coupled to a radioisotope; or
(b) administering a kit of any one of claims 1-8, wherein administering comprises (i) administering to a subject in need thereof the first composition comprising the ligand coupled to the molecule or substrate and (ii) administering to the subject the second composition comprising the receptor coupled to the radioisotope.

Claim 10. The method of claim 9, wherein the first composition is administered to the subject before the second composition.

Claim 11. The method of any one of claims 9-10, wherein the disease, disorder, or condition comprises a proliferative disease, disorder, or condition.

Claim 12. The method of any one of claims 9-11, wherein the disease, disorder, or condition comprises one or more selected from the group consisting of: a cancer, malignant pleural mesothelioma, peritoneal carcinomatosis, leukemia, lymphoma, non-small cell lung cancer, testicular cancer, lung cancer, abdominal cancer, ovarian cancer, uterine cancer,
cervical cancer, pancreatic cancer, colorectal cancer, breast cancer, prostate cancer, gastric cancer, colon cancer, skin cancer, stomach cancer, liver cancer, liver metastasis, esophageal cancer, bladder cancer, appendiceal carcinoma, gastric carcinoma, pancreatic carcinoma, peritoneal mesothelioma, pseudomyxoma peritonei, blood vessel proliferative disorder, fibrotic disorder, mesangial cell proliferative disorder, psoriasis, actinic keratoses, seborrheic keratoses, warts, keloid scars, eczema, viral-associated hyperproliferative disease, papilloma viral infection, mesothelioma, Meigs Syndrome, sarcoma, appendiceal carcinoma, pseudomyxoma peritonei, prostate cancer, prostate cancer lymph node dissection beds, rectovesical pouch tumor bed, ovarian cancer resection bed and peritoneal spread, uterine cancer resection cavities, pleural and peritoneal mesothelioma resection bed and peritoneal seeding, colorectal carcinoma, appendiceal carcinoma, pancreatic carcinoma, liver metastases, gastric carcinoma, renal carcinoma, retroperitoneal tumors, retroperitoneal sarcoma, retroperitoneal carcinoma, breast cancer, breast cancer lumpectomy, breast cancer lumpectomy dissection cavity, breast cancer lymph node, breast cancer lymph node dissection cavity, melanoma, melanoma node dissection cavity, sarcoma, sarcoma resection cavities, head or neck cancer, head or neck cancer resection cavity, neck cancer lymph node, neck lymph node dissection cavities, scalp lesion, glioblastoma, glioblastoma resection cavity, brain surface tumor lesion, resected brain surface tumor lesion, non resected brain surface tumor lesion, trunk sarcoma, trunk sarcoma resection cavity, extremity sarcoma, and extremity sarcoma resection cavity, or a combination thereof.

Claim 13. The method of any one of claims 9-12, wherein the proliferative disease, disorder, or condition comprises a cancer.

Claim 14. The method of any one of claims 9-13, wherein the first composition is administered to the subject post-operatively in or near a surgically operated area.

Claim 15. The method of any one of claims 9-14, wherein the first composition is administered to the subject post-operatively in a cavity where proliferative cells or tissue were surgically removed.
Claim 16. The method of any one of claims 9-15, wherein the first composition or the second composition is administered in an amount effective to inhibit replication of cancer cells; inhibit spread of the disease, disorder, or condition; reduce tumor size; decrease tumor vascularization; increase tumor permeability; reduce recurrence of tumor growth; prevent recurrence of tumor growth; reduce a number of cancerous cells in the subject; or ameliorate a symptom of the disease, disorder, or condition.
FIG. 3

Saturation amount of AVIDIN with 100mg talc

FIG. 4

Amount of Avidin removed from surface of talc during wash, ug/ml
FIG. 5

<table>
<thead>
<tr>
<th></th>
<th>1650.3ug</th>
<th>198.4ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st wash with PBS</td>
<td>307.4</td>
<td>31.4</td>
</tr>
<tr>
<td>2nd wash with PBS</td>
<td>67.3</td>
<td>27.6</td>
</tr>
<tr>
<td>3rd wash with PBS</td>
<td>40.3</td>
<td>32.7</td>
</tr>
<tr>
<td>1st wash with EDTA</td>
<td>13.2</td>
<td>15.8</td>
</tr>
<tr>
<td>2nd wash with EDTA</td>
<td>12.3</td>
<td>19.8</td>
</tr>
<tr>
<td>3rd wash with EDTA</td>
<td>13.2</td>
<td>13</td>
</tr>
</tbody>
</table>

FIG. 6

Avidin ug/ml binded to cm² talc surface

![Graph showing Avidin binding](image)
FIG. 8A

HRP AVIDIN left over in supernatant after o/n incubation with talc

<table>
<thead>
<tr>
<th>Amount of HRP AVIDIN added to talc</th>
<th>40ng/ml</th>
<th>20ng/ml</th>
<th>10ng/ml</th>
<th>5ng/ml</th>
<th>2.5ng/ml</th>
<th>1.25ng/ml</th>
<th>0.63ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mg talc</td>
<td>1.559</td>
<td>0.619</td>
<td>0.324</td>
<td>0.186</td>
<td>0.117</td>
<td>0.074</td>
<td>0.073</td>
</tr>
<tr>
<td>5mg talc</td>
<td>1.069</td>
<td>0.344</td>
<td>0.203</td>
<td>0.121</td>
<td>0.084</td>
<td>0.066</td>
<td>0.066</td>
</tr>
<tr>
<td>10mg talc</td>
<td>0.916</td>
<td>0.255</td>
<td>0.144</td>
<td>0.134</td>
<td>0.084</td>
<td>0.082</td>
<td>0.075</td>
</tr>
<tr>
<td>20mg talc</td>
<td>0.703</td>
<td>0.256</td>
<td>0.162</td>
<td>0.165</td>
<td>0.108</td>
<td>0.113</td>
<td>0.128</td>
</tr>
</tbody>
</table>

FIG. 8B

HRP AVIDIN

- 40ng/ml: 3.802
- 20ng/ml: 2.814
- 10ng/ml: 1.500
- 5ng/ml: 0.725
- 2.5ng/ml: 0.325
- 1.25ng/ml: 0.256
- 0.63ng/ml: 0.171
- PBS: 0.049
FIG. 9A

HRP AVIDIN binded with talc after o/n incubation, OD

<table>
<thead>
<tr>
<th>Amount of HRP AVIDIN added to talc</th>
<th>40ng/ml</th>
<th>20ng/ml</th>
<th>10ng/ml</th>
<th>5ng/ml</th>
<th>2.5ng/ml</th>
<th>1.25ng/ml</th>
<th>0.63ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mg talc</td>
<td>2.76</td>
<td>1.12</td>
<td>0.78</td>
<td>0.47</td>
<td>0.34</td>
<td>0.37</td>
<td>0.43</td>
</tr>
<tr>
<td>5mg talc</td>
<td>2.84</td>
<td>1.10</td>
<td>0.98</td>
<td>0.97</td>
<td>0.53</td>
<td>0.54</td>
<td>0.80</td>
</tr>
<tr>
<td>10mg talc</td>
<td>3.68</td>
<td>2.79</td>
<td>1.78</td>
<td>1.66</td>
<td>0.86</td>
<td>1.14</td>
<td>0.96</td>
</tr>
<tr>
<td>20mg talc</td>
<td>3.66</td>
<td>3.33</td>
<td>3.27</td>
<td>3.39</td>
<td>2.97</td>
<td>2.83</td>
<td>3.13</td>
</tr>
</tbody>
</table>

FIG. 9B

<table>
<thead>
<tr>
<th>HRP AVIDIN OD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40ng/ml</td>
<td>3.954</td>
</tr>
<tr>
<td>20ng/ml</td>
<td>3.610</td>
</tr>
<tr>
<td>10ng/ml</td>
<td>2.168</td>
</tr>
<tr>
<td>5ng/ml</td>
<td>1.067</td>
</tr>
<tr>
<td>2.5ng/ml</td>
<td>0.464</td>
</tr>
<tr>
<td>1.25ng/ml</td>
<td>0.358</td>
</tr>
<tr>
<td>0.63ng/ml</td>
<td>0.235</td>
</tr>
<tr>
<td>PBS</td>
<td>0.047</td>
</tr>
</tbody>
</table>
The intensity is strongest. Compare leading currents of the wavelengths of UV filters.

Example showing the strongest emission at 380 nm wavelengths.
FIG. 18

NCI-28H cells survival after exposure for 72 hrs to CISPLATIN, % from untreated cells

FIG. 19

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>cells + 2.5uM CISPLATIN</td>
<td>80</td>
</tr>
<tr>
<td>cells + 0.6mg taic</td>
<td>53.8</td>
</tr>
<tr>
<td>cells + 0.6mg taic/2.5uM CIS</td>
<td>51.48</td>
</tr>
</tbody>
</table>
% survival cells (compare different plan of treatment)

<table>
<thead>
<tr>
<th>Plan of Treatment</th>
<th>% Survival from Untreated Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells + 250nM Paclitaxel</td>
<td>70</td>
</tr>
<tr>
<td>Cells + 1.25mg talc</td>
<td>34.69</td>
</tr>
<tr>
<td>Cells + 3.25mg talc/250nM Paclitaxel</td>
<td>28.99</td>
</tr>
</tbody>
</table>

NCI-28H survival cells after treated different way, % from untreated cells:

- Cells + 250nM Paclitaxel
- Cells + 1.25mg talc
- Cells + 3.25mg talc/250nM Paclitaxel

NCI-28H survival cells
FIG. 24

NCI-28H cells survival rate after exposure to CARBOPLATIN for 72hrs, % from untreated cells

FIG. 25

NCI-28H cells survival rate after 72 hrs exposure to talc or talc/Carboplatin

NCI-28H cells exposed to talc
NCI-28H cells exposed to talc incubated previously with 500uM Carboplatin
<table>
<thead>
<tr>
<th>Treatment</th>
<th>% Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells + 62.5uM CARBO</td>
<td>80</td>
</tr>
<tr>
<td>Cells + 1.25mg talc</td>
<td>47.64</td>
</tr>
<tr>
<td>Cells + 1.25mg talc/62.5</td>
<td>47.87</td>
</tr>
</tbody>
</table>

FIG. 26

NCI-28H cells survival rate after different treatments, % from untreated cells
FIG. 27

NCI-28H cells survival after exposure to Mitomycin for 72hrs, % from untreated cells

FIG. 28

NCI-28H cells exposure to talc only
NCI-28H cells exposed to talc binded to Mitomycin
FIG. 29

NCI-28H survival after exposure to Gemcitabine for 72 hrs, % from untreated cells

FIG. 30

NCI-28H survival after exposed for 72 hrs to talc and talc binded to Gemcitabine, % from untreated cells

- cells + talc only
- cells + talc/Gemcitabine
FIG. 33

<table>
<thead>
<tr>
<th>Treatment Description</th>
<th>% Survival from Untreated Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells treated with 90ug/ml Bleomycin for 72hrs</td>
<td>50</td>
</tr>
<tr>
<td>Cells treated with 0.62mg talc for 72hrs</td>
<td>35.94</td>
</tr>
<tr>
<td>Cells treated with 0.62mg talc that binds with 50ug/ml Bleomycin for 72hrs</td>
<td>23.93</td>
</tr>
</tbody>
</table>

Survival rate of NCI-2052H cells treated differently, % from untreated cells

FIG. 34

Survival rate of NCI-2052H cells after exposure to Mitomycin for 72hrs

Data points indicate the survival rate of NCI-2052H cells treated with Mitomycin at various concentrations (0, 0.015, 0.03, 0.064, 0.32, 1.6, 40, 200) in micromolar (uM). The graph shows a decrease in survival rate as the concentration of Mitomycin increases.
FIG. 35

Survival rate of NCI-2052H cells after treated for 72hrs with Doxorubicin

% survival from untreated cells

Doxorubicin, nM

FIG. 36

Survival rate of NCI-2052H cells exposed to Talc

% survival from untreated cells

Talc, mg/plate well

FIG. 37

Survival rate of NCI-2052H cells after treated with Paclitaxel for 72hrs

% survival from untreated cells

Paclitaxel, nM
FIG. 38

Survival rate NCI-2052H cells after exposed for 72hrs to
talc and talc binds to Paclitaxel

% survival from untreated cells

Talc, mg/plate well

NCI-2052H cells exposed to
talc

NCI-2052H cells exposed to
talc that binds to Paclitaxel

FIG. 39

Survival rate of NCI-2052H cells after different
treatments (72hrs), % from untreated cells

% survival from untreated cells

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>cells + 125nM Taxol</td>
<td>35</td>
</tr>
<tr>
<td>cells + 0.62 mg talc</td>
<td>30</td>
</tr>
<tr>
<td>cells + 0.62 mg talc binds to</td>
<td>10</td>
</tr>
<tr>
<td>125nM Taxol</td>
<td></td>
</tr>
</tbody>
</table>
FIG. 40

Survival rate NCI-2052H cells that exposed for 72hrs to
talc and talc bound to Mitomycin,% from untreated cells

FIG. 41

% survival NCI-2052H cells treated with Mitomycin for 72hrs
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION

PCT/US 15/12303

A. CLASSIFICATION OF SUBJECT MATTER

IPC (8) - A61K 51/00 (2015.01)

CPC - A61K 2123/00; C07F 13/005; A61K 51/0478

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8): A 61 K 51/00 (2015.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

CPC: A61K 2123/00; C07F 13/005; A61K 51/0478

USPC-424/1 1 1

Electronic data base consulted during the international search (name of database and, where practicable, search terms used)

PatBase, Google Patents, Google Scholar (without Patents)

Keywords: kit proliferative disease ligand coupled to molecule radioisotope non-specific affinity streptavidin avidin variant PGEylated PEGylation receptor molecularly imprinted polymer

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2003/0091565 A1 (Beltzer et al.) 15 May 2003 (15.05.2003) Abstract, para [0201], para [0433], para [0485], para [0501], para [0519], para [0524], para [0784], para [0846],</td>
<td>1-3</td>
</tr>
<tr>
<td>Y</td>
<td>US 2013/0130286 A1 (Silverstein et al.) 23 May 2013 (23.05.2013) Abstract, para [0065], para [0057], para [0091], para [0065].</td>
<td>1-3</td>
</tr>
<tr>
<td>Y</td>
<td>Minelli et al.; Engineering nanocomposite materials for cancer therapy, Small, vol 6 no 2 1 pp 2336-2357; (2010) pg 2338 col 2 para 2; pg 2347 col 2 para 1; pg 2352 col 2 para 1</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search

23.03.2015 (23 March 2015)

Date of mailing of the international search report

13 APR 2015

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents

P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer: Lee W. Young

PCT Helpdesk: 571-272-4300

PCT OSP: 571-272-7774

Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [] Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. [] Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claims Nos.: 4-16 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

[] The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

[] The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

[] No protest accompanied the payment of additional search fees.